New York Journal of Mathematics
New York J. Math. 31 (2025) 1657-1666.

On the vanishing of twisted negative
K-theory and homotopy invariance

Vivek Sadhu

ABSTRACT. In thisarticle, we revisit Weibel’s conjecture for twisted K-theory.
We also examine the vanishing of twisted negative K-groups for Priifer do-
mains. Furthermore, we observe that the homotopy invariance of twisted
K-theory holds for (finite-dimensional) Priifer domains.
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1. Introduction

It is well known that for a regular noetherian scheme X, the homotopy in-
variance of K-theory holds (i.e., the natural map K,(X) — K, (X x A") is an
isomorphism for all¥ > 0 and n € Z) and K_,(X) = 0 for all n > 0. This is not
true for non-regular schemes in general. Therefore, it has been an interesting
question to investigate certain classes of schemes for which homotopy invari-
ance of algebraic K-theory holds and negative K-groups vanishes. In this direc-
tion, Weibel’s conjectured in [20] that for a d-dimensional Noetherian scheme
X, the following should hold:

1) K_,(X)=0forn > d;

2) K,,X)=2K_,(Xx A" forn>dandr > 0.
This conjecture was first proven for varieties over a field (see [6], [7] and [13]).
For a finite-dimensional quasi-excellent Noetherian scheme, Kelly showed in
[10] that the negative K-groups vanish (up to torsion) after dimension. In 2018,
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Kerz-Strunk-Tamme ultimately settled Weibel’s conjecture (see Theorem B of
[12]). A relative version of Weibel’s conjecture is discussed in [17].

In this article, we are mainly interested in similar types of questions (i.e.,
homotopy invariance and vanishing of negative K-groups) in the context of the
twisted K-theory. Given an Azumaya algebra A over a scheme S, one can define
twisted K-group KX (S) for n € Z (see section 2). It is natural to ask Weibel’s
conjecture for K7(S). In [19], J. Stapleton discussed Weibel’s conjecture for
K74(S) and proved the first part, i.e., vanishing of twisted negative K-groups
(see Corollary 4.2 of [19]). The second part of this conjecture has also been dis-
cussed in the same paper except the boundary case, i.e., n = d (see Theorem
4.3 of [19]). In section 3, we revisit Weibel’s conjecture for twisted K-theory
and give proof that also takes care of the boundary case. Here is our result (see
Theorem 3.4):

Theorem 1.1. Let S be a Noetherian scheme of dimension d. Let A be an Azu-
maya algebra of rank q* over S. Then
(1) K4,(S) =0 forn > d;
(2) S is K2, -regular for n > d, i.e., the natural map K4,(S) = K%,(S x A")
is an isomorphism forn > d and r > 0.

A subring V of a field K is said to be valuation ring if for each 0 # a € K,
eithera € V ora™! € V. We say that an integral domain R is a Priifer domain if
itislocally a valuation domain, i.e., Ryisa valuation domain for all prime ideals
p of R.In [11], Kelly and Morrow observed that algebraic K-theory is homotopy
invariant and negative K-groups vanishes for valuation rings (see Theorem 3.3
of [11]). Later, Banerjee and Sadhu in [2] extended the above mentioned re-
sults for Priifer domains (see Theorem 1.1 of [2]). In section 4, we investigate
the same for twisted K-groups. More precisely, we show (see Example 4.1 and
Corollary 4.5):

Theorem 1.2. Let A be an Azumaya algebra of rank g* over a ring R and SB(A)
be the associated Severi Brauer variety. Assume that R is a Priifer domain with
finite krull dimension. Then
(1) K2 (R) = 0 for n > dim(SB(A));
(2) the natural map K;X(R) — K (R[ty,t5, ..., t,]) is an isomorphism for all
neZandr > 0.

By Morita equivalence, for a ring R and n € Z, K,,(R) = K:'(R) in the case
when A is a matrix algebra over R. This isomorphism may not hold for all
Azumaya algebras. In section 5, we examine the relationship between K, (R)
and K7'(R), assuming R is a valuation ring of characteristic p. We show that
there is an injection from K,(R) to Kf(R) for all n > 0 provided the rank of A
is p? (see Theorem 5.1).

