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Transfer of quantum game strategies

Gage Hoefer

ABSTRACT. We develop a method for the transfer of perfect strategies be-
tween various classes of two-player, one round cooperative non-local games
with quantum inputs and outputs using the simulation paradigm in quantum
information theory. We show that such a transfer is possible when canoni-
cally associated operator spaces for each game are quantum homomorphic
or isomorphic, as defined in [21]. We examine a new class of QNS correla-
tions, needed for the transfer of strategies between games, and characterize
them in terms of states on tensor products of canonical operator systems. We
define jointly tracial correlations and show they correspond to traces acting
on tensor products of canonical C*-algebras associated with individual game
parties. We then make an inquiry into the initial application of such results
to the study of concurrent quantum games.
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1. Introduction

In the past few decades, non-local games have been studied under a variety
of names (such as Bell inequalities) and across the disciplines of physics, math-
ematics, and computer science; they have significant connections to areas as
diverse as noncommutative geometry, quantum complexity theory, entangle-
ment theory, and operator algebras. The latter provides a particularly fruitful
framework for approaching questions of non-locality in quantum systems, as
the input-output behavior of measurements on bipartite quantum systems can
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be encoded through noncommutative operator algebras and their state spaces.
The study of such bipartite systems can therefore be translated into the study
of associated operator algebras, and so numerous tools from functional analysis
can be applied to help obtain answers for more physically motivated questions.

A non-local game is (formally speaking) a tuple G = (X, Y, A, B, A) of finite
sets X,Y,A,Band a function 1 : X XY X A X B — {0, 1}. The game is played
cooperatively by two players, against a referee. Our two players— call them
Alice and Bob— are separated spatially, and are not allowed to communicate
during the game. For our purposes, the game takes place over a single round;
during a round, the referee samples question pairs (x,y) € X X Y, and sends
question x to Alice and question y to Bob. Alice and Bob must respond with
answers a € A and b € B, respectively. The two win the round if and only if
A evaluates to 1 on their question-answer pairs; that is, they win if and only if
Alx,y,a,b) =1.

While our two players are not allowed to communicate during the game, to
improve their chances of success they can coordinate their answers according
to a predetermined strategy. Our players may have access to a shared quan-
tum entangled state, and measurements on this state by each player can im-
prove their chance of winning by coordinating their answers to the referee in
such a way that would not be possible classically (see [2]: the CHSH inequality
and its use in the proof of the celebrated “Bell’s Theorem” during the 1960’s,
or [8]). Specific classes of strategies— known as correlations— based on the
use (or non-use) of shared classical and quantum resources between the two
players are of particular interest in describing their behavior; such correlations
are formalized using classical information channels, when considered as con-
ditional probability distributions. Different mathematical models correspond-
ing to each strategy type describe the outcomes of these experiments: local
(corresponding to the use of classical resources), quantum (corresponding to
finite-dimensional entangled resources), quantum approximate (correspond-
ing to liminal entangled resources), quantum commuting (which arises from
the commuting model of quantum mechanics), and general no-signalling
(which does not necessarily rely on the use of a shared resource, but as a proba-
bilistic strategy must still satisfy the basic constraints of the game), are the main
correlation classes of interest. These are denoted as Cqc, Cg, Cqa, Cgc and Cp,
respectively.

One particular connection between the study of quantum information the-
ory, non-locality, and operator algebras driving much of the recent development
in these areas is the equivalence of Tsirelson’s problem in quantum physics,
and Connes’ embedding problem (or CEP) in von Neumann algebra theory;
this equivalence was established in [18, 23, 31]. The subsequent investigation
of this equivalence led to the resolution of many other important questions in-
cluding a refutation to the strong Tsirelson problem in [35] (see also [16]), and
a negative answer to the CEP in [22]. Non-local games lay at the base of all of
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these approaches, and questions involving non-local games are the main moti-
vation for the current work.

While classical non-local games are fruitful objects of study, as combinato-
rial objects with finite sets of inputs and outputs they ultimately have inherent
restrictions; in an attempt to surpass some of these limitations, more attention
has been given to quantum games. These are non-local games where the in-
puts and outputs are allowed to be quantum states, or sometimes mixtures of
classical and quantum states. In this setting, question and answer sets X, Y, A
and B are replaced by spaces CHI, CIYl Cl4l and C!®l, and strategies are im-
plemented using quantum channels ® : My ® My — M, ® Mp instead of
classical channels N' : X XY — A X B. The lack of communication between
players is enforced by strictly requiring the use of quantum no-signalling (QNS)
channels, as introduced in [15]. Furthermore, the hierarchy of classical cor-
relations is replaced by their quantum analogues, first introduced in [39] (see
also [4]). The rules of the game can be generalized to the quantum context by
replacing A with a 0-preserving and join-preserving map between the projec-
tion lattices Pxy and P45 of Mx ® My and M 4 @ My, respectively. Such games
have been increasingly studied over the past few years (see [6, 7, 11, 34, 39] fora
non-exhaustive list). As legitimate generalizations of classical non-local games,
the hope is that by “enlarging” the space of possible inputs and outputs (when
compared to finite sets), a wealth of new examples are provided that might help
shed more light on some of the previously mentioned questions in all areas.

The purpose of the present paper is to generalize the results of [20] to the con-
text of quantum non-local games; in that work, generalized homomorphisms
and isomorphisms between classical non-local games were introduced. The ex-
istence of a homomorphism or isomorphism of type t from game G; to game G,
lead to a relation between optimal game values, when playing with strategies
of type t; specifically, an inequality of values in the former case, and equal-
ity in the latter case. We wanted to obtain similar results for quantum games,
and identify necessary conditions for when two quantum games are similar in
this sense. In order to identify when two quantum games are homomorphic
(respectively, isomorphic) of some type t, we looked at several classes of quan-
tum games which have canonically associated quantum hypergraphs. These are
subspaces of linear operators acting between finite-dimensional spaces which
in some sense encode the properties or rules of the game. Using the notion of
t-homomorphism and t-isomorphism of quantum hypergraphs introduced in
[21], we thus had a way to characterize when our quantum games were similar.

Quantum game homomorphisms of a given type t were defined using QNS
correlations of the same type, subject to additional constraints. Such conditions
were added in order to allow the transport of perfect strategies of type t from
the first game to perfect strategies of type t for the second. As in [20, 21], t-
isomorphisms require the use of QNS bicorrelations, which were first defined
in [7]. This process of strategy transfer employs the simulation paradigm for
quantum channels (see [15]). According to the paradigm, if we start with a



1610 GAGE HOEFER

quantum channel € : My, — M, from alphabet X; to alphabet A;, using as-
sistance from no-signalling resources over (X,, A, X1, A,) (i.e., 2 QNS channel
' : My, ® My, - My, ® M,,) we can construct a new quantum channel
[[€] : My, — M,, dependent on & and T from alphabet X, to A,. A similar
approach for classical channels was used in [20], and one of the main focuses
of this work is to show how it extends to the quantum case.

We now describe the organization of the paper in more detail. In Section 2,
we set notation and recall the definition of the main no-signalling correlation
types for both classical and quantum channels, and introduce the simulation
setup for quantum channels. Section 3 contains the definitions of the differ-
ent types of a class of stochastic (and bistochastic) operator matrices, and how
these operator matrices will be used to define necessary subclasses of QNS cor-
relations (which we call strongly quantum no-signalling) over the quadruple
(X3 XY,)X(A; XB;) X (X, XY1)X (A, XB,). In Section 4, the strongly quantum
no-signalling correlations are used in the simulation paradigm for quantum
channels to establish strategy transport for quantum games; this is achieved in
Theorem 4.1 and Theorem 4.2 for the QNS correlation and bicorrelation cases,
respectively. We note that the definitions of Sections 3 and 3.1 generalize those
from [20, Section 4, 5]; thus, we recover many of the results (in the classical
case) from [20] in Sections 3-4.

Section 5 contains some of the main results of the paper, where we restrict
our attention to the transfer of perfect strategies for various types of quantum
games. This application employs SQNS correlations as strategies for the
t-homomorphism and isomorphism games between quantum non-local games,
when utilizing the framework of generalized homomorphisms of quantum hy-
pergraphs as introduced in [21, Section 3]. A characterization of when perfect
strategy transfer is possible between games when the first leg is classical while
the second is quantum, along with when both are implication games are in-
cluded (see [39] for relevant introductions).

The last section features the other main focus of the paper, wherein we in-
vestigate our new QNS correlations leading up to an operator system character-
ization for each subclass (similar to those obtained in [29, 39] and [20, Section
7]). Using these results, we also focus on the transfer of strategies between con-
current quantum games— a class of quantum game first introduced in [6] and
further developed in [7, 39]. As a proposed quantization of the class of synchro-
nous games, and analogous to the adaptation of the synchronicity condition
for classical game homomorphisms which necessitated the definition of jointly
synchronous correlations in [20, Section 8], we define jointly tracial SQNS cor-
relations in this section. A tracial characterization of jointly tracial correlations
is contained in Theorem 6.17 (in the same vein as the characterizations estab-
lished in [6], [7] and [19]), and Theorem 6.18 shows that these are the right
subclass of SQNS correlations to use for transferring tracial correlations. Thus,
the transfer of strategies for quantum games developed within specializes to
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the concurrent case. Finally, initial connections between the transfer of con-
current/tracial strategies and traces on canonically associated sx-algebras and
C*-algebras for concurrent games are discussed.
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2. Preliminaries

In this section we set notation, and include the necessary preliminaries on
quantum no-signalling correlations to be used throughout the rest of the paper.
For a finite set X, we let CX = @,xC and write (e, ),ex for the canonical or-
thonormal basis of CX. Similarly, if H is a Hilbert space we set HX = @, cxH. If
X is countable (not necessarily finite), let €§ denote the Hilbert space of square
summable sequences over C; in the specific case that X is finite, we will some-
times write 6’)2( = CX. For finite X, Y, we will often abbreviate the Cartesian
product X X Y as XY for ease of use in notation. We denote by My the algebra
of all complex matrices of size X X X, and by Dy its subalgebra of all diagonal
matrices. We write €,.,/, X, X’ € X for the canonical matrix units in My, denote
by Tr the trace functional on My, and set (S, T) = Tr(ST*), where the adjoint is
with respect to the canonical orthonormal basis. Welet Ay : My — Dy denote
the canonical conditional expectation on the full matrix algebra. Set

Ix = Z €xx! & Exxr> J)C(l ‘= Z Exx @ Exx
x,x’ xex
and Jy := |)1(—|J v. fmy = ﬁ XEX ey ® e, is the maximally entangled unit
vector in CX¥ @ C¥, then Jy = mym} is the corresponding rank-one projection.
Note that J}C(l = Axx(Jx), and thus we may think of J}C(1 as the “classical” part of
the (unnormalized) state Jy.

For a Hilbert space H, let B(H) be the C*-algebra of all bounded linear oper-
ators on H, and denote by Iy the identity operator on H. An operator system
in B(H) is a selfadjoint linear subspace 8§ C B(H) such thatI; € 8. If Aisa
C*-algebra, we denote by .A°P its opposite C*-algebra. As a set, .A°P can be iden-
tified with A, with AP = {a°? : a € A}; they both have the same additive,
norm, and involutive structure— their only difference is in their multiplicative
structure, as we set a®b°P = (ba)°P, for a®?, b°? € A°P in the opposite algebra.

Let X and A be finite sets. A classical information channel from X to A is
a positive trace preserving linear map V' : Dx — D,4. If V is an information
channel, setting p(-|x) = N(e,,) for each x € X it is easy to see that NV is
completely determined by its corresponding family of conditional probability
distributions {(p(a|x)),ea : x € X}.
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A quantum information channel from X to A is a completely positive trace
preserving linear map ® : My — M,. A quantum channel will be called
(X, A)-classical if ® = A oPoAy. Any classical channel N : Dy — Dy, has
a corresponding (X, A)-classical (quantum) channel ®,. : My — M, given by
®, = NoAy. Conversely, any quantum channel & : My — M, induces a
classical channel Ny : Dx — D4 given by A o®|y, . Finally,if € : Dy — M,y
isa(classical-to-quantum) channel, set I'c = EoAx, soI'¢ is a quantum channel
from My to M 4.

In the remainder of this section, we recall the basic types of quantum and
classical no-signalling correlations that will be used throughout the paper, along
with establishing the simulation paradigm arising from quantum information
theory. Let X,Y, A and B be finite sets. A quantum no-signalling (QNS) corre-
lation [15] is a quantum channel T' : Myy — M 45 such that

Tral'(px ® py) = 0 whenever pxy € My and Tr(pyx) = 0, (1)
and
Trgl'(px ® py) = 0 whenever py € My and Tr(py) = 0. (2)
We set
L(ad’,bb'|xx’, yy") = (D(exx ® €yy1),€aqr ® Eppr);

thus, (I'(aa’, bb' |xx', yy' ))fc’fc,,’z’l;,, is the Choi matrix of T (see e.g. [32]).

A stochastic operator matrix acting on a Hilbert space H is a positive block op-
erator matrix E = (Ey v g o/ )xx'.a.00 € Mxa(B(H)) such that Try(E) = Ix @ Iy.
Stochastic operator matrix E is bistochastic [7] if X = A and we have Tryx(E) =
I, ® I. For a stochastic operator matrix E over (X, A), set

Ea,a’ = (Ex,x’,a,a’)x,x’eX € Mx ® B(H)
As discussed in [39, Section 3], stochastic operator matrices E are the Choi ma-
trices of unital completely positive maps ®r : My - My ® B(H) given by
CDE(ea,a’) =E,u, a, a €A (3)

If we let ® = @y as in (3), for any state 0 € J(H) we let 'y, : My — M, be
the quantum channel defined via
Ipo(px) = ulox ®0),  px € Mx. 4)

Note here that @, : My ® J(H) — M, is the predual of the unital completely
positive map @. If E = (Ey v g0/ )xx' ,a,0 A0AF = (F), 1 p 7))y p 1y ar€ stochastic
operator matrices in My, ® B(H) and My ® B(H), respectively, such that

Ex,x’,a,a’Fy,y’,b,b’ = Fy,y’,b,b’Ex,x’,a,a’
forall x,x’ € X,y,y’ € Y,a,a’ € A,b,b’ € B, we let E - F be the (unique)
stochastic operator matrix over (XY, AB) (see [39, Proposition 4.1]) defined by

a,a’,b,b’

(Ex,x’,a,a’Fy,y’,b,b’)x’xr’y’y/ € MXYAB ® B(H)
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If § is a unit vector in Hilbert space H, we let 'y  ; = Tp.p ¢« Where the latter is
the quantum channel from My to M 45 defined asin (4). If E € My, ® B(H,)
and F € My ® B(Hp) are stochastic operator matrices, we let E® F denote the
stochastic operator matrix E ® F, considered as an element of Mxy @ M 5 ®
B(H, ® Hp).

