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On the vanishing of twisted negative
K-theory and homotopy invariance

Vivek Sadhu

Abstract. In this article, we revisitWeibel’s conjecture for twisted𝐾-theory.
We also examine the vanishing of twisted negative 𝐾-groups for Prüfer do-
mains. Furthermore, we observe that the homotopy invariance of twisted
𝐾-theory holds for (finite-dimensional) Prüfer domains.
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1. Introduction
It is well known that for a regular noetherian scheme 𝑋, the homotopy in-

variance of 𝐾-theory holds (i.e., the natural map 𝐾𝑛(𝑋) → 𝐾𝑛(𝑋 × 𝔸𝑟) is an
isomorphism for all 𝑟 ≥ 0 and 𝑛 ∈ ℤ) and 𝐾−𝑛(𝑋) = 0 for all 𝑛 > 0. This is not
true for non-regular schemes in general. Therefore, it has been an interesting
question to investigate certain classes of schemes for which homotopy invari-
ance of algebraic𝐾-theory holds and negative𝐾-groups vanishes. In this direc-
tion, Weibel’s conjectured in [20] that for a 𝑑-dimensional Noetherian scheme
𝑋, the following should hold:

(1) 𝐾−𝑛(𝑋) = 0 for 𝑛 > 𝑑;
(2) 𝐾−𝑛(𝑋) ≅ 𝐾−𝑛(𝑋 × 𝔸𝑟) for 𝑛 ≥ 𝑑 and 𝑟 ≥ 0.

This conjecture was first proven for varieties over a field (see [6], [7] and [13]).
For a finite-dimensional quasi-excellent Noetherian scheme, Kelly showed in
[10] that the negative𝐾-groups vanish (up to torsion) after dimension. In 2018,
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Kerz-Strunk-Tamme ultimately settled Weibel’s conjecture (see Theorem B of
[12]). A relative version of Weibel’s conjecture is discussed in [17].
In this article, we are mainly interested in similar types of questions (i.e.,

homotopy invariance and vanishing of negative 𝐾-groups) in the context of the
twisted𝐾-theory. Given anAzumaya algebra𝒜 over a scheme 𝑆, one can define
twisted 𝐾-group 𝐾𝒜

𝑛 (𝑆) for 𝑛 ∈ ℤ (see section 2). It is natural to ask Weibel’s
conjecture for 𝐾𝒜

𝑛 (𝑆). In [19], J. Stapleton discussed Weibel’s conjecture for
𝐾𝒜
𝑛 (𝑆) and proved the first part, i.e., vanishing of twisted negative 𝐾-groups

(see Corollary 4.2 of [19]). The second part of this conjecture has also been dis-
cussed in the same paper except the boundary case, i.e., 𝑛 = 𝑑 (see Theorem
4.3 of [19]). In section 3, we revisit Weibel’s conjecture for twisted 𝐾-theory
and give proof that also takes care of the boundary case. Here is our result (see
Theorem 3.4):

Theorem 1.1. Let 𝑆 be a Noetherian scheme of dimension 𝑑. Let 𝒜 be an Azu-
maya algebra of rank 𝑞2 over 𝑆. Then

(1) 𝐾𝒜
−𝑛(𝑆) = 0 for 𝑛 > 𝑑;

(2) 𝑆 is 𝐾𝒜
−𝑛-regular for 𝑛 ≥ 𝑑, i.e., the natural map 𝐾𝒜

−𝑛(𝑆) → 𝐾𝒜
−𝑛(𝑆 × 𝔸𝑟)

is an isomorphism for 𝑛 ≥ 𝑑 and 𝑟 ≥ 0.

A subring 𝑉 of a field 𝐾 is said to be valuation ring if for each 0 ≠ 𝑎 ∈ 𝐾,
either 𝑎 ∈ 𝑉 or 𝑎−1 ∈ 𝑉.We say that an integral domain 𝑅 is a Prüfer domain if
it is locally a valuation domain, i.e., 𝑅𝔭 is a valuation domain for all prime ideals
𝔭 of 𝑅. In [11], Kelly andMorrow observed that algebraic𝐾-theory is homotopy
invariant and negative 𝐾-groups vanishes for valuation rings (see Theorem 3.3
of [11]). Later, Banerjee and Sadhu in [2] extended the above mentioned re-
sults for Prüfer domains (see Theorem 1.1 of [2]). In section 4, we investigate
the same for twisted 𝐾-groups. More precisely, we show (see Example 4.1 and
Corollary 4.5):

Theorem 1.2. Let𝒜 be an Azumaya algebra of rank 𝑞2 over a ring 𝑅 and 𝑆𝐵(𝒜)
be the associated Severi Brauer variety. Assume that 𝑅 is a Prüfer domain with
finite krull dimension. Then

(1) 𝐾𝒜
−𝑛(𝑅) = 0 for 𝑛 > dim(𝑆𝐵(𝒜));

(2) the natural map 𝐾𝒜
𝑛 (𝑅) → 𝐾𝒜

𝑛 (𝑅[𝑡1, 𝑡2, … , 𝑡𝑟]) is an isomorphism for all
𝑛 ∈ ℤ and 𝑟 ≥ 0.

