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Transfer of quantum game strategies

Gage Hoefer

Abstract. We develop a method for the transfer of perfect strategies be-
tween various classes of two-player, one round cooperative non-local games
with quantum inputs and outputs using the simulation paradigm in quantum
information theory. We show that such a transfer is possible when canoni-
cally associated operator spaces for each game are quantum homomorphic
or isomorphic, as defined in [21]. We examine a new class of QNS correla-
tions, needed for the transfer of strategies between games, and characterize
them in terms of states on tensor products of canonical operator systems. We
define jointly tracial correlations and show they correspond to traces acting
on tensor products of canonical C∗-algebras associated with individual game
parties. We then make an inquiry into the initial application of such results
to the study of concurrent quantum games.
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1. Introduction
In the past few decades, non-local games have been studied under a variety

of names (such as Bell inequalities) and across the disciplines of physics, math-
ematics, and computer science; they have significant connections to areas as
diverse as noncommutative geometry, quantum complexity theory, entangle-
ment theory, and operator algebras. The latter provides a particularly fruitful
framework for approaching questions of non-locality in quantum systems, as
the input-output behavior of measurements on bipartite quantum systems can
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be encoded through noncommutative operator algebras and their state spaces.
The study of such bipartite systems can therefore be translated into the study
of associated operator algebras, and so numerous tools from functional analysis
can be applied to help obtain answers for more physically motivated questions.
A non-local game is (formally speaking) a tuple 𝔾 = (𝑋,𝑌,𝐴, 𝐵, 𝜆) of finite

sets 𝑋,𝑌,𝐴, 𝐵 and a function 𝜆 ∶ 𝑋 × 𝑌 × 𝐴 × 𝐵 → {0, 1}. The game is played
cooperatively by two players, against a referee. Our two players— call them
Alice and Bob— are separated spatially, and are not allowed to communicate
during the game. For our purposes, the game takes place over a single round;
during a round, the referee samples question pairs (𝑥, 𝑦) ∈ 𝑋 × 𝑌, and sends
question 𝑥 to Alice and question 𝑦 to Bob. Alice and Bob must respond with
answers 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵, respectively. The two win the round if and only if
𝜆 evaluates to 1 on their question-answer pairs; that is, they win if and only if
𝜆(𝑥, 𝑦, 𝑎, 𝑏) = 1.
While our two players are not allowed to communicate during the game, to

improve their chances of success they can coordinate their answers according
to a predetermined strategy. Our players may have access to a shared quan-
tum entangled state, and measurements on this state by each player can im-
prove their chance of winning by coordinating their answers to the referee in
such a way that would not be possible classically (see [2]: the CHSH inequality
and its use in the proof of the celebrated “Bell’s Theorem” during the 1960’s,
or [8]). Specific classes of strategies— known as correlations— based on the
use (or non-use) of shared classical and quantum resources between the two
players are of particular interest in describing their behavior; such correlations
are formalized using classical information channels, when considered as con-
ditional probability distributions. Different mathematical models correspond-
ing to each strategy type describe the outcomes of these experiments: local
(corresponding to the use of classical resources), quantum (corresponding to
finite-dimensional entangled resources), quantum approximate (correspond-
ing to liminal entangled resources), quantum commuting (which arises from
the commuting model of quantum mechanics), and general no-signalling
(which does not necessarily rely on the use of a shared resource, but as a proba-
bilistic strategymust still satisfy the basic constraints of the game), are themain
correlation classes of interest. These are denoted as 𝒞loc, 𝒞q, 𝒞qa, 𝒞qc and 𝒞ns,
respectively.
One particular connection between the study of quantum information the-

ory, non-locality, and operator algebras drivingmuch of the recent development
in these areas is the equivalence of Tsirelson’s problem in quantum physics,
and Connes’ embedding problem (or CEP) in von Neumann algebra theory;
this equivalence was established in [18, 23, 31]. The subsequent investigation
of this equivalence led to the resolution of many other important questions in-
cluding a refutation to the strong Tsirelson problem in [35] (see also [16]), and
a negative answer to the CEP in [22]. Non-local games lay at the base of all of
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these approaches, and questions involving non-local games are the main moti-
vation for the current work.
While classical non-local games are fruitful objects of study, as combinato-

rial objects with finite sets of inputs and outputs they ultimately have inherent
restrictions; in an attempt to surpass some of these limitations, more attention
has been given to quantum games. These are non-local games where the in-
puts and outputs are allowed to be quantum states, or sometimes mixtures of
classical and quantum states. In this setting, question and answer sets 𝑋,𝑌,𝐴
and 𝐵 are replaced by spaces ℂ|𝑋|, ℂ|𝑌|, ℂ|𝐴| and ℂ|𝐵|, and strategies are im-
plemented using quantum channels Φ ∶ 𝑀𝑋 ⊗ 𝑀𝑌 → 𝑀𝐴 ⊗ 𝑀𝐵 instead of
classical channels𝒩 ∶ 𝑋 × 𝑌 → 𝐴 × 𝐵. The lack of communication between
players is enforced by strictly requiring the use of quantum no-signalling (QNS)
channels, as introduced in [15]. Furthermore, the hierarchy of classical cor-
relations is replaced by their quantum analogues, first introduced in [39] (see
also [4]). The rules of the game can be generalized to the quantum context by
replacing 𝜆 with a 0-preserving and join-preserving map between the projec-
tion lattices 𝒫𝑋𝑌 and 𝒫𝐴𝐵 of𝑀𝑋⊗𝑀𝑌 and𝑀𝐴⊗𝑀𝐵, respectively. Such games
have been increasingly studied over the past few years (see [6, 7, 11, 34, 39] for a
non-exhaustive list). As legitimate generalizations of classical non-local games,
the hope is that by “enlarging" the space of possible inputs and outputs (when
compared to finite sets), a wealth of new examples are provided that might help
shed more light on some of the previously mentioned questions in all areas.
The purpose of the present paper is to generalize the results of [20] to the con-

text of quantum non-local games; in that work, generalized homomorphisms
and isomorphisms between classical non-local games were introduced. The ex-
istence of a homomorphism or isomorphism of type t from game𝔾1 to game𝔾2
lead to a relation between optimal game values, when playing with strategies
of type t; specifically, an inequality of values in the former case, and equal-
ity in the latter case. We wanted to obtain similar results for quantum games,
and identify necessary conditions for when two quantum games are similar in
this sense. In order to identify when two quantum games are homomorphic
(respectively, isomorphic) of some type t, we looked at several classes of quan-
tum gameswhich have canonically associated quantumhypergraphs. These are
subspaces of linear operators acting between finite-dimensional spaces which
in some sense encode the properties or rules of the game. Using the notion of
t-homomorphism and t-isomorphism of quantum hypergraphs introduced in
[21], we thus had a way to characterize when our quantum games were similar.
Quantum game homomorphisms of a given type t were defined using QNS

correlations of the same type, subject to additional constraints. Such conditions
were added in order to allow the transport of perfect strategies of type t from
the first game to perfect strategies of type t for the second. As in [20, 21], t-
isomorphisms require the use of QNS bicorrelations, which were first defined
in [7]. This process of strategy transfer employs the simulation paradigm for
quantum channels (see [15]). According to the paradigm, if we start with a
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quantum channel ℰ ∶ 𝑀𝑋1 → 𝑀𝐴1 from alphabet 𝑋1 to alphabet 𝐴1, using as-
sistance from no-signalling resources over (𝑋2, 𝐴1, 𝑋1, 𝐴2) (i.e., a QNS channel
Γ ∶ 𝑀𝑋2 ⊗ 𝑀𝐴1 → 𝑀𝑋1 ⊗ 𝑀𝐴2) we can construct a new quantum channel
Γ[ℰ] ∶ 𝑀𝑋2 → 𝑀𝐴2 dependent on ℰ and Γ from alphabet 𝑋2 to 𝐴2. A similar
approach for classical channels was used in [20], and one of the main focuses
of this work is to show how it extends to the quantum case.
We now describe the organization of the paper in more detail. In Section 2,

we set notation and recall the definition of the main no-signalling correlation
types for both classical and quantum channels, and introduce the simulation
setup for quantum channels. Section 3 contains the definitions of the differ-
ent types of a class of stochastic (and bistochastic) operator matrices, and how
these operator matrices will be used to define necessary subclasses of QNS cor-
relations (which we call strongly quantum no-signalling) over the quadruple
(𝑋2×𝑌2)×(𝐴1×𝐵1)×(𝑋1×𝑌1)×(𝐴2×𝐵2). In Section 4, the strongly quantum
no-signalling correlations are used in the simulation paradigm for quantum
channels to establish strategy transport for quantum games; this is achieved in
Theorem 4.1 and Theorem 4.2 for the QNS correlation and bicorrelation cases,
respectively. We note that the definitions of Sections 3 and 3.1 generalize those
from [20, Section 4, 5]; thus, we recover many of the results (in the classical
case) from [20] in Sections 3-4.
Section 5 contains some of the main results of the paper, where we restrict

our attention to the transfer of perfect strategies for various types of quantum
games. This application employs SQNS correlations as strategies for the
t-homomorphism and isomorphism games between quantumnon-local games,
when utilizing the framework of generalized homomorphisms of quantum hy-
pergraphs as introduced in [21, Section 3]. A characterization of when perfect
strategy transfer is possible between games when the first leg is classical while
the second is quantum, along with when both are implication games are in-
cluded (see [39] for relevant introductions).
The last section features the other main focus of the paper, wherein we in-

vestigate our newQNS correlations leading up to an operator system character-
ization for each subclass (similar to those obtained in [29, 39] and [20, Section
7]). Using these results, we also focus on the transfer of strategies between con-
current quantum games— a class of quantum game first introduced in [6] and
further developed in [7, 39]. As a proposed quantization of the class of synchro-
nous games, and analogous to the adaptation of the synchronicity condition
for classical game homomorphisms which necessitated the definition of jointly
synchronous correlations in [20, Section 8], we define jointly tracial SQNS cor-
relations in this section. A tracial characterization of jointly tracial correlations
is contained in Theorem 6.17 (in the same vein as the characterizations estab-
lished in [6], [7] and [19]), and Theorem 6.18 shows that these are the right
subclass of SQNS correlations to use for transferring tracial correlations. Thus,
the transfer of strategies for quantum games developed within specializes to
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the concurrent case. Finally, initial connections between the transfer of con-
current/tracial strategies and traces on canonically associated ∗-algebras and
C∗-algebras for concurrent games are discussed.

Acknowledgements. I would like to thank my advisor Ivan G. Todorov for
the many fruitful discussions on earlier drafts of the paper. I would also like
to thank Lyudmila Turowska for helpful comments on some results in the last
section, and Alexandros Chatzinikolaou for identifying the gap in the proof of
[20, Lemma 5.8], necessitating the change in definition. Finally, I would like to
thank the referee(s) for their detailed reading and remarks.

2. Preliminaries
In this section we set notation, and include the necessary preliminaries on

quantum no-signalling correlations to be used throughout the rest of the paper.
For a finite set 𝑋, we let ℂ𝑋 = ⊕𝑥∈𝑋ℂ and write (𝑒𝑥)𝑥∈𝑋 for the canonical or-
thonormal basis ofℂ𝑋 . Similarly, if𝐻 is a Hilbert spacewe set𝐻𝑋 = ⊕𝑥∈𝑋𝐻. If
𝑋 is countable (not necessarily finite), let 𝓁𝑋2 denote the Hilbert space of square
summable sequences over ℂ; in the specific case that 𝑋 is finite, we will some-
times write 𝓁𝑋2 = ℂ𝑋 . For finite 𝑋,𝑌, we will often abbreviate the Cartesian
product 𝑋 × 𝑌 as 𝑋𝑌 for ease of use in notation. We denote by𝑀𝑋 the algebra
of all complex matrices of size 𝑋 × 𝑋, and by𝒟𝑋 its subalgebra of all diagonal
matrices. We write 𝜖𝑥𝑥′ , 𝑥, 𝑥′ ∈ 𝑋 for the canonical matrix units in𝑀𝑋 , denote
by Tr the trace functional on𝑀𝑋 , and set ⟨𝑆, 𝑇⟩ = Tr(𝑆𝑇∗), where the adjoint is
with respect to the canonical orthonormal basis. We let∆𝑋 ∶ 𝑀𝑋 → 𝒟𝑋 denote
the canonical conditional expectation on the full matrix algebra. Set

𝐽𝑋 ∶=
∑

𝑥,𝑥′
𝜖𝑥𝑥′ ⊗ 𝜖𝑥𝑥′ , 𝐽cl𝑋 ∶=

∑

𝑥∈𝑋
𝜖𝑥𝑥 ⊗ 𝜖𝑥𝑥,

and 𝐽𝑋 ∶= 1
|𝑋|
𝐽𝑋 . If 𝔪𝑋 = 1

√
|𝑋|

∑
𝑥∈𝑋

𝑒𝑥 ⊗ 𝑒𝑥 is the maximally entangled unit

vector inℂ𝑋⊗ℂ𝑋 , then 𝐽𝑋 = 𝔪𝑋𝔪∗
𝑋 is the corresponding rank-one projection.

Note that 𝐽cl𝑋 = ∆𝑋𝑋(𝐽𝑋), and thus we may think of 𝐽cl𝑋 as the “classical" part of
the (unnormalized) state 𝐽𝑋 .
For a Hilbert space𝐻, letℬ(𝐻) be the C∗-algebra of all bounded linear oper-

ators on 𝐻, and denote by 𝐼𝐻 the identity operator on 𝐻. An 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑠𝑦𝑠𝑡𝑒𝑚
in ℬ(𝐻) is a selfadjoint linear subspace 𝒮 ⊆ ℬ(𝐻) such that 𝐼𝐻 ∈ 𝒮. If 𝒜 is a
C∗-algebra, we denote by𝒜op its opposite C∗-algebra. As a set,𝒜op can be iden-
tified with 𝒜, with 𝒜op = {𝑎op ∶ 𝑎 ∈ 𝒜}; they both have the same additive,
norm, and involutive structure— their only difference is in their multiplicative
structure, as we set 𝑎op𝑏op = (𝑏𝑎)op, for 𝑎op, 𝑏op ∈ 𝒜op in the opposite algebra.
Let 𝑋 and 𝐴 be finite sets. A 𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 from 𝑋 to 𝐴 is

a positive trace preserving linear map𝒩 ∶ 𝒟𝑋 → 𝒟𝐴. If𝒩 is an information
channel, setting 𝑝(⋅|𝑥) = 𝒩(𝜖𝑥𝑥) for each 𝑥 ∈ 𝑋 it is easy to see that 𝒩 is
completely determined by its corresponding family of conditional probability
distributions {(𝑝(𝑎|𝑥))𝑎∈𝐴 ∶ 𝑥 ∈ 𝑋}.
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A 𝑞𝑢𝑎𝑛𝑡𝑢𝑚 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 from𝑋 to𝐴 is a completely positive trace
preserving linear map Φ ∶ 𝑀𝑋 → 𝑀𝐴. A quantum channel will be called
(𝑋,𝐴)-𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 if Φ = ∆𝐴◦Φ◦∆𝑋 . Any classical channel𝒩 ∶ 𝒟𝑋 → 𝒟𝐴, has
a corresponding (𝑋,𝐴)-classical (quantum) channel Φ𝒩 ∶ 𝑀𝑋 →𝑀𝐴 given by
Φ𝒩 = 𝒩◦∆𝑋 . Conversely, any quantum channel Φ ∶ 𝑀𝑋 → 𝑀𝐴 induces a
classical channel𝒩Φ ∶ 𝒟𝑋 → 𝒟𝐴 given by ∆𝐴◦Φ|𝒟𝑋 . Finally, if ℰ ∶ 𝒟𝑋 →𝑀𝐴
is a (classical-to-quantum) channel, set Γℰ = ℰ◦∆𝑋 , so Γℰ is a quantum channel
from𝑀𝑋 to𝑀𝐴.
In the remainder of this section, we recall the basic types of quantum and

classical no-signalling correlations thatwill be used throughout the paper, along
with establishing the simulation paradigm arising from quantum information
theory. Let 𝑋,𝑌,𝐴 and 𝐵 be finite sets. A quantum no-signalling (QNS) corre-
lation [15] is a quantum channel Γ ∶ 𝑀𝑋𝑌 →𝑀𝐴𝐵 such that

Tr𝐴Γ(𝜌𝑋 ⊗ 𝜌𝑌) = 0 whenever 𝜌𝑋 ∈ 𝑀𝑋 and Tr(𝜌𝑋) = 0, (1)

and

Tr𝐵Γ(𝜌𝑋 ⊗ 𝜌𝑌) = 0 whenever 𝜌𝑌 ∈ 𝑀𝑌 and Tr(𝜌𝑌) = 0. (2)

We set
Γ(𝑎𝑎′, 𝑏𝑏′|𝑥𝑥′, 𝑦𝑦′) = ⟨Γ(𝜖𝑥,𝑥′ ⊗ 𝜖𝑦,𝑦′), 𝜖𝑎,𝑎′ ⊗ 𝜖𝑏,𝑏′⟩;

thus, (Γ(𝑎𝑎′, 𝑏𝑏′|𝑥𝑥′, 𝑦𝑦′))𝑦,𝑦
′,𝑏,𝑏′

𝑥,𝑥′,𝑎,𝑎′ is the Choi matrix of Γ (see e.g. [32]).
A stochastic operatormatrix acting on aHilbert space𝐻 is a positive block op-

erator matrix 𝐸 = (𝐸𝑥,𝑥′,𝑎,𝑎′)𝑥,𝑥′,𝑎,𝑎′ ∈ 𝑀𝑋𝐴(ℬ(𝐻)) such that Tr𝐴(𝐸) = 𝐼𝑋⊗𝐼𝐻 .
Stochastic operator matrix 𝐸 is bistochastic [7] if 𝑋 = 𝐴 and we have Tr𝑋(𝐸) =
𝐼𝐴 ⊗ 𝐼𝐻 . For a stochastic operator matrix 𝐸 over (𝑋,𝐴), set

𝐸𝑎,𝑎′ = (𝐸𝑥,𝑥′,𝑎,𝑎′)𝑥,𝑥′∈𝑋 ∈ 𝑀𝑋 ⊗ℬ(𝐻).
As discussed in [39, Section 3], stochastic operator matrices 𝐸 are the Choi ma-
trices of unital completely positive maps Φ𝐸 ∶ 𝑀𝐴 →𝑀𝑋 ⊗ℬ(𝐻) given by

Φ𝐸(𝜖𝑎,𝑎′) = 𝐸𝑎,𝑎′ , 𝑎, 𝑎′ ∈ 𝐴. (3)

If we let Φ = Φ𝐸 as in (3), for any state 𝜎 ∈ 𝒯(𝐻) we let Γ𝐸,𝜎 ∶ 𝑀𝑋 → 𝑀𝐴 be
the quantum channel defined via

Γ𝐸,𝜎(𝜌𝑋) = Φ∗(𝜌𝑋 ⊗ 𝜎), 𝜌𝑋 ∈ 𝑀𝑋 . (4)

Note here that Φ∗ ∶ 𝑀𝑋 ⊗𝒯(𝐻) → 𝑀𝐴 is the predual of the unital completely
positivemapΦ. If 𝐸 = (𝐸𝑥,𝑥′,𝑎,𝑎′)𝑥,𝑥′,𝑎,𝑎′ and 𝐹 = (𝐹𝑦,𝑦′,𝑏,𝑏′)𝑦,𝑦′,𝑏,𝑏′ are stochastic
operator matrices in𝑀𝑋𝐴 ⊗ℬ(𝐻) and𝑀𝑌𝐵 ⊗ℬ(𝐻), respectively, such that

𝐸𝑥,𝑥′,𝑎,𝑎′𝐹𝑦,𝑦′,𝑏,𝑏′ = 𝐹𝑦,𝑦′,𝑏,𝑏′𝐸𝑥,𝑥′,𝑎,𝑎′
for all 𝑥, 𝑥′ ∈ 𝑋, 𝑦, 𝑦′ ∈ 𝑌, 𝑎, 𝑎′ ∈ 𝐴, 𝑏, 𝑏′ ∈ 𝐵, we let 𝐸 ⋅ 𝐹 be the (unique)
stochastic operator matrix over (𝑋𝑌,𝐴𝐵) (see [39, Proposition 4.1]) defined by

(𝐸𝑥,𝑥′,𝑎,𝑎′𝐹𝑦,𝑦′,𝑏,𝑏′)𝑎,𝑎
′,𝑏,𝑏′

𝑥,𝑥′,𝑦,𝑦′ ∈ 𝑀𝑋𝑌𝐴𝐵 ⊗ℬ(𝐻).
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If 𝜉 is a unit vector in Hilbert space𝐻, we let Γ𝐸,𝐹,𝜉 = Γ𝐸⋅𝐹,𝜉𝜉∗ where the latter is
the quantum channel from𝑀𝑋𝑌 to𝑀𝐴𝐵 defined as in (4). If 𝐸 ∈ 𝑀𝑋𝐴⊗ℬ(𝐻𝐴)
and𝐹 ∈ 𝑀𝑌𝐵⊗ℬ(𝐻𝐵) are stochastic operatormatrices, we let𝐸⊙𝐹 denote the
stochastic operator matrix 𝐸 ⊗ 𝐹, considered as an element of𝑀𝑋𝑌 ⊗𝑀𝐴𝐵 ⊗
ℬ(𝐻𝐴 ⊗𝐻𝐵).
A QNS correlation Γ ∶ 𝑀𝑋𝑌 → 𝑀𝐴𝐵 is called quantum commuting if there

exists a Hilbert space 𝐻, a unit vector 𝜉 ∈ 𝐻 and stochastic operator matrices
𝐸 = (𝐸𝑥,𝑥′,𝑎,𝑎′)𝑥,𝑥′,𝑎,𝑎′ and 𝐹 = (𝐹𝑦,𝑦′,𝑏,𝑏′)𝑦,𝑦′,𝑏,𝑏′ on 𝐻 such that 𝐸 and 𝐹 are
mutually commuting, with Γ = Γ𝐸,𝐹,𝜉 . Quantum QNS correlations are those
for which there exist finite dimensional Hilbert spaces 𝐻𝐴, 𝐻𝐵, stochastic op-
erator matrices 𝐸 ∈ 𝑀𝑋𝐴 ⊗ ℬ(𝐻𝐴) and 𝐹 ∈ 𝑀𝑌𝐵 ⊗ ℬ(𝐻𝐵), and a pure state
𝜎 ∈ 𝒯(𝐻𝐴 ⊗ 𝐻𝐵) such that Γ = Γ𝐸⊙𝐹,𝜎. Approximately quantum QNS cor-
relations are the limits of quantum QNS correlations, while local QNS corre-
lations are the convex combinations of the form Γ = ∑𝑘

𝑖=1 𝜆𝑖Φ𝑖 ⊗ Ψ𝑖, where
Φ𝑖 ∶ 𝑀𝑋 → 𝑀𝐴 and Ψ𝑖 ∶ 𝑀𝑌 → 𝑀𝐵 are quantum channels, 𝑖 = 1, … , 𝑘. We
write 𝒬qc (resp. 𝒬qa, 𝒬q, 𝒬loc) for the (convex) set of all quantum commuting
(resp. approximately quantum, quantum, local) QNS correlations, and note the
(strict, see [39]) inclusions

𝒬loc ⊆ 𝒬q ⊆ 𝒬qa ⊆ 𝒬qc ⊆ 𝒬ns. (5)

Let

ℒ𝑋,𝐴 = {(𝜆𝑥,𝑥′,𝑎,𝑎′) ∈ 𝑀𝑋𝐴 ∶ ∃ 𝑐 ∈ ℂ s.t.
∑

𝑎∈𝐴
𝜆𝑥,𝑥′,𝑎,𝑎 = 𝛿𝑥,𝑥′𝑐, 𝑥, 𝑥′ ∈ 𝑋},

and consider it as an operator subsystem of𝑀𝑋𝐴. Similarly,

ℒ𝑋 = {(𝜆𝑥,𝑥′,𝑎,𝑎′) ∈ 𝑀𝑋𝑋 ∶ ∃ 𝑐 ∈ ℂ s.t.
∑

𝑎∈𝑋
𝜆𝑥,𝑥′,𝑎,𝑎 = 𝛿𝑥,𝑥′𝑐

and
∑

𝑥∈𝑋
𝜆𝑥,𝑥,𝑎,𝑎′ = 𝛿𝑎,𝑎′𝑐, 𝑥, 𝑥′, 𝑎, 𝑎′ ∈ 𝑋}

may be considered as an operator subsystem of 𝑀𝑋𝑋 . By [39, Proposition 5.5,
Theorem 6.2], the elements Γ of 𝒬ns correspond canonically to elements of the
tensor product ℒ𝑋,𝐴 ⊗min ℒ𝑌,𝐵 (viewed as an operator subsystem of 𝑀𝑋𝐴 ⊗
𝑀𝑌𝐵), and elements in𝒬bins corresponding to elements ofℒ𝑋⊗minℒ𝑌 [7, Propo-
sition 3.6, Theorem 5.4].
A classical correlation over (𝑋, 𝑌,𝐴, 𝐵) is a collection

𝑝 = {(𝑝(𝑎, 𝑏|𝑥, 𝑦))𝑎∈𝐴,𝑏∈𝐵 ∶ (𝑥, 𝑦) ∈ 𝑋 × 𝑌},

where (𝑝(𝑎, 𝑏|𝑥, 𝑦))𝑎∈𝐴,𝑏∈𝐵 is a probability distribution for each (𝑥, 𝑦) ∈ 𝑋×𝑌.
Given a classical correlation 𝑝, let𝒩𝑝 ∶ 𝒟𝑋𝑌 → 𝒟𝐴𝐵 be the classical channel
given by

𝒩𝑝(𝜌) =
∑

𝑥∈𝑋,𝑦∈𝑌

∑

𝑎∈𝐴,𝑏∈𝐵
𝑝(𝑎, 𝑏|𝑥, 𝑦)⟨𝜌(𝑒𝑥 ⊗ 𝑒𝑦), 𝑒𝑥 ⊗ 𝑒𝑦⟩𝜖𝑎𝑎 ⊗ 𝜖𝑏𝑏. (6)
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If t ∈ {loc, q, qa, qc, ns}, let 𝒞t denote the collection of all classical correlations
𝑝 for which Γ𝒩𝑝 ∈ 𝒬t.
Suppose 𝑋𝑖 and 𝑌𝑖 (𝑖 = 1, 2) are finite sets. Let Γ be a QNS correlation over

(𝑋2, 𝑌1, 𝑋1, 𝑌2) and ℰ ∶ 𝑀𝑋1 → 𝑀𝑌1 be a quantum channel. If we write Γ =
∑𝑘

𝑖=1Φ𝑖 ⊗ Ψ𝑖, where Φ𝑖 ∶ 𝑀𝑋2 → 𝑀𝑋1 and Ψ𝑖 ∶ 𝑀𝑌1 → 𝑀𝑌2 are linear maps
for 𝑖 = 1, … , 𝑘, we let Γ[ℰ] ∶ 𝑀𝑋2 →𝑀𝑌2 be the linear map defined by setting

Γ[ℰ] =
𝑘∑

𝑖=1
Ψ𝑖◦ℰ◦Φ𝑖. (7)

It was shown in [15] that Γ[ℰ] is a quantum channel, called therein the simu-
lated channel from ℰ assisted by simulator Γ. We note that (see [20], [21]) the
Choi matrix of Γ[ℰ] coincides with

(
∑

𝑥1,𝑥′1

∑

𝑦1,𝑦′1

Γ(𝑥1𝑥′1, 𝑦2𝑦
′
2|𝑥2𝑥

′
2, 𝑦1𝑦

′
1)ℰ(𝑦1𝑦

′
1|𝑥1𝑥

′
1))

𝑥2,𝑥′2,𝑦2,𝑦
′
2

, (8)

where the internal sums range over 𝑋1 and 𝑌1, for all 𝑥2, 𝑥′2 ∈ 𝑋2, 𝑦2, 𝑦′2 ∈ 𝑌2.
Thus, channel simulation is a process for constructing new quantum channels
from given ones, with the assistance of correlations; morever, it is natural to
want the simulated channel to depend on a shared resource between two par-
ties. If Alice and Bob have access to some shared resource (for instance: shared
randomness, or entanglement, etc.), their interaction with the resource yields
the no-signalling correlation Γ, and simulated channel Γ[ℰ] is dependent on
their local operations (see [12, Section II], and [15]).

3. Strongly stochastic operator matrices
Let 𝑋,𝑌,𝐴 and 𝐵 be finite sets, and 𝐻 be a Hilbert space. In the sequel, to

simplify notation we will abbreviate an ordered pair (𝑥, 𝑦) ∈ 𝑋 × 𝑌 to 𝑥𝑦. A
stochastic operator matrix

𝑃 = (𝑃𝑎𝑎
′,𝑏𝑏′

𝑥𝑥′,𝑦𝑦′)𝑥𝑥′,𝑦𝑦′,𝑎𝑎′,𝑏𝑏′ ∈ 𝑀𝑋𝑌𝐴𝐵 ⊗ℬ(𝐻)

over (𝑋𝑌,𝐴𝐵) will be called a strongly stochastic operator matrix over
(𝑋, 𝑌,𝐴, 𝐵) if Tr𝐵(𝐿𝜎𝑌 (𝑃)) (resp. Tr𝐴(𝐿𝜎𝑋 (𝑃))) is a well-defined stochastic op-
erator matrix over (𝑋,𝐴) (resp. (𝑌, 𝐵)) and Tr𝐵(𝐿𝜎𝑌 (𝑃)) = Tr𝐵(𝐿𝜎′𝑌 (𝑃)) (resp.
Tr𝐴(𝐿𝜎𝑋 (𝑃)) = Tr𝐴(𝐿𝜎′𝑋 (𝑃))) for each pure state 𝜎𝑋 , 𝜎

′
𝑋 ∈ 𝑀𝑋 and 𝜎𝑌 , 𝜎′𝑌 ∈ 𝑀𝑌 .

Remark 3.1. In fact, by convexity and linearity of the slicemapwemay assume
𝜎𝑋 , 𝜎𝑋′ ∈ 𝑀𝑋 and 𝜎𝑌 , 𝜎𝑌′ ∈ 𝑀𝑌 are arbitrary states.

