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Blowups of smooth hypersurfaces, their
birational geometry and divisorial stability
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ABSTRACT. Let X be a smooth n-dimensional Fano hypersurface in P**!
where n > 3. Let I' be a smooth positive-dimensional complete intersec-
tion of X, a hypersurface and one of more hyperplanes in P!, Let Y — X
be the blowup of X along T'. Let ¢ : Y — X be the blowup of X along I". We
describe the Mori chamber decomposition of Y and its associated birational
models. In particular, we show that Y is a Mori dream space. We classify for
which X and T the variety Y is a Fano manifold and, if X is a hyperplane,
we classify the elementary Sarkisov links initiated by ¢. Finally, we use this
Mori chamber decomposition above to prove that certain Fano manifolds as
above do not admit a Kéhler-Einstein metric.
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1. Introduction

We work over the field of complex numbers. We focus on smooth n-dimen-
sional hypersurfaces X C P"*!, where n > 3, containing a smooth k-dimen-
sional hypersurface I' ¢ P**! for some 1 < k < n — 2, and we study the
geometry of the blow up Y of X along I'. We give a complete and constructive
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description of the Nef, Movable, and Effective cones of Y showing, in particular,
that it is a Mori dream space. In addition, we describe a Cox ring of Y. By the
Lefschetz hyperplane section theorem Pic(Y) ~ Z2 is generated by the pull-
back of Ox(1) and the exceptional divisor of the blowup. As a consequence, Y
admits exactly two Mori contractions: one to X, and another one to a birational
model of Y explicitly determined by the geometry of X and T'.

Mori dream spaces were introduced by Hu and Keel [15] as natural geome-
tric objects that are well-behaved with respect to the Minimal Model Program.
For instance, the contractions of a Mori dream space are induced from those
of an ambient quasi-smooth projective toric variety T whose Mori chamber de-
composition is a refinement of the Mori chamber decomposition of the Mori
dream space (see [15, Prop. 2.11]). This refinement can be non-trivial, for in-
stance there are examples in which the Nef cone of T is strictly smaller than the
Nef cone of the Mori dream space (cf Lemma 3.6). We give a concrete example
of a flat deformation of smooth Fano fourfolds whose central fibre is a smooth
weak Fano fourfold and whose Nef cone is a subcone of the Nef cone of the
central fibre, see Example 3.7. See also [27] for different examples.

However, the property of being a Mori dream space is not automatically
maintained when performing common birational transformations such as blow-
ups. For instance, [5] examines the case of toric varieties (that are Mori dream
spaces by [15, Corollary 2.4]) blown up at the identity point, providing exam-
ples that are Mori dream spaces, and others that are not. A previous work of
Ottem [24] characterises when a normal Q-factorial hypersurface in products
of projective spaces is a Mori dream space. In [17], the author gives a criterion
for a normal projective variety of Picard rank 2 to be a Mori dream space. In
particular, he shows that the blowup at a general point of a general Fano com-
plete intersection of dimension at least three is a Mori dream space. However,
his construction does not explicitly provide the birational models induced by
the Mori chamber decomposition of the blowup.

Indeed, the property of being a Mori dream space is closely related to finding
birational models (cf [21, 3, 6, 4, 2, 25, 23]), also in relation to moduli problems
[11], and to those of rigidity ([18, 12, 19, 22]). Our work builds up on these in
spirit and structure (especially [24] and [17]). Our main theorem is the follow-
ing.

Theorem (= Theorem 3.10). Let IT & P**! be a linear subspace of P"*1, where
1 <k <n-2 LetX C P"! be asmooth hypersurface and T' C I a smooth
hypersurface of T1 contained in X. Let ¢ . Y — X be the blow up of X alongT. Let
E be the @-exceptional divisor and H the pullback of a hyperplane section of X.
Then,

Nef(Y) = R.[H] + R, [(degT)H — E] if degl' #degXorIICX,
" |R,[H] + R, [H - E] if degl =degX andIl ¢ X,
Mov(y) = | R+[H] + R, [(degD)H —E]  if X is a hyperplane and codimyT = 2
~ |Ry[H] +Ry[H ~ E] otherwise,
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Eff(Y) = R, [E] + R,[H — E].

In particular, Y is a Mori dream space with Cox ring Clu, Xy, ... , Xp41,2]/Iy
where the ideal Iy is defined in Lemma 3.3. Moreover, ¢ induces a birational
map to a

 Fano fibration if 3 —deg X + dimT > 0,
 Calabi-Yau fibration if 3 —degX + dimI' =0,
« fibration into canonically polarised varieties if 3 — deg X + dimT < 0.

We additionally determine explicitly the birational models of Y. Moreover,
we determine under which conditions Y is a Fano variety assuming X is a Fano
variety, see Theorem 3.13.

The following theorem classifies Sarkisov links initiated from the blowup of
P" along T.

Theorem (= Theorem 3.17). Suppose X = P". Let IT = P**! be a linear sub-
space of X, where1l < k < n—2. Letgp:.Y — X be the blowup of X along a
smooth hypersurface I' C 11 contained in X. Then ¢ initiates a Sarkisov link if
and only if both of the following hold:

(1) —Kry is nef, and

(2) codimyI' <2 ordimT > 2.

Divisorial stability was introduced in [13] as a weaker notion of K-stability.
Its importance comes from the seminal work in [7, 8, 9] proving the equivalence
of the existence of Kihler-Einstein (KE) metrics on Fano manifolds and the
algebraic-geometric notion of K-(poly)stability. We prove non-existence of KE
metrics on blowups of projective spaces and quadrics along a line, generalising
[1, Lemma 3.22].

Theorem (= Theorem 4.3). Let T be a projective line in a smooth Fano hyper-
surface. Let ¢ . Y — X be the blowup of X along T" and suppose that Y is a Fano
variety. Then, if X = P" or X is a quadric, then Y is divisorially unstable. In
particular, Y is not K-stable and does not admit a Kidhler-Einstein metric.

We also show in Theorem 4.4 that when I' = P¥, then Y is divisorially unsta-
ble for high enough k assuming the dimension of X is bounded by 1000. More-
over, in Conjecture 4.6 we predict that this holds for any dimension n > k + 2.