By Morita equivalence, for a ring 𝑅 and 𝑛 ∈ ℤ, 𝐾𝑛(𝑅) ≅ 𝐾𝒜
𝑛 (𝑅) in the case

when 𝒜 is a matrix algebra over 𝑅. This isomorphism may not hold for all
Azumaya algebras. In section 5, we examine the relationship between 𝐾𝑛(𝑅)
and 𝐾𝒜

𝑛 (𝑅), assuming 𝑅 is a valuation ring of characteristic 𝑝. We show that
there is an injection from 𝐾𝑛(𝑅) to 𝐾𝒜

𝑛 (𝑅) for all 𝑛 ≥ 0 provided the rank of 𝒜
is 𝑝2 (see Theorem 5.1).
Acknowledgements: The author would like to thank Charles Weibel for

fruitful email exchanges. He would also like to thank the referee for valuable
comments and suggestions.
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2. Twisted 𝑲-theory
Let 𝐴 be an algebra (not necessarily commutative) over a commutative lo-

cal ring 𝑅. The opposite algebra 𝐴𝑜𝑝 of 𝐴 is the algebra 𝐴 with multiplication
reversed. We say that 𝐴 is an Azumaya algebra over 𝑅 if it is free 𝑅-module of
finite rank and the map 𝐴⊗𝑅 𝐴𝑜𝑝 → 𝐸𝑛𝑑𝑅(𝐴), 𝑎 ⊗ 𝑎′ ↦ (𝑥 ↦ 𝑎𝑥𝑎′) is an iso-
morphism. For example, the matrix algbera𝑀𝑛(𝑅) is an Azumaya algebra over
𝑅. Let 𝑋 be a scheme. An 𝒪𝑋-algebra 𝒜 is said to be an Azumaya algebra over
𝑋 if it is coherent, locally free as an 𝒪𝑋-module and𝒜𝑥 is an Azumaya algebra
over 𝒪𝑋,𝑥 for any point 𝑥 ∈ 𝑋. Equivalently, 𝒜 is étale locally isomorphic to
𝑀𝑛(𝒪𝑋) for some 𝑛. For details, see [14].

2.1. Twisted 𝑲-groups. Let 𝒜 be an Azumaya algebra over a scheme 𝑆. Let
𝐕𝐞𝐜𝐭𝒜(𝑆) denote the category of vector bundles on 𝑆 that are left modules for
𝒜. The category 𝐕𝐞𝐜𝐭𝒜(𝑆) is exact. The twisted 𝐾-theory space is defined by
𝐾𝒜(𝑆) ∶= 𝐾(𝐕𝐞𝐜𝐭𝒜(𝑆)). For 𝑛 ≥ 0, the 𝑛-th twisted 𝐾-group 𝐾𝒜

𝑛 (𝑆) is defined
as 𝜋𝑛(𝐾(𝐕𝐞𝐜𝐭𝒜(𝑆)).
Write 𝑆[𝑡] for 𝑆 ×ℤ ℤ[𝑡] and 𝑆[𝑡, 𝑡−1] for 𝑆 ×ℤ ℤ[𝑡, 𝑡−1]. Since the projection

map 𝑝 ∶ 𝑆[𝑡] → 𝑆 is flat, it induces an exact functor 𝑝∗ ∶ 𝐾𝒜(𝑆) → 𝐾𝑝∗𝒜(𝑆[𝑡]).
Thus we have maps between twisted 𝐾-groups 𝐾𝒜

𝑛 (𝑆) → 𝐾𝑝∗𝒜
𝑛 (𝑆[𝑡]). By abuse

of notation, we write 𝐾𝒜
𝑛 (𝑆[𝑡]) instead of 𝐾

𝑝∗𝒜
𝑛 (𝑆[𝑡]). Similarly, we also have

maps between 𝐾𝒜
𝑛 (𝑆) → 𝐾𝒜

𝑛 (𝑆[𝑡, 𝑡−1]). Following Bass (see chapter XII of [3]),
the twisted negative 𝐾-group 𝐾𝒜

−1(𝑆) is defined as

𝐶𝑜𝑘𝑒𝑟[𝐾𝒜
0 (𝑆[𝑡]) × 𝐾

𝒜
0 (𝑆[𝑡

−1])
±
→ 𝐾𝒜

0 (𝑆[𝑡, 𝑡
−1])].

By iterating, we have

𝐾𝒜
−𝑛(𝑆) ∶= 𝐶𝑜𝑘𝑒𝑟[𝐾𝒜

−𝑛+1(𝑆[𝑡]) × 𝐾
𝒜
−𝑛+1(𝑆[𝑡

−1])
±
→ 𝐾𝒜

−𝑛+1(𝑆[𝑡, 𝑡
−1])].