A QNS correlation ' : Myy — M43 is called quantum commuting if there
exists a Hilbert space H, a unit vector £ € H and stochastic operator matrices
E = (Exxaa)xxaa a0d F = (F)ypp)yy e o0 H such that E and F are
mutually commuting, with I' = Ty . Quantum QNS correlations are those
for which there exist finite dimensional Hilbert spaces H4, Hg, stochastic op-
erator matrices E € My, ® B(H,) and F € Myp ® B(Hp), and a pure state
o € J(Hy ® Hp) such that I' = T'gop,. Approximately quantum QNS cor-
relations are the limits of quantum QNS correlations, while local QNS corre-

lations are the convex combinations of the form I' = Zi;l 1,9; ® ¥;, where
®; : My > M, and ¥; : My — Mg are quantum channels, i = 1,..., k. We
write Qg (resp. Qga, 9g, Qioc) for the (convex) set of all quantum commuting
(resp. approximately quantum, quantum, local) QNS correlations, and note the
(strict, see [39]) inclusions

Qjoc € Qg € Qga € Qg C Qs (5)
Let
LX,A = {(Ax,x’,a,a’) EMx,y :dce C s.t. Z Ax’x/’a,a = 5x’x/C, x,x’ (S X},
acA

and consider it as an operator subsystem of Mx 4. Similarly,

Ly = {(Ax’x/’a,a/) € Myy : dceCs.t. Z lx’x/,a’a = 5X’X/C
aeX
and Z Axxaa =0awC X,X',a,a" € X}
x€eX
may be considered as an operator subsystem of Myy. By [39, Proposition 5.5,
Theorem 6.2], the elements I' of Q, 5 correspond canonically to elements of the
tensor product Lx 4 ®min Ly p (viewed as an operator subsystem of My, ®
My ), and elements in QP corresponding to elements of £y ®yin £y [7, Propo-
sition 3.6, Theorem 5.4].
A classical correlation over (X,Y, A, B) is a collection

p= {(p(a, DX, Yacapes : (%) € X X Y},

where (p(a, b|x, y))aea pep is a probability distribution for each (x,y) € X X Y.
Given a classical correlation p, let N, : Dxy — D,p be the classical channel
given by

Ny = D>, D> plablx,y)ple, ®ey) e ®ey)eay ® €pp.  (6)

XEX,yEY a€A,beB
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If t € {loc, g, qa, qc, ns}, let C; denote the collection of all classical correlations
p for which Iy, € Q.

Suppose X; and Y; (i = 1,2) are finite sets. Let I be a QNS correlation over
(X5,Y1,X;,Y,) and € @ My, — My, be a quantum channel. If we write I' =

Zi;l ®; @ ¥;, where ®; : My, > My, and ¥; : My, — My, are linear maps
fori =1,..,k,weletT'[€] : My, — My, be the linear map defined by setting

k
T[] = ) WioE0d;. (7)
i=1
It was shown in [15] that T'[€] is a quantum channel, called therein the simu-
lated channel from & assisted by simulator T. We note that (see [20], [21]) the
Choi matrix of I'[ €] coincides with

( >0 F(xlx;,yzyglxzx;,yly{)é?(yly{lex{)) : (8)

/ /
/ /
x19x1 yl’yl x2’x2’y2’y2

where the internal sums range over X; and Y7, for all x,, x; € X5,¥, y; €Y,
Thus, channel simulation is a process for constructing new quantum channels
from given ones, with the assistance of correlations; morever, it is natural to
want the simulated channel to depend on a shared resource between two par-
ties. If Alice and Bob have access to some shared resource (for instance: shared
randomness, or entanglement, etc.), their interaction with the resource yields
the no-signalling correlation T, and simulated channel I'[£] is dependent on
their local operations (see [12, Section IT], and [15]).

3. Strongly stochastic operator matrices

Let X,Y, A and B be finite sets, and H be a Hilbert space. In the sequel, to
simplify notation we will abbreviate an ordered pair (x,y) € X XY to xy. A
stochastic operator matrix

/,bb,
P= (P;Z/,yy/ )xx’,yy’,aa’,bb’ € Mxyap ® B(H)
over (XY,AB) will be called a strongly stochastic operator matrix over
(X,Y, A, B) if Trg(L,, (P)) (resp. Try(Ls, (P))) is a well-defined stochastic op-
erator matrix over (X, A) (resp. (Y, B)) and Trg(L,, (P)) = TrB(LU;(P)) (resp.
Tra(Lo, (P)) = Tra(L,/ (P))) for each pure state oy, oy € Myandoy,o|, € My.

Remark 3.1. In fact, by convexity and linearity of the slice map we may assume
ox,0x € My and oy, 0y, € My are arbitrary states.

Remark 3.2. A positive operator P = (Pyy, qp)x,yap € Dxyap ® B(H) is a
no-signalling (NS) operator matrix [20] if marginal operators

Px,a L= Zny,ab’ Py,b L= Z ny,ab
beB acA
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are well-defined, and (Py 4)qea, (Py ) pep are POVM’s for every x € X and y €
Y. If we start with a NS operator matrix P, for x,x’ € X,y,y’ € Y,a,d’ €
A,b,b’ € B set
/,bb/
P;z’,yy’ == 5xx’5yy’5aa’5bb’ny,ab~
aa’ ,bb’

Setting P = (Pxx,,yy, )xx' yy'aa’ by € Mxyap @ B(H), one may easily check that
P is strongly stochastic over (XY, AB) with Try(L,, (P)) and Tr (L, (P)) classi-
cal stochastic operator matrices (as introduced in [39, Section 3]) for each (pure)
state oy € My and oy € My. Thus, we may think of strongly stochastic oper-
ator matrices over (XY, AB) as generalizations of NS operator matrices, whose
“marginal” stochastic operators are no longer necessarily classical.

A strongly stochastic operator matrix P = (Pzz,:lyﬂy), )xx’ yy'.aa by 18 called dilat-

able if there exists a Hilbert space K, an isometry V' : H — K and stochastic op-
erator matrices (Exy qa)x,vex,a,area (1€SP- (Fyy ppr)y yrey b prep) iD Mx 4 @ B(K)
(resp. MYB ® ﬂ(K)) such that Exx’,aa’Fyy’,bb’ = Fyy’,bb’Exx’,aa’ and

ijfﬁiﬁ = V*ExwraaFyy Vs %X €X,y,y' €Y,a,d’ € A,b,b/ €B. (9)

!’ !
We will call a strongly stochastic operator matrix P = (P;’Cg,:ly’ly’, )xx’.yy’ aa’,bb’

acting on a Hilbert space H locally dilatable if there exists a dilation of the form
(9), with the additional stipulation that the family

{Exx’,aa”Fyy/,bb’ . x,x’ S X,y,yl €Y,a, a e ADb, b e B}

is commutative. We will call a strongly stochastic operator matrix
,,bbl
P= ( ggl’yy/ xx',yy’,aa’ ,bb’
acting on a Hilbert space H quantum dilatable if there exist stochastic opera-
tor matrices (Exy qa)xx'ex,a,aea a0d (Fyy pp)y ey b prep acting on finite di-
mensional Hilbert spaces H, and Hp respectively, and an isometry V : H —
H, ® Hg, such that
’,bb’

P;‘z,’yy, = V*(Exx'aar @ Fyy ppr)Vs (10)

forx,x’ € X,y,y' € Y,a,d’ € A,b,b' €B.

Proposition 3.3. A QNS correlationT over (X, Y, A, B) belongs to Q). ifand only
if there exists a Hilbert space H, a locally dilatable strongly stochastic operator

! !/
matrix P = (Piz,’s;’, )xx’ yy'aa’ b Acting on H and a unit vector § € H such that
’,bb'
T(ad’,bb'|xx’, yy") = (PL0 " &, §), an

forx,x' € X,y,y €Y,a,a’ € A,b,b' €B.

. . o k ;
Proof. First, assume that I' € Q. is a convex combinationI' = 37;_, 1 2V ®

W) where @) : My — M, and ¥) : My — My are quantum channels, j =
1, ..., k. By the comment before [39, Remark 3.2], &) (resp. 1)) is of the form



1616 GAGE HOEFER

T'r) 1 (resp. Iro) 1) for some stochastic operator matrix EUV) € My®@M,®B(C)
(resp. F) € My ® My ® B(C)) for j = 1,...,k. For each x,x’ € X,a,a’ €

A define the matrix Ezg: = (E)(C{i, a,)} | € Dy. Define the corresponding

matrices Fs’s,, in D, foreach y,y’ € Y,b,b’ € B. We note that the family

b,b’

{ et Fy x,x' €X,a,a’ € A,y,y' €Y,b,b’ € B},

is commutative. Then, let
. b,b’
(Ex X' )x x',a,a’» F .= (Fy’y, )y’yl,b,bl.

Note that E (resp. F) is stochastic over (X, A) (resp. (Y, B)). Indeed: since E()
is a stochastic operator matrix in My ® M4 ® B(C) for each j = 1,...,k, we

know that ZE(J) =8, foreach x,x’ € X and j = 1,..., k. Thus,

x,x',a,a

Tru(E)

k
Z Z Z E)(cj,zc’,a,aex,x’ ® Ejj

a x,x' j=1

= Z Z Z )(cjzc’,a,aex,x’ ® Ejj

Jj=1x,x’

= Z Z 5x’x/€x’x/ ® €]j

Jj=1x,x’

= IX®Ik'
k
Seté = ), Ajej, so § is a unit vector in Ck. Forx,x' € X,y,y € Y,a,d’ €
)

A,b,b’ € B we see

k
aa _ @) ()
xx’Fyy’§ §> - ZAJExx’aa’F ,y'.b,b’

k
_ )] )
= 2 A aw ®F ) 1)

= <F(€x,x’ ® €y,y’)’ €a,a/ ® €b,b’>

= TI(ad’,bb'|xx',yy").
Setting P)‘:z:'y"y’ E)‘:)‘:,be for each x,x’ € X,y,y' € Y,a,a’ € A,b,b' € B
and letting P = (sz, b/ ,) (Where the latter matrix entries range over X, Y, A, B)
gives us our locally dllatable strongly stochastic operator matrix satisfying (11).

aa’,bb’ . .
Now, assume P = (Pxx,,yy, xx'.yyaa’pb 18 @ locally dilatable strongly sto-

chastic operator matrix acting on H with unit vector § € H satisfying (11).
If we replace H with the Hilbert space K arising from the dilation (9) of P
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and the vector £ with V&, we may without loss of generality directly assume
P;;,zss, =EyyvaaFyypp: XX €X,y,y €Y,a,a’ € A,b,b’ € B, where the
family

{Ex,x’,a,a” Fy,y’,b,b’ LX, x' e X, a, a e A,y, y’ ey, b, b e B}
is commutative.

Let A? (resp. Ag) be the abelian C*-algebra generated by {Ey 1 o v : X, X' €
X,a,a’ € A} (resp. {Fyypp © ¥ € Y,b,b' € B}). Lets : Ay Qmax
AZ — C be the state given by s(S ® T) = (ST¢, £). By nuclearity of abelian C*-
algebras, we may consider s as a state on /l? Qmin Ag. Using the identification
Ay = C(Q)), A% = C(Q,) for compact Hausdorff spaces Q;, Q,, we view s as
a Borel probability measure ¢ on the product topological space Q; X Q,. For
each w; € Q (resp. w, € Q,), let ®(w,) : My — M, (resp. Y(w,) : My —
Mgp) be the quantum channel given by ®(w;)(€y 1) = (Ey v q.0/(@w1))g,q (rESP.
W(w,)(€yyr) = (Fyyr b pr(@2))p ). We then have
<F(€x,x’ &® €y,y’)’ ea,a’ &® €b,b’>
<Ex,x’,a,a’Fy,y’,b,b’ g’ §>

f Ex,x’,a,a’(wl)Fy,y’,b,b’(wz)d:u(wla w,)
Q1xQ,

([ oo @ Wwiey a2, cuu © )

Q,XQ,

If we approximate measure u using convex combinations of product measures
U1 X My (Where u; € M(Q), u, € M(Q,)) we see we can approximate I using
channels which may be written as convex combinations I' = Elj;l A P Y,
where ®; : My — M, and¥; : My — Mg are quantum channels, j = 1,...,k.
By the Carathéodory Theorem and compactness, use a similar argument as in
[39, Remark 4.10] to conclude that T itself is of that form. Thus, T € Q.. [

For certain classes of quantum games (for instance, those concerned with
the behavior of quantum symmetries of quantum objects as in [7, 13]) we will
draw our questions and answer states from the same space; thus, a particular
notion of strongly stochastic operator matrix will be required in this context.
We assume that X = A and Y = B. For notational ease, we will continue to
refer to X and A (resp. Y and B) as distinct entities, even though they are copies
of the same set. o

A positive operator P = (Pzz,ﬁ z Dxxt yy'aatby € Mxyap ® B(H) will be
called a strongly bistochastic operator matrix if it is a strongly stochastic op-
erator matrix over (XY, AB), with Trg(L, (P)) and Tr4(L,, (P)) bistochastic
operator matrices for each state ox € My,0y € My. A strongly bistochas-

! !’
aa’.bb )xx’ yy'aar by 1S called dilatable if there exists

tic operator matrix P = (P, Jy!
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a Hilbert space K, an isometry V : H — K, and bistochastic operator ma-
trices (Exx’,aa’)x,x’eX,a,a’eA (resp. (Fyy’,bb’)y,y’eY,b,b’eB) in Mxs ® 3(I<) (resp.
My ® B(K)) such that Eys 40/ Fyyr bty = Fyyr pby Exxr ae @nd which satisfy rela-
tions (9) for all x,x’ € X,a,a’ € A,y,y’ € Y,b,b’ € B. Locally dilatable and
quantum dilatable strongly bistochastic operator matrices are defined exactly
as with strongly stochastic operator matrices, but using bistochastic operator
matrices in place of stochastic operator matrices.

3.1. SQNS correlations. One goal for this work is to develop a method for
transferring perfect strategies of one quantum input-output game to another.
The framework we use for this purpose is by embedding both quantum games
into a single “game-of-games”, whose winning QNS strategies encode the win-
ning information for both simultaneously. The winning QNS strategies are used
as simulators in the simulation paradigm, allowing us to take a perfect strategy
for the first game and— in conjunction with a winning strategy for the “game-
of-games”"— construct the desired strategy for the second. In order to adhere
to the no-signalling condition for both games, we have to modify the classes of
QNS correlations we use as simulators; this leads us to the introduction of a
particular sub-class of QNS correlations, which is the focus of this subsection.
Let X;,Y;, A;, B;,i = 1,2 be finite sets. A quantum channel

I' : My,y,xa,8, = Mx,v,xa,B,

will be called a strongly quantum no-signalling (SQNS) correlation if

Trx, [(px,y, ® pa,,) = 0if px,y, € My,y, and Trx, (ox,y,) = 0, (12)
Try, T'(px,y, ® pa,s,) = 0if px,y, € Mx,y, and Try,(px,y,) =0, (13)

Tra,T(ox,y, ® pa,p,) =0if pa,p, € My p and Try (pa,8) =0, (14)
and
Trp,I(ox,y, ® pa,5,) = 0if pa,, € My p, and Trg (04,5,) = 0. (15)

We denote by Qg the (convex) set of all SQNS correlations; it is clear that Qg C
Ohs-

Aclassical strongly no — signalling (SNS) correlation [20]is a correlation

p = (p(x1y1, a2b3| %2y, albl))xlyl,albl,xzyz,azbz

that satisfies the conditions

Z p(x1y1, aybs|x2y5, a1by) = Z P(X1y1,azb2|x£yz,a1b1), Xz,xé € Xy,
X1EX, X1EX,

Z pCa1y1, azby|x2y2, a1b1) = Z p(x1y1, by |X2Y5, arby), 2,5 €Y,
»ney; ey

Z p(x1Y1, azbs|x2y5, a1by) = Z P(x1Y1, axby | x5, aibl)’ as, ai € Ay,

a,EA, a,EA,
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and
Z p(x1Y1, axbs|x3y5, a1by) = Z P(x1Y1, xbs | x5, a1b1), by, b; € B;.
b,EB, b,€B,

The (convex) collection of all SNS correlations is denoted by Cgps. If p € Cyps,
then marginal conditional probability distributions

P(X1 Y1, A2l X2Y2, @1), P(X1 Y1, ba| X2y, by),
p(xy, azb,]x5, a1by) and p(yy, azb,|y,, a1by)
are all well-defined.
Remark 3.4. If p is a classical correlation over (X,Y,, A;B;,X;Y;, A;B,), then

p is an SNS correlation precisely when Iy, is a SQNS correlation. To see why,
first assume that py y, € My,y, with Try, (ox,y,) = 0. Writing

_ Z V2.V,
Px,Yy, = pr X

, éexzx; ® EYZYQ’

where the sum is over all x,, x; € X, and y,, y; € Y,. The partial trace condi-
tion on py,y, implies

5 X Auiew =0 (16)
pxz-xz 2y, :
X2€X, y,,0,E€Y

Specifically, ), ﬁgyczfé = Ofor any y, € Y,. If we then take p, 5 € My p,, We
X2

see

Trx, T'p(ox,vy, ® Pa,B,)
Z Z Z Z B2 P(X1y1, azbs | X2y, a1by o4, B, (eq, ® €p,)s €4, @ ep)
X2,Y2 a1,b1 X1,y1 az,b;

XE)’l)’l ® €a2a2 ® Ebzbz
> T 2 (Z X ep0n arbalys ab))(eas ea, ® s o, ®en)
ay,by az,by y1 Y2 X

Xe)’l)’l ® €azaz ® Ebzbz

= 0.

