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The random Kakutani fixed point theorem
in random normed modules
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ABSTRACT. Based on the recently developed theory of random sequential
compactness, we prove the random Kakutani fixed point theorem in random
normed modules: if G is a random sequentially compact L°-convex subset
of a random normed module, then every o-stable J°,-upper semicontinuous
mapping F : G — 2\ {#}} such that F(x) is closed and L°-convex for each
X € G, has a fixed point. This is the first fixed point theorem for set-valued
mappings in random normed modules, providing a random generalization of
the classical Kakutani fixed point theorem as well as a set-valued extension
of the noncompact Schauder fixed point theorem established in [Guo et al.,
Math. Ann. 391(3), 3863-3911 (2025)].
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1. Introduction

The celebrated Kakutani fixed point theorem [30] states that any upper
semicontinuous set-valued mapping from a compact convex subset of the n-
dimensional Euclidean space R” into itself, with closed convex values, has a
fixed point. This theorem extends the Brouwer fixed point theorem [5] from
continuous single-valued mappings to upper semicontinuous set-valued map-
pings, and has subsequently been generalized to Banach spaces by Bohnenblust
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and Karlin [3], and to locally convex spaces by Glicksberg [16] and Fan [12].
The Kakutani fixed point theorem and its generalizations have become power-
ful tools for game theory [1, 4, 10, 36, 42|, optimal control theory [32], differ-
ential equations [9] and various other areas of mathematics [17], for example,
Nash [36] provided a concise one-page proof of his equilibrium theorem by re-
formulating the problem of the existence of equilibrium points as the problem
of the existence of Kakutani fixed points.

Recently, Guo et al. [24] established a noncompact Schauder fixed point
theorem and applied it to prove a dynamic Nash equilibrium theorem, while
Ponosov [38, 39, 40] proved a stochastic version of the Brouwer fixed point the-
orem and employed it to the study of stochastic differential equations. Notably,
[44, Theorem 5.4] shows that this stochastic version of the Brouwer fixed point
theorem is equivalent to a special case of the random Brouwer fixed point the-
orem established in [24], where the latter is naturally a special case of the non-
compact Schauder fixed point theorem. With the aim of providing a new tool
for the development of random functional analysis [21], dynamic Nash equilib-
rium theory [24] and stochastic differential equations [39, 40], this paper proves
the random Kakutani fixed point theorem in random normed modules, a re-
sult that not only extends the noncompact Schauder fixed point theorem [24]
from continuous single-valued mappings to upper semicontinuous set-valued
mappings but also generalizes the classical result of Bohnenblust and Karlin
[3] from Banach spaces to random normed modules. Moreover, it is the first
fixed point theorem for set-valued mappings in random normed modules and
provides a basic result for future developments in fixed point theory in random
functional analysis.

Random normed modules, a central framework of random functional anal-
ysis, were independently introduced by Guo in connection with the idea of
randomizing classical space theory [18, 19] and by Gigli in connection with
nonsmooth differential geometry on metric measure spaces [14] (see also [6,
7, 8, 15, 33, 34] for related advances). Different from the situation in classical
normed spaces, the L°-norm of a random normed module induces two differ-
ent topologies. One is the (g, 1)-topology, which is a typical metrizable locally
nonconvex linear topology. The other is the locally L°-convex topology [13],
which is stronger than the (g, 1)-topology but generally not linear. The two
topologies both have their respective advantages and disadvantages in theoret-
ical investigations and financial applications. To combine their strengths, Guo
[21] introduced the notion of a o-stable set and established the connection be-
tween some basic results derived from two topologies. This work considerably
advanced the development of random functional analysis and its applications
[22,24,25,26,27,28]. Over the past decade, one of the central topics in random
functional analysis has been to overcome the challenge due to noncompactness:
closed L°-convex subsets of a random normed module — which frequently arise
in both theory and financial applications — are generally not compact under
the (¢, A)-topology [20], and hence also not compact under the locally L°-convex
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topology. Consequently, classical compactness arguments are no longer appli-
cable. Motivated by the studies on o-stability [23, 25] and the randomized ver-
sion of the Bolzano-Weierstrass theorem [29], Guo et al. [24] introduced and
systematically studied the notion of random sequential compactness, which is
a genuine generalization of classical sequential compactness. Specifically, a se-
quence in a random sequentially compact set G may not admit any subsequence
that converges in the (e, 1)-topology to some point of G but always admits a ran-
dom subsequence that does. This property has inspired a series of subsequent
works on fixed point theorems in random functional analysis [35, 43, 44, 45],
and, in particular, it allows us to overcome the main challenge in establishing
the random Kakutani fixed point theorem in random normed modules.

