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Blowups of smooth hypersurfaces, their
birational geometry and divisorial stability
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Abstract. Let 𝑋 be a smooth 𝑛-dimensional Fano hypersurface in ℙ𝑛+1

where 𝑛 ≥ 3. Let Γ be a smooth positive-dimensional complete intersec-
tion of 𝑋, a hypersurface and one of more hyperplanes in ℙ𝑛+1. Let 𝑌 → 𝑋
be the blowup of 𝑋 along Γ. Let 𝜑∶ 𝑌 → 𝑋 be the blowup of 𝑋 along Γ. We
describe the Mori chamber decomposition of 𝑌 and its associated birational
models. In particular, we show that 𝑌 is a Mori dream space. We classify for
which 𝑋 and Γ the variety 𝑌 is a Fano manifold and, if 𝑋 is a hyperplane,
we classify the elementary Sarkisov links initiated by 𝜑. Finally, we use this
Mori chamber decomposition above to prove that certain Fano manifolds as
above do not admit a Kähler-Einstein metric.
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1. Introduction
We work over the field of complex numbers. We focus on smooth 𝑛-dimen-

sional hypersurfaces 𝑋 ⊂ ℙ𝑛+1, where 𝑛 ≥ 3, containing a smooth 𝑘-dimen-
sional hypersurface Γ ⊂ ℙ𝑘+1 for some 1 ≤ 𝑘 ≤ 𝑛 − 2, and we study the
geometry of the blow up 𝑌 of 𝑋 along Γ. We give a complete and constructive
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description of theNef,Movable, andEffective cones of𝑌 showing, in particular,
that it is a Mori dream space. In addition, we describe a Cox ring of 𝑌. By the
Lefschetz hyperplane section theorem Pic(𝑌) ≃ ℤ2 is generated by the pull-
back of 𝒪𝑋(1) and the exceptional divisor of the blowup. As a consequence, 𝑌
admits exactly twoMori contractions: one to𝑋, and another one to a birational
model of 𝑌 explicitly determined by the geometry of 𝑋 and Γ.
Mori dream spaces were introduced by Hu and Keel [15] as natural geome-

tric objects that are well-behaved with respect to the Minimal Model Program.
For instance, the contractions of a Mori dream space are induced from those
of an ambient quasi-smooth projective toric variety 𝑇 whose Mori chamber de-
composition is a refinement of the Mori chamber decomposition of the Mori
dream space (see [15, Prop. 2.11]). This refinement can be non-trivial, for in-
stance there are examples in which the Nef cone of 𝑇 is strictly smaller than the
Nef cone of the Mori dream space (cf Lemma 3.6). We give a concrete example
of a flat deformation of smooth Fano fourfolds whose central fibre is a smooth
weak Fano fourfold and whose Nef cone is a subcone of the Nef cone of the
central fibre, see Example 3.7. See also [27] for different examples.
However, the property of being a Mori dream space is not automatically

maintainedwhenperforming commonbirational transformations such as blow-
ups. For instance, [5] examines the case of toric varieties (that are Mori dream
spaces by [15, Corollary 2.4]) blown up at the identity point, providing exam-
ples that are Mori dream spaces, and others that are not. A previous work of
Ottem [24] characterises when a normal ℚ-factorial hypersurface in products
of projective spaces is a Mori dream space. In [17], the author gives a criterion
for a normal projective variety of Picard rank 2 to be a Mori dream space. In
particular, he shows that the blowup at a general point of a general Fano com-
plete intersection of dimension at least three is a Mori dream space. However,
his construction does not explicitly provide the birational models induced by
the Mori chamber decomposition of the blowup.
Indeed, the property of being aMori dream space is closely related to finding

birational models (cf [21, 3, 6, 4, 2, 25, 23]), also in relation to moduli problems
[11], and to those of rigidity ([18, 12, 19, 22]). Our work builds up on these in
spirit and structure (especially [24] and [17]). Our main theorem is the follow-
ing.

Theorem (= Theorem 3.10). LetΠ ≅ ℙ𝑘+1 be a linear subspace of ℙ𝑛+1, where
1 ≤ 𝑘 ≤ 𝑛 − 2. Let 𝑋 ⊂ ℙ𝑛+1 be a smooth hypersurface and Γ ⊂ Π a smooth
hypersurface ofΠ contained in𝑋. Let 𝜑∶ 𝑌 → 𝑋 be the blow up of𝑋 along Γ. Let
𝐸 be the 𝜑-exceptional divisor and 𝐻 the pullback of a hyperplane section of 𝑋.
Then,

Nef(𝑌) = {
ℝ+[𝐻] + ℝ+[(deg Γ)𝐻 − 𝐸] if deg Γ ≠ deg𝑋 orΠ ⊂ 𝑋,
ℝ+[𝐻] + ℝ+[𝐻 − 𝐸] if deg Γ = deg𝑋 andΠ ⊄ 𝑋,

Mov(𝑌) = {
ℝ+[𝐻] + ℝ+[(deg Γ)𝐻 − 𝐸] if 𝑋 is a hyperplane and codimXΓ = 2,
ℝ+[𝐻] + ℝ+[𝐻 − 𝐸] otherwise,
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Ef f (𝑌) = ℝ+[𝐸] + ℝ+[𝐻 − 𝐸].

In particular, 𝑌 is a Mori dream space with Cox ring ℂ[𝑢, 𝑥0, … , 𝑥𝑛+1, 𝑧]∕𝐼𝑌
where the ideal 𝐼𝑌 is defined in Lemma 3.3. Moreover, 𝜑 induces a birational
map to a

∙ Fano fibration if 3 − deg𝑋 + dimΓ > 0,
∙ Calabi-Yau fibration if 3 − deg𝑋 + dimΓ = 0,
∙ fibration into canonically polarised varieties if 3 − deg𝑋 + dimΓ < 0.

We additionally determine explicitly the birational models of 𝑌. Moreover,
we determine under which conditions𝑌 is a Fano variety assuming𝑋 is a Fano
variety, see Theorem 3.13.
The following theorem classifies Sarkisov links initiated from the blowup of

ℙ𝑛 along Γ.

Theorem (= Theorem 3.17). Suppose 𝑋 = ℙ𝑛. Let Π ≅ ℙ𝑘+1 be a linear sub-
space of 𝑋, where 1 ≤ 𝑘 ≤ 𝑛 − 2. Let 𝜑∶ 𝑌 → 𝑋 be the blowup of 𝑋 along a
smooth hypersurface Γ ⊂ Π contained in 𝑋. Then 𝜑 initiates a Sarkisov link if
and only if both of the following hold:

(1) −𝐾Γ is nef, and
(2) codim𝑋Γ ≤ 2 or dimΓ ≥ 2.

Divisorial stability was introduced in [13] as a weaker notion of K-stability.
Its importance comes from the seminalwork in [7, 8, 9] proving the equivalence
of the existence of Kähler-Einstein (KE) metrics on Fano manifolds and the
algebraic-geometric notion of K-(poly)stability. We prove non-existence of KE
metrics on blowups of projective spaces and quadrics along a line, generalising
[1, Lemma 3.22].

Theorem (= Theorem 4.3). Let Γ be a projective line in a smooth Fano hyper-
surface. Let 𝜑∶ 𝑌 → 𝑋 be the blowup of 𝑋 along Γ and suppose that 𝑌 is a Fano
variety. Then, if 𝑋 = ℙ𝑛 or 𝑋 is a quadric, then 𝑌 is divisorially unstable. In
particular, 𝑌 is not K-stable and does not admit a Kähler-Einstein metric.

We also show in Theorem 4.4 that when Γ = ℙ𝑘, then𝑌 is divisorially unsta-
ble for high enough 𝑘 assuming the dimension of 𝑋 is bounded by 1000. More-
over, in Conjecture 4.6 we predict that this holds for any dimension 𝑛 ≥ 𝑘 + 2.

Acknowledgements.We would like to thank Igor Krylov for answering a ques-
tion on intersection numbers and Calum Spicer for the question leading to Ex-
ample 3.19. The second authorwishes to thank Paolo Cascini for the hospitality
provided at Imperial College London during the course of this work.

2. Preliminaries
Definition 2.1 ([15, Definition 1.10]). A normal projective variety 𝑌 is aMori
dream space if the following conditions hold.
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(1) 𝑌 is ℚ-factorial and Pic(𝑌) is finitely generated.
(2) Nef(𝑌) is the affine hull of finitely many semi-ample line bundles.
(3) There is a finite collection of small ℚ-factorial modifications 𝑓𝑖 ∶ 𝑌 ⤏

𝑌𝑖 such that each 𝑌𝑖 satisfies 1 and 2 andMov(𝑌) =
⋃
𝑓∗𝑖 (Nef (𝑌𝑖)).

Throughout the paper, 𝑋, Γ,Π, Π′, 𝑛, 𝑘, 𝑑 and 𝑟 are as in Section 2.1. We
recall that a ℚ-factorial toric variety is a Mori dream space [15, Corollary 2.4].
Indeed they have Cox rings which are polynomial algebras generated by sec-
tions corresponding to the 1-dimensional rays of the defining fan.

2.1. Setting. LetΠ be a (𝑘+1)-dimensional linear subspace ofℙ𝑛+1 such that
2 ≤ dimΠ ≤ 𝑛 − 1, where 𝑛 ≥ 3. Let Π′ be a maximal dimensional linear
subspace of ℙ𝑛+1 that does not intersect Π. Let Γ be a smooth hypersurface
of Π of degree 𝑟 and 𝑋 be an 𝑛-dimensional smooth hypersurface of ℙ𝑛+1 of
degree 𝑑 containing Γ. Consider 𝜑∶ 𝑌 → 𝑋 be the blowup of 𝑋 along Γ. To
summarise, we have

dim𝑋 = 𝑛, deg𝑋 = 𝑑,
dimΓ = 𝑘, deg Γ = 𝑟.