Using a similar argument, we can check that conditions (13), (14), and (15) are
satisfied. Conversely, assuming I',, satisfies (12)-(15), if we let

P = €x2x2 ® €)’2Y2 ® €alal ® €b1bl - ex;x; ® €)’2)’2 ® €a1a1 ® €b1b1’

for x,,x), € X,,y, € Y,,a; € A; and b; € B; we have that Try (o) = 0 with

Tp(0) = D, D, (p(x1y1,azb,1%295, a1by) — p(x1y1, azbs |X,y2, a1by))

X1,Y1 a2,b;

X€x1x1 ® €)’1Y1 ® €azaz ® €bzbz'
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By (12), we see

Zp(xl)’b by |%5y,, a1by) = Zp(xlyb a2b2|x;y2, aby),  x, xé € X,.

X1 X1
The other SNS conditions can be verified by replacing p with

€x2x2 ® €Y2Y2 ® ealal ® €b1b1 - €xzxz ® EY&Y; ® ealal ® €blbl’
€xzxz ® 6}’2)’2 ® Ealal ® Eblbl - €x2x2 ® E)’z)’z ® Eaia{ ® Eblbl ’

and
€xzxz ® €)’2)’2 ® Ealal ® €b1b1 - €xzxz ® 6}’2}’2 ® ealal ® ebibi’

respectively.

Thus, we see that if p is an SNS correlation over (X,Y,, A;B1,X,Y;, A,B,),
then '), is SQNS. Also, if T is a (X,Y, X A;By,X,Y; X A;B,) classical SQNS
correlation then I' = '), for some SNS correlation p.

Remark 3.5. An easily verified alternative characterization of QNS correla-
tions can be stated as follows: ® : Mxy — M 45 is QNS if and only if the unital
completely positive map ®* : M5 — Myxy preserves subalgebras, in the sense
that

My ®1)C My ®1, @*(1®My)C1®My.

The strengthening of partial trace conditions in the definition of an SQNS cor-
relation leads to the following result.

Proposition 3.6. A QNS correlation ® : Mx,y, a5, = Mx,y, 4,8, i SONS if
and only if the unital completely positive map ®* : Mx y, 4,8, = Mx,v, 4,8,
preserves subalgebras in the sense that

P* (1@ My, @My, @Mp,) C1Q@ My, ® My, ® Mg, 17)

D*(My, ® 1@ My, ® Mp) C My, ® 1@ M, ® My, (18)

P*(My, My, ® 1Q Mp) C My, ® My, ® 1 ® My, (19)
and

"My, ® My, @ M4, ® 1) C My, @ My, ® My, ® 1. (20)

Proof. First, let ® be an SQNS correlation and take an arbitrary p € 1® My, ®
M,, ® Mp,. Write

! /

_ a,a;,b,yb)

p=2 2 2 ly]yi 1® €y ) & €q,a) Q €,y
yl,y{ az,a; bz,b;
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If we now fix x,, x) € X, such that x, # xJ, and for any y,,y] € Y;,a;,a] €
Ajy,by,b] € By we see

(@*(p), exzx; ® eyzy; ® €a1a1 ® €b1b£>

aza;,bzb; .
Z A Y ("1® Eyy! ® €a,d] ® €b,b, ), €x,x) ® €y, ® €a,a] ® Eblb’>

a a ,byb
Zﬂ* P 2<1 ® Eyly’ ® €a2a’ ® ebzb’ cb(exzx’ ® eyzy’ ® €a1a’ ® €b1b’ )

Y1y
= Y ary Ty, &( »
= oy, ey B €aza; @ Epp, Thx, Pl B €y, @ €aa) @ Epyp
= 0,
where the latter sums are over all y;,y] € Yj,a;,a, € A,,by,b) € B, as
Trx, (€x,x, ®€y,y,) = 0 by our choice of x;, x} € X,. As thisholds forall y,,y, €
Y,,a;,a] € Ay and by, b} € By, and our choice of p € 1 @ My, ® My, ® My,
was arbitrary, this implies
(1 Q@ My, ® M, ® M) C 1@ My, @ My, ® Mp,.

Using (13)-(15), we may then show that conditions (18)-(20) also hold.

Conversely, assume that ®* preserves subalgebras as in (17)-(20). We wish
to show that @ is an SQNS correlation; to that end, let px,y, € My,y, and
Pa,B, € My g, such that Try (ox,y,) = 0. Write

y2y2
Px,y, = Z Z P €x2x’ ® eyzyz PaB, = Z Z €a1a’ ® €b, by
X2:X5 V2., ay,a) by,b]
For y;,y! € Y1, a,,a, € Ay, by, b, € B, we see
(Trx, @(px,y, ® £a,B,)s €y, ®€aa, @ €bzb;>

}’2)’2 1b£
Z Z 1a1 <TrX1(D(€x2x£ ® eYzyé ® 63101 ® eblbi)’ €Y1)’1 ® eaza; ® €b2b£>

x2x
y2y, bib
= 2 XPuf 1<€x2x €12, ® €aya ® €, O (1 ® €y, 1 ® €y, @ €pyp))
X2,%}
— ZZ y2yz 1( *)‘Halbbl
- Pxyx,P aa;
X2
= 0,

where the second summand ranges over all y,,y), € Y,,a;,a] € Ay, by, b} € B

as E pyzy2 = 0 for any y,, y; € Y,. Note here that we are using (17) and writing

a a b
(1@ €yiy! ® €a,a, ® €b2b’) = Z(Cb* o 1(1 ® SA ® €a,d] ® €b1b’)

where the latter sum is over all of YZ,A1 and B,. As our choice of y;, y; €
Y1, 05,0, € A, and by, b, € B, were arbitrary, we conclude that (12) holds.
Conditions (13)-(15) are verified similarly. O
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Definition 3.7. An SQNS correlation T over (X,Y,, A1B,,X Y1, A,B,) is called

(i) quantum commuting if there exists a Hilbert space H, stochastic operator
matrices

’ !
— Y2Y5:Y1Y
y = (B2, 0y

— _ b, b ,b,b!
Fy= (Fala;,aza;)ala;,aza;’ Fp = (F71002 Z)blbi,bzb;

Ex = (Exzx;,xlxi)xzx;,xlx;’

acting on H with mutually commuting entries, and a unit vector § € H
suchthatT = I'g ¢, where E = Ex - Ey,F = F, - Fp.

(ii) quantum if there exists finite dimensional Hilbert spaces H and K, quan-
tum dilatable strongly stochastic operator matrices

xlx aal

—( xpx),a,d, )xzx a4 a),x1 X a0 on H,
J’1y1 b, b, >

=W y2y,.bib! )yzyz byblyiy! b,  ON K,

and a unitvector § € H @ K, such thatT = Ivon,¢-
(iii) approximately quantum if it is the limit of quantum SQNS correlations.
(iv) local if it is quantum, and the matrices M and N from (ii) can be chosen
to be locally dilatable.

We denote by Ogqc (resp. Qgqas sq> Osloc) the classes of quantum commut-
ing (resp. approximately quantum, quantum, local) SQNS correlations. We
note that, by definition, Qi C 9, for t € {loc, q,qa, qc, ns}. In the sequel, for

t € {loc, q, qa, qc, ns} let G denote the class of all SNS correlations of type t, as
defined in [20, Section 5].

Remark 3.8. We pause here for a correction to a previous work, and some nec-
essary clarifying remarks. In [20], we defined a classical correlation I to belong
to the class Cyq if there existed a Hilbert space H, dilatable NS operator matrices
P = (Pyy, x,9 ) x50y, @04 Q = (Qq,b,.a,b,)a,b,,a,6, ON H With mutually com-
muting entries, and a unit vector { € H such thatT' = I'p . In [20, Lemma
5.8] we claimed that this was a necessary and sufficient condition for the ex-
istence of a Hilbert space K, PVM’s (P . )x ex,» (P**")y ev,»(Qa,.a,)a,ea, and
(QPrb2), cp, on K with mutually commuting entries, and a unit vector 7 € K
such that

T(xX1y1, @by |X52, a1by) = (Py, 5 PY271Qq, 4,Q% 027, 1)

forall x; € X;,y; € Y;,a; € A;,b; € B;,i = 1,2. However, we have since
discovered a gap in the proof of said lemma resulting from the incorrect use of
associativity of the commuting operator system tensor product (see Section 6).

In generalizing to the case of what we call SQNS correlations, as the nat-
ural generalization of NS operator matrices are strongly stochastic operator
matrices if we were to follow the path laid out in [20, Definition 5.6 (i)] one
would expect that we say I' € QO if there exists a Hilbert space H, dilat-

xlx ylyl

Xy x V2 y )x2x2ay2y2ax1x1sy1y1 and

able strongly stochastic operator matrices P = (P
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aza b2

= (Qa a ,by
and a un1t Vector ¢ € Hsuch thatT = I'p o However, in order to get the de-
composition of strongly stochastic operator matrices that we will need for the
results in Section 6 due to the failure of [20, Lemma 5.8] (and its extension) we
must instead require it in the definition (as seen in Definition 3.7 (i)). Further-
more, we will need to amend the definition for I' € @ch, which we do below.
We point out that working with Definition 3.9 (see below) instead of [ 20, Defini-
tion 5.6(i)] recovers all subsequent results in [20] which were instead obtained
using [20, Lemma 5.8].

b Daya! o, byb! 0y b,b) with mutually commuting entries acting on H,

Definition 3.9. An SNS correlation T' € Cy,g is now quantum commuting if
there exists a Hilbert space K, PVM’s (Py, \ )x,ex,» (P?”")y ev,»(Qq,,a,)a,ea, and

(le’bZ)bZeB2 on K with mutually commuting entries, and a unit vectorn € K such
that

L(x1y1, azby|x2y,, a1by) = <Px2,x1Pyz’y1Qal,aszl’bzm 7)
forall Xi EXi,yi (S Yi,ai (S Ai’bi (S Bi,i = 1, 2.

Proposition 3.10. Lett € {loc,q,qa,qc,ns} and p an SNS correlation. Then
p € Cy ifand only if T, € Q.

Proof. In the case when t = ns, this follows directly by Remark 3.4. Fort =
loc, g, qa or qc, this follows from Remark 3.2 and [39, Lemma 7.2]. O

Remark 3.11. LetI'be alocal SQNS correlation over (X,Y,, A;B;, XY, A,B,).
If we choose dilations of the matrices M and N from (3.7) with mutually com-
muting entries, we may write the values of I' in the form
xla Cl2, Y1 ’y bZ,
F(xlxl’ ylyl’ a2a2’ be |x2X2, y2y2’ a1a19 blb ) - <E al,anyz,yleb b’ é: g)
where the stochastic operator matrices

(E

have mutually commuting entries. Using the fact that the tensor product of
convex combinations of channels remains a convex combination, along with
the arguments from Proposition 3.3 we may conclude that I' is a convex combi-
nation of the form

£ v,

xp,x! J’1y
2)ala aza s ( 1)yzyzyly1 ( b, br)blb bzb’

ay,a’

1
xzx)xzx xlxa (ala

r= Z o) @o @0 @ oY, (21)

o . 0 . () ()
where @ 1 My, — My,, @y’ : My, > My,, @ : My, — My, and @ :
Mp — Mp, are quantum channels, j = 1,..., k. Itis also easy to verify that any
SQNS correlation of the form (21) is in Q..

Remark 3.12. One may easily see that the operator matrices E, F arising from
Definition 3.7 (i) of any I' € Qg will be dilatable; as discussed in Remark 3.8
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it is unknown if all mutually commuting dilatable strongly stochastic operator
matrices can be made jointly dilatable.

In the remainder of this section, assume that X; = X, := X,Y; =Y, :=
Y,A; = A, := A, and B; = B, := B. Furthermore, assume that X = A and
Y = B. An SQNS correlation I" will be called an SQNS bicorrelation if T is unital
and I' is an SQNS correlation. The collection of all SQNS correlations will be
denoted Q‘;;S. An SQNS bicorrelation T over (XY, XY, XY, XY) is called quan-
tum commuting if there exists a Hilbert space H, strongly bistochastic operator
matrices

EX = (Exzx;,xlxi)xzx;,xlxga EY = (EY2YQ,Y1Y1)}’2}’;,Y1}’1’

Fy= (Falai,aza;)alai,azagﬁ Fp = (Fblbi,bzb;)blb;,bzb;’

with mutually commuting entries acting on H, and a unit vector £ € H such
thatI' = 'y p - where E = Ex-Ey, F = F4-Fp; we denote this class by le)(i;c- The
classes of quantum SQNS bicorrelations (denoted Q';’fl), approximately quantum
SQNS bicorrelations (denoted Qg’éa) and local SQNS bicorrelations (denoted
Q';’lioc) are defined similarly to their SQNS correlation counterparts, with dilat-
able strongly bistochastic operator matrices of the appropriate type in place of
the strongly stochastic operator matrices of said type. In the sequel, we let @'S’ti
denote the class of all SQNS bicorrelations of type t, as defined in [20, Section
6] and Remark 3.8.

Remark 3.13. Arguing as in Remark 3.11, we may identify le’lioc with SQNS
correlations I" of the form

k
r=>y 207 @eY ® o7 @y,
j=1

Where@g) . MX _)MX’(Dg) :MY —)My,(bg) : MA —)MA,(I);J) . MB —)MB

are unital quantum channels, 4 i20,j=1,.., k with Z?zl A =1

Remark 3.14. For a correlation type t € {loc, g, qa, qc, ns}, it is clear that le’ti C
Q. Additionally, if ' € Qg’g, then I'* € Q‘;’ti. Indeed: it is part of the definition
when t = ns, and easily verified (using Remark 3.13) when t = loc. The case
when t = qc, q or qa follow using a modification of the argument given in [7,
Remark 5.2].

Proposition 3.15. Lett € {loc, q, qc, ns} and p an SNS bicorrelation. Then p €
Gg’t‘ ifand only if T, € Qst‘.

Proof. This holds essentially by using the same arguments as in Proposition
3.10 and [7, Proposition 5.9]. O
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4. Strategy transport

LetX;,Y;, A;, B; be finite sets, fori = 1, 2. Recall thatif £ is a QNS correlation
over (Xy,Yq, Ay, By), it acts as a quantum channel € : My y, = My g ; thus,
if ' is SQNS over (X,Y5, A1By, X Y1, A,B,), then I'[€] © My y, = M, p,. The
two theorems in this section are crucial to our goal of transferring strategies
between quantum games; briefly, they say that if £ is viewed as a strategy of
some type for one game, under mild conditions on I' the simulated channel
['[&] can be viewed as a strategy of the same type for another quantum game.