Remark 3.2. A positive operator 𝑃 = (𝑃𝑥𝑦,𝑎𝑏)𝑥,𝑦,𝑎,𝑏 ∈ 𝒟𝑋𝑌𝐴𝐵 ⊗ ℬ(𝐻) is a
no-signalling (NS) operator matrix [20] if marginal operators

𝑃𝑥,𝑎 ∶=
∑

𝑏∈𝐵
𝑃𝑥𝑦,𝑎𝑏, 𝑃𝑦,𝑏 ∶=

∑

𝑎∈𝐴
𝑃𝑥𝑦,𝑎𝑏
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are well-defined, and (𝑃𝑥,𝑎)𝑎∈𝐴, (𝑃𝑦,𝑏)𝑏∈𝐵 are POVM’s for every 𝑥 ∈ 𝑋 and 𝑦 ∈
𝑌. If we start with a NS operator matrix 𝑃, for 𝑥, 𝑥′ ∈ 𝑋, 𝑦, 𝑦′ ∈ 𝑌, 𝑎, 𝑎′ ∈
𝐴, 𝑏, 𝑏′ ∈ 𝐵 set

𝑃𝑎𝑎
′,𝑏𝑏′

𝑥𝑥′,𝑦𝑦′ = 𝛿𝑥𝑥′𝛿𝑦𝑦′𝛿𝑎𝑎′𝛿𝑏𝑏′𝑃𝑥𝑦,𝑎𝑏.

Setting 𝑃̃ = (𝑃𝑎𝑎
′,𝑏𝑏′

𝑥𝑥′,𝑦𝑦′)𝑥𝑥′,𝑦𝑦′,𝑎𝑎′,𝑏𝑏′ ∈ 𝑀𝑋𝑌𝐴𝐵 ⊗ℬ(𝐻), one may easily check that
𝑃̃ is strongly stochastic over (𝑋𝑌,𝐴𝐵)with Tr𝐵(𝐿𝜎𝑌 (𝑃̃)) and Tr𝐴(𝐿𝜎𝑋 (𝑃̃)) classi-
cal stochastic operator matrices (as introduced in [39, Section 3]) for each (pure)
state 𝜎𝑋 ∈ 𝑀𝑋 and 𝜎𝑌 ∈ 𝑀𝑌 . Thus, we may think of strongly stochastic oper-
ator matrices over (𝑋𝑌,𝐴𝐵) as generalizations of NS operator matrices, whose
“marginal" stochastic operators are no longer necessarily classical.

A strongly stochastic operatormatrix𝑃 = (𝑃𝑎𝑎
′,𝑏𝑏′

𝑥𝑥′,𝑦𝑦′)𝑥𝑥′,𝑦𝑦′,𝑎𝑎′,𝑏𝑏′ is called dilat-
able if there exists a Hilbert space𝐾, an isometry𝑉 ∶ 𝐻 → 𝐾 and stochastic op-
eratormatrices (𝐸𝑥𝑥′,𝑎𝑎′)𝑥,𝑥′∈𝑋,𝑎,𝑎′∈𝐴 (resp. (𝐹𝑦𝑦′,𝑏𝑏′)𝑦,𝑦′∈𝑌,𝑏,𝑏′∈𝐵) in𝑀𝑋𝐴⊗ℬ(𝐾)
(resp. 𝑀𝑌𝐵 ⊗ℬ(𝐾)) such that 𝐸𝑥𝑥′,𝑎𝑎′𝐹𝑦𝑦′,𝑏𝑏′ = 𝐹𝑦𝑦′,𝑏𝑏′𝐸𝑥𝑥′,𝑎𝑎′ and

𝑃𝑎𝑎
′,𝑏𝑏′

𝑥𝑥′,𝑦𝑦′ = 𝑉∗𝐸𝑥𝑥′,𝑎𝑎′𝐹𝑦𝑦′,𝑏𝑏′𝑉, 𝑥, 𝑥′ ∈ 𝑋, 𝑦, 𝑦′ ∈ 𝑌, 𝑎, 𝑎′ ∈ 𝐴, 𝑏, 𝑏′ ∈ 𝐵. (9)

We will call a strongly stochastic operator matrix 𝑃 = (𝑃𝑎𝑎
′,𝑏𝑏′

𝑥𝑥′,𝑦𝑦′)𝑥𝑥′,𝑦𝑦′,𝑎𝑎′,𝑏𝑏′
acting on a Hilbert space𝐻 locally dilatable if there exists a dilation of the form
(9), with the additional stipulation that the family

{𝐸𝑥𝑥′,𝑎𝑎′ , 𝐹𝑦𝑦′,𝑏𝑏′ ∶ 𝑥, 𝑥′ ∈ 𝑋, 𝑦, 𝑦′ ∈ 𝑌, 𝑎, 𝑎′ ∈ 𝐴, 𝑏, 𝑏′ ∈ 𝐵}
is commutative. We will call a strongly stochastic operator matrix

𝑃 = (𝑃𝑎𝑎
′,𝑏𝑏′

𝑥𝑥′,𝑦𝑦′)𝑥𝑥′,𝑦𝑦′,𝑎𝑎′,𝑏𝑏′
acting on a Hilbert space 𝐻 quantum dilatable if there exist stochastic opera-
tor matrices (𝐸𝑥𝑥′,𝑎𝑎′)𝑥,𝑥′∈𝑋,𝑎,𝑎′∈𝐴 and (𝐹𝑦𝑦′,𝑏𝑏′)𝑦,𝑦′∈𝑌,𝑏,𝑏′∈𝐵 acting on finite di-
mensional Hilbert spaces 𝐻𝐴 and 𝐻𝐵 respectively, and an isometry 𝑉 ∶ 𝐻 →
𝐻𝐴 ⊗𝐻𝐵, such that

𝑃𝑎𝑎
′,𝑏𝑏′

𝑥𝑥′,𝑦𝑦′ = 𝑉∗(𝐸𝑥𝑥′,𝑎𝑎′ ⊗𝐹𝑦𝑦′,𝑏𝑏′)𝑉, (10)

for 𝑥, 𝑥′ ∈ 𝑋, 𝑦, 𝑦′ ∈ 𝑌, 𝑎, 𝑎′ ∈ 𝐴, 𝑏, 𝑏′ ∈ 𝐵.
Proposition 3.3. AQNScorrelationΓ over (𝑋, 𝑌,𝐴, 𝐵) belongs to𝒬loc if and only
if there exists a Hilbert space 𝐻, a locally dilatable strongly stochastic operator
matrix 𝑃 = (𝑃𝑎𝑎

′,𝑏𝑏′
𝑥𝑥′,𝑦𝑦′)𝑥𝑥′,𝑦𝑦′,𝑎𝑎′,𝑏𝑏′ acting on𝐻 and a unit vector 𝜉 ∈ 𝐻 such that

Γ(𝑎𝑎′, 𝑏𝑏′|𝑥𝑥′, 𝑦𝑦′) = ⟨𝑃𝑎𝑎
′,𝑏𝑏′

𝑥𝑥′,𝑦𝑦′𝜉, 𝜉⟩, (11)

for 𝑥, 𝑥′ ∈ 𝑋, 𝑦, 𝑦′ ∈ 𝑌, 𝑎, 𝑎′ ∈ 𝐴, 𝑏, 𝑏′ ∈ 𝐵.

Proof. First, assume that Γ ∈ 𝒬loc is a convex combination Γ =
∑𝑘

𝑗=1 𝜆𝑗Φ
(𝑗)⊗

Ψ(𝑗), where Φ(𝑗) ∶ 𝑀𝑋 →𝑀𝐴 and Ψ(𝑗) ∶ 𝑀𝑌 →𝑀𝐵 are quantum channels, 𝑗 =
1,… , 𝑘. By the comment before [39, Remark 3.2],Φ(𝑗) (resp. Ψ(𝑗)) is of the form
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Γ𝐸(𝑗),1 (resp. Γ𝐹(𝑗),1) for some stochastic operatormatrix𝐸(𝑗) ∈ 𝑀𝑋⊗𝑀𝐴⊗ℬ(ℂ)
(resp. 𝐹(𝑗) ∈ 𝑀𝑌 ⊗ 𝑀𝐵 ⊗ ℬ(ℂ)) for 𝑗 = 1,… , 𝑘. For each 𝑥, 𝑥′ ∈ 𝑋, 𝑎, 𝑎′ ∈
𝐴 define the matrix 𝐸𝑎,𝑎

′

𝑥,𝑥′ = (𝐸(𝑗)𝑥,𝑥′,𝑎,𝑎′)
𝑘
𝑗=1 ∈ 𝒟𝑘. Define the corresponding

matrices 𝐹𝑏,𝑏
′

𝑦,𝑦′ in𝒟𝑘 for each 𝑦, 𝑦′ ∈ 𝑌, 𝑏, 𝑏′ ∈ 𝐵. We note that the family

{𝐸𝑎,𝑎
′

𝑥,𝑥′ , 𝐹
𝑏,𝑏′
𝑦,𝑦′ ∶ 𝑥, 𝑥′ ∈ 𝑋, 𝑎, 𝑎′ ∈ 𝐴, 𝑦, 𝑦′ ∈ 𝑌, 𝑏, 𝑏′ ∈ 𝐵},

is commutative. Then, let

𝐸 ∶= (𝐸𝑎,𝑎
′

𝑥,𝑥′ )𝑥,𝑥′,𝑎,𝑎′ , 𝐹 ∶= (𝐹𝑏,𝑏
′

𝑦,𝑦′ )𝑦,𝑦′,𝑏,𝑏′ .

Note that 𝐸 (resp. 𝐹) is stochastic over (𝑋,𝐴) (resp. (𝑌, 𝐵)). Indeed: since 𝐸(𝑗)
is a stochastic operator matrix in 𝑀𝑋 ⊗ 𝑀𝐴 ⊗ ℬ(ℂ) for each 𝑗 = 1,… , 𝑘, we
know that

∑
𝑎
𝐸(𝑗)𝑥,𝑥′,𝑎,𝑎 = 𝛿𝑥,𝑥′ for each 𝑥, 𝑥′ ∈ 𝑋 and 𝑗 = 1,… , 𝑘. Thus,

Tr𝐴(𝐸) =
∑

𝑎

∑

𝑥,𝑥′

𝑘∑

𝑗=1
𝐸(𝑗)𝑥,𝑥′,𝑎,𝑎𝜖𝑥,𝑥′ ⊗ 𝜖𝑗𝑗

=
𝑘∑

𝑗=1

∑

𝑥,𝑥′

∑

𝑎
𝐸(𝑗)𝑥,𝑥′,𝑎,𝑎𝜖𝑥,𝑥′ ⊗ 𝜖𝑗𝑗

=
𝑘∑

𝑗=1

∑

𝑥,𝑥′
𝛿𝑥,𝑥′𝜖𝑥,𝑥′ ⊗ 𝜖𝑗𝑗

= 𝐼𝑋 ⊗ 𝐼𝑘.

Set 𝜉 =
𝑘∑
𝑗=1

√
𝜆𝑗𝑒𝑗, so 𝜉 is a unit vector in ℂ𝑘. For 𝑥, 𝑥′ ∈ 𝑋, 𝑦, 𝑦′ ∈ 𝑌, 𝑎, 𝑎′ ∈

𝐴, 𝑏, 𝑏′ ∈ 𝐵 we see

⟨𝐸𝑎,𝑎
′

𝑥,𝑥′𝐹
𝑏,𝑏′
𝑦,𝑦′𝜉, 𝜉⟩ =

𝑘∑

𝑗=1
𝜆𝑗𝐸

(𝑗)
𝑥,𝑥′,𝑎,𝑎′𝐹

(𝑗)
𝑦,𝑦′,𝑏,𝑏′

=
𝑘∑

𝑗=1
𝜆𝑗⟨𝐸

(𝑗)
𝑥,𝑥′,𝑎,𝑎′ ⊗𝐹(𝑗)𝑦,𝑦′,𝑏,𝑏′ , 𝐼⟩

= ⟨Γ(𝜖𝑥,𝑥′ ⊗ 𝜖𝑦,𝑦′), 𝜖𝑎,𝑎′ ⊗ 𝜖𝑏,𝑏′⟩
= Γ(𝑎𝑎′, 𝑏𝑏′|𝑥𝑥′, 𝑦𝑦′).

Setting 𝑃𝑎𝑎
′,𝑏𝑏′

𝑥𝑥′,𝑦𝑦′ = 𝐸𝑎,𝑎
′

𝑥,𝑥′𝐹
𝑏,𝑏′
𝑦,𝑦′ for each 𝑥, 𝑥

′ ∈ 𝑋, 𝑦, 𝑦′ ∈ 𝑌, 𝑎, 𝑎′ ∈ 𝐴, 𝑏, 𝑏′ ∈ 𝐵
and letting 𝑃 = (𝑃𝑎𝑎

′,𝑏𝑏′
𝑥𝑥′,𝑦𝑦′) (where the latter matrix entries range over 𝑋,𝑌,𝐴, 𝐵)

gives us our locally dilatable strongly stochastic operator matrix satisfying (11).
Now, assume 𝑃 = (𝑃𝑎𝑎

′,𝑏𝑏′
𝑥𝑥′,𝑦𝑦′)𝑥𝑥′,𝑦𝑦′,𝑎𝑎′,𝑏𝑏′ is a locally dilatable strongly sto-

chastic operator matrix acting on 𝐻 with unit vector 𝜉 ∈ 𝐻 satisfying (11).
If we replace 𝐻 with the Hilbert space 𝐾 arising from the dilation (9) of 𝑃
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and the vector 𝜉 with 𝑉𝜉, we may without loss of generality directly assume
𝑃𝑎𝑎

′,𝑏𝑏′
𝑥𝑥′,𝑦𝑦′ = 𝐸𝑥,𝑥′,𝑎,𝑎′𝐹𝑦,𝑦′,𝑏,𝑏′ , 𝑥, 𝑥′ ∈ 𝑋, 𝑦, 𝑦′ ∈ 𝑌, 𝑎, 𝑎′ ∈ 𝐴, 𝑏, 𝑏′ ∈ 𝐵, where the
family

{𝐸𝑥,𝑥′,𝑎,𝑎′ , 𝐹𝑦,𝑦′,𝑏,𝑏′ ∶ 𝑥, 𝑥′ ∈ 𝑋, 𝑎, 𝑎′ ∈ 𝐴, 𝑦, 𝑦′ ∈ 𝑌, 𝑏, 𝑏′ ∈ 𝐵}
is commutative.
Let𝒜𝐴

𝑋 (resp. 𝒜
𝐵
𝑌) be the abelianC∗-algebra generated by {𝐸𝑥,𝑥′,𝑎,𝑎′ ∶ 𝑥, 𝑥′ ∈

𝑋, 𝑎, 𝑎′ ∈ 𝐴} (resp. {𝐹𝑦,𝑦′,𝑏,𝑏′ ∶ 𝑦, 𝑦′ ∈ 𝑌, 𝑏, 𝑏′ ∈ 𝐵}). Let 𝑠 ∶ 𝒜𝐴
𝑋 ⊗max

𝒜𝐵
𝑌 → ℂ be the state given by 𝑠(𝑆 ⊗𝑇) = ⟨𝑆𝑇𝜉, 𝜉⟩. By nuclearity of abelian C∗-

algebras, we may consider 𝑠 as a state on𝒜𝐴
𝑋⊗min𝒜𝐵

𝑌 . Using the identification
𝒜𝐴
𝑋 = 𝐶(Ω1), 𝒜𝐵

𝑌 = 𝐶(Ω2) for compact Hausdorff spaces Ω1, Ω2, we view 𝑠 as
a Borel probability measure 𝜇 on the product topological space Ω1 × Ω2. For
each 𝜔1 ∈ Ω1 (resp. 𝜔2 ∈ Ω2), let Φ(𝜔1) ∶ 𝑀𝑋 → 𝑀𝐴 (resp. Ψ(𝜔2) ∶ 𝑀𝑌 →
𝑀𝐵) be the quantum channel given by Φ(𝜔1)(𝜖𝑥,𝑥′) = (𝐸𝑥,𝑥′,𝑎,𝑎′(𝜔1))𝑎,𝑎′ (resp.
Ψ(𝜔2)(𝜖𝑦,𝑦′) = (𝐹𝑦,𝑦′,𝑏,𝑏′(𝜔2))𝑏,𝑏′). We then have

⟨Γ(𝜖𝑥,𝑥′ ⊗ 𝜖𝑦,𝑦′), 𝜖𝑎,𝑎′ ⊗ 𝜖𝑏,𝑏′⟩
= ⟨𝐸𝑥,𝑥′,𝑎,𝑎′𝐹𝑦,𝑦′,𝑏,𝑏′𝜉, 𝜉⟩

= ∫
Ω1×Ω2

𝐸𝑥,𝑥′,𝑎,𝑎′(𝜔1)𝐹𝑦,𝑦′,𝑏,𝑏′(𝜔2)𝑑𝜇(𝜔1, 𝜔2)

=
⟨

∫
Ω1×Ω2

Φ(𝜔1)(𝜖𝑥,𝑥′) ⊗ Ψ(𝜔2)(𝜖𝑦,𝑦′)𝑑𝜇(𝜔1, 𝜔2), 𝜖𝑎,𝑎′ ⊗ 𝜖𝑏,𝑏′
⟩
.

If we approximate measure 𝜇 using convex combinations of product measures
𝜇1 × 𝜇2 (where 𝜇1 ∈ M(Ω1), 𝜇2 ∈ M(Ω2)) we see we can approximate Γ using
channels which may be written as convex combinations Γ̃ = ∑𝑘

𝑗=1 𝜆𝑗Φ𝑗 ⊗ Ψ𝑗,
whereΦ𝑗 ∶ 𝑀𝑋 →𝑀𝐴 andΨ𝑗 ∶ 𝑀𝑌 →𝑀𝐵 are quantum channels, 𝑗 = 1,… , 𝑘.
By the Carathéodory Theorem and compactness, use a similar argument as in
[39, Remark 4.10] to conclude that Γ itself is of that form. Thus, Γ ∈ 𝒬loc. □

For certain classes of quantum games (for instance, those concerned with
the behavior of quantum symmetries of quantum objects as in [7, 13]) we will
draw our questions and answer states from the same space; thus, a particular
notion of strongly stochastic operator matrix will be required in this context.
We assume that 𝑋 = 𝐴 and 𝑌 = 𝐵. For notational ease, we will continue to
refer to𝑋 and𝐴 (resp. 𝑌 and 𝐵) as distinct entities, even though they are copies
of the same set.
A positive operator 𝑃 = (𝑃𝑎𝑎

′,𝑏𝑏′
𝑥𝑥′,𝑦𝑦′)𝑥𝑥′,𝑦𝑦′,𝑎𝑎′,𝑏𝑏′ ∈ 𝑀𝑋𝑌𝐴𝐵 ⊗ ℬ(𝐻) will be

called a strongly bistochastic operator matrix if it is a strongly stochastic op-
erator matrix over (𝑋𝑌,𝐴𝐵), with Tr𝐵(𝐿𝜎𝑌 (𝑃)) and Tr𝐴(𝐿𝜎𝑋 (𝑃)) bistochastic
operator matrices for each state 𝜎𝑋 ∈ 𝑀𝑋 , 𝜎𝑌 ∈ 𝑀𝑌 . A strongly bistochas-
tic operator matrix 𝑃 = (𝑃𝑎𝑎

′,𝑏𝑏′
𝑥𝑥′,𝑦𝑦′)𝑥𝑥′,𝑦𝑦′,𝑎𝑎′,𝑏𝑏′ is called dilatable if there exists
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a Hilbert space 𝐾, an isometry 𝑉 ∶ 𝐻 → 𝐾, and bistochastic operator ma-
trices (𝐸𝑥𝑥′,𝑎𝑎′)𝑥,𝑥′∈𝑋,𝑎,𝑎′∈𝐴 (resp. (𝐹𝑦𝑦′,𝑏𝑏′)𝑦,𝑦′∈𝑌,𝑏,𝑏′∈𝐵) in 𝑀𝑋𝐴 ⊗ ℬ(𝐾) (resp.
𝑀𝑌𝐵⊗ℬ(𝐾)) such that 𝐸𝑥𝑥′,𝑎𝑎′𝐹𝑦𝑦′,𝑏𝑏′ = 𝐹𝑦𝑦′,𝑏𝑏′𝐸𝑥𝑥′,𝑎𝑎′ and which satisfy rela-
tions (9) for all 𝑥, 𝑥′ ∈ 𝑋, 𝑎, 𝑎′ ∈ 𝐴, 𝑦, 𝑦′ ∈ 𝑌, 𝑏, 𝑏′ ∈ 𝐵. Locally dilatable and
quantum dilatable strongly bistochastic operator matrices are defined exactly
as with strongly stochastic operator matrices, but using bistochastic operator
matrices in place of stochastic operator matrices.

3.1. SQNS correlations. One goal for this work is to develop a method for
transferring perfect strategies of one quantum input-output game to another.
The framework we use for this purpose is by embedding both quantum games
into a single “game-of-games", whose winning QNS strategies encode the win-
ning information for both simultaneously. ThewinningQNS strategies are used
as simulators in the simulation paradigm, allowing us to take a perfect strategy
for the first game and— in conjunction with a winning strategy for the “game-
of-games"— construct the desired strategy for the second. In order to adhere
to the no-signalling condition for both games, we have to modify the classes of
QNS correlations we use as simulators; this leads us to the introduction of a
particular sub-class of QNS correlations, which is the focus of this subsection.
Let 𝑋𝑖, 𝑌𝑖, 𝐴𝑖, 𝐵𝑖, 𝑖 = 1, 2 be finite sets. A quantum channel

Γ ∶ 𝑀𝑋2𝑌2×𝐴1𝐵1 →𝑀𝑋1𝑌1×𝐴2𝐵2

will be called a strongly quantum no-signalling (SQNS) correlation if

Tr𝑋1Γ(𝜌𝑋2𝑌2 ⊗ 𝜌𝐴1𝐵1) = 0 if 𝜌𝑋2𝑌2 ∈ 𝑀𝑋2𝑌2 and Tr𝑋2(𝜌𝑋2𝑌2) = 0, (12)

Tr𝑌1Γ(𝜌𝑋2𝑌2 ⊗ 𝜌𝐴1𝐵1) = 0 if 𝜌𝑋2𝑌2 ∈ 𝑀𝑋2𝑌2 and Tr𝑌2(𝜌𝑋2𝑌2) = 0, (13)

Tr𝐴2Γ(𝜌𝑋2𝑌2 ⊗ 𝜌𝐴1𝐵1) = 0 if 𝜌𝐴1𝐵1 ∈ 𝑀𝐴1𝐵1 and Tr𝐴1(𝜌𝐴1𝐵1) = 0, (14)

and

Tr𝐵2Γ(𝜌𝑋2𝑌2 ⊗ 𝜌𝐴1𝐵1) = 0 if 𝜌𝐴1𝐵1 ∈ 𝑀𝐴1𝐵1 and Tr𝐵1(𝜌𝐴1𝐵1) = 0. (15)

Wedenote by𝒬sns the (convex) set of all SQNS correlations; it is clear that𝒬sns ⊆
𝒬ns.
A 𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 𝑠𝑡𝑟𝑜𝑛𝑔𝑙𝑦 𝑛𝑜 − 𝑠𝑖𝑔𝑛𝑎𝑙𝑙𝑖𝑛𝑔 (𝑆𝑁𝑆) 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 [20] is a correlation

𝑝 = (𝑝(𝑥1𝑦1, 𝑎2𝑏2|𝑥2𝑦2, 𝑎1𝑏1))𝑥1𝑦1,𝑎1𝑏1,𝑥2𝑦2,𝑎2𝑏2
that satisfies the conditions

∑

𝑥1∈𝑋1
𝑝(𝑥1𝑦1, 𝑎2𝑏2|𝑥2𝑦2, 𝑎1𝑏1)=

∑

𝑥1∈𝑋1
𝑝(𝑥1𝑦1, 𝑎2𝑏2|𝑥′2𝑦2, 𝑎1𝑏1), 𝑥2, 𝑥

′
2 ∈ 𝑋2,

∑

𝑦1∈𝑌1
𝑝(𝑥1𝑦1, 𝑎2𝑏2|𝑥2𝑦2, 𝑎1𝑏1)=

∑

𝑦1∈𝑌1
𝑝(𝑥1𝑦1, 𝑎2𝑏2|𝑥2𝑦′2, 𝑎1𝑏1), 𝑦2, 𝑦

′
2 ∈ 𝑌2,

∑

𝑎2∈𝐴2

𝑝(𝑥1𝑦1, 𝑎2𝑏2|𝑥2𝑦2, 𝑎1𝑏1)=
∑

𝑎2∈𝐴2

𝑝(𝑥1𝑦1, 𝑎2𝑏2|𝑥2𝑦2, 𝑎′1𝑏1), 𝑎1, 𝑎
′
1 ∈ 𝐴1,
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and
∑

𝑏2∈𝐵2
𝑝(𝑥1𝑦1, 𝑎2𝑏2|𝑥2𝑦2, 𝑎1𝑏1)=

∑

𝑏2∈𝐵2
𝑝(𝑥1𝑦1, 𝑎2𝑏2|𝑥2𝑦2, 𝑎1𝑏′1), 𝑏1, 𝑏

′
1 ∈ 𝐵1.

The (convex) collection of all SNS correlations is denoted by 𝒞sns. If 𝑝 ∈ 𝒞sns,
then marginal conditional probability distributions

𝑝(𝑥1𝑦1, 𝑎2|𝑥2𝑦2, 𝑎1), 𝑝(𝑥1𝑦1, 𝑏2|𝑥2𝑦2, 𝑏1),
𝑝(𝑥1, 𝑎2𝑏2|𝑥2, 𝑎1𝑏1) and 𝑝(𝑦1, 𝑎2𝑏2|𝑦2, 𝑎1𝑏1)

are all well-defined.

Remark 3.4. If 𝑝 is a classical correlation over (𝑋2𝑌2, 𝐴1𝐵1, 𝑋1𝑌1, 𝐴2𝐵2), then
𝑝 is an SNS correlation precisely when Γ𝑝 is a SQNS correlation. To see why,
first assume that 𝜌𝑋2𝑌2 ∈ 𝑀𝑋2𝑌2 with Tr𝑋2(𝜌𝑋2𝑌2) = 0. Writing

𝜌𝑋2𝑌2 =
∑

𝜌̃𝑦2,𝑦
′
2

𝑥2,𝑥′2
𝜖𝑥2𝑥′2 ⊗ 𝜖𝑦2𝑦′2 ,

where the sum is over all 𝑥2, 𝑥′2 ∈ 𝑋2 and 𝑦2, 𝑦′2 ∈ 𝑌2. The partial trace condi-
tion on 𝜌𝑋2𝑌2 implies

∑

𝑥2∈𝑋2

∑

𝑦2,𝑦′2∈𝑌2
𝜌̃𝑦2,𝑦

′
2

𝑥2.𝑥2𝜖𝑦2𝑦′2 = 0. (16)

Specifically,
∑
𝑥2
𝜌̃𝑦2,𝑦2𝑥2,𝑥2 = 0 for any 𝑦2 ∈ 𝑌2. If we then take 𝜌𝐴1𝐵1 ∈ 𝑀𝐴1𝐵1 , we

see

Tr𝑋1Γ𝑝(𝜌𝑋2𝑌2 ⊗ 𝜌𝐴1𝐵1)
=

∑

𝑥2,𝑦2

∑

𝑎1,𝑏1

∑

𝑥1,𝑦1

∑

𝑎2,𝑏2
𝜌̃𝑦2,𝑦2𝑥2,𝑥2𝑝(𝑥1𝑦1, 𝑎2𝑏2|𝑥2𝑦2, 𝑎1𝑏1)⟨𝜌𝐴1𝐵1(𝑒𝑎1 ⊗ 𝑒𝑏1), 𝑒𝑎1 ⊗ 𝑒𝑏1⟩

×𝜖𝑦1𝑦1 ⊗ 𝜖𝑎2𝑎2 ⊗ 𝜖𝑏2𝑏2
=

∑

𝑎1,𝑏1

∑

𝑎2,𝑏2

∑

𝑦1
(
∑

𝑦2

∑

𝑥2
𝜌̃𝑦2,𝑦2𝑥2,𝑥2𝑝(𝑦1, 𝑎2𝑏2|𝑦2, 𝑎1𝑏1))⟨𝜌𝐴1𝐵1(𝑒𝑎1 ⊗ 𝑒𝑏1), 𝑒𝑎1 ⊗ 𝑒𝑏1⟩

×𝜖𝑦1𝑦1 ⊗ 𝜖𝑎2𝑎2 ⊗ 𝜖𝑏2𝑏2
= 0.

Using a similar argument, we can check that conditions (13), (14), and (15) are
satisfied. Conversely, assuming Γ𝑝 satisfies (12)-(15), if we let

𝜌 = 𝜖𝑥2𝑥2 ⊗ 𝜖𝑦2𝑦2 ⊗ 𝜖𝑎1𝑎1 ⊗ 𝜖𝑏1𝑏1 − 𝜖𝑥′2𝑥′2 ⊗ 𝜖𝑦2𝑦2 ⊗ 𝜖𝑎1𝑎1 ⊗ 𝜖𝑏1𝑏1 ,

for 𝑥2, 𝑥′2 ∈ 𝑋2, 𝑦2 ∈ 𝑌2, 𝑎1 ∈ 𝐴1 and 𝑏1 ∈ 𝐵1 we have that Tr𝑋2(𝜌) = 0 with

Γ𝑝(𝜌) =
∑

𝑥1,𝑦1

∑

𝑎2,𝑏2
(𝑝(𝑥1𝑦1, 𝑎2𝑏2|𝑥2𝑦2, 𝑎1𝑏1) − 𝑝(𝑥1𝑦1, 𝑎2𝑏2|𝑥′2𝑦2, 𝑎1𝑏1))

×𝜖𝑥1𝑥1 ⊗ 𝜖𝑦1𝑦1 ⊗ 𝜖𝑎2𝑎2 ⊗ 𝜖𝑏2𝑏2 .
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By (12), we see
∑

𝑥1
𝑝(𝑥1𝑦1, 𝑎2𝑏2|𝑥2𝑦2, 𝑎1𝑏1) =

∑

𝑥1
𝑝(𝑥1𝑦1, 𝑎2𝑏2|𝑥′2𝑦2, 𝑎1𝑏1), 𝑥2, 𝑥′2 ∈ 𝑋2.

The other SNS conditions can be verified by replacing 𝜌 with

𝜖𝑥2𝑥2 ⊗ 𝜖𝑦2𝑦2 ⊗ 𝜖𝑎1𝑎1 ⊗ 𝜖𝑏1𝑏1 − 𝜖𝑥2𝑥2 ⊗ 𝜖𝑦′2𝑦′2 ⊗ 𝜖𝑎1𝑎1 ⊗ 𝜖𝑏1𝑏1 ,
𝜖𝑥2𝑥2 ⊗ 𝜖𝑦2𝑦2 ⊗ 𝜖𝑎1𝑎1 ⊗ 𝜖𝑏1𝑏1 − 𝜖𝑥2𝑥2 ⊗ 𝜖𝑦2𝑦2 ⊗ 𝜖𝑎′1𝑎′1 ⊗ 𝜖𝑏1𝑏1 ,

and

𝜖𝑥2𝑥2 ⊗ 𝜖𝑦2𝑦2 ⊗ 𝜖𝑎1𝑎1 ⊗ 𝜖𝑏1𝑏1 − 𝜖𝑥2𝑥2 ⊗ 𝜖𝑦2𝑦2 ⊗ 𝜖𝑎1𝑎1 ⊗ 𝜖𝑏′1𝑏′1 ,

respectively.
Thus, we see that if 𝑝 is an SNS correlation over (𝑋2𝑌2, 𝐴1𝐵1, 𝑋1𝑌1, 𝐴2𝐵2),

then Γ𝑝 is SQNS. Also, if Γ is a (𝑋2𝑌2 × 𝐴1𝐵1, 𝑋1𝑌1 × 𝐴2𝐵2) classical SQNS
correlation then Γ = Γ𝑝 for some SNS correlation 𝑝.