We have the linear equivalences

−𝐾𝑋 ∼ 𝒪𝑋(𝑛 + 2 − 𝑑),
−𝐾Γ ∼ 𝒪Γ(𝑘 + 2 − 𝑟).

We denote the variables on ℙ𝑛+1 by 𝑥0, … , 𝑥𝑛+1. After a suitable change of co-
ordinates, we have

Π = (𝑥𝑘+2 = ⋯ = 𝑥𝑛+1 = 0) ≃ ℙ𝑘+1 ⊂ ℙ𝑛+1,

Π′ = (𝑥0 = ⋯ = 𝑥𝑘+1 = 0) ≃ ℙ𝑛−𝑘−1 ⊂ ℙ𝑛+1,
Γ = (ℎ𝑟(𝑥0, … , 𝑥𝑘+1) = 0) ⊂ Π ⊂ ℙ𝑛+1,
𝑋 = (𝑓𝑑(𝑥0, … , 𝑥𝑛+1) = 0) ⊂ ℙ𝑛+1,

where ℎ𝑟 ∈ ℂ[𝑥0, … , 𝑥𝑘+1] and 𝑓𝑑 ∈ ℂ[𝑥0, … , 𝑥𝑛+1] are homogeneous polyno-
mials of respectively degrees 𝑟 and 𝑑. Since 𝑋 contains Γ, there exist homoge-
neous degree 𝑑−1 polynomials𝐹𝑖 ∈ ℂ[𝑥0, … , 𝑥𝑛+1] and a homogeneous degree
𝑑 − 𝑟 polynomial 𝑔𝑑−𝑟 ∈ ℂ[𝑥0, … , 𝑥𝑘+1] such that

𝑓𝑑 = 𝑥𝑘+2𝐹𝑘+2 +⋯+ 𝑥𝑛+1𝐹𝑛+1 + ℎ𝑟𝑔𝑑−𝑟.

If 𝑟 > 𝑑, then 𝑔𝑑−𝑟 is necessarily the zero polynomial. If 𝑋 ≅ ℙ𝑛, then we
assume 𝑋∶ (𝑥𝑛+1 = 0).

Lemma 2.2. Both of the following hold:
(a) if 𝑑 ≥ 2 andΠ ⊂ 𝑋, then dimΠ ≤ codimℙ𝑛+1 Π − 1, and
(b) if dimΠ ≤ codimℙ𝑛+1 Π−1, then a general hypersurface ofℙ𝑛+1 of degree

𝑑 containingΠ is smooth.
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Proof. Since Π ⊂ 𝑋 we have

𝑋 = (𝑥𝑘+2𝐹𝑘+2 +⋯+ 𝑥𝑛+1𝐹𝑛+1 = 0) ⊂ ℙ𝑛+1.

(a)We take partial derivatives restricted to the locus (𝑥𝑘+2 = ⋯ = 𝑥𝑛+1 = 0).
The Jacobian is (

0 … 0 𝐹𝑘+2 … 𝐹𝑛+1
)
,

where, by assumption, the polynomials 𝐹𝑖, 𝑘 + 2 ≤ 𝑖 ≤ 𝑛 + 1 are homogeneous
of positive degree. Hence, 𝑋 is singular along (𝑥𝑘+2 = ⋯ = 𝑥𝑛+1 = 𝐹𝑘+2 =
… = 𝐹𝑛+1 = 0). That is, along

𝑆∶ (𝐹𝑘+2 = … = 𝐹𝑛+1 = 0) ⊂ Π.

The locus 𝑆 is non-empty if and only if its dimension is non-negative. We have

dim𝑆 ≥ 𝑘 + 1 − (𝑛 + 1 − (𝑘 + 2) + 1) = 2𝑘 − 𝑛 + 1

and the claim follows.
(b) By Bertini’s theorem, the singularities of a general hypersurface of degree

𝑑 containing Π are on the hyperplane Π. On the other hand, the hypersurface
(𝑥𝑘+2𝑥𝑑−10 + … + 𝑥𝑛+1𝑥𝑑−1𝑘+1 = 0) contains and is smooth along Π. □

Corollary 2.3. LetΠ ≅ ℙ𝑘+1 be a linear subspace of ℙ𝑛+1, where 1 ≤ 𝑘 ≤ 𝑛 − 2.
Let 𝑋 ⊂ ℙ𝑛+1 be a smooth hypersurface and Γ ⊂ Π a smooth hypersurface of Π
contained in𝑋. If dimΓ ≥ codim𝑋Γ−1, then deg Γ ≤ deg𝑋 or𝑋 is a hyperplane.

Proof. Follows from Lemma 2.2 using dimΠ = dimΓ + 1 and codimℙ𝑛+1 Π =
codim𝑋 Γ. □

3. Birational models
We remind that throughout the paper, 𝑋, Γ,Π, Π′, 𝑛, 𝑘, 𝑑 and 𝑟 are as in

Section 2.1.

3.1. Birational models of the ambient space. We define

ℙ ∶= Proj
(
ℂ[𝑥0, … , 𝑥𝑛+1, 𝑧]

)
≃ ℙ(1𝑛+2, 𝑟)

where deg 𝑧 = 𝑟. Let Φ∶ 𝑇 ⟶ ℙ be the blowup of ℙ along

(𝑥𝑘+2 = ⋯ = 𝑥𝑛+1 = 𝑧 = 0) ≅ Π.

Let 𝐻 be the pullback of a hyperplane in ℙ and 𝐸 the Φ-exceptional divisor.
Then 𝑇 is a rank 2 toric variety with

Pic(𝑇) = ℤ[𝐻] ⊕ ℤ[𝐸]

and 𝐸 ≃ ℙ(ℰ) where ℰ is the vector bundle 𝒪ℙ𝑘+1 ⊕𝒪ℙ𝑘+1(𝑟 − 1)⊕(𝑛−𝑘). Define
Πℙ = (𝑥𝑘+2 = ⋯ = 𝑥𝑛+1 = 0) ⊂ ℙ,
Π′
ℙ = (𝑥0 = ⋯ = 𝑥𝑘+1 = 0) ⊂ ℙ.

Denote by Π̃ℙ and Π̃′
ℙ the strict transforms of Πℙ and Π′

ℙ, respectively.
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Lemma 3.1. The cone of effective divisors of 𝑇 is generated by 𝐸 and 𝐻 − 𝐸.
Moreover,

Nef(𝑇) = ℝ+[𝐻] ⊕ ℝ+[𝑟𝐻 − 𝐸] ⊆ ℝ+[𝐻] ⊕ ℝ+[𝐻 − 𝐸] = Mov(𝑇).

Proof. This follows from [10, Theorem 15.1.10]. □

There are two maps from 𝑇 as in the following diagram

𝑇

ℙ 𝑄

𝛼Φ

where 𝑄 is the image of 𝛼. The morphismΦ is given by the linear system |𝑚𝐻|
and the morphism 𝛼 is given by the linear system |𝑚(𝑟𝐻 − 𝐸)| for some big
enough𝑚. Note that if 𝑟 > 1, then 𝑟𝐻−𝐸 is in the interior of the effective cone
by Lemma 3.1, therefore big. By Lemma 3.1, the divisor𝐻 −𝐸 is in the bound-
ary of the effective cone, therefore not big. If 𝑟 > 1, then 𝑟𝐻 − 𝐸 is movable,
therefore 𝛼 does not contract any divisor. So the morphism 𝛼 is a fibration over
a lower-dimensional variety if 𝑟 = 1 and a small contraction whenever 𝑟 > 1.
We will write these maps explicitly using the Cox coordinates of 𝑇,

Cox(𝑇) =
⨁

(𝑚1,𝑚2)∈ℤ2

𝐻0(𝑇,𝑚1𝐻 +𝑚2𝐸) .

Since 𝑇 is toric, the Cox ring of 𝑇 is isomorphic to a (bi)-graded polynomial
ring. In this case, defining

𝔸𝑛+3 = Specℂ[𝑢, 𝑥0, … , 𝑥𝑘+1, 𝑧, 𝑥𝑘+2, … , 𝑥𝑛+1],

𝑇 is the geometric quotient

𝔸𝑛+3 ⧵ 𝑉
(
(𝑢, 𝑥0, … , 𝑥𝑘+1) ∩ (𝑧, 𝑥𝑘+2, … , 𝑥𝑛+1)

)

ℂ∗ × ℂ∗ ,

where the ℂ∗ × ℂ∗-action is given by the matrix

⎛
⎜
⎝

𝑢 𝑥0 ⋯ 𝑥𝑘+1 𝑧 𝑥𝑘+2 ⋯ 𝑥𝑛+1
0 1 ⋯ 1 𝑟 1 ⋯ 1
−1 0 ⋯ 0 1 1 ⋯ 1

⎞
⎟
⎠

(3.1)

meaning that for all (𝜆, 𝜇) ∈ ℂ∗ × ℂ∗, we have

(𝜆, 𝜇) ⋅ (𝑢, 𝑥0, 𝑧, 𝑥1, … , 𝑥𝑛+1) = (𝜇−1𝑢, 𝜆𝑥0, 𝜆𝑟𝜇𝑧, 𝜆𝜇𝑥1, … , 𝜆𝜇𝑥𝑛+1).