Theorem 4.1. Let T be an SQNS correlation over (X,Y,, A;B,,X,Y;,A,B,) and
& be a QNS correlation over (X;,Y, A, By). The following hold:

(1) T[E] € Qpg;

(ii) ifT € Qyc and & € Qy, thenT[E] € Qy;
(iii) ifT € Qg and € € Qg,, thenT[E] € Q
(iv) ifT € Qyqand € € Q, thenT[&] € Q.
V) ifT € Qgoc and & € Oy, then T[E] € Q..

qar

Proof. (i) Let C denote the Choi matrix of quantum channel T'[&]. If
(F(xlx;’ylyiﬁ aza;, bzb;|x2x;, yz)’;, alai, blbﬁ))

is the Choi matrix of I' and (£(a;a], byb]|x;x],y;y})) is the Choi matrix of
& (where the former matrix ranges over X;,X,,Y;,Y,,A;,A,, By, B, and the
latter ranges over X 1, Y:,A; and B;), as T € Qg and & € Q, there exists

b,b’ b b’ b
it vb 1ECsuchthat
xlxl)ylyl)xzxz:ylyz N yl

bybl.byb!
I'(x;x a XX a =
a; (X 1,)’1)’1,02 z’bzb |x; 2’)’2)’2, 1a1’b1b) Sa,, alcxx XXyl
2 2

by,b!
Z E(aray, byb! |x1 X!, y1y)) = 8y, xldyly
a,EA,
for xi,x{ € Xl-,yi,yl.’ e Yi,bi,blf € B;,i = 1,2 (see e.g. [15]). Additionally, we

, b,b! by bl
may use (12) to guarantee the existence of ¢ > > ' ! € C such that
1Y1572)7

Z b,bl by b! b,bl by b!
C

= 1C
/ ’ / Xr,X.
X1X1,Y1Y7,X2X5,Y2). 2’2yyyy
X ! 1A1Y1Y 1542495520 1 27

for Yi’y{ (S Yi’ bi’ bl, (S Bi,i =1,2. Foryz,y; (S Y2, bz,bg (S Bz, set

_ba,b) bybl.byb} _by,b}
S YD YR
J’2,y2 Y1y1 }’2}’2 Y1 y1

Y1,y €Y1 by,biE€By
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If we fix y,,y), € Y,,b,, b, € B, then

!/ / !/ !/ !/ !/ !/ / / !/ /
Z Z F(xlx]_»ylyl’a2a29b2b2|x2x2!y2y2’alal’blbl)g(alal’blb]_lxlxl’ylyl)
a2 X1X 0194,
alai,blbi

— 5 b2b;’b1b; & " bib' / !
- Z al,a'c ! ’ ’ ’ (alals 1 1|x1x1’y1y1)

1 X1X3.01Y7:X2%5,02),
x1X), 014
ala’,blb’
b2b i / !
= Z Z &(ayay, byby|x1x3, y1y7)

, xlx ’Y1y1,xzx aY2y
a X1 x].y19)

byb!
Z bybl.byb! by.b,
= '
£ UK T Xy XXy ey V1Y)
xlxl’YIyl’
bib!
- TXen "
xlxl,ylyl,xzxz,yzyz Y1,
X1 ylyl’
bib!

bybb1b! by,b
= 5"2 x£< Z Cyzy’2 yly’1 dy1 y’1 )
? 1Y1:)2 1>
ywlbb) T2 !
_by.b}
1 C
2 9y,
We may use a similar argument (relying on (13) and (15)) showing the existence

!
0,0
of ¢ 7 ? € C such that
2974
/ / / / / !/ / / / / /
Z Z r(xlxl’ylyl’a2a2’b2b2|x2x2’y2y2;alal’blbl)g(alal’blbllxlxl’ylyl)
by xyx{y1yy
ala/l,blb’

X2,X.

az a2

=4

yz,y2 xo,%)

for x,, X, € X,,a,,a), € A,. By (8), the former equality implies L, ,(C) €
Ly p, forevery wy, € My, 4,, while the latter equality implies Ly, (C) € Lx, 4,
for every wyp € My, p,. Thus, C € (Lx,4, ® Ly,3,)NM X Y,A,B, ; by the injectiv-
ity of the minimal operator system tensor product, C € (£x, 4, ®min Lv,5,)"-
Argue now as [39, Theorem 6.2] to finish the proof.

(ii) Use Definition 3.7 (i) to obtain a Hilbert space H, stochastic operator
matrices

Py = (szx X% )xzxz,xlx’a

1
— V2Yh 1y
Py = (P"% l)yzy;,yly{’

A= (Qalag,aza;)alai,aza;a

byb!,byb),
Qp = (Q™"1°2%2)p 1 b,b»
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acting on K and a unit vector § € H such thatT' = T'p 5. Let K be a Hilbert
space, E = (Exlx{,ala{)xlx{,ala{ and F = (Fylyi’blbi)ylyi,blb; stochastic operator
matrices over (X;, A;) and (Y, B;) with mutually commuting entries, and 7 €
K a unit vector such that & = Eg g, For x,, X} € X5,0,,a], € Ay, 5,5 €Yy,
and b,, bl € B, set

Exzx;,azaz Z Z x2x X1X] Qala Jaa ®E x1x),a1a] (22)

X1,X eXl ap,a 1€41
and

Fyzy;,bzb; — Z Z pYZYQ,MY{lebi,bzb; ®Fy1){,b1b1. (23)

Y1.Y| €Y1 by,bj€B;

We note that E = (Exlx axd, )xe axd, and F = (F Vaviubsb! )yzy;,bzb; are positive
(as the entries of Py, Py, Q 4, Qp all commute with one another), and claim that
E (resp. F) is a stochastic operator matrix over (X5, A,) (resp. over (Y,,B,)).
Indeed: as Px, Q4 and E are all stochastic operator matrices, we have

TrAZ(E) = Z Z Z Z szx xlx’Qala ,0,0, QE x1X],01a]

a sz xlx a;,a 1

= Z Z Z szx X1x (601 a’IH) ®Ex1x ala1

Xp,X) X1,X) ay,a]

= Z Z ZPWCQ,XMQ ®Ex1x{’alal

/ /
Xp,X5 X1,X; 41

= Z Z szxé,xlx; ® (axl,xilK)

/ !
X2,X5 X1,X]

= Z Z szx;’xlxl ® IK

!
x2,X2 X1

= Z (5x2,x;IH) ® IK

'
X2,X)

= IX2®IH®IK'

Thus, E € My,,, ® B(H ® K) is stochastic, as claimed. By symmetry, F' €
My g, ® B(H ® K) is stochastic. We also note that
E F

J’2y2 bzb; = Fyzy;,bzb;Exzx;,aza’ ’

x,x! 2

2,a2a

for all x,, X} € X5, y,,, € Y5, a,,a), € Ay, by, bl € B,. Using (8), we see
T[E](ayal, byb)|x,x5, v,)5)

Z F(xlx;,)ﬁyia aza;, bzbglxzx;,yzy;, alaia blbﬁ)é‘(ala;, blbilxlxi,ylyi)
Z(szx ’Pyzyz’ylyl Qala’ 0, lebl,bzbzg’ §><Ex1x;,ala;Fylyl,blblna 77)

2%1%)

= <Ex2x;,a2a Y2¥h, bzb’(g ® 77) § ® 77>
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for all x,,x), € X5,¥,,¥, € Y5,a,,0a, € Ay,b,,b € B,, where the latter sums
range over all of X, Y, Ay, and B,. Thus, T[€] € Qg

(iii) This is a direct consequence of (iv).

. xlx ar) y1Y1:bab}

(IV) LetM = (M x,x),a1d Lxx!aal and N = (N ’lb b’z)hyz biby.y1y].b2b)
be quantum dilatable strongly stochastic operator matrlces actlng on H and K,
respectively, and £ € H ® K be a unit vector for which ' = Tygn . Let E =
(Exlx ad, )xlx ad, and F = (F Wyl blb{)yly{,blb{ be finite-dimensionally acting
stochastlc operator matrices with 7 a unit vector such that & = Eggp,. For
X2, X) € Xp,a,,0) € Ay, ¥,,Y), € Yy, and by, b, € B, set

xlx aza
= / !
x2x a0 2 ; 2 ; X%, a,d, xlxl,alal’

X1,X; rex, ala €A

2)xzx ,a,a

and

_ J)1y1 byb) b .
)’2}’2 bzb’ - Z Z y2y2 blb/ ® F}’lyi’blbi’
Y1,y €Y1 by,bi€By

using an almost identical argument as in the proof of (ii), it is easy to verify
thatE = (Exe;aza;)xﬂ;,aza; andF = (F VoYl bzb;)yzy;,bzb; are finite-dimensionally
acting stochastic operator matrices such that

F[g](aza;’ bzb;|xzx£,J’2y2 <(Ex2x axa '®F Y2¥5:bab), NE®nN),E® 77>

Thus, I'[€] € Q.
(V) If@X . MX2 g MX1’¢Y . MY2 e Myl,CDA . MA1 e MA2 and CI)B .
Mp, — Mp, are quantum channels, it is easily verified (see [20]) that

(Px @ Py @Dy @ Pp)[E®F] = (Px @ PY)[E] R (Py @ Pp)[F]

for all quantum channels € : My, — M, and ¥ : My, — Mp, . Using Remark
3.11, we may conclude that I'[E] € Q. as claimed. O

Fix finitesets X and Y,andletA=X,B=Y.

Theorem 4.2. Let T be an SQNS bicorrelation over (XY, XY ,XY,XY) and & be
a QNS bicorrelation over (X,Y,X,Y). The following hold:

(i) T[] € Q8

(i) ifT € Q. and € € O, thenT[€] € Qb

(iii) ifT € Qb and & € QY thenT[€] € OY;
(iv) ifT € Q% and & € QY thenT[&] € QY;

; bi bi bi
(v) YT € 9y .and & € Q) , thenT'[E] € Q) .
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Proof. (i) The claim follows as in Theorem 4.1, once we note that
T[E]"(xX), y,¥5]aya), byb))

= z Z F(xlx;’)ﬁ}{s aza;, bzb;|x2x;,y2y;, alai? blbi)g(alai» blbi |x1x1,y1y{)

’ / ! ’
X1X1,1Y) @1ay,b1b;

= Z Z T (x5, ¥2¥5, aray, byby | x, X7, y1y7, a,a5, byb)E* (X, X7, y1yylayay, by b))
ayal,byb] x1x).y1y]
=TI [8*](x2x£, yzy; |aza;’ bzb;)
for all x,,x), € X,y,,¥, € Y,a,,a, € A,b,,b) € B. This means I'*[£*] =
ey
(ii)-(v) follow as in the proof of Theorem 4.1 (ii)-(v), once we notice that the
stochastic operator matrices defined there are bistochastic. O

5. Perfect strategies for various quantum games

For an arbitrary Hilbert space H, we write H for the Banach space dual of H;
by the Riesz Representation Theorem, there exists a conjugate linear isometry

d : H — H, such that 8(¢)(n) = (n,&), €, € H. In what follows, we will
write EX = CX for any finite set X. Set E = 9(§), for £ € H. Given a linear
operator A : H — K, (where H,K are Hilbert spaces) let A : K — H beits
(Banach space) dual operator. Note that Z(E) = A*§, for £ e K.

If H,K are finite dimensional, and we take vectors £ € H,n € K let n&* :

H — K be the rank one operator given by (n&*)(¢') = (¢/,€)n. Let6 : HRK —
L(H, K) be the linear isomorphism given by

6(E®n) =nt*, EcHnyeKk.

If V C HQ® K is some subspace, we let V := 6(V) C £(H,K) be the corre-
sponding subspace of linear operators.

Recall (see [21, Definition 4.1]) that if X, Y are finite sets, a quantum hyper-

X
graph over (X,Y) is any subspace U C C ® CY. For a classical hypergraph
ECXXY,let

Ug = spanfe, ®e, : (x,y) € E}

be viewed as a quantum hypergraph over (X,Y). Furthermore, following the
notation established in [21] fix finite sets X;,Y;,i = 1,2. Let U; € C' ®

_v; —X,
C ,U, CC ~® CY2 be quantum hypergraphs and set

Uy & Uy = (U @ Up) + (U Q@ U).
If

Y, X, X, =
c:CNQ®C ®C ®C""5C ®C ®CHEC::
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is the flip on the 1st and 3rd tensor legs, then we set
Ul > U2 L= G(ul (=4 uZ)

—X
Given a quantum hypergraph Y CC ® CY, we let
oU) := {(I) : My — My : aquantum channel with Kq C ﬂ}

where K, is the Kraus space corresponding to channel ®. For the next collec-
tion of results, we will need the following definition.

_Y
Definition 5.1 ([21]). Let t € {loc,q,qa,qc,ns}, with U; € CN @ C " and
_X

U, cC ’ ® CY2 quantum hypergraphs. We say that U, is t-homomorphic to U,
written U, —¢ U, if there exists a quantum channel ® : My y — Mx,y, with
® € O, such that ® € Q(U;, « U,).

5.1. Perfect strategies for quantum implication games. LetX,Y, A, B be
finite sets. If P € Mxy,Q € M 4p are projections, the quantum implication
game (see [39]) P = Q is the quantum non-local game ¢@p_.o : Pxy — Pap
given by
Q, if0#£P<P,
ep_oP) =140, if P=0,
I, otherwise.

In other words, a quantum implication game is a quantum non-local game
which states that if a player is given an input state supported P, their output
should be a state supported on Q. A QNS correlation ® : My — M yp is called
a perfect strategy for p_,q if (®(P), Q1) = 0. Equivalently, ® is perfect if

w € My, and w = PwP = ®(w) = QP(w)Q.
As both P and Q are finite-rank projections, we may find orthonormal basis

{3, € CF (resp. {y,})L, € C*P) for mg(P) (resp. rng(Q)). We may then
associate to any quantum implication game the subspace

Upo :=span{§; @y, : i €[n], ¢ € [m]},
considered as a quantum hypergraph over (XY, AB). Note thatif S € Up o C
L(CXY CAB) then S = Z;-:l Ajngj where £; € mg(P),y; € mg(Q)and 4; €
Cforj=1,..,t.
If € C QC(Mxy, M 4p) is a convex subset of quantum channels from Myy to
M 45, we let

we(P, Q) = sup Tr(®(P)Q) (24)
PeC
be the €-value of the quantum implication game P = Q. Specifically, if € = O,

where t € {loc, q, qa, qc, ns} we set (P, Q) = wg (P, Q); one may easily check
that w (P, Q) = 1 if and only if there exists a perfect t-strategy @ for P = Q.
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Lemma 5.2. A QNS correlation ® : Mxy — M 45 is a perfect strategy for ¢p_,q
ifand only if KX C Up .

Proof. First, assume that @ is a perfect strategy for the implication game ¢p_, .
Let ®(S) = 23‘:1 M J-SM}k be a Kraus decomposition for ®; as ® is perfect,

0 Tr(®(P)Q")

t
= > Tr(M;PMQ")
j=1

t
= 21 Tr(QiMjPZM;‘Qi)
J:

t
= D Tr(Q*M;P)Q M;P)"),
j=1
which implies QtM P = Oforeach j = 1,...,t. Taking adjoints, we also have
that PM;.”Ql = Oforeach j = 1,..,t. If we then fix 1 < j < t and pick
B € rg(P),a € rng(Q'), we see

(M;B,a) = (M;PB,Q ) = (Q*M;PB,a) = 0.

