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ABSTRACT. This is the first of two interconnected parts: Part I contains the
geometric theory of generalized modular forms and their connections with the
cooperation algebra for elliptic cohomology, E4¢, E¢¢, while Part II is devoted
to the more algebraic theory associated with Hecke algebras and stable oper-
ations in elliptic cohomology.

We investigate the structure of the stable operation algebra E¢¢* E¢¢ by
first determining the dual cooperation algebra E/l¢.E¢¢. A major ingredient
is our identification of the cooperation algebra E/¢¢, E£¢ with a ring of general-
ized modular forms whoses exact determination involves understanding certain
integrality conditions; this is closely related to a calculation by N. Katz of the
ring of all ‘divided congruences’ amongst modular forms. We relate our present
work to previous constructions of Hecke operators in elliptic cohomology. We
also show that a well known operator on modular forms used by Ramanujan,
Swinnerton-Dyer, Serre and Katz cannot extend to a stable operation.

Introduction

This paper is in two interelated parts: Part I contains the geometric theory
of generalized modular forms and their connections with the cooperation algebra
ElC, Ell, while Part I will be devoted to the more algebraic theory associated with
Hecke algebras and operations in elliptic cohomology.

In our earlier paper [6], we defined operations in the ‘level 1’ version of ellip-
tic cohomology E£¢*( ) which restricted to the classical Hecke operators on the
coefficient ring E¢/, (defined to be a ring of modular forms for the full modular
group SL3(Z)). In the present paper we investigate the structure of the operation
algebra E4¢* E£{ by determining the dual cooperation algebra E#(,E¢f, thus fol-
lowing the pattern established in the case of K-theory; we also describe a category
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of modules (dually comodules) over these which are closely related to modules over
Hecke algebras associated to the group SLa(Z); this points to a generalization from
K-theory to elliptic cohomology of work by A. K. Bousfield in [12], [13]. A recent
paper of F. Clarke and K. Johnson [14] has also considered the analogous cooper-
ation algebra for the level 2 version of elliptic cohomology, and we in effect prove
their conjecture on the structure of their analogue of E¢¢, ElL.

A particular ingredient is our identification of the cooperation algebra E4{, E(/¢
with a ring of ‘generalized modular forms’. The most significant aspect of this
involves understanding certain integrality conditions, and this is closely related to
the calculation by N. Katz in [23] of the ring of all ‘divided congruences’ amongst
modular forms (in 1 variable). Indeed, Katz’s work amounts to a calculation of
the topological gadget KU,FE/¢{ rather than E¢¢,E(l; however, we use his re-
sults to determine the latter. We also wish to point out that the construction
by G. Nishida [32] of Hecke operators appears to be closely related to the ideas of
the present work.

We will assume the reader is familiar with the apparatus of algebraic topology
contained in [1] and [33], to which the reader is referred for all basic ideas on
complex oriented cohomology theories and their associated formal group laws. As
basic references on elliptic cohomology theories, P. S. Landweber’s two articles [28]
and [29] are highly recommended although their main emphasis is on level 2 theories.
A more recent reference is that of J. Francke [15]. A convenient source for all the
basic notions of Hecke algebras is [26].

In detail, Part I is structured as follows. §1 contains a brief resumé of modular
forms and elliptic cohomology. §2 gives details of the formal group law associated to
elliptic curves in Weierstrass form and the canonical complex orientation of elliptic
cohomology. §3 introduces the cooperation Hopf algebroid E¢¢,E¢¢. §4 introduces
our notion of generalized modular form. In §5 and §6 we describe certain categories
of isogenies and their realisation as stable operations on elliptic cohomology. §7
recalls the properties of the classical rings of stably numerical polynomials, familiar
in the context of the stable cooperation Hopf algebroid for K-theory, KU, KU. In
§8 and §9 we describe a major result of N. Katz and apply it to the calculation of our
ring of generalized modular forms which is isomorphic to E¢¢,E¢¢. In §10 and §11
we complete the description of E4/, E¢¢ by considering its coproduct structure and
use duality to construct stable operations, particularly operations which generalize
the classical Hecke operators. Finally, in §12 we discuss an important operation 9
on modular forms which is a derivation and plays a major réle in the arithmetic
theory of Swinnerton-Dyer, Serre and Katz; we show this cannot extend to a stable
operation in elliptic cohomology.

I would like to thank the following for help and advice on this work and related
topics over many years: Francis Clarke, Mark Hovey, John Hunton, Keith Johnson,
Peter Landweber, Jack Morava, Goro Nishida, Serge Ochanine, Doug Ravenel, Nigel
Ray, Robert Stong and Charles Thomas.

1. Modular forms and elliptic cohomology

Let £ denote the set of all oriented lattices in C, i.e., discrete free subgroups
L C Csuch R® L = C as oriented real vector spaces. This set can be identified
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with the coset space
SLQ (Z)\Va

where V is the set of all oriented bases {wi,ws} in the real vector space C and we
use the convention that for an oriented (ordered) basis {w1,ws},

wi/wa € H={reC:im7 > 0}.

The action of SLy(Z) is the obvious one,

a b
<c d) Awr, ws} = {awy + bwa, cwy + dws}.
This of course induces the usual action on the upper half plane § on passage from
{wi,ws} to wi/we. Thus L possesses a natural 2-dimensional complex analytic
structure.

Notice that the group of non-zero complex numbers C* acts compatibly on both
V and L by

A- {wl,wg} = {)\wl,)\qu}
and

A <w1,w2> = <)\w1, )\(.d2> N

where (w1, ws) denotes the lattice spanned by the basis {w1,wsa}.
We will follow [22] and [25] in defining a modular form of weight k to be a
holomorphic function F': £ — C which satisfies the functional equation

F(\-L)=X*F(L)

whenever A\ € C*. To avoid excessively elaborate notation, we will sometimes
regard such a function as having as its domain V and being invariant under the
action of SLa(Z). We can associate to such an F' a function f: ) — C defined by
f(r) = F({r,1)) for 7 € $ the upper half plane. After setting ¢ = €2™'7, we say
that F' is holomorphic at infinity (i.e., at ico) if the Fourier series expansion

f(r) = Z anq"