Acknowledgements: The author would like to thank Charles Weibel for
fruitful email exchanges. He would also like to thank the referee for valuable
comments and suggestions.
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2. Twisted K-theory

Let A be an algebra (not necessarily commutative) over a commutative lo-
cal ring R. The opposite algebra A°P of A is the algebra A with multiplication
reversed. We say that A is an Azumaya algebra over R if it is free R-module of
finite rank and the map A @y A°P? — Endi(A),a ® d — (x — axa)is an iso-
morphism. For example, the matrix algbera M, (R) is an Azumaya algebra over
R. Let X be a scheme. An Ox-algebra A is said to be an Azumaya algebra over
X if it is coherent, locally free as an Ox-module and A, is an Azumaya algebra
over Oy, for any point x € X. Equivalently, A is étale locally isomorphic to
M,,(Ox) for some n. For details, see [14].

2.1. Twisted K-groups. Let A be an Azumaya algebra over a scheme S. Let
VectA(S ) denote the category of vector bundles on S that are left modules for
A. The category Vectﬂ(S) is exact. The twisted K-theory space is defined by
KA(S) := K(Vect“q(S)). For n > 0, the n-th twisted K-group K;X(S) is defined
as nn(K(VectA(S)).

Write S[t] for S X7 Z[t] and S[t,t~!] for S x5 Z[t,t™]. Since the projection
map p : S[t] — Sis flat, it induces an exact functor p* : K4(S) — KPA(S[t]).
Thus we have maps between twisted K-groups K;*(S) — K? =F“q(S [t]). By abuse
of notation, we write KZ(S[t]) instead of K¥"*(S[¢]). Similarly, we also have
maps between K:'(S) — K:X(S[t,t~']). Following Bass (see chapter XII of [3]),
the twisted negative K-group Kfll(S) is defined as

Coker[KA(S[t]) x KA(S[t71]) = KA(S[t, t71])].

By iterating, we have

K2, (S) := Coker[K”  (S[t]) xK” , (S[t71]) 3 KA (S[e ).

There is a split exact sequence for n € Z (see section 3 of [19])

0 — KA(S) > KAS[H) x KASI]) S KAS[71]) - K2 (S) = 0, (2.1)
where A(a) = (a,a) and +(a,b) = a — b.

2.2. Quillen’s generalized projective bundle formula. Itiswell-known that
there is a natural bijection of sets

{Severi — Brauer varieties of relative dimension (q — 1) over S}
< {Azumaya algebras over S of rank g?}.
Let A be an Azumaya algebra of rank g2 over a scheme S. One can associate a

Severi-Brauer variety SB(A) of relative dimension g — 1 over S. The structure
morphism SB(A) — S is always smooth and projective. Quillen’s generalized
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projective bundle formula state that there is a natural isomorphism for each
n > 0 (see Theorem 4.1 of [15] or V.1.6.6 of [21]),

g-1 _
K,(SB(A)) = P K7 (S). (2.2)
i=0

We consider the following commutative diagram

0 0 0
Ko(s) 8 Ko(SItD) X Ko(S[E1]) - KGILEY) = KL -0

! ! ! !

injects

Ky(SB(A)) —— Ko(SB(A)[t]) X Ko(SBLA)[t71]) -  Ko(SB(A)[t,t™") —= K_;(SB(A)) - 0.

| ! ! |

injects

-1 ®i -1 ®i -1 ®i _ -1 ®i _ -1 ®i
O K () — @, KT SUDx D, KT (S = @, K (S[E ) —» D KA (S) = 0

| ! I

0 0 0
By the fundamental theorem of K-theory and (2.1), the rows are split exact. The
first three columns are also split exact by (2.2). Finally, a diagram chase gives a
natural isomorphism

g-1
®i
K_(SB(A) = P KA (S). (23)
i=0
By iterating, we conclude that for each n € Z, there is a natural isomorphism

q-1 )
K,(SB(A)) = @ K7 (S). (2.4)

i=0

Proposition 2.1. Let A be an Azumaya algebra of rank g* over a Noetherian
regular scheme S. Then K;X(S) = 0 for n < 0 and K;X(S) = KX (S[ty, ..., t,]) for
allnandr > 0.

Proof. Since S is a Noetherian regular scheme, so is SB(A). In this situation,
we know K, (SB(A)) = 0 for n < 0 and K,,(SB(A)) = K,(SB(A)[ty, ..., t,]) for
all n and r > 0. By (2.4), we get the result. O

2.3. Brauer groups vs Twisted K-theory. We say that two unital rings A and
B (possibly non-commutative) are Morita equivalent if the categories Mod 4 and
Modj of right modules are equivalent. For example, a unital ring R is Morita
equivalent to M, (R) for n > 0.