The success of the proof of the noncompact Schauder fixed point theorem in
[24] lies mainly in presenting a proper randomization of the classical Schauder
projection method, for which two essential tools were developed. The first is
the random Hausdorff theorem [24, Theorem 3.3], which states that a o-stable
set is random sequentially compact if and only if it is complete with respect to
the (e, 1)-topology and random totally bounded. The second is the method of
introducing random Schauder projections [24, Lemma 4.8], allowing the con-
struction of approximating mappings (see [24, Lemma 4.9] and the proof of [24,
Theorem 2.12] for details). Motivated by these developments, as well as by the
classical work of Nikaido [37], who provided a new proof of the Kakutani fixed
point theorem in R" based on the Schauder projection method, this paper de-
velops an approach to establishing the random Kakutani fixed point theorem
in random normed modules. Although our proof is motivated from the ideas
of [37] and [24], we remain to overcome the following three challenges:

(1) Random total boundedness is considerably more involved than classical to-
tal boundedness. The notion of random total boundedness was introduced
by means of the notion of a stably finite set, see [23] or part (2) of Definition
3.2 of this paper for details. However, a stably finite set is generally neither
finite nor even countable. Consequently, the method used in [37] cannot
be directly applied. Besides, the complicated stratification structures pecu-
liar to a random normed module must be considered, as shown in the key
equation (3.1).

(2) An upper semicontinuous set-valued mapping presents greater challenges
than a continuous single-valued mapping. In the random Kakutani fixed
point theorem, directly constructing random Schauder projections based
on a stably finite random ¢-net, as done in [24], is not enough to complete
the proof. To overcome this difficulty, we first establish Lemma 3.7, which
allows us to carefully select elements from the images of the set-valued map-
ping on the stably finite random e-net to construct continuous single-valued
mappings. By applying the noncompact Schauder fixed point theorem to
these mappings, we obtain fixed points that in turn generate a stable se-
quence compatible with the upper semicontinuous set-valued mapping.
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(3) Topological arguments in our proof are different from those in [24, Theo-
rem 2.12]. Random sequential compactness is defined with respect to the
(g, 1)-topology, and the proof of the noncompact Schauder fixed point theo-
rem [24, Theorem 2.12] relies primarily on arguments under this topology.
In contrast, our proof of the random Kakutani fixed point theorem is car-
ried out mainly under the locally L°-convex topology, which requires the
notion of stably sequential compactness [23] formulated in this topology.
Consequently, our proof depends on [23, Theorem 2.21], which establishes
the equivalence between a o-stable random sequentially compact set and a
stably sequentially compact set.

The remainder of this paper is organized as follows. Section 2 introduces
some preliminaries and further presents the main result — the random Kaku-
tani fixed point theorem in random normed modules (namely, Theorem 2.9).
Section 3 is devoted to the proof of Theorem 2.9. Finally, Section 4 concludes
this paper with some remarks and two open problems related to the present
study.

2. Preliminaries and main result

Throughout this paper, KK denotes the scalar field R of real numbers or C of
complex numbers, N the set of positive integers, (Q, F, P) a given probability
space, L(F, K) the algebra of equivalence classes of IK-valued random variables
on (Q, F,P), L°(F,N) the set of equivalence classes of N-valued random vari-
ables on (Q, F,P), L°(F) := LO(F,R) and L°(¥F) the set of equivalence classes
of extended real-valued random variables on (Q, F, P).