Note that we have ordered the column vectors in the matrix (3.1) in anticlock-
wise order. The Cox ring of 𝑇 is the ℤ2-graded polynomial ring

Cox(𝑇) ≃ ℂ[𝑢, 𝑥0, … , 𝑥𝑘+1, 𝑧, 𝑥𝑘+2, … , 𝑥𝑛+1],
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where again the grading comes from thematrix (3.1), meaning that the bidegree
of a variable is the corresponding column vector in the matrix (3.1). Note that
𝑢 ∈ 𝐻0(𝑇, 𝒪𝑇(𝐸)). The map Φ∶ 𝑇 → ℙ is given in coordinates by

𝑇 → ℙ = Projℂ[𝑥0, … , 𝑥𝑘+1, 𝑧, 𝑥𝑘+2, … , 𝑥𝑛+1]
(𝑢, 𝑥0, … , 𝑥𝑘+1, 𝑧, 𝑥𝑘+2, … , 𝑥𝑛+1) ↦ (𝑥0, … , 𝑥𝑘+1, 𝑢𝑧, 𝑢𝑥𝑘+2, … , 𝑢𝑥𝑛+1).

Lemma 3.2. The blowup Φ induces a map Ψ such that
∙ if 𝑟 = 1, the map Ψ = 𝛼 is a ℙ𝑘+2-bundle over ℙ𝑛−𝑘,
∙ if 𝑟 > 1, the map Ψ is the composition of

(1) a small ℚ-factorial modification Θ∶ 𝑇 ⤏ 𝑇′ which contracts Π̃ℙ ≃
ℙ(1𝑘+2, 𝑟) to a point and extracts 𝐸 ∩ Π̃′

ℙ ≃ ℙ𝑛−𝑘−1 and is an iso-
morphism otherwise. This operation defines 𝑇′, namely 𝑇′ is the geo-
metric quotient

𝔸𝑛+3 ⧵ 𝑉
(
𝑢, 𝑥0, … , 𝑥𝑘+1, 𝑧) ∩ (𝑥𝑘+2, … , 𝑥𝑛+1)

)

ℂ∗ × ℂ∗ ,

where𝔸𝑛+3 has the variables 𝑢, 𝑥0, … , 𝑥𝑘+1, 𝑧, 𝑥𝑘+2, … , 𝑥𝑛+1 and the
ℂ∗×ℂ∗-action is given by the matrix (3.1). The variety 𝑇′ is singular
along 𝐸 ∩ Π̃′

ℙ and each point is a cyclic quotient singularity of type
1

𝑟 − 1(1, … , 1⏟⏟⏟
𝑘+3

, 0, … , 0
⏟⏟⏟
𝑛−𝑘−1

)

followed by
(2) a ℙ(1𝑘+3, 𝑟 − 1)-bundle over ℙ𝑛−𝑘−1.

Proof. If 𝑟 = 1, 𝛼∶ 𝑇 → 𝑄 is a fibration given by
(𝑢, 𝑥0, … , 𝑥𝑛+1, 𝑧)⟼ (𝑥𝑘+2, … , 𝑥𝑛+1, 𝑧).

and 𝑇′ ≃ ℙ𝑛−𝑘. Moreover, the fibres are isomorphic to ℙ𝑘+2.
On the other hand suppose 𝑟 > 1. Then 𝑟𝐻 − 𝐸 is big and in the interior of

the movable cone of 𝑇. Therefore Θ decomposes as

𝑇 𝑇′

𝑄

Θ

𝛼 𝛼′
(3.2)

where 𝛼 is given by the complete linear system |𝑟𝐻 − 𝐸| on 𝑇 and similarly
𝛼′ is given by the complete linear system |𝑟𝐻 − 𝐸| on 𝑇′. Notice that 𝑇 and
𝑇′ have the same Cox ring but slightly different irrelevant ideals, namely 𝐼𝑇 =
(𝑢, 𝑥0, … , 𝑥𝑘+1)∩(𝑧, 𝑥𝑘+2, … , 𝑥𝑛+1) and 𝐼𝑇′ = (𝑢, 𝑥0, … , 𝑥𝑘+1, 𝑧)∩(𝑥𝑘+2, … , 𝑥𝑛+1).
Notice that 𝛼 is given by all monomials of bidegree

(𝑟
1

)
. It is then clear that 𝛼

contracts Π̃ℙ∶ (𝑥𝑘+2 = … = 𝑥𝑛+1 = 0) ⊂ 𝑇 and 𝛼′ contracts 𝐸 ∩ Π̃′
ℙ∶ (𝑢 =

𝑥0 = … = 𝑥𝑘+1 = 0) ⊂ 𝑇′ to the same point and that these are isomorphisms
away from these loci. Hence, Θ swaps Π̃ℙ with 𝐸 ∩ Π̃′

ℙ. This introduces some
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cyclic quotient singularities in general. Indeed, any point in 𝐸 ∩ Π̃′
ℙ is covered

by the 𝑛 − 𝑘 affine patches

𝑈𝑧𝑥𝑖 ∶= (𝑧𝑥𝑖 ≠ 0) = Spec
(
ℂ[𝑢, 𝑥0, … , 𝑥𝑘+1, 𝑧, 𝑥𝑘+2, … , 𝑥𝑖 , … , 𝑥𝑛+1, 𝑧−1, 𝑥−1𝑖 ]

)ℂ∗×ℂ∗

where 𝑘 + 2 ≤ 𝑖 ≤ 𝑛 + 1. The ℂ-algebra of ℂ∗ ×ℂ∗-invariant regular functions
of 𝑈𝑧𝑥𝑖 is generated by

𝑓𝑟−1(𝑢𝑥𝑖, 𝑥0, … , 𝑥𝑘+1)𝑥𝑖
𝑧 ,

𝑥𝑗
𝑥𝑖
, 𝑘 + 2 ≤ 𝑗 ≠ 𝑖 ≤ 𝑛 + 1

where 𝑓𝑟−1 is any function of degree 𝑟 − 1. On the other hand consider the
action 𝜇𝑟−1 ↷ 𝔸𝑛+2 of the multiplicative cyclic group of order 𝑟 − 1 on 𝔸𝑛+2,
given by

𝜖 ⋅ (𝑢, 𝑥0, … , 𝑥𝑖, … , 𝑥𝑛+1) = (𝜖𝑢, 𝜖𝑥0, … , 𝜖𝑥𝑘+1, 𝑥𝑘+2, … , 𝑥𝑖, … , 𝑥𝑛+1)

where 𝜖 is a primitive 𝑟 − 1-root of unity. Then Spec
(
ℂ[𝑢, 𝑥0, … , 𝑥𝑘+1]

)𝜇𝑟−1 is
the affine variety given by the vanishing of the polynomials𝑓𝑟−1(𝑢, 𝑥0, … , 𝑥𝑘+2).
We showed that

𝑈𝑧𝑥𝑖 ≃
1

𝑟 − 1(1, … , 1⏟⏟⏟
𝑘+3

, 0, … , 0
⏟⏟⏟
𝑛−𝑘−1

).

Hence, 𝑇′ is singular along 𝐸 ∩ Π̃′
ℙ and each of its points is a cyclic quotient

singularity as above. Moreover codim𝑇′𝐸∩Π̃′
ℙ = 𝑛+2−(𝑛−𝑘−1) = 𝑘+3 ≥ 4.

The nef cone of 𝑇′ is generated by 𝑟𝐻 − 𝐸 and 𝐻 − 𝐸, see [10, Theorem
15.1.10]. The divisor𝐻−𝐸 is not big and so it induces a fibrationΦ′∶ 𝑇′ → Π̃ℙ
given in coordinates by

(𝑢, 𝑥0, … , 𝑥𝑛+1, 𝑧)⟼ (𝑥𝑘+2, … , 𝑥𝑛+1).

The fibres of Φ′ are isomorphic to ℙ(1𝑘+3, 𝑟 − 1). □

3.2. Birationalmodels of𝑿. We recall that𝑋, Γ,Π,Π′, 𝑛, 𝑘, 𝑑 and 𝑟 are as in
Section 2.1. The morphism Φ, the weighted projective ℙ, Πℙ and Π′

ℙ are as in
Section 3.1. We embed ℙ𝑛+1 in ℙ as (𝑧 − ℎ𝑟 = 0) and 𝑋 in ℙ as

𝑋∶ (𝑧 − ℎ𝑟 = 𝑓𝑑(𝑥0, … , 𝑥𝑛+1) = 0) ⊂ ℙ.

The variety 𝑌 is the strict transform of 𝑋 underΦ. The blowup 𝜑∶ 𝑌 → 𝑋 of 𝑋
along Γ is the restriction Φ|𝑌 . We again denote by 𝐸 the 𝜑-exceptional divisor.
In the same way, we again denote by 𝐻 a pull-back of a hyperplane section of
𝑋 under 𝜑.

Lemma 3.3. The variety 𝑌 is given by the ideal

𝐼𝑌 = (𝑥𝑘+2𝐹
′

𝑘+2 +⋯+ 𝑥𝑛+1𝐹
′

𝑛+1 + 𝑧𝑔𝑑−𝑟, 𝑧𝑢 − ℎ𝑟) ⊆ ℂ[𝑢, 𝑥0, … , 𝑥𝑛+1, 𝑧]

where

𝐹′

𝑗(𝑢, 𝑥0, … , 𝑥𝑛+1, 𝑧) ∶= 𝐹𝑗(𝑥0, … , 𝑥𝑘+1, 𝑢𝑥𝑘+2, … , 𝑢𝑥𝑛+1, 𝑢𝑧).
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Proof. The hypersurface𝑋 is isomorphic to the codimension 2 complete inter-
section

𝑥𝑘+2𝐹𝑘+2 +⋯𝑥𝑛+1𝐹𝑛+1 + ℎ𝑟𝑔𝑑−𝑟 = 0
𝑧 − ℎ𝑟 = 0

Since Γ is smooth and isomorphic to 𝑉(ℎ𝑟) ⊆ ℙ𝑘+1, we find that ℎ𝑟 is irre-
ducible. Denote

𝑓′ ∶= 𝑥𝑘+2𝐹
′

𝑘+2 +⋯+ 𝑥𝑛+1𝐹
′

𝑛+1 + 𝑧𝑔𝑑−𝑟.