There is a split exact sequence for 𝑛 ∈ ℤ (see section 3 of [19])

0 → 𝐾𝒜
𝑛 (𝑆)

∆
→ 𝐾𝒜

𝑛 (𝑆[𝑡]) × 𝐾𝒜
𝑛 (𝑆[𝑡−1])

±
→ 𝐾𝒜

𝑛 (𝑆[𝑡, 𝑡−1]) → 𝐾𝒜
𝑛−1(𝑆) → 0, (2.1)

where ∆(𝑎) = (𝑎, 𝑎) and ±(𝑎, 𝑏) = 𝑎 − 𝑏.

2.2. Quillen’s generalizedprojectivebundle formula. It iswell-known that
there is a natural bijection of sets

{Severi − Brauer varieties of relative dimension (q − 1) over S}
⟷ {Azumaya algebras over S of rank q2}.

Let 𝒜 be an Azumaya algebra of rank 𝑞2 over a scheme 𝑆. One can associate a
Severi-Brauer variety 𝑆𝐵(𝒜) of relative dimension 𝑞 − 1 over 𝑆. The structure
morphism 𝑆𝐵(𝒜) → 𝑆 is always smooth and projective. Quillen’s generalized
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projective bundle formula state that there is a natural isomorphism for each
𝑛 ≥ 0 (see Theorem 4.1 of [15] or V.1.6.6 of [21]),

𝐾𝑛(𝑆𝐵(𝒜)) ≅
𝑞−1⨁

𝑖=0
𝐾𝒜⊗𝑖
𝑛 (𝑆). (2.2)

We consider the following commutative diagram
0 0 0
⏐⏐⏐⏐⏐⏐⏐↓

⏐⏐⏐⏐⏐⏐⏐↓
⏐⏐⏐⏐⏐⏐⏐↓

𝐾0(𝑆)
𝑖𝑛𝑗𝑒𝑐𝑡𝑠
,,,,,,→ 𝐾0(𝑆[𝑡]) × 𝐾0(𝑆[𝑡−1]) ,→ 𝐾0(𝑆[𝑡, 𝑡−1) ,→ 𝐾−1(𝑆) ,→ 0

⏐⏐⏐⏐⏐⏐⏐↓
⏐⏐⏐⏐⏐⏐⏐↓

⏐⏐⏐⏐⏐⏐⏐↓
⏐⏐⏐⏐⏐⏐⏐↓

𝐾0(𝑆𝐵(𝒜))
𝑖𝑛𝑗𝑒𝑐𝑡𝑠
,,,,,,→ 𝐾0(𝑆𝐵(𝒜)[𝑡]) × 𝐾0(𝑆𝐵(𝒜)[𝑡−1]) ,→ 𝐾0(𝑆𝐵(𝒜)[𝑡, 𝑡−1) ,→ 𝐾−1(𝑆𝐵(𝒜)) ,→ 0

⏐⏐⏐⏐⏐⏐⏐↓
⏐⏐⏐⏐⏐⏐⏐↓

⏐⏐⏐⏐⏐⏐⏐↓
⏐⏐⏐⏐⏐⏐⏐↓

⨁𝑞−1
𝑖=1 𝐾

𝒜⊗𝑖
0 (𝑆)

𝑖𝑛𝑗𝑒𝑐𝑡𝑠
,,,,,,→ ⨁𝑞−1

𝑖=1 𝐾
𝒜⊗𝑖
0 (𝑆[𝑡]) ×⨁𝑞−1

𝑖=1 𝐾
𝒜⊗𝑖
0 (𝑆[𝑡−1) ,→ ⨁𝑞−1

𝑖=1 𝐾
𝒜⊗𝑖
0 (𝑆[𝑡, 𝑡−1]) ,→ ⨁𝑞−1

𝑖=1 𝐾
𝒜⊗𝑖
−1 (𝑆) ,→ 0

⏐⏐⏐⏐⏐⏐⏐↓
⏐⏐⏐⏐⏐⏐⏐↓

⏐⏐⏐⏐⏐⏐⏐↓

0 0 0

.

By the fundamental theorem of𝐾-theory and (2.1), the rows are split exact. The
first three columns are also split exact by (2.2). Finally, a diagram chase gives a
natural isomorphism

𝐾−1(𝑆𝐵(𝒜)) ≅
𝑞−1⨁

𝑖=0
𝐾𝒜⊗𝑖

−1 (𝑆). (2.3)

By iterating, we conclude that for each 𝑛 ∈ ℤ, there is a natural isomorphism

𝐾𝑛(𝑆𝐵(𝒜)) ≅
𝑞−1⨁

𝑖=0
𝐾𝒜⊗𝑖
𝑛 (𝑆). (2.4)

Proposition 2.1. Let 𝒜 be an Azumaya algebra of rank 𝑞2 over a Noetherian
regular scheme 𝑆. Then 𝐾𝒜

𝑛 (𝑆) = 0 for 𝑛 < 0 and 𝐾𝒜
𝑛 (𝑆) ≅ 𝐾𝒜

𝑛 (𝑆[𝑡1, … , 𝑡𝑟]) for
all 𝑛 and 𝑟 ≥ 0.

