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The random Kakutani fixed point theorem
in random normed modules
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Abstract. Based on the recently developed theory of random sequential
compactness, we prove the random Kakutani fixed point theorem in random
normed modules: if 𝐺 is a random sequentially compact 𝐿0-convex subset
of a random normed module, then every 𝜎-stable 𝒯𝑐-upper semicontinuous
mapping 𝐹 ∶ 𝐺 → 2𝐺 ⧵ {∅} such that 𝐹(𝑥) is closed and 𝐿0-convex for each
𝑥 ∈ 𝐺, has a fixed point. This is the first fixed point theorem for set-valued
mappings in random normedmodules, providing a random generalization of
the classical Kakutani fixed point theorem as well as a set-valued extension
of the noncompact Schauder fixed point theorem established in [Guo et al.,
Math. Ann. 391(3), 3863–3911 (2025)].
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1. Introduction
The celebrated Kakutani fixed point theorem [30] states that any upper

semicontinuous set-valued mapping from a compact convex subset of the 𝑛-
dimensional Euclidean space ℝ𝑛 into itself, with closed convex values, has a
fixed point. This theorem extends the Brouwer fixed point theorem [5] from
continuous single-valued mappings to upper semicontinuous set-valued map-
pings, and has subsequently been generalized to Banach spaces by Bohnenblust
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and Karlin [3], and to locally convex spaces by Glicksberg [16] and Fan [12].
The Kakutani fixed point theorem and its generalizations have become power-
ful tools for game theory [1, 4, 10, 36, 42], optimal control theory [32], differ-
ential equations [9] and various other areas of mathematics [17], for example,
Nash [36] provided a concise one-page proof of his equilibrium theorem by re-
formulating the problem of the existence of equilibrium points as the problem
of the existence of Kakutani fixed points.
Recently, Guo et al. [24] established a noncompact Schauder fixed point

theorem and applied it to prove a dynamic Nash equilibrium theorem, while
Ponosov [38, 39, 40] proved a stochastic version of the Brouwer fixed point the-
orem and employed it to the study of stochastic differential equations. Notably,
[44, Theorem 5.4] shows that this stochastic version of the Brouwer fixed point
theorem is equivalent to a special case of the random Brouwer fixed point the-
orem established in [24], where the latter is naturally a special case of the non-
compact Schauder fixed point theorem. With the aim of providing a new tool
for the development of random functional analysis [21], dynamic Nash equilib-
rium theory [24] and stochastic differential equations [39, 40], this paper proves
the random Kakutani fixed point theorem in random normed modules, a re-
sult that not only extends the noncompact Schauder fixed point theorem [24]
from continuous single-valued mappings to upper semicontinuous set-valued
mappings but also generalizes the classical result of Bohnenblust and Karlin
[3] from Banach spaces to random normed modules. Moreover, it is the first
fixed point theorem for set-valued mappings in random normed modules and
provides a basic result for future developments in fixed point theory in random
functional analysis.
Random normed modules, a central framework of random functional anal-

ysis, were independently introduced by Guo in connection with the idea of
randomizing classical space theory [18, 19] and by Gigli in connection with
nonsmooth differential geometry on metric measure spaces [14] (see also [6,
7, 8, 15, 33, 34] for related advances). Different from the situation in classical
normed spaces, the 𝐿0-norm of a random normed module induces two differ-
ent topologies. One is the (𝜀, 𝜆)-topology, which is a typical metrizable locally
nonconvex linear topology. The other is the locally 𝐿0-convex topology [13],
which is stronger than the (𝜀, 𝜆)-topology but generally not linear. The two
topologies both have their respective advantages and disadvantages in theoret-
ical investigations and financial applications. To combine their strengths, Guo
[21] introduced the notion of a 𝜎-stable set and established the connection be-
tween some basic results derived from two topologies. This work considerably
advanced the development of random functional analysis and its applications
[22, 24, 25, 26, 27, 28]. Over the past decade, one of the central topics in random
functional analysis has been to overcome the challenge due to noncompactness:
closed𝐿0-convex subsets of a randomnormedmodule—which frequently arise
in both theory and financial applications — are generally not compact under
the (𝜀, 𝜆)-topology [20], and hence also not compact under the locally 𝐿0-convex
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topology. Consequently, classical compactness arguments are no longer appli-
cable. Motivated by the studies on 𝜎-stability [23, 25] and the randomized ver-
sion of the Bolzano-Weierstrass theorem [29], Guo et al. [24] introduced and
systematically studied the notion of random sequential compactness, which is
a genuine generalization of classical sequential compactness. Specifically, a se-
quence in a random sequentially compact set𝐺maynot admit any subsequence
that converges in the (𝜀, 𝜆)-topology to some point of𝐺 but always admits a ran-
dom subsequence that does. This property has inspired a series of subsequent
works on fixed point theorems in random functional analysis [35, 43, 44, 45],
and, in particular, it allows us to overcome the main challenge in establishing
the random Kakutani fixed point theorem in random normed modules.
The success of the proof of the noncompact Schauder fixed point theorem in

[24] lies mainly in presenting a proper randomization of the classical Schauder
projection method, for which two essential tools were developed. The first is
the random Hausdorff theorem [24, Theorem 3.3], which states that a 𝜎-stable
set is random sequentially compact if and only if it is complete with respect to
the (𝜀, 𝜆)-topology and random totally bounded. The second is the method of
introducing random Schauder projections [24, Lemma 4.8], allowing the con-
struction of approximatingmappings (see [24, Lemma 4.9] and the proof of [24,
Theorem 2.12] for details). Motivated by these developments, as well as by the
classical work of Nikaido [37], who provided a new proof of the Kakutani fixed
point theorem in ℝ𝑛 based on the Schauder projection method, this paper de-
velops an approach to establishing the random Kakutani fixed point theorem
in random normed modules. Although our proof is motivated from the ideas
of [37] and [24], we remain to overcome the following three challenges:

(1) Random total boundedness is considerably more involved than classical to-
tal boundedness. The notion of random total boundedness was introduced
bymeans of the notion of a stably finite set, see [23] or part (2) of Definition
3.2 of this paper for details. However, a stably finite set is generally neither
finite nor even countable. Consequently, the method used in [37] cannot
be directly applied. Besides, the complicated stratification structures pecu-
liar to a random normed module must be considered, as shown in the key
equation (3.1).

(2) An upper semicontinuous set-valued mapping presents greater challenges
than a continuous single-valued mapping. In the random Kakutani fixed
point theorem, directly constructing random Schauder projections based
on a stably finite random 𝜀-net, as done in [24], is not enough to complete
the proof. To overcome this difficulty, we first establish Lemma 3.7, which
allowsus to carefully select elements from the images of the set-valuedmap-
ping on the stably finite random 𝜀-net to construct continuous single-valued
mappings. By applying the noncompact Schauder fixed point theorem to
these mappings, we obtain fixed points that in turn generate a stable se-
quence compatible with the upper semicontinuous set-valued mapping.
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(3) Topological arguments in our proof are different from those in [24, Theo-
rem 2.12]. Random sequential compactness is defined with respect to the
(𝜀, 𝜆)-topology, and the proof of the noncompact Schauder fixed point theo-
rem [24, Theorem 2.12] relies primarily on arguments under this topology.
In contrast, our proof of the random Kakutani fixed point theorem is car-
ried out mainly under the locally 𝐿0-convex topology, which requires the
notion of stably sequential compactness [23] formulated in this topology.
Consequently, our proof depends on [23, Theorem 2.21], which establishes
the equivalence between a 𝜎-stable random sequentially compact set and a
stably sequentially compact set.

The remainder of this paper is organized as follows. Section 2 introduces
some preliminaries and further presents the main result — the random Kaku-
tani fixed point theorem in random normed modules (namely, Theorem 2.9).
Section 3 is devoted to the proof of Theorem 2.9. Finally, Section 4 concludes
this paper with some remarks and two open problems related to the present
study.

2. Preliminaries and main result
Throughout this paper, 𝕂 denotes the scalar field ℝ of real numbers or ℂ of

complex numbers, ℕ the set of positive integers, (Ω,ℱ, 𝑃) a given probability
space, 𝐿0(ℱ,𝕂) the algebra of equivalence classes of𝕂-valued randomvariables
on (Ω,ℱ, 𝑃), 𝐿0(ℱ,ℕ) the set of equivalence classes of ℕ-valued random vari-
ables on (Ω,ℱ, 𝑃), 𝐿0(ℱ) ∶= 𝐿0(ℱ,ℝ) and 𝐿̄0(ℱ) the set of equivalence classes
of extended real-valued random variables on (Ω,ℱ, 𝑃).
For any 𝐴, 𝐵 ∈ ℱ, we will always use the corresponding lowercase letters

𝑎 and 𝑏 for the equivalence classes [𝐴] and [𝐵] (two elements 𝐶 and 𝐷 in ℱ
are said to be equivalent if 𝑃[(𝐶 ⧵ 𝐷) ∪ (𝐷 ⧵ 𝐶)] = 0), respectively. Let 𝐵ℱ =
{𝑎 = [𝐴] ∶ 𝐴 ∈ ℱ}, 1 = [Ω], 0 = [∅], 𝑎 ∧ 𝑏 = [𝐴 ∩ 𝐵], 𝑎 ∨ 𝑏 = [𝐴 ∪ 𝐵]
and 𝑎𝑐 = [𝐴𝑐], where 𝐴𝑐 denotes the complement of 𝐴, then (𝐵ℱ , ∧, ∨,𝑐 , 0, 1)
is a complete Boolean algebra, namely, a complete complemented distributive
lattice (see [31] for details). Specifically, 𝐵ℱ is called the measure algebra asso-
ciated with (Ω,ℱ, 𝑃).
It is well known from [11] that 𝐿̄0(ℱ) is a complete lattice under the partial

order 𝜉 ≤ 𝜂 iff 𝜉0(𝜔) ≤ 𝜂0(𝜔) for almost all 𝜔 ∈ Ω (briefly, 𝜉0(𝜔) ≤ 𝜂0(𝜔)
a.s.), where 𝜉0 and 𝜂0 are arbitrarily chosen representatives of 𝜉 and 𝜂 in 𝐿̄0(ℱ),
respectively. In particular, the sublattice (𝐿0(ℱ), ≤) is a Dedekind complete lat-
tice.
As usual, for 𝜉, 𝜂 ∈ 𝐿̄0(ℱ), 𝜉 < 𝜂 means 𝜉 ≤ 𝜂 and 𝜉 ≠ 𝜂, whereas, for any

𝑎 ∈ 𝐵ℱ , 𝜉 < 𝜂 on 𝑎means 𝜉0(𝜔) < 𝜂0(𝜔) for almost all 𝜔 ∈ 𝐴, where𝐴, 𝜉0 and
𝜂0 are arbitrarily chosen representatives of 𝑎, 𝜉 and 𝜂, respectively. Moreover,
we denote 𝐿0+(ℱ) ∶= {𝜉 ∈ 𝐿0(ℱ) ∶ 𝜉 ≥ 0} and 𝐿0++(ℱ) ∶= {𝜉 ∈ 𝐿0(ℱ) ∶ 𝜉 >
0 on 1}.
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For any 𝜉, 𝜂 ∈ 𝐿̄0(ℱ), we use (𝜉 = 𝜂) for the equivalence class of {𝜔 ∈ Ω ∶
𝜉0(𝜔) = 𝜂0(𝜔)}, where 𝜉0 and 𝜂0 are arbitrarily chosen representatives of 𝜉 and
𝜂, respectively. Similarly, one can understand (𝜉 < 𝜂) and (𝜉 ≤ 𝜂).
Definition 2.1 below is adopted from [18, 19] by following the traditional

nomenclature of random metric spaces and random normed spaces (see [41,
Chapters 9 and 15]).

