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The non-orientable four-ball genus of a new
infinite family of torus knots

Shreya Sinha

ABSTRACT. We extend previous work by using a combination of band surg-
eries and known bounds to compute y,(T 4y, 2ps1)24an—2) = 21 — 1foralln >
1. We further generalize this result by showing that y,(T 4,41 nan+2k)-1) =
Ya(Tapsok ey antaio—1) = 2n — 1+ k foralln > 1 and k > 0. All knots in this
family, with the exception of T, ;, are counterexamples to Batson’s conjecture.
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1. Introduction

Preliminaries. GivenaknotK, one measure of its complexity is the constraints
it places on the complexity of surfaces that bound it. In particular, if we restrict
to smooth, non-orientable surfaces that are properly embedded in B*, then the
minimal genus among such surfaces provides a particularly informative mea-
sure. This invariant is known as the smooth non-orientable four-genus of K,
introduced by Murakami and Yasuhara in 2000 [13], and denoted as

¥4(K) = min {dim(H,(F; Z/227)) | F non-orientable surface, d(F) = K, F < B*}

In the case that K is slice, we define y,(K) = 0.

The non-orientable four-genus has been computed for several families of
knots. The values for knots with 8 or 9 crossings were determined by Jabuka
and Kelly [8], those with 10 crossings by Ghanbarian [6], and most 11 crossing
non-alternating knots by Fairchild [4]. For many double twist knots, the non-
orientable four-genus has been computed by Hoste, Shanahan, and Van Cott
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[7]. A particularly active area of study involves torus knots. Allen computed
74(T, ) for all p = 2,3 [1]; Binns, Kang, Simone, and Trudl computed most
cases for p = 4 [3], and Fairchild, Garcia, Murphy, and Percle have computed
many cases for p = 5,6 [5].

One useful upper bound for y,(Tj, ;) is given by the number of pinch moves —
band moves between adjacent strands relative to a standard torus knot diagram
— required to convert T, ; into the unknot. This number is denoted by 3(T'p, ).
In[2], Batson conjectured thaty4(Tp, ;) = 9(Tp, o) and proved this equality holds
for the infinite family of torus knots of the form T ,x_; with k > 1, establish-
ing in particular that y,(T5x 2k—1) = 9(T2k 2k—1) = k — 1. In [9][Theorem 1.10],
Jabuka and Van Cott showed Batson’s conjecture to be true for several infinite
families of torus knots. However, Lobb gave a counterexample to Batson’s con-
jecture in [11], showing that for T4o, we have 1 = y4(T49) = 9(T4o) — 1 by
employing a non-pinch band move that sends T, g to the Stevedore knot 6,.

In unpublished work, Tairi [15] provided another counterexample with the
torus knot T4 1, proving that 1 = y4(T417) = 8(T411) — 1 via a non-pinch band
move that also reduces T, 1, to 6,. Tairi further computed that

V4(T4m+4,12mb+6b+5—2m) =b

forall b > 2 and m > 0, with 8(T4y;14.12mb+6b+5-2m) = b + 1. Longo [12]
generalized Tairi and Lobb’s examples by showing y4(T' 4, (20+1)2) < 2n—1while
(T apn (2n+12) = 2n for all n > 2. His examples were primarily inspired by
the knot Tg ,5, for which he found three band moves that turn Ty ,5 into the
slice knot 10;. Binns, Kang, Simone, and Trudl [3] extended Longo’s work by
showing that y4(T4p,2n+12) = 2n — 1 when n < 2 even. They also showed
that for even n > 2 and k > 0, that y4(Typ42k @ans26)nz1)+1) = 20+ k —1 =
(T s4psok (an+2k)(n+1)+1) — 1. All currently known counterexamples to Batson’s
conjecture, including the counterexamples added by this paper, have y4(Tp, ;) =
(T, 4) — 1. Additionally, there are no known counterexamples with both p, g
odd.

Results. In this paper, we extend previous work by using a combination of
band surgeries and known bounds to prove the following theorem.

Theorem 1.1. The torus knots T4, 34+1)244n—2 fOr n > 2 are counterexamples
to Batson’s conjecture. In particular,

(D) 74(Tan2ns14+4n—2) =2n—1
(2) 19(T4n,(2nil)2+4n—2) =2n.

This also holds for the knot T,;;, which lies in the family T4, (2p41y244n—2
when n = 1.

We further generalize this result to the following:

Corollary 1.2. y4(T4pi2kn@an+26)-1) = Y4(Tansak (n+2)ans2k)-1) = 2n—1+k for
allm>1land k > 0.
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Consequently, all knots in this family are counterexamples to Batson’s con-
jecture.