To show that 𝑌 is the strict transform of 𝑋 with respect to Φ, it suffices to show
that the ideal (𝑓′, 𝑧𝑢 − ℎ𝑟) is saturated with respect to 𝑢.
Suppose that the ideal (𝑓′, 𝑧𝑢 − ℎ𝑟) of ℂ[𝑢, 𝑥0, … , 𝑥𝑛+1, 𝑧] is not saturated

with respect to 𝑢. Then there exists an element 𝐾 in the saturation of the ideal
(𝑓′, 𝑧𝑢 − ℎ𝑟) that is not in (𝑓′, 𝑧𝑢 − ℎ𝑟). More precisely, there exist a positive
integer 𝑚 and homogeneous polynomials 𝐺,𝐻,𝐾 ∈ ℂ[𝑢, 𝑥0, … , 𝑥𝑛+1, 𝑧] such
that 𝐾 is not in the ideal (𝑓′, 𝑧𝑢 − ℎ𝑟) and we have the equality

𝑓′𝐺 + (𝑧𝑢 − ℎ𝑟)𝐻 = 𝑢𝑚𝐾.

Without loss of generality, 𝑢 does not divide 𝐾 and𝑚 is the smallest possible.
We show that 𝐺 ∉ (𝑢, 𝑧𝑢 − ℎ𝑟) = (𝑢, ℎ𝑟). Assume there exist homogeneous

polynomials 𝐺1, 𝐺2 ∈ ℂ[𝑢, 𝑥0, … , 𝑥𝑛+1, 𝑧] such that

𝐺 = 𝑢𝐺1 + (𝑧𝑢 − ℎ𝑟)𝐺2.

Then
𝑢𝑚𝐾 = 𝑢𝑓′𝐺1 + (𝑧𝑢 − ℎ𝑟)(𝐻 + 𝑓′𝐺2).

We see that 𝑢 divides𝐻+𝑓′𝐺2. This contradicts𝑚 being the smallest possible.
Therefore, 𝐺 ∉ (𝑢, 𝑧𝑢 − ℎ𝑟) = (𝑢, ℎ𝑟).
Since the ideal (𝑢, ℎ𝑟) is prime, we find that 𝑓′ ∈ (𝑢, ℎ𝑟). Let

Φalg∶ ℂ[𝑥0, … , 𝑥𝑛+1, 𝑧] → ℂ[𝑢, 𝑥0, … , 𝑥𝑛+1, 𝑧]

be the ℂ-algebra homomorphism corresponding to Φ. Note that the image of
Φalg is in the ℂ-subalgebra given by

ℂ[𝑥0, … , 𝑥𝑛+1, 𝑧, 𝑢𝑥𝑘+1, … , 𝑢𝑥𝑛+1, 𝑢𝑧].

SinceΦalg(𝑓 + (𝑧−ℎ𝑟)𝑔𝑑−𝑟) = 𝑢𝑓′ ∈ (𝑢, ℎ𝑟)2, we find that 𝑓+(𝑧−ℎ𝑟)𝑔𝑑−𝑟 is in
the ideal (𝑥𝑘+1, … , 𝑥𝑛+1, 𝑧, ℎ𝑟)2. Applying the homomorphism 𝑧 ↦ ℎ𝑟, we see
that 𝑓 ∈ (𝑥𝑘+2, … , 𝑥𝑛+1, ℎ𝑟)2. Therefore, 𝑋 is singular along Γ, a contradiction.
This shows that 𝑌 is the strict transform of 𝑋. □

The following lemma is classical.

Lemma 3.4. Suppose 𝑟 = 1.
(1) If 𝑋 = ℙ𝑛, then the projection 𝜋∶ 𝑋 ⤏ ℙ𝑛−𝑘−1 away from Π can be

decomposed into the blowup of Γ followed by a ℙ𝑘+1-bundle over ℙ𝑛−𝑘−1.
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(2) If 𝑋 ≠ ℙ𝑛, then the projection 𝜋∶ 𝑋 ⤏ ℙ𝑛−𝑘 can be decomposed as the
blowup of Γ ⊂ 𝑋 followed by a fibration to ℙ𝑛−𝑘 whose general fibre 𝐹 is
isomorphic to a smooth hypersurface such that 𝐾𝐹 ∼ 𝒪𝐹(𝑑 − 𝑘 − 3).

Proof. By Lemma 3.2, we know thatΘ is aℙ𝑘+2-bundle overℙ𝑛−𝑘 given by the
linear system |𝐻 − 𝐸|. If 𝑋 = ℙ𝑛, then 𝑌 is a divisor in |𝐻 − 𝐸|. Then, Θ|𝑌
restricts to a ℙ𝑘+1-bundle over ℙ𝑛−𝑘−1.
Suppose 𝑋 ≠ ℙ𝑛. Then, Θ|𝑌 ∶ 𝑌 → ℙ𝑛−𝑘 is a fibration and the general fibre

𝐹 of 𝜃 is isomorphic to

𝐹′′

𝑘+2 +⋯+ 𝐹′′

𝑛+1 + 𝑔𝑑−𝑟 = 0,

where 𝐹′′

𝑖 = 𝐹′

𝑖 (ℎ𝑟, 𝑥0, … , 𝑥𝑘+1, 𝑥𝑘+2ℎ𝑟, … , 𝑥𝑛+1ℎ𝑟) That is, a degree 𝑑 − 𝑟 =
𝑑 − 1 smooth hypersurface 𝑆 in ℙ𝑘+1 (by generic smoothness, see [14, Proposi-
tion III.10.7]). By adjunction 𝐾𝐹 ∼ 𝒪𝐹(𝑑 − 1 − 𝑘 − 2) = 𝒪𝐹(𝑑 − 𝑘 − 3). □

The following lemma characterises the restrictions ofΘ to 𝑌 and is the tech-
nical core of the paper.

Lemma 3.5. Let 𝑟 > 1. Then Θ|𝑌 is either
(a) a divisorial contraction if and only if 𝑋 = ℙ𝑛 and codim𝑋Γ = 2 in which

case Π̃ℙ ∩ 𝑌 is a divisor contracted to

𝐩𝑧 ∈ 𝑍∶ (𝑧𝑢 − ℎ𝑟 = 0) ⊂ Proj
(
ℂ[𝑢, 𝑥0, … , 𝑥𝑛−1, 𝑧]

)
= ℙ(1𝑛+1, 𝑟 − 1).

Moreover, 𝐩𝑧 is the cyclic quotient singularity

𝐩𝑧 ∼
1

𝑟 − 1(1, … , 1⏟⏟⏟
𝑛

).

In particular 𝑍 is terminal if and only if−𝐾Γ is nef. It is canonical but not
terminal if and only if 𝐾Γ ∼ 𝒪Γ(1).

(b) a (non-isomorphism) smallℚ-factorial modification 𝑌 ⤏ 𝑌′ if and only
if either
(a) 𝑟 ≠ 𝑑 provided that 𝑋 ≠ ℙ𝑛 or codim𝑋Γ > 2 or
(b) 𝑟 = 𝑑 provided thatΠ ⊂ 𝑋;
where the morphisms 𝛼 and 𝛼′ of diagram (3.2) contract Π̃ℙ ∩ 𝑌 and
𝐸 ∩ Π̃′

ℙ ∩ 𝑌
′ to a point, respectively. Moreover codim𝑌′𝐸 ∩ Π̃′

ℙ = 𝑘 + 1.
(c) an isomorphism otherwise, that is, when 𝑟 = 𝑑 and𝑋 does not containΠ.

Proof. By Lemma 3.2, we know that there is an isomorphism in codimension
one

𝑇 𝑇′

𝑄

Θ

𝛼 𝛼′

where 𝛼 contracts the locus Π̃ℙ and nothing else. By Lemma 3.3, we have

Π̃ℙ ∩ 𝑌∶ (𝑧𝑔𝑑−𝑟 = 𝑧𝑢 − ℎ𝑟 = 0) ⊂ 𝑇.
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Since 𝐼𝑇 = (𝑢, 𝑥0, … , 𝑥𝑘+1) ∩ (𝑧, 𝑥𝑘+2, … , 𝑥𝑛+1) we can assume 𝑧 = 1 at Π̃ℙ.
Hence, Π̃ℙ ∩ 𝑌 is isomorphic to

(𝑔𝑑−𝑟 = 0) ⊂ ℙ𝑘+1.

Notice that, a priori, there is no reason for 𝑔𝑑−𝑟 not to be identically zero. Let
𝛼|𝑌 be the contraction of Π̃ℙ ∩ 𝑌 to a point, which is induced by the linear
system |𝑚(𝑟𝐻 − 𝐸)| for 𝑚 big enough. Notice that either dim Π̃ℙ ∩ 𝑌 ≥ 1 or
Π̃ℙ ∩ 𝑌 is empty. So, if 𝛼|𝑌 is a finite map, it follows that it is an isomorphism
and Π̃ℙ ∩ 𝑌 is empty.
Suppose that 𝛼|𝑌 is not small nor an isomorphism. Then 𝛼|𝑌 is divisorial

since 𝑟𝐻 − 𝐸 is a big divisor on 𝑌 for 𝑟 > 1. Suppose Π̃ℙ ∩ 𝑌 is a divisor in 𝑌.
Then, in particular, 𝑔𝑑−𝑟 is identically zero and 𝑘+1 = dim Π̃ℙ∩𝑌 = 𝑛−1, that
is, codim𝑋Γ = 2. By Corollary 2.3, it follows that 𝑋 is a hyperplane. Consider
the projection 𝜋∶ 𝑍 ⤏ 𝑋 away from 𝐩𝑧. Then, the map 𝜋 can be resolved by a
single blowup to 𝑌 with exceptional divisor Π̃ℙ. Hence, the following diagram
commutes