—oo<n<oo

has a, = 0 for n < 0; if also ag = 0, then F is a cusp form. We say that F
is meromorphic at infinity if the Fourier series of F' has a, = 0 for n <« 0. If
the coefficients a,, lie in some subring K C C, then we say that F is defined over
K. Throughout this paper we will assume as we did in [6] that Z[1/6] C K,
the reader is referred to [22] and [42] for details on the reasons for this. We will
denote by S(K)j the set of all weight k& modular forms holomorphic at infinity
and by M(K) the set of all weight & modular forms meromorphic at infinity; of
course we have S(K )i C M(K)i. Thus there are two strictly commutative graded
rings S(K ). and M(K), with a homomorphism of graded rings S(K). — M(K)..
The following classical result describes the structure of such rings. Elementary
accounts of this result can be found in [25, 39]; for a discussion of rigidity under
base change, see [22].
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Theorem 1.1. If1/6 € K, then as graded rings we have
S(K). = K[Ey, Eg],

and
M(K). = S(K).[A™Y] = K[E4, Es, A7Y,

where Ea, € S(K)a, C M(K)a, is the 2nth Eisenstein function and

is the discriminant function.

We recall the following g-expansions defined over Q:

4n

(1.1) Esn(q) =1— B oom_1(k)g* forn>1
2n k>1
(1.2) A=q]a-qg*
n>1

where 07, (k) = 37, d™. Whenever n > 1, the g-expansion Es,(q) corresponds to
a modular form of weight 2n, which we will denote by FEs,. Notice that for any
subring K C C, we have Ey, Es € S(K). C M(K).. Following [40, 41], we will use
the notation () = F4 and R = Ej.

For each n > 0, define a basis { F}, o} of S(K),, over K as follows. For 0 < n < 14,
set

Foo=1,
Fi0=Q = Ey,
Fe0o =R = Es,
Fso = Q7
Fi00 = @R,
Fia0 = Q%
Fio1 = A,
Fio = Q*R.

For n > 16, inductively define the basis so that F}, o = Q3Fn_12,0, and if a > 1,
Fr.q =AF,_12,-1. Notice that we have

(1.3) F R o= Frgn,o+ (cusp form) ifa=b=0,
' matmb = cusp form otherwise.
p

We will refer to the basis {F, .} as the standard basis of the graded K-module
S(K).. We can lexicographically order this basis by the index (n,a).
We next introduce the following topologically motivated notation:

elly, = S(Z[1/6])n,
Ellyn = M(Z[1/6])n.-



Operations and Cooperations in Elliptic Cohomology, 1 43

We define elliptic cohomology to be the functor (on the category of finite CW
complexes or spectra)

(1.4) BUC() = Btl. © MU*().

In Landweber’s papers [28, 29] and also [6], it is shown that this a cohomology
theory. There is also a connective theory ef¢*( ) whose coefficient ring is efl,,
although we make no use of it in this paper. However, its representing spectrum
ell is not the connective covering of F¢/¢, even if the notation may suggest this.

We end this section with some further remarks on elliptic cohomology, intended
to highlight its properties as a cohomology theory. In [8] we observed that after a
suitable completion, the spectrum E/¢f carries a unique topological A, ring struc-
ture (in unpublished work we have also shown that this is true for E¢¢ itself). An
important consequence of this is that for any A, module spectrum M over E¢¢ and
any spectrum X, there are Kiinneth and Universal Coefficient spectral sequences
for M.(X) and M*(X), This depends upon work of C. A. Robinson [35, 36, 37].
An alternative approach to such spectral sequences comes from recent work of
M. J. Hopkins and J. R. Hunton [20, 21], whose methods yield the following theo-
rem.

Theorem 1.2. For any d € Z, let QX 2Ell denote the term in the Q-spectrum
E40 which represents the elliptic cohomology group EMd( ). Then the ordinary
homology H.(Q>~1ELl;Z[1/6]) is torsion free. Similarly, E0L.(Q°~CELl) is free
over Fll,.. Consequently, the spectrum Ell is a colimit of finite CW spectra E,,
each having the property that both E4l.(E,) and E¢l.(DE,) are free over ElL,.

Recall the conditions for Adams’ universal coefficient spectral sequence of [1],
Part I11.

Corollary 1.3. The conditions for Adams’ universal coefficient spectral sequence
are satisfied by the spectrum E{¢f. Hence the Kinneth and Universal Coefficient
spectral sequences exist for any module spectrum over ELL and any spectrum X,
and have the usual forms:

E2.(X) = M.(X)
B2.(X) = Tory, (Be.(X),M.)

and

E3"(X) — M*(X)
E3*(X) = Extyy, (BL(X), M.)

Thus, elliptic homology and cohomology possess the usual battery of computa-
tional technology. However, the fact that the coefficient ring E¢/, is not a principal
ideal domain suggests that serious calculations will usually be of greater difficulty
than they would in say K-theory. For reductions modulo invariant ideals and rela-
tions with Morava K (1) and K(2), see [8, 9, 10].

We end this section by describing a modified version of elliptic cohomology which
is 2-periodic. We take as its coefficient ring

£00, = EOL[A]/ (A2 — A),
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where A € £005. Then the natural homomorphism E4¢, — E44, allows us to define
the functors (on finite CW complexes or spectra)

(1.5) EUF()=E00, ® MU*() =&, © EU(),
MU, ElL,

1. 0,() =&, © MU()=EW, ® EU.(),

(1.6) eu()=¢ 8 U() =€ B ()

This ring £¢¢, can be interpreted as a ring of meromorphic modular forms with
character in the finite cyclic group Hom(SLo(Z),Q/7Z) = Z/12. In other words, the
usual modularity conditions on a holomorphic function F': ¥V — C are replaced by

(17) F(/\ . {LU1,CU2}) = Ako({wl,wg}),

F({aw1 + bwa, cwr + dwa}) = xp(A)F ({w1, w2 })VA = <CCL Z) € SLy(Z),

for some character xr: SLa(Z) — Q/Z. Then A = 7? is the square of Dedekind’s
n-function [25] and has character of order 12 which generates the finite cyclic group
Hom(SL2(Z),Q/Z). Because of this, we may identify such a ring of ‘twisted’ mod-
ular forms with the extension £0¢, of E4l,. Although we make no use of this here,
there are advantages in having a 2-periodic cohomology theory rather than one of
period 24.

