New York Journal of Mathematics
Volume 25 (2019), 1214-1239


Anthony Genevois

Acylindrical hyperbolicity from actions on CAT(0) cube complexes: a few criteria

view    print

Published: November 5, 2019.
Keywords: CAT(0) cube complexes, Acylindrically hyperbolic groups.
Subject: 20F65, 20F67.

The question which motivates the article is the following: given a group acting on a CAT(0) cube complex, how can we prove that it is acylindrically hyperbolic? Keeping this goal in mind, we show a weak acylindricity of the action on the contact graph associated to a CAT(0) cube complex, and we prove a characterisation of WPD contracting isometries of CAT(0) cube complexes. As a first consequence, we find alternative arguments to show several criteria which were proved by Indira Chatterji and Alexandre Martin. Next, we show that if a group acts essentially and acylindrically on the hyperplanes (i.e., the intersection of the stabilisers of two hyperplanes which are sufficiently far away from each other has its cardinality uniformly bounded) on a finite-dimensional CAT(0) cube complex, then it contains a finite-index subgroup which is either acylindrically hyperbolic or cyclic. Finally, we prove a statement about codimension-one subgroups, which implies that, if a group contains a finitely generated codimension-one subgroup which is malnormal and which satisfies the bounded packing property, then this group must contain a finite-index subgroup which is either acylindrically hyperbolic or cyclic.



Author information

Anthony Genevois:
Département de Mathématiques Bâtiment 307
Faculté des Sciences d'Orsay
Université Paris-Sud
F-91405 Orsay Cedex, France