Acknowledgements. We would like to thank Igor Krylov for answering a ques-
tion on intersection numbers and Calum Spicer for the question leading to Ex-
ample 3.19. The second author wishes to thank Paolo Cascini for the hospitality
provided at Imperial College London during the course of this work.

2. Preliminaries

Definition 2.1 ([15, Definition 1.10]). A normal projective variety Y is a Mori
dream space if the following conditions hold.
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(1) Y is Q-factorial and Pic(Y) is finitely generated.
(2) Nef(Y) is the affine hull of finitely many semi-ample line bundles.
(3) There is a finite collection of small Q-factorial modifications f;: Y --»

Y; such that each Y; satisfies 1 and 2 and Mov(Y) = | f F(Nef (Y7)).

Throughout the paper, X,T,II, I, n, k, d and r are as in Section 2.1. We
recall that a Q-factorial toric variety is a Mori dream space [15, Corollary 2.4].
Indeed they have Cox rings which are polynomial algebras generated by sec-
tions corresponding to the 1-dimensional rays of the defining fan.

2.1. Setting. LetIIbe a(k+ 1)-dimensional linear subspace of P**! such that
2 < dimIl € n—1, where n > 3. Let IT’ be a maximal dimensional linear
subspace of P"*1 that does not intersect I1. Let T be a smooth hypersurface
of IT of degree r and X be an n-dimensional smooth hypersurface of P"*! of
degree d containing I'. Consider ¢ : Y — X be the blowup of X along I'. To
summarise, we have

dimX = n, degX =d,
dimT =k, degl' =r.
We have the linear equivalences
_KX ~ Ox(n +2 - d),
—Kr ~ Or(k+2—r)

We denote the variables on P"*! by x,, ..., X,,;. After a suitable change of co-
ordinates, we have

H = (xk+2 = . = xl’l-‘rl = 0) ~ Pk+1 C [P)n+1’
H, = (XO = = Xk+1 = 0) ~ [I:Dn_k_l C [I:Dn+1,
I'= (h.r(xO, ,Xk+1) = 0) C I1 C I]:Dn+1,
X = (fd(Xo, ... ,xn+1) = 0) C ﬂ:[)l’l+1,
where h, € C[x,, ..., X;41] and f4 € C[x,, ..., X,41] are homogeneous polyno-
mials of respectively degrees r and d. Since X contains I', there exist homoge-
neous degree d —1 polynomials F; € C[x, ..., X,;1] and a homogeneous degree
d — r polynomial g;_, € Cl[xy, ..., X;41] such that
fa = Xip2Frqo + o+ Xp1Fgq + 08a s
If r > d, then g,_, is necessarily the zero polynomial. If X =~ P”", then we
assume X : (x,,; = 0).
Lemma 2.2. Both of the following hold:

(a) ifd > 2and I1 C X, then dimIT < codimpn+: IT — 1, and
(b) ifdimII < codimpn+1 IT1—1, then a general hypersurface of P"*1 of degree
d containing I1 is smooth.
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Proof. Since IT C X we have
X = (Xpq2Fis2 + - + Xpy1Fppg = 0) C P

(a) We take partial derivatives restricted to the locus (X, = -+ = X,,;.1 = 0).
The Jacobian is

(0 .. 0 Fryy .. Fpp),
where, by assumption, the polynomials F;, k + 2 < i < n + 1 are homogeneous

of positive degree. Hence, X is singular along (x;,, = -+ = Xp41 = Frqp =
.. = F, 41 = 0). That s, along
S: (Fk+2 = ... = F}'l+1 = 0) C H

The locus S is non-empty if and only if its dimension is non-negative. We have
dimS>k+1-(n+1—-(k+2)+1)=2k—n+1

and the claim follows.

(b) By Bertini’s theorem, the singularities of a general hypersurface of degree
d containing IT are on the hyperplane II. On the other hand, the hypersurface
(Xpep2X§ "+ o + Xpp1x ] = 0) contains and is smooth along TI. O

Corollary 2.3. Let IT = P**1 be a linear subspace of P"*!, where1 <k <n—2.
Let X C P"*! be a smooth hypersurface and T' C II a smooth hypersurface of T1
contained in X. If dimI" > codimyI'—1, then degI' < deg X or X is a hyperplane.

Proof. Follows from Lemma 2.2 using dimIT = dimI" + 1 and codimpn+ IT =
codimy I O
3. Birational models

We remind that throughout the paper, X, T, 1, IT, n, k, d and r are as in
Section 2.1.

3.1. Birational models of the ambient space. We define
P := Proj(C[xg, ..., Xn41,2]) = P(1"*2,r)
where degz =r. Let ® : T — P be the blowup of P along
(X2 =+ =Xy =2 =0) =1L

Let H be the pullback of a hyperplane in P and E the ®-exceptional divisor.
Then T is a rank 2 toric variety with

Pic(T) = Z|H] ® Z|E]
and E ~ P(€) where & is the vector bundle Opks1 @ Opisi(r — 1)K Define
Op = Xy =" =Xy =0) C P,
I, = (Xg =+ = X1 =0) C P.

Denote by ITp and 1:[\6;> the strict transforms of I1p and Hﬁj,, respectively.
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Lemma 3.1. The cone of effective divisors of T is generated by E and H — E.
Moreover,

Nef(T) =R, [H]|® R,[rH —E] CR,[H]® R, [H — E] = Mov(T).
Proof. This follows from [10, Theorem 15.1.10]. O

There are two maps from T as in the following diagram

T
c1>\l/ X‘

P Q
where Q is the image of a. The morphism @ is given by the linear system |mH |
and the morphism « is given by the linear system |m(rH — E)| for some big
enough m. Note thatif r > 1, then rH —E is in the interior of the effective cone
by Lemma 3.1, therefore big. By Lemma 3.1, the divisor H — E is in the bound-
ary of the effective cone, therefore not big. If r > 1, then rH — E is movable,
therefore o does not contract any divisor. So the morphism « is a fibration over

a lower-dimensional variety if » = 1 and a small contraction whenever r > 1.
We will write these maps explicitly using the Cox coordinates of T,

Cox(T)= @ HT,mH+mE).