Π̃ℙ ⊂ 𝑌 ⊃ 𝐸

𝐩𝐳 ∈ 𝑍 𝑋 ⊃ Γ

Θ|𝑌 𝜑

𝜋

where Θ|𝑌 is the resolution of 𝐩𝑧.
By smoothness of Γ, the only singular point of 𝑍 is 𝐩𝑧. Hence 𝑍 is terminal

(resp. canonical) if and only if 𝐩𝑧 is. By [26, Theorem Pg. 376], it follows that 𝑍
is terminal (resp. canonical but not terminal) if and only if 𝑛 = 𝑘 + 2 > 𝑟 − 1
(resp. 𝑛 = 𝑘 + 2 = 𝑟 − 1). In other words, if and only if −𝐾Γ is nef (resp.
𝐾Γ ∼ 𝒪Γ(1)).
Suppose that 𝛼|𝑌 is not divisorial. Then, for the same reason as before, 𝛼|𝑌

is small, possibly an isomorphism. Suppose it is not an isomorphism. Then,
the small modification 𝛼|𝑌 contracts Π̃ℙ ∩𝑌 to a point. In particular Π̃ℙ ∩𝑌 is
non-emptywhichhappens preciselywhen 𝑔𝑑−𝑟 ∉ ℂ∗. In otherwords, when the
following implication holds: If 𝑟 = 𝑑 then 𝑔𝑑−𝑟 is identically zero. Equivalently,
𝑟 = 𝑑 implies Π ⊂ 𝑋. □

Lemma 3.6. Let degΓ = deg𝑋 > 1. Then there is a projection 𝜋∶ 𝑋 ⤏ ℙ𝑛−𝑘−1
that decomposes as

𝑌 𝑌′

𝑋 ℙ𝑛−𝑘−1

Θ|𝑌

𝜑 𝜓

where Θ|𝑌 is a (non-isomorphism) small ℚ-factorial modification if and only if
Π ⊂ 𝑋 and an isomorphism otherwise.
In each case the general fibre of 𝜓 is a complete intersection 𝐹 such that 𝐾𝐹 ∼

𝒪(𝑑 − 𝑘 − 3).
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Proof. Consider the flat projective family 𝜂∶ 𝒳 → ℂ whose general fibre is
the smooth degree 𝑑 hypersurface

𝒳𝑡 ∶ (𝑥𝑘+1𝐹𝑘+1 +⋯+ 𝑥𝑛+1𝐹𝑛+1 + 𝑡 ⋅ ℎ𝑑 = 0) ⊂ ℙ𝑛+1

containing Γ∶ (ℎ𝑑 = 0) ⊂ Π, where 𝐹𝑖 and ℎ𝑑 are as in Section 2.1. Notice
that each fibre of 𝜂 is isomorphic to some 𝑋 as in the conditions of the lemma.
Namely, the general fibre of 𝜂, 𝒳𝑡, does not contain Π while the central fibre,
𝒳0, does. In the following we study the birational geometry of the fibres of 𝜂.
Let 𝜑𝑡 ∶ 𝒴𝑡 ⟶𝒳𝑡 be the blowup of𝒳𝑡 along Γ and similarly, let 𝜑0∶ 𝒴0 ⟶

𝒳0 be the blowup of 𝒳0 along Γ. By Lemma 3.5, we know that Θ|𝒴𝑡 ∶ 𝒴𝑡 → 𝒴′𝑡 ,
the restriction of Θ to the general fibre 𝒴𝑡, is a small modification, possibly an
isomorphism. Then, by Lemma 3.3, 𝒴𝑡 is given by

𝑥𝑘+2𝐹
′

𝑘+2 +⋯+ 𝑥𝑛+1𝐹
′

𝑛+1 + 𝑡 ⋅ 𝑧 = 0
𝑧𝑢 − ℎ𝑑 = 0

inside 𝑇. Note that 𝒴𝑡 is isomorphic to the smooth hypersurface

𝑢(𝑥𝑘+2𝐹
′

𝑘+2 +⋯+ 𝑥𝑛+1𝐹
′

𝑛+1) + 𝑡 ⋅ ℎ𝑑 = 0

inside BlΠℙ𝑛+1. By Lemma 3.5(c), Θ|𝒴𝑡 is an isomorphism. Let Ψ be as in
Lemma 3.2. By Lemma 3.2, it follows that 𝜓𝑡 ∶= Ψ|𝒴′𝑡 is a fibration to ℙ

𝑛−𝑘−1

whose general fibre is isomorphic to the smooth hypersurface 𝐹

𝑢(𝐹′

𝑘+2 +⋯+ 𝐹′

𝑛+1) + 𝑡 ⋅ ℎ𝑑 = 0

of degree 𝑑 in ℙ𝑘+2. Hence, 𝐾𝐹 ∼ 𝒪𝐹(𝑑 − 𝑘 − 3). Hence, the general fibre of 𝜂
fits into the diagram

𝒴𝑡 𝒴′𝑡

𝒳𝑡 ℙ𝑛−𝑘−1

𝜑𝑡 𝜓𝑡

On the other hand, the central fibre of the family 𝜂,𝒳0, contains the (𝑘 + 1)-
dimensional linear subspace Π∶ (𝑥𝑘+2 = … = 𝑥𝑛+1 = 0) ⊃ Γ and so 𝒴0 admits
a smallℚ-factorial modificationΘ0∶ 𝒴0 ⤏ 𝒴′0 by Lemma 3.5. By Lemma 3.2, it
follows that Ψ is a fibration to ℙ𝑛−𝑘−1 whose general fibre is isomorphic to the
complete intersection

𝐹′

𝑘+2 +⋯+ 𝐹′

𝑛+1 = 0
𝑧𝑢 − ℎ𝑑 = 0

of degrees 𝑑 − 1 and 𝑑, respectively, inside ℙ(1𝑘+3, 𝑑 − 1). Moreover it is clear
that 𝒴0 is indeed the central fibre of the family 𝒴𝑡 → ℂ. In particular, we have
a degeneration of the corresponding movable cones where

𝒴𝑡 ⇝ 𝒴0
Mov(𝒴𝑡) = Nef(𝒴𝑡) ⇝ Mov(𝒴0) = Nef(𝒴0) ∪ Nef(𝒴′0) □
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Example 3.7. In [28, 29], Wiśniewski showed that the nef cone of a smooth
Fano variety remains constant under deformations in smooth families of Fano
varieties. We give an example where the above fails if we allow the central fibre
to be weak Fano. See also [27].
Let 𝑋0 ∈ |𝒪ℙ5(2)| be a smooth quadric fourfold containing Π ≃ ℙ2. Let 𝑌0

be the blowup of 𝑋0 along a smooth conic in Π, that we denote by Γ. Then 𝑌0
is a weak Fano variety and its movable cone is

Mov(𝑌0) = ℝ+[𝐻] ⊕ ℝ+[𝐻 − 𝐸] = Nef(𝑌0) ∪ Nef(𝑌′
0)

where 𝑌′
0 is the only small ℚ-factorial modification of 𝑌0. See Lemma 3.6. We

now consider a flat deformation 𝜂∶ 𝑋 → ℂ of 𝑋0 where each fibre 𝑋𝑡 ∶=
𝜂−1(𝑡), 𝑡 ≠ 0, is a smooth quadric fourfold containing Γ but not Π. Let 𝑌𝑡 be
the blowup of 𝑋𝑡 along Γ. Then 𝑌𝑡 is a smooth Fano variety which is a flat de-
formation of 𝑌0 and its Movable cone agrees with the Movable cone of 𝑌0, see
Lemma 3.6. However it contains only one Mori chamber,

Nef(𝑌𝑡) = Mov(𝑌𝑡)

and so the Nef cone of 𝑌0 is a proper subcone of the Nef cone of 𝑌𝑡, for 𝑡 ≠ 0.

Lemma 3.8. Suppose 𝑟 > 1. Assume deg𝑋 ≠ deg Γ and 𝑋 ≠ ℙ𝑛 or codim𝑋Γ >
2. Let𝜋∶ 𝑋 ⤏ ℙ𝑛−𝑘−1 be the projection away fromΠ. Then𝜋 can be decomposed
as

𝑌 𝑌′

𝑋 ℙ𝑛−𝑘−1

Θ|𝑌

𝜑 𝜓

𝜋

where𝜓 is a fibration ontoℙ𝑛−𝑘−1 whose general fibre𝐹 is isomorphic to a smooth
complete intersection in ℙ(1𝑘+3, 𝑟 − 1) such that 𝐾𝐹 ∼ 𝒪𝐹(𝑑 − 𝑘 − 3).

Proof. By Lemma 3.5, it follows thatΘ|𝑌 ∶ 𝑌 ⤏ 𝑌′ is a smallℚ-factorial mod-
ification and that the contracted locus is Π̃ℙ ∩ 𝑌. On the other hand it is clear
that the ideal of 𝑌 is contained in the ideal of 𝐸 ∩ Π̃′

ℙ. Hence, 𝛼
′ contracts

𝐸 ∩ Π̃′
ℙ ≃ ℙcodimXΓ−1. Notice that dim𝐸 ∩ Π̃′

ℙ < 𝑛 − 1 since dimΓ > 0.
Finally, we restrict the ℙ(1𝑘+3, 𝑟 − 1)-bundle over ℙ𝑛−𝑘−1 of Lemma 3.2 to

𝑌. This is a fibration whose general fibre 𝐹 is isomorphic to the smooth (by
generic smoothness, see [14, Theorem III.10.2 and Lemma III.10.5]) codimen-
sion 2 complete intersection

𝐹′

𝑘+2 +⋯+ 𝐹′

𝑛+1 + 𝑧𝑔𝑑−𝑟 = 0
𝑧𝑢 − ℎ𝑟 = 0

of hypersurfaces of degrees 𝑑 − 1 and 𝑟, respectively, where the polynomials 𝐹′

𝑖
are as in Lemma 3.3 and where 𝑥𝑘+2, … , 𝑥𝑛 are general complex numbers. By
adjunction 𝐾𝐹 ∼ 𝒪𝐹(𝑟 + 𝑑 − 1− (𝑘 + 3)− (𝑟 − 1)) = 𝒪𝐹(𝑑 − 𝑘 − 3) and the first
part of the claim follows. □
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Example 3.9 (Smooth Calabi-Yau fibrations). The following example gives a
particular construction of Calabi-Yau fibrations of relative Picard rank 1. Let
𝑋 ∈ |𝒪ℙ𝑛+1(𝑘 + 3)| be a smooth Fano hypersurface. Let Γ ⊂ Π be a smooth
hypersurface such that 𝐾Γ ∼ 𝒪ℙ𝑘+1(1). Suppose Γ ⊂ 𝑋 and Π ⊄ 𝑋. Then, by
Lemma 3.6, 𝑌 the blowup of 𝑋 along Γ admits a fibration to ℙ𝑛−𝑘−1 such that
the general fibre𝐹 satisfies𝐾𝐹 ∼ 0. For instance the blowup of a smooth quartic
threefold hypersurface along a smooth planar quartic curve has the structure
of a fibration into 𝐾3 surfaces over ℙ1.