Remark 3.5. An easily verified alternative characterization of QNS correla-
tions can be stated as follows: Φ ∶ 𝑀𝑋𝑌 →𝑀𝐴𝐵 is QNS if and only if the unital
completely positive mapΦ∗ ∶ 𝑀𝐴𝐵 →𝑀𝑋𝑌 preserves subalgebras, in the sense
that

Φ∗(𝑀𝐴 ⊗ 1) ⊆ 𝑀𝑋 ⊗ 1, Φ∗(1 ⊗𝑀𝐵) ⊆ 1 ⊗𝑀𝑌 .

The strengthening of partial trace conditions in the definition of an SQNS cor-
relation leads to the following result.

Proposition 3.6. A QNS correlation Φ ∶ 𝑀𝑋2𝑌2,𝐴1𝐵1 → 𝑀𝑋1𝑌1,𝐴2𝐵2 is SQNS if
and only if the unital completely positive map Φ∗ ∶ 𝑀𝑋1𝑌1,𝐴2𝐵2 → 𝑀𝑋2𝑌2,𝐴1𝐵1
preserves subalgebras in the sense that

Φ∗(1 ⊗𝑀𝑌1 ⊗𝑀𝐴2 ⊗𝑀𝐵2) ⊆ 1 ⊗𝑀𝑌2 ⊗𝑀𝐴1 ⊗𝑀𝐵1 , (17)

Φ∗(𝑀𝑋1 ⊗ 1⊗𝑀𝐴2 ⊗𝑀𝐵2) ⊆ 𝑀𝑋2 ⊗ 1⊗𝑀𝐴1 ⊗𝑀𝐵1 , (18)

Φ∗(𝑀𝑋1 ⊗𝑀𝑌1 ⊗ 1⊗𝑀𝐵2) ⊆ 𝑀𝑋2 ⊗𝑀𝑌2 ⊗ 1⊗𝑀𝐵1 , (19)

and

Φ∗(𝑀𝑋1 ⊗𝑀𝑌1 ⊗𝑀𝐴2 ⊗ 1) ⊆ 𝑀𝑋2 ⊗𝑀𝑌2 ⊗𝑀𝐴1 ⊗ 1. (20)

Proof. First, letΦ be an SQNS correlation and take an arbitrary 𝜌 ∈ 1⊗𝑀𝑌1⊗
𝑀𝐴2 ⊗𝑀𝐵2 . Write

𝜌 =
∑

𝑦1,𝑦′1

∑

𝑎2,𝑎′2

∑

𝑏2,𝑏′2

𝜆𝑎2𝑎
′
2,𝑏2𝑏

′
2

𝑦1𝑦′1
1 ⊗ 𝜖𝑦1𝑦′1 ⊗ 𝜖𝑎2𝑎′2 ⊗ 𝜖𝑏2𝑏′2 .
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If we now fix 𝑥2, 𝑥′2 ∈ 𝑋2 such that 𝑥2 ≠ 𝑥′2, and for any 𝑦2, 𝑦
′
2 ∈ 𝑌2, 𝑎1, 𝑎′1 ∈

𝐴1, 𝑏1, 𝑏′1 ∈ 𝐵1 we see
⟨Φ∗(𝜌), 𝜖𝑥2𝑥′2 ⊗ 𝜖𝑦2𝑦′2 ⊗ 𝜖𝑎1𝑎′1 ⊗ 𝜖𝑏1𝑏′1⟩

=
∑

𝜆𝑎2𝑎
′
2,𝑏2𝑏

′
2

𝑦1𝑦′1
⟨Φ∗(1 ⊗ 𝜖𝑦1𝑦′1 ⊗ 𝜖𝑎2𝑎′2 ⊗ 𝜖𝑏2𝑏′2), 𝜖𝑥2𝑥′2 ⊗ 𝜖𝑦2𝑦′2 ⊗ 𝜖𝑎1𝑎′1 ⊗ 𝜖𝑏1𝑏′1⟩

=
∑

𝜆𝑎2𝑎
′
2,𝑏2𝑏

′
2

𝑦1𝑦′1
⟨1 ⊗ 𝜖𝑦1𝑦′1 ⊗ 𝜖𝑎2𝑎′2 ⊗ 𝜖𝑏2𝑏′2 , Φ(𝜖𝑥2𝑥′2 ⊗ 𝜖𝑦2𝑦′2 ⊗ 𝜖𝑎1𝑎′1 ⊗ 𝜖𝑏1𝑏′1)⟩

=
∑

𝜆𝑎2𝑎
′
2,𝑏2𝑏

′
2

𝑦1𝑦′1
⟨𝜖𝑦1𝑦′1 ⊗ 𝜖𝑎2𝑎′2 ⊗ 𝜖𝑏2𝑏′2 , Tr𝑋1Φ(𝜖𝑥2𝑥′2 ⊗ 𝜖𝑦2𝑦′2 ⊗ 𝜖𝑎1𝑎′1 ⊗ 𝜖𝑏1𝑏′1)⟩

= 0,
where the latter sums are over all 𝑦1, 𝑦′1 ∈ 𝑌1, 𝑎2, 𝑎′2 ∈ 𝐴2, 𝑏2, 𝑏′2 ∈ 𝐵2 as
Tr𝑋2(𝜖𝑥2𝑥′2⊗𝜖𝑦2𝑦′2) = 0 by our choice of 𝑥2, 𝑥′2 ∈ 𝑋2. As this holds for all 𝑦2, 𝑦′2 ∈
𝑌2, 𝑎1, 𝑎′1 ∈ 𝐴1 and 𝑏1, 𝑏′1 ∈ 𝐵1, and our choice of 𝜌 ∈ 1 ⊗𝑀𝑌1 ⊗𝑀𝐴2 ⊗𝑀𝐵2
was arbitrary, this implies

Φ∗(1 ⊗𝑀𝑌1 ⊗𝑀𝐴2 ⊗𝑀𝐵2) ⊆ 1 ⊗𝑀𝑌2 ⊗𝑀𝐴1 ⊗𝑀𝐵1 .
Using (13)-(15), we may then show that conditions (18)-(20) also hold.
Conversely, assume that Φ∗ preserves subalgebras as in (17)-(20). We wish

to show that Φ is an SQNS correlation; to that end, let 𝜌𝑋2𝑌2 ∈ 𝑀𝑋2𝑌2 and
𝜌𝐴1𝐵1 ∈ 𝑀𝐴1𝐵1 such that Tr𝑋2(𝜌𝑋2𝑌2) = 0. Write

𝜌𝑋2𝑌2 =
∑

𝑥2,𝑥′2

∑

𝑦2,𝑦′2

𝜌𝑦2𝑦
′
2

𝑥2𝑥′2
𝜖𝑥2𝑥′2 ⊗ 𝜖𝑦2𝑦′2 , 𝜌𝐴1𝐵1 =

∑

𝑎1,𝑎′1

∑

𝑏1,𝑏′1

𝜌𝑏1𝑏
′
1

𝑎1𝑎′1
𝜖𝑎1𝑎′1 ⊗ 𝜖𝑏1𝑏′1 .

For 𝑦1, 𝑦′1 ∈ 𝑌1, 𝑎2, 𝑎′2 ∈ 𝐴2, 𝑏2, 𝑏′2 ∈ 𝐵2 we see
⟨Tr𝑋1Φ(𝜌𝑋2𝑌2 ⊗ 𝜌𝐴1𝐵1), 𝜖𝑦1𝑦′1 ⊗ 𝜖𝑎2𝑎′2 ⊗ 𝜖𝑏2𝑏′2⟩

=
∑

𝑥2,𝑥′2

∑
𝜌𝑦2𝑦

′
2

𝑥2𝑥′2
𝜌𝑏1𝑏

′
1

𝑎1𝑎′1
⟨Tr𝑋1Φ(𝜖𝑥2𝑥′2 ⊗ 𝜖𝑦2𝑦′2 ⊗ 𝜖𝑎1𝑎′1 ⊗ 𝜖𝑏1𝑏′1), 𝜖𝑦1𝑦′1 ⊗ 𝜖𝑎2𝑎′2 ⊗ 𝜖𝑏2𝑏′2⟩

=
∑

𝑥2,𝑥′2

∑
𝜌𝑦2𝑦

′
2

𝑥2𝑥′2
𝜌𝑏1𝑏

′
1

𝑎1𝑎′1
⟨𝜖𝑥2𝑥′2 ⊗ 𝜖𝑦2𝑦′2 ⊗ 𝜖𝑎1𝑎′1 ⊗ 𝜖𝑏1𝑏′1 , Φ

∗(1 ⊗ 𝜖𝑦1𝑦′1 ⊗ 𝜖𝑎2𝑎′2 ⊗ 𝜖𝑏2𝑏′2)⟩

=
∑

𝑥2

∑
𝜌𝑦2𝑦

′
2

𝑥2𝑥2𝜌
𝑏1𝑏′1
𝑎1𝑎′1

(Φ∗)𝑎
′
1𝑎1,𝑏

′
1𝑏1

𝑦′2𝑦2

= 0,
where the second summand ranges over all 𝑦2, 𝑦′2 ∈ 𝑌2, 𝑎1, 𝑎′1 ∈ 𝐴1, 𝑏1, 𝑏′1 ∈ 𝐵1
as
∑
𝑥2
𝜌𝑦2𝑦

′
2

𝑥2𝑥2 = 0 for any 𝑦2, 𝑦′2 ∈ 𝑌2. Note here that we are using (17) and writing

Φ∗(1 ⊗ 𝜖𝑦1𝑦′1 ⊗ 𝜖𝑎2𝑎′2 ⊗ 𝜖𝑏2𝑏′2) =
∑
(Φ∗)𝑎1𝑎

′
1,𝑏1𝑏

′
1

𝑦2𝑦′2
(1 ⊗ 𝜖𝑦2𝑦′2 ⊗ 𝜖𝑎1𝑎′1 ⊗ 𝜖𝑏1𝑏′1),

where the latter sum is over all of 𝑌2, 𝐴1 and 𝐵1. As our choice of 𝑦1, 𝑦′1 ∈
𝑌1, 𝑎2, 𝑎′2 ∈ 𝐴2 and 𝑏2, 𝑏′2 ∈ 𝐵2 were arbitrary, we conclude that (12) holds.
Conditions (13)-(15) are verified similarly. □
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Definition 3.7. An SQNS correlation Γ over (𝑋2𝑌2, 𝐴1𝐵1, 𝑋1𝑌1, 𝐴2𝐵2) is called
(i) quantum commuting if there exists a Hilbert space𝐻, stochastic operator

matrices

𝐸𝑋 = (𝐸𝑥2𝑥′2,𝑥1𝑥′1)𝑥2𝑥′2,𝑥1𝑥′1 , 𝐸𝑌 = (𝐸𝑦2𝑦′2,𝑦1𝑦′1)𝑦2𝑦′2,𝑦1𝑦′1 ,

𝐹𝐴 = (𝐹𝑎1𝑎′1,𝑎2𝑎′2)𝑎1𝑎′1,𝑎2𝑎′2 , 𝐹𝐵 = (𝐹𝑏1𝑏′1,𝑏2𝑏′2)𝑏1𝑏′1,𝑏2𝑏′2
acting on 𝐻 with mutually commuting entries, and a unit vector 𝜉 ∈ 𝐻
such that Γ = Γ𝐸,𝐹,𝜉 , where 𝐸 = 𝐸𝑋 ⋅ 𝐸𝑌 , 𝐹 = 𝐹𝐴 ⋅ 𝐹𝐵.

(ii) quantum if there exists finite dimensional Hilbert spaces𝐻 and𝐾, quan-
tum dilatable strongly stochastic operator matrices

𝑀 = (𝑀𝑥1𝑥′1,𝑎2𝑎
′
2

𝑥2𝑥′2,𝑎1𝑎
′
1
)𝑥2𝑥′2,𝑎1𝑎′1,𝑥1𝑥′1,𝑎2𝑎′2 on 𝐻,

𝑁 = (𝑁𝑦1𝑦′1,𝑏2𝑏
′
2

𝑦2𝑦′2,𝑏1𝑏
′
1
)𝑦2𝑦′2,𝑏1𝑏′1,𝑦1𝑦′1,𝑏2𝑏′2 on 𝐾,

and a unit vector 𝜉 ∈ 𝐻 ⊗ 𝐾, such that Γ = Γ𝑀⊙𝑁,𝜉 .
(iii) approximately quantum if it is the limit of quantum SQNS correlations.
(iv) local if it is quantum, and the matrices𝑀 and 𝑁 from (ii) can be chosen

to be locally dilatable.

We denote by 𝒬sqc (resp. 𝒬sqa, 𝒬sq, 𝒬sloc) the classes of quantum commut-
ing (resp. approximately quantum, quantum, local) SQNS correlations. We
note that, by definition, 𝒬st ⊆ 𝒬t, for t ∈ {loc, q, qa, qc, ns}. In the sequel, for
t ∈ {loc, q, qa, qc, ns} let 𝒞st denote the class of all SNS correlations of type t, as
defined in [20, Section 5].

Remark 3.8. We pause here for a correction to a previous work, and some nec-
essary clarifying remarks. In [20], we defined a classical correlation Γ to belong
to the class𝒞sqc if there existed aHilbert space𝐻, dilatableNS operatormatrices
𝑃 = (𝑃𝑥2𝑦2,𝑥1𝑦1)𝑥2𝑦2,𝑥1𝑦1 and 𝑄 = (𝑄𝑎1𝑏1,𝑎2𝑏2)𝑎1𝑏1,𝑎2𝑏2 on 𝐻 with mutually com-
muting entries, and a unit vector 𝜉 ∈ 𝐻 such that Γ = Γ𝑃,𝑄,𝜉 . In [20, Lemma
5.8] we claimed that this was a necessary and sufficient condition for the ex-
istence of a Hilbert space 𝐾, PVM’s (𝑃𝑥2,𝑥1)𝑥1∈𝑋1 , (𝑃

𝑦2,𝑦1)𝑦1∈𝑌1 , (𝑄𝑎1,𝑎2)𝑎2∈𝐴2 and
(𝑄𝑏1,𝑏2)𝑏2∈𝐵2 on 𝐾 with mutually commuting entries, and a unit vector 𝜂 ∈ 𝐾
such that

Γ(𝑥1𝑦1, 𝑎2𝑏2|𝑥2𝑦2, 𝑎1𝑏1) = ⟨𝑃𝑥2,𝑥1𝑃
𝑦2,𝑦1𝑄𝑎1,𝑎2𝑄

𝑏1,𝑏2𝜂, 𝜂⟩
for all 𝑥𝑖 ∈ 𝑋𝑖, 𝑦𝑖 ∈ 𝑌𝑖, 𝑎𝑖 ∈ 𝐴𝑖, 𝑏𝑖 ∈ 𝐵𝑖, 𝑖 = 1, 2. However, we have since
discovered a gap in the proof of said lemma resulting from the incorrect use of
associativity of the commuting operator system tensor product (see Section 6).
In generalizing to the case of what we call SQNS correlations, as the nat-

ural generalization of NS operator matrices are strongly stochastic operator
matrices if we were to follow the path laid out in [20, Definition 5.6 (i)] one
would expect that we say Γ ∈ 𝒬sqc if there exists a Hilbert space 𝐻, dilat-
able strongly stochastic operator matrices 𝑃 = (𝑃𝑥1𝑥

′
1,𝑦1𝑦

′
1

𝑥2𝑥′2,𝑦2𝑦
′
2
)𝑥2𝑥′2,𝑦2𝑦′2,𝑥1𝑥′1,𝑦1𝑦′1 and
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𝑄 = (𝑄𝑎2𝑎
′
2,𝑏2𝑏

′
2

𝑎1𝑎′1,𝑏1𝑏
′
1
)𝑎1𝑎′1,𝑏1𝑏′1,𝑎2𝑎′2,𝑏2𝑏′2 with mutually commuting entries acting on 𝐻,

and a unit vector 𝜉 ∈ 𝐻 such that Γ = Γ𝑃,𝑄,𝜉 . However, in order to get the de-
composition of strongly stochastic operator matrices that we will need for the
results in Section 6 due to the failure of [20, Lemma 5.8] (and its extension) we
must instead require it in the definition (as seen in Definition 3.7 (i)). Further-
more, we will need to amend the definition for Γ ∈ 𝒞sqc, which we do below.
We point out thatworkingwithDefinition 3.9 (see below) instead of [20, Defini-
tion 5.6(i)] recovers all subsequent results in [20] which were instead obtained
using [20, Lemma 5.8].

Definition 3.9. An SNS correlation Γ ∈ 𝒞sns is now quantum commuting if
there exists a Hilbert space𝐾, PVM’s (𝑃𝑥2,𝑥1)𝑥1∈𝑋1 , (𝑃

𝑦2,𝑦1)𝑦1∈𝑌1 , (𝑄𝑎1,𝑎2)𝑎2∈𝐴2 and
(𝑄𝑏1,𝑏2)𝑏2∈𝐵2 on𝐾 withmutually commuting entries, and a unit vector 𝜂 ∈ 𝐾 such
that

Γ(𝑥1𝑦1, 𝑎2𝑏2|𝑥2𝑦2, 𝑎1𝑏1) = ⟨𝑃𝑥2,𝑥1𝑃
𝑦2,𝑦1𝑄𝑎1,𝑎2𝑄

𝑏1,𝑏2𝜂, 𝜂⟩
for all 𝑥𝑖 ∈ 𝑋𝑖, 𝑦𝑖 ∈ 𝑌𝑖, 𝑎𝑖 ∈ 𝐴𝑖, 𝑏𝑖 ∈ 𝐵𝑖, 𝑖 = 1, 2.

Proposition 3.10. Let t ∈ {loc, q, qa, qc, ns} and 𝑝 an SNS correlation. Then
𝑝 ∈ 𝒞st if and only if Γ𝑝 ∈ 𝒬st.

Proof. In the case when t = ns, this follows directly by Remark 3.4. For t =
loc, q, qa or qc, this follows from Remark 3.2 and [39, Lemma 7.2]. □

Remark3.11. LetΓ be a local SQNS correlation over (𝑋2𝑌2,𝐴1𝐵1,𝑋1𝑌1,𝐴2𝐵2).
If we choose dilations of the matrices𝑀 and 𝑁 from (3.7) with mutually com-
muting entries, we may write the values of Γ in the form

Γ(𝑥1𝑥′1, 𝑦1𝑦
′
1, 𝑎2𝑎

′
2, 𝑏2𝑏

′
2|𝑥2𝑥

′
2, 𝑦2𝑦

′
2, 𝑎1𝑎

′
1, 𝑏1𝑏

′
1) = ⟨𝐸𝑥1,𝑥

′
1

𝑥2,𝑥′2
𝐸𝑎2,𝑎

′
2

𝑎1,𝑎′1
𝐹𝑦1,𝑦

′
1

𝑦2,𝑦′2
𝐹𝑏2,𝑏

′
2

𝑏1,𝑏′1
𝜉, 𝜉⟩

where the stochastic operator matrices

(𝐸𝑥1,𝑥
′
1

𝑥2,𝑥′2
)𝑥2,𝑥′2,𝑥1,𝑥′1 , (𝐸𝑎2,𝑎

′
2

𝑎1,𝑎′1
)𝑎1,𝑎′1,𝑎2,𝑎′2 , (𝐹𝑦1,𝑦

′
1

𝑦2,𝑦′2
)𝑦2,𝑦′2,𝑦1,𝑦′1 , (𝐹𝑏2,𝑏

′
2

𝑏1,𝑏′1
)𝑏1,𝑏′1,𝑏2,𝑏′2

have mutually commuting entries. Using the fact that the tensor product of
convex combinations of channels remains a convex combination, along with
the arguments from Proposition 3.3 we may conclude that Γ is a convex combi-
nation of the form

Γ =
𝑘∑

𝑗=1
𝜆𝑗Φ

(𝑗)
𝑋 ⊗Φ(𝑗)

𝑌 ⊗Φ(𝑗)
𝐴 ⊗Φ(𝑗)

𝐵 , (21)

where Φ(𝑗)
𝑋 ∶ 𝑀𝑋2 → 𝑀𝑋1 , Φ

(𝑗)
𝑌 ∶ 𝑀𝑌2 → 𝑀𝑌1 , Φ

(𝑗)
𝐴 ∶ 𝑀𝐴1 → 𝑀𝐴2 , and Φ

(𝑗)
𝐵 ∶

𝑀𝐵1 →𝑀𝐵2 are quantum channels, 𝑗 = 1,… , 𝑘. It is also easy to verify that any
SQNS correlation of the form (21) is in 𝒬sloc.

Remark 3.12. One may easily see that the operator matrices 𝐸, 𝐹 arising from
Definition 3.7 (i) of any Γ ∈ 𝒬sqc will be dilatable; as discussed in Remark 3.8
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it is unknown if all mutually commuting dilatable strongly stochastic operator
matrices can be made jointly dilatable.

In the remainder of this section, assume that 𝑋1 = 𝑋2 ∶= 𝑋,𝑌1 = 𝑌2 ∶=
𝑌,𝐴1 = 𝐴2 ∶= 𝐴, and 𝐵1 = 𝐵2 ∶= 𝐵. Furthermore, assume that 𝑋 = 𝐴 and
𝑌 = 𝐵. An SQNS correlation Γwill be called an SQNS bicorrelation if Γ is unital
and Γ∗ is an SQNS correlation. The collection of all SQNS correlations will be
denoted 𝒬bisns. An SQNS bicorrelation Γ over (𝑋𝑌,𝑋𝑌,𝑋𝑌,𝑋𝑌) is called quan-
tum commuting if there exists a Hilbert space𝐻, strongly bistochastic operator
matrices

𝐸𝑋 = (𝐸𝑥2𝑥′2,𝑥1𝑥′1)𝑥2𝑥′2,𝑥1𝑥′1 , 𝐸𝑌 = (𝐸𝑦2𝑦′2,𝑦1𝑦′1)𝑦2𝑦′2,𝑦1𝑦′1 ,
𝐹𝐴 = (𝐹𝑎1𝑎′1,𝑎2𝑎′2)𝑎1𝑎′1,𝑎2𝑎′2 , 𝐹𝐵 = (𝐹𝑏1𝑏′1,𝑏2𝑏′2)𝑏1𝑏′1,𝑏2𝑏′2 ,

with mutually commuting entries acting on 𝐻, and a unit vector 𝜉 ∈ 𝐻 such
that Γ = Γ𝐸,𝐹,𝜉 where𝐸 = 𝐸𝑋 ⋅𝐸𝑌 , 𝐹 = 𝐹𝐴 ⋅𝐹𝐵; we denote this class by𝒬bisqc. The
classes of quantumSQNSbicorrelations (denoted𝒬bisq), approximately quantum
SQNS bicorrelations (denoted 𝒬bisqa) and local SQNS bicorrelations (denoted
𝒬bisloc) are defined similarly to their SQNS correlation counterparts, with dilat-
able strongly bistochastic operator matrices of the appropriate type in place of
the strongly stochastic operator matrices of said type. In the sequel, we let 𝒞bist
denote the class of all SQNS bicorrelations of type t, as defined in [20, Section
6] and Remark 3.8.

Remark 3.13. Arguing as in Remark 3.11, we may identify 𝒬bisloc with SQNS
correlations Γ of the form

Γ =
𝑘∑

𝑗=1
𝜆𝑗Φ

(𝑗)
𝑋 ⊗Φ(𝑗)

𝑌 ⊗Φ(𝑗)
𝐴 ⊗Φ(𝑗)

𝐵 ,

where Φ(𝑗)
𝑋 ∶ 𝑀𝑋 → 𝑀𝑋 , Φ

(𝑗)
𝑌 ∶ 𝑀𝑌 → 𝑀𝑌 , Φ

(𝑗)
𝐴 ∶ 𝑀𝐴 → 𝑀𝐴, Φ

(𝑗)
𝐵 ∶ 𝑀𝐵 → 𝑀𝐵

are unital quantum channels, 𝜆𝑗 ≥ 0, 𝑗 = 1,… , 𝑘 with∑𝑘
𝑗=1 𝜆𝑗 = 1.

Remark 3.14. For a correlation type t ∈ {loc, q, qa, qc, ns}, it is clear that 𝒬bist ⊆
𝒬st. Additionally, if Γ ∈ 𝒬bist , then Γ∗ ∈ 𝒬bist . Indeed: it is part of the definition
when t = ns, and easily verified (using Remark 3.13) when t = loc. The case
when t = qc, q or qa follow using a modification of the argument given in [7,
Remark 5.2].

Proposition 3.15. Let t ∈ {loc, q, qc, ns} and 𝑝 an SNS bicorrelation. Then 𝑝 ∈
𝒞bist if and only if Γ𝑝 ∈ 𝒬bist .

Proof. This holds essentially by using the same arguments as in Proposition
3.10 and [7, Proposition 5.9]. □
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4. Strategy transport
Let𝑋𝑖, 𝑌𝑖, 𝐴𝑖, 𝐵𝑖 be finite sets, for 𝑖 = 1, 2. Recall that if ℰ is a QNS correlation

over (𝑋1, 𝑌1, 𝐴1, 𝐵1), it acts as a quantum channel ℰ ∶ 𝑀𝑋1𝑌1 → 𝑀𝐴1𝐵1 ; thus,
if Γ is SQNS over (𝑋2𝑌2, 𝐴1𝐵1, 𝑋1𝑌1, 𝐴2𝐵2), then Γ[ℰ] ∶ 𝑀𝑋2𝑌2 → 𝑀𝐴2𝐵2 . The
two theorems in this section are crucial to our goal of transferring strategies
between quantum games; briefly, they say that if ℰ is viewed as a strategy of
some type for one game, under mild conditions on Γ the simulated channel
Γ[ℰ] can be viewed as a strategy of the same type for another quantum game.

Theorem 4.1. Let Γ be an SQNS correlation over (𝑋2𝑌2, 𝐴1𝐵1, 𝑋1𝑌1, 𝐴2𝐵2) and
ℰ be a QNS correlation over (𝑋1, 𝑌1, 𝐴1, 𝐵1). The following hold:

(i) Γ[ℰ] ∈ 𝒬ns;
(ii) if Γ ∈ 𝒬sqc and ℰ ∈ 𝒬qc, then Γ[ℰ] ∈ 𝒬qc;
(iii) if Γ ∈ 𝒬sqa and ℰ ∈ 𝒬qa, then Γ[ℰ] ∈ 𝒬qa;
(iv) if Γ ∈ 𝒬sq and ℰ ∈ 𝒬q, then Γ[ℰ] ∈ 𝒬q.
(v) if Γ ∈ 𝒬sloc and ℰ ∈ 𝒬loc, then Γ[ℰ] ∈ 𝒬loc.

Proof. (i) Let 𝐶 denote the Choi matrix of quantum channel Γ[ℰ]. If

(Γ(𝑥1𝑥′1, 𝑦1𝑦
′
1, 𝑎2𝑎

′
2, 𝑏2𝑏

′
2|𝑥2𝑥

′
2, 𝑦2𝑦

′
2, 𝑎1𝑎

′
1, 𝑏1𝑏

′
1))

is the Choi matrix of Γ and (ℰ(𝑎1𝑎′1, 𝑏1𝑏
′
1|𝑥1𝑥

′
1, 𝑦1𝑦

′
1)) is the Choi matrix of

ℰ (where the former matrix ranges over 𝑋1, 𝑋2, 𝑌1, 𝑌2, 𝐴1, 𝐴2, 𝐵1, 𝐵2 and the
latter ranges over 𝑋1, 𝑌1, 𝐴1 and 𝐵1), as Γ ∈ 𝒬sns and ℰ ∈ 𝒬ns there exists
𝑐𝑏2𝑏

′
2,𝑏1𝑏

′
1

𝑥1𝑥′1,𝑦1𝑦
′
1,𝑥2𝑥

′
2,𝑦2𝑦

′
2
, 𝑑𝑏1,𝑏

′
1

𝑦1,𝑦′1
∈ ℂ such that

∑

𝑎2∈𝐴2

Γ(𝑥1𝑥′1, 𝑦1𝑦
′
1, 𝑎2𝑎2, 𝑏2𝑏

′
2|𝑥2𝑥

′
2, 𝑦2𝑦

′
2, 𝑎1𝑎

′
1, 𝑏1𝑏

′
1) = 𝛿𝑎1,𝑎′1𝑐

𝑏2𝑏′2,𝑏1𝑏
′
1

𝑥1𝑥′1,𝑦1𝑦
′
1,𝑥2𝑥

′
2,𝑦2𝑦

′
2
,

∑

𝑎1∈𝐴1

ℰ(𝑎1𝑎1, 𝑏1𝑏′1|𝑥1𝑥
′
1, 𝑦1𝑦

′
1) = 𝛿𝑥1,𝑥′1𝑑

𝑏1,𝑏′1
𝑦1,𝑦′1

,

for 𝑥𝑖, 𝑥′𝑖 ∈ 𝑋𝑖, 𝑦𝑖, 𝑦′𝑖 ∈ 𝑌𝑖, 𝑏𝑖, 𝑏′𝑖 ∈ 𝐵𝑖, 𝑖 = 1, 2 (see e.g. [15]). Additionally, we
may use (12) to guarantee the existence of 𝑐𝑏2𝑏

′
2,𝑏1𝑏

′
1

𝑦1𝑦′1,𝑦2𝑦
′
2
∈ ℂ such that

∑

𝑥1∈𝑋1
𝑐𝑏2𝑏

′
2,𝑏1𝑏

′
1

𝑥1𝑥1,𝑦1𝑦′1,𝑥2𝑥
′
2,𝑦2𝑦

′
2
= 𝛿𝑥2,𝑥′2𝑐

𝑏2𝑏′2,𝑏1𝑏
′
1

𝑦1𝑦′1,𝑦2𝑦
′
2
,

for 𝑦𝑖, 𝑦′𝑖 ∈ 𝑌𝑖, 𝑏𝑖, 𝑏′𝑖 ∈ 𝐵𝑖, 𝑖 = 1, 2. For 𝑦2, 𝑦′2 ∈ 𝑌2, 𝑏2, 𝑏′2 ∈ 𝐵2, set

𝑐𝑏2,𝑏
′
2

𝑦2,𝑦′2
∶=

∑

𝑦1,𝑦′1∈𝑌1

∑

𝑏1,𝑏′1∈𝐵1
𝑐𝑏2𝑏

′
2,𝑏1𝑏

′
1

𝑦1𝑦′1,𝑦2𝑦
′
2
𝑑𝑏1,𝑏

′
1

𝑦1,𝑦′1
.
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If we fix 𝑦2, 𝑦′2 ∈ 𝑌2, 𝑏2, 𝑏′2 ∈ 𝐵2, then
∑

𝑎2

∑

𝑥1𝑥′1,𝑦1𝑦
′
1,

𝑎1𝑎′1,𝑏1𝑏
′
1

Γ(𝑥1𝑥′1, 𝑦1𝑦
′
1, 𝑎2𝑎2, 𝑏2𝑏

′
2|𝑥2𝑥

′
2, 𝑦2𝑦

′
2, 𝑎1𝑎

′
1, 𝑏1𝑏

′
1)ℰ(𝑎1𝑎

′
1, 𝑏1𝑏

′
1|𝑥1𝑥

′
1, 𝑦1𝑦

′
1)

=
∑

𝑥1𝑥′1,𝑦1𝑦
′
1

𝑎1𝑎′1,𝑏1𝑏
′
1

𝛿𝑎1,𝑎′1𝑐
𝑏2𝑏′2,𝑏1𝑏

′
1

𝑥1𝑥′1,𝑦1𝑦
′
1,𝑥2𝑥

′
2,𝑦2𝑦

′
2
ℰ(𝑎1𝑎′1, 𝑏1𝑏

′
1|𝑥1𝑥

′
1, 𝑦1𝑦

′
1)

=
∑

𝑎1

∑

𝑥1𝑥′1,𝑦1𝑦
′
1

𝑏1𝑏′1

𝑐𝑏2𝑏
′
2,𝑏1𝑏

′
1

𝑥1𝑥′1,𝑦1𝑦
′
1,𝑥2𝑥

′
2,𝑦2𝑦

′
2
ℰ(𝑎1𝑎1, 𝑏1𝑏′1|𝑥1𝑥

′
1, 𝑦1𝑦

′
1)

=
∑

𝑥1𝑥′1,𝑦1𝑦
′
1,

𝑏1𝑏′1

𝛿𝑥1,𝑥′1𝑐
𝑏2𝑏′2,𝑏1𝑏

′
1

𝑥1𝑥′1,𝑦1𝑦
′
1,𝑥2𝑥

′
2,𝑦2𝑦

′
2
𝑑𝑏1,𝑏

′
1

𝑦1,𝑦′1

=
∑

𝑥1

∑

𝑦1𝑦′1,
𝑏1𝑏′1

𝑐𝑏2𝑏
′
2,𝑏1𝑏

′
1

𝑥1𝑥1,𝑦1𝑦′1,𝑥2𝑥
′
2,𝑦2𝑦

′
2
𝑑𝑏1,𝑏

′
1

𝑦1,𝑦′1

= 𝛿𝑥2,𝑥′2(
∑

𝑦1𝑦′1,𝑏1𝑏
′
1

𝑐𝑏2𝑏
′
2,𝑏1𝑏

′
1

𝑦1𝑦′1,𝑦2𝑦
′
2
𝑑𝑏1,𝑏

′
1

𝑦1,𝑦′1
)

= 𝛿𝑥2,𝑥′2𝑐
𝑏2,𝑏′2
𝑦2,𝑦′2

.