Two Azumaya algebras A and B over a commutative ring R are Morita equiv-
alent if and only if there exist finitely generated projective R-modules P and Q
such that A @z End(P) = B @ End(Q) (see Theorem 1.3.15 of [4]). However,
this is not true for Azumaya algebras over scheme, for instance see Example
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1.3.16 of [4]. If R is a commutative local ring then A and B are Morita equiva-
lent if and only if M,,(A) = M,,(B) for n,m > 0. The Brauer group Br(R) of a
commutative ring R consists of Morita equivalence classes of Azumaya algebras
over R (see [14]). The group operation on Br(R) is ®g. An element of Br(R) is
represented by a class [A], where A is an Azumaya algebra over R. The inverse
of [A] is given by [A°P].

Let R be a commutative ring with unity. For n € Z, we consider the set

F, ={K(R)|[A] € Br(R)}.

An equivalence relation ~ on ¥, is given by KZ(R) ~ Kﬁl/ (R) if K{(R) =
K7' (R). Define BK,(R) := ¥,/ ~ . An element of BK,(R) is represented by
a class (K71 (R)).

Lemma 2.2. Forn € Z, BK,(R) is an abelian group with the operation

KAR) * (KX (R) = (K22 (R)).

Proof. If A and B both are Azumaya algebras over R then A ® B is also an
Azumaya algebra over R. Thus, * is closed. Since ®p, is associative and abelian,
so is * . We know that algebraic K-theory is Morita invariant, i.e., foralln € Z,
K,(R) = K,(S) whenever R and S are Morita equivalent. This implies that
(K,(R)) is the identity element. The inverse of (K:(R)) is given by (K" (R)).

O

We define a map ¢, : Br(R) — BK,(R),[A] ~ (KX(R)) for each n € Z.

Each v, is a well defined map because K-theory is Morita invariant. Moreover,
one can check the following:

Proposition 2.3. For a commutative ring R, there is a short exact sequence
0 — kery, —» Br(R) —» BK,(R) - 0
of abelian group for each n € Z. Moreover,
kery, = {4 € Az(R)|KX(R) = K,(R)}.
Remark 2.4. (1) If Br(R) = 0 then there are no twisted K-groups.
(2) If R = R then Br(R) = Z/27 = {R,H}. We know K}'(R) % K;(R)

(see Table VI.3.1.1 of [21]). In this case, ker ¢; = 0. By Proposition 2.1,
KI(R) = 0forn < 0. So, keryp, = Z/27 for n < 0.

3. Twisted version of Weibel’s Conjecture

Throughout, A is an Azumaya algebra of rank g over a scheme S and SB(A)
is the associated Severi-Brauer variety. We would like to understand the K-
theory of the structure map p : SB(A) — S.

Let f : X — S be a map of schemes. Let K(f) denote the homotopy fibre of
K(S) — K(X). Here K(X) denotes the Bass non-connective K-theory spectrum
of a scheme X. We have the associated long exact sequence

= Ky(f) = Kn(S) = Ky(X) = Ky (f) = Kyea(S) —» . 31)
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Let F be a functor from category of rings (or schemes) to abelian groups. Let
NF(X) = ker[F(X x Al) — F(X)]. There is a natural decomposition F(X X
Al) @ F(X) @ NF(X). By iterating, one can define N'F(X). We have a natural
decomposition F(X X A") = (1 + N)'F(X). We say that X is F-regular if the
natural map F(X) — F(X x A") is an isomorphism for r > 0. Equivalently,
N'F(X)=0forr > 0.

By comparing the exact sequences (3.1) for f and f X A! : X x Al - Sx Al
a diagram chase gives a long exact sequence for NK,. By iterating, we also have
a long exact sequence for N'K,, (some more details related to NK,-groups can
be found in section 3 of [17])

-+ = N'Ky(f) = N'Ky(S) » N'Ky(X) = N'Kyp_1(f) = N'Ky_1(S) — ...
(3.2)
The following result is due to Kerz-Strunk-Tamme.

Theorem 3.1. Let X be a Noetherian scheme of dimension d. Then
(1) K_,(X)=0forn>d;
(2) X isK_,-regular forn > d, i.e., the natural map K_,(X) - K_,(X X A")
is an isomorphism forn > d and r > 0.

Proof. See Theorem B of [12]. O
A relative version of the aforementioned theorem is as follows:

Theorem 3.2. Let f : X — S be a smooth, quasi-projective map of noetherian
schemes with S reduced. Assume thatdim S = d. Then K_,(f) =0forn >d+1
and f is K_,-regular for n > d, i.e., the natural map K_,(f) — K_,(f X A") is
an isomorphism for n > d andr > 0. Here f X A" denotes X X A" — S x A".