(my,my)€Z?

Since T is toric, the Cox ring of T is isomorphic to a (bi)-graded polynomial
ring. In this case, defining

A3 = Spec C[u’ X5 eoe s Xk 15 Zo Xy 25 00 s xn+1]’
T is the geometric quotient

A3\ V (U, Xy ovr s Xieg1) N (Zy Xy 25 oo s Xpg1))
C* x C* ’

where the C* X C*-action is given by the matrix

U Xo o Xgg1 Z X2 ot Xpq
o 1 - 1 r 1 - 1 (3.1
-1 0 - 0 1 1 - 1

meaning that for all (4, u) € C* x C*, we have

(A, ) - Uy Xy Z, X1y e s Xppy1) = (u™u, Axy, A"z, Auxy, ... S AUX 1)

Note that we have ordered the column vectors in the matrix (3.1) in anticlock-
wise order. The Cox ring of T is the Z2-graded polynomial ring

Cox(T) =~ Cluy X, e s Xkt 1> Z5 Xk 25 o » X115
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where again the grading comes from the matrix (3.1), meaning that the bidegree
of a variable is the corresponding column vector in the matrix (3.1). Note that
u € HT, O7(E)). The map ® : T — P is given in coordinates by

T — P = Proj ClXg, ..., X415 Z> X425 o s X1
(Uy Xy e s Xk 15 Z> Xigs woe s Xpgp1) P> (X woe s Xpeq 1> UZy UXfy 25 oo s UXpyy)-

Lemma 3.2. The blowup ® induces a map ¥ such that
e ifr =1, the map ¥ = « is a P**2-bundle over P"¥,
e ifr > 1, the map ¥ is the composition of
(1) a small Q-factorial modification © : T --> T’ which contracts [Tp =~
P(1%*2,r) to a point and extracts E N I:I\"’; ~ P"k=1 and is an iso-
morphism otherwise. This operation defines T', namely T’ is the geo-
metric quotient

A3\ V(u, X0s e s Xiet1> Z) N (K25 - 5 xn+1))
C* x C* ’
where A"3 has the variables u, X0y e s X 1> Z> Xiq2s o » Xpy1 QA the
C*x C*—actNi(/)n is given by the matrix (3.1). The variety T' is singular

along E N H[’p and each point is a cyclic quotient singularity of type

1
a,..,1,0,...,0)
r—1___ '
k+3 n—k—1

followed by
(2) a P(1¥*3,r — 1)-bundle over P"—k—1,

Proof. Ifr =1,a: T — Q is a fibration given by

(U, X0y oo s X 15 Z) > (Xpg2s oo > X 15 Z)-

and T’ ~ P"*. Moreover, the fibres are isomorphic to PK+2,
On the other hand suppose r > 1. Then rH — E is big and in the interior of
the movable cone of T. Therefore ® decomposes as

N % (3.2)

where «a is given by the complete linear system |rH — E| on T and similarly
a’ is given by the complete linear system |rH — E| on T’. Notice that T and
T’ have the same Cox ring but slightly different irrelevant ideals, namely I =
(Uy Xy ov s Xk 1)IN(Z, Xig2s o » X)) ANA Iy = (Uy X5 wee s Xpeg15 Z)N( X425 e s Xppg1)-
Notice that « is given by all monomials of bidegree (; ). It is then clear that a
contracts ITp : (Xg12 = ... = X,4;7 = 0) C T and &’ contracts E N lﬂ;: (u =
Xyg = ... = X341 = 0) C T’ to the same point and that these are isomorphisms

away from these loci. Hence, © swaps IIp with E 0 1:[7;;. This introduces some
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cyclic quotient singularities in general. Indeed, any point in E N ﬁﬁ; is covered
by the n — k affine patches
C*xC*
Uy, := (2X; # 0) = Spec(Clu, Xg, ... , Xk1 Z X425 - » X ...,xn+1,z‘1,xi_1])
where k + 2 <i < n+ 1. The C-algebra of C* X C*-invariant regular functions
of Uy, is generated by

(U, xg, s Xpp 1) X o
frl( i» 0 k+1)l, _j,k+2S]¢l§n+1
zZ X
where f,_; is any function of degree r — 1. On the other hand consider the
action w,_; © A"2 of the multiplicative cyclic group of order r — 1 on A"+,
given by

€+ (Uy XQy eee s Xjyoen s Xpgp1) = (EUL EXy ev s EXJp1s Xk 2o eov s Xi ve s X1 )

where ¢ is a primitive r — 1-root of unity. Then Spec(C[u, X, ..., xkﬂ])#r_1 is
the affine variety given by the vanishing of the polynomials f,_; (&, xg, ... , Xg42)-
We showed that
1
Uy, ~ ——(1,...,1,0,...,0).

r—1 —— N——
k+3 n—k—1

Hence, T’ is singular along E N 1:[\6; and each of its points is a cyclic quotient

singularity as above. Moreover codimp E N 1:1\6; =n+2-(n-k-1)=k+3 > 4.

The nef cone of T’ is generated by rH — E and H — E, see [10, Theorem
15.1.10]. The divisor H — E is not big and so it induces a fibration & : T’ — TIp
given in coordinates by

(U, Xgy oo s X 15 Z) = (Xpg2s oo » Xnng1)-

The fibres of @ are isomorphic to P(15+3,r — 1). O

3.2. Birational models of X. We recall that X, I, I1, IT’, n, k, d and r are as in
Section 2.1. The morphism ®, the weighted projective P, IIp and Hﬁm are as in
Section 3.1. We embed P"*! in P as (z — h, = 0) and X in P as

X:(z—-h, = faxg,..,Xp41) =0) CP.

The variety Y is the strict transform of X under ®. The blowup ¢ : Y —» X of X
along I' is the restriction ®|y. We again denote by E the ¢-exceptional divisor.
In the same way, we again denote by H a pull-back of a hyperplane section of
X under ¢.

