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The non-orientable four-ball genus of a new
infinite family of torus knots

Shreya Sinha

Abstract. We extend previous work by using a combination of band surg-
eries and known bounds to compute 𝛾4(𝑇4𝑛,(2𝑛±1)2+4𝑛−2) = 2𝑛 − 1 for all 𝑛 ≥
1. We further generalize this result by showing that 𝛾4(𝑇4𝑛+2𝑘,𝑛(4𝑛+2𝑘)−1) =
𝛾4(𝑇4𝑛+2𝑘,(𝑛+2)(4𝑛+2𝑘)−1) = 2𝑛 − 1 + 𝑘 for all 𝑛 ≥ 1 and 𝑘 ≥ 0. All knots in this
family, with the exception of𝑇4,3, are counterexamples to Batson’s conjecture.
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1. Introduction
Preliminaries. Given a knot𝐾, onemeasure of its complexity is the constraints
it places on the complexity of surfaces that bound it. In particular, if we restrict
to smooth, non-orientable surfaces that are properly embedded in 𝐵4, then the
minimal genus among such surfaces provides a particularly informative mea-
sure. This invariant is known as the smooth non-orientable four-genus of 𝐾,
introduced by Murakami and Yasuhara in 2000 [13], and denoted as
𝛾4(𝐾) = min

{
dim(𝐻1(𝐹;ℤ∕2ℤ)) ∣ 𝐹 non-orientable surface, 𝜕(𝐹) = 𝐾, 𝐹 ↪ 𝐵4

}

In the case that 𝐾 is slice, we define 𝛾4(𝐾) = 0.
The non-orientable four-genus has been computed for several families of

knots. The values for knots with 8 or 9 crossings were determined by Jabuka
and Kelly [8], those with 10 crossings by Ghanbarian [6], and most 11 crossing
non-alternating knots by Fairchild [4]. For many double twist knots, the non-
orientable four-genus has been computed by Hoste, Shanahan, and Van Cott
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[7]. A particularly active area of study involves torus knots. Allen computed
𝛾4(𝑇𝑝,𝑞) for all 𝑝 = 2, 3 [1]; Binns, Kang, Simone, and Truöl computed most
cases for 𝑝 = 4 [3], and Fairchild, Garcia, Murphy, and Percle have computed
many cases for 𝑝 = 5, 6 [5].
One useful upper bound for 𝛾4(𝑇𝑝,𝑞) is given by the number of pinchmoves—

bandmoves between adjacent strands relative to a standard torus knot diagram
— required to convert 𝑇𝑝,𝑞 into the unknot. This number is denoted by 𝜗(𝑇𝑝,𝑞).
In [2], Batson conjectured that 𝛾4(𝑇𝑝,𝑞) = 𝜗(𝑇𝑝,𝑞) andproved this equality holds
for the infinite family of torus knots of the form 𝑇2𝑘,2𝑘−1 with 𝑘 ≥ 1, establish-
ing in particular that 𝛾4(𝑇2𝑘,2𝑘−1) = 𝜗(𝑇2𝑘,2𝑘−1) = 𝑘 − 1. In [9][Theorem 1.10],
Jabuka and Van Cott showed Batson’s conjecture to be true for several infinite
families of torus knots. However, Lobb gave a counterexample to Batson’s con-
jecture in [11], showing that for 𝑇4,9, we have 1 = 𝛾4(𝑇4,9) = 𝜗(𝑇4,9) − 1 by
employing a non-pinch band move that sends 𝑇4,9 to the Stevedore knot 61.
In unpublished work, Tairi [15] provided another counterexample with the

torus knot 𝑇4,11, proving that 1 = 𝛾4(𝑇4,11) = 𝜗(𝑇4,11) − 1 via a non-pinch band
move that also reduces 𝑇4,11 to 61. Tairi further computed that