Proof. See Theorem 3.8 of [17]. O

Let %ﬁzar denote the Zariski sheafification of the presheaf U ~ KX (U).

Similarly, N ﬂ(f’zar is the Zariski sheafification of the presheaf U ~ NK;'(U).
More generally, one can define V' rﬂc,g"jza, forr > 0.

Lemma 3.3. Let S be a Noetherian scheme of dimension d. Let A be an Azu-
maya algebra of rank g* over S. Then K*,(S) = K% (S,.q) and N'K%,(S) =
N'K?A (Syeq) forn>dandr > 0.

Proof. Given a commutative ring R, K, (R) = K%, (R,.q) for n > 0 (see Propo-
sition 2.7 of [19]). Note (R[t]);eq = Ryeqlt]- Thus, N'K%,(R) & N'K%,(R;0q)
for n > 0 and r > 0. The rest of the argument is based on comparing Zariski
descent spectral sequences for S and S, (see Corollary 2.8 of [19] and Lemma
3.4 of [17]). O

Theorem 3.4. Let S be a Noetherian scheme of dimension d. Let A be an Azu-
maya algebra of rank q? over S. Then

(1) K24,(S) = 0forn > d;
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(2) Sis Kfln-regularfor n > d, i.e., the natural map Kfln(S) - K“_qn(S x A")
is an isomorphism forn > d and r > 0.

Proof. We may assume that S is reduced (see Lemma 3.3). Let SB(A) be the
associated Severi-Brauer variety of relative dimension g — 1 over S. Note p :
SB(A) — S is a smooth, projective morphism (hence also finite type). Since S
is Noetherian, so is SB(A). Then K_,(p) = 0forn > d+ 1and N"'K_,(p) = 0
forall ¥ > 0 and n > d by Theorem 3.2. The sequence (3.1) implies that
K_4_1(S) - K_4_1(SB(A)) is surjective and K_,(S) — K_,(SB(A)) is an iso-
morphism for n > d + 1. Similarly, the sequence (3.2) implies that N"K_;(S) —
N'K_4(SB(A)) is surjective and N"K_,(S) — N'K_,(SB(A)) is an isomor-
phism for n > d. By Theorem 3.1, we get K_,(SB(A)) = 0 forn > d and
N'K_,(SB(A)) = 0 for n > d. The natural decomposition (2.4) yields the re-
sult. O

4. Twisted K-theory of weakly regular stably coherent rings

Let R be a commutative ring. A finitely generated R-module M is called co-
herent if every finitely generated submodule of M is finitely presented. The ring
R is coherent if it is a coherent module over itself, i.e., every finitely generated
ideal of R is finitely presented. The ring R is said to be a regular ring if every
finitely generated ideal of R has finite projective dimension.

Let M be a R-module. The weak dimension of M, denoted by w.dimyM is the
least nonnegative integer n, for which there is an exact sequence

O-F,»>->F >Fp->M-0

with F; flat over R. The weak dimension of a ring R, denoted w.dim(R), is de-
fined by w.dim(R) = Sup{w.dimzM|M is a R—module}. If R is a coherent ring
then w.dim(R) = Sup{PdzyM|M is a finitely presented R—module} (see Corol-
lary 2.5.6 of [8]). Clearly, Pdg(M) < w.dim(R) for all finitely presented R-
modules M. We also have w.dim(R,) < w.dim(R) for all p € Spec(R) (see
Theorem 1.3.13 of [8]).

A coherent ring R is called weakly regular if R has finite flat (or weak) dimen-
sion. A ring R is said to be stably coherent if every finitely presented R-algebra
is coherent.

Example 4.1. Here is a list of weakly regular stably coherent rings:

(1) Noetherian regular local rings of finite krull dimension. In this case,
global dimension coincides with weak dimension.

(2) Valuation rings (see Proposition 2.1 of [1]);

(3) Priifer domains (see Lemma 3.1 of [2] and P.25 of [8]).

Let X, ;4 denote the Zariski sheafification of the presheaf U — K,,(U). Sim-
ilarly, N K, ,4, is the Zariski sheafification of the presheaf U — NK,(U). More
generally, one can define N"X,, ,,, forr > 0.
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Lemma 4.2. Let X be a scheme and X — Spec(R) be a smooth map with R
weakly regular stably coherent. Then the Zariski sheaves on X, X, ,,, = 0 for
n<0and N"X, .o, =0forne Z,r > 0.