Acknowledgments. The author would like to express her sincere gratitude to
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out this research. The author would additionally like to thank Andrew Lobb,
Ollie Thakar, and Fraser Binns for insightful discussions that contributed sig-
nificantly to the development of this work. Finally, the author thanks Cornelia
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2. Tools

In this section, we lay out the tools necessary for our calculations. We first
have the following lemma from Jabuka and Van Cott [9]:

Lemma 2.1. Let p and q be relatively prime positive integers. After applying a
pinch move to T}, 4, the resulting torus knot (up to orientation) is T'|,_5¢| |g—2h
where t and h are the integers uniquely determined by the requirements

t=—q ! (mod p) wheret€{0,..,p—1}
h=p™' (modq) andhe€{0,..,q—1}

Using Lemma 2.1, Binns, Kang, Simone and Trudl in [3], calculated the
pinch number for the following torus knot families:

Lemma 2.2. (Lemma 2.9 in [3]) Let p > 2,k > 1. Performing a non-oriented
band move on the torus knot T'p, ;.1 yields the torus knot Tp,_; y(p—2)+1- Con-
sequently,

‘% if p is odd
(T pkpe1) = g ifpisevenandkp+1#p—1 (1)
pT_Z ifpisevenandkp+1=p—1

Using Lemma 2.2, tools from involutive knot Floer homology, and previous
bounds, they found the following narrow bounds on y,:

Theorem 2.3 (Theorem 1.7 in [3]). Fixp > 3. Ifgq=p—-1,p+1,0or2p—1
(mod 2p), then (T ) — 1 < y4(Tpq) < HTpq)- In particular, we have the
following:
(i) Let p be odd.
« Ifg=p—1 (mod 2p), then y,(T,,) € {pT_S, pT_l}.

« Ifg=p+1or2p—1 (mod 2p), then y,(T, ) = pT_l.
(ii) Let p be even.

« Ifg>pandg=p—-1,p+1lor2p—1 (mod 2p), then y4(Tp4) €

p=2 p
(2,2

We also have the following proposition from Jabuka and Kelly in [8].
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Proposition 2.4. (Proposition 2.4 in [8]) If the knots K and K’ are related by a
non-oriented band move, then

7a(K) < 74(K) + 1. (2)
If a knot K is related to a slice knot K’ by a non-oriented band move, then
ya(K) = 1.

3. Proof of Main Theorem

Theorem 3.1. The torus knots Ty, (2n41)24+4n—2 fOr n > 2 are counterexamples
to Batson’s conjecture. In particular,

D) Va(Tanne1y+an—2) =2n—1
(2) 19(T4n,(2nil)2+4n—2) =2n.
This also holds for the knot Ty ;;, which lies in the family T4y, (241y244n—2 for
n=1.

We prove (2) first, and then (1).

Proof of (2). We first calculate the pinch number of all such knots. The knots
are either of the form

T4n,(2n+1)2+4n—2 = T4n,4n2+8n—1
or
T4n,(2n—1)2+4n—2 = T4n,4n2—1-
For both sets of T, ;, we have ¢ > p and ¢ = —1 (mod p). By Lemma 2.2,
’9(T4n,(2nil)2+4n—2) = 2n. U

Proof of (1). By Theorem 2.3, we know y4(T4, (2n+12+4n—2) € {2n—1,2n}. We
will show
74(T4n,(2nil)2+4n—2) =2n-1.

To do so, we will perform a sequence of unoriented band surgeries on
Tan,(2n+12+4n—2 and demonstrate that the resulting knot is isotopic to the one
obtained by Longo’s choice of band surgeries on Ty, (20412- We use the term
partial twist to refer to a single strand crossing over all other strands in a torus
knot with respect to the standard diagram. For example, each full twist for the
knot T'p, ; consists of p partial twists. Let us now review Longo’s choice of bands

2_
in [12]. The knot T4y, (2p41y2 has @nzly -1

tional partial twist.

For simplicity, we will refer to the position of a strand relative to other strands.
For example, in Figure 1a, we label the 4n strands in increasing order from right
to left. Thislabeling resets after each partial twist, so that the rightmost strand is
always labeled 1. Performing surgery on each band in Figure 1a, we can isotope
the resulting diagram by pulling joined strands through the full twists, yielding
Figure 1b.

Notice that, under this labeling scheme, the ith strand is joined to the 4n—ith
strand (the join is highlighted in red in each figure) forall 1 <i < 2n — 1. Let

= n = 1 full twists with a single addi-

n
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us refer to such a pair of strands and their join as the (i,4n — i) pair. After
every partial twist, the (i, 4n — i) pair becomes the (i + 1 (mod 4n),4n —i +1
(mod 4n)) pair. The final isotopy comes from pushing the pairs through the
last partial twist, resulting in Figure 2a, where the ith and 4n — 2 —i’th strands
are paired. Let this knot be denoted as K;.