As a € rng(Q') was arbitrary, this implies Mg € rng(Q) for 8 € rng(P). A
similar argument using the adjoint relation PM;'.‘QJ- = 0 implies that M;’.‘oc €
rng(P+) for each a € rng(Qt). Thus, M j € ﬂp’Q. Unfixing our choice of
1<j<t wesee Ky C Upg.

Now assume Kq C f[P,Q. By the comment before the lemma statement, one
may easily see that for any M € K, we have QMP = 0. If M4, ..., M, are Kraus
operators for @, reversing the steps in the previous paragraph we have that

0 = Tr(®(P)QY) = (@(P), Q%)
which shows that @ is a perfect strategy for the game ¢p_, . ]

Theorem 5.3. LetXl', Yi’ Ai’ Bi’ i= 1,2 beﬁnitesets, Pi (S MXiYi’ Qi (S MAiBi’ i=
1,2 projections, and t € {loc,q,qa,qc,ns}. If Upl’Ql =g Up,, via T, and if
& My,y, = My, p, is a perfect t-strategy for pp _q,, then T[] is a perfect t-
strategy for ¢p, .,

t N
Proof. Suppose that I(T) = » N,TNy and &(S) = »} M,SM;. By Lemma
p=1 r=1
5.2, as € is a perfect strategy for p o, then M, € f[pl,Ql foreachr = 1,...,s.
By construction (see [21]), the Kraus operators of I'[£] are given by operators
Np[M,] : C¥*¥2 — C*5:, dependent on N, and M, foreach p = 1,...,t,r =
1,...,s. Furthermore, as EPI,Q1 — Up, o, via T by [21, Theorem 5.5] we know
that N,[M,] € Up, o, for each p = 1,...,t,r = 1,...,s. This means Krjg; C
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aPz,Qz; applying Lemma 5.2 once again, we see that I'[£] is a perfect strategy
for p,_.,- Furthermore, by Theorem 4.1 we have that I'[£] € Q;, whenever
I' e O, with £ € Q. ]

5.2. Classical-to-quantum non-local games. In thissubsection, we will con-
sider a way to transfer strategies from classical non-local games to quantum
ones, and how a perfect strategy remains perfect under this transfer even when
both games are not quantum. For a fixed t € {loc, q,qa, qc, ns} to make sense
of how we can take a classical strategy & € C, and “apply” it to a legitimately
quantum game, the most natural way is to first use [39, Remark 8.1] to con-
sider £ € Q,, and then use I' € Q, as defined in Definition 3.7 to construct a
quantum strategy I'[£] via Theorem 4.1.

Lemma5.4. Let X;,Y,, A;, By befinite sets,and E C X,YXA;B; be a non-local
game. Then & : Dy y, — Dy p, is a perfect strategy for the game E if and only if
Ke C Up.
Proof. First,assume € is a perfect strategy for classical non-local game E. View-
ing € as a quantum channel, by [21, Remark 4.3]
K = spanfe, ¢, ® ey,¢5, © (x1,31,a1,by) € Supp(E)}:

As supp(€) C E, clearly K¢ C Up.

Now assume Kz C . This means that for any Kraus operator M of &,

Y h * *
M € Ugp. Thus, M = ijl/ljeajexj ® ep.ey ., where (x;,y;,a;,b;) € E for
m

j=1,..,n If we assume &(S) = ), M,gSM;f, as
£=1
&(ay, bylxy,y1) = Tr(g(exlxl ® €y )(ealal ® €b1b1))

m
= Z Tr(Mt’(exlxl ® €yin )M;(ealal ® €b.b; ))s
=1
where each M, is of the form previously described, it is easy to see that
&(ay, bilx1,y1) # 0 only if (xq,y,,a;,b;) € E. Thus, supp(E) C E, which
means € is a perfect strategy for E. O

Theorem 5.5. Let X;,Y;,A;,B;,i = 1,2 be finite sets, E C X;Y; X A;B; a
classical non-local game, P € My,y,,Q € My,p, be projections, and let t €
{loc,q,qa, qc,ns}. If Uy — Upgovia T, and if € : Dy y, — Dy,p, is a perfect
t-strategy for the game E, then T'[&] is a perfect t-strategy for quantum non-local
game ¢p_.q-

Proof. Assuming the notation and setup as in the proof of Theorem 5.3, by
Lemma 5.4 we know that M, € 7:[; foreach r = 1,..., s. If the Kraus operators
for T'[£] are given by Np[Mr] forp=1,..,tandr = 1,...,s then by [21, The-
orem 5.5] we know that Np[Mr] IS f(p,Q foreachp = 1,..,tandr = 1,...,s.
By Lemma 5.2, this means I'[£] is a perfect strategy for ¢p_,o. Furthermore, by
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Theorem 4.1 and Proposition 3.10 we have that I'[] € Q; whenever ' € Qg
with & € . (]

5.3. Quantum graph games. Quantum graphs, and games played on quan-

tum graphs, have generated considerable interest in the last decade. While

there are several connected concepts in the literature of what a quantum graph

“should be"” (see [5, 13, 15]), we will use the concept discussed in [6, 7, 37, 39].
For a finite set X, let m : CX ® CX — C be the map given by

mE) = (&Y e ®ev).
xeX

Similarly, let f : CX @ CX — CX ® CX be the flip operation, where f(¢ ® n) =
n®¢&, for&,neCX.

Definition 5.6. A quantum graph with vertex set X is a linear subspace U C
CX ® CX which is skew- in that m(U) = {0}- and symmetric- in that f(U) = U.

For the remainder of this section, for any subspace U C CX ® CX we denote
by Py, the orthogonal projection onto U. If G is a classical graph on vertex set
X, there is a corresponding quantum graph U given by the subspace

Ug :=spanfe, ®e, : X ~ )},

where we write Pg = Py. If U € C¥ @ C* and ¥ C C* ® C* are quantum
graphs, the quantum graph homomorphism game U — 7V is the quantum im-
plication game ¢p, _p,. As mentioned, QNS correlation ' : Myx — My, is
perfect for U — V if

w € My, and PywPy = ®(w) = Py ®(w)Py.

In the event that X = A, then ® is a perfect strategy for the quantum graph
isomorphism game U = 7V if ® is a bicorrelation, with ® a perfect strategy for
U — V and ®* a perfect strategy for V — U.

Theorem 5.7. Let U; C CX%Xi, Vv, C CA4i i = 1,2 be quantum graphs, with
P; = Py, Q; = Py,,i = 1,2 their corresponding projections.
() If € © Mx,x, = M4, 4, is a perfect strategy for the quantum graph homo-
morphism game U; —; V, and EPI’QI —s Up, o, viaT, thenT[E] isa
perfect strategy for the quantum graph homomorphism game U, — V,;
(i) If X; = A;,i = 1,2and & : My x, — My, is a perfect strategy for
the quantum graph isomorphism game U; =, V; and EPI’QI =g Up, g,
via T, then T[] is a perfect strategy for the quantum graph isomorphism
game U, = V,.

Proof. (i) This follows as a special consequence of Theorem 5.3.

(ii) Assume the notation and setup as in the proof of Theorem 5.3; by the
aforementioned theorem, we already know that I'[£] is a perfect strategy for
the graph homomorphism game U, — 7V,. To show that T'[£]* is a perfect
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strategy for V, — U,, first note that ['[E]* = T'™*[£*] (by construction of simu-
lated channels). Furthermore, by definition of Up, ,, we may easily verify that

U, p, = ﬂpz,Qz. With the use of [21, Lemma 2.1], aEd as Q_I(Np [M,]) € Up, q,
we have that 6_1((NP[M,.])*) = 6_1(N;[M;k]) (S uPZ’QZ = qu,Pz’p =1,..,t

and r = 1,...,s. Thus, by Lemma 5.2 once more we see K¢« C ﬂQz,Pz' This
means [[E]* is a perfect strategy for V, — U,. That T'[E],T[E]* are both in
9, follows from Theorem 4.2. Together, these show U, =, V, via ['[£], as

claimed. O

6. Characterization of SQNS correlations and applications to
concurrent games

In the final section, we wish to link strongly quantum no-signalling corre-
lations to the (multi-variate) tensor product of operator systems. In order to
do so, we first briefly recall some facts about operator systems and related con-
structions. If 8§ and J” are operator systems, we call § and J completely order
isomorphic and write § 2 ,; J if there exists a unital completely positive bi-
jection ¢ : 8§ — J with completely positive inverse. We write 8 C.,; J if
8 C 7 and the inclusion map ¢ : 8§ & J is a complete order isomorphism onto
its range. The three main types of operator system tensor products that will be
used in the sequel are given as follows:

(i) the minimal operator system tensor product 8§ ®;, 7~ arises from view-
ing 8 ® J as a subspace of B(H @ K), when we concretely realize
8 C B(H) and J C B(K) for Hilbert spaces H, K;;
(ii) the commuting tensor product § ®. J has the smallest family of ma-
tricial cones which make the maps ¢ - 3, where ¢ : S — B(H) and
Y : T — B(H) are completely positive with commuting ranges, com-
pletely positive; note that (¢ - P)(x @ y) = ¢(x)P(y),x € S,y € T,
(iii) the maximal operator system tensor product 8 ® .« 7 has matricial
cones generated by the elementary tensors of the form S ® T, where
SeM,(8)Tand T € M,,(T)*,n,m € N.
More details about each tensor product may be found in [27]; the construction
of the multivariate tensor product of each type, with explicit descriptions of
their matricial cones, may be found in [20, Section 7].

We recall the notion of a coproduct of operator systems: if § and J~ are two
operator systems, their coproduct 8§ @; J is the unique (up to isomorphism)
operator system equipped with complete order embeddings (g : S » S@; T
and 1 : J — 8§ @, J which satisfies the following unversal property: For
eachucpmap¢ : § > Randy : J — R, where R is an operator system,
there exists a unique ucp map ¢ : 8 ®; 7 — R such that p(15(s)) = ¢(s) and
o(r(t)) = P(¢t) for every s € S,t € J. For more properties of the coproduct of
operator systems, we refer the reader to [25, Section 8].

We also will need to recall the universal operator system for stochastic op-
erator matrices, introduced in [39]. A ternary ring of operators (TRO) is a
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subspace V C B(H, K) for some Hilbert spaces H and K, such that ST*R € V
whenever S,T,R € V (see [3, Section 4.3] or [41]). Let X and A be finite sets,
and let Vx 4 be the universal TRO generated by the entries v, , of a block oper-
ator isometry V' = (Vg x)aea xex- Thatis, Vx 4 is the universal TRO with gener-
ators v, y,a € A, x € X, ternary operator [-,-,-] 1 Vx 4 X Vx4 X Vx4 = Vxoa
given by [u, v, w] = uv*w for u,v,w € Vx 4, and relations

Z [Ua//,x//, Ua’x, Ua,x/] = 5x,x’va”,x”’ X, x’, x" S X, a” e A.
acA

Let Cx 4 be the unital x-algebra, generated by the set
{vz,xva’,x/ L X, xl S X, a, a’ (S A},

and Cx 4 be the right C* — algebra of Vx 4; up to a *-isomorphism, we may
view

GX,A = Span{G(S)*Q(T) S, Te VX,A}

for any faithful ternary representation 6 : Vx4 — B(H,K) (where H,K are
Hilbert spaces). Set

exxaa =VgxVax» XX €X,a,d €A

where the latter is considered either as an element in Cx 4 or Cx 4, depending
on the context. The Brown-Cuntz operator system (see [39]) inside Cx 4 is given
by

Txa i=spanfe, vq0 @ x,X' €X, a,a’ € A}
We also will consider the space
Sx.a -=spanfe, .4 - X €X,a € A},

viewed as an operator subsystem inside 7y 4. To help distinguish between op-
erator systems Jx 4 and Ty 5, we will denote the canonical generators of Ty 4
by ey v qa.X, X' €X,a,a’ € Aand Ty g by f) 1,3,y €Y,b,b' €B.
Similarly, there are canonical operator algebras and operator systems which
corresponding to bistochastic operator matrices (first introduced in [7, Section
3]); these will be needed to show an analogous result to Proposition 6.1. Let
Vx be the universal TRO generated by the entries v, , of a block operator bi-
isometry V' = (Vg x)gea.xex (see [7]). Let Cx be the right C*-algebra of Vy, set
€xx'.aa = VaxVax (Where the latter is considered as an element of Cx) and

Tx :=spanfey v oo : X, X' €X,a,d € A}
be viewed as an operator system in Cx. Furthermore, we let
Sx :=spanfe, .4 - X €EX,a € A}

be viewed as an operator subsystem of 7.
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Proposition 6.1. IfP = (P;Z:’%:)xx/’yy,’aa,,bb/ is a dilatable strongly stochastic
operator matrix acting on the Hilbert space H, then there exists a unital completely

positve mapy : Txa ®: Typ — B(H) such that y(ex v a0 ® fyypp) =

' bb’ o ; ; .
Pz;,’yy,. Conversely, ify : Tx 4 ®. Typ — B(H) is a unital completely positive
map, then (y(ex v g0 ® fy’y,’b’b,))xx’ oyt aat by 1S @ dilatable strongly stochastic
operator matrix.

Proof. Let K be a Hilbert space, V : H — K be an isometry, and

(Exx’,aa’ )x,x’eX,a,a’eA’ (Fyy’,bb’ )y,y’eY,b,b’eB

be mutually commuting stochastic operator matrices on K satisfying (9). De-
fine linear maps ¢ : Tx 4 = B(K) (resp. ¥ : Ty p — B(K)) by ¢(exy g.a) =
Eyyrqa (tesp. O(fy v ppr) = Fyypr). By [39, Theorem 5.2], both ¢ and
are unital and completely positive. By the definition of the commuting ten-
sor product of operator spaces, themap ¢ -9 : Tx 4 ®. Ty p — B(K) given by
(¢ - P)(u ® v) = p(u)(v) is (unital and) completely positive as well. Set

(W) =V -PWw)V, weITxs® Typ;

it is easy to verify that y is unital and completely positive. Furthermore, we
have y(ey v g0 ® fyypp) = Pzz:ﬁs:,x,x’ €X,y,y €Y,a,a’ € A,b,b' €B.

Conversely, suppose thaty : Tx 4 ®. Ty — B(H) is a unital completely
positive map. By [39, Corollary 5.3] and [27, Theorem 6.4], Tx 4 ®. Ty 5 Ccoi
Cx.4 Omax Cy - Apply Arveson’s Extension Theorem to obtain a completely
positive map 7 : Cx 4 ®max Cy g = B(H) extending y. If we then apply Stine-
spring’s Theorem, we may write

7(Ww) =V*'r(w)V, w € Cx 4 ®max Cy.5s

where 77 : Cx 4 ®max Cy.g — B(K) is a +-representation on some Hilbert space
K,andV : H — Kisanisometry. SetEy s 4o = 7(€x 1 0,0 ®1), Fyr ppy = 71(1Q
fyypp)forx,x’ € X,a,a’ € A,y,y’ € Yand b,b’ € B. Doing so gives us a
dilatable representation of the matrix (y(ey v q.ar ® [y b0 Dxx’ yy'aarpbr- O

Remark 6.2. By Remark 3.2 and [20, Remark 5.3], there exist strongly stochas-
tic operator matrices which are not dilatable.