Wemay use a similar argument (relying on (13) and (15)) showing the existence
of 𝑐𝑎2,𝑎

′
2

𝑥2,𝑥′2
∈ ℂ such that

∑

𝑏2

∑

𝑥1𝑥′1,𝑦1𝑦
′
1

𝑎1𝑎′1,𝑏1𝑏
′
1

Γ(𝑥1𝑥′1, 𝑦1𝑦
′
1, 𝑎2𝑎

′
2, 𝑏2𝑏2|𝑥2𝑥

′
2, 𝑦2𝑦

′
2, 𝑎1𝑎

′
1, 𝑏1𝑏

′
1)ℰ(𝑎1𝑎

′
1, 𝑏1𝑏

′
1|𝑥1𝑥

′
1, 𝑦1𝑦

′
1)

= 𝛿𝑦2,𝑦′2𝑐
𝑎2,𝑎′2
𝑥2,𝑥′2

for 𝑥2, 𝑥′2 ∈ 𝑋2, 𝑎2, 𝑎′2 ∈ 𝐴2. By (8), the former equality implies 𝐿𝜔𝑋𝐴(𝐶) ∈
ℒ𝑌2𝐵2 for every𝜔𝑋𝐴 ∈ 𝑀𝑋2𝐴2 , while the latter equality implies 𝐿𝜔𝑌𝐵(𝐶) ∈ ℒ𝑋2𝐴2
for every 𝜔𝑌𝐵 ∈ 𝑀𝑌2𝐵2 . Thus, 𝐶 ∈ (ℒ𝑋2𝐴2⊗ℒ𝑌2𝐵2)∩𝑀

+
𝑋2𝑌2𝐴2𝐵2

; by the injectiv-
ity of the minimal operator system tensor product, 𝐶 ∈ (ℒ𝑋2𝐴2 ⊗min ℒ𝑌2𝐵2)

+.
Argue now as [39, Theorem 6.2] to finish the proof.
(ii) Use Definition 3.7 (i) to obtain a Hilbert space 𝐻, stochastic operator

matrices

𝑃𝑋 = (𝑃𝑥2𝑥′2,𝑥1𝑥′1)𝑥2𝑥′2,𝑥1𝑥′1 ,

𝑃𝑌 = (𝑃𝑦2𝑦′2,𝑦1𝑦′1)𝑦2𝑦′2,𝑦1𝑦′1 ,
𝑄𝐴 = (𝑄𝑎1𝑎′1,𝑎2𝑎′2)𝑎1𝑎′1,𝑎2𝑎′2 ,

𝑄𝐵 = (𝑄𝑏1𝑏′1,𝑏2𝑏′2)𝑏1𝑏′1,𝑏2𝑏′2 ,
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acting on 𝐾 and a unit vector 𝜉 ∈ 𝐻 such that Γ = Γ𝑃,𝑄,𝜉 . Let 𝐾 be a Hilbert
space, 𝐸 = (𝐸𝑥1𝑥′1,𝑎1𝑎′1)𝑥1𝑥′1,𝑎1𝑎′1 and 𝐹 = (𝐹𝑦1𝑦′1,𝑏1𝑏′1)𝑦1𝑦′1,𝑏1𝑏′1 stochastic operator
matrices over (𝑋1, 𝐴1) and (𝑌1, 𝐵1) with mutually commuting entries, and 𝜂 ∈
𝐾 a unit vector such that ℰ = ℰ𝐸,𝐹,𝜂. For 𝑥2, 𝑥′2 ∈ 𝑋2, 𝑎2, 𝑎′2 ∈ 𝐴2, 𝑦2, 𝑦′2 ∈ 𝑌2,
and 𝑏2, 𝑏′2 ∈ 𝐵2 set

𝐸̃𝑥2𝑥′2,𝑎2𝑎′2 =
∑

𝑥1,𝑥′1∈𝑋1

∑

𝑎1,𝑎′1∈𝐴1

𝑃𝑥2𝑥′2,𝑥1𝑥′1𝑄𝑎1𝑎′1,𝑎2𝑎′2 ⊗𝐸𝑥1𝑥′1,𝑎1𝑎′1 (22)

and

𝐹̃𝑦2𝑦′2,𝑏2𝑏′2 =
∑

𝑦1,𝑦′1∈𝑌1

∑

𝑏1,𝑏′1∈𝐵1
𝑃𝑦2𝑦′2,𝑦1𝑦′1𝑄𝑏1𝑏′1,𝑏2𝑏′2 ⊗𝐹𝑦1𝑦′1,𝑏1𝑏′1 . (23)

We note that 𝐸̃ = (𝐸̃𝑥2𝑥′2,𝑎2𝑎′2)𝑥2𝑥′2,𝑎2𝑎′2 and 𝐹̃ = (𝐹̃𝑦2𝑦′2,𝑏2𝑏′2)𝑦2𝑦′2,𝑏2𝑏′2 are positive
(as the entries of 𝑃𝑋 , 𝑃𝑌 , 𝑄𝐴, 𝑄𝐵 all commute with one another), and claim that
𝐸̃ (resp. 𝐹̃) is a stochastic operator matrix over (𝑋2, 𝐴2) (resp. over (𝑌2, 𝐵2)).
Indeed: as 𝑃𝑋 , 𝑄𝐴 and 𝐸 are all stochastic operator matrices, we have

Tr𝐴2(𝐸̃) =
∑

𝑎2

∑

𝑥2,𝑥′2

∑

𝑥1,𝑥′1

∑

𝑎1,𝑎′1

𝑃𝑥2𝑥′2,𝑥1𝑥′1𝑄𝑎1𝑎′1,𝑎2𝑎2 ⊗𝐸𝑥1𝑥′1,𝑎1𝑎′1

=
∑

𝑥2,𝑥′2

∑

𝑥1,𝑥′1

∑

𝑎1,𝑎′1

𝑃𝑥2𝑥′2,𝑥1𝑥′1
(
𝛿𝑎1,𝑎′1𝐼𝐻

)
⊗ 𝐸𝑥1𝑥′1,𝑎1𝑎′1

=
∑

𝑥2,𝑥′2

∑

𝑥1,𝑥′1

∑

𝑎1
𝑃𝑥2𝑥′2,𝑥1𝑥′1 ⊗𝐸𝑥1𝑥′1,𝑎1𝑎1

=
∑

𝑥2,𝑥′2

∑

𝑥1,𝑥′1

𝑃𝑥2𝑥′2,𝑥1𝑥′1 ⊗
(
𝛿𝑥1,𝑥′1𝐼𝐾)

=
∑

𝑥2,𝑥′2

∑

𝑥1
𝑃𝑥2𝑥′2,𝑥1𝑥1 ⊗ 𝐼𝐾

=
∑

𝑥2,𝑥′2

(
𝛿𝑥2,𝑥′2𝐼𝐻

)
⊗ 𝐼𝐾

= 𝐼𝑋2 ⊗ 𝐼𝐻 ⊗ 𝐼𝐾 .

Thus, 𝐸̃ ∈ 𝑀𝑋2𝐴2 ⊗ ℬ(𝐻 ⊗ 𝐾) is stochastic, as claimed. By symmetry, 𝐹̃ ∈
𝑀𝑌2𝐵2 ⊗ℬ(𝐻 ⊗ 𝐾) is stochastic. We also note that

𝐸̃𝑥2𝑥′2,𝑎2𝑎′2𝐹̃𝑦2𝑦′2,𝑏2𝑏′2 = 𝐹̃𝑦2𝑦′2,𝑏2𝑏′2𝐸̃𝑥2𝑥′2,𝑎2𝑎′2 ,

for all 𝑥2, 𝑥′2 ∈ 𝑋2, 𝑦2, 𝑦′2 ∈ 𝑌2, 𝑎2, 𝑎′2 ∈ 𝐴2, 𝑏2, 𝑏′2 ∈ 𝐵2. Using (8), we see

Γ[ℰ](𝑎2𝑎′2, 𝑏2𝑏
′
2|𝑥2𝑥

′
2, 𝑦2𝑦

′
2)

=
∑

Γ(𝑥1𝑥′1, 𝑦1𝑦
′
1, 𝑎2𝑎

′
2, 𝑏2𝑏

′
2|𝑥2𝑥

′
2, 𝑦2𝑦

′
2, 𝑎1𝑎

′
1, 𝑏1𝑏

′
1)ℰ(𝑎1𝑎

′
1, 𝑏1𝑏

′
1|𝑥1𝑥

′
1, 𝑦1𝑦

′
1)

=
∑
⟨𝑃𝑥2𝑥′2,𝑥1𝑥′1𝑃

𝑦2𝑦′2,𝑦1𝑦
′
1𝑄𝑎1𝑎′1,𝑎2𝑎′2𝑄

𝑏1𝑏′1,𝑏2𝑏
′
2𝜉, 𝜉⟩⟨𝐸𝑥1𝑥′1,𝑎1𝑎′1𝐹

𝑦1𝑦′1,𝑏1𝑏
′
1𝜂, 𝜂⟩

=
⟨
𝐸̃𝑥2𝑥′2,𝑎2𝑎′2𝐹̃𝑦2𝑦′2,𝑏2𝑏′2(𝜉 ⊗ 𝜂), 𝜉 ⊗ 𝜂

⟩
,
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for all 𝑥2, 𝑥′2 ∈ 𝑋2, 𝑦2, 𝑦′2 ∈ 𝑌2, 𝑎2, 𝑎′2 ∈ 𝐴2, 𝑏2, 𝑏′2 ∈ 𝐵2, where the latter sums
range over all of 𝑋1, 𝑌1, 𝐴1, and 𝐵1. Thus, Γ[ℰ] ∈ 𝒬qc.
(iii) This is a direct consequence of (iv).
(iv) Let𝑀 = (𝑀𝑥1𝑥′1,𝑎2𝑎

′
2

𝑥2𝑥′2,𝑎1𝑎
′
1
)𝑥2𝑥′2,𝑎1𝑎′1,𝑥1𝑥′1,𝑎2𝑎′2 and 𝑁 = (𝑁𝑦1𝑦′1,𝑏2𝑏

′
2

𝑦2𝑦′2,𝑏1𝑏
′
1
)𝑦2𝑦′2,𝑏1𝑏′1,𝑦1𝑦′1,𝑏2𝑏′2

be quantum dilatable strongly stochastic operator matrices acting on𝐻 and 𝐾,
respectively, and 𝜉 ∈ 𝐻 ⊗ 𝐾 be a unit vector for which Γ = Γ𝑀⊙𝑁,𝜉 . Let 𝐸 =
(𝐸𝑥1𝑥′1,𝑎1𝑎′1)𝑥1𝑥′1,𝑎1𝑎′1 and 𝐹 = (𝐹𝑦1𝑦′1,𝑏1𝑏′1)𝑦1𝑦′1,𝑏1𝑏′1 be finite-dimensionally acting
stochastic operator matrices with 𝜂 a unit vector such that ℰ = ℰ𝐸⊙𝐹,𝜂. For
𝑥2, 𝑥′2 ∈ 𝑋2, 𝑎2, 𝑎′2 ∈ 𝐴2, 𝑦2, 𝑦′2 ∈ 𝑌2, and 𝑏2, 𝑏′2 ∈ 𝐵2 set

𝐸̃𝑥2𝑥′2,𝑎2𝑎′2 =
∑

𝑥1,𝑥′1∈𝑋1

∑

𝑎1,𝑎′1∈𝐴1

𝑀𝑥1𝑥′1,𝑎2𝑎
′
2

𝑥2𝑥′2,𝑎1𝑎
′
1
⊗𝐸𝑥1𝑥′1,𝑎1𝑎′1 ,

and

𝐹̃𝑦2𝑦′2,𝑏2𝑏′2 =
∑

𝑦1,𝑦′1∈𝑌1

∑

𝑏1,𝑏′1∈𝐵1
𝑁𝑦1𝑦′1,𝑏2𝑏

′
2

𝑦2𝑦′2,𝑏1𝑏
′
1
⊗𝐹𝑦1𝑦′1,𝑏1𝑏′1 ;

using an almost identical argument as in the proof of (ii), it is easy to verify
that 𝐸̃ = (𝐸̃𝑥2𝑥′2,𝑎2𝑎′2)𝑥2𝑥′2,𝑎2𝑎′2 and 𝐹̃ = (𝐹̃𝑦2𝑦′2,𝑏2𝑏′2)𝑦2𝑦′2,𝑏2𝑏′2 are finite-dimensionally
acting stochastic operator matrices such that

Γ[ℰ](𝑎2𝑎′2, 𝑏2𝑏
′
2|𝑥2𝑥

′
2, 𝑦2𝑦

′
2) =

⟨
(𝐸̃𝑥2𝑥′2,𝑎2𝑎′2 ⊗ 𝐹̃𝑦2𝑦′2,𝑏2𝑏′2)(𝜉 ⊗ 𝜂), 𝜉 ⊗ 𝜂

⟩
.

Thus, Γ[ℰ] ∈ 𝒬q.
(v) If Φ𝑋 ∶ 𝑀𝑋2 → 𝑀𝑋1 , Φ𝑌 ∶ 𝑀𝑌2 → 𝑀𝑌1 , Φ𝐴 ∶ 𝑀𝐴1 → 𝑀𝐴2 and Φ𝐵 ∶

𝑀𝐵1 →𝑀𝐵2 are quantum channels, it is easily verified (see [20]) that

(Φ𝑋 ⊗Φ𝑌 ⊗Φ𝐴 ⊗Φ𝐵)[ℰ ⊗ ℱ] = (Φ𝑋 ⊗Φ𝐴)[ℰ] ⊗ (Φ𝑌 ⊗Φ𝐵)[ℱ]

for all quantum channels ℰ ∶ 𝑀𝑋1 →𝑀𝐴1 andℱ ∶ 𝑀𝑌1 →𝑀𝐵1 . Using Remark
3.11, we may conclude that Γ[ℰ] ∈ 𝒬loc as claimed. □

Fix finite sets 𝑋 and 𝑌, and let 𝐴 = 𝑋, 𝐵 = 𝑌.

Theorem 4.2. Let Γ be an SQNS bicorrelation over (𝑋𝑌,𝑋𝑌,𝑋𝑌,𝑋𝑌) and ℰ be
a QNS bicorrelation over (𝑋, 𝑌, 𝑋, 𝑌). The following hold:

(i) Γ[ℰ] ∈ 𝒬bins;
(ii) if Γ ∈ 𝒬bisqc and ℰ ∈ 𝒬biqc, then Γ[ℰ] ∈ 𝒬biqc;
(iii) if Γ ∈ 𝒬bisqa and ℰ ∈ 𝒬biqa, then Γ[ℰ] ∈ 𝒬biqa;
(iv) if Γ ∈ 𝒬bisq and ℰ ∈ 𝒬biq , then Γ[ℰ] ∈ 𝒬biq ;
(v) if Γ ∈ 𝒬bisloc and ℰ ∈ 𝒬biloc, then Γ[ℰ] ∈ 𝒬biloc.
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Proof. (i) The claim follows as in Theorem 4.1, once we note that
Γ[ℰ]∗(𝑥2𝑥′2, 𝑦2𝑦′2|𝑎2𝑎′2, 𝑏2𝑏′2)

=
∑

𝑥1𝑥′1 ,𝑦1𝑦
′
1

∑

𝑎1𝑎′1 ,𝑏1𝑏
′
1

Γ(𝑥1𝑥′1, 𝑦1𝑦′1, 𝑎2𝑎′2, 𝑏2𝑏′2|𝑥2𝑥′2, 𝑦2𝑦′2, 𝑎1𝑎′1, 𝑏1𝑏′1)ℰ(𝑎1𝑎′1, 𝑏1𝑏′1|𝑥1𝑥′1, 𝑦1𝑦′1)

=
∑

𝑎1𝑎′1 ,𝑏1𝑏
′
1

∑

𝑥1𝑥′1 ,𝑦1𝑦
′
1

Γ∗(𝑥2𝑥′2, 𝑦2𝑦′2, 𝑎1𝑎′1, 𝑏1𝑏′1|𝑥1𝑥′1, 𝑦1𝑦′1, 𝑎2𝑎′2, 𝑏2𝑏′2)ℰ∗(𝑥1𝑥′1, 𝑦1𝑦′1|𝑎1𝑎′1, 𝑏1𝑏′1)

= Γ∗[ℰ∗](𝑥2𝑥′2, 𝑦2𝑦′2|𝑎2𝑎′2, 𝑏2𝑏′2)

for all 𝑥2, 𝑥′2 ∈ 𝑋, 𝑦2, 𝑦′2 ∈ 𝑌, 𝑎2, 𝑎′2 ∈ 𝐴, 𝑏2, 𝑏′2 ∈ 𝐵. This means Γ∗[ℰ∗] =
Γ[ℰ]∗.
(ii)-(v) follow as in the proof of Theorem 4.1 (ii)-(v), once we notice that the

stochastic operator matrices defined there are bistochastic. □

5. Perfect strategies for various quantum games

For an arbitrary Hilbert space𝐻, we write𝐻 for the Banach space dual of𝐻;
by the Riesz Representation Theorem, there exists a conjugate linear isometry
𝜕 ∶ 𝐻 → 𝐻, such that 𝜕(𝜉)(𝜂) = ⟨𝜂, 𝜉⟩, 𝜉, 𝜂 ∈ 𝐻. In what follows, we will
write ℂ

𝑋
= ℂ𝑋 for any finite set 𝑋. Set 𝜉 = 𝜕(𝜉), for 𝜉 ∈ 𝐻. Given a linear

operator 𝐴 ∶ 𝐻 → 𝐾, (where 𝐻,𝐾 are Hilbert spaces) let 𝐴 ∶ 𝐾 → 𝐻 be its
(Banach space) dual operator. Note that 𝐴(𝜉) = 𝐴∗𝜉, for 𝜉 ∈ 𝐾.
If 𝐻,𝐾 are finite dimensional, and we take vectors 𝜉 ∈ 𝐻, 𝜂 ∈ 𝐾 let 𝜂𝜉∗ ∶

𝐻 → 𝐾 be the rank one operator given by (𝜂𝜉∗)(𝜉′) = ⟨𝜉′, 𝜉⟩𝜂. Let 𝜃 ∶ 𝐻⊗𝐾 →
ℒ(𝐻,𝐾) be the linear isomorphism given by

𝜃(𝜉 ⊗ 𝜂) = 𝜂𝜉∗, 𝜉 ∈ 𝐻, 𝜂 ∈ 𝐾.

If 𝒱 ⊆ 𝐻 ⊗ 𝐾 is some subspace, we let 𝒱 ∶= 𝜃(𝒱) ⊆ ℒ(𝐻,𝐾) be the corre-
sponding subspace of linear operators.
Recall (see [21, Definition 4.1]) that if 𝑋,𝑌 are finite sets, a quantum hyper-

graph over (𝑋, 𝑌) is any subspace 𝒰 ⊆ ℂ
𝑋
⊗ ℂ𝑌 . For a classical hypergraph

𝐸 ⊆ 𝑋 × 𝑌, let
𝒰𝐸 = span{𝑒𝑥 ⊗ 𝑒𝑦 ∶ (𝑥, 𝑦) ∈ 𝐸}

be viewed as a quantum hypergraph over (𝑋, 𝑌). Furthermore, following the
notation established in [21] fix finite sets 𝑋𝑖, 𝑌𝑖, 𝑖 = 1, 2. Let 𝒰1 ⊆ ℂ𝑋1 ⊗
ℂ
𝑌1 , 𝒰2 ⊆ ℂ

𝑋2 ⊗ℂ𝑌2 be quantum hypergraphs and set

𝒰1 ⇔ 𝒰2 ∶= (𝒰1 ⊗𝒰2) + (𝒰⟂
1 ⊗𝒰⟂

2 ).
If

𝜎 ∶ ℂ𝑋1 ⊗ℂ
𝑌1 ⊗ℂ

𝑋2 ⊗ℂ𝑌1 → ℂ
𝑋2 ⊗ℂ

𝑌1 ⊗ℂ𝑋1 ⊗ℂ𝑌2
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is the flip on the 1st and 3rd tensor legs, then we set

𝒰1 ↔ 𝒰2 ∶= 𝜎(𝒰1 ⇔ 𝒰2).

Given a quantum hypergraph 𝒰 ⊆ ℂ
𝑋
⊗ℂ𝑌 , we let

𝒬(𝒰) ∶= {Φ ∶ 𝑀𝑋 →𝑀𝑌 ∶ a quantum channel with 𝒦̃Φ ⊆ 𝒰̃},

where 𝒦̃Φ is the Kraus space corresponding to channel Φ. For the next collec-
tion of results, we will need the following definition.

Definition 5.1 ([21]). Let t ∈ {loc, q, qa, qc, ns}, with 𝒰1 ⊆ ℂ𝑋1 ⊗ ℂ
𝑌1
and

𝒰2 ⊆ ℂ
𝑋2 ⊗ℂ𝑌2 quantum hypergraphs. We say that𝒰1 is t-homomorphic to𝒰2,

written 𝒰1 →t 𝒰2 if there exists a quantum channel Φ ∶ 𝑀𝑋2𝑌1 → 𝑀𝑋1𝑌2 with
Φ ∈ 𝒬t such that Φ ∈ 𝒬(𝒰1 ↔ 𝒰2).
5.1. Perfect strategies for quantum implication games. Let 𝑋,𝑌,𝐴, 𝐵 be
finite sets. If 𝑃 ∈ 𝑀𝑋𝑌 , 𝑄 ∈ 𝑀𝐴𝐵 are projections, the quantum implication
game (see [39]) 𝑃 ⇒ 𝑄 is the quantum non-local game 𝜑𝑃→𝑄 ∶ 𝒫𝑋𝑌 → 𝒫𝐴𝐵
given by

𝜑𝑃→𝑄(𝑃̃) =
⎧

⎨
⎩

𝑄, if 0 ≠ 𝑃̃ ≤ 𝑃,
0, if 𝑃̃ = 0,
𝐼, otherwise.

In other words, a quantum implication game is a quantum non-local game
which states that if a player is given an input state supported 𝑃, their output
should be a state supported on𝑄. A QNS correlationΦ ∶ 𝑀𝑋𝑌 → 𝑀𝐴𝐵 is called
a perfect strategy for 𝜑𝑃→𝑄 if ⟨Φ(𝑃), 𝑄⟂⟩ = 0. Equivalently, Φ is perfect if

𝜔 ∈ 𝑀+
𝑋𝑌 and 𝜔 = 𝑃𝜔𝑃 ⇒ Φ(𝜔) = 𝑄Φ(𝜔)𝑄.

As both 𝑃 and 𝑄 are finite-rank projections, we may find orthonormal basis
{𝜉𝑖}𝑛𝑖=1 ⊆ ℂ𝑋𝑌 (resp. {𝛾𝓁}𝑚𝓁=1 ⊆ ℂ𝐴𝐵) for rng(𝑃) (resp. rng(𝑄)). We may then
associate to any quantum implication game the subspace

𝒰𝑃,𝑄 ∶= span{𝜉𝑖 ⊗ 𝛾𝓁 ∶ 𝑖 ∈ [𝑛], 𝓁 ∈ [𝑚]},
considered as a quantum hypergraph over (𝑋𝑌,𝐴𝐵). Note that if 𝑆 ∈ 𝒰̃𝑃,𝑄 ⊆
ℒ(ℂ𝑋𝑌 , ℂ𝐴𝐵), then 𝑆 = ∑𝑡

𝑗=1 𝜆𝑗𝛾𝑗𝜉
∗
𝑗 where 𝜉𝑗 ∈ rng(𝑃), 𝛾𝑗 ∈ rng(𝑄) and 𝜆𝑗 ∈

ℂ for 𝑗 = 1,… , 𝑡.
If 𝔈 ⊆ QC(𝑀𝑋𝑌 ,𝑀𝐴𝐵) is a convex subset of quantum channels from𝑀𝑋𝑌 to

𝑀𝐴𝐵, we let

𝜔𝔈(𝑃, 𝑄) = sup
Φ∈𝔈

Tr(Φ(𝑃)𝑄) (24)

be the𝔈-value of the quantum implication game 𝑃 ⇒ 𝑄. Specifically, if𝔈 = 𝒬t
where t ∈ {loc, q, qa, qc, ns} we set 𝜔t(𝑃, 𝑄) = 𝜔𝒬t(𝑃, 𝑄); one may easily check
that 𝜔t(𝑃, 𝑄) = 1 if and only if there exists a perfect t-strategy Φ for 𝑃 ⇒ 𝑄.
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Lemma 5.2. A QNS correlation Φ ∶ 𝑀𝑋𝑌 → 𝑀𝐴𝐵 is a perfect strategy for 𝜑𝑃→𝑄
if and only if 𝒦̃Φ ⊆ 𝒰̃𝑃,𝑄.

Proof. First, assume thatΦ is a perfect strategy for the implication game 𝜑𝑃→𝑄.
Let Φ(𝑆) = ∑𝑡

𝑗=1𝑀𝑗𝑆𝑀∗
𝑗 be a Kraus decomposition for Φ; as Φ is perfect,

0 = Tr(Φ(𝑃)𝑄⟂)

=
𝑡∑

𝑗=1
Tr(𝑀𝑗𝑃𝑀∗

𝑗𝑄
⟂)

=
𝑡∑

𝑗=1
Tr(𝑄⟂𝑀𝑗𝑃2𝑀∗

𝑗𝑄
⟂)

=
𝑡∑

𝑗=1
Tr((𝑄⟂𝑀𝑗𝑃)(𝑄⟂𝑀𝑗𝑃)∗),

which implies 𝑄⟂𝑀𝑗𝑃 = 0 for each 𝑗 = 1,… , 𝑡. Taking adjoints, we also have
that 𝑃𝑀∗

𝑗𝑄
⟂ = 0 for each 𝑗 = 1,… , 𝑡. If we then fix 1 ≤ 𝑗 ≤ 𝑡 and pick

𝛽 ∈ rng(𝑃), 𝛼 ∈ rng(𝑄⟂), we see
⟨𝑀𝑗𝛽, 𝛼⟩ = ⟨𝑀𝑗𝑃𝛽, 𝑄⟂𝛼⟩ = ⟨𝑄⟂𝑀𝑗𝑃𝛽, 𝛼⟩ = 0.

As 𝛼 ∈ rng(𝑄⟂) was arbitrary, this implies 𝑀𝛽 ∈ rng(𝑄) for 𝛽 ∈ rng(𝑃). A
similar argument using the adjoint relation 𝑃𝑀∗

𝑗𝑄
⟂ = 0 implies that 𝑀∗

𝑗𝛼 ∈
rng(𝑃⟂) for each 𝛼 ∈ rng(𝑄⟂). Thus, 𝑀𝑗 ∈ 𝒰̃𝑃,𝑄. Unfixing our choice of
1 ≤ 𝑗 ≤ 𝑡, we see 𝒦̃Φ ⊆ 𝒰̃𝑃,𝑄.
Now assume 𝒦̃Φ ⊆ 𝒰̃𝑃,𝑄. By the comment before the lemma statement, one

may easily see that for any𝑀 ∈ 𝒦̃Φ we have𝑄⟂𝑀𝑃 = 0. If𝑀1, … ,𝑀𝑡 are Kraus
operators for Φ, reversing the steps in the previous paragraph we have that

0 = Tr(Φ(𝑃)𝑄⟂) = ⟨Φ(𝑃), 𝑄⟂⟩,
which shows that Φ is a perfect strategy for the game 𝜑𝑃→𝑄. □

Theorem5.3. Let𝑋𝑖, 𝑌𝑖, 𝐴𝑖, 𝐵𝑖, 𝑖 = 1, 2 be finite sets, 𝑃𝑖 ∈ 𝑀𝑋𝑖𝑌𝑖 , 𝑄𝑖 ∈ 𝑀𝐴𝑖𝐵𝑖 , 𝑖 =
1, 2 projections, and t ∈ {loc, q, qa, qc, ns}. If 𝒰𝑃1,𝑄1 →st 𝒰𝑃2,𝑄2 via Γ, and if
ℰ ∶ 𝑀𝑋1𝑌1 → 𝑀𝐴1𝐵1 is a perfect t-strategy for 𝜑𝑃1→𝑄1 , then Γ[ℰ] is a perfect t-
strategy for 𝜑𝑃2→𝑄2 .