Proof. Since 𝑆 is a Noetherian regular scheme, so is 𝑆𝐵(𝒜). In this situation,
we know 𝐾𝑛(𝑆𝐵(𝒜)) = 0 for 𝑛 < 0 and 𝐾𝑛(𝑆𝐵(𝒜)) ≅ 𝐾𝑛(𝑆𝐵(𝒜)[𝑡1, … , 𝑡𝑟]) for
all 𝑛 and 𝑟 ≥ 0. By (2.4), we get the result. □

2.3. Brauer groups vsTwisted𝑲-theory. We say that two unital rings𝐴 and
𝐵 (possibly non-commutative) areMorita equivalent if the categories𝐌𝐨𝐝𝐴 and
𝐌𝐨𝐝𝐵 of right modules are equivalent. For example, a unital ring 𝑅 is Morita
equivalent to𝑀𝑛(𝑅) for 𝑛 ≥ 0.
TwoAzumaya algebras𝒜 andℬ over a commutative ring𝑅 areMorita equiv-

alent if and only if there exist finitely generated projective 𝑅-modules 𝑃 and 𝑄
such that𝒜⊗𝑅 𝐸𝑛𝑑(𝑃) ≅ ℬ⊗𝑅 𝐸𝑛𝑑(𝑄) (see Theorem 1.3.15 of [4]). However,
this is not true for Azumaya algebras over scheme, for instance see Example
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1.3.16 of [4]. If 𝑅 is a commutative local ring then 𝒜 and ℬ are Morita equiva-
lent if and only if𝑀𝑛(𝒜) ≅ 𝑀𝑚(ℬ) for 𝑛,𝑚 > 0. The Brauer group Br(𝑅) of a
commutative ring𝑅 consists ofMorita equivalence classes of Azumaya algebras
over 𝑅 (see [14]). The group operation on Br(𝑅) is ⊗𝑅. An element of Br(𝑅) is
represented by a class [𝒜],where𝒜 is an Azumaya algebra over 𝑅. The inverse
of [𝒜] is given by [𝒜𝑜𝑝].
Let 𝑅 be a commutative ring with unity. For 𝑛 ∈ ℤ, we consider the set

ℱ𝑛 = {𝐾𝒜
𝑛 (𝑅)|[𝒜] ∈ Br(𝑅)}.

An equivalence relation ∼ on ℱ𝑛 is given by 𝐾𝒜
𝑛 (𝑅) ∼ 𝐾𝒜′

𝑛 (𝑅) if 𝐾𝒜
𝑛 (𝑅) ≅

𝐾𝒜′

𝑛 (𝑅). Define 𝐵𝐾𝑛(𝑅) ∶= ℱ𝑛∕ ∼ . An element of 𝐵𝐾𝑛(𝑅) is represented by
a class (𝐾𝒜

𝑛 (𝑅)).
Lemma 2.2. For 𝑛 ∈ ℤ, 𝐵𝐾𝑛(𝑅) is an abelian group with the operation

(𝐾𝒜
𝑛 (𝑅)) ∗ (𝐾𝒜′

𝑛 (𝑅)) = (𝐾𝒜⊗𝑅𝒜
′

𝑛 (𝑅)).
Proof. If 𝒜 and ℬ both are Azumaya algebras over 𝑅 then 𝒜 ⊗𝑅 ℬ is also an
Azumaya algebra over 𝑅. Thus, ∗ is closed. Since⊗𝑅 is associative and abelian,
so is ∗ .We know that algebraic 𝐾-theory is Morita invariant, i.e., for all 𝑛 ∈ ℤ,
𝐾𝑛(𝑅) ≅ 𝐾𝑛(𝑆) whenever 𝑅 and 𝑆 are Morita equivalent. This implies that
(𝐾𝑛(𝑅)) is the identity element. The inverse of (𝐾𝒜

𝑛 (𝑅)) is given by (𝐾𝒜𝑜𝑝
𝑛 (𝑅)).

□

We define a map 𝜓𝑛 ∶ Br(𝑅) → 𝐵𝐾𝑛(𝑅), [𝒜] ↦ (𝐾𝒜
𝑛 (𝑅)) for each 𝑛 ∈ ℤ.

Each 𝜓𝑛 is a well defined map because 𝐾-theory is Morita invariant. Moreover,
one can check the following:
Proposition 2.3. For a commutative ring 𝑅, there is a short exact sequence

0 → ker 𝜓𝑛 → Br(𝑅) → 𝐵𝐾𝑛(𝑅) → 0
of abelian group for each 𝑛 ∈ ℤ.Moreover,

ker 𝜓𝑛 = {𝒜 ∈ 𝐴𝑧(𝑅)|𝐾𝒜
𝑛 (𝑅) ≅ 𝐾𝑛(𝑅)}.

Remark 2.4. (1) If Br(𝑅) = 0 then there are no twisted 𝐾-groups.
(2) If 𝑅 = ℝ then Br(ℝ) = ℤ∕2ℤ = {ℝ,ℍ}. We know 𝐾ℍ

1 (ℝ) ≇ 𝐾1(ℝ)
(see Table VI.3.1.1 of [21]). In this case, ker 𝜓1 = 0. By Proposition 2.1,
𝐾ℍ
𝑛 (ℝ) = 0 for 𝑛 < 0. So, ker 𝜓𝑛 = ℤ∕2ℤ for 𝑛 < 0.