For any A,B € ¥, we will always use the corresponding lowercase letters
a and b for the equivalence classes [A] and [B] (two elements C and D in F
are said to be equivalent if P[(C \ D) U (D \ C)] = 0), respectively. Let By =
fa=[A] : Ae F,L1=[Q],0=1[0l,anb=[ANnB]l,avb = [AUB]
and a® = [A°], where A¢ denotes the complement of A, then (B4, A, V,¢,0,1)
is a complete Boolean algebra, namely, a complete complemented distributive
lattice (see [31] for details). Specifically, By is called the measure algebra asso-
ciated with (Q, F, P).

It is well known from [11] that L°(F) is a complete lattice under the partial
order ¢ < 7 iff £%w) < 1°%w) for almost all w € Q (briefly, £%w) < n%w)
a.s.), where £° and 7 are arbitrarily chosen representatives of £ and 7 in L°(F),
respectively. In particular, the sublattice (L°(F), <) is a Dedekind complete lat-
tice.

As usual, for £,7 € LO(F), £ < n means £ < 7 and £ # 7, whereas, for any
a € B4, £ <nonameans £%(w) < n°(w) for almost all w € A, where A, £° and
n° are arbitrarily chosen representatives of a, ¢ and 7, respectively. Moreover,
we der}loteL(}r(f) ={el’F): E>0and L) (F) :={£ € L°F) : & >
Oon 1}
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For any &,7 € LO(F), we use (¢ = 7) for the equivalence class of {w € Q :
£%w) = n°(w)}, where £° and 1° are arbitrarily chosen representatives of £ and
1, respectively. Similarly, one can understand (¢ < 7) and (§ < 7).

Definition 2.1 below is adopted from [18, 19] by following the traditional
nomenclature of random metric spaces and random normed spaces (see [41,
Chapters 9 and 15]).

Definition 2.1 ([18, 19]). An ordered pair (E, || - ||) is called a random normed
module (briefly, an RN module) over K with base (Q, ¥, P) if E is a left module
over the algebra L°(F,K) (briefly, an L°(F, K)-module) and || - || is a mapping
from E to LS’r (F) such that the following conditions are satisfied:

@) |I§x) = I€1||x]| for any § € L%, K) and any x € E;
@) llx + x|l < lIx|l + |yl for any x and y in E;

(3) ||x|| = 0 implies x = O (the null element of E).

As usual, || - || is called the L°-norm on E.

It should be mentioned that the notion of an L°-normed L°-module, which
is equivalent to that of an RN module, was independently introduced by Gigli
in [14] for the study of nonsmooth differential geometry on metric measure
spaces, where the L°-norm was called the pointwise norm.

When (Q, F, P) is trivial, namely, = {#§, Q}, an RN module (E, || - ||) over K
with base (Q, F, P) reduces to an ordinary normed space over K. The simplest
nontrivial RN module is (L°(F, K), |-|), where |-| is the absolute value mapping.

For an RN module (E, || - ||), the L°-norm || - || can induce two topologies. The
first topology is the (g, 1)-topology, whose definition originates from Schweizer
and Sklar’s work on probabilistic metric spaces [41].

Definition 2.2 ([21]). Let (E, || - ||) be an RN module over K with base (Q, F, P).
For any real numbers ¢ and A withe > 0and 0 < 1 < 1, let Ng(¢,A) = {x € E :
P{w € Q : ||x||(w) < €} > 1—A4}, then Uy := {Ng(e,A) : € > 0,0 < A < 1} forms
a local base of some metrizable linear topology for E, called the (e, 1)-topology,
denoted by T ;.