𝛾4(𝑇4𝑚+4,12𝑚𝑏+6𝑏+5−2𝑚) = 𝑏

for all 𝑏 ≥ 2 and 𝑚 ≥ 0, with 𝜗(𝑇4𝑚+4,12𝑚𝑏+6𝑏+5−2𝑚) = 𝑏 + 1. Longo [12]
generalized Tairi and Lobb’s examples by showing 𝛾4(𝑇4𝑛,(2𝑛±1)2) ≤ 2𝑛−1while
𝜗(𝑇4𝑛,(2𝑛±1)2) = 2𝑛 for all 𝑛 ≥ 2. His examples were primarily inspired by
the knot 𝑇8,25, for which he found three band moves that turn 𝑇8,25 into the
slice knot 103. Binns, Kang, Simone, and Truöl [3] extended Longo’s work by
showing that 𝛾4(𝑇4𝑛,(2𝑛±1)2) = 2𝑛 − 1 when 𝑛 ≤ 2 even. They also showed
that for even 𝑛 ≥ 2 and 𝑘 ≥ 0, that 𝛾4(𝑇4𝑛+2𝑘,(4𝑛+2𝑘)(𝑛±1)+1) = 2𝑛 + 𝑘 − 1 =
𝜗(𝑇4𝑛+2𝑘,(4𝑛+2𝑘)(𝑛±1)+1) − 1. All currently known counterexamples to Batson’s
conjecture, including the counterexamples added by this paper, have 𝛾4(𝑇𝑝,𝑞) =
𝜗(𝑇𝑝,𝑞) − 1. Additionally, there are no known counterexamples with both 𝑝, 𝑞
odd.

Results. In this paper, we extend previous work by using a combination of
band surgeries and known bounds to prove the following theorem.

Theorem 1.1. The torus knots 𝑇4𝑛,(2𝑛±1)2+4𝑛−2 for 𝑛 ≥ 2 are counterexamples
to Batson’s conjecture. In particular,

(1) 𝛾4(𝑇4𝑛,(2𝑛±1)2+4𝑛−2) = 2𝑛 − 1
(2) 𝜗(𝑇4𝑛,(2𝑛±1)2+4𝑛−2) = 2𝑛.
This also holds for the knot 𝑇4,11, which lies in the family 𝑇4𝑛,(2𝑛+1)2+4𝑛−2

when 𝑛 = 1.

We further generalize this result to the following:

Corollary 1.2. 𝛾4(𝑇4𝑛+2𝑘,𝑛(4𝑛+2𝑘)−1) = 𝛾4(𝑇4𝑛+2𝑘,(𝑛+2)(4𝑛+2𝑘)−1) = 2𝑛−1+𝑘 for
all 𝑛 ≥ 1 and 𝑘 ≥ 0.
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Consequently, all knots in this family are counterexamples to Batson’s con-
jecture.

Acknowledgments. The author would like to express her sincere gratitude to
PeterOzsváth for his invaluable guidance and generositywith his time through-
out this research. The author would additionally like to thank Andrew Lobb,
Ollie Thakar, and Fraser Binns for insightful discussions that contributed sig-
nificantly to the development of this work. Finally, the author thanks Cornelia
Van Cott and Stanislav Jabuka for valuable comments and correspondences.

2. Tools
In this section, we lay out the tools necessary for our calculations. We first

have the following lemma from Jabuka and Van Cott [9]:

Lemma 2.1. Let 𝑝 and 𝑞 be relatively prime positive integers. After applying a
pinch move to 𝑇𝑝,𝑞, the resulting torus knot (up to orientation) is 𝑇|𝑝−2𝑡|,|𝑞−2ℎ|,
where 𝑡 and ℎ are the integers uniquely determined by the requirements

𝑡 ≡ −𝑞−1 (mod 𝑝) where 𝑡 ∈ {0, … , 𝑝 − 1}
ℎ ≡ 𝑝−1 (mod 𝑞) and ℎ ∈ {0, … , 𝑞 − 1}

Using Lemma 2.1, Binns, Kang, Simone and Truöl in [3], calculated the
pinch number for the following torus knot families:

Lemma 2.2. (Lemma 2.9 in [3]) Let 𝑝 ≥ 2, 𝑘 ≥ 1. Performing a non-oriented
band move on the torus knot 𝑇𝑝,𝑘𝑝±1 yields the torus knot 𝑇𝑝−2,𝑘(𝑝−2)±1. Con-
sequently,

𝜗(𝑇𝑝,𝑘𝑝±1) =

⎧
⎪
⎨
⎪
⎩

𝑝−1
2

if 𝑝 is odd
𝑝
2

if 𝑝 is even and 𝑘𝑝 ± 1 ≠ 𝑝 − 1
𝑝−2
2

if 𝑝 is even and 𝑘𝑝 ± 1 = 𝑝 − 1
(1)