3. Twisted version of Weibel’s Conjecture
Throughout,𝒜 is an Azumaya algebra of rank 𝑞2 over a scheme 𝑆 and 𝑆𝐵(𝒜)

is the associated Severi-Brauer variety. We would like to understand the 𝐾-
theory of the structure map 𝜌 ∶ 𝑆𝐵(𝒜) → 𝑆.
Let 𝑓 ∶ 𝑋 → 𝑆 be a map of schemes. Let 𝐾(𝑓) denote the homotopy fibre of

𝐾(𝑆) → 𝐾(𝑋).Here 𝐾(𝑋) denotes the Bass non-connective 𝐾-theory spectrum
of a scheme 𝑋.We have the associated long exact sequence

⋯→ 𝐾𝑛(𝑓) → 𝐾𝑛(𝑆) → 𝐾𝑛(𝑋) → 𝐾𝑛−1(𝑓) → 𝐾𝑛−1(𝑆) → … (3.1)
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Let 𝐹 be a functor from category of rings (or schemes) to abelian groups. Let
𝑁𝐹(𝑋) = ker[𝐹(𝑋 × 𝔸1) → 𝐹(𝑋)]. There is a natural decomposition 𝐹(𝑋 ×
𝔸1) ≅ 𝐹(𝑋) ⊕ 𝑁𝐹(𝑋). By iterating, one can define 𝑁𝑡𝐹(𝑋).We have a natural
decomposition 𝐹(𝑋 × 𝔸𝑟) ≅ (1 + 𝑁)𝑟𝐹(𝑋). We say that 𝑋 is 𝐹-regular if the
natural map 𝐹(𝑋) → 𝐹(𝑋 × 𝔸𝑟) is an isomorphism for 𝑟 ≥ 0. Equivalently,
𝑁𝑟𝐹(𝑋) = 0 for 𝑟 > 0.
By comparing the exact sequences (3.1) for 𝑓 and 𝑓 ×𝔸1 ∶ 𝑋 ×𝔸1 → 𝑆×𝔸1,

a diagram chase gives a long exact sequence for𝑁𝐾∗. By iterating, we also have
a long exact sequence for 𝑁𝑟𝐾∗ (some more details related to 𝑁𝐾∗-groups can
be found in section 3 of [17])
⋯→ 𝑁𝑟𝐾𝑛(𝑓) → 𝑁𝑟𝐾𝑛(𝑆) → 𝑁𝑟𝐾𝑛(𝑋) → 𝑁𝑟𝐾𝑛−1(𝑓) → 𝑁𝑟𝐾𝑛−1(𝑆) → …

(3.2)
The following result is due to Kerz-Strunk-Tamme.

Theorem 3.1. Let 𝑋 be a Noetherian scheme of dimension 𝑑. Then
(1) 𝐾−𝑛(𝑋) = 0 for 𝑛 > 𝑑;
(2) 𝑋 is𝐾−𝑛-regular for 𝑛 ≥ 𝑑, i.e., the natural map𝐾−𝑛(𝑋) → 𝐾−𝑛(𝑋 ×𝔸𝑟)

is an isomorphism for 𝑛 ≥ 𝑑 and 𝑟 ≥ 0.

Proof. See Theorem B of [12]. □

A relative version of the aforementioned theorem is as follows:

Theorem 3.2. Let 𝑓 ∶ 𝑋 → 𝑆 be a smooth, quasi-projective map of noetherian
schemes with 𝑆 reduced. Assume that dim𝑆 = 𝑑. Then 𝐾−𝑛(𝑓) = 0 for 𝑛 > 𝑑 + 1
and 𝑓 is 𝐾−𝑛-regular for 𝑛 > 𝑑, i.e., the natural map 𝐾−𝑛(𝑓) → 𝐾−𝑛(𝑓 × 𝔸𝑟) is
an isomorphism for 𝑛 > 𝑑 and 𝑟 ≥ 0.Here 𝑓 × 𝔸𝑟 denotes 𝑋 × 𝔸𝑟 → 𝑆 × 𝔸𝑟.

Proof. See Theorem 3.8 of [17]. □

Let 𝒦𝒜
𝑛,𝑧𝑎𝑟 denote the Zariski sheafification of the presheaf 𝑈 ↦ 𝐾𝒜

𝑛 (𝑈).
Similarly,𝒩𝒦𝒜

𝑛,𝑧𝑎𝑟 is the Zariski sheafification of the presheaf 𝑈 ↦ 𝑁𝐾𝒜
𝑛 (𝑈).

More generally, one can define𝒩𝑟𝒦𝒜
𝑛,𝑧𝑎𝑟 for 𝑟 > 0.

Lemma 3.3. Let 𝑆 be a Noetherian scheme of dimension 𝑑. Let 𝒜 be an Azu-
maya algebra of rank 𝑞2 over 𝑆. Then 𝐾𝒜

−𝑛(𝑆) ≅ 𝐾𝒜
−𝑛(𝑆𝑟𝑒𝑑) and 𝑁𝑟𝐾𝒜

−𝑛(𝑆) ≅
𝑁𝑟𝐾𝒜

−𝑛(𝑆𝑟𝑒𝑑) for 𝑛 ≥ 𝑑 and 𝑟 > 0.