2. Elliptic curves, Weierstrass formal group laws and
complex orientations in elliptic cohomology

Given an analytic torus C/L, we can construct a Weierstrass cubic (elliptic
curve) (thought of as a projective cubic curve)

Cw(L): Y2Z =4X3 — 1—12E4(L)XZ2 + 2—16E6(L)Z3,

where the function Es, is the 2nth Eisenstein function of Section 1, regarded as a
function of the lattice L. The classical theory of the Weierstrass function gives us
an explicit uniformisation of this curve. We define an analytic isomorphism

®: C/L — Cw(L)

z+L+— [p(z,L),¢'(2,L),1], ifz¢L,
[0, 1,0], otherwise.

Here the Weierstrass function is normalised as in [6], so that for the lattice L =
271 (1, 1) with 7 € $), we have

1 q"e” qte”
L ZvL = + +
( ) (ez/z — 6_2/2)2 q; [(1 - qTLeZ)2 (1 — qne_z)2

z

The local parameter
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is an elliptic function on €y (L) which has a simple zero at each lattice point. The
multiplication on €y (L) gives rise to a formal group law

FPY(T, Ty) € Z[1/6][E4(L), Es(L)][[T1,T2]]

which we call the Weierstrass formal group law associated to the lattice L, and is
determined by the relation

T (21 + 22, L) = FE*(T (21, L), T (29, L)).

Of course, the universal example for such formal group laws is furnished by the
power series

FEY(T, Ty) € Z[1/6][Q, R, A~Y[[T}, Ta)] = EeL.[[Ty, Ts]|

which is the canonical formal group law in elliptic cohomology. The natural choice
of orientation for the canonical complex line bundle  — CP*° then corresponds to
T € B, [[T]) = EL* (CP*>). See [6] for further details on these points. Evaluation
of g-expansions gives rise to a homomorphism

B, = Z[1/6][Q, R, A7) — KU[1/6].((g)) = Z[1/6][t,t~"]((9)),

in which we use the Bott generator ¢ € KU, to keep track of the weight which
is half the topological grading. This an analogue of the classical Chern character,
essentially discussed as such in [30], which focuses on modular forms of level 2 and
uses the ring KO[1/2].. One major advantage to the use of level 2 modular forms
and the original definition of elliptic cohomology is that the formal group law and
its logarithm can be displayed more explicitly in terms of natural algebra generators
of the coefficient ring; see [14] for some calculational observations.

3. The Hopf algebroid E//, E/

In this section we will give some algebraic results on the cooperation algebra
El.El = FEU.(EL). The construction of the functors E£0*( ) and E€l.( )
depends crucially on the following consequence of the Landweber Exact Functor
Theorem [27] (the last statement follows from an argument similar to one for E(n)
in [31]).

Theorem 3.1. There is an isomorphism of bimodules over E4L,

EU.E0=FElN, @ MUMU @ El,
MU, MU,

where we use the natural genus MU, — E0L, associated to the formal group law
FE to form tensor products. Moreover, ELL,EL is flat as both a left and right
module over E0L,.

Corollary 3.2. The pair (B0 ElL, ELL,) is a Hopf algebroid over Z[1/6].
More generally, for any subring R of Q containing Z[1/6], the pair

(BW.Ell ® R,El, ® R)
Z[1/6] Z[1/6]

is a Hopf algebroid over R.
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The term Hopf algebroid is thoroughly explained in [33]. The structure maps
of KVl Ell are derived ultimately from those of the ‘universal’ Hopf algebroid
(MU.MU, MU,). Let n,nr: Ell, — ElL,El¢ be the left and right units; we will
often abuse notation and write X = n.(X).

Working over the rational numbers Q we have a simple description. First we
note a consequence of the Landweber Exact Functor Theorem, which implies that
multiplication by a prime p is a monomorphism on E/¢, E¢¢; this was also noted in
[14] for example.

Proposition 3.3. The rationalisation map Ell,ELl — E,.E R Q is injective.

Proposition 3.4. As graded Q algebras we have
BU.EU® Q= Q[Q, R, A", 1r(Q), nr(R),nr(A)7"].

We also have a well known relationship between the two natural formal group

laws over Ell,Ell and E,.E ® Q. Let logE“ T and 1ogEul T denote the loga-
rithms of the images over E¢¢, E¢{ @ Q of the canonical formal group law induced
by nr and ng.

Proposition 3.5. Let B(T) =} ;- By Tk*! denote the strict isomorphism from
the formal group law on El,E/ ® Q induced from nr to that induced from ng.
Then we have:

(1) as algebras over Ell, @ Q = ni(Ell, @ Q),

B EU®Q = Ell, ® Qnr(Q), nr(R),nr(A)"];
(2) log™* T =1og™" (B(T));
(3) for each n = 0, we have B, € Ells, ElL;

(4) as an B, = ni(ElL,) algebra, EL.EL is generated by the elements By,
with n > 1 together with nr(A™1).

We can describe (E0C.E0L, E4L,) as a universal object.

Proposition 3.6. Let R, be any graded commutative ring, let Fy, Fo be formal
group laws over R, induced from Ell, by the ring homomorphisms 61,02 Ell, —
R,, and let H: Fy = F5 be a strict isomorphism over R.. Then there is a unique
ring homomorphism ©: B0 . Fll — R, such that

GOnL:91 and @O’I]Rzeg

and the series ©(B(X)) =3_, O(B,) X" satisfies

This follows from the analogous universality of (MU, MU, MU,).
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4. Generalized modular forms

We continue to use the notation established in Section 1. Recall the left principal
bundle

YV — L;
{wi, w2} — (w1, w2)

with structure group SL2(Z).
For any natural number N > 0, we denote by My(N) the set of 2 x 2 integer
matrices with determinant N and set

(1/N)Ma(N) = {(1/N)A: A € Ma(N)}.
Of course, these are isomorphic as right and left SLo(Z) sets. The associated bundle

Ty V(IN) = (1/N)Mz(N) o V—L

has fibre (1/N)M2(NN). Given an oriented basis {wi,ws} for a lattice L and A €

My (N) with
a b
= (e d)

{awl 4 bwy  cwy + dwo }

we have an oriented basis

N ’ N
for the lattice

N ’ N

which contains L with index N. Notice that each of the projection maps

I <aw1 + bws cwy + dw2>

V(V) 2 p

is an infinite covering, with fibre isomorphic to the set (1/N)Ma(N) = My(N).