Proof. Suppose that Γ(𝑇) =
𝑡∑

𝑝=1
𝑁𝑝𝑇𝑁∗

𝑝 and ℰ(𝑆) =
𝑠∑

𝑟=1
𝑀𝑟𝑆𝑀∗

𝑟 . By Lemma

5.2, as ℰ is a perfect strategy for 𝜑𝑃1→𝑄1 then𝑀𝑟 ∈ 𝒰̃𝑃1,𝑄1 for each 𝑟 = 1,… , 𝑠.
By construction (see [21]), the Kraus operators of Γ[ℰ] are given by operators
𝑁𝑝[𝑀𝑟] ∶ ℂ𝑋2𝑌2 → ℂ𝐴2𝐵2 , dependent on 𝑁𝑝 and 𝑀𝑟 for each 𝑝 = 1,… , 𝑡, 𝑟 =
1, … , 𝑠. Furthermore, as 𝒰𝑃1,𝑄1 → 𝒰𝑃2,𝑄2 via Γ by [21, Theorem 5.5] we know
that 𝑁𝑝[𝑀𝑟] ∈ 𝒰̃𝑃2,𝑄2 for each 𝑝 = 1,… , 𝑡, 𝑟 = 1, … , 𝑠. This means 𝒦̃Γ[ℰ] ⊆
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𝒰̃𝑃2,𝑄2 ; applying Lemma 5.2 once again, we see that Γ[ℰ] is a perfect strategy
for 𝜑𝑃2→𝑄2 . Furthermore, by Theorem 4.1 we have that Γ[ℰ] ∈ 𝒬t, whenever
Γ ∈ 𝒬st with ℰ ∈ 𝒬t. □

5.2. Classical-to-quantumnon-local games. In this subsection, wewill con-
sider a way to transfer strategies from classical non-local games to quantum
ones, and how a perfect strategy remains perfect under this transfer even when
both games are not quantum. For a fixed t ∈ {loc, q, qa, qc, ns} to make sense
of how we can take a classical strategy ℰ ∈ 𝒞t and “apply" it to a legitimately
quantum game, the most natural way is to first use [39, Remark 8.1] to con-
sider ℰ ∈ 𝒬t, and then use Γ ∈ 𝒬st as defined in Definition 3.7 to construct a
quantum strategy Γ[ℰ] via Theorem 4.1.

Lemma 5.4. Let𝑋1, 𝑌1, 𝐴1, 𝐵1 be finite sets, and𝐸 ⊆ 𝑋1𝑌1×𝐴1𝐵1 be a non-local
game. Then ℰ ∶ 𝒟𝑋1𝑌1 → 𝒟𝐴1𝐵1 is a perfect strategy for the game 𝐸 if and only if
𝒦̃ℰ ⊆ 𝒰̃𝐸 .

Proof. First, assumeℰ is a perfect strategy for classical non-local game𝐸. View-
ing ℰ as a quantum channel, by [21, Remark 4.3]

𝒦̃ℰ = span{𝑒𝑎1𝑒
∗
𝑥1 ⊗ 𝑒𝑏1𝑒

∗
𝑦1 ∶ (𝑥1, 𝑦1, 𝑎1, 𝑏1) ∈ supp(ℰ)}.

As supp(ℰ) ⊆ 𝐸, clearly 𝒦̃ℰ ⊆ 𝒰̃𝐸 .
Now assume 𝒦̃ℰ ⊆ 𝒰̃𝐸 . This means that for any Kraus operator 𝑀 of ℰ,

𝑀 ∈ 𝒰̃𝐸 . Thus, 𝑀 = ∑𝑛
𝑗=1 𝜆𝑗𝑒𝑎𝑗𝑒

∗
𝑥𝑗 ⊗ 𝑒𝑏𝑗𝑒

∗
𝑦𝑗 , where (𝑥𝑗, 𝑦𝑗, 𝑎𝑗, 𝑏𝑗) ∈ 𝐸 for

𝑗 = 1,… , 𝑛. If we assume ℰ(𝑆) =
𝑚∑
𝓁=1

𝑀𝓁𝑆𝑀∗
𝓁, as

ℰ(𝑎1, 𝑏1|𝑥1, 𝑦1) = Tr(ℰ(𝜖𝑥1𝑥1 ⊗ 𝜖𝑦1𝑦1)(𝜖𝑎1𝑎1 ⊗ 𝜖𝑏1𝑏1))

=
𝑚∑

𝓁=1
Tr(𝑀𝓁(𝜖𝑥1𝑥1 ⊗ 𝜖𝑦1𝑦1)𝑀

∗
𝓁(𝜖𝑎1𝑎1 ⊗ 𝜖𝑏1𝑏1)),

where each 𝑀𝓁 is of the form previously described, it is easy to see that
ℰ(𝑎1, 𝑏1|𝑥1, 𝑦1) ≠ 0 only if (𝑥1, 𝑦1, 𝑎1, 𝑏1) ∈ 𝐸. Thus, supp(ℰ) ⊆ 𝐸, which
means ℰ is a perfect strategy for 𝐸. □

Theorem 5.5. Let 𝑋𝑖, 𝑌𝑖, 𝐴𝑖, 𝐵𝑖, 𝑖 = 1, 2 be finite sets, 𝐸 ⊆ 𝑋1𝑌1 × 𝐴1𝐵1 a
classical non-local game, 𝑃 ∈ 𝑀𝑋2𝑌2 , 𝑄 ∈ 𝑀𝐴2𝐵2 be projections, and let t ∈
{loc, q, qa, qc, ns}. If 𝒰𝐸 →st 𝒰𝑃,𝑄 via Γ, and if ℰ ∶ 𝒟𝑋1𝑌1 → 𝒟𝐴1𝐵1 is a perfect
t-strategy for the game 𝐸, then Γ[ℰ] is a perfect t-strategy for quantum non-local
game 𝜑𝑃→𝑄.

Proof. Assuming the notation and setup as in the proof of Theorem 5.3, by
Lemma 5.4 we know that𝑀𝑟 ∈ 𝒰̂∗

𝐸 for each 𝑟 = 1,… , 𝑠. If the Kraus operators
for Γ[ℰ] are given by 𝑁𝑝[𝑀𝑟] for 𝑝 = 1,… , 𝑡 and 𝑟 = 1,… , 𝑠 then by [21, The-
orem 5.5] we know that 𝑁𝑝[𝑀𝑟] ∈ 𝒰̃𝑃,𝑄 for each 𝑝 = 1,… , 𝑡 and 𝑟 = 1,… , 𝑠.
By Lemma 5.2, this means Γ[ℰ] is a perfect strategy for 𝜑𝑃→𝑄. Furthermore, by
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Theorem 4.1 and Proposition 3.10 we have that Γ[ℰ] ∈ 𝒬t whenever Γ ∈ 𝒬st
with ℰ ∈ 𝒞t. □

5.3. Quantum graph games. Quantum graphs, and games played on quan-
tum graphs, have generated considerable interest in the last decade. While
there are several connected concepts in the literature of what a quantum graph
“should be" (see [5, 13, 15]), we will use the concept discussed in [6, 7, 37, 39].
For a finite set 𝑋, let𝔪 ∶ ℂ𝑋 ⊗ℂ𝑋 → ℂ be the map given by

𝔪(𝜉) =
⟨
𝜉,
∑

𝑥∈𝑋
𝑒𝑥 ⊗ 𝑒𝑥

⟩
.

Similarly, let 𝔣 ∶ ℂ𝑋 ⊗ℂ𝑋 → ℂ𝑋 ⊗ℂ𝑋 be the flip operation, where 𝔣(𝜉 ⊗ 𝜂) =
𝜂 ⊗ 𝜉, for 𝜉, 𝜂 ∈ ℂ𝑋 .

Definition 5.6. A quantum graph with vertex set 𝑋 is a linear subspace 𝒰 ⊆
ℂ𝑋 ⊗ℂ𝑋 which is skew- in that𝔪(𝒰) = {0}- and symmetric- in that 𝔣(𝒰) = 𝒰.

For the remainder of this section, for any subspace𝒰 ⊆ ℂ𝑋⊗ℂ𝑋 we denote
by 𝑃𝒰 the orthogonal projection onto 𝒰. If 𝐺 is a classical graph on vertex set
𝑋, there is a corresponding quantum graph 𝒰𝐺 given by the subspace

𝒰𝐺 ∶= span{𝑒𝑥 ⊗ 𝑒𝑦 ∶ 𝑥 ∼ 𝑦},

where we write 𝑃𝐺 = 𝑃𝒰𝐺 . If 𝒰 ⊆ ℂ𝑋 ⊗ ℂ𝑋 and 𝒱 ⊆ ℂ𝐴 ⊗ ℂ𝐴 are quantum
graphs, the quantum graph homomorphism game 𝒰 → 𝒱 is the quantum im-
plication game 𝜑𝑃𝒰→𝑃𝒱 . As mentioned, QNS correlation Γ ∶ 𝑀𝑋𝑋 → 𝑀𝐴𝐴 is
perfect for 𝒰 → 𝒱 if

𝜔 ∈ 𝑀+
𝑋𝑋 and 𝑃𝒰𝜔𝑃𝒰 ⇒ Φ(𝜔) = 𝑃𝒱Φ(𝜔)𝑃𝒱 .

In the event that 𝑋 = 𝐴, then Φ is a perfect strategy for the quantum graph
isomorphism game 𝒰 ≅ 𝒱 if Φ is a bicorrelation, with Φ a perfect strategy for
𝒰 → 𝒱 and Φ∗ a perfect strategy for 𝒱 → 𝒰.

Theorem 5.7. Let 𝒰𝑖 ⊆ ℂ𝑋𝑖𝑋𝑖 , 𝒱𝑖 ⊆ ℂ𝐴𝑖𝐴𝑖 , 𝑖 = 1, 2 be quantum graphs, with
𝑃𝑖 = 𝑃𝒰𝑖 , 𝑄𝑖 = 𝑃𝒱𝑖 , 𝑖 = 1, 2 their corresponding projections.

(i) If ℰ ∶ 𝑀𝑋1𝑋1 →𝑀𝐴1𝐴1 is a perfect strategy for the quantum graph homo-
morphism game 𝒰1 →t 𝒱1 and 𝒰𝑃1,𝑄1 →st 𝒰𝑃2,𝑄2 via Γ, then Γ[ℰ] is a
perfect strategy for the quantum graph homomorphism game𝒰2 →t 𝒱2;

(ii) If 𝑋𝑖 = 𝐴𝑖, 𝑖 = 1, 2 and ℰ ∶ 𝑀𝑋1𝑋1 → 𝑀𝑋1𝑋1 is a perfect strategy for
the quantum graph isomorphism game 𝒰1 ≅t 𝒱1 and 𝒰𝑃1,𝑄1 ≅st 𝒰𝑃2,𝑄2
via Γ, then Γ[ℰ] is a perfect strategy for the quantum graph isomorphism
game𝒰2 ≅t 𝒱2.

Proof. (i) This follows as a special consequence of Theorem 5.3.
(ii) Assume the notation and setup as in the proof of Theorem 5.3; by the

aforementioned theorem, we already know that Γ[ℰ] is a perfect strategy for
the graph homomorphism game 𝒰2 → 𝒱2. To show that Γ[ℰ]∗ is a perfect
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strategy for 𝒱2 → 𝒰2, first note that Γ[ℰ]∗ = Γ∗[ℰ∗] (by construction of simu-
lated channels). Furthermore, by definition of 𝒰𝑃2,𝑄2 we may easily verify that
𝒰𝑄2,𝑃2 = 𝒰𝑃2,𝑄2 . With the use of [21, Lemma 2.1], and as 𝜃−1(𝑁𝑝[𝑀𝑟]) ∈ 𝒰𝑃2,𝑄2 ,
we have that 𝜃−1((𝑁𝑝[𝑀𝑟])∗) = 𝜃−1(𝑁∗

𝑝[𝑀∗
𝑟 ]) ∈ 𝒰𝑃2,𝑄2 = 𝒰𝑄2,𝑃2 , 𝑝 = 1,… , 𝑡

and 𝑟 = 1,… , 𝑠. Thus, by Lemma 5.2 once more we see 𝒦̃Γ[ℰ]∗ ⊆ 𝒰̃𝑄2,𝑃2 . This
means Γ[ℰ]∗ is a perfect strategy for 𝒱2 → 𝒰2. That Γ[ℰ], Γ[ℰ]∗ are both in
𝒬t follows from Theorem 4.2. Together, these show 𝒰2 ≅t 𝒱2 via Γ[ℰ], as
claimed. □

6. Characterization of SQNS correlations and applications to
concurrent games
In the final section, we wish to link strongly quantum no-signalling corre-

lations to the (multi-variate) tensor product of operator systems. In order to
do so, we first briefly recall some facts about operator systems and related con-
structions. If 𝒮 and 𝒯 are operator systems, we call 𝒮 and 𝒯 completely order
isomorphic and write 𝒮 ≅c.o.i 𝒯 if there exists a unital completely positive bi-
jection 𝜙 ∶ 𝒮 → 𝒯 with completely positive inverse. We write 𝒮 ⊆c.o.i 𝒯 if
𝒮 ⊆ 𝒯 and the inclusion map 𝜄 ∶ 𝒮 ↪ 𝒯 is a complete order isomorphism onto
its range. The three main types of operator system tensor products that will be
used in the sequel are given as follows:

(i) theminimal operator system tensor product 𝒮⊗min𝒯 arises from view-
ing 𝒮 ⊗ 𝒯 as a subspace of ℬ(𝐻 ⊗ 𝐾), when we concretely realize
𝒮 ⊆ ℬ(𝐻) and 𝒯 ⊆ ℬ(𝐾) for Hilbert spaces𝐻,𝐾;

(ii) the commuting tensor product 𝒮 ⊗c 𝒯 has the smallest family of ma-
tricial cones which make the maps 𝜙 ⋅ 𝜓, where 𝜙 ∶ 𝒮 → ℬ(𝐻) and
𝜓 ∶ 𝒯 → ℬ(𝐻) are completely positive with commuting ranges, com-
pletely positive; note that (𝜙 ⋅ 𝜓)(𝑥 ⊗ 𝑦) = 𝜙(𝑥)𝜓(𝑦), 𝑥 ∈ 𝒮, 𝑦 ∈ 𝒯;

(iii) the maximal operator system tensor product 𝒮 ⊗max 𝒯 has matricial
cones generated by the elementary tensors of the form 𝑆 ⊗ 𝑇, where
𝑆 ∈ 𝑀𝑛(𝒮)+ and 𝑇 ∈ 𝑀𝑚(𝒯)+, 𝑛,𝑚 ∈ ℕ.

More details about each tensor product may be found in [27]; the construction
of the multivariate tensor product of each type, with explicit descriptions of
their matricial cones, may be found in [20, Section 7].
We recall the notion of a coproduct of operator systems: if 𝒮 and 𝒯 are two

operator systems, their coproduct 𝒮 ⊕1 𝒯 is the unique (up to isomorphism)
operator system equipped with complete order embeddings 𝜄𝒮 ∶ 𝒮 → 𝒮 ⊕1 𝒯
and 𝜄𝒯 ∶ 𝒯 → 𝒮 ⊕1 𝒯 which satisfies the following unversal property: For
each ucp map 𝜙 ∶ 𝒮 → ℛ and 𝜓 ∶ 𝒯 → ℛ, where ℛ is an operator system,
there exists a unique ucp map 𝜑 ∶ 𝒮 ⊕1 𝒯 → ℛ such that 𝜑(𝜄𝒮(𝑠)) = 𝜙(𝑠) and
𝜑(𝜄𝒯(𝑡)) = 𝜓(𝑡) for every 𝑠 ∈ 𝒮, 𝑡 ∈ 𝒯. For more properties of the coproduct of
operator systems, we refer the reader to [25, Section 8].
We also will need to recall the universal operator system for stochastic op-

erator matrices, introduced in [39]. A 𝑡𝑒𝑟𝑛𝑎𝑟𝑦 𝑟𝑖𝑛𝑔 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠 (𝑇𝑅𝑂) is a
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subspace 𝒱 ⊆ ℬ(𝐻,𝐾) for some Hilbert spaces 𝐻 and 𝐾, such that 𝑆𝑇∗𝑅 ∈ 𝒱
whenever 𝑆, 𝑇, 𝑅 ∈ 𝒱 (see [3, Section 4.3] or [41]). Let 𝑋 and 𝐴 be finite sets,
and let𝒱𝑋,𝐴 be the universal TRO generated by the entries 𝑣𝑎,𝑥 of a block oper-
ator isometry𝑉 = (𝑣𝑎,𝑥)𝑎∈𝐴,𝑥∈𝑋 . That is,𝒱𝑋,𝐴 is the universal TROwith gener-
ators 𝑣𝑎,𝑥, 𝑎 ∈ 𝐴, 𝑥 ∈ 𝑋, ternary operator [⋅, ⋅, ⋅] ∶ 𝒱𝑋,𝐴 × 𝒱𝑋,𝐴 × 𝒱𝑋,𝐴 → 𝒱𝑋,𝐴
given by [𝑢, 𝑣, 𝑤] = 𝑢𝑣∗𝑤 for 𝑢, 𝑣, 𝑤 ∈ 𝒱𝑋,𝐴, and relations

∑

𝑎∈𝐴
[𝑣𝑎′′,𝑥′′ , 𝑣𝑎,𝑥, 𝑣𝑎,𝑥′] = 𝛿𝑥,𝑥′𝑣𝑎′′,𝑥′′ , 𝑥, 𝑥′, 𝑥′′ ∈ 𝑋, 𝑎′′ ∈ 𝐴.

Let ℭ𝑋,𝐴 be the unital ∗-algebra, generated by the set

{𝑣∗𝑎,𝑥𝑣𝑎′,𝑥′ ∶ 𝑥, 𝑥′ ∈ 𝑋, 𝑎, 𝑎′ ∈ 𝐴},

and 𝒞𝑋,𝐴 be the 𝑟𝑖𝑔ℎ𝑡 𝐶∗ − 𝑎𝑙𝑔𝑒𝑏𝑟𝑎 of 𝒱𝑋,𝐴; up to a ∗-isomorphism, we may
view

𝒞𝑋,𝐴 = span{𝜃(𝑆)∗𝜃(𝑇) ∶ 𝑆, 𝑇 ∈ 𝒱𝑋,𝐴}

for any faithful ternary representation 𝜃 ∶ 𝒱𝑋,𝐴 → ℬ(𝐻,𝐾) (where 𝐻,𝐾 are
Hilbert spaces). Set

𝑒𝑥,𝑥′,𝑎,𝑎′ = 𝑣∗𝑎,𝑥𝑣𝑎′,𝑥′ , 𝑥, 𝑥′ ∈ 𝑋, 𝑎, 𝑎′ ∈ 𝐴

where the latter is considered either as an element in ℭ𝑋,𝐴 or 𝒞𝑋,𝐴, depending
on the context. The Brown-Cuntz operator system (see [39]) inside 𝒞𝑋,𝐴 is given
by

𝒯𝑋,𝐴 ∶= span{𝑒𝑥,𝑥′,𝑎,𝑎′ ∶ 𝑥, 𝑥′ ∈ 𝑋, 𝑎, 𝑎′ ∈ 𝐴}.

We also will consider the space

𝒮𝑋,𝐴 ∶= span{𝑒𝑥,𝑥,𝑎,𝑎 ∶ 𝑥 ∈ 𝑋, 𝑎 ∈ 𝐴},

viewed as an operator subsystem inside 𝒯𝑋,𝐴. To help distinguish between op-
erator systems 𝒯𝑋,𝐴 and𝒯𝑌,𝐵, we will denote the canonical generators of𝒯𝑋,𝐴
by 𝑒𝑥,𝑥′,𝑎,𝑎′ , 𝑥, 𝑥′ ∈ 𝑋, 𝑎, 𝑎′ ∈ 𝐴 and 𝒯𝑌,𝐵 by 𝑓𝑦,𝑦′,𝑏,𝑏′ , 𝑦, 𝑦′ ∈ 𝑌, 𝑏, 𝑏′ ∈ 𝐵.
Similarly, there are canonical operator algebras and operator systems which

corresponding to bistochastic operator matrices (first introduced in [7, Section
3]); these will be needed to show an analogous result to Proposition 6.1. Let
𝒱𝑋 be the universal TRO generated by the entries 𝑣𝑎,𝑥 of a block operator bi-
isometry 𝑉 = (𝑣𝑎,𝑥)𝑎∈𝐴,𝑥∈𝑋 (see [7]). Let 𝒞𝑋 be the right C∗-algebra of 𝒱𝑋 , set
𝑒𝑥,𝑥′,𝑎,𝑎′ = 𝑣∗𝑎,𝑥𝑣𝑎,𝑥 (where the latter is considered as an element of 𝒞𝑋) and

𝒯𝑋 ∶= span{𝑒𝑥,𝑥′,𝑎,𝑎′ ∶ 𝑥, 𝑥′ ∈ 𝑋, 𝑎, 𝑎′ ∈ 𝐴}

be viewed as an operator system in 𝒞𝑋 . Furthermore, we let

𝒮𝑋 ∶= span{𝑒𝑥,𝑥,𝑎,𝑎 ∶ 𝑥 ∈ 𝑋, 𝑎 ∈ 𝐴}

be viewed as an operator subsystem of 𝒯𝑋 .
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Proposition 6.1. If 𝑃 = (𝑃𝑎𝑎
′,𝑏𝑏′

𝑥𝑥′,𝑦𝑦′)𝑥𝑥′,𝑦𝑦′,𝑎𝑎′,𝑏𝑏′ is a dilatable strongly stochastic
operatormatrix acting on theHilbert space𝐻, then there exists a unital completely
positive map 𝛾 ∶ 𝒯𝑋,𝐴 ⊗c 𝒯𝑌,𝐵 → ℬ(𝐻) such that 𝛾(𝑒𝑥,𝑥′,𝑎,𝑎′ ⊗ 𝑓𝑦,𝑦′,𝑏,𝑏′) =
𝑃𝑎𝑎

′,𝑏𝑏′
𝑥𝑥′,𝑦𝑦′ . Conversely, if 𝛾 ∶ 𝒯𝑋,𝐴 ⊗c 𝒯𝑌,𝐵 → ℬ(𝐻) is a unital completely positive
map, then

(
𝛾(𝑒𝑥,𝑥′,𝑎,𝑎′ ⊗ 𝑓𝑦,𝑦′,𝑏,𝑏′)

)
𝑥𝑥′,𝑦𝑦′,𝑎𝑎′,𝑏𝑏′ is a dilatable strongly stochastic

operator matrix.

Proof. Let 𝐾 be a Hilbert space, 𝑉 ∶ 𝐻 → 𝐾 be an isometry, and

(𝐸𝑥𝑥′,𝑎𝑎′)𝑥,𝑥′∈𝑋,𝑎,𝑎′∈𝐴, (𝐹𝑦𝑦′,𝑏𝑏′)𝑦,𝑦′∈𝑌,𝑏,𝑏′∈𝐵
be mutually commuting stochastic operator matrices on 𝐾 satisfying (9). De-
fine linear maps 𝜙 ∶ 𝒯𝑋,𝐴 → ℬ(𝐾) (resp. 𝜓 ∶ 𝒯𝑌,𝐵 → ℬ(𝐾)) by 𝜙(𝑒𝑥,𝑥′,𝑎,𝑎′) =
𝐸𝑥𝑥′,𝑎𝑎′ (resp. 𝜓(𝑓𝑦,𝑦′,𝑏,𝑏′) = 𝐹𝑦𝑦′,𝑏𝑏′). By [39, Theorem 5.2], both 𝜙 and 𝜓
are unital and completely positive. By the definition of the commuting ten-
sor product of operator spaces, the map 𝜙 ⋅ 𝜓 ∶ 𝒯𝑋,𝐴⊗c 𝒯𝑌,𝐵 → ℬ(𝐾) given by
(𝜙 ⋅ 𝜓)(𝑢 ⊗ 𝑣) = 𝜙(𝑢)𝜓(𝑣) is (unital and) completely positive as well. Set

𝛾(𝑤) = 𝑉∗(𝜙 ⋅ 𝜓)(𝑤)𝑉, 𝑤 ∈ 𝒯𝑋,𝐴 ⊗c 𝒯𝑌,𝐵;
it is easy to verify that 𝛾 is unital and completely positive. Furthermore, we
have 𝛾(𝑒𝑥,𝑥′,𝑎,𝑎′ ⊗ 𝑓𝑦,𝑦′,𝑏,𝑏′) = 𝑃𝑎𝑎

′,𝑏𝑏′
𝑥𝑥′,𝑦𝑦′ , 𝑥, 𝑥

′ ∈ 𝑋, 𝑦, 𝑦′ ∈ 𝑌, 𝑎, 𝑎′ ∈ 𝐴, 𝑏, 𝑏′ ∈ 𝐵.
Conversely, suppose that 𝛾 ∶ 𝒯𝑋,𝐴 ⊗c 𝒯𝑌,𝐵 → ℬ(𝐻) is a unital completely

positive map. By [39, Corollary 5.3] and [27, Theorem 6.4], 𝒯𝑋,𝐴 ⊗c 𝒯𝑌,𝐵 ⊆c.o.i
𝒞𝑋,𝐴 ⊗max 𝒞𝑌,𝐵. Apply Arveson’s Extension Theorem to obtain a completely
positive map 𝛾̃ ∶ 𝒞𝑋,𝐴 ⊗max 𝒞𝑌,𝐵 → ℬ(𝐻) extending 𝛾. If we then apply Stine-
spring’s Theorem, we may write

𝛾̃(𝑤) = 𝑉∗𝜋(𝑤)𝑉, 𝑤 ∈ 𝒞𝑋,𝐴 ⊗max 𝒞𝑌,𝐵,
where 𝜋 ∶ 𝒞𝑋,𝐴⊗max 𝒞𝑌,𝐵 → ℬ(𝐾) is a ∗-representation on some Hilbert space
𝐾, and𝑉 ∶ 𝐻 → 𝐾 is an isometry. Set𝐸𝑥𝑥′,𝑎𝑎′ = 𝜋(𝑒𝑥,𝑥′,𝑎,𝑎′⊗1), 𝐹𝑦𝑦′,𝑏𝑏′ = 𝜋(1⊗
𝑓𝑦,𝑦′,𝑏,𝑏′) for 𝑥, 𝑥′ ∈ 𝑋, 𝑎, 𝑎′ ∈ 𝐴, 𝑦, 𝑦′ ∈ 𝑌 and 𝑏, 𝑏′ ∈ 𝐵. Doing so gives us a
dilatable representation of the matrix (𝛾(𝑒𝑥,𝑥′,𝑎,𝑎′ ⊗ 𝑓𝑦,𝑦′,𝑏,𝑏′))𝑥𝑥′,𝑦𝑦′,𝑎𝑎′,𝑏𝑏′ . □

Remark 6.2. By Remark 3.2 and [20, Remark 5.3], there exist strongly stochas-
tic operator matrices which are not dilatable.

Proposition 6.3. If 𝑃 = (𝑃𝑎𝑎
′,𝑏𝑏′

𝑥𝑥′,𝑦𝑦′)𝑥𝑥′,𝑦𝑦′,𝑎𝑎′,𝑏𝑏′ is a dilatable strongly bistochastic
operatormatrix acting on theHilbert space𝐻, then there exists a unital completely
positive map 𝛾 ∶ 𝒯𝑋 ⊗c 𝒯𝑌 → ℬ(𝐻) such that 𝛾(𝑒𝑥,𝑥′,𝑎,𝑎′ ⊗ 𝑓𝑦,𝑦′,𝑏,𝑏′) = 𝑃𝑎𝑎

′,𝑏𝑏′
𝑥𝑥′,𝑦𝑦′ .

Conversely, if 𝛾 ∶ 𝒯𝑋 ⊗c 𝒯𝑌 → ℬ(𝐻) is a unital completely positive map, then
(𝛾(𝑒𝑥,𝑥′,𝑎,𝑎′ ⊗ 𝑓𝑦,𝑦′,𝑏,𝑏′))𝑥𝑥′,𝑦𝑦′,𝑎𝑎′,𝑏𝑏′ is a dilatable strongly bistochastic operator
matrix.

Proof. Using [7, Theorem3.4] and [27, Theorem6.4], argue exactly as in Propo-
sition 6.1 but with bistochastic operator matrices in place of stochastic operator
matrices and 𝒯𝑋 (resp. 𝒯𝑌) in place of 𝒯𝑋,𝐴 (resp. 𝒯𝑌,𝐵). □
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6.1. Representations of SQNS correlations via operator systems. Let 𝒮
be an operator system. Recall that the universal 𝐶∗-cover of 𝒮 (see [28]) is the
pair (𝐶∗𝑢(𝒮), 𝜄) where 𝐶∗𝑢(𝒮) is a unital C∗-algebra, 𝜄 ∶ 𝒮 → 𝐶∗𝑢(𝒮) is a unital
complete order embedding such that 𝜄(𝒮) generates 𝐶∗𝑢(𝒮) as a C∗-algebra, and
whenever𝐻 is a Hilbert space with 𝜙 ∶ 𝒮 → ℬ(𝐻) a unital completely positive
map, there exists a ∗-representation 𝜋𝜙 ∶ 𝐶∗𝑢(𝒮) → ℬ(𝐻) such that 𝜋𝜙◦𝜄 = 𝜙.
We will briefly introduce a multivariate extension of both the maximal and the
commuting tensor product (as discussed in the beginning of this section) in the
category of operator systems. If 𝒮1, … , 𝒮𝑘 are operator systems, as the maximal
tensor product of operator systems is associative (via [27, Theorem 5.5]) wemay
give an unambiguous meaning to the 𝑘-fold maximal tensor product

max −⊗𝑘
𝑗=1𝒮𝑗 ∶= 𝒮1 ⊗max ⋯⊗max 𝒮𝑘.