Theorem 3.10. LetΠ ≅ ℙ𝑘+1 be a linear subspace ofℙ𝑛+1, where 1 ≤ 𝑘 ≤ 𝑛−2.
Let 𝑋 ⊂ ℙ𝑛+1 be a smooth hypersurface and Γ ⊂ Π a smooth hypersurface of
Π contained in 𝑋. Let 𝜑∶ 𝑌 → 𝑋 be the blow up of 𝑋 along Γ. Let 𝐸 be the
𝜑-exceptional divisor and𝐻 the pullback of a hyperplane section of 𝑋. Then,

Nef(𝑌) = {
ℝ+[𝐻] + ℝ+[(deg Γ)𝐻 − 𝐸] if deg Γ ≠ deg𝑋 orΠ ⊂ 𝑋,
ℝ+[𝐻] + ℝ+[𝐻 − 𝐸] if deg Γ = deg𝑋 andΠ ⊄ 𝑋,

Mov(𝑌) = {
ℝ+[𝐻] + ℝ+[(deg Γ)𝐻 − 𝐸] if 𝑋 is a hyperplane and codimXΓ = 2,
ℝ+[𝐻] + ℝ+[𝐻 − 𝐸] otherwise,

Ef f (𝑌) = ℝ+[𝐸] + ℝ+[𝐻 − 𝐸].

In particular, 𝑌 is a Mori dream space with Cox ring ℂ[𝑢, 𝑥0, … , 𝑥𝑛+1, 𝑧]∕𝐼𝑌
where the ideal 𝐼𝑌 is defined in Lemma 3.3. Moreover, 𝜑 induces a birational
map to a

∙ Fano fibration if 3 − deg𝑋 + dimΓ > 0,
∙ Calabi-Yau fibration if 3 − deg𝑋 + dimΓ = 0,
∙ fibration into canonically polarised varieties if 3 − deg𝑋 + dimΓ < 0.

Proof. The statement follows from Lemmas 3.4, 3.5, 3.6, 3.8 where the bira-
tional models have been explicitly computed. □

Remark 3.11. (a) Theorem 3.10 gives an alternative proof that Γ is not a
maximal centre when 𝑋 is a Fano variety of Fano index 1. See [18] for
a historical account of superrigidity of smooth Fano hypersurfaces of
Fano index 1.

(b) It is also possible to show that some of the varieties 𝑌 in Theorem 3.10
are Mori dream spaces using arguments in [17].

Example 3.12. Let 𝑋 ∈ |𝒪ℙ5(𝑑)| be a smooth 4-fold hypersurface of degree 𝑑
containing the plane Π. Then, the projection 𝑋 ⤏ Π′ can be decomposed as
the blowup of 𝑋 along a smooth conic in Π, followed by a small modification
swapping two projective planes, followed by a fibration onto Π. See Lemmas
3.4 3.5, 3.6, 3.8. The small modification is a flip if 𝑋 = ℙ4, a flop if 𝑋 is a
quadric and an anti-flip otherwise, which follows from the description of the
Nef cone in each instance. See Theorem 3.10. In this case, smoothness of the
blowup is preserved when we have a flop or flip but the anti-flip introduces
hypersurface singularities along the flopped plane. See Lemma 3.5b. Moreover
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−𝐾𝐹 ∼ 𝒪𝐹(4 − 𝑑). Hence, 𝑋 is birational to a Fano fibration whenever 1 ≤
𝑑 ≤ 3, a Calabi-Yau fibration if 𝑑 = 4 and a fibration into canonically polarised
varieties when 𝑑 > 4.

We classify for which Γ and 𝑋 we have that the blowup of 𝑋 along Γ is a
smooth Fano variety.

Theorem 3.13. LetΠ ≅ ℙ𝑘+1 be a linear subspace ofℙ𝑛+1, where 1 ≤ 𝑘 ≤ 𝑛−2.
Let 𝑋 ⊂ ℙ𝑛+1 be a smooth Fano hypersurface and Γ ⊂ Π a smooth hypersurface
of Π contained in 𝑋. Let 𝜑∶ 𝑌 → 𝑋 be the blow up of 𝑋 along Γ. Then 𝑌 is a
Fano variety if and only if one of the following holds:

(1) deg𝑋 = deg Γ,Π ⊄ 𝑋 and deg Γ ≤ 2 + dimΓ, or
(2) all of the following hold:

(2.1) deg𝑋 ≠ deg Γ orΠ ⊂ 𝑋,
(2.2) deg𝑋 ≤ dim𝑋 + 1 − deg Γ ⋅ (codim𝑋Γ − 1), and
(2.3) ifΠ ⊂ 𝑋 then dimΓ ≤ codim𝑋 Γ − 2.

In particular, if 𝑌 is a Fano variety, then −𝐾Γ is nef.

Proof. The statement follows from Theorem 3.10 and −𝐾𝑌 ∼ (𝑛 + 2 − 𝑑)𝐻 −
(𝑛 − 𝑘 − 1)𝐸. □

We illustrate how Theorem 3.13 can be made more explicit in particular
cases.

Corollary 3.14. Let Γ be a smooth projective planar curve and letΠ be the plane
containing it. Let𝜑∶ 𝑌 → 𝑋 be the blowup of𝑋 along Γ. Then𝑌 is a Fano variety
if and only if one of the following holds:

∙ Γ is a line and 𝑋 is a linear, quadric or cubic hypersurface of dimension
𝑛 ≥ 3;

∙ Γ is a conic and 𝑋 is a
– 3 or 4-dimensional hyperplane or
– quadric hypersurface of dimension 𝑛 ≥ 3 such thatΠ ⊄ 𝑋; or

∙ Γ is a cubic and 𝑋 is a
– 3-dimensional hyperplane or
– a cubic hypersurface of dimension 𝑛 ≥ 3 such thatΠ ⊄ 𝑋.

Proof. See the proof of Corollary 3.15. □

Corollary 3.15. Let Γ be a smooth projective surface contained in Π ≃ ℙ3. Let
𝜑∶ 𝑌 → 𝑋 be the blowup of 𝑋 along Γ. Then 𝑌 is a Fano variety if and only if
one of the following holds:

∙ Γ is a plane and𝑋 is a hypersurface of degree at most four and dimension
𝑛 ≥ 4;

∙ Γ is a quadric surface and 𝑋 is a
(1) hyperplane of dimension 4 ≤ 𝑛 ≤ 6 or
(2) quadric hypersurface of dimension 𝑛 ≥ 4 such thatΠ ⊄ 𝑋 or
(3) 4-dimensional cubic hypersurface;
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∙ Γ is a cubic surface and 𝑋 is a
(1) hyperplane of dimension 4 or
(2) a cubic hypersurface of dimension 𝑛 ≥ 4 such thatΠ ⊄ 𝑋; or

∙ Γ is a quartic surface and 𝑋 is a
(1) hyperplane of dimension 4 or
(2) a quartic hypersurface of dimension 𝑛 ≥ 4 such thatΠ ⊄ 𝑋.

Proof. By Theorem 3.10, if 𝑌 is a Fano variety then −𝐾Γ is nef. Hence Γ is a
smooth surface which is a hypersurface of degree at most 4. Suppose 𝑟 = 1 or
𝑟 = 𝑑 andΠ ⊄ 𝑋. If 𝑟 > 1, then 𝑋 is any smooth Fano hypersurface of degree 𝑟
and dimension 𝑛 ≥ 4 such that Π ⊄ 𝑋. If 𝑟 = 1, 𝑋 is any smooth hypersurface
of degree 1 ≤ 𝑑 ≤ 4 and dimension 𝑛 ≥ 4. Fix 𝑟 > 1. Suppose, on the other
hand, that 𝑟 ≠ 𝑑 or 𝑟 = 𝑑 butΠ ⊂ 𝑋. Then, by Theorem 3.10, the dimension of
𝑋 is bounded above for fixed 𝑟 and we have

4 ≤ 𝑛 ≤ 1 + 3𝑟 − 𝑑
𝑟 − 1 . (3.3)

It is easy to see that, for each 2 ≤ 𝑟 ≤ 4, the solutions to the inequality 3.3 are
the triples

(𝑟, 𝑑, 𝑛) ∈ {(4, 1, 4), (3, 1, 4), (3, 2, 4), (2, 1, 4 ≤ 𝑛 ≤ 6), (2, 2, 4 ≤ 𝑛 ≤ 5), (2, 3, 4)}.