Factoring out by the left action of any subgroup G < SL2(Z) on V(IN), and we
obtain a covering V(N) — G\V(N). If the subgroup G contains the congruence
subgroup I'(IV), then this is a finite covering. We will be particularly interested in
the two extreme cases G = SL2(Z) and G =T'(IV). We set

L(N) = SLa(Z)\V(N),
F(N) =T(N)\V(N),
which admit finite covering maps
T L(N) — L,
FT: F(N) — L,

~

whose fibres are the sets

SL2(Z)\(1/N)M2(N) = SL2(Z)\M2(N),
L(N)\(1/N)M2(N) = T'(N)\Mz(N).

1%
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Of course, these maps are holomorphic maps of complex analytic manifolds. The
projection maps are also equivariant with respect to the obvious action of the
complex units C* by multiplication.

The space L(IN) can be viewed as the space of pairs of lattices L C L’ with in-
dex N. Similarly, we can interpret F(NN) as the space of pairs (L, {w} + L,w5 + L}),
where

;. awi + bwo
wl — T ar

N
, cwi + dws
i

for an oriented basis {w1,ws} of L and

A= <CCL 2) € My(N).

Thus {w],w5} is an oriented basis of the module L'/L over the ring Z/N. We will
frequently make use of these interpretations without further comment.
Now we can make the following definition of a notion of level N modular forms.

Definition 4.1. Let G < SL2(Z) be a subgroup containing I'(N). Then a holo-
morphic map
F:G\V(N)—=C
is a modular form of level N for G of weight k if for A € C*,
F(GI(1/N)A, {Awr, Awa}]) = X FF(G[(1/N)A, {wr, w2 }]).-

If G = T'(N), then we frequently refer to such a modular form as a modular form
of level N.

Notice that for such a G and a subgroup G’ containing I'(N), a modular form
of weight k for G is also one for G’. Holomorphic functions £(N) — C for which
the composite

L(N)\V(N) — L(N) —C
is a modular form of level N will often be met in this work; we will loosely refer to
these as level N modular forms on £(N).

Given such a modular form F' of level NV, we can evaluate F' on the fibres over
the lattices of the form (7, 1), where 7 € $. For each pair (r,s) with 0 < r, s and
rs = N, there is a function

e ([0 ) m)]).

with Fourier expansion of the form
Z ai‘,nsqn/N where ql/N _ e27TiT/N.
—oo<n< oo

We will refer to these g-expansions as the g-expansions of F along the fibres.
For each coset BG € SLy(Z)/G, we also have the holomorphic function

Fl, (GI(1/N)A, {w1,w2}]) = F(BGB™'[(1/N)BA, {w1, w2})).
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Definition 4.2. The modular form F' for G is holomorphic at infinity if for each
coset GB € G\SLy(Z) and (r, s) as above, the functions

(el )]

Z a57r,s7Bqn/N

—oo<n<oo

have g-expansions

with af""%B = 0 for n < 0; similarly, it is meromorphic at infinity if its g-expansions

have af""%B =0 for n < 0.

We will refer to the collection of g-expansions along the fibres of the functions
F|, as the g-ezpansions of F' at the cusps.

Now let K C C be a subring which contains 1/6, and let (v be a primitive Nth
root of 1.

Definition 4.3. The modular form F for G is defined over the ring K if all the
g-expansion coefficients of all the functions F),, with BG € SLy(Z)/G, are in the
ring K[1/N,(n].

We now want to define a generalized modular form as a function on all of the
spaces L(N) simultaneously in such a way that the restriction to each £(IN) depends
upon N in a controlled fashion. To do this we require that for each N we have a
holomorphic function Fy: £(N) — C which is simultaneously a modular form for
each of the two lattices associated to each point of £. Thus we will require that our
function is induced from a suitable type of function upon the product space £ x £
via the product )Ty vy of the two projection maps to £. Finally, we will do this
uniformly by requiring that these functions £ x £ — C are independent of N.

REMARK 4.4. The following definitions may appear somewhat forced in that we
need to work with certain proper subsets of Map(X x Y, C). In fact, in the examples
we consider, the spaces X and Y can be given the structures of complex analytic
spaces Xp, Yy, as discussed in [38] and also more briefly in [17], Appendix B (in fact
they are obtained as the analytic spaces associate to algebraic varieties over C).
Hence, we could characterise these sets of functions as analytic functions on the
product X, x Y. The case of L itself follows since there is an analytic isomorphism
between £ and the affine variety

{(x,y)E(CQ:xB—yQ;éO} c Ccx

In order to avoid excessive technicalities, we proceed along the route below even
though it may seem somewhat laboured to those well versed in algebraic geometry.
Recall that given two spaces X, Y, there is an embedding

Map(X,C) @ Map(Y,C) — Map(X x Y,C),
C

which sends the element f ® g to the pointwise product function

frg:(z,y) — f(2)g(y).

We will identify Map(X, C) ®c Map(Y,C) with its image in Map(X x Y, C). More
generally, given two vector subspaces A C Map(X,C) and B C Map(Y,C), we
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may identify the subspace A®c B C Map(X,C) ®c Map(Y, C) with a subpace of
Map(X x Y, C).

Let MF(C); denote the set of all weight k& modular forms, i.e., holomorphic
functions £ — C satisfying the modularity condition

F(\-L)=XF*F(L) vaxeC*.

Given a subring K C C, let MF(K); denote the set of all modular forms whose
associated g-expansions have coefficients in K.
We now make a series of definitions.

Definition 4.5. A modular form of weight £ on £ x £ is a holomorphic map
F: L x L — C such that for A € C*,

F\-Li, )\ Ly) = \N"FF(Ly, L),

and
F €Y MF(C), @MF(C)s—p € Map(L x £, C).
rEZ

We can now give our definition of a generalized modular form.

Definition 4.6. A generalized modular form of level 1 and weight & is the coprod-
uct Fo =[] ~n>1 Fv of a family of holomorphic maps of the form

V(N)TXTY(N)
_

Fn: L(N) cxctc

where F': L x L — C is a fixed modular form of weight £ on £ x L .

Notice that for each N > 1, Fy is a modular form of level N for SLy(Z) of
weight k.

Definition 4.7. The generalized modular form F, is defined over K if for each N >
1, the modular form Fi of level N for SLy(Z) is defined over K.

Definition 4.8. The generalized modular form F, is holomorphic at infinity if for
each N > 1, the modular form Fj of level N is holomorphic at oco; similarly, Fy is
meromorphic at infinity if each Fj is meromorphic at oco.