Lemma 3.3. Thevariety Y is given by the ideal

a1 T Z8d—r» Zu—hy) C Clu, X, ..., X401, 2]

Iy = (xg4oF o+ X F

!
k+2 +
where

!
Fj(u,xo, e s Xpg1,2) 1= Fj(Xgs ooe s Xjy1, UXje g2 oov s UX oy 1, UZ).
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Proof. The hypersurface X is isomorphic to the codimension 2 complete inter-
section

Xiy2Frpn + - X1 Fpy1 + 18q—, =0
z—h,=0

Since T is smooth and isomorphic to V(h,) C P**1, we find that h, is irre-
ducible. Denote

I/ i=XoFpy + oo+ X Fp g + 284

To show that Y is the strict transform of X with respect to @, it suffices to show
that the ideal (f’, zu — h,) is saturated with respect to u.

Suppose that the ideal (f’,zu — h,) of Clu, X, ..., X,41, 2] is not saturated
with respect to u. Then there exists an element K in the saturation of the ideal
(f',zu — h,) that is not in (f’, zu — h,). More precisely, there exist a positive
integer m and homogeneous polynomials G, H,K € Clu, X, ..., X,,41, Z] such
that K is not in the ideal (f’, zu — h,) and we have the equality

f'G + (zu — h,)H = u™K.

Without loss of generality, u does not divide K and m is the smallest possible.
We show that G & (u,zu — h,) = (u, h,). Assume there exist homogeneous
polynomials Gy, G, € Clu, X, ..., X,41, Z] such that

G = uG; + (zu — h,)G,.
Then
u"K =uf'G, + (zu — h,)(H + f'G,).

We see that u divides H + f’G,. This contradicts m being the smallest possible.
Therefore, G & (u,zu — h,) = (u, h,.).
Since the ideal (u, h,) is prime, we find that f’ € (u, h,). Let

@0 0 C[Xg, > X415 2] = Clu, Xg, oov s X g1, Z]

be the C-algebra homomorphism corresponding to ®. Note that the image of
@, is in the C-subalgebra given by

ClX0s v s Xpg1s Z> UXfy 15 ooe s UX i1, UZ].

Since @yo(f + (2 — hy)g4—r) = uf’ € (u, h,)?, we find that f +(z — h,)gq_, isin
the ideal (X411, . » Xn41, 2, 1,)?. Applying the homomorphism z — h,, we see
that f € (Xg425 e Xpg1s h,)?. Therefore, X is singular along T, a contradiction.
This shows that Y is the strict transform of X. O

The following lemma is classical.

Lemma 3.4. Supposer = 1.

(1) If X = P", then the projection w: X - P %1 qway from II can be
decomposed into the blowup of T followed by a P*+1-bundle over P"*-1,
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(2) If X # P", then the projection 7 : X > P" ¥ can be decomposed as the
blowup of T C X followed by a fibration to P~ whose general fibre F is
isomorphic to a smooth hypersurface such that Kp ~ Op(d — k — 3).

Proof. By Lemma 3.2, we know that © is a P**2-bundle over P"~¥ given by the
linear system |H — E|. If X = P", then Y is a divisor in |H — E|. Then, O|y
restricts to a P¥*1-bundle over P" %1,

Suppose X # P". Then, O]y : Y — P" ¥ is a fibration and the general fibre
F of 8 is isomorphic to

"

"
Fio,++F +8,=0,

where F;' = Flf(hr,xo, wes Xt 1> X2y oo s Xy ) That is, a degree d — r =
d — 1 smooth hypersurface S in P**! (by generic smoothness, see [14, Proposi-
tion I11.10.7]). By adjunction Kz ~ Op(d — 1 — k —2) = Op(d — k — 3). O

The following lemma characterises the restrictions of ® to Y and is the tech-
nical core of the paper.

Lemma 3.5. Letr > 1. Then Ol|y is either
(a) a divisorial contraction if and only if X = P" and codimx " = 2 in which
case IIp N'Y is a divisor contracted to

p, € Z: (zu — h, = 0) C Proj(Clu, xg, ..., X,_1, 2]) = PA"*,r — 1).
Moreover, p, is the cyclic quotient singularity

1,..,1).

n

Pz~

In particular Z is terminal if and only if —Kr is nef. It is canonical but not
terminal if and only if K ~ Op(1).
(b) a (non-isomorphism) small Q-factorial modification Y --> Y’ if and only
if either
(a) r # d provided that X # P" or codimyT" > 2 or
(b) r = d provided that 1 C X;
where the morphisms a and o’ of diagram (3.2) contract Hp NY and

EN H’ NY’ to a point, respectively. Moreover codimy,E N H’ =k+1
(c) an lsomorphlsm otherwise, that is, whenr = d and X does not contain I1.

Proof. By Lemma 3.2, we know that there is an isomorphism in codimension
one

where a contracts the locus ITp and nothing else. By Lemma 3.3, we have

MpnY: (zg4_, =zu—h,=0)CT.
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Since It = (U, Xg, oo s Xgg1) N (Z, X425 - » Xpy1) W can assume z = 1 at Ip.
Hence, IIp N'Y is isomorphic to

(84—r=0) C pk+,

Notice that, a priori, there is no reason for g,_, not to be identically zero. Let
aly be the contraction of ITp N Y to a point, which is induced by the linear
system |m(rH — E)| for m big enough. Notice that either dimpNY > 1or
[Ip N'Y is empty. So, if «|y is a finite map, it follows that it is an isomorphism
and ITp N Y is empty.

Suppose that a|y is not small nor an isomorphism. Then «|y is divisorial
since rH — E is a big divisor on Y for r > 1. Suppose IIp N Y is a divisor in Y.
Then, in particular, g;_, is identically zeroand k+1 = dim [TpNY = n—1, that
is, codimy " = 2. By Corollary 2.3, it follows that X is a hyperplane. Consider
the projection 7 : Z --» X away from p,. Then, the map 7 can be resolved by a
single blowup to Y with exceptional divisor ITp. Hence, the following diagram
commutes

where O|y is the resolution of p,.