The 𝑘-fold commuting tensor product was initially defined in [20, Section 7]:
if 𝐻 is a Hilbert space and 𝜙𝑗 ∶ 𝒮𝑗 → ℬ(𝐻) are completely positive maps for
𝑗 = 1,… , 𝑘, we call the family (𝜙𝑗)𝑘𝑗=1 commuting if 𝜙𝑖 and 𝜙𝑗 have mutually
commuting ranges whenever 𝑖 ≠ 𝑗, for 1 ≤ 𝑖, 𝑗 ≤ 𝑘. Given a commuting family
(𝜙𝑗)𝑘𝑗=1, we define the linear map

∏𝑘
𝑗=1 𝜙𝑗 ∶ ⊗

𝑘
𝑗=1𝒮𝑗 → ℬ(𝐻) via

(
𝑘∏

𝑗=1
𝜙𝑗)(⊗𝑘

𝑗=1𝑢𝑗) ∶=
𝑘∏

𝑗=1
𝜙𝑗(𝑢𝑗), 𝑢𝑗 ∈ 𝒮𝑗, 𝑗 ∈ [𝑘].

The positive cones for c − ⊗𝑘
𝑗=1𝒮𝑗 are then determined by all elements 𝑢 ∈

𝑀𝑛(⊗𝑘
𝑗=1𝒮𝑗) which are positive in 𝑀𝑛(ℬ(𝐻)) under all mutually commuting

families and for all choices of Hilbert space𝐻.
The following result shows howwe can understand the structure of themul-

tivariate commuting tensor product of operator systems when we view them
inside the maximal tensor product of their universal C∗-covers.

Theorem 6.4. Let 𝒮1, … , 𝒮𝑘, 𝑘 ∈ ℕ be operator systems. The operator system
arising from the inclusion of ⊗𝑘

𝑗=1 − 𝒮𝑗 into max − ⊗𝑘
𝑗=1𝐶

∗
𝑢(𝒮𝑗) coincides with

c − ⊗𝑘
𝑗=1𝒮𝑗 .

Proof. For the sake of brevity, set 𝒮 = c − ⊗𝑘
𝑗=1𝒮𝑗. First, suppose 𝑢 ∈ 𝑀𝑛(𝒮)+

for some 𝑛 ∈ ℕ. We wish to show that 𝑢 ∈ 𝑀𝑛(max − ⊗𝑘
𝑗=1𝐶

∗
𝑢(𝒮𝑗))+. By

[27, Lemma 4.1], it is sufficient to prove that 𝜙(𝑛)(𝑢) ≥ 0 for each unital com-
pletely positive 𝜙 ∶ max − ⊗𝑘

𝑗=1𝐶
∗
𝑢(𝒮𝑗) → ℬ(𝐻). By Stinespring’s Theorem,

we may also without loss of generality assume 𝜙 is a ∗-homomorphism. By
[20, Proposition 7.4], associativity, and the universal property of the maximal
tensor product of C∗-algebras, each such 𝜙 is equivalent to

∏𝑘
𝑗=1 𝜋𝑗, where

𝜋𝑗 ∶ 𝐶∗𝑢(𝒮𝑗) → ℬ(𝐻) is a ∗-homomorphism for 𝑗 = 1,… , 𝑘 and all have mu-
tually commuting ranges. As the restriction of 𝜋𝑗 to 𝒮𝑗 remains completely
positive for 𝑗 = 1,… , 𝑘, the result follows.
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Conversely, let 𝜏 be the operator system structure on⊗𝑘
𝑗=1𝒮𝑗 arising from the

inclusion ⊗𝑘
𝑗=1𝒮𝑗 ⊆ max − ⊗𝑘

𝑗=1𝐶
∗
𝑢(𝒮𝑗). Suppose that 𝑢 ∈ 𝑀𝑛(𝜏 − ⊗𝑘

𝑗=1𝒮𝑗)
+,

with 𝜙𝑗 ∶ 𝒮𝑗 → ℬ(𝐻) completely positive maps with mutually commuting
ranges for 𝑗 = 1,… , 𝑘. By the definition of 𝐶∗𝑢(𝒮𝑗), there exists unique ∗-homo-
morphisms 𝜋𝑗 ∶ 𝐶∗𝑢(𝒮𝑗) → ℬ(𝐻) extending 𝜙𝑗, for 𝑗 = 1,… , 𝑘. As 𝒮𝑗 generates
𝐶∗𝑢(𝒮𝑗) as a C∗-algebra, we may then conclude the ranges of 𝜋𝑗 are mutually
commuting as well for 𝑗 = 1,… , 𝑘. Thus, (⊗𝑘

𝑗=1𝜙𝑗)
(𝑛)(𝑢) ≥ 0, which implies

𝑢 ∈ 𝑀𝑛(𝒮)+- completing the proof. □

Recall (see [33]) that for anyArchimedean ordered unit (AOU) space𝑉, there
exists a unique operator system OMIN(𝑉) (respectively, OMAX(𝑉)) with un-
derlying space 𝑉, called the minimal (respectively, maximal) operator system
of 𝑉 which has the universal property that every positive map 𝜙 ∶ 𝒯 → 𝑉 (re-
spectively, 𝜙 ∶ 𝑉 → 𝒯) where 𝒯 is an operator system, is completely positive
from 𝒯 → OMIN(𝑉) (respectively, OMAX(𝑉) → 𝒯).

Lemma 6.5. Let 𝑉1, … , 𝑉𝑘, 𝑘 ∈ ℕ be finite dimensional AOU spaces, with units
𝑒𝑗, 𝑗 = 1, … , 𝑘 respectively. An element 𝑢 ∈ max − ⊗𝑘

𝑗=1OMAX(𝑉𝑗) is positive if

and only if𝑢 =
𝑚∑
𝑖=1

𝑣(1)𝑖 ⊗…⊗𝑣(𝑘)𝑖 , for some 𝑣(𝑗)𝑖 ∈ 𝑉+
𝑗 , 𝑖 = 1, … ,𝑚 and 𝑗 = 1,… , 𝑘.

Proof. This proof relies on similar ideas as the proof of [39, Lemma 6.6]; we
include the details for the convenience of the reader. We only consider the case
when 𝑘 = 3; all others will follow similarly. Let𝐷 be the set containing all sums
of elementary tensors 𝑣1 ⊗ 𝑣2 ⊗ 𝑣3 with 𝑣𝑖 ∈ 𝑉+

𝑖 , 𝑖 = 1, 2, 3. We claim that if,
for every 𝜖 > 0, there exists 𝑢𝜖 ∈ 𝐷 such that ‖𝑢𝜖‖ → 0 as 𝜖 → 0 and 𝑢+𝑢𝜖 ∈ 𝐷
for each 𝜖 > 0, then 𝑢 ∈ 𝐷. We may, without loss of generality, further assume
that ‖𝑢𝜖‖ ≤ 1 for all 𝜖 > 0. Set 𝐾 = 2dim(𝑉1)dim(𝑉2)dim(𝑉3) + 1 and, using
Carathéodory’s Theorem, start by writing

𝑢 + 𝑢𝜖 =
𝐾∑

𝑗=1
𝑣(𝜖)1,𝑗 ⊗ 𝑣(𝜖)2,𝑗 ⊗ 𝑣(𝜖)3,𝑗,

where 𝑣(𝜖)𝑖,𝑗 ∈ 𝑉+
𝑖 and ‖𝑣

(𝜖)
1,𝑗‖ = ‖𝑣(𝜖)2,𝑗‖ = ‖𝑣(𝜖)3,𝑗‖ for 𝑖 = 1, 2, 3, 𝑗 = 1,… , 𝐾 and all

𝜖 > 0. As 𝑣(𝜖)1,𝑗 ⊗ 𝑣(𝜖)2,𝑗 ⊗ 𝑣(𝜖)3,𝑗 ≤ 𝑢 + 𝑢𝜖 and ‖𝑢 + 𝑢𝜖‖ ≤ ‖𝑢‖ + 1 for all 𝜖 > 0, we
get that ‖𝑣(𝜖)𝑖,𝑗 ‖ ≤

3
√
‖𝑢‖ + 1 for 𝑖 = 1, 2, 3 and 𝑗 = 1,… , 𝐾. Using the fact that all

of our AOU spaces are finite-dimensional, by compactness we can also assume
𝑣(𝜖)𝑖,𝑗 → 𝑣𝑖,𝑗 as 𝜖 → 0 for 𝑖 = 1, 2, 3 and all 𝑗 = 1,… , 𝐾. We may then conclude
that 𝑢 = ∑𝐾

𝑗=1 𝑣1,𝑗 ⊗ 𝑣2,𝑗 ⊗ 𝑣3,𝑗 ∈ 𝐷.
Let

𝑆0 =
𝓁∑

𝑝=1
𝑎𝑝 ⊗ 𝑣(1)𝑝 , 𝑇0 =

𝑠∑

𝑞=1
𝑏𝑞 ⊗ 𝑣(2)𝑞 , 𝑈0 =

𝑡∑

𝑟=1
𝑐𝑟 ⊗ 𝑣(3)𝑟 , (25)
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for some 𝑎𝑝 ∈ 𝑀+
𝑛 , 𝑣

(1)
𝑝 ∈ 𝑉+

1 , 𝑝 = 1,… , 𝓁, 𝑏𝑞 ∈ 𝑀+
𝑚, 𝑣

(2)
𝑞 ∈ 𝑉+

2 , 𝑞 = 1,… , 𝑠 and
𝑐𝑟 ∈ 𝑀+

𝑑 , 𝑣
(3)
𝑟 ∈ 𝑉+

3 , 𝑟 = 1, … , 𝑡. If 𝛼 ∈ 𝑀1,𝑛𝑚𝑑, then

𝛼(𝑆0 ⊗ 𝑇0 ⊗𝑈0)𝛼∗ =
𝓁∑

𝑝=1

𝑠∑

𝑞=1

𝑡∑

𝑟=1
(𝛼(𝑎𝑝 ⊗ 𝑏𝑞 ⊗ 𝑐𝑟)𝛼∗)𝑣

(1)
𝑝 ⊗ 𝑣(2)𝑞 ⊗ 𝑣(3)𝑟 ∈ 𝐷.

Now suppose first that 𝑆 ∈ 𝑀𝑛(OMAX(𝑉1))+ and 𝛼 ∈ 𝑀1,𝑛𝑚𝑑. By the descrip-
tion of the multivariate maximal tensor product as provided in [20, Proposition
7.2], if 𝜖 > 0 then 𝑆 + 𝜖1𝑛 has the form of 𝑆0 as in (25). Therefore,

𝛼(𝑆 ⊗ 𝑇0 ⊗𝑈0)𝛼∗ + 𝜖𝛼(1𝑛 ⊗ 𝑇0 ⊗𝑈0)𝛼∗ = 𝛼((𝑆 + 𝜖1𝑛) ⊗ 𝑇0 ⊗𝑈0)𝛼∗ ∈ 𝐷.

Since 𝛼(1𝑛 ⊗ 𝑇0 ⊗ 𝑈0)𝛼∗ ∈ 𝐷 (using [33]), using our initial arguments we
conclude that

𝛼(𝑆 ⊗ 𝑇0 ⊗𝑈0)𝛼∗ ∈ 𝐷.

If we now pick 𝑇 ∈ 𝑀𝑚(OMAX(𝑉2))+ and 𝑈 ∈ 𝑀𝑑(OMAX(𝑉3))+, using simi-
lar arguments as before we may conclude that 𝛼(𝑆 ⊗ 𝑇 ⊗𝑈)𝛼∗ ∈ 𝐷.
Let 𝑢 ∈ max − ⊗3

𝑗=1OMAX(𝑉𝑗) be positive; by the definition of the mul-
tivariate maximal tensor product [20], for every 𝜖 > 0 there exists 𝑛,𝑚, 𝑑 ∈
ℕ, 𝑆 ∈ 𝑀𝑛(OMAX(𝑉1))+, 𝑇 ∈ 𝑀𝑚(OMAX(𝑉2))+, 𝑈 ∈ 𝑀𝑑(OMAX(𝑉3))+ and
𝛼 ∈ 𝑀1,𝑛𝑚𝑑 such that 𝑢 + 𝜖1 = 𝛼(𝑆 ⊗ 𝑇 ⊗ 𝑈)𝛼∗. By the previous and first
paragraphs, this implies 𝑢 ∈ 𝐷. □

For a linear functional

𝑠 ∶ 𝒯𝑋2,𝑋1 ⊗𝒯𝑌2,𝑌1 ⊗𝒯𝐴1,𝐴2 ⊗𝒯𝐵1,𝐵2 → ℂ,

let Γ𝑠 ∶ 𝑀𝑋2𝑌2𝐴1𝐵1 →𝑀𝑋1𝑌1𝐴2𝐵2 be the linear map whose Choi matrix coincides
with

(
𝑠(𝑒𝑥2,𝑥′2,𝑥1,𝑥′1 ⊗ 𝑒𝑦2,𝑦′2,𝑦1,𝑦′1 ⊗ 𝑒𝑎1,𝑎′1,𝑎2,𝑎′2 ⊗ 𝑒𝑏1,𝑏′1,𝑏2,𝑏′2)

)𝑥1𝑥′1,𝑦1𝑦′1,𝑎2𝑎′2,𝑏2𝑏′2
𝑥2𝑥′2,𝑦2𝑦

′
2,𝑎1𝑎

′
1,𝑏1𝑏

′
1
. (26)

Theorem 6.6. The map 𝑠 ↦ Γ𝑠 is an affine isomorphism from
(i) the state space of

𝒯𝑋2,𝑋1 ⊗max 𝒯𝑌2,𝑌1 ⊗max 𝒯𝐴1,𝐴2 ⊗max 𝒯𝐵1,𝐵2

onto 𝒬sns;
(ii) the state space of

𝒯𝑋2,𝑋1 ⊗c 𝒯𝑌2,𝑌1 ⊗c 𝒯𝐴1,𝐴2 ⊗c 𝒯𝐵1,𝐵2

onto 𝒬sqc;
(iii) the state space of

𝒯𝑋2,𝑋1 ⊗min 𝒯𝑌2,𝑌1 ⊗min 𝒯𝐴1,𝐴2 ⊗min 𝒯𝐵1,𝐵2

onto 𝒬sqa.
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(iv) the state space of

OMIN(𝒯𝑋2,𝑋1) ⊗min OMIN(𝒯𝑌2,𝑌1) ⊗min OMIN(𝒯𝐴1,𝐴2) ⊗min OMIN(𝒯𝐵1,𝐵2)
onto 𝒬sloc.

Proof. (i) Let Γ ∈ 𝒬sns. If

𝐶 =
(
𝐶𝑥1𝑥

′
1,𝑦1𝑦

′
1,𝑎2𝑎

′
2,𝑏2𝑏

′
2

𝑥2𝑥′2,𝑦2𝑦
′
2,𝑎1𝑎

′
1,𝑏1𝑏

′
1

)

is the Choi matrix of Γ (where the indices above range over the corresponding
sets 𝑋𝑖, 𝑌𝑖, 𝐴𝑖, 𝐵𝑖, 𝑖 = 1, 2), then 𝐶 ∈ 𝑀+

𝑋2𝑌2𝐴1𝐵1,𝑋1𝑌1𝐴2𝐵2
. We also note that

condition (12) implies that for 𝑦𝑖, 𝑦′𝑖 ∈ 𝑌𝑖, 𝑎𝑖, 𝑎′𝑖 ∈ 𝐴𝑖 and 𝑏𝑖, 𝑏′𝑖 ∈ 𝐵𝑖, 𝑖 = 1, 2
there exists a constant 𝐶𝑦1𝑦

′
1,𝑎2𝑎

′
2,𝑏2𝑏

′
2

𝑦2𝑦′2,𝑎1𝑎
′
1,𝑏1𝑏

′
1
∈ ℂ such that

∑

𝑥1
𝐶𝑥1𝑥1,𝑦1𝑦

′
1,𝑎2𝑎

′
2,𝑏2𝑏

′
2

𝑥2𝑥′2,𝑦2𝑦
′
2,𝑎1𝑎

′
1,𝑏1𝑏

′
1
= 𝛿𝑥2,𝑥′2𝐶

𝑦1𝑦′1,𝑎2𝑎
′
2,𝑏2𝑏

′
2

𝑦2𝑦′2,𝑎1𝑎
′
1,𝑏1𝑏

′
1
,

for all 𝑥2, 𝑥′2 ∈ 𝑋2. This equality implies
𝐿𝜌(𝐶) ∈ ℒ𝑋2,𝑋1 for all 𝜌 ∈ 𝑀𝑌2𝑌1𝐴1𝐴2𝐵1𝐵2 .

Similarly, using conditions (13)-(15) we can make a similar argument showing

𝐿𝜌(𝐶) ∈ ℒ𝑌2,𝑌1 for all 𝜌 ∈ 𝑀𝑋2𝑋1𝐴1𝐴2𝐵1𝐵2 ,
𝐿𝜌(𝐶) ∈ ℒ𝐴1,𝐴2 for all 𝜌 ∈ 𝑀𝑋2𝑋1𝑌2𝑌1𝐵1𝐵2 ,

and

𝐿𝜌(𝐶) ∈ ℒ𝐵1,𝐵2 for all 𝜌 ∈ 𝑀𝑋2𝑋1𝑌2𝑌1𝐴1𝐴2 .
Thus,

𝐶 ∈ (ℒ𝑋2,𝑋1 ⊗ℒ𝑌2,𝑌1 ⊗ℒ𝐴1,𝐴2 ⊗ℒ𝐵1,𝐵2) ∩ 𝑀
+
𝑋2𝑌2𝐴1𝐵1,𝑋1𝑌1𝐴2𝐵2

;

by the injectivity of the minimal operator system tensor product,

𝐶 ∈ (ℒ𝑋2,𝑋1 ⊗min ℒ𝑌2,𝑌1 ⊗min ℒ𝐴1,𝐴2 ⊗min ℒ𝐵1,𝐵2)
+.

By [17, Proposition 1.9], and [39, Proposition 5.5],

(𝒯𝑋2,𝑋1 ⊗max 𝒯𝑌2,𝑌1 ⊗max 𝒯𝐴1,𝐴2 ⊗max 𝒯𝐵1,𝐵2)
d ≅c.o.i.

ℒ𝑋2,𝑋1 ⊗min ℒ𝑌2,𝑌1 ⊗min ℒ𝐴1,𝐴2 ⊗min ℒ𝐵1,𝐵2 .
Arguing now as in [39, Theorem 6.2], this establishes the claim.
(ii) First suppose that

𝑠 ∶ 𝒯𝑋2,𝑋1 ⊗c 𝒯𝑌2,𝑌1 ⊗c 𝒯𝐴1,𝐴2 ⊗c 𝒯𝐵1,𝐵2 → ℂ
is a state. By Theorem 6.4, we may consider the state 𝑠 as the restriction of
a state

𝑠 ∶ 𝒞𝑋2,𝑋1 ⊗max 𝒞𝑌2,𝑌1 ⊗max 𝒞𝐴1,𝐴2 ⊗max 𝒞𝐵1,𝐵2 → ℂ.
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Applying the GNS construction to 𝑠 and using [39, Theorem 5.2], we obtain
a Hilbert space 𝐻, a unit vector 𝜉 ∈ 𝐻 and mutually commuting stochastic
operator matrices

(𝐸𝑥2,𝑥′2,𝑥1,𝑥′1)
𝑥1,𝑥′1
𝑥2,𝑥′2

∈ 𝑀𝑋2𝑋1 ⊗ℬ(𝐻), (𝐸𝑦2,𝑦′2,𝑦1,𝑦′1)
𝑦1,𝑦′1
𝑦2,𝑦′2

∈ 𝑀𝑌2𝑌1 ⊗ℬ(𝐻),

(𝐹𝑎1,𝑎′1,𝑎2,𝑎′2)
𝑎2,𝑎′2
𝑎1,𝑎′1

∈ 𝑀𝐴1𝐴2 ⊗ℬ(𝐻), (𝐹𝑏1,𝑏′1,𝑏2,𝑏′2)
𝑏2,𝑏′2
𝑏1,𝑏′1

∈ 𝑀𝐵1𝐵2 ⊗ℬ(𝐻)

satisfying

𝑠(𝑒𝑥2,𝑥′2,𝑥1,𝑥1 ⊗ 𝑒𝑦2,𝑦′2,𝑦1,𝑦′1 ⊗ 𝑒𝑎1,𝑎′1,𝑎2,𝑎′2 ⊗ 𝑒𝑏1,𝑏′1,𝑏2,𝑏′2) =
⟨𝐸𝑥2,𝑥′2,𝑥1,𝑥′1𝐸𝑦2,𝑦′2,𝑦1,𝑦′1𝐹𝑎1,𝑎′1,𝑎2,𝑎′2𝐹𝑏1,𝑏′1,𝑏2,𝑏′2 , 𝜉𝜉

∗⟩

for all 𝑥𝑖, 𝑥′𝑖 , 𝑦𝑖, 𝑦
′
𝑖 , 𝑎𝑖, 𝑎

′
𝑖 , 𝑏𝑖, 𝑏

′
𝑖 , 𝑖 = 1, 2. Setting 𝐸𝑥1𝑥

′
1,𝑦1𝑦

′
1

𝑥2𝑥′2,𝑦2𝑦
′
2
= 𝐸𝑥2,𝑥′2,𝑥1,𝑥′1𝐸𝑦2,𝑦′2,𝑦1,𝑦′1

and 𝐹𝑎2𝑎
′
2,𝑏2𝑏

′
2

𝑎1𝑎′1,𝑏1𝑏
′
1
= 𝐹𝑎1,𝑎′1,𝑎2,𝑎′2𝐹𝑏1,𝑏′1,𝑏2,𝑏′2 , we have that the stochastic operator ma-

trices

𝐸 =
(
𝐸𝑥1𝑥

′
1,𝑦1𝑦

′
1

𝑥2𝑥′2,𝑦2𝑦
′
2

)𝑥1𝑥′1,𝑦1𝑦′1
𝑥2𝑥′2,𝑦2𝑦

′
2
, 𝐹 =

(
𝐹𝑎2𝑎

′
2,𝑏2𝑏

′
2

𝑎1𝑎′1,𝑏1𝑏
′
1

)𝑎2𝑎′2,𝑏2𝑏′2
𝑎1𝑎′1,𝑏1𝑏

′
1

are dilatable and have mutually commuting entries. Thus, Γ𝑠 = Γ𝐸,𝐹,𝜉 with
Γ𝑠 ∈ 𝒬sqc.
Conversely, suppose that Γ ∈ 𝒬sqc; by definition, there exists a Hilbert space

𝐾, a unit vector 𝜂 ∈ 𝐾 and mutually commuting strongly stochastic operator
matrices

𝐸𝑋 = (𝐸𝑥2𝑥′2,𝑥1𝑥′1)𝑥2𝑥′2,𝑥1𝑥′1 , 𝐸𝑌 = (𝐸𝑦2𝑦′2,𝑦1𝑦′1)𝑦2𝑦′2,𝑦1𝑦′1 ,
𝐹𝐴 = (𝐹𝑎1𝑎′1,𝑎2𝑎′2)𝑎1𝑎′1,𝑎2𝑎′2 , 𝐹𝐵 = (𝐹𝑏1𝑏′1,𝑏2𝑏′2)𝑏1𝑏′1,𝑏2𝑏′2

acting on 𝐾 so that Γ = Γ𝐸,𝐹,𝜂, for 𝐸 = 𝐸𝑋 ⋅ 𝐸𝑌 and 𝐹 = 𝐹𝐴 ⋅ 𝐹𝐵. Let 𝜋𝑋 , 𝜋𝑌 , 𝜋𝐴
and 𝜋𝐵 be the (unital) ∗-representations of 𝒞𝑋2,𝑋1 , 𝒞𝑌2,𝑌1 , 𝒞𝐴1,𝐴2 and 𝒞𝐵1,𝐵2 on
ℬ(𝐾) arising from𝐸𝑋 , 𝐸𝑌 , 𝐹𝐴, and𝐹𝐵 respectively (see [39, Theorem5.2]). Then
𝜋 ∶= 𝜋𝑋⊗𝜋𝑌⊗𝜋𝐴⊗𝜋𝐵 is a unital ∗-representation of 𝒞𝑋2,𝑋1⊗max𝒞𝑌2,𝑌1⊗max
𝒞𝐴1,𝐴2 ⊗max 𝒞𝐵1,𝐵2 on ℬ(𝐾). Using Theorem 6.4 once more, if we let 𝑠 be the
restriction to 𝒯𝑋2,𝑋1 ⊗c 𝒯𝑌2,𝑌1 ⊗c 𝒯𝐴1,𝐴2 ⊗c 𝒯𝐵1,𝐵2 of the state

𝑠 ∶ 𝒞𝑋2,𝑋1 ⊗max 𝒞𝑌2,𝑌1 ⊗max 𝒞𝐴1,𝐴2 ⊗max 𝒞𝐵1,𝐵2 → ℂ,
𝑤 ↦ ⟨𝜋(𝑤)𝜂, 𝜂⟩,

it is clear that Γ = Γ𝑠.
(iii) First, let Γ be a quantum SQNS correlation. By definition, there exists

stochastic operator matrices

𝑀𝑋 = (𝑀𝑥2𝑥′2,𝑥1𝑥
′
1
)𝑥2𝑥′2,𝑥1𝑥′1 , 𝑀𝐴 = (𝑀𝑎1𝑎′1,𝑎2𝑎

′
2
)𝑎1𝑎′1,𝑎2𝑎′2 ,

𝑁𝑌 = (𝑁𝑦2𝑦′2,𝑦1𝑦
′
1
)𝑦2𝑦′2,𝑦1𝑦′1 , 𝑁𝐵 = (𝑁𝑏1𝑏′1,𝑏2𝑏

′
2
)𝑏1𝑏′1,𝑏2𝑏′2
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acting on finite dimensional Hilbert spaces 𝐻𝑋 , 𝐻𝐴, 𝐻𝑌 and 𝐻𝐵, respectively,
along with unit vector 𝜂 ∈ 𝐻𝑋 ⊗𝐻𝐴 ⊗𝐻𝑌 ⊗𝐻𝐵 such that

⟨Γ(𝜖𝑥2𝑥′2 ⊗ 𝜖𝑦2𝑦′2 ⊗ 𝜖𝑎1𝑎′1 ⊗ 𝜖𝑏1𝑏′1), 𝜖𝑥1𝑥′1 ⊗ 𝜖𝑦1𝑦′1 ⊗ 𝜖𝑎2𝑎′2 ⊗ 𝜖𝑏2𝑏′2⟩ =⟨(
𝑀𝑥2𝑥′2,𝑥1𝑥

′
1
⊗𝑀𝑎1𝑎′1,𝑎2𝑎

′
2
⊗𝑁𝑦2𝑦′2,𝑦1𝑦

′
1
⊗𝑁𝑏1𝑏′1,𝑏2𝑏

′
2

)
, 𝜂𝜂∗

⟩

for 𝑥𝑖, 𝑥′𝑖 ∈ 𝑋𝑖, 𝑦𝑖, 𝑦′𝑖 ∈ 𝑌𝑖, 𝑎𝑖, 𝑎′𝑖 ∈ 𝐴𝑖, 𝑏𝑖, 𝑏′𝑖 ∈ 𝐵𝑖, 𝑖 = 1, 2. Let 𝜋𝑋 ∶ 𝒞𝑋2,𝑋1 →
ℬ(𝐻𝑋), 𝜋𝑌 ∶ 𝒞𝑌2,𝑌1 → ℬ(𝐻𝑌), 𝜋𝐴 ∶ 𝒞𝐴1,𝐴2 → ℬ(𝐻𝐴) and 𝜋𝐵 ∶ 𝒞𝐵1,𝐵2 →
ℬ(𝐻𝐵) be the unital ∗-representations arising from 𝑀𝑋 ,𝑀𝐴, 𝑁𝑌 , and 𝑁𝐵 re-
spectively. Let 𝜋 ∶= 𝜋𝑋⊗𝜋𝑌⊗𝜋𝐴⊗𝜋𝐵, 𝜂 ∈ 𝐻𝑋⊗𝐻𝑌⊗𝐻𝐴⊗𝐻𝐵 be the unit
vector obtained from applying the canonical shuffle to 𝜂, 𝑠 be the state given by

𝑠 ∶ 𝒞𝑋2,𝑋1 ⊗min 𝒞𝑌2,𝑌1 ⊗min 𝒞𝐴1,𝐴2 ⊗min 𝒞𝐵1,𝐵2 → ℂ,
𝑤 ↦ ⟨𝜋(𝑤)𝜂, 𝜂⟩,

and 𝑠 be the restriction of 𝑠 to 𝒯𝑋2,𝑋1 ⊗min 𝒯𝑌2,𝑌1 ⊗min 𝒯𝐴1,𝐴2 ⊗min 𝒯𝐵1,𝐵2 ; it is
clear that Γ = Γ𝑠 in this case.
If Γ ∈ 𝒬sqa, let (Γ𝑛)𝑛∈ℕ be a sequence of quantum SQNS correlations with

Γ𝑛 → Γ as 𝑛 → ∞. By the previous paragraph, for each 𝑛 ∈ ℕ we may pick a
state 𝑠𝑛 ∶ 𝒯𝑋2,𝑋1 ⊗min 𝒯𝑌2,𝑌1 ⊗min 𝒯𝐴1,𝐴2 ⊗min 𝒯𝐵1,𝐵2 → ℂ such that Γ𝑛 = Γ𝑠𝑛 .
If 𝑠 is a cluster point (in the weak∗ topology) of the sequence of states (𝑠𝑛)𝑛∈ℕ,
we have Γ = Γ𝑠.
Now let 𝑠 ∶ 𝒯𝑋2,𝑋1 ⊗min 𝒯𝑌2,𝑌1 ⊗min 𝒯𝐴1,𝐴2 ⊗min 𝒯𝐵1,𝐵2 → ℂ be a state,

and using the fact that the minimal operator system tensor product is injec-
tive (see [20]) let 𝑠 ∶ 𝒞𝑋2,𝑋1 ⊗min 𝒞𝑌2,𝑌1 ⊗min 𝒞𝐴1,𝐴2 ⊗min 𝒞𝐵1,𝐵2 → ℂ be an
extension of 𝑠. By [24, Corollary 4.3.10], 𝑠 can be approximated in the weak∗
topology by elements of the convex hull of vector states on 𝜋𝑋(𝒞𝑋2,𝑋1) ⊗min
𝜋𝑌(𝒞𝑌2,𝑌1)⊗min 𝜋𝐴(𝒞𝐴1,𝐴2)⊗min 𝜋𝐵(𝒞𝐵1,𝐵2) (where 𝜋𝑋 , 𝜋𝑌 , 𝜋𝐴, and 𝜋𝐵 are uni-
tal ∗-representations of 𝒞𝑋2,𝑋1 , 𝒞𝑌2,𝑌1 , 𝒞𝐴1,𝐴2 and 𝒞𝐵1,𝐵2 , respectively). Using an
argument similar to the proof of [7, Theorem 5.6] or [39, Theorem 6.5], we can
show that Γ is a limit of quantum SQNS correlations.
(iv) This proof is along the lines of the proof for [39, Theorem6.7]; we include

the details for the convenience of the reader. We first let 𝑠 be a state on

OMIN(𝒯𝑋2,𝑋1) ⊗min OMIN(𝒯𝑌2,𝑌1) ⊗min OMIN(𝒯𝐴1,𝐴2) ⊗min OMIN(𝒯𝐵1,𝐵2).