Now let us consider the groups of all holomorphic (resp. meromorphic) gen-
eralized modular forms of weight k£ and defined over K, which we will denote
by G"S(K)y (resp. ©°"M(K);). These can be combined into two graded rings
Gen§(K), and “"M(K), which are algebras over the rings S(K ). and M(K), of
Section 1. Since both of these rings are torsion free, we have

GenS(K)* g GenS(K@)*
GenM(K)* C (}9111\/[([{(@)*7

where KQ is the smallest subring of C containing both K and Q. We can easily
prove the next result.
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Theorem 4.9. As graded algebras over the rings S(Q). and M(Q). we have

GrS(Q)« = S(Q)« B}, By
GIM(Q)x = M(Q).[E;, By, A7,
where for each N > 1,

Ej, = Eon 0 £(n)yT,

A =Ao L(N)T
as functions L(N) — C.

Recall from the definition of elliptic cohomology that M(Z[1/6]). = E¢(.. By
Proposition 3.4, we obtain the following.

Corollary 4.10. As graded algebras over EXIQ, = Ell, @ Q,
GenM(Q), = EUQ. BN = EULEN @ Q.

This suggests that we ought to be able to describe E£¢, E¢{¢ in terms of the ring
GenM(Z[1/6]).. The crucial question is of course what effect integrality conditions
have on the existence of generalized modular forms. The complete algebraic cal-
culations of “*"S(Z[1/6]). and “**M(Z[1/6]). will be given later, using work of
N. Katz [23].

We will now discuss a multiplicative structure on the space [[,,; £(IV), which
induces coproducts on the rings of generalized modular forms.

For M, N > 1, there is a partial product map

(4.1)

(1/M)Ma(M) % V x (1/N)Ma(N) x V — (1/MN)Ma(MN) x V
SL»(Z) L SLo(Z) SLa(Z)

which is defined on elements by the formula
(4'2) ([A, {wivwé}] ) [B, {wlﬂ "‘J?}]) L [AT37 {wlﬂ w2}] )
where we have
{wlla UJ;} = TB{wlv UJQ}
for some T' € SLy(Z). Here the symbol é implies that we form the pullback of the

diagram

(1/M)Mz(M) x V% £ 25 (1/N)Mg(N) x V.
SL2(Z) SLo(Z)

It is easily verified that this partial product is then compatible with the action of
SL2(Z) in the sense that it passes down to a partial product

L(M)XL(N) = LOMN).

This product can be viewed as making the space

=] cwv)

N>1
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into a ‘monoid over £’. It is clearly associative and the space L£(1) acts via the
identity. Taking functions on this space we obtain a coproduct which sends the
function F': £L* — C to the function

LoxL — L0 £

The space L® over L appears to play a role in elliptic cohomology analogous
to that of the non-zero integers in K-theory, where they index (stable) Adams
operations. We will make this more explicit in future work, but in this paper we
will only demonstrate its connections with stable operations. In Section 5, we will
describe the space £* in a more algebraic fashion.

5. Isogenies of elliptic curves and cooperation algebras

By an elliptic curve € over the complex numbers C we will mean a non-singular
Riemann surface of genus 1 with a distinguished basepoint O¢. It is known that
this can be uniformised, i.e., there is an analytic isomorphism

o:¢=C/L
®(0¢) =0+ 1L,

where L C C is a lattice. Particular examples are furnished by the Weierstrass cu-
bics of Section 5. Moreover, the torus C/L is unique up to an analytic isomorphism
of the form
\:C/L —C/L’

where [] is induced by multiplication by A and A- L = L’. We can scale L so that
it has the form L = (7, 1) for some 7 € ) (the upper half plane); then ® is unique
up to analytic automorphism of C/L. Of course, there is a canonical abelian group
structure on C/L which is transferred to € by ®, and € is an analytic group with
Og¢ as its zero element.

Given two elliptic curves €1, €5 over C, an isogeny from €; to €5 is an analytic
homomorphism of groups ©: €; — &€, such that ker © is finite (it is then necessarily
surjective). Let deg © = |ker O/, the degree of ©, and Kg C C be the unique lattice
such that Keo/L; = ker©. For ¢ = C/Ly and €3 = C/Ls such an isogeny has to
be of the form [A] with

A Ko = Lo,

and thus there is a unique factorisation
(5.1) C/L, — C/Ke 2L C/L,

where the first map is induced by the canonical inclusion L; — Kg. We will say
that an isogeny is strict if A = 1. Notice that for a strict isogeny,

Ly C Ly
has finite index and also
Lg/Ll = ker([l]: (C/Ll — (C/Lg)

From the above discussion, we see that the category of elliptic curves over C
with isogenies as morphisms, is naturally equivalent to the category of tori C/L
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and isogenies, which will denote by Isoc. We will restrict attention to elliptic
curves of the form C/L and work with the category SIsoc of all such elliptic curves
together with their strict isogenies as morphisms.

We can decompose these categories Isoc and SIsoc into disjoint unions

Isoc = H Isoc(NV)
N>1

SIsoc = H SIsoc(N)
N1

where Isoc(N) consists of isogenies with degree N and we have the equation
SIsoc(N) = Isoc(N) N SIsoc. Of course, the set SIsoc(l) can be viewed as
the set of objects in the categories Isoc and SIsoc.

We can identify the morphism sets SIsoc(N) with the underlying sets of the
spaces L(N) defined in Section 4, since by construction a point of L(N) is equivalent
to an inclusion of lattices L C L’ of index N. Moreover, the two projections
oy o(N)yT: L(N) — L simply pick out these two lattices, which are the domain
and codomain of a unique morphism in SIsoc(N) C SIsoc. Thus, we have the
following result.

Proposition 5.1. There is an isomorphism of small categories
SIsoc = L°*

under which
SIsoc(N) = L(N)

for each N > 1. The category SIsoc is therefore naturally topologised and is the
union of countably infinitely many complex manifolds SIsoc(N).

This result together with the ideas of Section 4 gives us an interesting class of
functions on SIsoc, which are analytic when restricted to the spaces SIsoc(N) =2
L(N). We will freely interpret generalized modular forms as functions on the cat-
egory SIsoc. Of course, the structure maps of the category SIsoc correspond to
the partial monoid structure on L£°; thus there will be a coproduct structure on
the ring of generalized modular forms. This structure becomes interesting when
we tensor up with a subring R C Q and force morphisms to become invertible; we
then obtain the structure of a Hopf algebroid on an appropriate ring of generalized
modular forms.