By smoothness of T, the only singular point of Z is p,. Hence Z is terminal
(resp. canonical) if and only if p, is. By [26, Theorem Pg. 376], it follows that Z
is terminal (resp. canonical but not terminal) ifand onlyifn = k+2>r—1
(resp. n = k + 2 = r — 1). In other words, if and only if —K} is nef (resp.
Kr ~ Or(1).

Suppose that |y is not divisorial. Then, for the same reason as before, «|y
is small, possibly an isomorphism. Suppose it is not an isomorphism. Then,
the small modification a|y contracts [Tp NY to a point. In particular OpNYis
non-empty which happens preciselywhen g;_, ¢ C*. In other words, when the
following implication holds: If r = d then g,_, is identically zero. Equivalently,
r = d impliesIT C X. ]

Lemma 3.6. Let degl’ = degX > 1. Then there is a projection 7t : X -» P"k-1
that decomposes as

y -y yr

qo\L \Lnb

X --3 pr—k-1
where Oy is a (non-isomorphism) small Q-factorial modification if and only if
IT C X and an isomorphism otherwise.

In each case the general fibre of 1 is a complete intersection F such that K ~
o(d -k —3).
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Proof. Consider the flat projective family n: ' — C whose general fibre is
the smooth degree d hypersurface

Xyt (prFrar + - + Xp1 Frgg + - hg = 0) C P

containing I': (hy = 0) C II, where F; and hy are as in Section 2.1. Notice
that each fibre of 7 is isomorphic to some X as in the conditions of the lemma.
Namely, the general fibre of 7, X;, does not contain IT while the central fibre,
Xy, does. In the following we study the birational geometry of the fibres of .

Let ¢, : Y, — X; be the blowup of X; along I" and similarly, let gy : Yy —
X be the blowup of X, along I'. By Lemma 3.5, we know that ©[y, : ¥; — Y,
the restriction of © to the general fibre Y,, is a small modification, possibly an
isomorphism. Then, by Lemma 3.3, Y, is given by

!

w1 TE-2=0
zu—hyg =0

Xey2F ot X F

!
k+2 +

inside T. Note that Y, is isomorphic to the smooth hypersurface
) +1t- hd =0

!

vt XpaF g

k42 +
inside BlgP"*!. By Lemma 3.5(c), ®|y, is an isomorphism. Let ¥ be as in
Lemma 3.2. By Lemma 3.2, it follows that ¢, := ¥| y isa fibration to P"—k-1

whose general fibre is isomorphic to the smooth hypersurface F
u(Fy,,

of degree d in P**2, Hence, Ky ~ Or(d — k — 3). Hence, the general fibre of 7
fits into the diagram

u(Xp 42 F

++F  )+t-hg=0

yt:yt’

A b

xt _ _> ﬂ:pn—k—l

On the other hand, the central fibre of the family n, X, contains the (k + 1)-
dimensional linear subspace IT : (xy;, = ... = X,,;1 = 0) D I"and so Y, admits
a small Q-factorial modification ©, : Y, --» y(’) by Lemma 3.5. By Lemma 3.2, it

follows that W is a fibration to P*~*~1 whose general fibre is isomorphic to the
complete intersection

pt ot F, =0

n+1
zu—hy; =0

F

of degrees d — 1 and d, respectively, inside P(1¥+3,d — 1). Moreover it is clear
that Y, is indeed the central fibre of the family Y, — C. In particular, we have
a degeneration of the corresponding movable cones where

yt w yo
Mov(Y,) = Nef(Y,) w Mov(Y,) = Nef(¥,) U Nef(¥,) g
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Example 3.7. In [28, 29], Wisniewski showed that the nef cone of a smooth
Fano variety remains constant under deformations in smooth families of Fano
varieties. We give an example where the above fails if we allow the central fibre
to be weak Fano. See also [27].

Let X, € |Ops(2)| be a smooth quadric fourfold containing IT ~ P2, Let Y,
be the blowup of X, along a smooth conic in II, that we denote by I'. Then Y,
is a weak Fano variety and its movable cone is

Mov(Y,) = R, [H] @ R, [H — E] = Nef(Y,) U Nef(Y})

where Y|, is the only small Q-factorial modification of Y. See Lemma 3.6. We
now consider a flat deformation 7: X — C of X, where each fibre X, :=
n~1(t), t # 0, is a smooth quadric fourfold containing T but not II. Let Y, be
the blowup of X; along I'. Then Y, is a smooth Fano variety which is a flat de-
formation of Y, and its Movable cone agrees with the Movable cone of Y, see
Lemma 3.6. However it contains only one Mori chamber,

Nef(Y,) = Mov(Y,)
and so the Nef cone of Y|, is a proper subcone of the Nef cone of Y;, for ¢ # 0.

Lemma 3.8. Supposer > 1. Assume deg X # degI' and X # P" or codimyI" >
2. Letww: X -» P"%=1 be the projection away from I1. Then 7 can be decomposed

as

C]
y -y yr

@\L \le
X — Ty prk-1

where 1) is a fibration onto P %=1 whose general fibre F is isomorphic to a smooth
complete intersection in P(1¥*3,r — 1) such that K ~ Op(d — k — 3).

Proof. By Lemma 3.5, it follows that ©|y : Y -> Y’ is a small Q-factorial mod-
ification and that the contracted locus is IIp N Y. On the other hand it is clear
that the ideal of Y is contained in the ideal of E N HH’J,. Hence, o’ contracts

ENTI}, ~ Pdimx™1 Notice that dim E N I, < n — 1 since dim T > 0.