By [26, Theorem 9.9] and [17, Proposition 1.9], wemay consider 𝑠 as an element
of

(OMAX(𝒯𝑋2 ,𝑋1 ) ⊗max OMAX(𝒯𝑌2 ,𝑌1 ) ⊗max OMAX(𝒯𝐴1 ,𝐴2 ) ⊗max OMAX(𝒯𝐵1 ,𝐵2 ))
+

.

By Lemma 6.5, there exist states 𝜙(𝑗)𝑋 ∈
(
𝒯𝑋2,𝑋1

)+
, 𝜙(𝑗)𝑌 ∈

(
𝒯𝑌2,𝑌1

)+
, 𝜙(𝑗)𝐴 ∈

(
𝒯𝐴1,𝐴2

)+
and 𝜙(𝑗)𝐵 ∈

(
𝒯𝐵1,𝐵2

)+
, and non-negative scalars 𝜆𝑗, 𝑗 = 1, … , 𝑘 such
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that 𝑠 =
𝑘∑
𝑗=1

𝜆𝑗𝜙
(𝑗)
𝑋 ⊗ 𝜙(𝑗)𝑌 ⊗ 𝜙(𝑗)𝐴 ⊗ 𝜙(𝑗)𝐵 . Set

𝐸(𝑗)𝑋 = (𝜙(𝑗)𝑋 (𝑒𝑥2,𝑥′2,𝑥1,𝑥′1))𝑥2𝑥′2,𝑥1𝑥′1 , 𝐸(𝑗)𝑌 = (𝜙(𝑗)𝑌 (𝑒𝑦2,𝑦′2,𝑦1,𝑦′1))𝑦2𝑦′2,𝑦1𝑦′1 ,

𝐸(𝑗)𝐴 = (𝜙(𝑗)𝐴 (𝑒𝑎1,𝑎′1,𝑎2,𝑎′2))𝑎1𝑎′1,𝑎2𝑎′2 , 𝐸(𝑗)𝐵 = (𝜙(𝑗)𝐵 (𝑒𝑏1,𝑏′1,𝑏2,𝑏′2))𝑏1𝑏′1,𝑏2𝑏′2 ,

and let Φ(𝑗)
𝑋 ∶ 𝑀𝑋2 → 𝑀𝑋1 , Φ

(𝑗)
𝑌 ∶ 𝑀𝑌2 → 𝑀𝑌1 , Φ

(𝑗)
𝐴 ∶ 𝑀𝐴1 → 𝑀𝐴2 , and

Φ(𝑗)
𝐵 ∶ 𝑀𝐵1 →𝑀𝐵2 be the quantum channels with Choi matrices 𝐸(𝑗)𝑋 , 𝐸(𝑗)𝑌 , 𝐸(𝑗)𝐴 ,

and 𝐸(𝑗)𝐵 (respectively) for 𝑗 = 1,… , 𝑘. Clearly,

Γ𝑠 =
𝑘∑

𝑗=1
𝜆𝑗Φ

(𝑗)
𝑋 ⊗Φ(𝑗)

𝑌 ⊗Φ(𝑗)
𝐴 ⊗Φ(𝑗)

𝐵 . (27)

By Remark 3.11, this shows Γ𝑠 ∈ 𝒬sloc.
Now suppose Γ is of the form (27), with 𝑠 a functional on 𝒯𝑋2,𝑋1 ⊗𝒯𝑌2,𝑌1 ⊗

𝒯𝐴1,𝐴2 ⊗ 𝒯𝐵1,𝐵2 such that Γ = Γ𝑠. Let 𝐸
(𝑗)
𝑋 ∈ (𝑀𝑋2 ⊗ 𝑀𝑋1)

+ (resp. 𝐸(𝑗)𝑌 ∈
(𝑀𝑌2 ⊗𝑀𝑌1)

+, 𝐸(𝑗)𝐴 ∈ (𝑀𝐴1 ⊗𝑀𝐴2)
+, and 𝐸(𝑗)𝐵 ∈ (𝑀𝐵1 ⊗𝑀𝐵2)

+) be the Choi
matrix of Φ(𝑗)

𝑋 (resp. Φ(𝑗)
𝑌 , Φ(𝑗)

𝐴 and Φ(𝑗)
𝐵 ); then 𝐸(𝑗)𝑋 , 𝐸(𝑗)𝑌 , 𝐸(𝑗)𝐴 , and 𝐸(𝑗)𝐵 are sto-

chastic operator matrices acting on ℂ. By [39, Theorem 5.2], there exist posi-
tive functionals 𝜙(𝑗)𝑋 ∶ 𝒯𝑋2,𝑋1 → ℂ,𝜙(𝑗)𝑌 ∶ 𝒯𝑌2,𝑌1 → ℂ,𝜙(𝑗)𝐴 ∶ 𝒯𝐴1,𝐴2 → ℂ, and
𝜙(𝑗)𝐵 ∶ 𝒯𝐵1,𝐵2 → ℂ such that

𝐸(𝑗)𝑋 = (𝜙(𝑗)𝑋 (𝑒𝑥2,𝑥′2,𝑥1,𝑥′1))𝑥2𝑥′2,𝑥1𝑥′1 , 𝐸(𝑗)𝑌 = (𝜙(𝑗)𝑌 (𝑒𝑦2,𝑦′2,𝑦1,𝑦′1))𝑦2𝑦′2,𝑦1𝑦′1 ,

𝐸(𝑗)𝐴 = (𝜙(𝑗)𝐴 (𝑒𝑎1,𝑎′1,𝑎2,𝑎′2))𝑎1𝑎′1,𝑎2𝑎′2 , 𝐸(𝑗)𝐵 = (𝜙(𝑗)𝐵 (𝑒𝑏1,𝑏′1,𝑏2,𝑏′2))𝑏1𝑏′1,𝑏2𝑏′2 ,

for 𝑗 = 1,… , 𝑘. It is thus straightforward to see that 𝑠 is the functional corre-
sponding to

𝑘∑

𝑗=1
𝜆𝑗𝜙

(𝑗)
𝑋 ⊗ 𝜙(𝑗)𝑌 ⊗ 𝜙(𝑗)𝐴 ⊗ 𝜙(𝑗)𝐵 ,

and thus, by Lemma 6.5 is a state on

OMIN(𝒯𝑋2,𝑋1) ⊗min OMIN(𝒯𝑌2,𝑌1) ⊗min OMIN(𝒯𝐴1,𝐴2) ⊗min OMIN(𝒯𝐵1,𝐵2),

as claimed. □

Remark 6.7. We note that, using an almost identical argument as in (iv), we
have an affine isomorphism between the state space of OMIN(𝒮𝑋2,𝑋1) ⊗min
OMIN(𝒮𝑌2,𝑌1) ⊗min OMIN(𝒮𝐴1,𝐴2) ⊗min OMIN(𝒮𝐵1,𝐵2) and 𝒞sloc; the classical
analogue for cases (i)-(iii) are addressed in [20, Theorem 7.11].

Corollary 6.8. The set 𝒬sqc is closed and convex.



1644 GAGE HOEFER

Proof. By Theorem 6.6, it is straightforward to show that the affine mapping
𝑠 ↦ Γ𝑠 is also homeomorphism when the state space of 𝒯𝑋2𝑋1 ⊗c 𝒯𝑌2𝑌1 ⊗c
𝒯𝐴1𝐴2 ⊗c 𝒯𝐵1𝐵2 is equipped with the weak

∗-topology. As the state space will
be weak∗-compact, the range of this homeomorphism must be (convex and)
closed. □

Remark 6.9. By [20, Theorem 7.11], we may use an identical argument as in
Corollary 6.8 to show that 𝒞sqc is closed and convex.
Remark 6.10. Suppose that for finite sets 𝑋𝑖, 𝑌𝑖, 𝐴𝑖, 𝐵𝑖, 𝑖 = 1, 2 we make the
additional restriction that 𝑌𝑖 = 𝐵𝑖 = [1], 𝑖 = 1, 2. One may easily verify that for
t ∈ {loc, q, qa, qc, ns} we have the reduction(s)

𝒬st(𝑋2[1], 𝐴1[1], 𝑋1[1], 𝐴2[1]) = 𝒬t(𝑋2, 𝐴1, 𝑋1, 𝐴2),
𝒞st(𝑋2[1], 𝐴1[1], 𝑋1[1], 𝐴2[1]) = 𝒞t(𝑋2, 𝐴1, 𝑋1, 𝐴2).

Theorem 6.11. For all finite sets 𝑋𝑖, 𝑌𝑖, 𝐴𝑖, 𝐵𝑖, 𝑖 = 1, 2 of sufficiently large cardi-
nality, the following hold true:

(i) 𝒬sqa(𝑋2𝑌2, 𝐴1𝐵1, 𝑋1𝑌1, 𝐴2𝐵2) ≠ 𝒬sqc(𝑋2𝑌2, 𝐴1𝐵1, 𝑋1𝑌1, 𝐴2𝐵2).
(ii) 𝒯𝑋2,𝑋1⊗c𝒯𝑌2,𝑌1⊗c𝒯𝐴1,𝐴2⊗c𝒯𝐵1,𝐵2 ≠ 𝒯𝑋2,𝑋1⊗min𝒯𝑌2,𝑌1⊗min𝒯𝐴1,𝐴2⊗min

𝒯𝐵1,𝐵2 .
(iii) 𝒞sqa(𝑋2𝑌2, 𝐴1𝐵1, 𝑋1𝑌1, 𝐴2𝐵2) ≠ 𝒞sqc(𝑋2𝑌2, 𝐴1𝐵1, 𝑋1𝑌1, 𝐴2𝐵2).
(iv) 𝒮𝑋2,𝑋1⊗c𝒮𝑌2,𝑌1⊗c𝒮𝐴1,𝐴2⊗c𝒮𝐵1,𝐵2 ≠ 𝒮𝑋2,𝑋1⊗min𝒮𝑌2,𝑌1⊗min𝒮𝐴1,𝐴2⊗min

𝒮𝐵1,𝐵2
Proof. Statement (i) follows fromRemark 6.10, and an application of [39, The-
orem8.3]. Statement (ii) follows from (i), and Theorem6.6. Statements (iii) and
(iv) follow similarly, when paired with [39, Remark 8.1]. □

As in the setup before Theorem 6.6, for a linear functional
𝑠 ∶ 𝒯𝑋 ⊗𝒯𝑌 ⊗𝒯𝐴 ⊗𝒯𝐵 → ℂ,

let Γ𝑠 ∶ 𝑀𝑋𝑌𝐴𝐵 →𝑀𝑋𝑌𝐴𝐵 be the linear map whose Choi matrix coincides with
(26).

Theorem 6.12. The map 𝑠 ↦ Γ𝑠 is an affine isomorphism from
(i) the state space of𝒯𝑋 ⊗max 𝒯𝑌 ⊗max 𝒯𝐴 ⊗max 𝒯𝐵 onto 𝒬bisns;
(ii) the state space of𝒯𝑋 ⊗c 𝒯𝑌 ⊗c 𝒯𝐴 ⊗c 𝒯𝐵 onto 𝒬bisqc;
(iii) the state space of𝒯𝑋 ⊗min 𝒯𝑌 ⊗min 𝒯𝐴 ⊗min 𝒯𝐵 onto 𝒬bisqa;
(iv) the state space ofOMIN(𝒯𝑋)⊗minOMIN(𝒯𝑌)⊗minOMIN(𝒯𝐴)⊗minOMIN(𝒯𝐵) onto

𝒬bisloc.

Proof. (i) Let Γ ∈ 𝒬bisns. If

𝐶 =
(
𝐶𝑥1𝑥

′
1,𝑦1𝑦

′
1,𝑎2𝑎

′
2,𝑏2𝑏

′
2

𝑥2𝑥′2,𝑦2𝑦
′
2,𝑎1𝑎

′
1,𝑏1𝑏

′
1

)

is the Choi matrix of Γ and
𝐶̃ =

(
𝐶̃𝑥2𝑥

′
2,𝑦2𝑦

′
2,𝑎1𝑎

′
1,𝑏1𝑏

′
1

𝑥1𝑥′1,𝑦1𝑦
′
1,𝑎2𝑎

′
2,𝑏2𝑏

′
2

)
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is the Choi matrix of Γ∗ (where the indices above range over the correspond-
ing sets 𝑋,𝑌,𝐴, and 𝐵) then 𝐶, 𝐶̃ ∈ 𝑀+

𝑋𝑌𝐴𝐵𝑋𝑌𝐴𝐵. As Γ and Γ
∗ are both SNS,

for 𝑦𝑖, 𝑦′𝑖 ∈ 𝑌, 𝑎𝑖, 𝑎′𝑖 ∈ 𝐴, 𝑏𝑖, 𝑏′𝑖 ∈ 𝐵, 𝑖 = 1, 2 there exist complex constants
𝐶𝑦1𝑦

′
1,𝑎2𝑎

′
2,𝑏2𝑏

′
2

𝑦2𝑦′2,𝑎1𝑎
′
1,𝑏1𝑏

′
1
and 𝐶̃𝑦2𝑦

′
2,𝑎1𝑎

′
1,𝑏1𝑏

′
1

𝑦1𝑦′1,𝑎2𝑎
′
2,𝑏2𝑏

′
2
such that

∑

𝑥1
𝐶𝑥1𝑥

′
1,𝑦1𝑦

′
1,𝑎2𝑎

′
2,𝑏2𝑏

′
2

𝑥2𝑥′2,𝑦2𝑦
′
2,𝑎1𝑎

′
1,𝑏1𝑏

′
1
= 𝛿𝑥2,𝑥′2𝐶

𝑦1𝑦′1,𝑎2𝑎
′
2,𝑏2𝑏

′
2

𝑦2𝑦′2,𝑎1𝑎
′
1,𝑏1𝑏

′
1
,

∑

𝑥2
𝐶̃𝑥2𝑥

′
2,𝑦2𝑦

′
2,𝑎1𝑎

′
1,𝑏1𝑏

′
1

𝑥1𝑥′1,𝑦1𝑦
′
1,𝑎2𝑎

′
2,𝑏2𝑏

′
2
= 𝛿𝑥1,𝑥′1𝐶̃

𝑦2𝑦′2,𝑎1𝑎
′
1,𝑏1𝑏

′
1

𝑦1𝑦′1,𝑎2𝑎
′
2,𝑏2𝑏

′
2
,

for all 𝑥𝑖, 𝑥′𝑖 ∈ 𝑋, 𝑖 = 1, 2. Note that

𝐶̃𝑥2𝑥
′
2,𝑦2𝑦

′
2,𝑎1𝑎

′
1,𝑏1𝑏

′
1

𝑥1𝑥′1,𝑦1𝑦
′
1,𝑎2𝑎

′
2,𝑏2𝑏

′
2
= 𝐶𝑥1𝑥

′
1,𝑦1𝑦

′
1,𝑎2𝑎

′
2,𝑏2𝑏

′
2

𝑥2𝑥′2,𝑦2𝑦
′
2,𝑎1𝑎

′
1,𝑏1𝑏

′
1
,

for 𝑥𝑖, 𝑥′𝑖 ∈ 𝑋, 𝑦𝑖, 𝑦′𝑖 ∈ 𝑌, 𝑎𝑖, 𝑎′𝑖 ∈ 𝐴, 𝑏𝑖, 𝑏′𝑖 ∈ 𝐵, 𝑖 = 1, 2. These together imply
𝐿𝜌(𝐶) ∈ ℒ𝑋 for all 𝜌 ∈ 𝑀𝑌𝐴𝐵.

We then may use the other SNS conditions for Γ and Γ∗ to show that

𝐿𝜌(𝐶) ∈ ℒ𝑌 for all 𝜌 ∈ 𝑀𝑋𝐴𝐵,
𝐿𝜌(𝐶) ∈ ℒ𝐴 for all 𝜌 ∈ 𝑀𝑋𝑌𝐵,

and

𝐿𝜌(𝐶) ∈ ℒ𝐵 for all 𝜌 ∈ 𝑀𝑋𝑌𝐴.
Together, these imply 𝐶 ∈ (ℒ𝑋 ⊗ ℒ𝑌 ⊗ ℒ𝐴 ⊗ ℒ𝐵)+. Use [7, Proposition 3.6]
and argue as in Theorem 6.6 (i) to finish.
(ii)-(iv) The proofs for (ii)-(iv) follow exactly the same as in the proofs of The-

orem 6.6 (ii)-(iv), just by replacing the use of [39, Theorem 5.2] with [7, The-
orem 3.4], the use of Remark 3.11 with Remark 3.13, and by replacing 𝒯𝑋2,𝑋1
and 𝒞𝑋2,𝑋1 (resp. 𝒯𝑌2,𝑌1 and 𝒞𝑌2,𝑌1 , 𝒯𝐴1,𝐴2 and 𝒞𝐴1,𝐴2 , 𝒯𝐵1,𝐵2 and 𝒞𝐵1,𝐵2) with
𝒯𝑋 and 𝒞𝑋 (resp. 𝒯𝑌 and 𝒞𝑌 , 𝒯𝐴 and 𝒞𝐴, 𝒯𝐵 and 𝒞𝐵). □

We end this subsection with the following (obvious) result.

Corollary 6.13. The set 𝒬bisqc is closed and convex.

6.2. Concurrent strategies. The goal of this subsection is to apply the results
connecting subclasses of strongly QNS correlations with state spaces on tensor
products of canonical operator systems previously developed, to the study of
a particular class of quantum input-output game which are called concurrent
games. A quantumnon-local game𝜑 ∶ 𝒫𝑋𝑋 → 𝒫𝐴𝐴 is concurrent if𝜑(𝐽𝑋) = 𝐽𝐴.
A QNS correlation Φ ∈ 𝒬ns is called concurrent if Φ(𝐽𝑋) = 𝐽𝐴; equivalently, if
Φ is a perfect strategy for the (trivial) implication game 𝜑𝐽𝑋→𝐽𝐴 .
The study of concurrent games and their perfect strategies has grown in re-

cent years (see [6, 7, 39]), and is of particular interest for its connections to the
study of quantum automorphism groups and compact quantum groups, along
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with its ramifications for the study of synchronous games; indeed— concurrent
games were introduced as a “quantization" of synchronous games. The reason-
ing behind this claim comes from [6, Remark 2.1]: for classical non-local game
𝜆 ∶ 𝑋 × 𝑋 × 𝐴 × 𝐴 → {0, 1}, then 𝜆 is synchronous if and only if 𝜑𝜆(𝐽cl𝑋 ) ≤ 𝐽cl𝐴 .
Concurrency allows us to see how a correlation affects the “non-classical" por-
tion of the (unnormalized) maximally entangled state- ideally, sending it to a
state supported on 𝐽𝐴.
Let 𝜏 ∶ 𝒞𝑋,𝐴 → ℂ be a tracial state; the linear map Γ𝜏 ∶ 𝑀𝑋𝑋 → 𝑀𝐴𝐴 given

by

Γ𝜏(𝜖𝑥𝑥′ ⊗ 𝜖𝑦𝑦′) =
∑

𝑎,𝑎′,𝑏,𝑏′∈𝐴
𝜏(𝑒𝑥,𝑥′,𝑎,𝑎′𝑒𝑦′,𝑦,𝑏′,𝑏)𝜖𝑎𝑎′ ⊗ 𝜖𝑏𝑏′ ,

is a QNS correlation. This particular type of a QNS correlation is called tra-
cial, and was first introduced in [39]. Subclasses of quantum tracial and locally
tracialQNS correlations are defined by requiring that 𝜏 factors through a finite-
dimensional and abelian ∗-representation, respectively. We focus on such QNS
correlations for their connection to concurrent games: it was first established
in [6, Theorem 4.1] that any perfect strategy Γ for a concurrent game 𝜑must be
tracial, in the sense defined above. In the rest of this section, we will develop a
notion of when SQNS correlations are tracial, and describe their structure.
Let Γ ∶ 𝑀𝑋2𝑋2×𝐴1𝐴1 → 𝑀𝑋1𝑋1×𝐴2𝐴2 be an SQNS correlation, and let 𝜎 ∈

𝑀𝐴1𝐴1 be an arbitrary state. Define the mapping Γ
𝜎
𝑋2𝑋2→𝑋1𝑋1 ∶ 𝑀𝑋2𝑋2 → 𝑀𝑋1𝑋1

via

Γ𝜎𝑋2𝑋2→𝑋1𝑋1(𝜌) ∶= Tr𝐴2𝐴2Γ(𝜌 ⊗ 𝜎), 𝜌 ∈ 𝑀𝑋2𝑋2 .

One easily shows that Γ𝜎𝑋2𝑋2→𝑋1𝑋1 is a well-defined QNS correlation; further-
more, Γ𝜎𝑋2𝑋2→𝑋1𝑋1 = Γ𝜎′𝑋2𝑋2→𝑋1𝑋1 for any states 𝜎, 𝜎

′ ∈ 𝑀𝐴1𝐴1 . Thus, we let
Γ𝑋2𝑋2→𝑋1𝑋1 denote the right marginal channel of Γ, for an arbitrary fixed state
𝜎 ∈ 𝑀𝐴1𝐴1 . An analogous argument shows that Γ

𝐴1𝐴1→𝐴2𝐴2 is a well-defined
left marginal QNS correlation for Γ, for an arbitrary fixed state 𝜌 ∈ 𝑀𝑋2𝑋2 .

Remark 6.14. Note that, in the event Γ ∈ 𝒞st for t ∈ {loc, q, qa, qc, ns}, then
the marginal channels previously discussed (when considering Γ inside 𝒬st)
coincide with the marginal channels discussed in [20, Section 5].

Definition6.15. AnSQNScorrelationΓ over (𝑋2𝑋2, 𝐴1𝐴1, 𝑋1𝑋1, 𝐴2𝐴2) is called
jointly tracial if Γ𝑋2𝑋2→𝑋1𝑋1 and Γ

𝐴1𝐴1→𝐴2𝐴2 are tracial QNS correlations.

Remark 6.16. There exists a surjective ∗-homomorphism

𝜋 ∶ 𝒞𝑋2,𝐴2 → 𝒞𝑋2,𝑋1 ⊗max 𝒞𝐴1,𝐴2 ⊗max 𝒞𝑋1,𝐴1 .

Indeed: for 𝑥2, 𝑥′2 ∈ 𝑋2, 𝑎2, 𝑎′2 ∈ 𝐴2 let

𝑒𝑥2𝑥′2,𝑎2𝑎′2 ∶=
∑

𝑥1,𝑥′1

∑

𝑎1,𝑎′1

𝑒𝑥2𝑥′2,𝑥1𝑥′1 ⊗ 𝑒𝑎1𝑎′1,𝑎2𝑎′2 ⊗ 𝑓𝑥1𝑥′1,𝑎1𝑎′1 .
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One easily checks that 𝑒𝑥2𝑥2,𝑎2𝑎2 ≥ 0 and∑𝑎2
𝑒𝑥2𝑥′2,𝑎2𝑎2 = 𝛿𝑥2𝑥′21 for all 𝑥2, 𝑥

′
2 ∈

𝑋2, 𝑎2 ∈ 𝐴2. Therefore, by universality there exists a surjective ∗-homomor-
phism 𝜋 ∶ 𝒞𝑋2,𝐴2 → 𝒞𝑋2,𝑋1⊗max 𝒞𝐴1,𝐴2⊗max 𝒞𝑋1,𝐴1 which sends 𝜋(𝑒𝑥2𝑥′2,𝑎2𝑎′2) =
𝑒𝑥2𝑥′2,𝑎2𝑎′2 , 𝑥2, 𝑥

′
2 ∈ 𝑋2, 𝑎2, 𝑎′2 ∈ 𝐴2.

For a linear functional 𝖳 on 𝒞𝑋2,𝑋1 ⊗𝒞𝐴1,𝐴2 , set

Γ𝖳(𝑥1𝑥′1, 𝑦1𝑦
′
1, 𝑎2𝑎

′
2, 𝑏2𝑏

′
2|𝑥2𝑥

′
2, 𝑦2𝑦

′
2, 𝑎1𝑎

′
1, 𝑏1𝑏

′
1) =

𝖳(𝑒𝑥2𝑥′2,𝑥1𝑥′1𝑒𝑦′2𝑦2,𝑦′1𝑦1 ⊗ 𝑒𝑎1𝑎′1,𝑎2𝑎′2𝑒𝑏′1𝑏1,𝑏′2𝑏2),

where 𝑥𝑖, 𝑥′𝑖 , 𝑦𝑖, 𝑦
′
𝑖 ∈ 𝑋𝑖, 𝑎𝑖, 𝑎′𝑖 , 𝑏𝑖, 𝑏

′
𝑖 ∈ 𝐴𝑖, 𝑖 = 1, 2.

Theorem 6.17. The following hold:
(i) If Γ is a jointly tracial and quantum commuting SQNS correlation, then

there exists a trace 𝖳 on 𝒞𝑋2,𝑋1 ⊗max 𝒞𝐴1,𝐴2 such that Γ = Γ𝖳.
(ii) If Γ is a jointly tracial and approximately quantum SQNS correlation,

then there exists an amenable trace 𝖳 on 𝒞𝑋2,𝑋1 ⊗min 𝒞𝐴1,𝐴2 such that
Γ = Γ𝖳.

(iii) If Γ is a jointly tracial and quantum SQNS correlation, then there ex-
ists a trace 𝖳 factoring through a finite-dimensional ∗-representation of
𝒞𝑋2,𝑋1 ⊗min 𝒞𝐴1,𝐴2 such that Γ = Γ𝖳.

(iv) If Γ is a jointly tracial and local SQNS correlation, then there exists a trace
𝖳 factoring through an abelian ∗-representation of 𝒞𝑋2,𝑋1 ⊗max 𝒞𝐴1,𝐴2
such that Γ = Γ𝖳.

Proof. (i) First, assume Γ ∈ 𝒬sqc is jointly tracial. For notational simplifica-
tion, write

𝔅 = 𝒞𝑋2,𝑋1 ⊗max 𝒞𝑋2,𝑋1 ⊗max 𝒞𝐴1,𝐴2 ⊗max 𝒞𝐴1,𝐴2

and

𝔘 = 𝒞𝑋2,𝑋1 ⊗max 𝒞𝐴1,𝐴2 .
We note that, up to a flip of tensor legs, 𝔅 = 𝔘⊗max 𝔘; in the sequel, we will
use this identification without explicitly mentioning it.
By (the proof of) Theorem 6.6, there exists a state 𝑠 ∶ 𝔅 → ℂ such that

Γ = Γ𝑠. For 𝑣, 𝑤 ∈ 𝔘⊗max 𝔘, write 𝑣 ∼ 𝑤 if 𝑠(𝑣 − 𝑤) = 0. Let 𝑉 = (𝑣𝑥1,𝑥2)𝑥1,𝑥2
be the isometry such that 𝑒𝑥2𝑥′2,𝑥1𝑥′1 = 𝑣∗𝑥1,𝑥2𝑣𝑥′1,𝑥′2 . Then

𝑉𝑉∗ = (
∑

𝑥2
𝑣𝑥1,𝑥2𝑣

∗
𝑥′1,𝑥2

)
𝑥1,𝑥′1

is a projection, with
∑
𝑥2
𝑣𝑥1,𝑥2𝑣

∗
𝑥1,𝑥2 ≤ 1 for all 𝑥1 ∈ 𝑋1. Using this, we see that

∑

𝑥2∈𝑋2
𝑒𝑥′2𝑥2,𝑥′1𝑥1𝑒𝑥2𝑥′2,𝑥1𝑥′1 =

∑

𝑥2∈𝑋2
𝑣∗𝑥′1,𝑥′2

𝑣𝑥1,𝑥2𝑣
∗
𝑥1,𝑥2𝑣𝑥′1,𝑥′2

≤ 𝑣∗𝑥′1,𝑥′2
𝑣𝑥′1,𝑥′2 = 𝑒𝑥′2𝑥′2,𝑥′1𝑥′1 .
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From this, we compute
∑

𝑥2,𝑥′2∈𝑋2

∑

𝑥1,𝑥′1∈𝑋1
𝑒𝑥′2𝑥2,𝑥′1𝑥1𝑒𝑥2𝑥′2,𝑥1𝑥′1 ≤ |𝑋2||𝑋1|1. (28)

Let 𝜏𝑋 be the tracial state on 𝒞𝑋2,𝑋1 corresponding to the marginal channel
Γ𝑋2𝑋2→𝑋1𝑋1 . Without loss of generality, fix 𝑎1, 𝑏1 ∈ 𝐴1. We see

𝑠(𝑒𝑥2𝑥′2,𝑥1𝑥′1 ⊗ 1⊗ 1⊗ 1)

=
∑

𝑦1∈𝑋1

∑

𝑎2,𝑏2∈𝐴2

𝑠(𝑒𝑥2𝑥′2,𝑥1𝑥′1 ⊗ 𝑒𝑥2𝑥2,𝑦1𝑦1 ⊗ 𝑒𝑎1𝑎1,𝑎2𝑎2 ⊗ 𝑒𝑏1𝑏1,𝑏2𝑏2)

=
∑

𝑎2,𝑏2∈𝐴2

∑

𝑦1∈𝑋1
𝜏𝑋(𝑒𝑥2𝑥′2,𝑥1𝑥′1𝑒𝑥2𝑥2,𝑦1𝑦1)

= 𝜏𝑋(𝑒𝑥2𝑥′2,𝑥1𝑥′1).

Similarly,

𝑠(1 ⊗ 𝑒𝑥′2𝑥2,𝑥′1𝑥1 ⊗ 1⊗ 1)

=
∑

𝑦1∈𝑋1

∑

𝑎2,𝑏2∈𝐴2

𝑠(𝑒𝑥′2𝑥′2,𝑦1𝑦1 ⊗ 𝑒𝑥′2𝑥2,𝑥′1𝑥1 ⊗ 𝑒𝑎1𝑎1,𝑎2𝑎2 ⊗ 𝑒𝑏1𝑏1,𝑏2𝑏2)

=
∑

𝑎2,𝑏2∈𝐴2

∑

𝑦1∈𝑋1
𝜏𝑋(𝑒𝑥′2𝑥′2,𝑦1𝑦1𝑒𝑥2𝑥′2,𝑥1𝑥′1)

= 𝜏𝑋(𝑒𝑥2𝑥′2,𝑥1𝑥′1).

Therefore,

𝑒𝑥2𝑥′2,𝑥1𝑥′1 ⊗ 1⊗ 1⊗ 1 ∼ 1 ⊗ 𝑒𝑥′2𝑥2,𝑥′1𝑥1 ⊗ 1⊗ 1, 𝑥𝑖, 𝑥′𝑖 ∈ 𝑋𝑖, 𝑖 = 1, 2.