The (g, 4)-topology is an abstract generalization of the topology of conver-
gence in probability. More precisely, a sequence {x,,,n € N} in an RN module
converges to x in this topology if and only if {||x,, — x||, » € N} converges to 0
in probability. This topology is natural and convenient, for example, the devel-
opment of nonsmooth differential geometry on metric measure spaces is often
carried out under it [6, 7, 8, 15, 33, 34]. Moreover, (E, 7 ;) is a metrizable topo-
logical module over the topological algebra (L°(F, K), 77 ;) [21].

The second topology is the locally L°-convex topology, which can ensure
most of the L°-convex sets in question to have nonempty interiors and make
it possible to establish the continuity and subdifferentiability theorems for L°-
convex functions, see [13, 28] for details.

Definition 2.3 ([13]). Let (E, || - ||) be an RN module over K with base (Q, F, P).
Forany x € Eand anyr € LL(?), let B(x,r) ={y € E : |[y—x|| <ronl}
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then {B(x,r) : x € E,r € LL(?)}forms a base for some Hausdorff topology on
E, called the locally L°-convex topology induced by || - ||, denoted by 7.

Recall that a nonempty subset G of an RN module (E, || - ||) is said to be L°-
convexiféx+(1—§)y € Gforanyx,y € Gandany £ € LY (F)with0 <& < 1;
LO%-absorbent if for any x € E there exists § € Lf)|r +(F) such that Ax € G for
any 1 € L°(F,K) with |1] < &; L°-balanced if Ax € G for any x € G and any
A € L°%(F,K) with |A| < 1. Itis clear that B(6,r) :={y € E : ||y|| < r on 1}is
L°-convex, L%-absorbent and L%-balanced for any r € L9, (¥). It is well known
that{B(6,r) : r € Lﬂ (%)} forms a local base for the locally L°-convex topology
J.onkE.

For an RN module (E, || - ||), T is stronger than 7 ;, but 77 is not a linear
topology in general since scalar multiplication is not necessarily continuous un-
der .. Consequently, (E, J.) is only a topological module over the topological
ring (L°(F, K), T°,), see [13, 21] for details.

For clarity and convenience in presenting the key notion of o-stable sets,
we first recall some basic notions concerning measure algebras and regular
L%(#F, K)-modules.

From now on, for any a € B4, we always use I, to denote the equivalence
class of I 4, where A is an arbitrarily chosen representative of a and I, denotes
the characteristic function of A (namely, I4,(w) = 1ifw € A and I4(w) = 0
otherwise). For a subset H of a complete lattice (e.g., Bs), we use \/ H and
/\ H to denote the supremum and infimum of H, respectively.

As usual, for any a,b € By, a > bmeansa > b and a # b. A subset
{a; : i € I} of B4 is called a partition of unity if \/iel a;=1anda; Aa; =0for
any i, j € I with i # j. The collection of all such partitions is denoted by p(1).
For any {a; : j € J} € p(1), it is clear that the set {j € J : a; > 0} is at most
countable.

An L°(F,K)-module E is said to be regular if E has the following property:
for any given two elements x and y in E, if there exists {a,,,n € N} € p(1) such
thatI, x =1, y foreachn € N, then x = y.

In the remainder of this paper, all the L°(F, [K)-modules under consideration
are assumed to be regular. This restriction is not excessive, since all random
normed modules are regular.

Definition 2.4 ([21]). Let E be an L°(F, K)-module and G be a nonempty subset
of E. G is said to be finitely stable if I,x + I,cy € G forany x,y € G and any
a € B4. G is said to be o-stable (or to have the countable concatenation property
in the original terminology of [21]) if for each sequence {x,,,n € N} in G and each
{a,,n € N} € p(1), there exists some x € G such that I, x = I, x, foreachn €
N (x is unique since E is assumed to be regular, usually denoted by Z;o:l Iy, Xp,
called the countable concatenation of {x,,, n € N} along {a,,, n € N}). By the way,
if G is o-stable and H is a nonempty subset of G, then o(H) := {22021 Iy hy
{h,,n € N}is a sequence in H and {a,,n € N} € p(1)}is called the o-stable hull
of H.
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It is clear that L°(F) is o-stable. In particular, L°(F, N) is a o-stable directed
set as a subset of (L%(F), <).