Finally, we restrict the P(1¥*3,r — 1)-bundle over P*~¥~1 of Lemma 3.2 to
Y. This is a fibration whose general fibre F is isomorphic to the smooth (by
generic smoothness, see [14, Theorem II1.10.2 and Lemma III.10.5]) codimen-
sion 2 complete intersection

Fo,++F, _ ,+28,=0

zu—h, =0

of hypersurfaces of degrees d — 1 and r, respectively, where the polynomials Fl/
are as in Lemma 3.3 and where x,, ..., X, are general complex numbers. By
adjunction Kp ~ Op(r+d—1—(k+3)—(r—1)) = Op(d — k — 3) and the first
part of the claim follows. O
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Example 3.9 (Smooth Calabi-Yau fibrations). The following example gives a
particular construction of Calabi-Yau fibrations of relative Picard rank 1. Let
X € |Opn+1(k + 3)| be a smooth Fano hypersurface. Let I' C II be a smooth
hypersurface such that K ~ Opi+1(1). Suppose I' C X and IT ¢ X. Then, by
Lemma 3.6, Y the blowup of X along I' admits a fibration to P"~*~1 such that
the general fibre F satisfies Kr ~ 0. For instance the blowup of a smooth quartic
threefold hypersurface along a smooth planar quartic curve has the structure
of a fibration into K3 surfaces over P!,

Theorem 3.10. Let IT = PX*1 be a linear subspace of P"*!, where1 < k < n—2.
Let X C P"*! be a smooth hypersurface and T C TI a smooth hypersurface of
IT contained in X. Let ¢ . Y — X be the blow up of X along I'. Let E be the
g-exceptional divisor and H the pullback of a hyperplane section of X. Then,

Nef(Y) = R, [H]+ R, [(degD)H — E] if degl #degX orIl C X,
" |R,[H] + R,[H - E] if degl' =degX andIl ¢ X,
Mov(Y) = R, [H] + R, [(degD)H — E] ifX is a hyperplane and codimxI" = 2,
- R, [H]+R,[H - E] otherwise,

Eff(Y) = R, [E] + R, [H — E].

In particular, Y is a Mori dream space with Cox ring Clu, xg, ..., X141, 2] /Iy
where the ideal Iy is defined in Lemma 3.3. Moreover, ¢ induces a birational
map to a

 Fano fibration if 3 — deg X + dimT > 0,

 Calabi-Yau fibration if 3 — degX + dimTI =0,

« fibration into canonically polarised varieties if 3 — deg X + dimT < 0.

Proof. The statement follows from Lemmas 3.4, 3.5, 3.6, 3.8 where the bira-
tional models have been explicitly computed. O

Remark 3.11. (a) Theorem 3.10 gives an alternative proof that I' is not a
maximal centre when X is a Fano variety of Fano index 1. See [18] for
a historical account of superrigidity of smooth Fano hypersurfaces of
Fano index 1.
(b) Itis also possible to show that some of the varieties Y in Theorem 3.10
are Mori dream spaces using arguments in [17].

Example 3.12. Let X € |Ops(d)| be a smooth 4-fold hypersurface of degree d
containing the plane I1. Then, the projection X --» II’ can be decomposed as
the blowup of X along a smooth conic in I, followed by a small modification
swapping two projective planes, followed by a fibration onto II. See Lemmas
3.4 3.5, 3.6, 3.8. The small modification is a flip if X = P*, aflopif X isa
quadric and an anti-flip otherwise, which follows from the description of the
Nef cone in each instance. See Theorem 3.10. In this case, smoothness of the
blowup is preserved when we have a flop or flip but the anti-flip introduces
hypersurface singularities along the flopped plane. See Lemma 3.5b. Moreover
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—Kr ~ Op(4 — d). Hence, X is birational to a Fano fibration whenever 1 <
d < 3, a Calabi-Yau fibration if d = 4 and a fibration into canonically polarised
varieties when d > 4.

We classify for which I and X we have that the blowup of X along I' is a
smooth Fano variety.

Theorem 3.13. Let IT = PX*! be a linear subspace of P"*!, where1 < k < n—2.
Let X C P"1 be a smooth Fano hypersurface and T C II a smooth hypersurface
of II contained in X. Let ¢ . Y — X be the blow up of X along . ThenY isa
Fano variety if and only if one of the following holds:
(1) degX =degI, Il ¢ X anddegl' <2+ dimT, or
(2) all of the following hold:
(2.1) degX #deglorII C X,
(2.2) degX <dimX + 1 —degT - (codimyI" — 1), and
(2.3) ifl1 C X thendimT < codimy I' — 2.
In particular, if Y is a Fano variety, then —Kr is nef.

Proof. The statement follows from Theorem 3.10 and —Ky ~ (n + 2 — d)H —
(n—k—-1)E. O

We illustrate how Theorem 3.13 can be made more explicit in particular
cases.

Corollary 3.14. Let T be a smooth projective planar curve and let I1 be the plane
containingit. Letp : Y — X be the blowup of X alongT". ThenY is a Fano variety
if and only if one of the following holds:

» I'is a line and X is a linear, quadric or cubic hypersurface of dimension
n>3;
« I'isa conicand X isa
- 3 or 4-dimensional hyperplane or
- quadric hypersurface of dimension n > 3 such that 11 ¢ X; or
e I'isa cubicand X isa
- 3-dimensional hyperplane or
- a cubic hypersurface of dimension n > 3 such that 11 ¢ X.

Proof. See the proof of Corollary 3.15. O

Corollary 3.15. Let I" be a smooth projective surface contained in I1 ~ P3. Let
@:Y — X be the blowup of X along T. Then Y is a Fano variety if and only if
one of the following holds:
« lisa plane and X is a hypersurface of degree at most four and dimension
n2z4
« I'is a quadric surface and X is a
(1) hyperplane of dimension4 <n < 6 or
(2) quadric hypersurface of dimension n > 4 such that I1 ¢ X or
(3) 4-dimensional cubic hypersurface;
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» I'is a cubic surface and X is a

(1) hyperplane of dimension 4 or

(2) a cubic hypersurface of dimension n > 4 such that 11 ¢ X; or
« I'is a quartic surface and X is a

(1) hyperplane of dimension 4 or

(2) a quartic hypersurface of dimension n > 4 such that 11 ¢ X.