Using Lemma 2.2, tools from involutive knot Floer homology, and previous
bounds, they found the following narrow bounds on 𝛾4:
Theorem 2.3 (Theorem 1.7 in [3]). Fix 𝑝 > 3. If 𝑞 ≡ 𝑝 − 1, 𝑝 + 1, or 2𝑝 − 1
(mod 2𝑝), then 𝜗(𝑇𝑝,𝑞) − 1 ≤ 𝛾4(𝑇𝑝,𝑞) ≤ 𝜗(𝑇𝑝,𝑞). In particular, we have the
following:

(i) Let 𝑝 be odd.
∙ If 𝑞 ≡ 𝑝 − 1 (mod 2𝑝), then 𝛾4(𝑇𝑝,𝑞) ∈ {𝑝−3

2
, 𝑝−1

2
}.

∙ If 𝑞 ≡ 𝑝 + 1 or 2𝑝 − 1 (mod 2𝑝), then 𝛾4(𝑇𝑝,𝑞) =
𝑝−1
2
.

(ii) Let 𝑝 be even.
∙ If 𝑞 > 𝑝 and 𝑞 ≡ 𝑝 − 1, 𝑝 + 1 or 2𝑝 − 1 (mod 2𝑝), then 𝛾4(𝑇𝑝,𝑞) ∈
{𝑝−2

2
, 𝑝
2
}

We also have the following proposition from Jabuka and Kelly in [8].
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Proposition 2.4. (Proposition 2.4 in [8]) If the knots 𝐾 and 𝐾′ are related by a
non-oriented band move, then

𝛾4(𝐾) ≤ 𝛾4(𝐾′) + 1. (2)

If a knot 𝐾 is related to a slice knot 𝐾′ by a non-oriented band move, then
𝛾4(𝐾) = 1.

3. Proof of Main Theorem
Theorem 3.1. The torus knots 𝑇4𝑛,(2𝑛±1)2+4𝑛−2 for 𝑛 ≥ 2 are counterexamples
to Batson’s conjecture. In particular,

(1) 𝛾4(𝑇4𝑛,(2𝑛±1)2+4𝑛−2) = 2𝑛 − 1
(2) 𝜗(𝑇4𝑛,(2𝑛±1)2+4𝑛−2) = 2𝑛.
This also holds for the knot 𝑇4,11, which lies in the family 𝑇4𝑛,(2𝑛+1)2+4𝑛−2 for

𝑛 = 1.

We prove (2) first, and then (1).

Proof of (2). We first calculate the pinch number of all such knots. The knots
are either of the form

𝑇4𝑛,(2𝑛+1)2+4𝑛−2 = 𝑇4𝑛,4𝑛2+8𝑛−1
or

𝑇4𝑛,(2𝑛−1)2+4𝑛−2 = 𝑇4𝑛,4𝑛2−1.
For both sets of 𝑇𝑝,𝑞, we have 𝑞 > 𝑝 and 𝑞 ≡ −1 (mod 𝑝). By Lemma 2.2,
𝜗(𝑇4𝑛,(2𝑛±1)2+4𝑛−2) = 2𝑛. □

Proof of (1). By Theorem 2.3, we know 𝛾4(𝑇4𝑛,(2𝑛±1)2+4𝑛−2) ∈ {2𝑛−1, 2𝑛}. We
will show

𝛾4(𝑇4𝑛,(2𝑛±1)2+4𝑛−2) = 2𝑛 − 1.
To do so, we will perform a sequence of unoriented band surgeries on

𝑇4𝑛,(2𝑛±1)2+4𝑛−2 and demonstrate that the resulting knot is isotopic to the one
obtained by Longo’s choice of band surgeries on 𝑇4𝑛,(2𝑛±1)2 . We use the term
partial twist to refer to a single strand crossing over all other strands in a torus
knot with respect to the standard diagram. For example, each full twist for the
knot 𝑇𝑝,𝑞 consists of 𝑝 partial twists. Let us now review Longo’s choice of bands

in [12]. The knot 𝑇4𝑛,(2𝑛±1)2 has
(2𝑛±1)2−1

4𝑛
= 𝑛 ± 1 full twists with a single addi-

tional partial twist.
For simplicity, wewill refer to the position of a strand relative to other strands.