Proof. Given a commutative ring 𝑅, 𝐾𝒜
−𝑛(𝑅) ≅ 𝐾𝒜

−𝑛(𝑅𝑟𝑒𝑑) for 𝑛 ≥ 0 (see Propo-
sition 2.7 of [19]). Note (𝑅[𝑡])𝑟𝑒𝑑 = 𝑅𝑟𝑒𝑑[𝑡]. Thus, 𝑁𝑟𝐾𝒜

−𝑛(𝑅) ≅ 𝑁𝑟𝐾𝒜
−𝑛(𝑅𝑟𝑒𝑑)

for 𝑛 ≥ 0 and 𝑟 > 0. The rest of the argument is based on comparing Zariski
descent spectral sequences for 𝑆 and 𝑆𝑟𝑒𝑑 (see Corollary 2.8 of [19] and Lemma
3.4 of [17]). □

Theorem 3.4. Let 𝑆 be a Noetherian scheme of dimension 𝑑. Let 𝒜 be an Azu-
maya algebra of rank 𝑞2 over 𝑆. Then

(1) 𝐾𝒜
−𝑛(𝑆) = 0 for 𝑛 > 𝑑;
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(2) 𝑆 is 𝐾𝒜
−𝑛-regular for 𝑛 ≥ 𝑑, i.e., the natural map 𝐾𝒜

−𝑛(𝑆) → 𝐾𝒜
−𝑛(𝑆 × 𝔸𝑟)

is an isomorphism for 𝑛 ≥ 𝑑 and 𝑟 ≥ 0.

Proof. We may assume that 𝑆 is reduced (see Lemma 3.3). Let 𝑆𝐵(𝒜) be the
associated Severi-Brauer variety of relative dimension 𝑞 − 1 over 𝑆. Note 𝜌 ∶
𝑆𝐵(𝒜) → 𝑆 is a smooth, projective morphism (hence also finite type). Since 𝑆
is Noetherian, so is 𝑆𝐵(𝒜). Then 𝐾−𝑛(𝜌) = 0 for 𝑛 > 𝑑 + 1 and 𝑁𝑟𝐾−𝑛(𝜌) = 0
for all 𝑟 ≥ 0 and 𝑛 > 𝑑 by Theorem 3.2. The sequence (3.1) implies that
𝐾−𝑑−1(𝑆) → 𝐾−𝑑−1(𝑆𝐵(𝒜)) is surjective and 𝐾−𝑛(𝑆) → 𝐾−𝑛(𝑆𝐵(𝒜)) is an iso-
morphism for 𝑛 > 𝑑+1. Similarly, the sequence (3.2) implies that𝑁𝑟𝐾−𝑑(𝑆) →
𝑁𝑟𝐾−𝑑(𝑆𝐵(𝒜)) is surjective and 𝑁𝑟𝐾−𝑛(𝑆) → 𝑁𝑟𝐾−𝑛(𝑆𝐵(𝒜)) is an isomor-
phism for 𝑛 > 𝑑. By Theorem 3.1, we get 𝐾−𝑛(𝑆𝐵(𝒜)) = 0 for 𝑛 > 𝑑 and
𝑁𝑟𝐾−𝑛(𝑆𝐵(𝒜)) = 0 for 𝑛 ≥ 𝑑. The natural decomposition (2.4) yields the re-
sult. □

4. Twisted 𝑲-theory of weakly regular stably coherent rings
Let 𝑅 be a commutative ring. A finitely generated 𝑅-module𝑀 is called co-

herent if every finitely generated submodule of𝑀 is finitely presented. The ring
𝑅 is coherent if it is a coherent module over itself, i.e., every finitely generated
ideal of 𝑅 is finitely presented. The ring 𝑅 is said to be a regular ring if every
finitely generated ideal of 𝑅 has finite projective dimension.
Let𝑀 be a 𝑅-module. Theweak dimension of𝑀, denoted by𝑤.𝑑𝑖𝑚𝑅𝑀 is the

least nonnegative integer 𝑛, for which there is an exact sequence

0 → 𝐹𝑛 →⋯→ 𝐹1 → 𝐹0 →𝑀 → 0
with 𝐹𝑖 flat over 𝑅. The weak dimension of a ring 𝑅, denoted 𝑤.𝑑𝑖𝑚(𝑅), is de-
fined by 𝑤.𝑑𝑖𝑚(𝑅) = 𝑆𝑢𝑝{𝑤.𝑑𝑖𝑚𝑅𝑀|𝑀 is a 𝑅−module}. If 𝑅 is a coherent ring
then 𝑤.𝑑𝑖𝑚(𝑅) = 𝑆𝑢𝑝{𝑃𝑑𝑅𝑀|𝑀 is a f initely presented 𝑅−module} (see Corol-
lary 2.5.6 of [8]). Clearly, 𝑃𝑑𝑅(𝑀) ≤ 𝑤.𝑑𝑖𝑚(𝑅) for all finitely presented 𝑅-
modules 𝑀. We also have 𝑤.𝑑𝑖𝑚(𝑅𝔭) ≤ 𝑤.𝑑𝑖𝑚(𝑅) for all 𝔭 ∈ 𝑆𝑝𝑒𝑐(𝑅) (see
Theorem 1.3.13 of [8]).
A coherent ring 𝑅 is calledweakly regular if 𝑅 has finite flat (or weak) dimen-

sion. A ring 𝑅 is said to be stably coherent if every finitely presented 𝑅-algebra
is coherent.