Definition 2.1 ([18, 19]). An ordered pair (𝐸, ‖ ⋅ ‖) is called a random normed
module (briefly, an 𝑅𝑁 module) over 𝕂 with base (Ω,ℱ, 𝑃) if 𝐸 is a left module
over the algebra 𝐿0(ℱ,𝕂) (briefly, an 𝐿0(ℱ,𝕂)-module) and ‖ ⋅ ‖ is a mapping
from 𝐸 to 𝐿0+(ℱ) such that the following conditions are satisfied:
(1) ‖𝜉𝑥‖ = |𝜉|‖𝑥‖ for any 𝜉 ∈ 𝐿0(ℱ,𝕂) and any 𝑥 ∈ 𝐸;
(2) ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖ for any 𝑥 and 𝑦 in 𝐸;
(3) ‖𝑥‖ = 0 implies 𝑥 = 𝜃 (the null element of 𝐸).
As usual, ‖ ⋅ ‖ is called the 𝐿0-norm on 𝐸.
It should be mentioned that the notion of an 𝐿0-normed 𝐿0-module, which

is equivalent to that of an 𝑅𝑁 module, was independently introduced by Gigli
in [14] for the study of nonsmooth differential geometry on metric measure
spaces, where the 𝐿0-norm was called the pointwise norm.
When (Ω,ℱ, 𝑃) is trivial, namely,ℱ = {∅,Ω}, an 𝑅𝑁 module (𝐸, ‖ ⋅ ‖) over𝕂

with base (Ω,ℱ, 𝑃) reduces to an ordinary normed space over 𝕂. The simplest
nontrivial𝑅𝑁module is (𝐿0(ℱ,𝕂), |⋅|), where |⋅| is the absolute valuemapping.
For an 𝑅𝑁module (𝐸, ‖ ⋅‖), the 𝐿0-norm ‖⋅‖ can induce two topologies. The

first topology is the (𝜀, 𝜆)-topology, whose definition originates from Schweizer
and Sklar’s work on probabilistic metric spaces [41].

Definition 2.2 ([21]). Let (𝐸, ‖ ⋅ ‖) be an 𝑅𝑁module over𝕂with base (Ω,ℱ, 𝑃).
For any real numbers 𝜀 and 𝜆 with 𝜀 > 0 and 0 < 𝜆 < 1, let 𝑁𝜃(𝜀, 𝜆) = {𝑥 ∈ 𝐸 ∶
𝑃{𝜔 ∈ Ω ∶ ‖𝑥‖(𝜔) < 𝜀} > 1−𝜆}, then𝒰𝜃 ∶= {𝑁𝜃(𝜀, 𝜆) ∶ 𝜀 > 0, 0 < 𝜆 < 1} forms
a local base of some metrizable linear topology for 𝐸, called the (𝜀, 𝜆)-topology,
denoted by𝒯𝜀,𝜆.

The (𝜀, 𝜆)-topology is an abstract generalization of the topology of conver-
gence in probability. More precisely, a sequence {𝑥𝑛, 𝑛 ∈ ℕ} in an 𝑅𝑁 module
converges to 𝑥 in this topology if and only if {‖𝑥𝑛 − 𝑥‖, 𝑛 ∈ ℕ} converges to 0
in probability. This topology is natural and convenient, for example, the devel-
opment of nonsmooth differential geometry on metric measure spaces is often
carried out under it [6, 7, 8, 15, 33, 34]. Moreover, (𝐸,𝒯𝜀,𝜆) is a metrizable topo-
logical module over the topological algebra (𝐿0(ℱ,𝕂),𝒯𝜀,𝜆) [21].
The second topology is the locally 𝐿0-convex topology, which can ensure

most of the 𝐿0-convex sets in question to have nonempty interiors and make
it possible to establish the continuity and subdifferentiability theorems for 𝐿0-
convex functions, see [13, 28] for details.

Definition 2.3 ([13]). Let (𝐸, ‖ ⋅ ‖) be an 𝑅𝑁module over𝕂with base (Ω,ℱ, 𝑃).
For any 𝑥 ∈ 𝐸 and any 𝑟 ∈ 𝐿0++(ℱ), let 𝐵(𝑥, 𝑟) = {𝑦 ∈ 𝐸 ∶ ‖𝑦 − 𝑥‖ < 𝑟 on 1},
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then {𝐵(𝑥, 𝑟) ∶ 𝑥 ∈ 𝐸, 𝑟 ∈ 𝐿0++(ℱ)} forms a base for some Hausdorff topology on
𝐸, called the locally 𝐿0-convex topology induced by ‖ ⋅ ‖, denoted by𝒯𝑐.

Recall that a nonempty subset 𝐺 of an 𝑅𝑁 module (𝐸, ‖ ⋅ ‖) is said to be 𝐿0-
convex if 𝜉𝑥+(1−𝜉)𝑦 ∈ 𝐺 for any 𝑥, 𝑦 ∈ 𝐺 and any 𝜉 ∈ 𝐿0+(ℱ)with 0 ≤ 𝜉 ≤ 1;
𝐿0-absorbent if for any 𝑥 ∈ 𝐸 there exists 𝛿 ∈ 𝐿0++(ℱ) such that 𝜆𝑥 ∈ 𝐺 for
any 𝜆 ∈ 𝐿0(ℱ,𝕂) with |𝜆| ≤ 𝛿; 𝐿0-balanced if 𝜆𝑥 ∈ 𝐺 for any 𝑥 ∈ 𝐺 and any
𝜆 ∈ 𝐿0(ℱ,𝕂) with |𝜆| ≤ 1. It is clear that 𝐵(𝜃, 𝑟) ∶= {𝑦 ∈ 𝐸 ∶ ‖𝑦‖ < 𝑟 on 1} is
𝐿0-convex, 𝐿0-absorbent and 𝐿0-balanced for any 𝑟 ∈ 𝐿0++(ℱ). It is well known
that {𝐵(𝜃, 𝑟) ∶ 𝑟 ∈ 𝐿0++(ℱ)} forms a local base for the locally 𝐿0-convex topology
𝒯𝑐 on 𝐸.
For an 𝑅𝑁 module (𝐸, ‖ ⋅ ‖), 𝒯𝑐 is stronger than 𝒯𝜀,𝜆, but 𝒯𝑐 is not a linear

topology in general since scalarmultiplication is not necessarily continuous un-
der𝒯𝑐. Consequently, (𝐸,𝒯𝑐) is only a topological module over the topological
ring (𝐿0(ℱ,𝕂),𝒯𝑐), see [13, 21] for details.
For clarity and convenience in presenting the key notion of 𝜎-stable sets,

we first recall some basic notions concerning measure algebras and regular
𝐿0(ℱ,𝕂)-modules.
From now on, for any 𝑎 ∈ 𝐵ℱ , we always use 𝐼𝑎 to denote the equivalence

class of 𝐼𝐴, where 𝐴 is an arbitrarily chosen representative of 𝑎 and 𝐼𝐴 denotes
the characteristic function of 𝐴 (namely, 𝐼𝐴(𝜔) = 1 if 𝜔 ∈ 𝐴 and 𝐼𝐴(𝜔) = 0
otherwise). For a subset 𝐻 of a complete lattice (e.g., 𝐵ℱ), we use

⋁𝐻 and⋀𝐻 to denote the supremum and infimum of𝐻, respectively.
As usual, for any 𝑎, 𝑏 ∈ 𝐵ℱ , 𝑎 > 𝑏 means 𝑎 ≥ 𝑏 and 𝑎 ≠ 𝑏. A subset

{𝑎𝑖 ∶ 𝑖 ∈ 𝐼} of 𝐵ℱ is called a partition of unity if
⋁

𝑖∈𝐼 𝑎𝑖 = 1 and 𝑎𝑖 ∧ 𝑎𝑗 = 0 for
any 𝑖, 𝑗 ∈ 𝐼 with 𝑖 ≠ 𝑗. The collection of all such partitions is denoted by 𝑝(1).
For any {𝑎𝑗 ∶ 𝑗 ∈ 𝐽} ∈ 𝑝(1), it is clear that the set {𝑗 ∈ 𝐽 ∶ 𝑎𝑗 > 0} is at most
countable.
An 𝐿0(ℱ,𝕂)-module 𝐸 is said to be regular if 𝐸 has the following property:

for any given two elements 𝑥 and 𝑦 in 𝐸, if there exists {𝑎𝑛, 𝑛 ∈ ℕ} ∈ 𝑝(1) such
that 𝐼𝑎𝑛𝑥 = 𝐼𝑎𝑛𝑦 for each 𝑛 ∈ ℕ, then 𝑥 = 𝑦.
In the remainder of this paper, all the 𝐿0(ℱ,𝕂)-modules under consideration

are assumed to be regular. This restriction is not excessive, since all random
normed modules are regular.