Proof. Let Spec(A) & X be an affine open subset. Then Spec(A) — Spec(R)
is smooth. Note A is weakly regular stably coherent (see Corollary 2.3 of [1]).
Since any localization of stably coherent ring is stably coherent and

w.dim(Ap) < w.dim(A) < oo,

A, is weakly regular stably coherent for all p € Spec(A). Each stalk of XK, 5o,
and N"K,, ., are K,(Ay) and N'K,(A,), where A, is weakly regular stably
coherent. By Proposition 2.4 of [1], algebraic K-theory is homotopy invariant,
and negative K-groups vanish for weakly regular stably coherent rings. Hence
the assertion. O

Lemma 4.3. Let X — S be a projective morphism with S quasi-compact and
quasi separated. Then X is also quasi-compact and quasi-separated.

Proof. Projective morphisms are always quasi-compact and quasi separated
morphism. Since S quasi-compact and quasi separated scheme, so is X. O

Theorem 4.4. Let X be a finite dimensional quasi-compact and quasi-separated
schemeand X — Spec(R) be a smooth map with R weakly regular stably coherent.
Then
(1) K_,(X)=0forn>dand Hgar(X, 7) =2 K_4(X), where d = dim(X);
(2) The natural map K,(X) — K, (X x A") is an isomorphism for n € Z and
r > 0.

Proof. (1) The scheme X has finite Krull dimension d. We have a descent spec-
tral sequence (see Theorem 4.1 of [16] and Remark 3.3.1 of [5])

H) X, jcn,Zar) = Kn—p(X)-

Zar
Here X, 7., is the Zariski sheaf on X. By Corollary 4.6 of [18], X,, has coho-
mological dimension at most d = dim(X). Moreover, X, 7, = 0 for n < 0 (see
Lemma4.2). This implies that K_,(X) = 0forn > d and Hgar(X, 7) = K_y(X).
(2) Consider the Zariski sheaf N" %, 7, on X. We have N"X,, 7, = 0 for

n € Z,r > 0 (see Lemma 4.2). The following descent spectral sequence

Hgar(X’ Nrjcn,Zar) = NrKn—p(X)
implies N'K,(X) =0forne Z,r > 0. O

Corollary 4.5. Let R be a finite dimensional weakly regular stably coherent ring.
Let A be an Azumaya algebra over R of rank q* and SB(A) be the associated Severi
Brauer variety. Then
(1) K4 (R) = 0 for n > dim(SB(A)).
(2) the natural map K;X(R) — K2 (R[t1,t5, ..., t.]) is an isomorphism for all
neZandr > 0.
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Proof. The structure morphism SB(A) — Spec(R) is smooth and projective
(hence of finite type). The Severi Brauer variety SB(A) has finite Krull dimen-
sion because R is finite dimensional. By Lemma 4.3, SB(A) is a quasi-compact
and quasi-separated scheme. The result now follows from Theorem 4.4 and the
decomposition (2.4). O

5. An observation

Let.A and B be Azumaya algebras over a scheme X. Assume thatgp : B - A
is an Ox-algebra homomorphism and A is a flat B-module. Then the functor

— Qg A : Vect®?(X) > Vect?(X),P » P Q4 A

is exact and it induces a group homomorphism ¢, : K2(X) — K7 (X) for each

n > 0. We also have a restriction functor resg : VectA(X ) — VectB(X ),

which is exact. It induces a group homomorphism ¢,, : K (X) — K2(X) for
eachn > 0.

If B = Oy then A is a flat Ox-module and K,?X(X) = K,(X). Forn > 0, we
get group homomorphisms

en  Ky(X) = K(X)

and

$n @ K (X) = Kn(X).
The composition ¢,¢, : K,(X) — K,(X) is a map multiplication by [A] €
Ko(X).

Theorem 5.1. Let V be a valuation ring of characteristic p > 0. Let A be a Azu-
maya algebra over V of rank g2, where q = p" for some r > 1. Then the map
@, : K,(V) = KX(V) is injective for all n > 0.

Proof. We have [A]. ker(¢p,) = 0forn > 0(see the above discussion or Proposi-
tion 2 of [9]). Since V is local, A is free over V of rank g2. Thus, g°. ker(gp,)) = 0.
On the otherhand, K,,(V) is p-torsion free for n > 0 (see Theorem 1.1 of [11]).
So, ker(g,) is also p-torsion free for n > 0. This forces that ker(¢,,) = 0 for
n > 0. Hence the assertion. O
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