! !/
Proposition 6.3. IfP = (Pz;/ﬁ;)xx',yy',aa',bb' is a dilatable strongly bistochastic

operator matrix acting on the Hilbert space H, then there exists a unital completely
positivemapy : Tx @, Ty — B(H) such that y(ey xr gar ® fyy ppr) = P ,bb

xx!yy'*
Conversely, ify : Tx . Ty — B(H) is a unital completely positive map, then
(Y(exxraer @ fyy b )xx! yy aa by 18 @ dilatable strongly bistochastic operator

matrix.

Proof. Using[7, Theorem 3.4] and [27, Theorem 6.4], argue exactly as in Propo-
sition 6.1 but with bistochastic operator matrices in place of stochastic operator
matrices and Ty (resp. Jy) in place of Tx 4 (resp. Ty p). O
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6.1. Representations of SQNS correlations via operator systems. Let S
be an operator system. Recall that the universal C*-cover of S (see [28]) is the
pair (C;;(8),t) where C;;(8) is a unital C*-algebra, ¢t : 8§ — C(8) is a unital
complete order embedding such that «(S) generates C;;(8) as a C*-algebra, and
whenever H is a Hilbert space with ¢ : 8§ — B(H) a unital completely positive
map, there exists a x-representation 7y : C,(8) — B(H) such that 740t = ¢.
We will briefly introduce a multivariate extension of both the maximal and the
commuting tensor product (as discussed in the beginning of this section) in the
category of operator systems. If 8y, ..., 8y are operator systems, as the maximal
tensor product of operator systems is associative (via [27, Theorem 5.5]) we may
give an unambiguous meaning to the k-fold maximal tensor product

max — ®?=1Sj '= 81 Omax " Bmax Sk-
The k-fold commuting tensor product was initially defined in [20, Section 7]:
if H is a Hilbert space and ¢; : §; — B(H) are completely positive maps for
j = 1,...,k, we call the family (¢ j)I;=1 commuting if ¢; and ¢; have mutually
commuting ranges whenever i # j,for1 <i, j < k. Given a commuting family

(¢; Ij:l, we define the linear map H§:1 ¢; : ®;§:ng — B(H) via

k k
<H¢1>(®?=1”1) =T1¢iwp, ujes;jelkl
Jj=1 j=1

The positive cones for ¢ — ®§=18 ; are then determined by all elements u €
Mn(®?=18 ;) which are positive in M,(B(H)) under all mutually commuting

families and for all choices of Hilbert space H.

The following result shows how we can understand the structure of the mul-
tivariate commuting tensor product of operator systems when we view them
inside the maximal tensor product of their universal C*-covers.

Theorem 6.4. Let S;,...,S;,k € N be operator systems. The operator system
arising from the inclusion of ®§=1 — §8; into max — ®§=1CZ(S ;) coincides with

k
c— ®j:18j.

Proof. For the sake of brevity, set § = ¢ — ®§=18 ;. First, suppose u € M,(8)*
for some n € N. We wish to show that u € M,(max — ®§=1C;;(8j))+, By
[27, Lemma 4.1], it is sufficient to prove that ¢ (u) > 0 for each unital com-
pletely positive ¢ : max — ®’J?=1C;§(S i) — B(H). By Stinespring’s Theorem,
we may also without loss of generality assume ¢ is a «-homomorphism. By
[20, Proposition 7.4], associativity, and the universal property of the maximal
tensor product of C*-algebras, each such ¢ is equivalent to H§:1 7j, where
7j : Cy(8;) = B(H) is a *-homomorphism for j = 1,...,k and all have mu-
tually commuting ranges. As the restriction of 7; to §; remains completely
positive for j = 1, ..., k, the result follows.
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Conversely, let 7 be the operator system structure on ®§=18 ; arising from the
inclusion ®?=18j € max — ®?=1C§(8j). Suppose that u € M, (7 — ®§?=18j)+,
with ¢; : 8§; — B(H) completely positive maps with mutually commuting
ranges for j = 1,..., k. By the definition of C;(8;), there exists unique *-homo-
morphisms 77; : C;(8;) — B(H) extending ¢;, for j = 1,..., k. As §; generates
C,(8;) as a C*-algebra, we may then conclude the ranges of 7; are mutually
commuting as well for j = 1,...,k. Thus, (®’;:1¢ j)(”)(u) > 0, which implies
u € M,(8)*- completing the proof. O

Recall (see [33]) that for any Archimedean ordered unit (AOU) space V, there
exists a unique operator system OMIN(V') (respectively, OMAX(V)) with un-
derlying space V, called the minimal (respectively, maximal) operator system
of V which has the universal property that every positive map ¢ : 7 — V (re-
spectively, ¢ : V — J) where J is an operator system, is completely positive
from 7 — OMIN(V) (respectively, OMAX(V) — J).

Lemma 6.5. Let V4, ...,V}, k € N be finite dimensional AOU spaces, with units
ej,j=1,.., k respectively. An element u € max — ®';:10MAX(V]-) is positive if

m .
andonlyifu = ), vi(1)®...®v§k),forsome vl.(J) € V;.’,i =1,...,mandj=1,..,k.
i=1

Proof. This proof relies on similar ideas as the proof of [39, Lemma 6.6]; we
include the details for the convenience of the reader. We only consider the case
when k = 3; all others will follow similarly. Let D be the set containing all sums
of elementary tensors v; @ v, ® v; with v; € Vl.+, i =1,2,3. We claim that if,
for every € > 0, there exists u. € D such that ||u.|| > 0Oase - Oandu+u. € D
for each € > 0, then u € D. We may, without loss of generality, further assume
that [|u.|| < 1foralle > 0. Set K = 2dim(V;)dim(V,)dim(V’;) + 1 and, using
Carathéodory’s Theorem, start by writing

K
wru =3 o) 8 ol
j=1

where 07 € V" and [[oi7)]| = 0| = [[v$)]| for i =1,2,3, j = 1,...,K and all

€>0. As vf; ® vgej). ® vge; <u+u and ||u+ul| < |lu|| +1foralle > 0, we
get that ||vf€j)|| <f|lul|+1fori=1,2,3and j = 1,...,K. Using the fact that all
of our AOU spaces are finite-dimensional, by compactness we can also assume
vlgej) — v jase » 0fori =1,2,3and all j = 1,...,K. We may then conclude
K
thatu =2, 01 ®U,; ®Us; €D.
Let

¢ s t
SO = Z ap ® UE)D, TO = Z bq ® UL(IZ), U() = Z cr ® 07(‘3)’ (25)

p=1 g=1 r=1
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(2)

for some a,, eM,J{,vg) evi.p=1,..,¢,b; € My, v,

c,eM v eVir=1,..,t.1fa €My then

evV,y,q=1,..,sand

t s t
(SO Ty @ Upa = 3] 3. (et ®by ® )l @l ®uf” €.

p=1lg=1r=1

Now suppose first that S € M,,(OMAX(V))* and a € M ,,,,4. By the descrip-
tion of the multivariate maximal tensor product as provided in [20, Proposition
7.2],if € > 0 then S + €1, has the form of S, as in (25). Therefore,

aS R Ty R Uya* +ea(l, ® Ty ® Up)a* = a((S +¢€1,) ® Ty ® Uy)a* € D.
Since a(1, ® Ty ® Uy)a™ € D (using [33]), using our initial arguments we
conclude that

alS®Ty,® Uy)a™ € D.

If we now pick T € M,,(OMAX(V,))* and U € My(OMAX(V3))*, using simi-
lar arguments as before we may conclude that x(S® T ® U)a* € D.

Let u € max — ®3=10MAX(VJ-) be positive; by the definition of the mul-
tivariate maximal tensor product [20], for every € > 0 there exists n,m,d €
N,S € M,(OMAX(V,))*,T € M,,(OMAX(V,))*,U € My(OMAX(V3))* and
& € My g such that u + €1 = a(S ® T ® U)a*. By the previous and first
paragraphs, this implies u € D. ([

For a linear functional
5. ‘TXZ»Xl ® ‘TY2,Y1 ® TAI’AZ ® ‘TBl»Bz - C’

letT'y : Mx,y,a,B, = Mx, v, 4,8, be the linear map whose Choi matrix coincides
with

! / ! ’
X1X1,Y1Y1,0205,b:b)

(5,02 ® €y, © Capafans @ Couimns)) o'ty (20)

Theorem 6.6. The map s — I is an affine isomorphism from
(i) the state space of

Tx,x, Omax Tv,,y, Omax T 4,,4, ®max I B, .5,

onto Qg
(ii) the state space of

Tx,%, ®c Ty, v, ® T a,,4, ® T, B,

onto Qgqe;
(iii) the state space of

Tx,%x, Omin Tv,.,y, ®min T 4,,4, min I B, 5,

onto Qgq,.
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(iv) the state space of
OMIN(‘TXZ,Xl) ®min OMIN(\TYZ,Yl) ®min OMIN(-TAI,AZ) ®min OMIN(TBDBZ)
onto Qg

Proof. (i) LetT € Q. If

! ! ! ’
xlxlyylylyazazybzbz)

! ! ! /
XX},Y2Y5,01a;,b1 b}

c=(c
is the Choi matrix of I (where the indices above range over the corresponding
- +
sets X;,Y;,A;,B;,i = 1,2), then C € MXzYzAllelYlAsz' We also note that
condition (12) implies that for y;,y! € Y;,a;,a] € A; and b;,b] € B;,i = 1,2
)’1y;,aza;,b2b£

there exists a constant C' " ° > “ * € C such that
Y2y;,a1a),b1b

/

! ! ! ! /
2 xlxlsylylsaZazstbz ylyl’a2a2’b2b2

= /
! ! !’ ’ X9,X. / ’ /0
X2X),Y2Y5,a1a;,b1b] 2%2 " yay,.a1ay,b1 by

X1
for all x,, X, € X,. This equality implies
Lp(C) (S ’CXZ,X1 fOI' all P (S MY2Y1A1AZBIBZ'
Similarly, using conditions (13)-(15) we can make a similar argument showing
L,(C) € Ly, y, forall p € Mx x, 4, 4,88,
L,(C) € L4, 4, forall p € My x,v,v,B,B,
and
LP(C) (S lzBl,B2 for all P (S MXZXIYZYIAIAZ'
Thus,
+ .
Ce (’CXz»Xl ® 'CYZ,Yl ® 'CAl’Az ® LBl’BZ) n MX2Y2A1B1,X1Y1Asz’
by the injectivity of the minimal operator system tensor product,
C € (Lx,x, ®min £v,,v, ®min £4,,4, min £p,5,)"-
By [17, Proposition 1.9], and [39, Proposition 5.5],
(-TXZ,Xl Qmax -TYZ,Yl Qmax -TAI,AZ Qmax -TBl,Bz)d =coi.
Lx,x, Omin Lv,,y, ®min £4,,4, ®min LB, B,

Arguing now as in [39, Theorem 6.2], this establishes the claim.
(ii) First suppose that

S Tx,% ®c Ty, ®c T aya, ® Tp 5, = C

is a state. By Theorem 6.4, we may consider the state s as the restriction of
a state

§ 1 Cx,x, ®max Cy,,y, ®max €Ca,,4, ®max Cp, 5, = C.
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Applying the GNS construction to § and using [39, Theorem 5.2], we obtain
a Hilbert space H, a unit vector { € H and mutually commuting stochastic
operator matrices

X1, "
( xz,x X! ) o E MXZX1 ® 3(H), (Eyz,yz,yl,yl)y1 S MYZY1 ® B(H)

IXX

a,, by,b
Fayal and)e € My, ® B(H), (Fby.b! 0,18 ); b € M5, ® BUH)

2’ ay,a]
satisfying
S(exbx;’xlaxl ® e}’z,)’;,yw{ ® eaba;,az,a’ ® ebl,b/ bz’bl) =
<Ex2,x;,x1,x;Eyz,y;,yl,yiFal,ai,az, bl,b bz,b §§ >

X1 1,)’1}’1

! / / )
for all xi,x.,yi,yi,ai,ai,bi,b i =1,2. Setting Ex2 . Ex, 1. Eys !
a2a .
and F a pblb’ =F al,al,az,a;F by,b) by b} > WE have that the stochastic operator ma-
trices
E=( xlx{,yly{)X1XQ,yly{ —( a,a},b,b) @203,b,b)

! ! ! /2
X2X2,Y2Y5 7 X2X5, Y2, ayay,bib) 7 aya;.bi b

are dilatable and have mutually commuting entries. Thus, Iy = T’y with
[y € Ogqe-

Conversely, suppose that I' € Qg.; by definition, there exists a Hilbert space
K, a unit vector » € K and mutually commuting strongly stochastic operator
matrices

EX = (Exzxz,

A= (Fala;,aza;)ala;,aza;’ Fp = (Fblbi,bzb;)blbi,bzb;

) nxaxs By = Byl yiy Dyt

actingon K sothatI' =Ty, for E = Ex - Ey and F = F - Fp. Let mx, 7wy, 4
and 7 be the (unital) *-representations of Cx, x,,Cy, y,>Ca, 4, and Cp 5, on
B(K) arising from Ex, Ey, F 4, and F respectively (see [ 39, Theorem 5.2]). Then
7T 1= 7x @y @4 ®7p is a unital x-representation of Cx, x, ®max Cy,.y, Omax
Ca, .4, Omax Cp, .5, On B(K). Using Theorem 6.4 once more, if we let s be the
restriction to Ty, x, ®c Ty, v, ®c T a,,4, ®c T, , of the state

§ 1 Cx, x, Omax Cy,,y, ®max Ca,,4, Omax Cp, 5, = C,
w > (7(w)n, n),

itis clear thatT" = T},.
(iii) First, let T’ be a quantum SQNS correlation. By definition, there exists
stochastic operator matrices

My = (szx;,xlx’ )xzx’ X1X) 0 My = (Malag,aza;)alai,aza;:

Ny = (N V2Yy 1y )yzyz,yly1 Np =, blb{,bzb;)blb{,bzb;
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acting on finite dimensional Hilbert spaces Hy, H 4, Hy and Hg, respectively,
along with unit vector n € Hy ® Hy ® Hy ® Hp such that

<F(€x2x; ® €y2y; ® e'ala; ® eblbi)s Exlxi ® Eylyi b2y Eaza; ® ebzb;> =

<(Mx2x;,x1x1 ® Malai,aza; ® Nyzy;,yﬂ{ ® Nb1bi,b2b;)’ 7777*>

for xi,X{ S Xh)’i’yi/ (S Yi,ai,a{ (S Ai,bi,b{ (S Bi,i =1,2. Let T . @X2,X1 -
B(Hx), 7wy @ Cy,y, = B(Hy),ma * €Ca 4, > B(H,) and 7p : Cp p, —
B(Hp) be the unital *-representations arising from My, M4, Ny, and Ny re-
spectively. Let7 :=nx @7y @ m4 @ 75, € Hy ® Hy ® H,4 ® Hy be the unit
vector obtained from applying the canonical shuffle to », § be the state given by

§ 1 Cx,x, ®min Cy,,y, ®min Ca,,4, ®min Cp, 5, = C,
w = (W), 7),

and s be the restriction of § to I'x, x, ®min Tv,,v, ®min T 4,,4, ®min T, B,> it is
clear that I' = T in this case.

IfT' € Qgqa, let (T, en be a sequence of quantum SQNS correlations with
I', - I'asn — oo. By the previous paragraph, for each n € N we may pick a
state s, * Tx, x, ®min Tv,,v, ®min T 4,,4, ®min TB,B, > CsuchthatT, =T .
If s is a cluster point (in the weak”™ topology) of the sequence of states (s,,)nens
we have I' = T,.