Definition 2.4 ([21]). Let 𝐸 be an 𝐿0(ℱ,𝕂)-module and𝐺 be a nonempty subset
of 𝐸. 𝐺 is said to be finitely stable if 𝐼𝑎𝑥 + 𝐼𝑎𝑐𝑦 ∈ 𝐺 for any 𝑥, 𝑦 ∈ 𝐺 and any
𝑎 ∈ 𝐵ℱ . 𝐺 is said to be 𝜎-stable (or to have the countable concatenation property
in the original terminology of [21]) if for each sequence {𝑥𝑛, 𝑛 ∈ ℕ} in𝐺 and each
{𝑎𝑛, 𝑛 ∈ ℕ} ∈ 𝑝(1), there exists some 𝑥 ∈ 𝐺 such that 𝐼𝑎𝑛𝑥 = 𝐼𝑎𝑛𝑥𝑛 for each 𝑛 ∈
ℕ (𝑥 is unique since 𝐸 is assumed to be regular, usually denoted by

∑∞
𝑛=1 𝐼𝑎𝑛𝑥𝑛,

called the countable concatenation of {𝑥𝑛, 𝑛 ∈ ℕ} along {𝑎𝑛, 𝑛 ∈ ℕ}). By the way,
if 𝐺 is 𝜎-stable and 𝐻 is a nonempty subset of 𝐺, then 𝜎(𝐻) ∶= {∑∞

𝑛=1 𝐼𝑎𝑛ℎ𝑛 ∶
{ℎ𝑛, 𝑛 ∈ ℕ} is a sequence in𝐻 and {𝑎𝑛, 𝑛 ∈ ℕ} ∈ 𝑝(1)} is called the 𝜎-stable hull
of𝐻.
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It is clear that 𝐿0(ℱ) is 𝜎-stable. In particular, 𝐿0(ℱ,ℕ) is a 𝜎-stable directed
set as a subset of (𝐿0(ℱ), ≤).
Now, the connection between somebasic results derived from the two topolo-

gies 𝒯𝜀,𝜆 and 𝒯𝑐 can be summarized in Proposition 2.5 below.

Proposition 2.5 ([21]). Let (𝐸, ‖⋅‖) be an𝑅𝑁module over𝕂with base (Ω,ℱ, 𝑃)
and 𝐺 be a nonempty subset of 𝐸. Then we have the following:
(1) If 𝐺 is 𝜎-stable, then 𝐺−

𝜀,𝜆 = 𝐺−
𝑐 , where 𝐺−

𝜀,𝜆 and 𝐺
−
𝑐 denote the closure of 𝐺

under𝒯𝜀,𝜆 and𝒯𝑐, respectively.
(2) If 𝐺 is finitely stable, then 𝐺 is 𝒯𝜀,𝜆-complete iff 𝐺 is both 𝜎-stable and 𝒯𝑐-

complete.

Remark 2.6. By Proposition 2.5, a 𝜎-stable subset 𝐺 of an 𝑅𝑁 module has the
same closedness (resp., completeness) under𝒯𝜀,𝜆 and𝒯𝑐. Hence, in the remainder
of this paper, whenever 𝐺 is 𝜎-stable, we will simply refer to 𝐺 as closed (resp.,
complete) without specifying the topology.

Motivated by the randomized version of the Bolzano–Weierstrass theorem
[29], Guo et al. introduced and systematically studied the notion of random
sequential compactness in 𝑅𝑁 modules in [24].

Definition 2.7 ([24]). Let (𝐸, ‖ ⋅ ‖) be an 𝑅𝑁 module over𝕂 with base (Ω,ℱ, 𝑃)
and 𝐺 a nonempty subset such that 𝐺 is contained in a 𝜎-stable subset 𝐻 of 𝐸.
Given a sequence {𝑥𝑛, 𝑛 ∈ ℕ} in𝐺, a sequence {𝑦𝑘, 𝑘 ∈ ℕ} in𝐻 is called a random
subsequence of {𝑥𝑛, 𝑛 ∈ ℕ} if there exists a sequence {𝑛𝑘, 𝑘 ∈ ℕ} in 𝐿0(ℱ,ℕ) such
that the following two conditions are satisfied:

(1) 𝑛𝑘 < 𝑛𝑘+1 on 1 for any 𝑘 ∈ ℕ;
(2) 𝑦𝑘 = 𝑥𝑛𝑘 ∶=

∑∞
𝑙=1 𝐼(𝑛𝑘=𝑙)𝑥𝑙 for each 𝑘 ∈ ℕ.

Further, 𝐺 is said to be random sequentially compact if there exists a random
subsequence {𝑦𝑘, 𝑘 ∈ ℕ} of {𝑥𝑛, 𝑛 ∈ ℕ} for any sequence {𝑥𝑛, 𝑛 ∈ ℕ} in 𝐺 such
that {𝑦𝑘, 𝑘 ∈ ℕ} converges in𝒯𝜀,𝜆 to some element in 𝐺.

A careful reader will find that we require 𝑛𝑘 to be a positive integer-valued
measurable function in the definition of a random subsequence in [24] instead
of an element in 𝐿0(ℱ,ℕ) in Definition 2.7, but it is easy to check that the two
formulations are essentially equivalent!
Let 𝑋 and 𝑌 be two nonempty sets and 𝐹 ∶ 𝑋 → 2𝑌 ⧵ {∅} be a set-valued

mapping. For any nonempty sets 𝐺 ⊆ 𝑋 and𝑀 ⊆ 𝑌, the image of 𝐺 under 𝐹 is
defined by

𝐹(𝐺) =
⋃

𝑥∈𝐺
𝐹(𝑥),

and the upper inverse of𝑀 is defined by

𝐹+(𝑀) = {𝑥 ∈ 𝑋 ∶ 𝐹(𝑥) ⊆ 𝑀}.
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Let 𝐺 be a 𝜎-stable subset of an 𝐿0(ℱ,𝕂)-module. For any sequence of non-
empty subsets {𝐺𝑛, 𝑛 ∈ ℕ} of 𝐺 and any {𝑎𝑛, 𝑛 ∈ ℕ} ∈ 𝑝(1),

∞∑

𝑛=1
𝐼𝑎𝑛𝐺𝑛 ∶= {

∞∑

𝑛=1
𝐼𝑎𝑛𝑥𝑛 ∶ 𝑥𝑛 ∈ 𝐺𝑛, ∀𝑛 ∈ ℕ}

is called the countable concatenation of {𝐺𝑛, 𝑛 ∈ ℕ} along {𝑎𝑛, 𝑛 ∈ ℕ}.

Definition 2.8. Let (𝐸1, ‖ ⋅ ‖1) and (𝐸2, ‖ ⋅ ‖2) be two 𝑅𝑁 modules over 𝕂 with
base (Ω,ℱ, 𝑃), 𝑋 ⊆ 𝐸1, 𝑌 ⊆ 𝐸2 two nonempty sets and 𝐹 ∶ 𝑋 → 2𝑌 ⧵ {∅} a
set-valued mapping. 𝐹 is said to be
(1) 𝜎-stable if both 𝑋 and 𝐹(𝑋) are 𝜎-stable and

𝐹(
∞∑

𝑛=1
𝐼𝑎𝑛𝑥𝑛) =

∞∑

𝑛=1
𝐼𝑎𝑛𝐹(𝑥𝑛)

for any sequence {𝑥𝑛, 𝑛 ∈ ℕ} in 𝑋 and any {𝑎𝑛, 𝑛 ∈ ℕ} ∈ 𝑝(1).
(2) 𝒯𝑐-upper semicontinuous at 𝑥0 ∈ 𝑋 if for every𝒯𝑐-neighborhood𝑈 of 𝐹(𝑥0),

there is a𝒯𝑐-neighborhood𝑉 of 𝑥0 such that 𝐹(𝑉 ∩𝑋) ⊆ 𝑈 (equivalently, the
upper inverse𝐹+(𝑈) is a𝒯𝑐-neighborhood of 𝑥0 in𝑋). Furthermore, 𝐹 is said
to be𝒯𝑐-upper semicontinuous on𝑋 if it is𝒯𝑐-upper semicontinuous at every
point 𝑥 ∈ 𝑋.

A point 𝑥0 ∈ 𝑋 is said to be a fixed point of the set-valued mapping 𝐹 ∶ 𝑋 →
2𝑋 if 𝑥0 ∈ 𝐹(𝑥0).
Now we can give the main result of this paper.

Theorem 2.9. Let (𝐸, ‖ ⋅ ‖) be an 𝑅𝑁 module over 𝕂 with base (Ω,ℱ, 𝑃), 𝐺 a
random sequentially compact 𝐿0-convex subset of 𝐸 and 𝐹 ∶ 𝐺 → 2𝐺∖{∅} a 𝜎-
stable𝒯𝑐-upper semicontinuous mapping such that 𝐹(𝑥) is closed and 𝐿0-convex
for each 𝑥 ∈ 𝐺. Then 𝐹 has a fixed point.

Remark 2.10. (1) Since 𝐺 is random sequentially compact and 𝐿0-convex, by
part (6) of [24, Lemma 3.5] and part (2) of Proposition 2.5 𝐺 is 𝜎-stable and
𝒯𝜀,𝜆-complete, which ensures that the 𝜎-stability of 𝐹 is well defined. More-
over, since 𝐹 is 𝜎-stable, it is easy to verify that 𝐹(𝑥) is 𝜎-stable for any 𝑥 ∈ 𝑋.
Consequently, for any 𝑥 ∈ 𝑋, the closedness of 𝐹(𝑥) is understood as in Re-
mark 2.6.

(2) If (Ω,ℱ, 𝑃) is trivial, namely, ℱ = {∅,Ω}, the 𝑅𝑁 module (𝐸, ‖ ⋅ ‖) reduces
to an ordinary normed space, 𝐺 to a compact convex subset of 𝐸 and 𝐹 to
an ordinary upper semicontinuous set-valued mapping. Hence, Theorem 2.9
generalizes the classical Kakutani fixed point theorem [3, 30, 37].

(3) When 𝐹 is single-valued, it reduces to a 𝜎-stable 𝒯𝑐-continuous mapping.
Consequently, by [24, Lemma 4.3], Theorem 2.9 also generalizes the noncom-
pact Schauder fixed point theorem [24, Theorem 2.12].

We conclude the section by giving an improved version of [24, Lemma 4.4]
(namely, Proposition 2.14 below), where we impose the additional assumption
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that the related random sequentially continuous mapping 𝑓 is 𝜎-stable. Ran-
dom Brouwer fixed point theorem [24, Lemma 4.5 or Lemma 4.6] is a basis
for a noncompact Schauder fixed point theorem [24, Theorem 2.12], and [24,
Lemma 4.4] plays an essential role in the proof of [24, Lemma 4.5]. The im-
proved version shows that the random Brouwer fixed point theorem and the
noncompact Schauder fixed point theorem established in [24] are both correct
since the random sequentially continuous mappings involved in the two theo-
rems are both 𝜎-stable. Besides, we would like to suggest that the reader refer
to our recent work [44] for a new complete proof of the random Brouwer fixed
point theorem.
Besides the 𝜎-stability of the random sequentially continuous mapping in

[24, Lemma 4.4] was not assumed, the original proof of [24, Lemma 4.4] used
part (2) of [24, Lemma 3.5]. Part (2) of [24, Lemma 3.5] said that, in an𝑅𝑁mod-
ule (𝐸, ‖ ⋅ ‖), if a sequence {𝑥𝑛, 𝑛 ∈ ℕ} in some 𝜎-stable subset of 𝐸 converges in
𝒯𝜀,𝜆 to 𝑥0 ∈ 𝐸, then any random subsequence {𝑥𝑛𝑘 , 𝑘 ∈ ℕ} of {𝑥𝑛, 𝑛 ∈ ℕ} con-
verges in 𝒯𝜀,𝜆 to 𝑥0. Unfortunately, there exist some counterexamples show-
ing that part (2) of [24, Lemma 3.5] does not necessarily hold. Fortunately,
Lemma 2.11 below can be used to give a new proof of the improved version of
[24, Lemma 4.4].