Proof. By Theorem 3.10, if Y is a Fano variety then —Kt is nef. Hence I' is a
smooth surface which is a hypersurface of degree at most 4. Suppose r = 1 or
r=dandIl ¢ X. Ifr > 1, then X is any smooth Fano hypersurface of degree r
and dimension n > 4 such that IT ¢ X. If r = 1, X is any smooth hypersurface
of degree 1 < d < 4 and dimension n > 4. Fixr > 1. Suppose, on the other
hand, thatr # d orr = d but IT C X. Then, by Theorem 3.10, the dimension of
X is bounded above for fixed r and we have
1+3r—d

It is easy to see that, for each 2 < r < 4, the solutions to the inequality 3.3 are
the triples

(r,d,n) €{(4,1,4),(3,1,4),(3,2,4),(2,1,4 <n <6),(2,2,4 <n <5),(2,3,4)}.

In this case, if X isnot a hyperplane, wehaver > d = II C X. Butby Lemma
2.23 =dimII < n— 3. Hence n > 6. This excludes the case (r,n,d) = (3,2, 4),
i.e., of a cubic surface in a quadric of dimension 4, as well as the cases (2, 2, n)
where n € {4, 5}. There are examples in all other cases and so the conclusion
follows. O

Corollary 3.16. Suppose we are in the same conditions of Theorem 3.13. Let
ty = n+2—d be the Fano index of X. Then, the anticanonical divisor —Ky is big
ifand only if codimyxI" < tx + 1. In particular, if —Kx ~g Ox(1), then the blowup
of X along T is not a log Fano variety.

Proof. By Theorem 3.10, the anticanonical divisor of the blowup of X along T’
is big if and only if

n—k—1 codimyl'—1

n+2—d Iy

In particular suppose ¢y = 1. Then, codimxI" < 2. But, by assumption, codimxI’
> 2. Hence, 1y > 2. 0

The following theorem is a characterisation of when ¢ : Y — X, the blowup
of X along T, initiates a Sarkisov link in the case where X = P". See [16].

Theorem 3.17. Suppose X = P". Letp: Y — X be the blowup of X along T.
Then @ initiates a Sarkisov link if and only if —Kr is nef and whenever codimy " >
2we have dimT' > 2.
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Proof. When codimyI" = 2 this is explained in Lemma 3.5. If codimyI" > 2,
then Y admits a small Q-factorial modification ®|y : Y -» Y’, where Y’ has
quotient singularities of type

1
1,..,1,0,...,0)
r—l -
k+2  n—k-1

along ENIT, ~ P"~¥=1 Then, Y’ is terminal if and only if each singular point is
terminal and the codimension of the singular locus is at least three. The latter
is codimy E N ﬁﬁ; =k+1>3,ie., k> 2. Hencen > 4. On the other hand,
each such quotient singularity is terminal ifand only if k +2 > r — 1, i.e., ifand
only if —Kt is nef. Moreover —Ky is movable by the description of the movable
cone in Theorem 3.10. Hence Y’ /P"~¥~1 is a Mori fibre space. (]

Example 3.18. Let X = P3 and I' C X be a smooth planar curve. Then —Ky is
big (See Corollary 3.16). It is a weak Fano threefold if and only if I is a curve
of genus g and degree r such that (g,r) € {(0,1),(0,2),(1,3),(3,4)}. (See for
instance Theorem 3.10). Moreover, ¢ initiates a Sarkisov link in the first three
cases only (See Theorem 3.17). This recovers the information in the first col-
umn of [4, Table 1].

The paper [20] contains examples of toric flops from smooth 4-folds to singu-
lar 4-folds. We give examples of non-toric flops from smooth 5-folds to singular
5-folds.

Example 3.19. The following is an example of a Sarkisov link featuring a flop
between a smooth variety and a singular one. Let X = P>andI': (h; = 0) C X
a smooth del Pezzo surface of degree 3. Let ¢ : Y — X be the blowup of X along
I'. By Lemma 3.5 and Lemma 3.8, the projection 77 : X --» P! can be resolved
and fits into the diagram,

y -2y
q‘i \L@b
X -7 P!

where 3 : Y/ — P! is a fibration onto P! whose general fibre is isomorphic to
the cubic fourfold hypersurface

(zu — h; = 0) C P(1°,2)

By Lemma 3.5, the map ©|y contracts IIp ~ P3 and extracts E N H’\g; ~ Pl
The variety Y’ is singular along the extracted P, locally analytically the sin-
gularity is of type %(0, 1,1,1,1) around every point of P!. Moreover, —Ky, =
2(3H — E), that is, —Ky is nef but not ample. Hence, —Ky does not intersect
Ip nor —Ky := Oly,(—Ky) intersects E N l:[T;j,. In particular, if C is any curve
contracted by « then Ky - C = 0 and similarly for Ky,. We conclude that |y is
a flop.
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4. Divisorial stability

Let IT =~ Pk+! be a linear subspace of P"*!, where 1 < k < n — 2. Let
X C P"*! be a smooth Fano hypersurface and I' C IT a smooth hypersurface of
IT contained in X. Let ¢ : Y — X be the blow up of X along I'. Suppose Y isa
Fano variety. In this section we consider divisorial stability of Y in two cases:

(1) I'is a line and
(2) T = P*, where k > 1.

By Theorem 3.10, we have Mov(Y) = Nef(Y) = R,[H] + R, [H — E]. By
Corollary 3.14, Y is a Fano variety if and only if 3 — degX — dimI" > 0 which
in the first two cases amounts to deg X € {1, 2, 3}. In each case Y fits into the
diagram

EcY
y X
rcx - ————f——__2 > Pl

by Lemma 3.4 and Lemma 3.6, for some | > 1. where ¢ is the blowup of T, E
is the p-exceptional divisor and 8 is a P""!-bundle. Let H := ¢*Ox(1) be the
pullback of a hyperplane section of X not containing I'. Let u € R,,. We have
—Ky —uE=(n+2—-d)H —(nh—k —1+ u)E and by Theorem 3.10,

—Ky — uE is Nef < —Ky — uE is Pseudo-effective < u €[0,3 —d + k].
If T ~ Pk for k > 1, we have the following intersection numbers:

H"=d

H" . El =0, i <codimyI'=n-—k

Hr-i .l = (_Dn—k((’i:}{)(d -1 - (n i;{l_ 1)), 2<n—-k<i<n.