We now examine the effect of a similar set of band surgeries on Ty, (2041)2-+4n—2-
Our goal is to show that the resulting knot is isotopic to K;. Consider the set of
bands attached to T4, (2n41)2+4n—2 depicted in Figure 2b. Note that, in contrast
to Figure 1a, where all the bands are attached over the strands relative to the
direction of the twists, the bands in Figure 2b are positioned below the knot
relative to the same direction of the twists. After performing the band surg-
eries, we isotope the diagram in Figure 2b to get Figure 3a by pulling each pair
through the n + 1 partial twists.

Similar to Figure 1b from the first set of torus knots, the strands i and 4n — i
are paired, denoted in red. Pushing these pairs through the 4n — 1 partial twists
transforms the (i,4n — i) pair to the (i — (4n — 1) (mod 4n),4n —i — (4n — 1)
(mod 4n)) = (i + 1 (mod 4n),4n —i + 1 (mod 4n)) pair. For 2 < i < 2n, this
operation effectively shifts each band down by one position.

Additionally, each strand other than strands 2n and 4n (which are not paired
up) belongs to precisely one pair and the pair completes two full rotations around
the 4n — 1 partial twists as it moves through them, eliminating exactly two par-
tial twists in the process. The resulting diagram is shown in Figure 3b. Finally,
pulling strand 1 underneath the other strands to become strand 4n completes
the isotopy, resulting in the diagram depicted in Figure 4. Denote this knot K.
Observe that K, is isotopic to K;: the diagram in Figure 4 is simply a rotated
and horizontally flipped version of Figure 2a.
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In Proposition 3.6 of [12], Longo proves that K; is the closure of the rational
2n
4n(n+l1)—1
way showed all knots of this form are slice. One can verify this from Lisca’s
classification of 2-bridge knots [10] to determine that K; is slice. It follows that

J/4(T4n,(2n11)2+4n—2) <2n-1, and so 7/4(T4n,(2n11)2+4n—2) =2n-1 U

tangle 7 ( ) According to Siebenman [14], Casson, Gordon, and Con-

4. Extending calculations to a new family of torus knots

As noted in [9], we can extend our family of examples by considering torus
knots that, after a series of pinch moves, transform into the knots Ty, (20412 +45—2-

Corollary 4.1. y4(T 412k nant2k)—1) = 2n — 1+ k foralln > 2 and k > 0, and
Ya(Tans2k (n+2)ant2k)—1) = 2n —1 + kforalln > 1and k > 0.

Proof. Case 1: y4(T4ns2k,n(an+2k)-1)-
Using Lemma 2.1, we analyze the pinch move applied to y4(T 4n4 2k n(an+2k)-1)-
The resulting system of congruences is:

=—(n(4n+2k)—1)"! (mod 4n + 2k)
h=@4n+2k)™' (mod n(4n +2k)—1)
This simplifies to:
—t+1=0 (mod 4n + 2k)
h-(4n+2k)—1=0 (mod n(4n+2k)—1)

which has solutions ¢t = 1 and h = n.
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Thus, a pinch move reduces Ty n(an+2k)-1 10 Tant2ge—1).n@n+2(k-1))-1- Re-
peating this k times yields the knot T4, 4p2_1 = T4p (2n—1)2+4n—2, Which satisfies
Y4(T4p 4n2-1) = 2n — 1 by Theorem 3.1. By Proposition 2.4, we get

Ya(Tansoknans2—1) < 2n—1+k
Combining this with the lower bound from Theorem 2.3, we have

Ya(Tansok nans20)—1) = 2n — 1+ k.

Case 2: 74(Tan12k (n+2)@n+2k)-1)-
We apply the same strategy. Using Lemma 2.1, we get:

t=—((n+2)4n+2k)—1)"' (mod 4n + 2k)
h=@n+2k)™ (mod (n+2)(4n+2k)—1)
which simplifies to
—t+1=0 (mod 4n + 2k)
h-(4n+2k)—1=0 (mod (n+2)(4n+2k)—1)
and has solutionst = 1and h = n + 2.

Thus, one pinch move sends Ty, 2k (n-+2)@n-+2k)—1 10 Tan+a(k—1),(n+2)@n+2(k—1))-1-
After k such moves, we reach Ty, (n42)4n)-1 = Tan(2n+12+4n—2- BY applying

Theorem 3.1, Proposition 2.4, and Theorem 2.3, we conclude

Ya(Tansok (ne2)ant2i)-1) = 2n — 1 + k.
O

Remark. By Theorem 2.3, 8(Tuniain@ns2i)-1) = S(Tansonne)@ns2i-1) =
2n + k. Thus all torus knots of this form are counterexamples to Batson’s con-
jecture.
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