Now most of the morphisms in Isoc and SIsoc are not invertible and we will
need to form various categories of fractions for these. Let R C Q be a subring of
the rational numbers and let R denote the subgroup R* NQ. of all positive units
in R. We wish to invert the strict isogenies [1]: C/Ly — C/Ly with [Ly/L| € R.
To do this we replace the Z lattices Ly and Lo by the R lattices RL; & R®gz L
and RLy =2 R ®z Lo, and consider ‘isogenies’ of the form

where u € R. Notice that such an isogeny has trivial kernel, and has inverse

[u=']: C/RLy — C/RLy.



54 Andrew Baker

X

. .. R .
Such morphisms lie in a category Iso.™ whose objects are those of Isoc and where

for any two lattices Ly and Lo for which RL; = RLs, there is unique morphism
[u]: C/Ly — C/Ly whenever u € RY. We will call such a morphism an R-isogeny;

furthermore, if v = 1, then we say that it is a strict R-isogeny. The strict R-
X X

isogenies form a subcategory SIsog * of Isoé{*. If two lattices Ly and Lo satisfy
RL; = RLs, then we will say that they are R-commensurable. It is easy to see that
the notion of being R-commensurable is an equivalence relation. Notice that if L,
and Lo are R-commensurable, then the lattice L1 N Lo is R-commensurable with
both L; and Ls; moreover, the unique diagram

(C/Ll — (C/Ll N Ly — (C/LQ
in SIsoc gives rise to a unique diagram

C/L; — C/LyN Ly — C/Ly

in SIsofS*.

Theorem 5.2. The functor SIsoc — SIsog+ which is the identity on objects and
sends the strict isogeny C/Ly — C/Lqy to the strict R isogeny [1]: C/Ly — C/ Ly is
the localization of SIsoc with respect to all morphisms [1]: C/L’ — C/L’ for which
| ker[1]| € R%.

Notice that in particular this means that a strict isogeny C/L — C/(1/N)L for

R
which N € RY NN always has an inverse in SIsog ™.
In practise, we will work with rings R for which Z[1/6] C R, although this
restriction is only important when we consider rings of modular forms as rings of
RX
functions on Isoc and Iso. ™.

X

We end this section by introducing another collection of categories. Let SL Isog +
denote the category whose objects are lattices L € £, and where whenever RL; =
RL5, the morphisms from L; to Lo are the orientation preserving monomorphisms
L1 — Lo which induce R-linear isomorphisms Ry = RL5,. In particular, when R =
Z, there are morphisms L; — Ls if and only if L; = Lg; on the other hand,
when R = Q, there are morphisms L; — Lo if and only if QL; = QL. In the case

X

R = 7, we may identify SLIsoc = SL Isogi+ with the space

V=[] vv).

N>1

6. The action of isogenies on Weierstrass formal groups and
operations in elliptic cohomology

Given a strict isogeny [1]: C/L; — C/Ls of degree N, together with a modular
form F of level 1, the function
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is a modular form in the variable L,. If we choose an oriented basis for L; and use
this to make the identifications

(6.1) SL(L1) = SLs(Z)
and
(6.2) SL((1/N)Ly) = SLy(Z),

then we can interpret this function as a modular form for the subgroup of SLy(Z)
corresponding to

SL(L1) NSL(Ly) € SL((1/N)L) 2 SLy(Z)

under the isomorphism of (6.2). The proof of the following key result is similar to
arguments of [6, 9].

Proposition 6.1. The formal group laws Fflu and Fﬁ” are strictly isomorphic
over the ring of level N modular forms on L(N) defined over the ring Z[1/6)].

Proof. The coefficients of F£* and FF' considered as functions of the pair
L, C Ly are level N modular forms. In fact they lie in the rational subalgebra
Q[E4(L1),Es(L1), Es(L2), Eg(L2)] C C generated by the complex numbers E,.(Ls).
The series 7 (X, L) and 7 (X, L2) provide strict isomorphisms from the additive
group law to Fﬁ“ and Ff;“ , hence there is a strict isomorphism

. EL EL
$Ly,Ly: FL1 - FL2

with coefficients in the latter ring. Now by specialising to the case where L; = (7, 1)
(1 € ) the series ¢, ,1,(X) gives a g-expansion

@ (r1),02 (X) € QICN][[a" /N [1X])-

Following [6], we can use the theory of Tate curves described in [22] to deduce
that the coefficients of F) {f% and FF actually lie in the rings Z[1/6][[¢]] and

Z[1/6N,¢N][[¢YN]]. Hence

Q(r1),0. (X) € Z[1/6N, N[ M NIX),

showing that the coefficients of ¢, r,(X) are level N modular forms on L(N)
defined over Z[1/6N]. O

Let ¢r,,0,(X) be the unique strict isomorphism from FLEIM to FLE2“ used in
the proof of this result; we will write ¢ when the isogeny is understood. The
following Corollary makes use of the fact that the considerations of the above proof
are essentially independent of L C L'. Indeed, the coefficients of ¢, 1,(X) are
rational polynomials in the coefficients of the formal group laws F£ and FFY,
independently of the lattices L1 C Lo and the index N.

Corollary 6.2. The coefficient of X" ! in o, 1,(X) when considered as a func-
tion of pairs Ly C Lo for arbitrary N > 1, is a holomorphic generalized modular
form of weight n, i.e., is contained in “°"S(Z[1/6]),, € “"M(Z[1/6])n.
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Now given any R isogeny [u]: C/L; — C/Lg, we can assume that Lo C (1/N)L;
for some N € R} and then an easy calculation gives

(6.3) T(uz,Ly) = [u]FE;/z (7 (z,Ls))

= ([ulrzs,, T (Q/N)L)

(1/N)Ly
_p ((1/N)[uN]F51uT(z, Ll)) .