Write

ℎ𝑥2𝑥′2,𝑥1𝑥′1 = 𝑒𝑥2𝑥′2,𝑥1𝑥′1 ⊗ 1⊗ 1⊗ 1 − 1 ⊗ 𝑒𝑥′2𝑥2,𝑥′1𝑥1 ⊗ 1⊗ 1,

for 𝑥𝑖, 𝑥′𝑖 ∈ 𝑋𝑖, 𝑖 = 1, 2; we note that

ℎ∗𝑥2𝑥′2,𝑥1𝑥′1
ℎ𝑥2𝑥′2,𝑥1𝑥′1

= (𝑒𝑥′2𝑥2,𝑥′1𝑥1𝑒𝑥2𝑥′2,𝑥1𝑥′1 ⊗ 1⊗ 1⊗ 1 + 1 ⊗ 𝑒𝑥2𝑥′2,𝑥1𝑥′1𝑒𝑥′2𝑥2,𝑥′1𝑥1 ⊗ 1⊗ 1)
− (𝑒𝑥′2𝑥2,𝑥′1𝑥1 ⊗ 𝑒𝑥′2𝑥2,𝑥′1𝑥1 ⊗ 1⊗ 1 + 𝑒𝑥2𝑥′2,𝑥1𝑥′1 ⊗ 𝑒𝑥2𝑥′2,𝑥1𝑥′1 ⊗ 1⊗ 1).

By (28), we have
∑

𝑥2,𝑥′2,𝑥1,𝑥
′
1

𝑠(ℎ∗𝑥2𝑥′2,𝑥1𝑥′1
ℎ𝑥2𝑥′2,𝑥1𝑥′1)

=
∑

𝑥2,𝑥′2,𝑥1,𝑥
′
1

𝑠(𝑒𝑥′2𝑥2,𝑥′1𝑥1𝑒𝑥2𝑥′2,𝑥1𝑥′1 ⊗ 1⊗ 1⊗ 1 + 1 ⊗ 𝑒𝑥2𝑥′2,𝑥1𝑥′1𝑒𝑥′2𝑥2,𝑥′1𝑥1 ⊗ 1⊗ 1)

− 𝑠(𝑒𝑥′2𝑥2,𝑥′1𝑥1 ⊗ 𝑒𝑥′2𝑥2,𝑥′1𝑥1 ⊗ 1⊗ 1 + 𝑒𝑥2𝑥′2,𝑥1𝑥′1 ⊗ 𝑒𝑥2𝑥′2,𝑥1𝑥′1 ⊗ 1⊗ 1)
≤ 2|𝑋2||𝑋1|1 − 2|𝑋2||𝑋1|1 = 0.
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From this, we have

𝑠(ℎ∗𝑥2𝑥′2,𝑥1𝑥1
ℎ𝑥2𝑥′2,𝑥1𝑥′1) = 0, 𝑥𝑖, 𝑥′𝑖 ∈ 𝑋𝑖, 𝑖 = 1, 2. (29)

By applying Cauchy-Schwarz inequality in conjunction with (29), we have
𝑤ℎ𝑥2𝑥′2,𝑥1𝑥′1 ∼ 0 and ℎ𝑥2𝑥′2,𝑥1𝑥′1𝑤 ∼ 0 for all 𝑤 ∈ 𝔅. In particular, for all 𝑥𝑖, 𝑥′𝑖 ∈
𝑋𝑖, 𝑖 = 1, 2 we have

𝑧𝑒𝑥2𝑥′2,𝑥1𝑥′1 ⊗ 1⊗ 𝑣 ∼ 𝑧 ⊗ 𝑒𝑥′2𝑥2,𝑥′1𝑥1 ⊗ 𝑣 ∼ 𝑒𝑥2𝑥′2,𝑥1𝑥′1𝑧 ⊗ 1 ⊗ 𝑣, (30)

for 𝑧 ∈ 𝒞𝑋2,𝑋1 , 𝑣 ∈ 𝔘. If instead we use 𝜏𝐴 for the tracial state corresponding
to marginal channel Γ𝐴1𝐴1→𝐴2𝐴2 , we can make an almost identical argument to
show that

𝑢 ⊗ 𝑧𝑒𝑎1𝑎′1,𝑎2𝑎′2 ⊗ 1 ∼ 𝑢 ⊗ 𝑧 ⊗ 𝑒𝑎′1𝑎1,𝑎′2𝑎2 ∼ 𝑢 ⊗ 𝑒𝑎1𝑎′1,𝑎2𝑎′2 , (31)

for 𝑎𝑖, 𝑎′𝑖 ∈ 𝐴𝑖, 𝑧 ∈ 𝒞𝐴1,𝐴2 and 𝑢 ∈ 𝔘, 𝑖 = 1, 2. Equations (30) and (31) imply
𝑧𝑒𝑥2𝑥′2,𝑥1𝑥′1 ⊗ 1⊗ 𝑧′𝑒𝑎1𝑎′1,𝑎2𝑎′2 ⊗ 1 ∼ 𝑧 ⊗ 𝑒𝑥′2𝑥2,𝑥′1𝑥1 ⊗ 𝑧′ ⊗ 𝑒𝑎′1𝑎1,𝑎′2𝑎2 (32)

∼ 𝑒𝑥2𝑥′2,𝑥1𝑥′1𝑧 ⊗ 1 ⊗ 𝑒𝑎1𝑎′1,𝑎2𝑎′2𝑧
′ ⊗ 1, (33)

for all 𝑧 ∈ 𝒞𝑋2,𝑋1 , 𝑧
′ ∈ 𝒞𝐴1,𝐴2 , and 𝑥𝑖, 𝑥

′
𝑖 ∈ 𝑋𝑖, 𝑎𝑖, 𝑎′𝑖 ∈ 𝐴𝑖, 𝑖 = 1, 2. An induction

argument on the lengths of the words 𝑤 on {𝑒𝑥2𝑥′2,𝑥1𝑥′1 ∶ 𝑥𝑖, 𝑥′𝑖 ∈ 𝑋𝑖, 𝑖 = 1, 2}
and 𝑤′ on {𝑒𝑎1𝑎′1,𝑎2𝑎′2 ∶ 𝑎𝑖, 𝑎′𝑖 ∈ 𝐴𝑖, 𝑖 = 1, 2} whose base step is provided by (32)
shows that

𝑧𝑤 ⊗ 1 ⊗ 𝑧′𝑤′ ⊗ 1 ∼ 𝑤𝑧 ⊗ 1 ⊗ 𝑤′𝑧′ ⊗ 1, 𝑧, 𝑤 ∈ 𝒞𝑋2,𝑋1 , 𝑧
′, 𝑤′ ∈ 𝒞𝐴1,𝐴2

(see, for instance, the proofs of [6, Theorem 3.2, Theorem 4.1]). We may then
conclude that the functional 𝖳 on 𝒞𝑋2,𝑋1 ⊗max 𝒞𝐴1,𝐴2 , given by

𝖳(𝑢 ⊗ 𝑣) = 𝑠(𝑢 ⊗ 1 ⊗ 𝑣 ⊗ 1), 𝑢 ∈ 𝒞𝑋2,𝑋1 , 𝑣 ∈ 𝒞𝐴1,𝐴2 ,
is a tracial state. Furthermore, (32) implies Γ = Γ𝖳.
(ii) If Γ is an approximately quantum jointly tracial correlation, again by the

proof of Theorem 6.6 there exists a state 𝑠 ∶ 𝒞𝑋2,𝑋1⊗min𝒞𝑋2,𝑋1⊗min𝒞𝐴1,𝐴2⊗min
𝒞𝐴1,𝐴2 → ℂ such that Γ = Γ𝑠. As each approximately quantum SQNS corre-
lation is quantum commuting, by (i) there exists some trace 𝖳 ∶ 𝒞𝑋2,𝑋1 ⊗max
𝒞𝐴1,𝐴2 → ℂ such that Γ = Γ𝖳 as well. By [39, Lemma 9.2], for any finite sets
𝑋,𝑌 there exists a ∗-isomorphism 𝜕 ∶ 𝒞𝑋,𝑌 → 𝒞op𝑋,𝑌 such that

𝜕(𝑒𝑥𝑥′,𝑦𝑦′) = 𝑒op𝑥′𝑥,𝑦′𝑦, 𝑥, 𝑥′ ∈ 𝑋, 𝑦, 𝑦′ ∈ 𝑌.

Let 𝜕𝑋 ∶ 𝒞𝑋2,𝑋1 → 𝒞op𝑋2,𝑋1 and 𝜕𝐴 ∶ 𝒞𝐴1,𝐴2 → 𝒞op𝐴1,𝐴2
be the ∗-isomorphisms

corresponding to each C∗-algebra. Let
ℱ ∶ 𝒞𝑋2,𝑋1 ⊗min 𝒞𝑋2,𝑋1 ⊗min 𝒞𝐴1,𝐴2 ⊗min 𝒞𝐴1,𝐴2

→ 𝒞𝑋2,𝑋1 ⊗min 𝒞𝐴1,𝐴2 ⊗min 𝒞𝑋2,𝑋1 ⊗min 𝒞𝐴1,𝐴2

be the flip operation, and

𝑞 ∶ 𝒞𝑋2,𝑋1 ⊗max 𝒞𝐴1,𝐴2 → 𝒞𝑋2,𝑋1 ⊗min 𝒞𝐴1,𝐴2
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be the quotient map. Define linear functional

𝜇 ∶ (𝒞𝑋2,𝑋1 ⊗max 𝒞𝐴1,𝐴2) ⊗min (𝒞𝑋2,𝑋1 ⊗max 𝒞𝐴1,𝐴2)
op → ℂ

via

𝜇 = 𝑠◦ℱ◦(𝑞 ⊗ (𝑞◦(𝜕−1𝑋 ⊗ 𝜕−1𝐴 ))).
One may easily check that 𝜇(𝑢 ⊗ 𝑣op) = 𝖳(𝑢𝑣). Indeed: on the canonical gen-
erators we have

𝜇(𝑒𝑥2𝑥′2,𝑥1𝑥′1 ⊗ 𝑒𝑎1𝑎′1,𝑎2𝑎′2 ⊗ (𝑒𝑦′2𝑦2,𝑦′1𝑦1 ⊗ 𝑒𝑏′1𝑏1,𝑏′2𝑏2)
op)

= 𝑠◦ℱ(𝑒𝑥2𝑥′2,𝑥1𝑥′1 ⊗ 𝑒𝑎1𝑎′1,𝑎2𝑎′2 ⊗ 𝑒𝑦2𝑦′2,𝑦1𝑦′1 ⊗ 𝑒𝑏1𝑏′1,𝑏2𝑏′2)
= 𝑠(𝑒𝑥2𝑥′2,𝑥1𝑥′1 ⊗ 𝑒𝑦2𝑦′2,𝑦1𝑦′1 ⊗ 𝑒𝑎1𝑎′1,𝑎2𝑎′2 ⊗ 𝑒𝑏1𝑏′1,𝑏2𝑏′2)
= 𝖳(𝑒𝑥2𝑥′2,𝑥1𝑥′1𝑒𝑦′2𝑦2,𝑦′1𝑦1 ⊗ 𝑒𝑎1𝑎′1,𝑎2𝑎′2𝑒𝑏′1𝑏1,𝑏′2𝑏2).

By [9, Theorem 6.2.7], trace 𝖳 is amenable.
(iii) Let Γ be a perfect concurrent strategy in 𝒬sq. By the proof of Theo-

rem 6.6 (iii), there exist finite-dimensional Hilbert spaces 𝐻𝑋 , 𝐻𝑋′ , 𝐻𝐴, 𝐻𝐴′ , ∗-
representations 𝜋𝑋 ∶ 𝒞𝑋2,𝑋1 → ℬ(𝐻𝑋), 𝜋𝑋′ ∶ 𝒞𝑋2,𝑋1 → ℬ(𝐻𝑋′), 𝜋𝐴 ∶ 𝒞𝐴1,𝐴2 →
ℬ(𝐻𝐴) and 𝜋𝐴′ ∶ 𝒞𝐴1,𝐴2 → ℬ(𝐻𝐴′) along with a unit vector 𝜉 ∈ 𝐻𝑋 ⊗𝐻𝑋′ ⊗
𝐻𝐴 ⊗𝐻𝐴′ such that Γ = Γ𝑠, where

𝑠 ∶ 𝒞𝑋2,𝑋1 ⊗min 𝒞𝑋2,𝑋1 ⊗min 𝒞𝐴1,𝐴2 ⊗min 𝒞𝐴1,𝐴2 → ℂ
is a state given by

𝑠(𝑢) = ⟨(𝜋𝑋 ⊗𝜋𝑋′ ⊗𝜋𝐴 ⊗𝜋𝐴′)(𝑢))𝜉, 𝜉⟩, (34)

for 𝑢 ∈ 𝒞𝑋2,𝑋1 ⊗min 𝒞𝑋2,𝑋1 ⊗min 𝒞𝐴1,𝐴2 ⊗min 𝒞𝐴1,𝐴2 . By the proof of (i), the state
𝖳 ∶ 𝒞𝑋2,𝑋1⊗min𝒞𝐴1,𝐴2 → ℂ constructed from 𝑠 is tracial, and in this case factors
through a finite-dimensional ∗-representation.
(iv) The proof of this statement is similar to the proof of Proposition 3.3; we

include the details for the benefit of the reader. Assume Γ ∈ 𝒬sloc is a perfect
concurrent strategy; by Remark 3.11, Γ = ∑𝑘

𝑗=1 𝜆𝑗Φ
(𝑗)
𝑋 ⊗Φ(𝑗)

𝑋′ ⊗Φ(𝑗)
𝐴 ⊗Φ(𝑗)

𝐴′ as a

convex combination of quantum channels Φ(𝑗)
𝑋 , Φ(𝑗)

𝑋′ ∶ 𝑀𝑋2 → 𝑀𝑋1 , Φ
(𝑗)
𝐴 , Φ(𝑗)

𝐴′ ∶
𝑀𝐴1 →𝑀𝐴2 , 𝑗 = 1, … , 𝑘. Let

(𝜆(𝑗)𝑥2𝑥′2,𝑥1𝑥′1
)𝑥1,𝑥′1 = Φ(𝑗)

𝑋 (𝜖𝑥2𝑥′2), (𝜆(𝑗)𝑦2𝑦′2,𝑦1𝑦′1
)𝑦1,𝑦′1 = Φ(𝑗)

𝑋′ (𝜖𝑦2𝑦′2),

(𝜇(𝑗)𝑎1𝑎′1,𝑎2𝑎′2
)𝑎2,𝑎′2 = Φ(𝑗)

𝐴 (𝜖𝑎1𝑎′1), (𝜇(𝑗)𝑏1𝑏′1,𝑏2𝑏′2
)𝑏2,𝑏′2 = Φ(𝑗)

𝐴′ (𝜖𝑏1𝑏′1),

for𝑥2, 𝑥′2, 𝑦2, 𝑦
′
2 ∈ 𝑋2, 𝑎1, 𝑎′1, 𝑏1, 𝑏

′
1 ∈ 𝐴1, and𝜋

(𝑗)
𝑋 , 𝜋(𝑗)𝑋′ ∶ 𝒞𝑋2,𝑋1 → ℂ,𝜋(𝑗)𝐴 , 𝜋(𝑗)𝐴′ ∶

𝒞𝐴1,𝐴2 → ℂ be the ∗-representations given by

𝜋(𝑗)𝑋 (𝑒𝑥2𝑥′2,𝑥1𝑥′1) = 𝜆(𝑗)𝑥2𝑥′2,𝑥1𝑥′1
, 𝜋(𝑗)𝑋′ (𝑒𝑦2𝑦′2,𝑦1𝑦′1) = 𝜆(𝑗)𝑦2𝑦′2,𝑦1𝑦′1

,

𝜋(𝑗)𝐴 (𝑒𝑎1𝑎′1,𝑎2𝑎′2) = 𝜇(𝑗)𝑎1𝑎′1,𝑎2𝑎′2
, 𝜋(𝑗)𝐴′ (𝑒𝑏1𝑏′1,𝑏2𝑏′2) = 𝜇(𝑗)𝑏1𝑏′1,𝑏2𝑏′2
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for 𝑗 = 1,… , 𝑘. Furthermore, let 𝜋𝑋 , 𝜋𝑋′ ∶ 𝒞𝑋2,𝑋1 → ℬ(ℂ𝑘), 𝜋𝐴, 𝜋𝐴′ ∶ 𝒞𝐴1,𝐴2 →
ℬ(ℂ𝑘) be the ∗-representations given by

𝜋𝑋(𝑢) =
𝑘∑

𝑗=1
𝜋(𝑗)𝑋 (𝑢)𝜖𝑗𝑗, 𝜋𝑋′(𝑢) =

𝑘∑

𝑗=1
𝜋(𝑗)𝑋′ (𝑢)𝜖𝑗𝑗,

𝜋𝐴(𝑣) =
𝑘∑

𝑗=1
𝜋(𝑗)𝐴 (𝑣)𝜖𝑗𝑗, 𝜋𝐴′(𝑣) =

𝑘∑

𝑗=1
𝜋(𝑗)𝐴′ (𝑣)𝜖𝑗𝑗,

for𝑢 ∈ 𝒞𝑋2,𝑋1 , 𝑣 ∈ 𝒞𝐴1,𝐴2 . Clearly, the images of𝜋𝑋 , 𝜋𝑋′ , 𝜋𝐴, 𝜋𝐴′ are all abelian.

If we then set 𝜉 = ∑𝑘
𝑗=1

√
𝜆𝑗𝑒𝑗 ⊗ 𝑒𝑗 ⊗ 𝑒𝑗 ⊗ 𝑒𝑗 ∈ ℂ𝑘 ⊗ℂ𝑘 ⊗ℂ𝑘 ⊗ℂ𝑘, we have

Γ(𝜖𝑥2𝑥′2 ⊗ 𝜖𝑦2𝑦′2 ⊗ 𝜖𝑎1𝑎′1 ⊗ 𝜖𝑏1𝑏′1)

= (⟨(𝜋𝑋(𝑒𝑥2𝑥′2,𝑥1𝑥′1) ⊗ 𝜋𝑋′(𝑒𝑦2𝑦′2,𝑦1𝑦′1) ⊗ 𝜋𝐴(𝑒𝑎1𝑎′1,𝑎2𝑎′2) ⊗ 𝜋𝐴′(𝑒𝑏1𝑏′1,𝑏2𝑏′2))𝜉, 𝜉⟩)
𝑎2𝑎′2,𝑏2𝑏

′
2

𝑥1𝑥′1,𝑦1𝑦
′
1

,

with corresponding state 𝑠 given by

𝑠(𝑢) = ⟨(𝜋𝑋 ⊗𝜋𝑋′ ⊗𝜋𝐴 ⊗𝜋𝐴′)(𝑢)𝜉, 𝜉⟩,

for 𝑢 ∈ 𝒞𝑋2,𝑋1 ⊗max 𝒞𝑋2,𝑋1 ⊗max 𝒞𝐴1,𝐴2 ⊗max 𝒞𝐴1,𝐴2 . Argue now as in (iii)
to conclude that tracial state 𝖳 factors through an abelian ∗-representation of
𝒞𝑋2,𝑋1 ⊗max 𝒞𝐴1,𝐴2 . □

Theorem 6.18. Let t ∈ {loc, q, qa, qc}. If Γ ∈ 𝒬st is jointly tracial, and ℰ ∈ 𝒬t is
tracial, then Γ[ℰ] is tracial.

Proof. We handle the case when t = qc. By Theorem 6.17 and [6, Theorem
4.1], there exists tracial states 𝖳 ∶ 𝒞𝑋2,𝑋1 ⊗max 𝒞𝐴1,𝐴2 → ℂ and 𝜏 ∶ 𝒞𝑋1,𝐴1 → ℂ
such that Γ = Γ𝖳 and ℰ = ℰ𝜏. Let

𝖳 ⊙ 𝜏 ∶ 𝒞𝑋2,𝑋1 ⊗max 𝒞𝐴1,𝐴2 ⊗max 𝒞𝑋1,𝐴1 → ℂ

be the linear map given by

(𝖳 ⊙ 𝜏)(𝑢 ⊗ 𝑣 ⊗ 𝑤) = 𝖳(𝑢 ⊗ 𝑣)𝜏(𝑤), 𝑢 ∈ 𝒞𝑋2,𝑋1 , 𝑣 ∈ 𝒞𝐴1,𝐴2 , 𝑤 ∈ 𝒞𝑋1,𝐴1 .

That this is a state follows from [38, Proposition 4.23]; that it is also tracial fol-
lows from a standard argument using the (automatic) continuity of the map-
ping on the maximal tensor product, in conjunction with calculations on the
dense subset of finite linear combinations of simple tensors. Define tracial
state 𝜏̃ on 𝒞𝑋2,𝐴2 in the following way: by Remark 6.16, there exists a surjec-
tive ∗-representation 𝜋 ∶ 𝒞𝑋2,𝐴2 → 𝒞𝑋2,𝑋1 ⊗max 𝒞𝐴1,𝐴2 ⊗max 𝒞𝑋1,𝐴1 sending
𝜋(𝑒𝑥2𝑥′2,𝑎2𝑎′2) = 𝑒𝑥2𝑥′2,𝑎2𝑎′2 for 𝑥2, 𝑥

′
2 ∈ 𝑋2, 𝑎2, 𝑎′2 ∈ 𝐴2. Using 𝜋, we let

𝜏̃(𝑢) ∶= ((𝖳 ⊙ 𝜏)◦𝜋)(𝑢), 𝑢 ∈ 𝒞𝑋2,𝐴2 . (35)
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We note

Γ[ℰ](𝑎2𝑎′2, 𝑏2𝑏
′
2|𝑥2𝑥

′
2, 𝑦2𝑦

′
2)

=
∑

𝑥1,𝑥′1
𝑦1,𝑦′1

∑

𝑎1,𝑎′1
𝑏1,𝑏′1

Γ(𝑥1𝑥′1, 𝑦1𝑦
′
1, 𝑎2𝑎

′
2, 𝑏2𝑏

′
2|𝑥2𝑥

′
2, 𝑦2𝑦

′
2, 𝑎1𝑎

′
1, 𝑏1𝑏

′
1)ℰ(𝑎1𝑎

′
1, 𝑏1𝑏

′
1|𝑥1𝑥

′
1, 𝑦1𝑦

′
1)

=
∑

𝑥1,𝑥′1
𝑦1,𝑦′1

∑

𝑎1,𝑎′1
𝑏1,𝑏′1

(𝖳 ⊙ 𝜏)(𝑒𝑥2𝑥′2,𝑥1𝑥′1𝑒𝑦′2𝑦2,𝑦′1𝑦1 ⊗ 𝑒𝑎1𝑎′1,𝑎2𝑎′2𝑒𝑏′1𝑏1,𝑏′2𝑏2 ⊗ 𝑓𝑥1𝑥′1,𝑎1𝑎′1𝑓𝑦′1𝑦1,𝑏′1𝑏1)

= (𝖳 ⊙ 𝜏)(𝜋(𝑒𝑥2𝑥′2,𝑎2𝑎2𝑒𝑦′2𝑦2,𝑏′2𝑏2))
= 𝜏̃(𝑒𝑥2𝑥′2,𝑎2𝑎′2𝑒𝑦′2𝑦2,𝑏′2𝑏2),

for 𝑥2, 𝑥′2, 𝑦2, 𝑦
′
2 ∈ 𝑋2, 𝑎2, 𝑎′2, 𝑏2, 𝑏

′
2 ∈ 𝐴2. This shows Γ[ℰ] = Γ𝜏̃, and so by [6,

Theorem 4.10] once more we conclude that Γ[ℰ] is tracial. For t ∈ {loc, q, qa},
the argument is similar once we use Theorem 6.17 (ii)-(iv). □

For finite sets 𝑋,𝐴, let

𝐸𝑋𝐴 = (𝑒𝑥,𝑥′,𝑎,𝑎′)𝑥,𝑥′,𝑎,𝑎′ , 𝐸op𝑋𝐴 = (𝑒op𝑥′,𝑥,𝑎′,𝑎)𝑥,𝑥′,𝑎,𝑎′ ,

be considered as elements in 𝑀𝑋𝐴 ⊗ ℭ𝑋,𝐴 and 𝑀𝑋𝐴 ⊗ ℭop
𝑋,𝐴, respectively. If

𝑃 ∈ 𝒫𝑋𝑋 , 𝑄 ∈ 𝒫𝐴𝐴, define a linear map

𝛾𝑃,𝑄 ∶ 𝑀𝑋𝑋 ⊗𝑀𝐴𝐴 ⊗ℭ𝑋,𝐴 ⊗ℭop
𝑋,𝐴 → ℭ𝑋,𝐴 (36)

by setting

𝛾𝑃,𝑄(𝜔 ⊗ 𝑢 ⊗ 𝑣op) = Tr(𝜔(𝑃 ⊗ 𝑄))𝑢𝑣, 𝜔 ∈ 𝑀𝑋𝑋 ⊗𝑀𝐴𝐴, 𝑢, 𝑣 ∈ ℭ𝑋,𝐴.

If 𝜑 ∶ 𝒫𝑋𝑋 → 𝒫𝐴𝐴 is any quantum non-local game, let

𝔍(𝜑) =
⟨
𝛾𝑃,𝜑(𝑃)⟂(𝐸𝑋𝐴 ⊗𝐸op𝑋𝐴) ∶ 𝑃 ∈ 𝒫𝑋𝑋

⟩

be the generated ∗-ideal in ℭ𝑋,𝐴, and 𝐽(𝜑) be the corresponding ideal consid-
ered in 𝒞𝑋,𝐴. Finally, write ℭ(𝜑) = ℭ𝑋,𝐴∕𝔍(𝜑) (resp. 𝒞(𝜑) = 𝒞𝑋,𝐴∕𝐽(𝜑)) for
the quotient ∗-algebra (resp. quotient C∗-algebra). Perfect strategies for a con-
current quantum game 𝜑 were shown to correspond to tracial states acting on
∗-representations of 𝒞𝑋,𝐴 which annihilate 𝔍(𝜑) or 𝐽(𝜑) in [6, 7]. In light of
previous results, we may conclude by giving an algebraic characterization of
our transfer of perfect strategies between quantum games.

Theorem 6.19. Let 𝑋𝑖, 𝐴𝑖, 𝑖 = 1, 2 be finite sets, 𝑃𝑖 ∈ 𝑀𝑋𝑖𝑋𝑖 , 𝑄𝑖 ∈ 𝑀𝐴𝑖𝐴𝑖 , 𝑖 = 1, 2
be projections, and t ∈ {loc, q, qa, qc}. If 𝒰𝑃1,𝑄1 →st 𝒰𝑃2,𝑄2 via jointly tracial Γ𝖳,
then for any tracial state 𝜏 on 𝒞(𝜑𝑃1→𝑄1), the tracial state 𝜏̃ given in (35) restricts
to a tracial state on 𝒞(𝜑𝑃2→𝑄2).
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Proof. As corresponding QNS correlation ℰ𝜏 is both tracial and a perfect strat-
egy for 𝜑𝑃1→𝑄1 (via [6, Corollary 4.4]), by Theorem 6.18 we know Γ𝖳[ℰ𝜏] is tra-
cial, and corresponds to tracial state 𝜏̃ given in (35). Furthermore, by Theo-
rem 5.3 Γ𝖳[ℰ𝜏] is a perfect strategy for 𝜑𝑃2→𝑄2 ; thus, 𝜏̃ annihilates 𝐽(𝜑𝑃2→𝑄2) as
claimed. □

Remark 6.20. We wish to comment on the specific case when both games are
the quantum graph isomorphism game. Let 𝑋𝑖 = 𝐴𝑖, 𝑖 = 1, 2, let 𝒰𝑖 ⊆ ℂ𝑋𝑖 ⊗
ℂ𝑋𝑖 , 𝑖 = 1, 2 be quantum graphs, and set 𝑃𝑖 ∶= 𝑃𝒰𝑖 , 𝑖 = 1, 2.
Recall, that, for finite set𝑋, theC∗-algebra of the free unitary quantum group

𝐶(𝒰+
𝑋 ) is the universal unitalC∗-algebra generated by the entries𝑢𝑥,𝑎 of an𝑋×𝑋

matrix 𝑈 = (𝑢𝑥,𝑎)𝑥,𝑎∈𝑋 under the condition that 𝑈 and 𝑈t are unitary (known
otherwise as a bi-unitary matrix). Subalgebra 𝐶(ℙ𝒰+

𝑋 ) is generated by length
two words of the form 𝑢∗𝑥,𝑎𝑢𝑥′,𝑎′ , 𝑥, 𝑥′, 𝑎, 𝑎′ ∈ 𝑋- and was shown in [1, Corol-
lary 4.1] to be the proper quantization of the automorphism group of 𝑀𝑋 . In
[7, Theorem 6.7], concurrent bicorrelations of types t ∈ {loc, q, qc} (and there-
fore, strategies for the quantum graph isomorphism game) were shown to be in
correspondence with different tracial states on 𝐶(ℙ𝒰+

𝑋 ).
Abusing notation, for 𝑆, 𝑇 ∈ 𝑀𝑋𝑋 let

𝛾𝑆,𝑇 ∶ 𝑀𝑋𝑋 ⊗𝐶(ℙ𝒰+
𝑋 ) ⊗𝑀𝑋𝑋 ⊗𝐶(ℙ𝒰+

𝑋 )op → 𝐶(ℙ𝒰+
𝑋 )

be defined as in (36). We let 𝑈̃ = (𝑢𝑥,𝑥′,𝑎,𝑎′)𝑥,𝑥′,𝑎,𝑎′ ∈ 𝑀𝑋𝑋(𝐶(ℙ𝒰+
𝑋 )), and for

𝑃 ∈ Proj(𝑀𝑋𝑋) set

ℐ𝑃,𝑃 ∶=
⟨
𝛾𝑃,𝑃⟂(𝑈̃ ⊗ 𝑈̃op), 𝛾𝑃⟂,𝑃(𝑈̃ ⊗ 𝑈̃op)

⟩
.

Finally, set 𝒜𝑃,𝑃 ∶= 𝐶(ℙ𝒰+
𝑋 )∕ℐ𝑃,𝑃. In [7, Remark 7.12], it was shown that

C∗-algebra𝒜𝑃,𝑃 can be endowed with a natural co-associative comultiplication
∆𝑃 ∶ 𝒜𝑃,𝑃 → 𝒜𝑃,𝑃 ⊗𝒜𝑃,𝑃; this means 𝒜𝑃,𝑃 can be viewed as a compact quan-
tum group. By [7, Theorem 7.10] and Theorem 5.7, we see that the existence of
a quantumhypergraph isomorphism Γ between𝒰𝑃1,𝑃1 and𝒰𝑃2,𝑃2 ensures away
to construct ∗-representations of compact quantum group𝒜𝑃2,𝑃2 from ∗-reps of
𝒜𝑃1,𝑃1 ; that is, a way to transfer quantum automorphisms between quantum
graphs.
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