Lemma 2.11. Let (𝐸, ‖ ⋅ ‖) be an 𝑅𝑁 module over 𝕂 with base (Ω,ℱ, 𝑃) and
{𝑥𝑛, 𝑛 ∈ ℕ} be a sequence in some 𝜎-stable subset of 𝐸 such that {𝑥𝑛, 𝑛 ∈ ℕ}
converges a.s. to 𝑥0 ∈ 𝐸, namely, {‖𝑥𝑛−𝑥0‖, 𝑛 ∈ ℕ} converges a.s. to 0. Then any
random subsequence {𝑥𝑛𝑘 , 𝑘 ∈ ℕ} of {𝑥𝑛, 𝑛 ∈ ℕ} converges a.s. to 𝑥0.

Proof. Let 𝜀 > 0 be a given real number. Since 𝑛𝑘 < 𝑛𝑘+1 on 1 for any 𝑘 ∈ ℕ
implies that 𝑛𝑘 ≥ 𝑘 for each 𝑘 ∈ 𝕂, then we have

(‖𝑥𝑛𝑘 − 𝑥‖ ≥ 𝜀) = (
∞∑

𝑙=1
𝐼(𝑛𝑘=𝑙)‖𝑥𝑙 − 𝑥‖ ≥ 𝜀)

=
∞⋁

𝑙=1
[(𝑛𝑘 = 𝑙) ∧ (‖𝑥𝑙 − 𝑥‖ ≥ 𝜀)]

=
∞⋁

𝑙=𝑘
[(𝑛𝑘 = 𝑙) ∧ (‖𝑥𝑙 − 𝑥‖ ≥ 𝜀)]

≤
∞⋁

𝑙=𝑘
(‖𝑥𝑙 − 𝑥‖ ≥ 𝜀)

for each 𝑘 ∈ ℕ. Furthermore, since {𝑥𝑛, 𝑛 ∈ ℕ} converges a.s. to 𝑥0 ∈ 𝐸, then,
in the language of measure algebra, we have

∞⋀

𝑚=1

∞⋁

𝑙=𝑚
(‖𝑥𝑙 − 𝑥0‖ ≥ 𝜀) = 0.
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It follows that
∞⋀

𝑚=1

∞⋁

𝑘=𝑚
(‖𝑥𝑛𝑘 − 𝑥‖ ≥ 𝜀) ≤

∞⋀

𝑚=1

∞⋁

𝑘=𝑚

∞⋁

𝑙=𝑘
(‖𝑥𝑙 − 𝑥‖ ≥ 𝜀)

=
∞⋀

𝑚=1

∞⋁

𝑙=𝑚
(‖𝑥𝑙 − 𝑥‖ ≥ 𝜀)

= 0,

implying {‖𝑥𝑛𝑘 − 𝑥‖, 𝑘 ∈ ℕ} converges a.s. to 0. Thus, {𝑥𝑛𝑘 , 𝑘 ∈ ℕ} converges
a.s. to 𝑥0. □

Definition 2.12 ([24]). Let (𝐸1, ‖ ⋅ ‖1) and (𝐸2, ‖ ⋅ ‖2) be two 𝑅𝑁 modules over𝕂
with base (Ω,ℱ, 𝑃), 𝐺1 and 𝐺2 two nonempty subsets of 𝐸1 and 𝐸2, respectively,
and 𝑓 a mapping from 𝐺1 to 𝐺2. 𝑓 is said to be:
(1) 𝜎-stable if both 𝐺1 and 𝐺2 are 𝜎-stable and

𝑓(
∞∑

𝑘=1
𝐼𝑎𝑘𝑥𝑘) =

∞∑

𝑘=1
𝐼𝑎𝑘𝑓(𝑥𝑘)

for any {𝑎𝑘, 𝑘 ∈ ℕ} ∈ 𝑝(1) and any sequence {𝑥𝑛, 𝑛 ∈ ℕ} in 𝐺1.
(2) random sequentially continuous at 𝑥0 ∈ 𝐺1 if 𝐺1 is 𝜎-stable and if for any

sequence {𝑥𝑛, 𝑛 ∈ ℕ} in 𝐺1 convergent in 𝒯𝜀,𝜆 to 𝑥0 there exists a random
subsequence {𝑥𝑛𝑘 , 𝑘 ∈ ℕ} of {𝑥𝑛, 𝑛 ∈ ℕ} such that {𝑓(𝑥𝑛𝑘 ), 𝑘 ∈ ℕ} converges
in 𝒯𝜀,𝜆 to 𝑓(𝑥0). Further, 𝑓 is said to be random sequentially continuous if 𝑓
is random sequentially continuous at any point in 𝐺1.

Lemma 2.13. Let (𝐸1, ‖ ⋅ ‖1) and (𝐸2, ‖ ⋅ ‖2) be two 𝑅𝑁modules over𝕂with base
(Ω,ℱ, 𝑃),𝐺1 ⊆ 𝐸1 and𝐺2 ⊆ 𝐸2 two nonempty𝜎-stable subsets, and𝑓 ∶ 𝐺1 → 𝐺2
a randomsequentially continuousmapping. Then for any sequence {𝑥𝑛, 𝑛 ∈ ℕ} in
𝐺1 that converges in𝒯𝜀,𝜆 to 𝑥0 ∈ 𝐺1, there exists a random subsequence {𝑥𝑛𝑘 , 𝑘 ∈
ℕ} of {𝑥𝑛, 𝑛 ∈ ℕ} such that {𝑥𝑛𝑘 , 𝑘 ∈ ℕ} converges a.s. to 𝑥0 and {𝑓(𝑥𝑛𝑘 ), 𝑘 ∈ ℕ}
converges a.s. to 𝑓(𝑥0).

Proof. Since {𝑥𝑛, 𝑛 ∈ ℕ} converges in 𝒯𝜀,𝜆 to 𝑥0 ∈ 𝐺, there exists a subse-
quence {𝑥′𝑖 , 𝑖 ∈ ℕ} of {𝑥𝑛, 𝑛 ∈ ℕ} such that {𝑥′𝑖 , 𝑖 ∈ ℕ} converges a.s. to 𝑥0. We
can assume, without loss of generality, that {𝑥′𝑖 , 𝑖 ∈ ℕ} is just {𝑥𝑛, 𝑛 ∈ ℕ} itself,
namely, {𝑥𝑛, 𝑛 ∈ ℕ} converges a.s. to 𝑥0. Further, since 𝑓 is random sequen-
tially continuous, there exists a random subsequence {𝑥𝑛𝑘 , 𝑘 ∈ ℕ} of {𝑥𝑛, 𝑛 ∈ ℕ}
such that {𝑓(𝑥𝑛𝑘 ), 𝑘 ∈ ℕ} converges in 𝒯𝜀,𝜆 to 𝑓(𝑥0).
For {𝑓(𝑥𝑛𝑘 ), 𝑘 ∈ ℕ}, there exists a subsequence {𝑓(𝑥𝑛𝑘𝑙 ), 𝑙 ∈ ℕ} that con-

verges a.s. to 𝑓(𝑥0). Clearly, {𝑥𝑛𝑘𝑙 , 𝑙 ∈ ℕ} is a subsequence of {𝑥𝑛𝑘 , 𝑘 ∈ ℕ} and
hence a random subsequence of {𝑥𝑛, 𝑛 ∈ ℕ}. By Lemma 2.11, {𝑥𝑛𝑘𝑙 , 𝑙 ∈ ℕ} also
converges a.s. to 𝑥0. □
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The proof of Proposition 2.14 below is merely a slight modification to the
original proof of [24, Lemma 4.4]. The readerwill find that the newproof essen-
tially only replace part (2) of [24, Lemma 3.5] with Lemma 2.11 in the original
proof of [24, Lemma 4.4].

Proposition 2.14. Let (𝐸1, ‖⋅‖)and (𝐸2, ‖⋅‖) be two𝑅𝑁modules over𝕂with base
(Ω,ℱ, 𝑃),𝐺1 ⊂ 𝐸1 and𝐺2 ⊂ 𝐸2 two 𝜎-stable subsets, and 𝑓 ∶ 𝐺1 → 𝐺2 a 𝜎-stable
randomsequentially continuousmapping. For a sequence {(𝑥𝑚1 , 𝑥

𝑚
2 ,⋯ , 𝑥𝑚𝑙 ),𝑚 ∈

ℕ} in 𝐺𝑙
1, where 𝑙 is a fixed positive integer and 𝐺

𝑙
1 is the 𝑙–th Cartesian power set

of 𝐺1, if there exists a random subsequence {(𝑥𝑀
(0)
𝑛

1 , 𝑥𝑀
(0)
𝑛

2 ,⋯ , 𝑥𝑀
(0)
𝑛

𝑙 ), 𝑛 ∈ ℕ} of

which such that {𝑥𝑀
(0)
𝑛

𝑖 , 𝑛 ∈ ℕ} converges in 𝒯𝜀,𝜆 to some 𝑦𝑖 ∈ 𝐺1 for each 𝑖 ∈
{1, 2,⋯ , 𝑙}, then there exists a random subsequence {(𝑥𝑀𝑛

1 , 𝑥𝑀𝑛
2 ,⋯ , 𝑥𝑀𝑛

𝑙 ), 𝑛 ∈ ℕ}

of {(𝑥𝑀
(0)
𝑛

1 , 𝑥𝑀
(0)
𝑛

2 ,⋯ , 𝑥𝑀
(0)
𝑛

𝑙 ), 𝑛 ∈ ℕ} such that {𝑥𝑀𝑛
𝑖 , 𝑛 ∈ ℕ} converges in 𝒯𝜀,𝜆 to 𝑦𝑖

and {𝑓(𝑥𝑀𝑛
𝑖 ), 𝑛 ∈ ℕ} converges in𝒯𝜀,𝜆 to 𝑓(𝑦𝑖) for each 𝑖 ∈ {1, 2,⋯ , 𝑙}.