Now, the connection between some basic results derived from the two topolo-
gies 7. ; and 7, can be summarized in Proposition 2.5 below.

Proposition 2.5 ([21]). Let(E, ||-||) be an RN module over K with base (Q, ¥, P)
and G be a nonempty subset of E. Then we have the following:

(1) If G is o-stable, then GE_,/1 = G, where G;/1 and G, denote the closure of G
under T ; and T, respectively.

(2) If G is finitely stable, then G is T y-complete iff G is both o-stable and T -
complete.

Remark 2.6. By Proposition 2.5, a o-stable subset G of an RN module has the
same closedness (resp., completeness) under I y and T .. Hence, in the remainder
of this paper, whenever G is o-stable, we will simply refer to G as closed (resp.,
complete) without specifying the topology.

Motivated by the randomized version of the Bolzano-Weierstrass theorem
[29], Guo et al. introduced and systematically studied the notion of random
sequential compactness in RN modules in [24].

Definition 2.7 ([24]). Let (E,|| - ||) be an RN module over K with base (Q, ¥, P)
and G a nonempty subset such that G is contained in a o-stable subset H of E.
Given a sequence {x,,n € N}in G, a sequence {y,k € N}in H is called a random
subsequence of {x,,, n € N} if there exists a sequence {n;, k € N}in L°(F,N) such
that the following two conditions are satisfied:

(1) ni <ngponlforanyk € N;
o
(2) Yi = Xy, := 25_; In,=pyX1 for each k € N.

Further, G is said to be random sequentially compact if there exists a random
subsequence {y;,k € N} of {x,,,n € N} for any sequence {x,,n € N} in G such
that {yx, k € N} converges in T ; to some element in G.

A careful reader will find that we require n; to be a positive integer-valued
measurable function in the definition of a random subsequence in [24] instead
of an element in L°(F, N) in Definition 2.7, but it is easy to check that the two
formulations are essentially equivalent!

Let X and Y be two nonempty sets and F : X — 2¥ \ {f}} be a set-valued
mapping. For any nonempty sets G C X and M C Y, the image of G under F is
defined by

F(G) = Fx),

xeG

and the upper inverse of M is defined by

Ft(M)={xe X : F(x) C M}.
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Let G be a o-stable subset of an L°(F, K)-module. For any sequence of non-
empty subsets {G,,,n € N} of G and any {a,,n € N} € p(1),

(0] (o9
DI, Gy i=1{D Iy Xy : X, € Gy, ¥n € N}
n=1

n=1

is called the countable concatenation of {G,,n € N} along {a,,,n € N}.

Definition 2.8. Let (Ey, || - ||;) and (E,, || - ||,) be two RN modules over K with
base (Q,F,P), X C E;,Y C E, two nonempty setsand F : X — 2Y \ {#} a
set-valued mapping. F is said to be

(1) o-stable if both X and F(X) are o-stable and
F(Z Ia,,xn) = Z IanF(xn)
n=1 n=1

for any sequence {x,,n € N}in X and any {a,,,n € N} € p(1).

(2) T .-upper semicontinuous at x, € X if for every J .-neighborhood U of F(x,),
thereis a T .-neighborhood V of x, such that F(V N X) C U (equivalently, the
upper inverse F*(U) is a T .-neighborhood of x, in X). Furthermore, F is said
to be T .-upper semicontinuous on X if it is T .-upper semicontinuous at every
point x € X.

A point x, € X is said to be a fixed point of the set-valued mapping F : X —
2X if xy € F(x).
Now we can give the main result of this paper.

Theorem 2.9. Let (E,|| - ||) be an RN module over K with base (Q,F,P), G a
random sequentially compact L°-convex subset of E and F : G — 2°\{@} a o-
stable T ,-upper semicontinuous mapping such that F(x) is closed and L°-convex
foreach x € G. Then F has a fixed point.