Example 4.1. Here is a list of weakly regular stably coherent rings:
(1) Noetherian regular local rings of finite krull dimension. In this case,

global dimension coincides with weak dimension.
(2) Valuation rings (see Proposition 2.1 of [1]);
(3) Prüfer domains (see Lemma 3.1 of [2] and P.25 of [8]).

Let𝒦𝑛,𝑧𝑎𝑟 denote the Zariski sheafification of the presheaf𝑈 ↦ 𝐾𝑛(𝑈). Sim-
ilarly,𝒩𝒦𝑛,𝑧𝑎𝑟 is the Zariski sheafification of the presheaf𝑈 ↦ 𝑁𝐾𝑛(𝑈).More
generally, one can define𝒩𝑟𝒦𝑛,𝑧𝑎𝑟 for 𝑟 > 0.
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Lemma 4.2. Let 𝑋 be a scheme and 𝑋 → 𝑆𝑝𝑒𝑐(𝑅) be a smooth map with 𝑅
weakly regular stably coherent. Then the Zariski sheaves on 𝑋, 𝒦𝑛,𝑧𝑎𝑟 = 0 for
𝑛 < 0 and𝒩𝑟𝒦𝑛,𝑧𝑎𝑟 = 0 for 𝑛 ∈ ℤ, 𝑟 > 0.

Proof. Let 𝑆𝑝𝑒𝑐(𝐴) ↪ 𝑋 be an affine open subset. Then 𝑆𝑝𝑒𝑐(𝐴) → 𝑆𝑝𝑒𝑐(𝑅)
is smooth. Note 𝐴 is weakly regular stably coherent (see Corollary 2.3 of [1]).
Since any localization of stably coherent ring is stably coherent and

𝑤.𝑑𝑖𝑚(𝐴𝔭) ≤ 𝑤.𝑑𝑖𝑚(𝐴) < ∞,
𝐴𝔭 is weakly regular stably coherent for all 𝔭 ∈ 𝑆𝑝𝑒𝑐(𝐴). Each stalk of 𝒦𝑛,𝑧𝑎𝑟
and 𝒩𝑟𝒦𝑛,𝑧𝑎𝑟 are 𝐾𝑛(𝐴𝔭) and 𝑁𝑟𝐾𝑛(𝐴𝔭), where 𝐴𝔭 is weakly regular stably
coherent. By Proposition 2.4 of [1], algebraic 𝐾-theory is homotopy invariant,
and negative 𝐾-groups vanish for weakly regular stably coherent rings. Hence
the assertion. □

Lemma 4.3. Let 𝑋 → 𝑆 be a projective morphism with 𝑆 quasi-compact and
quasi separated. Then 𝑋 is also quasi-compact and quasi-separated.

Proof. Projective morphisms are always quasi-compact and quasi separated
morphism. Since 𝑆 quasi-compact and quasi separated scheme, so is 𝑋. □

Theorem 4.4. Let𝑋 be a finite dimensional quasi-compact and quasi-separated
schemeand𝑋 → 𝑆𝑝𝑒𝑐(𝑅) be a smoothmapwith𝑅weakly regular stably coherent.
Then

(1) 𝐾−𝑛(𝑋) = 0 for 𝑛 > 𝑑 and𝐻𝑑
𝑍𝑎𝑟(𝑋,ℤ) ≅ 𝐾−𝑑(𝑋), where 𝑑 = dim(𝑋);

(2) The natural map𝐾𝑛(𝑋) → 𝐾𝑛(𝑋 ×𝔸𝑟) is an isomorphism for 𝑛 ∈ ℤ and
𝑟 ≥ 0.

Proof. (1) The scheme𝑋 has finite Krull dimension 𝑑.Wehave a descent spec-
tral sequence (see Theorem 4.1 of [16] and Remark 3.3.1 of [5])

𝐻𝑝
𝑍𝑎𝑟(𝑋,𝒦𝑛,𝑍𝑎𝑟)⟹ 𝐾𝑛−𝑝(𝑋).