For example, in Figure 1a, we label the 4𝑛 strands in increasing order from right
to left. This labeling resets after each partial twist, so that the rightmost strand is
always labeled 1. Performing surgery on each band in Figure 1a, we can isotope
the resulting diagram by pulling joined strands through the full twists, yielding
Figure 1b.
Notice that, under this labeling scheme, the 𝑖th strand is joined to the 4𝑛−𝑖th

strand (the join is highlighted in red in each figure) for all 1 ≤ 𝑖 ≤ 2𝑛 − 1. Let
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(a) Figure 3 in [12], where𝑚 = 𝑛±
1.

(b) Pulling the joined strands
through the 𝑛 ± 1 full twists.

Figure 1

(a) The knot 𝐾1, obtained by pulling
joined strands through the final partial
twist.

(b) 2𝑛 − 1 bands attached to
𝑇4𝑛,(2𝑛±1)2+4𝑛−2.

Figure 2
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(a) After an isotopy of Figure 2b.
(b) After pulling the pairs through the
4𝑛 − 1 partial twists.

us refer to such a pair of strands and their join as the (𝑖, 4𝑛 − 𝑖) pair. After
every partial twist, the (𝑖, 4𝑛 − 𝑖) pair becomes the (𝑖 + 1 (mod 4𝑛), 4𝑛 − 𝑖 + 1
(mod 4𝑛)) pair. The final isotopy comes from pushing the pairs through the
last partial twist, resulting in Figure 2a, where the 𝑖th and 4𝑛 − 2− 𝑖’th strands
are paired. Let this knot be denoted as 𝐾1.
Wenowexamine the effect of a similar set of band surgeries on𝑇4𝑛,(2𝑛±1)2+4𝑛−2.

Our goal is to show that the resulting knot is isotopic to 𝐾1. Consider the set of
bands attached to 𝑇4𝑛,(2𝑛±1)2+4𝑛−2 depicted in Figure 2b. Note that, in contrast
to Figure 1a, where all the bands are attached over the strands relative to the
direction of the twists, the bands in Figure 2b are positioned below the knot
relative to the same direction of the twists. After performing the band surg-
eries, we isotope the diagram in Figure 2b to get Figure 3a by pulling each pair
through the 𝑛 ± 1 partial twists.
Similar to Figure 1b from the first set of torus knots, the strands 𝑖 and 4𝑛 − 𝑖

are paired, denoted in red. Pushing these pairs through the 4𝑛−1 partial twists
transforms the (𝑖, 4𝑛 − 𝑖) pair to the (𝑖 − (4𝑛 − 1) (mod 4𝑛), 4𝑛 − 𝑖 − (4𝑛 − 1)
(mod 4𝑛)) = (𝑖 + 1 (mod 4𝑛), 4𝑛 − 𝑖 + 1 (mod 4𝑛)) pair. For 2 ≤ 𝑖 ≤ 2𝑛, this
operation effectively shifts each band down by one position.
Additionally, each strand other than strands 2𝑛 and 4𝑛 (which are not paired

up) belongs to precisely one pair and the pair completes two full rotations around
the 4𝑛−1 partial twists as it moves through them, eliminating exactly two par-
tial twists in the process. The resulting diagram is shown in Figure 3b. Finally,
pulling strand 1 underneath the other strands to become strand 4𝑛 completes
the isotopy, resulting in the diagram depicted in Figure 4. Denote this knot 𝐾2.
Observe that 𝐾2 is isotopic to 𝐾1: the diagram in Figure 4 is simply a rotated
and horizontally flipped version of Figure 2a.
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Figure 4. Moving Strand 1 to position 4𝑛.

In Proposition 3.6 of [12], Longo proves that 𝐾1 is the closure of the rational
tangle 𝜏 ( 2𝑛

4𝑛(𝑛±1)−1
). According to Siebenman [14], Casson, Gordon, and Con-

way showed all knots of this form are slice. One can verify this from Lisca’s
classification of 2-bridge knots [10] to determine that 𝐾1 is slice. It follows that
𝛾4(𝑇4𝑛,(2𝑛±1)2+4𝑛−2) ≤ 2𝑛 − 1, and so 𝛾4(𝑇4𝑛,(2𝑛±1)2+4𝑛−2) = 2𝑛 − 1. □

4. Extending calculations to a new family of torus knots
As noted in [9], we can extend our family of examples by considering torus

knots that, after a series of pinchmoves, transform into the knots𝑇4𝑛,(2𝑛±1)2+4𝑛−2.