In this case, if𝑋 is not a hyperplane, we have 𝑟 ≥ 𝑑 ⟹ Π ⊂ 𝑋. But by Lemma
2.2 3 = dimΠ ≤ 𝑛 − 3. Hence 𝑛 ≥ 6. This excludes the case (𝑟, 𝑛, 𝑑) = (3, 2, 4),
i.e., of a cubic surface in a quadric of dimension 4, as well as the cases (2, 2, 𝑛)
where 𝑛 ∈ {4, 5}. There are examples in all other cases and so the conclusion
follows. □

Corollary 3.16. Suppose we are in the same conditions of Theorem 3.13. Let
𝜄𝑋 = 𝑛+2−𝑑 be the Fano index of𝑋. Then, the anticanonical divisor−𝐾𝑌 is big
if and only if codimXΓ < 𝜄𝑋+1. In particular, if−𝐾𝑋 ∼ℚ 𝒪𝑋(1), then the blowup
of 𝑋 along Γ is not a log Fano variety.

Proof. By Theorem 3.10, the anticanonical divisor of the blowup of 𝑋 along Γ
is big if and only if

𝑛 − 𝑘 − 1
𝑛 + 2 − 𝑑

=
codim𝑋Γ − 1

𝜄𝑋
< 1.

In particular suppose 𝜄𝑋 = 1. Then, codimXΓ < 2. But, by assumption, codimXΓ
≥ 2. Hence, 𝜄𝑋 ≥ 2. □

The following theorem is a characterisation of when 𝜑∶ 𝑌 → 𝑋, the blowup
of 𝑋 along Γ, initiates a Sarkisov link in the case where 𝑋 = ℙ𝑛. See [16].

Theorem 3.17. Suppose 𝑋 = ℙ𝑛. Let 𝜑∶ 𝑌 → 𝑋 be the blowup of 𝑋 along Γ.
Then𝜑 initiates a Sarkisov link if and only if−𝐾Γ is nef andwhenever codim𝑋Γ >
2 we have dimΓ ≥ 2.
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Proof. When codim𝑋Γ = 2 this is explained in Lemma 3.5. If codim𝑋Γ > 2,
then 𝑌 admits a small ℚ-factorial modification Θ|𝑌 ∶ 𝑌 ⤏ 𝑌′, where 𝑌′ has
quotient singularities of type

1
𝑟 − 1(1, … , 1⏟⏟⏟

𝑘+2

, 0, … , 0
⏟⏟⏟
𝑛−𝑘−1

)

along𝐸∩Π̃′
ℙ ≃ ℙ𝑛−𝑘−1. Then,𝑌′ is terminal if and only if each singular point is

terminal and the codimension of the singular locus is at least three. The latter
is codim𝑌′𝐸 ∩ Π̃′

ℙ = 𝑘 + 1 ≥ 3, i.e., 𝑘 ≥ 2. Hence 𝑛 ≥ 4. On the other hand,
each such quotient singularity is terminal if and only if 𝑘+2 > 𝑟−1, i.e., if and
only if−𝐾Γ is nef. Moreover−𝐾𝑌 is movable by the description of the movable
cone in Theorem 3.10. Hence 𝑌′∕ℙ𝑛−𝑘−1 is a Mori fibre space. □

Example 3.18. Let 𝑋 = ℙ3 and Γ ⊂ 𝑋 be a smooth planar curve. Then −𝐾𝑌 is
big (See Corollary 3.16). It is a weak Fano threefold if and only if Γ is a curve
of genus 𝑔 and degree 𝑟 such that (𝑔, 𝑟) ∈ {(0, 1), (0, 2), (1, 3), (3, 4)}. (See for
instance Theorem 3.10). Moreover, 𝜑 initiates a Sarkisov link in the first three
cases only (See Theorem 3.17). This recovers the information in the first col-
umn of [4, Table 1].

The paper [20] contains examples of toric flops from smooth 4-folds to singu-
lar 4-folds. We give examples of non-toric flops from smooth 5-folds to singular
5-folds.

Example 3.19. The following is an example of a Sarkisov link featuring a flop
between a smooth variety and a singular one. Let 𝑋 = ℙ5 and Γ∶ (ℎ3 = 0) ⊂ 𝑋
a smooth del Pezzo surface of degree 3. Let𝜑∶ 𝑌 → 𝑋 be the blowup of𝑋 along
Γ. By Lemma 3.5 and Lemma 3.8, the projection 𝜋∶ 𝑋 ⤏ ℙ1 can be resolved
and fits into the diagram,

𝑌 𝑌′

𝑋 ℙ1

Θ|𝑌

𝜑 𝜓

𝜋

where 𝜓∶ 𝑌′ → ℙ1 is a fibration onto ℙ1 whose general fibre is isomorphic to
the cubic fourfold hypersurface

(𝑧𝑢 − ℎ3 = 0) ⊂ ℙ(15, 2)

By Lemma 3.5, the map Θ|𝑌 contracts Π̃ℙ ≃ ℙ3 and extracts 𝐸 ∩ Π̃′
ℙ ≃ ℙ1.

The variety 𝑌′ is singular along the extracted ℙ1, locally analytically the sin-
gularity is of type 1

2
(0, 1, 1, 1, 1) around every point of ℙ1. Moreover, −𝐾𝑌 =

2(3𝐻 − 𝐸), that is, −𝐾𝑌 is nef but not ample. Hence, −𝐾𝑌 does not intersect
Π̃ℙ nor −𝐾𝑌′ ∶= Θ|𝑌∗(−𝐾𝑌) intersects 𝐸 ∩ Π̃

′
ℙ. In particular, if 𝐶 is any curve

contracted by 𝛼 then 𝐾𝑌 ⋅ 𝐶 = 0 and similarly for 𝐾𝑌′ . We conclude that Θ|𝑌 is
a flop.
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4. Divisorial stability
Let Π ≅ ℙ𝑘+1 be a linear subspace of ℙ𝑛+1, where 1 ≤ 𝑘 ≤ 𝑛 − 2. Let

𝑋 ⊂ ℙ𝑛+1 be a smooth Fano hypersurface and Γ ⊂ Π a smooth hypersurface of
Π contained in 𝑋. Let 𝜑∶ 𝑌 → 𝑋 be the blow up of 𝑋 along Γ. Suppose 𝑌 is a
Fano variety. In this section we consider divisorial stability of 𝑌 in two cases:

(1) Γ is a line and
(2) Γ = ℙ𝑘, where 𝑘 ≫ 1.

By Theorem 3.10, we have Mov(Y) = Nef(Y) = ℝ+[𝐻] + ℝ+[𝐻 − 𝐸]. By
Corollary 3.14, 𝑌 is a Fano variety if and only if 3 − deg𝑋 − dimΓ > 0 which
in the first two cases amounts to deg𝑋 ∈ {1, 2, 3}. In each case 𝑌 fits into the
diagram

𝐸 ⊂ 𝑌

Γ ⊂ 𝑋 ℙ𝑙

𝜑 𝜃

𝜋

by Lemma 3.4 and Lemma 3.6, for some 𝑙 ≥ 1. where 𝜑 is the blowup of Γ, 𝐸
is the 𝜑-exceptional divisor and 𝜃 is a ℙ𝑛−𝑙-bundle. Let 𝐻 ∶= 𝜑∗𝒪𝑋(1) be the
pullback of a hyperplane section of 𝑋 not containing Γ. Let 𝑢 ∈ ℝ≥0. We have
−𝐾𝑌 − 𝑢𝐸 ≡ (𝑛 + 2 − 𝑑)𝐻 − (𝑛 − 𝑘 − 1 + 𝑢)𝐸 and by Theorem 3.10,

−𝐾𝑌 − 𝑢𝐸 is Nef ⟺ −𝐾𝑌 − 𝑢𝐸 is Pseudo-effective ⟺ 𝑢 ∈ [0, 3 − 𝑑 + 𝑘].

If Γ ≃ ℙ𝑘 for 𝑘 ≥ 1, we have the following intersection numbers:

𝐻𝑛 = 𝑑

𝐻𝑛−𝑖 ⋅ 𝐸𝑖 = 0, 𝑖 < codim𝑋Γ = 𝑛 − 𝑘

𝐻𝑛−𝑖 ⋅ 𝐸𝑖 = (−1)𝑛−𝑘(
( 𝑖 − 1
𝑛 − 𝑘

)
(𝑑 − 1) −

( 𝑖 − 1
𝑛 − 𝑘 − 1

)
), 2 ≤ 𝑛 − 𝑘 ≤ 𝑖 ≤ 𝑛.

Definition 4.1. Let 𝑋 be a Fano variety, and let 𝑓 ∶ 𝑌 → 𝑋 be a projective
birational morphism such that 𝑌 is normal and let 𝐸 be a prime divisor on 𝑌.

𝐴𝑋(𝐸) = 1+ord𝐸
(
𝐾𝑌−𝑓∗𝐾𝑋

)
, 𝑆𝑋(𝐸) =

1
(−𝐾𝑋)𝑛

∫
∞

0
vol(𝑓∗(−𝐾𝑋)−𝑢𝐸)𝑑𝑢.

We define the beta invariant as

𝛽(𝐸) = 𝐴𝑋(𝐸) − 𝑆𝑋(𝐸).

The following is a weaker notion of K-stability:

Definition 4.2 ([13, Definition 1.1]). The Fano variety 𝑋 is said to be diviso-
rially stable (respectively, semistable) if 𝛽(𝐹) > 0 (respectively, 𝛽(𝐹) ≥ 0) for
every prime divisor 𝐹 on 𝑋. We say that 𝑋 is divisorially unstable if it is not
divisorially semistable.
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Note that divisorial stability is a weak form of K-stability since we only con-
sider divisors on 𝑋, not on birational models of 𝑋. In particular, K-stable va-
rieties are divisorially stable. The following result is a generalisation of [1,
Lemma 3.22]

Theorem 4.3. Let Γ be a projective line in a smooth Fano hypersurface. Let
𝜑∶ 𝑌 → 𝑋 be the blowup of 𝑋 along Γ and suppose that 𝑌 is a Fano variety.
Then, if 𝑋 = ℙ𝑛 or 𝑋 is a quadric, then 𝑌 is divisorially unstable. In particular,
𝑌 is not K-stable and does not admit a Kähler-Einstein metric.