But this is a power series in 7 (z, L1) with coefficients in the ring of level N modular
forms on L(N) defined over R. Hence, any strict isogeny [u] as above induces an
isomorphism between the formal group law associated with the elliptic curve C/L;
and a ‘twisted version’ of that associated to C/Ly. In the case where [u] = [1] is
strict, so is the induced isomorphism of formal group laws. Notice that this implies
that for each strict R-isogeny [1]: C/L; — Lo, there is a ring homomorphism
Y, .1, with domain MU, MU and extending the two homomorphisms
MU. =5 R[1/6][Ea(L1), Be(L1)),

PLoy

MU, —= RI[1/6][E4(L2), Es(L2)]

which classify the formal group laws F£ and F£; this takes values which are
level N modular forms when considered as functions of L1 C Ls.
It is now immediate that there is a unique homomorphism

Ell, ® MUMU ® FEll, — BBl — S"M(R).
MU. MU,

which specialises for each pair L; C Ly to give ¥, r,, using Corollary 6.2. In the
case of a strict R-isogeny of the form [1]: L — (1/N)L, we find that the left unit
on an element F' € Efl5, is sent to N™F by this homomorphism; in this case we
can produce a multiplicative stable operation in elliptic cohomology:

(6.4) N et () = (SO ANE)* () — (BN E)*()

= EUL,EN ® EF()
ElL,

VryL,y

"2, BUR, © E()
ElL,

L BURY(),

which makes use of the above homomorphism E//,F/R — E{/R,. This is the
Adams operation ¥V mentioned in [6], and has a unique extension to a stable
operation

N EUR* () — EUR*().

For a fixed L and N € R}, we can take all of the induced ring homomorphisms
Etl, — EUR, and average them (i.e., sum up and divide by N). This gives rise
to a left E¢/,-linear homomorphism

T: E0,.E0l — EUR,
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which yields a stable operation

(6.5) Tn: B ()= (S°ANEW)* ()= Bl B 2 Ber()

L BUR* ® Eer()
ElL,
=~ BUOR()

that is merely additive; again there is a unique extension to a stable operation
Ty: EWR*( ) — E¢R*( ). This is the extension of the Nth Hecke operator
constructed in [6]. This type of operation requires that we use not just the ring
E?l/R, but the larger ring of modular forms of level N to build enough multiplicative
operations over which we symmetrise to get an operation within the theory E/R*()
itself. This sort of consideration is not necessary in K-theory, and represents a
considerable complication in understanding the operations in elliptic cohomology.

Of course, the above discussion can also be interpreted in the light of the observa-
tion in Section 5 that the rings of generalized modular forms may be viewed as func-

R R
tions on the categories Iso~ and SIso . Indeed, given an R-isogeny [u]: C/L; —

C/ La, the coefficients of the power series discussed above can be viewed as functions
X

on the category Isog+ and hence as elements of “°"S(C), C “"M(C),. A careful
consideration of g-expansions actually shows that they lie in °"S(R), C “°"M(R).
provided that we make the standard assumption that Z[1/6] C R. This provides us
with a natural homomorphism E¢¢, E¢/ — S°"M(R),. Later we will demonstrate
the following theorem.

Theorem 6.3. For each subring R C Q containing 1/6, there is an isomorphism
of graded rings

EU,EUR = El,EN® R — “"M(R),,
and moreover this is an isomorphism of Hopf algebroids over R.

R
The antipode in °"M(R), is induced by the inverse map in the category Iso. ",
and corresponds under this isomorphism to the antipode in E¢¢,E((R.

7. Some rings of numerical Laurent polynomials and
K-theory cooperations

In this section we review the properties of some rings of numerical (Laurent)
polynomials in sufficient detail for our purposes in calculating the rings of gen-
eralized modular forms contained in Section 9. The present section owes much to
previous joint work with Francis Clarke, see [11] and [4]; for more on the topological
connections, see [3, 2].

Let K C Q be a subring. Then we define the ring of numerical polynomials
over K to be

A(w; K) = {f(w) € Q] : f(r) € K¥r € Z}.
Similarly, we define the ring of stably numerical (Laurent) polynomials over K to
be
AS(w; K) = {f(w) € Quw,w™]: f(r) € K[1/r]Vr €Z, 0 # r}.
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Finally we define the subring of semistable numerical polynomials over K by
Af(w; K) = A (w; K) N Q[uw].

We set A(w) = A(w; Z), AS(w) = AS(w; Z) and A§(w) = A (w;Z).

Proposition 7.1. As a module over K, A(w; K) has a basis consisting of the bi-

nomial coefficient polynomials C,,(w) = <Z> for n > 0. Hence we have an iso-

morphism of algebras over K,

A(w; K) = A(w)QZQK.

As algebras over K,
AS(w; K) = A(w; K)[w™!].

Proofs of these results are given in [11].

Let us now assume that K = Z,, the ring of p-local integers for a prime p.
Let ord,(h(w)) be the minimum value of ord, on the coefficients of a Laurent
polynomial h(w), or equivalently

ord,(h(w)) = min{ord,(h(a)) : a € Z(Xp)}.

We define increasing filtrations on AS(w;Z,)) and A§(w;Z,)) as follows. Let

M = {f(w) € A% (w; Zp)) : p" f(w) € Ly [w, w™ ]},
Mg = {f(w) € Aj(w; Z(p)) : p" f(w) € Zyy[w]} = M* 1 AG(w; Ly )-
Clearly we have M° = Z,[w,w™'] and M§ = Z,[w]; also the two filtrations

Mc M*c...c MFC ...QMOO:AS(w;Z(p))
Mg C My C-- CMFC--- CMG® = Af(w; Zy)
are exhaustive. Let us investigate the successive quotients M* /M*~1 and MEF/M}F™"

for k > 1.
By Proposition (7.1), any element f(w) € AS(w;Z,) has the form

(7.1) flw) = Z hi(w)C;(w)
0<i<d(f)

where hi(w) € Zg) [w,w™'] and we assume that hq s (w) # 0. The p-adic ordinal

of n! is given by

n—ap(n)
p—1

where ap(n) is the sum of the p-adic digits of n. In particular,

(7.2) ord,(n!) =

)

T
e R
p—1

(7.3) ord,(p"!) =
Now C,,(w) represents non-zero elements in the quotients

Mordp(n!)/Mordp(n!)—l and Moordp(n!)/Mgrdp(n!)_l'
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Thus for a general element f(w), we see that f(w) € M* if and only if

k > max{ord,(n!) — ord,(h,(w)) : 0 < n < d(f)}

and moreover it represents a non-zero element in M*/M*~1 if and only if the last

inequality is actually an equality.

It will be convenient to use a different basis for the p-local numerical polynomial

ring A(w; Z,y). We require the following results taken from [4].