Definition 4.1. Let X be a Fano variety, and let f : Y — X be a projective
birational morphism such that Y is normal and let E be a prime divisoron Y.

1
(=Kx)"

Ax(E) = 1+ordy(Ky — f*Ky), Sx(E) = / vol(f*(—Kyx) —uE)du.
0

We define the beta invariant as
B(E) = Ax(E) — Sx(E).
The following is a weaker notion of K-stability:

Definition 4.2 ([13, Definition 1.1]). The Fano variety X is said to be diviso-
rially stable (respectively, semistable) if S(F) > 0 (respectively, 3(F) > 0) for
every prime divisor F on X. We say that X is divisorially unstable if it is not
divisorially semistable.
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Note that divisorial stability is a weak form of K-stability since we only con-
sider divisors on X, not on birational models of X. In particular, K-stable va-
rieties are divisorially stable. The following result is a generalisation of [1,
Lemma 3.22]

Theorem 4.3. Let T" be a projective line in a smooth Fano hypersurface. Let
¢: Y — X be the blowup of X along T and suppose that Y is a Fano variety.
Then, if X = P" or X is a quadric, then Y is divisorially unstable. In particular,
Y is not K-stable and does not admit a Kihler-Einstein metric.

Proof. By Corollary 3.14 Y is a Fano variety if and only if d € {1,2,3}. By
Lemma 3.4, we have the following diagram

where ¢ is the blowup of T, E is the ¢p-exceptional divisor and 6 is a P!-bundle.
Let H := ¢*Ox(1) be the pullback of a hyperplane section of X not containing
I'. Letu € R;(. By Theorem 3.10, we have —Ky —uFE ~ (n+2—d)H—(n—2+u)E
is nef if and only if 0 < u < 4 — d. Also, notice that if u > 4 — d the divisor
—Ky — uE is not big so its pseudo-effective threshold is 7(E) = 7 = 4 — d.

The following intersection numbers are easily computed:

H"=d
H"'.E=..=H*.-E"?=0
H-E"l=(-1)"

E" = (-1)"(d — n).

So we compute the expected vanishing order of E to be

S, (E) = ﬁ [0 vol(—Ky — uE) du

_ 1
(=Ky)

f ( (’:)(—l)i(n +2—dyin—2+ u)iH"—iEf) du

0 i=0

1
(=Ky)m
(n—2+r)”dr—((n—2+r)”—(n—2)")(n+2—d)+((n—2+r)”—(n—Z)")%

- (n—2+0)nd—2(0n—2y-1(2n—d)

Hence, Y is divisorially unstable along E if and only if Sy(E) > 1, that is, if
and only if

f ((n+2—d)”d—(n—2+u)”‘1n(n+2—d)+(n—2+u)"(n—d)))du
0

:ll :_ Cll((n +2—-d)"! —(n—2)""' —(n—2)"(n+1))

—m+2-d)((n+2-ad)"—(n-2)"—(n-2)""n) > 0.

(n+2—d)"d3—d) +
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Rearranging, this is equivalent to
( n—2 )"‘1 L d=Dnd-1)-2)(n+2-d)
n+2-d m2—(Gd+4)n+4d-1)
Notice that the inequality is trivially true for d = 1 since the left-hand-side is
positive. Assume d € {2, 3}. Define the two functions of n
(n)_( n—2 )”‘1 ()= {@= V=D =D(n+2-d)
PaW=\s2-d) » WY T o " Gdrantad—1)
Then, p,(n) is a strictly increasing function of n such that lim,,_, , pg(n) = e".
In particular

2

pa(3) = (ﬁ) <psn)<e™ Vnx>3.

On the other hand q,4(n) is strictly increasing if d = 2 and strictly decreasing
1.2
if d = 3. Moreover, we have lim,,_, o, g4(n) = (d—;) . Hence, g,4(n) is bounded
(above if d = 2 and below if d = 3) by this value. Hence,
1 .
q2(n) < sup g,(m) = g — min p2(m) < py(n).
m>3 m>3
On the other hand,
. 4
q3(n) > inf g3(m) = 5 > e~' = sup p3(m) > ps(n).

We conclude that Y is divisorially unstable if d € {1, 2} as we claimed. O
Theorem 4.4. Let T ~ P* C X be a k-dimensional linear subspace in a smooth
Fano hypersurface X C P"* of degreed. Letp : Y — X be the blowup of X along
I" and suppose that Y is a Fano variety. Suppose k > 3 - deg X. If n < 1000, then

Y is divisorially unstable. In particular, Y is not K-stable and does not admit a
Kdhler-Einstein metric.

Proof. By Theorem 3.10, Y is a Fano variety if and only if 3—d + k > 0. Hence
we have the following inequalities,

1<d<k+2<n.

Therefore for each n there is a finite number of possibilities for degree of X and
dimension of T" for which Y is a Fano variety. By definition Y is divisorially
unstable along E if

3—d+k
/ vol(f*(—Kyx) — uE)du — (—Kx)" > 0
0

Using the earlier computation of the intersection numbers we get the inequality

n OE((Da-n-(,5)
(n+2-dy"dQ2-d+k)+m+2-dy"+t

i=n—k

i+1
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(N +2-d)y (-1 — k - 1)i+1<(,ij{)(d —1— (! )

n—k—1

1

K i+1

- Zn: (?)0" +2—d)" (=) -k — 1)1'((:1:}{)(61 - ( i—1 >> o

i=n—k n—k-1

Let n < 1000. Then using a computer, we verified that the inequality holds

whenever1 <d <k + 2. O

Remark 4.5. The bound k > 3 - degX is not sharp and leaves behind well
known cases such as the blowup of a quadric threefold along a line (See [1,

Lemma 3.22]). A more accurate and meaningful bound should be possible to
find.

We finish with the following conjecture:

Conjecture 4.6. LetT' ~ PX C X be a k-dimensional linear subspace in a smooth
Fano hypersurface X C P"*! of degree d. Let . Y — X be the blowup of X
along T and suppose that Y is a Fano variety. Then there exists a constant c(d)
depending only on d such that Y is divisorially unstable if and only if k > c(d).
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