Now let s : Ty, x, ®min Ty, v, ®min T4,,4, ®min T8, = C be a state,
and using the fact that the minimal operator system tensor product is injec-
tive (see [20]) let § : Cx, x, ®min Cyv,y, Omin Ca,4, Omin Cp,5, — C be an
extension of 5. By [24, Corollary 4.3.10], § can be approximated in the weak”
topology by elements of the convex hull of vector states on 7x(Cx, x,) ®min
ﬂY(eYz,Yl) ®min ﬂA(eAl ,Az) ®min 773(831,32) (where 7y, Ty, 74, and 7 are uni-
tal s-representations of Cx, x,, Cy, y,» Ca, 4, and Cp, p,, respectively). Using an
argument similar to the proof of [7, Theorem 5.6] or [39, Theorem 6.5], we can
show that I is a limit of quantum SQNS correlations.

(iv) This proofis along the lines of the proof for [39, Theorem 6.7]; we include
the details for the convenience of the reader. We first let s be a state on

OMIN(T, x,) ®min OMIN(Ty, y,) ®min OMIN(T 4, 4,) ®min OMIN(T g, ).

By [26, Theorem 9.9] and [17, Proposition 1.9], we may consider s as an element
of

+

(OMAX(TXMI) @nmex OMAX(Ty, 1,) B e OMAX(T 4, 1) @ OMAX(731,32>) .

: o o
By Lemma 6.5, there exist states ¢3 € (Ty,x,) -3 € (Tv,v,) ,¢g) €

(TAI’AZ)-’_ and qﬁg) € (:TBI’BZ)Jr, and non-negative scalars 4, j = 1,...,k such
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thatS _ z /‘l (]) ® ¢(]) ® ¢(]) ® ¢(]) Set

() G _ 1
E (¢' (ex2 x ,X1,X ))xzx xlxla E (¢ (eyz,y;,yl,y; ))yZy;,yly;a
E(J) (¢(J)(ea1 a),a;,a ))ala ,aah> Eg) (¢(J)(eb1,b1,b2,b;))blb;,bzb;’

o . o . o .
and let ©y" : My, — My,,®;" : My, - My,,®;" : My, — My, and
CDJ(;) : M B, = Mg, be the quantum channels with Choi matrices E(J ) E;j ),Eg),
and Ez(;]) (respectively) for j = 1, ..., k. Clearly,

k

_ D oo @ o¥ @ o

=> 107 @) @) @@, (27)
j=1

By Remark 3.11, this shows I'y € Q.-
Now suppose I is of the form (27), with s a functional on Ty, x, ® Ty, y, ®

T a4, ® Tp, g, such that T' = T. Let E)((j) € (My, ® Mx )* (resp. Eg,j) €

(My, ® My)*,EY € (M4, ® My))*, and EY’ € (Mp, ® Mp,)*) be the Choi

matrix of <1>(j ) (resp. oY ),<I>(j ) and (ID(j ))' then E(j ) E(j ) E(j ) and E](Bj ) are sto-

chastic operator matrices actmg on C By [39, Theorem 5. 2] there exist posi-

tive functionals ¢(j) Tx,x, = C, ¢Y Ty,y, = C, ¢(J) Ta,a, — C,and
(J) : T, B, > Csuch that

W _ 4D O _ 1D
E (¢ (exzx X1,X] ))xzx Xpx) 0 E (¢ (eyz,y;,yl,y;))yzy;,yly;’

@) 6] )] @)
E / (¢ / (eal a),a,,a) ))ala ,a,a E / (¢ / (ebl,b;,bz,b;))blb{,bzb;’

for j = 1,..., k. It is thus straightforward to see that s is the functional corre-
sponding to

Z /1 (J) (J) ® ¢(J) ¢(J)

and thus, by Lemma 6.5 is a state on
OMIN(TXZ,Xl) ®min OMIN(TYZ,Yl) ®min OMIN(TAl,Az) ®min OMIN(TBl,B2)9
as claimed. O

Remark 6.7. We note that, using an almost identical argument as in (iv), we
have an affine isomorphism between the state space of OMIN(Sy, x,) ®min
OMIN(Sy, y,) ®min OMIN(84, 4,) ®min OMIN(Sp, 5,) and Cy,; the classical
analogue for cases (i)-(iii) are addressed in [20, Theorem 7.11].

Corollary 6.8. The set Qg is closed and convex.
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Proof. By Theorem 6.6, it is straightforward to show that the affine mapping
s + I is also homeomorphism when the state space of Ty x, ®. Ty,y, &

T 4,4, ®c T, is equipped with the weak”-topology. As the state space will

be weak"-compact, the range of this homeomorphism must be (convex and)
closed. ]

Remark 6.9. By [20, Theorem 7.11], we may use an identical argument as in
Corollary 6.8 to show that C is closed and convex.

Remark 6.10. Suppose that for finite sets X;,Y;, A;, B;,i = 1,2 we make the
additional restriction that Y; = B; = [1],i = 1, 2. One may easily verify that for
t € {loc, g, qa, qc, ns} we have the reduction(s)

Qst(Xz[l],Aﬂl],Xl[l]’Az[l]) = Qt(Xz,Al,Xl,Az),
est(XZ[l]aAl[l]’Xl[l]aA2[1]) = Xy, A1, X4, Ay).
Theorem 6.11. For all finite sets X;,Y;, A;, B;,i = 1, 2 of sufficiently large cardi-
nality, the following hold true:
() Quqa(X2Y2, A1B1, X1Y1, A3B)) # Quqc(X2Y, A1By, X1Y1, A5By).
(i) Tx, %, 0Ty, v, BT 4,,4,8:T 8,8, # Tx, %, OminT v,,v, OminT 4,,4, Pmin

By.By*
(iii) esqa(XZYZ’AlBl,XIYI’A2B2) # esqc(Xzyz,AlBl,lehAsz)-

(iv) 8x,x, ®cSy,y, ®cS8a,.4,Rc88, 8, # Sx,x, Omin Sv,,v, ®min S4,,4, Dmin
SB,.5,

Proof. Statement (i) follows from Remark 6.10, and an application of [39, The-

orem 8.3]. Statement (ii) follows from (i), and Theorem 6.6. Statements (iii) and

(iv) follow similarly, when paired with [39, Remark 8.1]. O

As in the setup before Theorem 6.6, for a linear functional
S:Tx®@ITyR®T4,QTp - C,
let T : Mxyap — Mxyap be the linear map whose Choi matrix coincides with
(26).
Theorem 6.12. The map s — T is an affine isomorphism from
(i) the state space of Tx @max Ty Omax T 4 ®max T 5 0nto Qgrils;
(ii) the state space of Tx @. Ty Q. T 4 ®. T g onto QE}IC;

(iii) the state space of T'x Qmin Ty Omin T 4 Qmin I 5 0ntO Qg’éa;
(iv) the state space of OMIN(T x)® in OMIN(T ) @ in OMIN(T ) ® i OMIN(T ) O1LLO

bi
sloc”

Proof. (i) LetT € Q0. If

_ X1X17}’1Y{7aza;7bzb;
C - (C ’ / ) b’)
X2X5,Y2Y,,014;,0107
is the Choi matrix of I and

C= éxzx;,yzy;,alai,blb;
- ( ! / "b b')
xlxl’ylypaZaz’ 2



TRANSFER OF QUANTUM GAME STRATEGIES 1645

is the Choi matrix of I'* (where the indices above range over the correspond-
ing sets X, Y, A, and B) then C,C € M, ,».v 5. AsT and I'* are both SNS,
for y;,y] € Y,a;,a] € A,b;,b] € B,i = 1,2 there exist complex constants

ylyi,aza;,bzbé d ~YZYQ"11‘1;,b1b1

/ !/ / ! ! !/
y2y2!ala1!b1b1 y1y1’a2a2’b2b2

such that

/ / !/ / ! ! !
Z xlxlsylylsaZazstbz ylyl’a2a2’b2b2

= /
! ! !’ / X9,X. ! ’ />
X2X),Y2Y5,01a;,b1b] 2%2 " yay,.a1a1,b1b)

X1
! ! !
~V2),,a104 ’blbl

/ ’ !l
1 y1Y,a2a5,b:b)

! ! ! !
Z C»«,xzxz,yzyz,alal,blbl

! ’ ! / 5x X
X1X1,Y1Y1,0205,0:b) 1

X2
for all xi,xlf € X,i =1, 2. Note that

’ ! ! / ’ / ! /
~X2X5,Y2Y5,01a;,b1 b} _ X1 X],Y1Y1,0205,byb)

X! yiyhazal,babl T xpxh,yay).aal by b’
for x;,x] € X,y;,y! €Y,a;,a] € A,b;,b] € B,i = 1,2. These together imply
L(C) € Lx forall p € My 4.
We then may use the other SNS conditions for I' and I'* to show that
L(C) € Ly forall p € Mx g,
L,(C) € L, forall p € Mxyg,
and
L,(C) € Lyforall p € Mxy 4.

Together, these imply C € (Lx ® Ly @ L4 ® Lp)*. Use [7, Proposition 3.6]
and argue as in Theorem 6.6 (i) to finish.

(ii)-(iv) The proofs for (ii)-(iv) follow exactly the same as in the proofs of The-
orem 6.6 (ii)-(iv), just by replacing the use of [39, Theorem 5.2] with [7, The-
orem 3.4], the use of Remark 3.11 with Remark 3.13, and by replacing Ty, x,
and GXZ’XI (reSp. TYZ’YI and eyz’yl, TAI’AZ and eAlaAz’ TBI’BZ and GBI’BZ) with
Tx and Cx (resp. Ty and Cy, T4 and Cy4, T3 and Cp). O

We end this subsection with the following (obvious) result.

Corollary 6.13. The set QP is closed and convex.

sqc

6.2. Concurrent strategies. The goal of this subsection is to apply the results
connecting subclasses of strongly QNS correlations with state spaces on tensor
products of canonical operator systems previously developed, to the study of
a particular class of quantum input-output game which are called concurrent
games. A quantum non-local game ¢ : Pyxy — P4 is concurrentif o(Jx) = J 4.
A QNS correlation ® € Q, is called concurrent if ®(Jx) = J 4; equivalently, if
@ is a perfect strategy for the (trivial) implication game ¢; _,5,.

The study of concurrent games and their perfect strategies has grown in re-
cent years (see [6, 7, 39]), and is of particular interest for its connections to the
study of quantum automorphism groups and compact quantum groups, along
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with its ramifications for the study of synchronous games; indeed— concurrent
games were introduced as a “quantization” of synchronous games. The reason-
ing behind this claim comes from [6, Remark 2.1]: for classical non-local game
A XXXXAXA — {0,1}, then A is synchronous if and only if qp,l(J)C(l) < J;l.
Concurrency allows us to see how a correlation affects the “non-classical” por-
tion of the (unnormalized) maximally entangled state- ideally, sending it to a
state supported on J 4.

Lett : Cx 4 — C be atracial state; the linear map I'; : Myxx — My, given
by

1-‘T(Gxx’ ® €yy’) = Z T(ex,x’,a,a’ey’,y,b’,b)eaa’ ® €ppr>
a,a’,b,b’'eA

is a QNS correlation. This particular type of a QNS correlation is called tra-
cial, and was first introduced in [39]. Subclasses of quantum tracial and locally
tracial QNS correlations are defined by requiring that 7 factors through a finite-
dimensional and abelian *-representation, respectively. We focus on such QNS
correlations for their connection to concurrent games: it was first established
in [6, Theorem 4.1] that any perfect strategy I for a concurrent game ¢ must be
tracial, in the sense defined above. In the rest of this section, we will develop a
notion of when SQNS correlations are tracial, and describe their structure.

LetT' : Mx,x,xa,4, = Mx,x,x4,4, b€ an SQNS correlation, and let ¢ €
M, 4, be an arbitrary state. Define the mapping F?szle x, - My, x, = Mx x,
via

r§(2X2—>X1X1(IO) L= TrAzAzr(;o ® U), p (S MXZXZ'

One easily shows that I‘;’( is a well-defined QNS correlation; further-

; 2X5—=X1X,
g —_ g !/
more, I‘X2X2_>X1X1 = I‘X2X2_>X1X1 for any states 0,0° € My, 4,. Thus, we let
I'x,x,-x,x, denote the right marginal channel of T, for an arbitrary fixed state
0 € My, 4,. An analogous argument shows that I*141~4242 js a well-defined

left marginal QNS correlation for T', for an arbitrary fixed state p € My x,.

Remark 6.14. Note that, in the event T’ € G for t € {loc, q, qa, qc, ns}, then
the marginal channels previously discussed (when considering I' inside Q)
coincide with the marginal channels discussed in [20, Section 5].

Definition 6.15. An SQNS correlationT over (X,X,, A1A,, XX, A,A,)iscalled
jointly tracial if Ty x, x,x, and P11~z are tracial QNS correlations.

Remark 6.16. There exists a surjective x-homomorphism

7t Cx,4, = Cx,x, Omax Ca,,4, Omax Cx, 4,

Indeed: for x,, X} € X,,ay,a} € A; let

o ’ ] ’ ’ ’ ’ ’ ’
exzxz,aza2 . 2 : E |, exzxz,xlx1 ® ealal,aza2 b2 fxlxl,ala .

1
! !
X1,X] 01,0;
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- 5 5 _ ’
One easily checks that &, , ., > 0and Zaz Cx,x) a0, = 6x2x;1 for all x,, x; €
X,,a, € A,. Therefore, by universality there exists a surjective «-homomor-
phlsm /. eXZ,AZ - eX2X1 ®max GAlsAZ ®max @XI,AI which sends 7T(ex2x;’aza;) =
5 / /
€x,x ayal» X2, X5 € X5, 0y3,a, € Aj.

For a linear functional T on Cx, x, ® Cy4, 4,, set
FT(xlx;’ylyis aZa;’ b2b3|x2x;’ y2y;, alais blbg) =
T(exzx;,xlx; ey;y2,y1y1 ® ealai,aza;eb;bl,b;bz)a
where x;, X/, y;,y] € X;,a;,a],b;,b] € A;,i =1,2.

Theorem 6.17. The following hold:

(i) IfT is a jointly tracial and quantum commuting SQNS correlation, then
there exists a trace T on Cx, x, ®max Ca, 4, such that T = I'r.

(i) If T is a jointly tracial and approximately quantum SQNS correlation,
then there exists an amenable trace T on Cx, x, ®min Ca, 4, sSuch that
r=ry.

(iii) If T is a jointly tracial and quantum SQNS correlation, then there ex-
ists a trace T factoring through a finite-dimensional x-representation of
@XZXI ®min GAI,AZ such thatT = FT'

(iv) IfTis ajointly tracial and local SQNS correlation, then there exists a trace
T factoring through an abelian *-representation of Cx, x, ®max Ca, 4,
such thatT' =T+.

Proof. (i) First, assume I' € Qg is jointly tracial. For notational simplifica-
tion, write
B = Cx, x, ®max Cx,,x, ®max Ca,,4, O®max Ca, .4,
and
U = Cx, x, Omax Ca, .4,

We note that, up to a flip of tensor legs, B = U @, U; in the sequel, we will
use this identification without explicitly mentioning it.