Proof. Since {𝑥𝑀
(0)
𝑛

𝑖 , 𝑛 ∈ ℕ} converges in𝒯𝜀,𝜆 to 𝑦𝑖 for each 𝑖 ∈ {1, 2,⋯ , 𝑙}, there

exists a subsequence {(𝑥𝑁𝑛
1 , 𝑥𝑁𝑛

2 ,⋯ , 𝑥𝑁𝑛
𝑙 ), 𝑛 ∈ ℕ} of {(𝑥𝑀

(0)
𝑛

1 , 𝑥𝑀
(0)
𝑛

2 ,⋯ , 𝑥𝑀
(0)
𝑛

𝑙 ), 𝑛 ∈
ℕ} such that {𝑥𝑁𝑛

𝑖 , 𝑛 ∈ ℕ} converges a.s. to 𝑦𝑖 for each 𝑖 ∈ {1, 2,⋯ , 𝑙}. We
can assume, without loss of generality, that {(𝑥𝑁𝑛

1 , 𝑥𝑁𝑛
2 , ⋯ , 𝑥𝑁𝑛

𝑙 ), 𝑛 ∈ ℕ} is just

{(𝑥𝑀
(0)
𝑛

1 , 𝑥𝑀
(0)
𝑛

2 ,⋯ , 𝑥𝑀
(0)
𝑛

𝑙 ), 𝑛 ∈ ℕ} itself, namely {𝑥𝑀
(0)
𝑛

𝑖 , 𝑛 ∈ ℕ} converges a.s. to 𝑦𝑖
for each 𝑖 ∈ {1, 2,⋯ , 𝑙}.
For {𝑥𝑀

(0)
𝑛

1 , 𝑛 ∈ ℕ}, since 𝑓 is random sequentially continuous, by Lemma

2.13 there exists a random subsequence {𝑥
𝑀(0)
𝑛𝑘

1 , 𝑘 ∈ ℕ} of {𝑥𝑀
(0)
𝑛

1 , 𝑛 ∈ ℕ} such

that {𝑥
𝑀(0)
𝑛𝑘

1 , 𝑘 ∈ ℕ} converges a.s. to 𝑦1 and {𝑓(𝑥
𝑀(0)
𝑛𝑘

1 ), 𝑘 ∈ ℕ} converges a.s.
to 𝑓(𝑦1). Let 𝑀

(1)
𝑘 = 𝑀(0)

𝑛𝑘 for each 𝑘 ∈ ℕ, namely, 𝑀(1)
𝑘 = ∑∞

𝑙=1 𝐼(𝑛𝑘=𝑙)𝑀
(0)
𝑙 .

Then {(𝑥𝑀
(1)
𝑛

1 , 𝑥𝑀
(1)
𝑛

2 ,⋯ , 𝑥𝑀
(1)
𝑛

𝑙 ), 𝑛 ∈ ℕ} is a random subsequence of {(𝑥𝑀
(0)
𝑛

1 , 𝑥𝑀
(0)
𝑛

2 ,

⋯ , 𝑥𝑀
(0)
𝑛

𝑙 ), 𝑛 ∈ ℕ} such that {𝑥𝑀
(1)
𝑛

𝑖 , 𝑛 ∈ ℕ} still converges a.s. to 𝑦𝑖 for each

𝑖 ∈ {1, 2,⋯ , 𝑙} (by Lemma 2.11) and {𝑓(𝑥𝑀
(1)
𝑛

1 ), 𝑛 ∈ ℕ} converges a.s. to 𝑓(𝑦1).

For {𝑥𝑀
(1)
𝑛

2 , 𝑛 ∈ ℕ}, by Lemma 2.13 there exists a random subsequence

{𝑥
𝑀(1)
𝑛𝑘

2 , 𝑘 ∈ ℕ} of {𝑥𝑀
(1)
𝑛

2 , 𝑛 ∈ ℕ} such that {𝑥
𝑀(1)
𝑛𝑘

2 , 𝑘 ∈ ℕ} converges a.s. to 𝑦2
and {𝑓(𝑥

𝑀(1)
𝑛𝑘

2 ), 𝑘 ∈ ℕ} converges a.s. to 𝑓(𝑦2). Since 𝑓 is 𝜎-stable, it is easy

to see that {𝑓(𝑥
𝑀(1)
𝑛𝑘

1 ), 𝑘 ∈ ℕ} is also a random subsequence of {𝑓(𝑥𝑀
(1)
𝑛

1 ), 𝑛 ∈

ℕ}, then {𝑓(𝑥
𝑀(1)
𝑛𝑘

1 ), 𝑘 ∈ ℕ} still converges a.s. to 𝑓(𝑦1). Let 𝑀
(2)
𝑘 = 𝑀(1)

𝑛𝑘 for
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each 𝑘 ∈ ℕ, then {(𝑥𝑀
(2)
𝑛

1 , 𝑥𝑀
(2)
𝑛

2 ,⋯ , 𝑥𝑀
(2)
𝑛

𝑙 ), 𝑛 ∈ ℕ} is a random subsequence of

{(𝑥𝑀
(0)
𝑛

1 , 𝑥𝑀
(0)
𝑛

2 ,⋯ , 𝑥𝑀
(0)
𝑛

𝑙 ), 𝑛 ∈ ℕ} such that {𝑥𝑀
(2)
𝑛

𝑖 , 𝑛 ∈ ℕ} still converges a.s. to 𝑦𝑖
for each 𝑖 ∈ {1, 2,⋯ , 𝑙} and {𝑓(𝑥𝑀

(2)
𝑛

𝑖 ), 𝑛 ∈ ℕ} converges a.s. to 𝑓(𝑦𝑖) for each
𝑖 ∈ {1, 2}.
Inductively, we can obtain a randomsubsequence {(𝑥𝑀

(𝑙)
𝑛

1 , 𝑥𝑀
(𝑙)
𝑛

2 ,⋯ , 𝑥𝑀
(𝑙)
𝑛

𝑙 ), 𝑛 ∈

ℕ} of {(𝑥𝑀
(0)
𝑛

1 , 𝑥𝑀
(0)
𝑛

2 ,⋯ , 𝑥𝑀
(0)
𝑛

𝑙 ), 𝑛 ∈ ℕ} such that {𝑥𝑀
(𝑙)
𝑛

𝑖 , 𝑛 ∈ ℕ} converges a.s. to

𝑦𝑖 for each 𝑖 ∈ {1, 2,⋯ , 𝑙} and {𝑓(𝑥𝑀
(𝑙)
𝑛

𝑖 ), 𝑛 ∈ ℕ} converges a.s. to 𝑓(𝑦𝑖) for each
𝑖 ∈ {1, 2,⋯ , 𝑙}. Finally, taking 𝑀𝑛 = 𝑀𝑙

𝑛 for each 𝑛 ∈ ℕ, we can, of course,
obtain our desired result. □

3. Proof of Theorem 2.9: Random Kakutani fixed point theorem
As pointed out in Section 1, the proof of Theorem 2.9 relies on the equiva-

lence between a 𝜎-stable random sequentially compact set and a stably sequen-
tially compact set. To present the notion of a stably sequentially compact set,
we first recall Definition 3.1 below, where the notion of a stable subsequence is
a strengthened version of the original notion introduced in [23].

Definition 3.1. Let (𝐸, ‖ ⋅ ‖) be an 𝑅𝑁 module over 𝕂 with base (Ω,ℱ, 𝑃), 𝐺 a
𝜎-stable subset of 𝐸 and {𝑥𝑛, 𝑛 ∈ ℕ} a sequence in 𝐺.
(1) A 𝜎-stable mapping 𝑥 from 𝐿0(ℱ,ℕ) to 𝐺 is called a stable sequence in 𝐺,

denoting 𝑥(𝑢) by 𝑥𝑢 for each 𝑢 ∈ 𝐿0(ℱ,ℕ).
(2) For each 𝑢 ∈ 𝐿0(ℱ,ℕ), define

𝑥𝑢 =
∞∑

𝑛=1
𝐼(𝑢=𝑛)𝑥𝑛.

Then {𝑥𝑢, 𝑢 ∈ 𝐿0(ℱ,ℕ)} is a stable sequence in 𝐺, called the stable sequence
generated by {𝑥𝑛, 𝑛 ∈ ℕ}.

(3) A stable sequence {𝑦𝑣, 𝑣 ∈ 𝐿0(ℱ,ℕ)} is called a stable subsequence of a stable
sequence {𝑥𝑢, 𝑢 ∈ 𝐿0(ℱ,ℕ)} if there exists a𝜎-stablemapping𝜑 ∶ 𝐿0(ℱ,ℕ) →
𝐿0(ℱ,ℕ) such that the following two conditions are satisfied:
(i) 𝑦𝑣 = 𝑥𝜑(𝑣) for each 𝑣 ∈ 𝐿0(ℱ,ℕ);
(ii) 𝜑(𝑛) < 𝜑(𝑛 + 1) on 1 for each 𝑛 ∈ ℕ.
For simplicity, we may also write {𝑥𝜑(𝑣), 𝑣 ∈ 𝐿0(ℱ,ℕ)} for {𝑦𝑣, 𝑣 ∈ 𝐿0(ℱ,ℕ)}.

According to part (3) of Definition 3.1, it is easy to check that {𝑥𝜑(𝑣), 𝑣 ∈
𝐿0(ℱ,ℕ)} is also a subnet of {𝑥𝑢, 𝑢 ∈ 𝐿0(ℱ,ℕ)}.
Let 𝐸 be an 𝐿0(ℱ,𝕂)-module and 𝐺 be a 𝜎-stable subset of 𝐸. A subset 𝐻 of

𝐺 is said to be stably finite if there exist a sequence {𝐺𝑛, 𝑛 ∈ ℕ} of nonempty
finite subsets of 𝐺 and {𝑎𝑛, 𝑛 ∈ ℕ} ∈ 𝑝(1) such that𝐻 = ∑∞

𝑛=1 𝐼𝑎𝑛𝜎(𝐺𝑛).

Definition 3.2 ([23]). Let (𝐸, ‖ ⋅ ‖) be an 𝑅𝑁 module over𝕂 with base (Ω,ℱ, 𝑃)
and 𝐺 be a 𝜎-stable subset of 𝐸. 𝐺 is said to be
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(1) stably sequentially compact if every stable sequence in 𝐺 admits a stable sub-
sequence that converges in𝒯𝑐 to a point of 𝐺.