Corollary 4.1. 𝛾4(𝑇4𝑛+2𝑘,𝑛(4𝑛+2𝑘)−1) = 2𝑛 − 1 + 𝑘 for all 𝑛 ≥ 2 and 𝑘 ≥ 0, and
𝛾4(𝑇4𝑛+2𝑘,(𝑛+2)(4𝑛+2𝑘)−1) = 2𝑛 − 1 + 𝑘 for all 𝑛 ≥ 1 and 𝑘 ≥ 0.

Proof. Case 1: 𝛾4(𝑇4𝑛+2𝑘,𝑛(4𝑛+2𝑘)−1).
UsingLemma2.1, we analyze the pinchmove applied to 𝛾4(𝑇4𝑛+2𝑘,𝑛(4𝑛+2𝑘)−1).

The resulting system of congruences is:

𝑡 ≡ −(𝑛(4𝑛 + 2𝑘) − 1)−1 (mod 4𝑛 + 2𝑘)
ℎ ≡ (4𝑛 + 2𝑘)−1 (mod 𝑛(4𝑛 + 2𝑘) − 1)

This simplifies to:

−𝑡 + 1 ≡ 0 (mod 4𝑛 + 2𝑘)
ℎ ⋅ (4𝑛 + 2𝑘) − 1 ≡ 0 (mod 𝑛(4𝑛 + 2𝑘) − 1)

which has solutions 𝑡 = 1 and ℎ = 𝑛.
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Thus, a pinch move reduces 𝑇4𝑛+2𝑘,𝑛(4𝑛+2𝑘)−1 to 𝑇4𝑛+2(𝑘−1),𝑛(4𝑛+2(𝑘−1))−1. Re-
peating this 𝑘 times yields the knot 𝑇4𝑛,4𝑛2−1 = 𝑇4𝑛,(2𝑛−1)2+4𝑛−2, which satisfies
𝛾4(𝑇4𝑛,4𝑛2−1) = 2𝑛 − 1 by Theorem 3.1. By Proposition 2.4, we get

𝛾4(𝑇4𝑛+2𝑘,𝑛(4𝑛+2𝑘)−1) ≤ 2𝑛 − 1 + 𝑘
Combining this with the lower bound from Theorem 2.3, we have

𝛾4(𝑇4𝑛+2𝑘,𝑛(4𝑛+2𝑘)−1) = 2𝑛 − 1 + 𝑘.
Case 2: 𝛾4(𝑇4𝑛+2𝑘,(𝑛+2)(4𝑛+2𝑘)−1).
We apply the same strategy. Using Lemma 2.1, we get:

𝑡 ≡ −((𝑛 + 2)(4𝑛 + 2𝑘) − 1)−1 (mod 4𝑛 + 2𝑘)
ℎ ≡ (4𝑛 + 2𝑘)−1 (mod (𝑛 + 2)(4𝑛 + 2𝑘) − 1)

which simplifies to

−𝑡 + 1 ≡ 0 (mod 4𝑛 + 2𝑘)
ℎ ⋅ (4𝑛 + 2𝑘) − 1 ≡ 0 (mod (𝑛 + 2)(4𝑛 + 2𝑘) − 1)

and has solutions 𝑡 = 1 and ℎ = 𝑛 + 2.
Thus, one pinchmove sends𝑇4𝑛+2𝑘,(𝑛+2)(4𝑛+2𝑘)−1 to𝑇4𝑛+2(𝑘−1),(𝑛+2)(4𝑛+2(𝑘−1))−1.

After 𝑘 such moves, we reach 𝑇4𝑛,(𝑛+2)(4𝑛)−1 = 𝑇4𝑛,(2𝑛+1)2+4𝑛−2. By applying
Theorem 3.1, Proposition 2.4, and Theorem 2.3, we conclude

𝛾4(𝑇4𝑛+2𝑘,(𝑛+2)(4𝑛+2𝑘)−1) = 2𝑛 − 1 + 𝑘.
□

Remark. By Theorem 2.3, 𝜗(𝑇4𝑛+2𝑘,𝑛(4𝑛+2𝑘)−1) = 𝜗(𝑇4𝑛+2𝑘,(𝑛+2)(4𝑛+2𝑘)−1) =
2𝑛 + 𝑘. Thus all torus knots of this form are counterexamples to Batson’s con-
jecture.
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