Proposition 7.2. Define the following sequence of polynomials in Q[w]:

Oo(w) = w,

b1 (w) = Gl = o(w)”)
%WFJ%W*WﬁgV—%WVX

0, (w) = o (w) —pr‘l&a_l(w)” — pT_QHT_Q(w)PQ _ _ Ho(w)pT

Then
(1) foreachr >0, 0.(w) € A(w;Z,)) and moreover defines a function 0,.: Z,y —
Zp);
()
(2) we have
-1
ordy(0,(w) = L =1+ p gt

(3) the monomials
Oo(w)*°01(w)* -+ - 04(w)**  for 0< s <p

form a Zy)-basis for A(w;Zp);
(4) the monomials
O1(w)*' -+ 04(w)*  for 0< s <p
span AS(w; Zy)) as a module over Zy [w, w™];
(5) for each k > 1, the monomials

Oo(w)*0 01 (w)* - - - Og(w)®  for0< s, <pand0<sop<p—1

form a Z/pF-basis for AS(w;Z,))/(p*), which can also be identified with
the ring of functions Z(Xp) — Z/p* which are continuous with respect the

p-adic norm on the domain and the discrete topology on the range.

We will set 0,.(w) = w0, (w) € Aj(w; Z) for r > 1.
Now consider an element of Ag(w;Z)) of the form

Fw) = cbo(w)™ 01 (w)* - Pa(w)*
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where 0 < s, < p, 0 < sp <p—1and c € Zy). Then the p-adic ordinal of this
polynomial is

ord, (f(w)) = ordy(c) = 3 s,

1<j<d

and so f(w) € M{ if and only if

k> Z sj@ —ordy(c),

1<j<d (p=1)

and represents a non-zero element of MYF/ME1 if and only if this is actually an
equality.

We end this section by recalling the topological significance of the ring of stably
numerical polynomials. This involves the determination of the cooperation algebra
for complex K-theory, KU, KU, discussed in [3, 11].

Theorem 7.3. Let u = n(t) and v = ngr(t) be the images of the Bott generator
t € KUy under the left and right units KU, — KU,KU, and let w = vu™! €
KU)KU. Then the image of the (monomorphic) rationalisation map

KUyKU — KU KUQ =2 KUyKU ®Q

is equal to the ring of stably numerical polynomials AS(w). More generally, if R C Q
is any subring, then the image of the localization KUyKUR = KUyKU ® R under
the rationalisation map

KUyKUR — KUyKU ® Q

is equal to the ring of stably R-numerical polynomials AS(w; R).
The natural Hopf algebroid structure on the pair (KU, KU, KU,) is then induced
by the left and right units together with the maps

(coproduct)

ur— Ul v— 11U, w— w R w;

(antipode) U— v Vs w— w

where the coproduct is a Ting homomorphism

KU.KU — KU,.KU ® KU.KU
KU.

into the tensor product of bimodules obtain using the right-left KU, module struc-
tures.

This result provides a model for our description of the cooperation algebra
EU.EL.
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8. Katz’s work on divided congruences amongst modular
forms

In this section we will describe briefly results from N. Katz’s paper [23], especially
section 5. These will be applied to determine the rings of generalized modular forms.

Let p > 3 be a prime. We will work with the ring S(Z,))« of holomorphic
modular forms defined over the ring of p-local integers Z,). For the remainder of
this section we let S(Zp))e denote the subring of Z,)[[q]] generated by the images
of all of the individual gradings S(Z,) ), under the homomorphism

S(Z))k = Ly llall; F — Flg)

which assigns to each modular form its g-expansion. Clearly this is a polynomial
subring Z,)[Q, R] of Z)[[q]]. However, it is not a direct summand as a Z)-
module, as the congruence 1 — Ep,l =0 (mod p) shows. For each k > 1, we will
describe the kernel of the composition

eval,i: S(Zpy)o 2 Ziy[lal] =% Z/p*[[q].

Definition 8.1. Define the numerical function h by
pr—1
p—1

h(r) =

ifr>1,

and h(0) = 0.

Theorem 8.2. There is sequence of elements Ry = p, Ry,... , Ry,... in S(Zey))e
such that

(1) each Ry is a sum of the q-expansions of modular forms of weight at most
k
P = ]-;
(2) for each k > 1 there is a element R) € Zy[[q]] such that
Ry, = p" MR},

(3) the evaluation modulo p* map, eval,., has as its the kernel the ideal I} <
S(Zpy)e generated by the elements

RSOR? . Rgd
for which
ro + Z rih(j) = k.
1<j<d

In fact, in his theorem 5.5, Katz gives gives an explicit construction for the
elements R) and Ry, and we will make use of this in Section 9. We define the ring
of (p-local) divided congruences to be

DC, = {6 € QIQ, R : 6(q) € Zy[lal]}
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Theorem 8.3. The Z,-algebra DC,, is generated by the elements @,R and the
R}, (k>0). As a Z, [Q, R]-module, it is spanned by the elements

R/OT’()Rllf’l . R:i’r'd
for which
ro + Z rih(j) = k.
1<j<d
There is an action of the p-local units Z(Xp) on the ungraded ring of modular
forms Q[Q, R] C Q[[¢]], namely that given by

where F}, has weight k. This action ultimately comes from the operation of including
each lattice L into (1/N)L, for any natural number N, and is related to the elliptic
cohomology Adams operations of [6].

Proposition 8.4. The action of Z(Xp) on (@[@, E] restricts to an action on the sub-
ring DC,. Moreover, the eigenspaces of this action are the submodules of homoge-
neous weight modular forms.

This is implicitly demonstrated by Katz in [23]. The second statement means
that for X € Q[Q, R],

Va € Z(Xp), a-X =a*X < X is the image of a weight k& modular form over Q.

We may view each element © € DC,, as defining a function

Z8) — Zplal)

and thus we have
(a-©)(g) =Y cala)g",
n=0

where the coefficient functions ¢,, are rational polynomial functions in a taking val-
ues in Z,), i.e., each ¢, lies in the ring of semi-numerical polynomials AS (w; Zpy)-
One interpretation of this is in terms of the embedding DC, — Q[w][[¢]] which
sends © to ), 5, ¢p(w)g", and has image in the subring A5 (w; Zp))[[ql]. Thus
there is an embedding of rings

(8.1) DCp — Af(w; Zy))[[g]].

Notice that we can mo