(2) random totally bounded if, for any given 𝜀 ∈ 𝐿0++(ℱ), there exist a sequence
{𝐺𝑛, 𝑛 ∈ ℕ} of nonempty finite subsets of 𝐺 and {𝑎𝑛, 𝑛 ∈ ℕ} ∈ 𝑝(1) such that

𝐼𝑎𝑛𝐺 ⊆ 𝐼𝑎𝑛[𝜎(𝐺𝑛) + 𝐵(𝜃, 𝜀)] for each 𝑛 ∈ ℕ.

Remark 3.3. In part (2) of Definition 3.2, 𝐼𝑎𝑛𝐺 ⊆ 𝐼𝑎𝑛[𝜎(𝐺𝑛) + 𝐵(𝜃, 𝜀)] for each
𝑛 ∈ ℕ implies that

𝐺 ⊆
∞∑

𝑛=1
𝐼𝑎𝑛𝜎(𝐺𝑛) + 𝐵(𝜃, 𝜀) =

⋃

𝑥∈∑∞
𝑛=1 𝐼𝑎𝑛𝜎(𝐺𝑛)

𝐵(𝑥, 𝜀).

Hence, every random totally bounded set necessarily possesses a stably finite ran-
dom 𝜀-net. It should be noted that a stably finite set is neither finite nor even count-
able in general, and therefore a random totally bounded set is much more com-
plicated than a classical totally bounded set.

One can easily see that the strengthened notion of a stable subsequence still
makes Proposition 3.4 below hold, which will play a crucial role in the proof of
Theorem 2.9.

Proposition 3.4 ([23]). Let (𝐸, ‖⋅‖) be an𝑅𝑁module over𝕂with base (Ω,ℱ, 𝑃)
and 𝐺 be a 𝜎-stable subset of 𝐸. Then the following statements are equivalent:
(1) 𝐺 is stably sequentially compact.
(2) 𝐺 is random totally bounded and complete.
(3) 𝐺 is random sequentially compact.

Remark 3.5. In [23], the notions of stably sequentially compact sets and random
totally bounded sets were introduced in a 𝑑-𝜎-stable random metric space. Def-
inition 3.2 and Proposition 3.4 are in fact special cases of [23, Definition 2.19]
and [23, Theorem 2.12], respectively, since a 𝜎-stable subset 𝐺 of an 𝑅𝑁 module
(𝐸, ‖ ⋅ ‖) naturally forms a 𝑑-𝜎-stable randommetric space (𝐺, 𝑑), where the ran-
dommetric 𝑑 ∶ 𝐺 ×𝐺 → 𝐿0+(ℱ) is defined by 𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖ for any 𝑥, 𝑦 ∈ 𝐺
(see [23] for details). Here, we present only these special cases, since the present
work is only concerned with the setting of 𝑅𝑁 modules.

Lemma 3.6. Let (𝐸1, ‖ ⋅ ‖1) and (𝐸2, ‖ ⋅ ‖2) be two 𝑅𝑁 modules over𝕂 with base
(Ω,ℱ, 𝑃), 𝑋 ⊆ 𝐸1, 𝑌 ⊆ 𝐸2 two 𝜎-stable subsets and 𝐹 ∶ 𝑋 → 2𝑌 ⧵ {∅} a 𝜎-stable
mapping. For any 𝑎 ∈ 𝐵ℱ and any 𝑥 ∈ 𝐸1, if there exists a finitely stable subset
𝐺 of 𝑋 such that 𝐼𝑎𝑥 ∈ 𝐼𝑎𝐺, then 𝐼𝑎𝐹(𝑥) ⊆ 𝐼𝑎𝐹(𝐺).

Proof. Arbitrarily choose 𝑧 ∈ 𝐺 and let 𝑥1 = 𝐼𝑎𝑥 + 𝐼𝑎𝑐𝑧. Then 𝑥1 ∈ 𝐺, and we
have

𝐼𝑎𝐹(𝑥) + 𝐼𝑎𝑐𝐹(𝑧) = 𝐹(𝐼𝑎𝑥 + 𝐼𝑎𝑐𝑧) = 𝐹(𝑥1) ⊆ 𝐹(𝐺),
implying 𝐼𝑎𝐹(𝑥) ⊆ 𝐼𝑎𝐹(𝐺). □
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Following the methodology employed in the proof of [24, Lemma 4.8], we
can establish Lemma 3.7 below. For completeness, we provide a detailed proof
here.

Lemma 3.7. Let (𝐸, ‖ ⋅ ‖) be an 𝑅𝑁 module over𝕂 with base (Ω,ℱ, 𝑃) and 𝐺 be
a 𝜎-stable 𝐿0-convex subset of𝐸. For 𝑟 ∈ 𝐿0++(ℱ) and 𝑎 ∈ 𝐵ℱ with 𝑎 > 0, suppose
that there exists a finite subset {𝑥1,⋯ , 𝑥𝑘} of𝐺 such that 𝐼𝑎𝐺 ⊆ 𝐼𝑎[𝜎({𝑥1,⋯ , 𝑥𝑘})+
𝐵(𝜃, 𝑟)]. For a finite subset {𝑦1,⋯ , 𝑦𝑘} of 𝐺, define a mapping 𝑔 ∶ 𝐺 → 𝐺 by

𝑔(𝑥) = 1
∑𝑘

𝑗=1 𝛼𝑗(𝑥)

𝑘∑

𝑖=1
𝛼𝑖(𝑥)𝑦𝑖, ∀𝑥 ∈ 𝐺,

where for each 𝑖 ∈ {1,⋯ , 𝑘}, the mapping 𝛼𝑖 ∶ 𝐺 → 𝐿0+(ℱ) is defined by
𝛼𝑖(𝑥) = max{0, 𝑟 − ‖𝐼𝑎𝑥 − 𝐼𝑎𝑥𝑖‖}, ∀𝑥 ∈ 𝐺.

Then we have the following statements:

(1)
∑𝑘

𝑖=1 𝛼𝑖(𝑥) > 0 on 1 for any 𝑥 ∈ 𝐺.
(2) 𝑔 is well defined, 𝜎-stable and𝒯𝑐-continuous.

Proof. (1) For any given 𝑥 ∈ 𝐺, since
𝐼𝑎𝐺 ⊆ 𝐼𝑎[𝜎({𝑥1,⋯ , 𝑥𝑘}) + 𝐵(𝜃, 𝑟)] = 𝜎({𝐼𝑎𝑥1,⋯ , 𝐼𝑎𝑥𝑘}) + 𝐼𝑎𝐵(𝜃, 𝑟),

there exists {𝑏𝑖, 𝑖 = 1 ∼ 𝑘} ∈ 𝑝(1) such that

𝐼𝑎𝑥 ∈
𝑘∑

𝑖=1
𝐼𝑎∧𝑏𝑖𝑥𝑖 + 𝐼𝑎𝐵(𝜃, 𝑟).

Hence, for each 𝑖 ∈ {1,⋯ , 𝑘},
𝐼𝑎∧𝑏𝑖𝑥 ∈ 𝐼𝑎∧𝑏𝑖𝑥𝑖 + 𝐼𝑎∧𝑏𝑖𝐵(𝜃, 𝑟),

implying
𝑟 − ‖𝐼𝑎𝑥 − 𝐼𝑎𝑥𝑖‖ > 0 on 𝑎 ∧ 𝑏𝑖,

namely,
𝛼𝑖(𝑥) > 0 on 𝑎 ∧ 𝑏𝑖.

Since 𝛼𝑖(𝑥) ∈ 𝐿0+(ℱ) for each 𝑖 ∈ {1,⋯ , 𝑘}, it follows that∑𝑘
𝑖=1 𝛼𝑖(𝑥) > 0 on 𝑎.

Besides, it is clear that
∑𝑘

𝑖=1 𝛼𝑖(𝑥) > 0 on 𝑎𝑐 for any 𝑥 ∈ 𝐺.
To sum up,

∑𝑘
𝑖=1 𝛼𝑖(𝑥) > 0 on 1.

(2) By (1), 𝑔 is well defined. For any {𝑎𝑛, 𝑛 ∈ ℕ} ∈ 𝑝(1) and any sequence
{𝑥𝑛, 𝑛 ∈ ℕ} in 𝐺, since 𝐺 is 𝜎-stable and each 𝛼𝑖 is also 𝜎-stable, we have

𝑔(
∞∑

𝑛=1
𝐼𝑎𝑛𝑥𝑛) =

1
∑𝑘

𝑗=1 𝛼𝑗(
∑∞

𝑛=1 𝐼𝑎𝑛𝑥𝑛)

𝑘∑

𝑖=1
𝛼𝑖(

∞∑

𝑛=1
𝐼𝑎𝑛𝑥𝑛)𝑦𝑖

= 1
∑∞

𝑛=1 𝐼𝑎𝑛(
∑𝑘

𝑗=1 𝛼𝑗(𝑥𝑛))

∞∑

𝑛=1
𝐼𝑎𝑛(

𝑘∑

𝑖=1
𝛼𝑖(𝑥𝑛)𝑦𝑖)
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=
∞∑

𝑛=1
𝐼𝑎𝑛

1
∑𝑘

𝑗=1 𝛼𝑗(𝑥𝑛)

𝑘∑

𝑖=1
𝛼𝑖(𝑥𝑛)𝑦𝑖

=
∞∑

𝑛=1
𝐼𝑎𝑛𝑔(𝑥𝑛),

which shows that 𝑔 is 𝜎-stable.
Further, since each 𝛼𝑖 is 𝒯𝑐-continuous and (𝐸,𝒯𝑐) is a topological module

over the topological ring (𝐿0(ℱ,𝕂),𝒯𝑐), 𝑔must be 𝒯𝑐-continuous. □

Now we can prove Theorem 2.9.

Proof of Theorem 2.9. Since 𝐺 is 𝜎-stable and random sequentially compact,
by Proposition 3.4 𝐺 is random totally bounded and 𝒯𝜀,𝜆-complete, so we can,
without loss of generality, assume that 𝐸 is 𝒯𝜀,𝜆-complete (otherwise, we can
consider the𝒯𝜀,𝜆-completion of 𝐸 and note that 𝐺 is invariant in the process of
𝒯𝜀,𝜆-completion). Then 𝐸 is 𝜎-stable.
Fix an 𝑛 ∈ ℕ. Since 𝐺 is random totally bounded, there exist {𝑎𝑛𝑚, 𝑚 ∈ ℕ} ∈

𝑝(1) and a sequence {𝐺𝑛
𝑚, 𝑚 ∈ ℕ} of finite subsets of 𝐺 such that

𝐺 ⊆
∞∑

𝑚=1
𝐼𝑎𝑛𝑚𝜎(𝐺

𝑛
𝑚) + 𝐵(𝜃, 1𝑛 ).