By (the proof of) Theorem 6.6, there exists a state § : B8 — C such that
['=T; Forv,w € U @y U, write v ~ wif (v —w) = 0. Let V' = (Uy, x,)x, x,
be the isometry such that Cxyx) xyx!, = Vs, x, Ux! xl- Then

k %
|44 —< E Uy x, Uy x2>
b
Xy X

is a projection, with Y} v, .. Uy,x, < 1forall x; € X;. Using this, we see that
X2

/
1.X1

X

I
N

z * *

’ ! ! ’ ’ ’
exzxz,xlxl exzxz,xlx1 x;,x; vxl,xz le,xz le, )

XEX, xX,E€X,
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From this, we compute

Z Z ex;xz,xixl exzx;,xlxi < Xl 1X, 1. (28)

! ’
X2,%,€X5 X1,%; €Xq

Let 7y be the tracial state on Cx, x, corresponding to the marginal channel
Ty, x,-x,x,- Without loss of generality, fix a;, b; € A;. We see

§(ex2x;,x1x1 ®1®1K®1)
= Z Z §(ex2x;,x1x; ® exzxz,YD’l ® ealabalaz ® eblbl,bzbz)

V1€X, ay,b,EA,

= Z Z TX(exzx;,xlxi exzxz,h)ﬁ)

a,b,€4; y1€X;
= TX(exzx;,xlx;)-
Similarly,
A €x! Xy, %) X, ®1®1)
= Z Z g(ex;x;,ylyl ® ex;xz,x;xl ® ealal,azaz ® eblbbbzbz)

V1E€X] ay,b,€4,

= Z Z TX(ex;x;’hJ’l exzx;,xlx; )

a,,b,€A; y1EX,
= TX(exzx;,xlx;)-
Therefore,
ey ®1®1®1I~1® ey vy, ®1Q1, XX €X;i=1,2.
Write
Ry x! = €l el ® 1@ 1@ 1—1Q@ ey, 1y, ®1®1,
for x;, xl.’ € X;,i = 1,2; we note that

*
/ /
XX5,X X]

= (xrin o @1 @11+ 1@ e, xxiex,xix, @1® 1)
- (ex;xz,xixl ® ex;xz,xixl Q11+ exzx;,xlxi ® exzx;,xlxi ®1Q1).
By (28), we have

Z S(h’ hxzx',xlxi)

! /
hx2x2,x1x1

/ ’
’ ’ X2X5:X1%
x2,%5,%1,%]
= Z S(exéxz,x;xl exzx;,xlxi RIY1IR®1I+1® exzx;,xlxiex;xz,xixl ®1®1)
Xg,X),%71,X]

- §(ex;x2,x§x1 ® exéxz,xgxl ®1®1+ exzx;,xlx; ® exzx;,xlx{ ®1®1)
2[X5[1X1 11 = 2|X;[1X;[1 = 0.

IA
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From this, we have
§(h* hxzx,;xlxi) = 0, xl‘,xl./ EXl',i = 1,2 (29)

XX, X1 %, 2
By applying Cauchy-Schwarz inequality in conjunction with (29), we have
Why,t xx) ~ 0and hy, o vw ~ 0 forallw € B. In particular, for all X;, X €
X;,i =1,2we have

Z€x,x! x,x! Q1Q®v~zQ® €x!x,,x!x, v~ Cx,xx,x] 2 1Qv, (30)
for z € Cx, x,,v € U. If instead we use 7,4 for the tracial state corresponding

to marginal channel 1414242 we can make an almost identical argument to
show that

u® Zeala;,aza; B1l~u®z® ea;al,a;az ~UuQ® eala;,aza;’ €2

for a;, alf € A;,Z € Cy, 4, and u € U, i = 1,2. Equations (30) and (31) imply
Zexzx;,xlx; R1® Z,ealai,aza; ®1l~zQ ex;xz,xixl ®z® eaial,a;az (32)
~ exzx;,xlxiz Q1R eala;,azagzl 1, (33)

forallz € Cx, x,,2' € Cy, 4,, andxi,xl.’ € Xl-,ai,alf € A;,i = 1,2. Aninduction
argument on the lengths of the words w on {exe;,x1 X X xl.’ € X;,i =1,2}
and w’ on {ealag’%a; D oa;, alf € A;,i = 1,2} whose base step is provided by (32)
shows that

Zw®1I®ZW @1~wzR@1Qw'z' ®1, z,weECx,x,,2, W €Cy 4,

(see, for instance, the proofs of [6, Theorem 3.2, Theorem 4.1]). We may then
conclude that the functional T on Cx, x; ®max Ca,,4,, given by

Tu®v)=3u®l1®uv®l), u€Clyx,VE€Cya,

is a tracial state. Furthermore, (32) implies I' = I'y.

(ii) If T is an approximately quantum jointly tracial correlation, again by the
proof of Theorem 6.6 there exists a state s : Cx, x; ®min Cx,,x; ®min C4,,4, Omin
Ca,a, — Csuch that T = T'y. As each approximately quantum SQNS corre-
lation is quantum commuting, by (i) there exists some trace T : Cyx, x, ®max
Ca,,a, = Csuch that T' = I't as well. By [39, Lemma 9.2], for any finite sets

X, Y there exists a s-isomorphism 8 : Cyy — €y, such that

op
x/x’yly’

9(exxr yy) =€ x,x' €X,y,y €Y.

Let dx @ Cx,x, — Cf;’g X and 04 @ Cy 4, > Gjﬁ A, be the x-isomorphisms
corresponding to each C*-algebra. Let

F 1 Cx, x, min Cx,.x, ®min Ca,,4, ®min Ca, 4,

= Cx, x, ®min Ca,,4, ®min Cx,.x, ®min Ca,.4,
be the flip operation, and

q : Cx,x, ®max Ca,,4, = Cx, x, Omin Ca, 4,
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be the quotient map. Define linear functional
Mo (C’XZ,X1 ®max eAl,Az) ®min (GXZ,X] ®max eAl,AZ)Op - C
via
u = soFo(q ® (qo(05' ® 331)).
One may easily check that u(u ® v°P) = T(uv). Indeed: on the canonical gen-
erators we have
/"(exzx;,xlxi ® eala{,aza; ® (ey;yz,y{yl ® eb;bl,b;bz )°P)
= So\rfr(exzx;,xlx; ® eala;,aza; ® e}’z)’édh)’{ ® eblbi’bzb;)
= S(exzx;,xlx; ® eyzy;,yly{ ® ealai,aza; ® eblbi,bzb;)
= T(exzxé,xlx{ ey;yz,y{yl ® eala;,aza;eb;bl,b;bz)'
By [9, Theorem 6.2.7], trace T is amenable.

(iii) Let ' be a perfect concurrent strategy in Qgq. By the proof of Theo-
rem 6.6 (iii), there exist finite-dimensional Hilbert spaces Hy, Hys, H 4, H 41, *-
representations 7y @ Cx, x, = B(Hx),7x : Cx,x, = B(Hx), 74 : Ca a, =
B(Hy)and 7wy : Cu, a4, = B(Hy ) along with a unit vector £ € Hy @ Hy' ®
H, ® H,s such that T' = Iy, where

§ : €X2X1 ®m1n eXz,.X] ®mln GA],AZ ®m1n eAl,Az g C
is a state given by
S(w) =((mx @ mx» ® T ® A )W), §), (34)

for u € Cx, x, ®min Cx,.x, Pmin 4,4, ®min Ca,.4,- By the proof of (i), the state
T : Cx,x, ®min Ca,,4, = C constructed from §is tracial, and in this case factors
through a finite-dimensional *-representation.

(iv) The proof of this statement is similar to the proof of Proposition 3.3; we
include the details for the benefit of the reader. Assume I' € Q. is a perfect

concurrent strategy; by Remark 3.11, T = Z?zl A jcpg) ® CDg,) ® @X) ® d)ﬁ{,) asa

convex combination of quantum channels (Dg), d)ig,) : My, —» My, @fj), q)i{,) :
MA1 —>MA2,j = 1,...,k. Let

o) (@)] o) o)
1 / /)xl,xi = q’)g (exzx;), @ ! /)yl,y; = (1)}?, (€y2y;)a

X2, %1 %) Vayhyy,
(€)] ) @) 0]
Wy apaq)onds = Pa Cara)d Uy 0o, = P (o)
’ ’ ’ ’ o ). o _G .
forxz,xz,yz,y2 € Xz,al,al,bl,l?l € Al,andﬂx Ty Cx,x, = C,ﬂA STt
Ca,,a, — C be the x-representations given by

@)
xx5,%1 %)
0]

! 1
a,a;,4,a,

@)

V2yyyy’
@) _ .M

7o (@bub by = Hy s

)] €)]
7TX (exzx;,xlxi) =1 7TX’ (e}’2}’;,}’1}’£) =4

)] —
T4 (ealai,aza;) =M
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for j =1,..., k. Furthermore, let 7ry, 7y : Cx, x, = B(C*), 4, Tar * Cp n, >
B(C¥) be the *-representations given by

k k
ﬂ'X(u,) = Z ﬂg)(u)ejj, ﬂX/(u) = Z ﬂ)(g,)(u)ij,
j=1 j=1

k k
7TA(U) = Z 71'1(:)(0)6“, 7TA/(U) = Z 7'[1(;,)(0)6“,
j=1 j=1

foru € Cx, x,,U € C4, 4,- Clearly, the images of 7y, 7xs, 7 4, 77 oo are all abelian.
_ vk k k k k
If we then set § = ZFI lie;®e;®e;®e; € C"QCHQ®C" ®CY, we have

F(exzx; ® €yzy; ® €a1a1 ® eblbi)
aza;,bzb;
= ((oxeariy ) ® Tx0(eysy 1) @ ey ane) ® TaEnp i D 0)

! !
X1X1.Y1Y;

with corresponding state § given by
Su) = ((x @ mxr ® 4 @ Ta)W)§, §),

foru € Cx,x, ®max Cx,x, Omax Ca 4, Pmax Ca, 4, Argue now as in (iii)
to conclude that tracial state T factors through an abelian s%-representation of

Cx,x, Omax Ca,.4,- U

Theorem 6.18. Lett € {loc,q,qa,qc}. If T € Qy, is jointly tracial, and £ € Q, is
tracial, then T'[ €] is tracial.

Proof. We handle the case when t = qc. By Theorem 6.17 and [6, Theorem
4.1], there exists tracial states T : Cx, x, ®max Ca,.4, > Cand 7 : Cx, 4, = C
such thatI' =Tt and € = &,. Let

TOT: Cx,x, ®max Ca 4, ®max Cx, 4, > C
be the linear map given by
TODu®VRW) =Tuuv)r(w), u€Cx,x,,VECy 4,WECx, 4,-

That this is a state follows from [38, Proposition 4.23]; that it is also tracial fol-
lows from a standard argument using the (automatic) continuity of the map-
ping on the maximal tensor product, in conjunction with calculations on the
dense subset of finite linear combinations of simple tensors. Define tracial
state T on Cy, 4, in the following way: by Remark 6.16, there exists a surjec-
tive «-representation 7 : Cx, a4, = Cx,x, Omax Ca, 4, Omax Cx, 4, sending
7(€x,x! aa!) = Cxpx! aya, TOT X3, x, € X,,ay,a} € A,. Using 77, we let

T(w) = (TODom)(u), u € Cx,a, (35)
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‘We note

F[S](aza;, bzb; |x2x;, yzy;)
Z Z r(x1x;,Y1}’{,aza;’bzb;|x2x;aY2yg,ala;9blbi)g(alai,blb“xlx;’YU’{)

x1,x! ay,a

1 1
yl,y{ bl’bi

= Z Z (To T)(exzx;,xlxgey;yz,yiyl ® eala;,aza;ebgbl,b;bz ® fxlxg,alagfyiyl,b;bl)

x1,x! ay,a

1 1
Y1, by,b!

= (TO T)(ﬂ(exzxé,azaz €y! y2.bb, )
= f(exzx;,aza;ey;yz,b;bz)’
for x,, x;,yz,y; € X5, a,, a;, b,, b; € A,. This shows I'[€] = T;, and so by [6,

Theorem 4.10] once more we conclude that T'[£] is tracial. For t € {loc, q, qa},
the argument is similar once we use Theorem 6.17 (ii)-(iv). O

For finite sets X, A, let

— op __ ,0p
Exa = (ex,x’,a,a’)x,x’,a,a” EXA - (ex’,x,a’,a)X,x’,a,a”

op

be considered as elements in My, ® Cx 4 and My, ® (SX, e

P € Pxx,Q € P44, define a linear map

respectively. If

YpPQ : MXX ® MAA ® GX,A ® (g;I?A - GX,A (36)
by setting
Yrolw @ u @ vP) = Tr(w(P @ Q)uv, &€ Mxx @ Myu,u,v € Cx 4.

If o : Pxx = P44 is any quantum non-local game, let

3@®) = (7 gen (Bxa ® B © P € Pyx)

be the generated -ideal in €y 4, and J(¢) be the corresponding ideal consid-
ered in Cx 4. Finally, write C(p) = Cx 4/F (@) (resp. C(p) = Cx 4/J(p)) for
the quotient x-algebra (resp. quotient C*-algebra). Perfect strategies for a con-
current quantum game ¢ were shown to correspond to tracial states acting on
x-representations of Cx 4 which annihilate §(¢) or J(¢) in [6, 7]. In light of
previous results, we may conclude by giving an algebraic characterization of
our transfer of perfect strategies between quantum games.

Theorem 6.19. Let X;, A;,i = 1,2 be finite sets, P; € Mx x,,Q; € My 4,,i = 1,2

be projections, and t € {loc, q, qa, qc}. If ﬂPI’Ql —s Up, o, via jointly tracial Ty,
then for any tracial state T on C(pp, .o, ), the tracial state T given in (35) restricts
to a tracial state on C(@p,_.q,)-
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Proof. As corresponding QNS correlation &, is both tracial and a perfect strat-
egy for pp, o, (via [6, Corollary 4.4]), by Theorem 6.18 we know I'r[&,] is tra-
cial, and corresponds to tracial state ¥ given in (35). Furthermore, by Theo-
rem 5.3 ['t[€;] is a perfect strategy for ¢p,_¢,; thus,  annihilates J(gp,_.¢,) as
claimed. O

Remark 6.20. We wish to comment on the specific case when both games are
the quantum graph isomorphism game. Let X; = A4;,i = 1,2,let U; C CX ®
CXi,i = 1,2 be quantum graphs, and set P; := Py,i=1,2.

Recall, that, for finite set X, the C*-algebra of the free unitary quantum group
C(u; )is the universal unital C*-algebra generated by the entries u, , of an X xX
matrix U = (uy 4)y qex under the condition that U and U" are unitary (known
otherwise as a bi-unitary matrix). Subalgebra C(P u;; ) is generated by length
two words of the form u} ,u, o, X, x’,a,a’ € X- and was shown in [1, Corol-
lary 4.1] to be the proper quantization of the automorphism group of My. In
[7, Theorem 6.7], concurrent bicorrelations of types t € {loc, q, qc} (and there-
fore, strategies for the quantum graph isomorphism game) were shown to be in
correspondence with different tracial states on C(IP u; )

Abusing notation, for S,T € Mxx let

Ysr @ Myxx ® C(PUY) @ Myxx ® C(PUZ)® — C(PUy)

be defined as in (36). Welet U = (Uy v g.0)xx' 000 € Mxx(C(PU)), and for
P € Proj(Mxyx) set

JP,P = <]/P’PL(U ® U-op)’ yPi,P(U ® (]OP)>‘

Finally, set App := C(Pu;)/jp’p. In [7, Remark 7.12], it was shown that
C*-algebra Ap p can be endowed with a natural co-associative comultiplication
Ap . App = App ® Ap p; this means Ap p can be viewed as a compact quan-
tum group. By [7, Theorem 7.10] and Theorem 5.7, we see that the existence of

a quantum hypergraph isomorphism I between ﬁpl p, and Up p ensuresaway
to construct x-representations of compact quantum group A P,.P, from =-reps of
Ap, p,; that is, a way to transfer quantum automorphisms between quantum
graphs.
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