Here 𝒦𝑛,𝑍𝑎𝑟 is the Zariski sheaf on 𝑋. By Corollary 4.6 of [18], 𝑋𝑍𝑎𝑟 has coho-
mological dimension at most 𝑑 = dim(𝑋).Moreover,𝒦𝑛,𝑍𝑎𝑟 = 0 for 𝑛 < 0 (see
Lemma 4.2). This implies that𝐾−𝑛(𝑋) = 0 for 𝑛 > 𝑑 and𝐻𝑑

𝑍𝑎𝑟(𝑋,ℤ) = 𝐾−𝑑(𝑋).
(2) Consider the Zariski sheaf 𝒩𝑟𝒦𝑛,𝑍𝑎𝑟 on 𝑋. We have 𝒩𝑟𝒦𝑛,𝑍𝑎𝑟 = 0 for

𝑛 ∈ ℤ, 𝑟 > 0 (see Lemma 4.2). The following descent spectral sequence

𝐻𝑝
𝑍𝑎𝑟(𝑋,𝒩

𝑟𝒦𝑛,𝑍𝑎𝑟)⟹ 𝑁𝑟𝐾𝑛−𝑝(𝑋)
implies 𝑁𝑟𝐾𝑛(𝑋) = 0 for 𝑛 ∈ ℤ, 𝑟 > 0. □

Corollary 4.5. Let 𝑅 be a finite dimensional weakly regular stably coherent ring.
Let𝒜 be anAzumayaalgebra over𝑅 of rank 𝑞2 and𝑆𝐵(𝒜) be the associated Severi
Brauer variety. Then

(1) 𝐾𝒜
−𝑛(𝑅) = 0 for 𝑛 > dim(𝑆𝐵(𝒜)).

(2) the natural map 𝐾𝒜
𝑛 (𝑅) → 𝐾𝒜

𝑛 (𝑅[𝑡1, 𝑡2, … , 𝑡𝑟]) is an isomorphism for all
𝑛 ∈ ℤ and 𝑟 ≥ 0.



TWISTED NEGATIVE K-THEORY AND HOMOTOPY INVARIANCE 1665

Proof. The structure morphism 𝑆𝐵(𝒜) → 𝑆𝑝𝑒𝑐(𝑅) is smooth and projective
(hence of finite type). The Severi Brauer variety 𝑆𝐵(𝒜) has finite Krull dimen-
sion because 𝑅 is finite dimensional. By Lemma 4.3, 𝑆𝐵(𝒜) is a quasi-compact
and quasi-separated scheme. The result now follows from Theorem 4.4 and the
decomposition (2.4). □

5. An observation
Let𝒜 andℬ be Azumaya algebras over a scheme𝑋.Assume that 𝜑 ∶ ℬ → 𝒜

is an 𝒪𝑋-algebra homomorphism and 𝒜 is a flat ℬ-module. Then the functor

−⊗ℬ 𝒜 ∶ 𝐕𝐞𝐜𝐭ℬ(𝑋) → 𝐕𝐞𝐜𝐭𝒜(𝑋), 𝑃 ↦ 𝑃 ⊗ℬ 𝒜
is exact and it induces a group homomorphism 𝜑𝑛 ∶ 𝐾ℬ

𝑛 (𝑋) → 𝐾𝒜
𝑛 (𝑋) for each

𝑛 ≥ 0. We also have a restriction functor 𝑟𝑒𝑠𝒜ℬ ∶ 𝐕𝐞𝐜𝐭𝒜(𝑋) → 𝐕𝐞𝐜𝐭ℬ(𝑋),
which is exact. It induces a group homomorphism 𝜙𝑛 ∶ 𝐾𝒜

𝑛 (𝑋) → 𝐾ℬ
𝑛 (𝑋) for

each 𝑛 ≥ 0.
If ℬ = 𝒪𝑋 then 𝒜 is a flat 𝒪𝑋-module and 𝐾

𝒪𝑋
𝑛 (𝑋) = 𝐾𝑛(𝑋). For 𝑛 ≥ 0, we

get group homomorphisms
𝜑𝑛 ∶ 𝐾𝑛(𝑋) → 𝐾𝒜

𝑛 (𝑋)
and

𝜙𝑛 ∶ 𝐾𝒜
𝑛 (𝑋) → 𝐾𝑛(𝑋).

The composition 𝜙𝑛𝜑𝑛 ∶ 𝐾𝑛(𝑋) → 𝐾𝑛(𝑋) is a map multiplication by [𝒜] ∈
𝐾0(𝑋).

Theorem 5.1. Let 𝑉 be a valuation ring of characteristic 𝑝 > 0. Let𝒜 be a Azu-
maya algebra over 𝑉 of rank 𝑞2, where 𝑞 = 𝑝𝑟 for some 𝑟 ≥ 1. Then the map
𝜑𝑛 ∶ 𝐾𝑛(𝑉) → 𝐾𝒜

𝑛 (𝑉) is injective for all 𝑛 ≥ 0.

Proof. Wehave [𝒜]. ker(𝜑𝑛) = 0 for𝑛 ≥ 0 (see the above discussion or Proposi-
tion 2 of [9]). Since𝑉 is local,𝒜 is free over𝑉 of rank 𝑞2. Thus, 𝑞2. ker(𝜑𝑛) = 0.
On the otherhand, 𝐾𝑛(𝑉) is 𝑝-torsion free for 𝑛 ≥ 0 (see Theorem 1.1 of [11]).
So, ker(𝜑𝑛) is also 𝑝-torsion free for 𝑛 ≥ 0. This forces that ker(𝜑𝑛) = 0 for
𝑛 ≥ 0. Hence the assertion. □
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