Proof. By Corollary 3.14 𝑌 is a Fano variety if and only if 𝑑 ∈ {1, 2, 3}. By
Lemma 3.4, we have the following diagram

𝐸 ⊂ 𝑌

Γ ⊂ 𝑋 ℙ𝑛−1

𝜑 𝜃

𝜋

where 𝜑 is the blowup of Γ, 𝐸 is the 𝜑-exceptional divisor and 𝜃 is a ℙ1-bundle.
Let𝐻 ∶= 𝜑∗𝒪𝑋(1) be the pullback of a hyperplane section of 𝑋 not containing
Γ. Let𝑢 ∈ ℝ≥0. By Theorem3.10, wehave−𝐾𝑌−𝑢𝐸 ∼ (𝑛+2−𝑑)𝐻−(𝑛−2+𝑢)𝐸
is nef if and only if 0 ≤ 𝑢 ≤ 4 − 𝑑. Also, notice that if 𝑢 ≥ 4 − 𝑑 the divisor
−𝐾𝑌 − 𝑢𝐸 is not big so its pseudo-effective threshold is 𝜏(𝐸) = 𝜏 = 4 − 𝑑.
The following intersection numbers are easily computed:

𝐻𝑛 = 𝑑
𝐻𝑛−1 ⋅ 𝐸 = ⋯ = 𝐻2 ⋅ 𝐸𝑛−2 = 0
𝐻 ⋅ 𝐸𝑛−1 = (−1)𝑛

𝐸𝑛 = (−1)𝑛+1(𝑑 − 𝑛).

So we compute the expected vanishing order of 𝐸 to be

𝑆𝑌(𝐸) =
1

(−𝐾𝑌)𝑛
∫

𝜏

0
vol(−𝐾𝑌 − 𝑢𝐸) d𝑢

= 1
(−𝐾𝑌)𝑛

∫
𝜏

0
(

𝑛∑

𝑖=0

(𝑛
𝑖

)
(−1)𝑖(𝑛 + 2 − 𝑑)𝑛−𝑖(𝑛 − 2 + 𝑢)𝑖𝐻𝑛−𝑖𝐸𝑖) d𝑢

= 1
(−𝐾𝑌)𝑛

∫
𝜏

0
((𝑛 + 2 − 𝑑)𝑛𝑑 − (𝑛 − 2 + 𝑢)𝑛−1𝑛(𝑛 + 2 − 𝑑) + (𝑛 − 2 + 𝑢)𝑛(𝑛 − 𝑑))) d𝑢

=
(𝑛 − 2 + 𝜏)𝑛𝑑𝜏 −

(
(𝑛 − 2 + 𝜏)𝑛 − (𝑛 − 2)𝑛

)
(𝑛 + 2 − 𝑑) +

(
(𝑛 − 2 + 𝜏)𝑛 − (𝑛 − 2)𝑛

) 𝑛−𝑑
𝑛+1

(𝑛 − 2 + 𝜏)𝑛𝑑 − 2(𝑛 − 2)𝑛−1(2𝑛 − 𝑑)
.

Hence, 𝑌 is divisorially unstable along 𝐸 if and only if 𝑆𝑌(𝐸) > 1, that is, if
and only if

(𝑛 + 2 − 𝑑)𝑛𝑑(3 − 𝑑) + 𝑛 − 𝑑
𝑛 + 1

(
(𝑛 + 2 − 𝑑)𝑛+1 − (𝑛 − 2)𝑛+1 − (𝑛 − 2)𝑛(𝑛 + 1)

)

− (𝑛 + 2 − 𝑑)
(
(𝑛 + 2 − 𝑑)𝑛 − (𝑛 − 2)𝑛 − (𝑛 − 2)𝑛−1𝑛

)
> 0.
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Rearranging, this is equivalent to

( 𝑛 − 2
𝑛 + 2 − 𝑑

)
𝑛−1

>
(𝑑 − 1)(𝑛(𝑑 − 1) − 2)(𝑛 + 2 − 𝑑)
9𝑛2 − (5𝑑 + 4)𝑛 + 4(𝑑 − 1)

.

Notice that the inequality is trivially true for 𝑑 = 1 since the left-hand-side is
positive. Assume 𝑑 ∈ {2, 3}. Define the two functions of 𝑛

𝑝𝑑(𝑛) = ( 𝑛 − 2
𝑛 + 2 − 𝑑

)
𝑛−1

, 𝑞𝑑(𝑛) =
(𝑑 − 1)(𝑛(𝑑 − 1) − 2)(𝑛 + 2 − 𝑑)
9𝑛2 − (5𝑑 + 4)𝑛 + 4(𝑑 − 1)

.

Then, 𝑝𝑑(𝑛) is a strictly increasing function of 𝑛 such that lim𝑛→∞ 𝑝𝑑(𝑛) = 𝑒−𝜏.
In particular

𝑝𝑑(3) = ( 1
5 − 𝑑

)
2

≤ 𝑝𝑑(𝑛) < 𝑒−𝜏, ∀ 𝑛 ≥ 3.

On the other hand 𝑞𝑑(𝑛) is strictly increasing if 𝑑 = 2 and strictly decreasing
if 𝑑 = 3. Moreover, we have lim𝑛→∞ 𝑞𝑑(𝑛) =

(𝑑−1
3

)2
. Hence, 𝑞𝑑(𝑛) is bounded

(above if 𝑑 = 2 and below if 𝑑 = 3) by this value. Hence,

𝑞2(𝑛) < sup
𝑚≥3

𝑞2(𝑚) =
1
9 = min

𝑚≥3
𝑝2(𝑚) ≤ 𝑝2(𝑛).

On the other hand,

𝑞3(𝑛) > inf
𝑚≥3

𝑞3(𝑚) =
4
9 > 𝑒−1 = sup

𝑚≥3
𝑝3(𝑚) > 𝑝3(𝑛).

We conclude that 𝑌 is divisorially unstable if 𝑑 ∈ {1, 2} as we claimed. □

Theorem 4.4. Let Γ ≃ ℙ𝑘 ⊂ 𝑋 be a 𝑘-dimensional linear subspace in a smooth
Fano hypersurface𝑋 ⊂ ℙ𝑛+1 of degree 𝑑. Let𝜑∶ 𝑌 → 𝑋 be the blowup of𝑋 along
Γ and suppose that 𝑌 is a Fano variety. Suppose 𝑘 ≥ 3 ⋅ deg𝑋. If 𝑛 ≤ 1000, then
𝑌 is divisorially unstable. In particular, 𝑌 is not K-stable and does not admit a
Kähler-Einstein metric.

Proof. By Theorem 3.10, 𝑌 is a Fano variety if and only if 3−𝑑+𝑘 > 0. Hence
we have the following inequalities,

1 ≤ 𝑑 ≤ 𝑘 + 2 ≤ 𝑛.
Therefore for each 𝑛 there is a finite number of possibilities for degree of𝑋 and
dimension of Γ for which 𝑌 is a Fano variety. By definition 𝑌 is divisorially
unstable along 𝐸 if

∫
3−𝑑+𝑘

0
vol(𝑓∗(−𝐾𝑋) − 𝑢𝐸)𝑑𝑢 − (−𝐾𝑋)𝑛 > 0

Using the earlier computation of the intersection numberswe get the inequality

(𝑛+2−𝑑)𝑛𝑑(2−𝑑+𝑘)+(𝑛+2−𝑑)𝑛+1
𝑛∑

𝑖=𝑛−𝑘

(𝑛
𝑖

)
(−1)𝑛−𝑘+𝑖(

( 𝑖−1
𝑛−𝑘

)
(𝑑 − 1) −

( 𝑖−1
𝑛−𝑘−1

)
)

𝑖 + 1
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−
𝑛∑

𝑖=𝑛−𝑘

(𝑛
𝑖

)
(𝑛 + 2 − 𝑑)𝑛−𝑖(−1)𝑛−𝑘+𝑖(𝑛 − 𝑘 − 1)𝑖+1(

( 𝑖−1
𝑛−𝑘

)
(𝑑 − 1) −

( 𝑖−1
𝑛−𝑘−1

)
)

𝑖 + 1

−
𝑛∑

𝑖=𝑛−𝑘

(𝑛
𝑖

)
(𝑛 + 2 − 𝑑)𝑛−𝑖(−1)𝑛−𝑘+𝑖(𝑛 − 𝑘 − 1)𝑖(

( 𝑖 − 1
𝑛 − 𝑘

)
(𝑑 − 1) −

( 𝑖 − 1
𝑛 − 𝑘 − 1

)
) > 0

Let 𝑛 ≤ 1000. Then using a computer, we verified that the inequality holds
whenever 1 ≤ 𝑑 ≤ 𝑘 + 2. □

Remark 4.5. The bound 𝑘 ≥ 3 ⋅ deg𝑋 is not sharp and leaves behind well
known cases such as the blowup of a quadric threefold along a line (See [1,
Lemma 3.22]). A more accurate and meaningful bound should be possible to
find.

We finish with the following conjecture:

Conjecture 4.6. LetΓ ≃ ℙ𝑘 ⊂ 𝑋 be a𝑘-dimensional linear subspace in a smooth
Fano hypersurface 𝑋 ⊂ ℙ𝑛+1 of degree 𝑑. Let 𝜑∶ 𝑌 → 𝑋 be the blowup of 𝑋
along Γ and suppose that 𝑌 is a Fano variety. Then there exists a constant 𝑐(𝑑)
depending only on 𝑑 such that 𝑌 is divisorially unstable if and only if 𝑘 > 𝑐(𝑑).
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