Let 𝐺𝑛
𝑚 = {𝑥𝑛𝑚,1,⋯ , 𝑥𝑛𝑚,𝑘𝑛𝑚 } for any 𝑚 ∈ ℕ, and further, we can, without loss of

generality, assume that each 𝑎𝑛𝑚 > 0. For each𝑚 ∈ ℕ and each 𝑖 ∈ {1,⋯ , 𝑘𝑛𝑚},
arbitrarily choose 𝑦𝑛𝑚,𝑖 ∈ 𝐹(𝑥𝑛𝑚,𝑖) and define a mapping 𝑔

𝑛
𝑚 ∶ 𝐺 → 𝐺 by

𝑔𝑛𝑚(𝑥) =
1

∑𝑘𝑛𝑚
𝑗=1 𝛼

𝑛
𝑚,𝑗(𝑥)

𝑘𝑛𝑚∑

𝑖=1
𝛼𝑛𝑚,𝑖(𝑥)𝑦

𝑛
𝑚,𝑖, ∀𝑥 ∈ 𝐺,

where 𝛼𝑛𝑚,𝑖 ∶ 𝐺 → 𝐿0+(ℱ) is defined by

𝛼𝑛𝑚,𝑖(𝑥) = max{0, 1𝑛 − ‖𝐼𝑎𝑛𝑚𝑥 − 𝐼𝑎𝑛𝑚𝑥
𝑛
𝑚,𝑖‖}, ∀𝑥 ∈ 𝐺.

By Lemma 3.7, 𝑔𝑛𝑚 is well defined, 𝜎-stable and 𝒯𝑐-continuous, and hence the
noncompact Schauder fixed point theorem [24, Theorem 2.12] implies that 𝑔𝑛𝑚
has a fixed point 𝑥𝑛𝑚 ∈ 𝐺, then

𝑔𝑛𝑚(𝑥𝑛𝑚) = 𝑥𝑛𝑚 ∈
∞∑

𝑚=1
𝐼𝑎𝑛𝑚𝜎({𝑥

𝑛
𝑚,1,⋯ , 𝑥𝑛𝑚,𝑘𝑛𝑚 }) + 𝐵(𝜃, 1𝑛 ).

Moreover, for each𝑚 ∈ ℕ and each 𝑖 ∈ {1,⋯ , 𝑘𝑛𝑚}, let

𝒟𝑛
𝑚,𝑖 = {𝑎 ∈ 𝐵ℱ ∶ 0 ≤ 𝑎 ≤ 𝑎𝑛𝑚 and 𝐼𝑎𝑥𝑛𝑚,𝑖 ∈ 𝐼𝑎(𝑥𝑛𝑚 + 𝐵(𝜃, 1𝑛 ))}
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and 𝑑𝑛𝑚,𝑖 =
⋁𝒟𝑛

𝑚,𝑖, then it is easy to check that 𝑑
𝑛
𝑚,𝑖 is attained, namely,

𝐼𝑑𝑛𝑚,𝑖𝑥
𝑛
𝑚,𝑖 ∈ 𝐼𝑑𝑛𝑚,𝑖 (𝑥

𝑛
𝑚 + 𝐵(𝜃, 1𝑛 )), (3.1)

implying

𝛼𝑛𝑚,𝑖(𝑥
𝑛
𝑚) > 0 on 𝑑𝑛𝑚,𝑖 and 𝛼

𝑛
𝑚,𝑖(𝑥

𝑛
𝑚) = 0 on 𝑎𝑛𝑚 ∧ (𝑑𝑛𝑚,𝑖)

𝑐.

Therefore,

𝐼𝑎𝑛𝑚𝛼
𝑛
𝑚,𝑖(𝑥

𝑛
𝑚) = 𝐼𝑑𝑛𝑚,𝑖𝛼

𝑛
𝑚,𝑖(𝑥

𝑛
𝑚), ∀𝑚 ∈ ℕ, 𝑖 ∈ {1,⋯ , 𝑘𝑛𝑚}. (3.2)

Let 𝑥𝑛 = ∑∞
𝑚=1 𝐼𝑎𝑛𝑚𝑥

𝑛
𝑚 for any 𝑛 ∈ ℕ, and further let {𝑥𝑢, 𝑢 ∈ 𝐿0(ℱ,ℕ)}

be the stable sequence generated by {𝑥𝑛, 𝑛 ∈ ℕ}, then by Proposition 3.4 there
exists a stable subsequence {𝑥𝜑(𝑣), 𝑣 ∈ 𝐿0(ℱ,ℕ)} of {𝑥𝑢, 𝑢 ∈ 𝐿0(ℱ,ℕ)} such
that {𝑥𝜑(𝑣), 𝑣 ∈ 𝐿0(ℱ,ℕ)} converges in 𝒯𝑐 to some 𝑥 ∈ 𝐺. Next we will show
that 𝑥 ∈ 𝐹(𝑥). Since 𝐹(𝑥) is closed and {𝐵(𝜃, 1

𝑢
) ∶ 𝑢 ∈ 𝐿0(ℱ,ℕ)} is a 𝒯𝑐-

neighborhood base at 𝜃, it suffices to show that

𝑥 ∈ 𝐹(𝑥) + 𝐵(𝜃, 1𝑢 ), ∀𝑢 ∈ 𝐿0(ℱ,ℕ).

For any given 𝑢 ∈ 𝐿0(ℱ,ℕ), since𝐹 is𝒯𝑐-upper semicontinuous, there exists
𝑢1 ∈ 𝐿0(ℱ,ℕ) such that

𝐹[𝐺 ∩ (𝑥 + 𝐵(𝜃, 1𝑢1
))] ⊆ 𝐹(𝑥) + 𝐵(𝜃, 12𝑢). (3.3)

Since {𝑥𝜑(𝑣), 𝑣 ∈ 𝐿0(ℱ,ℕ)} converges in𝒯𝑐 to 𝑥, there exists 𝑣0 ∈ 𝐿0(ℱ,ℕ) such
that

𝜑(𝑣) ≥ 2𝑢1 and 𝑥𝜑(𝑣) ∈ 𝑥 + 𝐵(𝜃, 1
2𝑢1

), ∀𝑣 ≥ 𝑣0. (3.4)

Let 𝑣 ≥ 𝑣0 be given. For any 𝑛 ∈ ℕ,𝑚 ∈ ℕ and 𝑖 ∈ {1,⋯ , 𝑘𝑛𝑚}, by (3.1) we have

𝐼(𝜑(𝑣)=𝑛)∧𝑑𝑛𝑚,𝑖𝑥𝜑(𝑣) = 𝐼(𝜑(𝑣)=𝑛)∧𝑑𝑛𝑚,𝑖
∞∑

𝑙=1
𝐼(𝜑(𝑣)=𝑙)𝑥𝑙

= 𝐼(𝜑(𝑣)=𝑛)∧𝑑𝑛𝑚,𝑖𝑥𝑛
= 𝐼(𝜑(𝑣)=𝑛)∧𝑑𝑛𝑚,𝑖𝑥

𝑛
𝑚

∈ 𝐼(𝜑(𝑣)=𝑛)∧𝑑𝑛𝑚,𝑖 (𝑥
𝑛
𝑚,𝑖 + 𝐵(𝜃, 1𝑛 )),

which, combined with (3.4), implies that

𝐼(𝜑(𝑣)=𝑛)∧𝑑𝑛𝑚,𝑖𝑥
𝑛
𝑚,𝑖 ∈ 𝐼(𝜑(𝑣)=𝑛)∧𝑑𝑛𝑚,𝑖 (𝑥𝜑(𝑣) + 𝐵(𝜃, 1𝑛 ))

= 𝐼(𝜑(𝑣)=𝑛)∧𝑑𝑛𝑚,𝑖 (𝑥𝜑(𝑣) + 𝐵(𝜃, 1
𝜑(𝑣)

))

⊆ 𝐼(𝜑(𝑣)=𝑛)∧𝑑𝑛𝑚,𝑖 (𝑥 + 𝐵(𝜃, 1
2𝑢1

) + 𝐵(𝜃, 1
𝜑(𝑣)

))
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⊆ 𝐼(𝜑(𝑣)=𝑛)∧𝑑𝑛𝑚,𝑖 (𝑥 + 𝐵(𝜃, 1𝑢1
)).

Furthermore, by Lemma 3.6 and (3.3) we have
𝐼(𝜑(𝑣)=𝑛)∧𝑑𝑛𝑚,𝑖𝑦

𝑛
𝑚,𝑖 ∈ 𝐼(𝜑(𝑣)=𝑛)∧𝑑𝑛𝑚,𝑖𝐹(𝑥

𝑛
𝑚,𝑖)

⊆ 𝐼(𝜑(𝑣)=𝑛)∧𝑑𝑛𝑚,𝑖𝐹[𝐺 ∩ (𝑥 + 𝐵(𝜃, 1𝑢1
))]

⊆ 𝐼(𝜑(𝑣)=𝑛)∧𝑑𝑛𝑚,𝑖 (𝐹(𝑥) + 𝐵(𝜃, 12𝑢))

for any 𝑛 ∈ ℕ, 𝑚 ∈ ℕ and 𝑖 ∈ {1,⋯ , 𝑘𝑛𝑚}. Arbitrarily choose 𝑦∗ ∈ 𝐹(𝑥), since
𝐹(𝑥) + 𝐵(𝜃, 1

2𝑢
) − 𝑦∗ is a 𝜎-stable set with 𝜃 ∈ 𝐹(𝑥) + 𝐵(𝜃, 1

2𝑢
) − 𝑦∗, we have

𝐼(𝜑(𝑣)=𝑛)∧𝑑𝑛𝑚,𝑖 (𝑦
𝑛
𝑚,𝑖 − 𝑦∗) ∈ 𝐼(𝜑(𝑣)=𝑛)∧𝑑𝑛𝑚,𝑖 (𝐹(𝑥) + 𝐵(𝜃, 12𝑢) − 𝑦∗)

⊆ 𝐹(𝑥) + 𝐵(𝜃, 12𝑢) − 𝑦∗

for any 𝑛 ∈ ℕ,𝑚 ∈ ℕ and 𝑖 ∈ {1,⋯ , 𝑘𝑛𝑚}. Furthermore, 𝐹(𝑥) + 𝐵(𝜃, 1
2𝑢
) − 𝑦∗ is

also 𝐿0-convex, by (3.2) we have
𝑥𝜑(𝑣) − 𝑦∗

=
∞∑

𝑛=1
𝐼(𝜑(𝑣)=𝑛)(𝑥𝑛 − 𝑦∗)

=
∞∑

𝑛=1
𝐼(𝜑(𝑣)=𝑛)

∞∑

𝑚=1
𝐼𝑎𝑛𝑚(𝑥

𝑛
𝑚 − 𝑦∗)

=
∞∑

𝑛=1
𝐼(𝜑(𝑣)=𝑛)

∞∑

𝑚=1
𝐼𝑎𝑛𝑚

𝑘𝑛𝑚∑

𝑖=1

𝛼𝑛𝑚,𝑖(𝑥
𝑛
𝑚)

∑𝑘𝑛𝑚
𝑗=1 𝛼

𝑛
𝑚,𝑗(𝑥

𝑛
𝑚)
(𝑦𝑛𝑚,𝑖 − 𝑦∗)

=
∞∑

𝑛=1
𝐼(𝜑(𝑣)=𝑛)

∞∑

𝑚=1
𝐼𝑎𝑛𝑚

𝑘𝑛𝑚∑

𝑖=1

𝐼(𝜑(𝑣)=𝑛)∧𝑎𝑛𝑚𝛼
𝑛
𝑚,𝑖(𝑥

𝑛
𝑚)

∑𝑘𝑛𝑚
𝑗=1 𝛼

𝑛
𝑚,𝑗(𝑥

𝑛
𝑚)

(𝑦𝑛𝑚,𝑖 − 𝑦∗)

=
∞∑

𝑛=1
𝐼(𝜑(𝑣)=𝑛)

∞∑

𝑚=1
𝐼𝑎𝑛𝑚

𝑘𝑛𝑚∑

𝑖=1

𝐼(𝜑(𝑣)=𝑛)∧𝑑𝑛𝑚,𝑖𝛼
𝑛
𝑚,𝑖(𝑥

𝑛
𝑚)

∑𝑘𝑛𝑚
𝑗=1 𝛼

𝑛
𝑚,𝑗(𝑥

𝑛
𝑚)

(𝑦𝑛𝑚,𝑖 − 𝑦∗)

=
∞∑

𝑛=1
𝐼(𝜑(𝑣)=𝑛)

∞∑

𝑚=1
𝐼𝑎𝑛𝑚

𝑘𝑛𝑚∑

𝑖=1

𝛼𝑛𝑚,𝑖(𝑥
𝑛
𝑚)

∑𝑘𝑛𝑚
𝑗=1 𝛼

𝑛
𝑚,𝑗(𝑥

𝑛
𝑚)
𝐼(𝜑(𝑣)=𝑛)∧𝑑𝑛𝑚,𝑖 (𝑦

𝑛
𝑚,𝑖 − 𝑦∗)

∈
∞∑

𝑛=1
𝐼(𝜑(𝑣)=𝑛)

∞∑

𝑚=1
𝐼𝑎𝑛𝑚

𝑘𝑛𝑚∑

𝑖=1

𝛼𝑛𝑚,𝑖(𝑥
𝑛
𝑚))

∑𝑘𝑛𝑚
𝑗=1 𝛼

𝑛
𝑚,𝑗(𝑥

𝑛
𝑚))

(𝐹(𝑥) + 𝐵(𝜃, 12𝑢) − 𝑦∗)

⊆ 𝐹(𝑥) + 𝐵(𝜃, 12𝑢) − 𝑦∗,
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namely,

𝑥𝜑(𝑣) ∈ 𝐹(𝑥) + 𝐵(𝜃, 12𝑢). (3.5)

Since (3.5) holds for any 𝑣 ≥ 𝑣0 and {𝑥𝜑(𝑣), 𝑣 ∈ 𝐿0(ℱ,ℕ)} converges in 𝒯𝑐 to 𝑥,
we have

𝑥 ∈ [𝐹(𝑥) + 𝐵(𝜃, 12𝑢)]
−
𝑐 ⊆ 𝐹(𝑥) + 𝐵(𝜃, 12𝑢) + 𝐵(𝜃, 12𝑢) ⊆ 𝐹(𝑥) + 𝐵(𝜃, 1𝑢 ).

□

4. Concluding remarks and open problems
As the notion of a 𝒯𝑐-upper semicontinuous set-valued mapping is of topo-

logical nature, the notion of a 𝒯𝜀,𝜆-upper semicontinuous set-valued mapping
can be introduced in a similar way.

Definition 4.1. Let (𝐸1, ‖ ⋅ ‖1) and (𝐸2, ‖ ⋅ ‖2) be two 𝑅𝑁 modules over 𝕂 with
base (Ω,ℱ, 𝑃), 𝑋 ⊆ 𝐸1, 𝑌 ⊆ 𝐸2 two nonempty sets and 𝐹 ∶ 𝑋 → 2𝑌 ⧵ {∅} a
set-valued mapping. 𝐹 is said to be 𝒯𝜀,𝜆-upper semicontinuous at 𝑥0 ∈ 𝑋 if for
every 𝒯𝜀,𝜆-neighborhood 𝑈 of 𝐹(𝑥0), there is a 𝒯𝜀,𝜆-neighborhood 𝑉 of 𝑥0 such
that 𝐹(𝑉∩𝑋) ⊆ 𝑈 (equivalently, the upper inverse 𝐹+(𝑈) is a𝒯𝜀,𝜆-neighborhood
of 𝑥0 in 𝑋). Furthermore, 𝐹 is said to be 𝒯𝜀,𝜆-upper semicontinuous on 𝑋 if it is
𝒯𝜀,𝜆-upper semicontinuous at every point 𝑥 ∈ 𝑋.

The choice between𝒯𝑐-upper semicontinuity and𝒯𝜀,𝜆-upper semicontinuity
may lead to two different possible versions of the random Kakutani fixed point
theorem. We have established Theorem 2.9, which can be regarded as the 𝒯𝑐-
version, whereas the 𝒯𝜀,𝜆-version has been not yet established in this paper,
namely, Problem 4.2 below is still open.

Problem 4.2. Let (𝐸, ‖ ⋅ ‖) be an 𝑅𝑁 module over 𝕂 with base (Ω,ℱ, 𝑃), 𝐺 a
random sequentially compact 𝐿0-convex subset of 𝐸 and 𝐹 ∶ 𝐺 → 2𝐺∖{∅} a 𝜎-
stable𝒯𝜀,𝜆-upper semicontinuousmapping such that𝐹(𝑥) is closed and𝐿0-convex
for each 𝑥 ∈ 𝐺. Does 𝐹 have a fixed point?

In comparing the two versions of the random Kakutani fixed point theorem,
a natural question arises as to whether one version implies the other. In the
case of single-valued mappings, the noncompact Schauder fixed point theorem
[24, Theorem 2.12] can be regarded as the 𝒯𝑐-version, which in fact includes
the 𝒯𝜀,𝜆-version as a special case. More precisely, Guo et al. introduced the
notion of a random sequentially continuous single-valued mapping (see part
(5) of [24, Definition 2.11]) and proved that a 𝜎-stable single-valued mapping
𝑓 is random sequentially continuous if and only if it is 𝒯𝑐-continuous (see [24,
Lemma 4.3]). Therefore, a 𝜎-stable 𝒯𝜀,𝜆-continuous single-valued mapping is
𝒯𝑐-continuous since any 𝒯𝜀,𝜆-continuous single-valued mapping defined on a
𝜎-stable set is necessarily random sequentially continuous.
Proposition 4.3 below is a known result in classical set-valued analysis.
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Proposition 4.3 ([2]). Let (𝑋,𝒯𝑋) and (𝑌,𝒯𝑌) be two topological spaces and
𝐹 ∶ 𝑋 → 2𝑌 ⧵ {∅} be a set-valued mapping. Then the following statements are
equivalent:
(1) 𝐹 is upper semicontinuous on 𝑋;
(2) For any 𝑥 ∈ 𝑋, any net {𝑥𝛼, 𝛼 ∈ Λ} in 𝑋 converges to 𝑥 and any 𝑂𝑌 ∈ 𝒯𝑌

with 𝐹(𝑥) ⊆ 𝑂𝑌 , there exists 𝛼0 ∈ Λ such that 𝐹(𝑥𝛼) ⊆ 𝑂𝑌 for any 𝛼 ∈ Λ
with 𝛼 ≥ 𝛼0.

Guided by Proposition 4.3 and in comparison with [24, Definition 2.11], one
can naturally introduce the following Definition 4.4.

Definition 4.4. Let (𝐸1, ‖⋅‖1) and (𝐸2, ‖⋅‖2) be two𝑅𝑁modules over𝕂with base
(Ω,ℱ, 𝑃), 𝑋 ⊆ 𝐸1, 𝑌 ⊆ 𝐸2 two nonempty 𝜎-stable sets and 𝐹 ∶ 𝑋 → 2𝑌 ⧵ {∅} a
set-valuedmapping. 𝐹 is said to be random sequentially upper semicontinuous at
𝑥0 ∈ 𝑋 if 𝑋 is 𝜎-stable and if for any sequence {𝑥𝑛, 𝑛 ∈ ℕ} in 𝑋 converges in𝒯𝜀,𝜆
to 𝑥0 and any 𝒯𝜀,𝜆-neighborhood 𝑉 of 𝐹(𝑥0), there exist a random subsequence
{𝑥𝑛𝑘 , 𝑘 ∈ ℕ} of {𝑥𝑛, 𝑛 ∈ ℕ} and 𝑘0 ∈ ℕ such that

𝐹(𝑥𝑛𝑘 ) ⊆ 𝑉, ∀𝑘 ≥ 𝑘0.
Further, 𝐹 is said to be random sequentially upper semicontinuous on 𝑋 if 𝐹 is
random sequentially upper semicontinuous at any point in 𝑋.

Since𝒯𝜀,𝜆 is metrizable, it is easy to check that a𝒯𝜀,𝜆-upper semicontinuous
set-valuedmapping defined on a 𝜎-stable set is necessarily random sequentially
upper semicontinuous. Then, in the spirit of [24], investigating Problem 4.5
below may serve as a crucial step toward resolving Problem 4.2, which also
clarifies the relative strength of the two versions of the random Kakutani fixed
point theorem.

Problem 4.5. Let (𝐸1, ‖ ⋅ ‖1) and (𝐸2, ‖ ⋅ ‖2) be two 𝑅𝑁modules over𝕂with base
(Ω,ℱ, 𝑃), 𝑋 ⊆ 𝐸1 and 𝑌 ⊆ 𝐸2 two 𝜎-stable sets, and 𝐹 ∶ 𝑋 → 2𝑌 ⧵ {∅} a 𝜎-stable
set-valuedmapping. Is it true that𝐹 is random sequentially upper semicontinuous
if and only if 𝐹 is𝒯𝑐-upper semicontinuous?
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