Remark 2.10. (1) Since G is random sequentially compact and L°-convex, by
part (6) of [24, Lemma 3.5] and part (2) of Proposition 2.5 G is o-stable and
T ,-complete, which ensures that the o-stability of F is well defined. More-
over, since F is o-stable, it is easy to verify that F(x) is o-stable for any x € X.
Consequently, for any x € X, the closedness of F(x) is understood as in Re-
mark 2.6.

(2) If (Q,F,P) is trivial, namely, ¥ = {@, Q}, the RN module (E, || - ||) reduces
to an ordinary normed space, G to a compact convex subset of E and F to
an ordinary upper semicontinuous set-valued mapping. Hence, Theorem 2.9
generalizes the classical Kakutani fixed point theorem [3, 30, 37].

(3) When F is single-valued, it reduces to a o-stable J .-continuous mapping.
Consequently, by [24, Lemma 4.3], Theorem 2.9 also generalizes the noncom-
pact Schauder fixed point theorem [24, Theorem 2.12].

We conclude the section by giving an improved version of [24, Lemma 4.4]
(namely, Proposition 2.14 below), where we impose the additional assumption
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that the related random sequentially continuous mapping f is o-stable. Ran-
dom Brouwer fixed point theorem [24, Lemma 4.5 or Lemma 4.6] is a basis
for a noncompact Schauder fixed point theorem [24, Theorem 2.12], and [24,
Lemma 4.4] plays an essential role in the proof of [24, Lemma 4.5]. The im-
proved version shows that the random Brouwer fixed point theorem and the
noncompact Schauder fixed point theorem established in [24] are both correct
since the random sequentially continuous mappings involved in the two theo-
rems are both o-stable. Besides, we would like to suggest that the reader refer
to our recent work [44] for a new complete proof of the random Brouwer fixed
point theorem.

Besides the o-stability of the random sequentially continuous mapping in
[24, Lemma 4.4] was not assumed, the original proof of [24, Lemma 4.4] used
part (2) of [24, Lemma 3.5]. Part(2) of [24, Lemma 3.5] said that, in an RN mod-
ule (E, || - |]), if a sequence {x,, n € N} in some o-stable subset of E converges in
T, to Xy € E, then any random subsequence {x,, ,k € N} of {x,,n € N} con-
verges in 7 ; to xy. Unfortunately, there exist some counterexamples show-
ing that part (2) of [24, Lemma 3.5] does not necessarily hold. Fortunately,
Lemma 2.11 below can be used to give a new proof of the improved version of
[24, Lemma 4.4].

Lemma 2.11. Let (E,|| - ||) be an RN module over K with base (Q, ¥, P) and
{x,,n € N} be a sequence in some o-stable subset of E such that {x,,n € N}
converges a.s. to x, € E, namely, {||x,, — x,||, n € N} converges a.s. to 0. Then any
random subsequence {x,, ,k € N} of {x,,n € N} converges a.s. to x,.

Proof. Let € > 0 be a given real number. Since n, < n;,; on1foranyk € N
implies that n; > k for each k € K, then we have

(Ixn, = Xl =€) = O I =1 — x|| > €)
=1

<o [T T

[(ne =D A(llx; = x|| > €)]

[(nye = D) A ([l = x[| 2 €)]

< Vb =xl[ =€)

Il
=~

for each k € N. Furthermore, since {x,, n € N} converges a.s. to x, € E, then,
in the language of measure algebra, we have

A Vix = xl 20 =o.

m=1Il=m
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It follows that

A\ VU, —xll 20 <

m=1k=m

Ve = xl 2 )

I=k

<3

>3 i >3
<1

(Il = x|l > €)

3
[
AL
T
3

I
L

implying {||x,, — x|,k € N} converges a.s. to 0. Thus, {x,, ,k € N} converges
a.s. to xg. ([l

Definition 2.12 ([24]). Let (E,, || - ||;) and (E,, || - ||2) be two RN modules over K
with base (Q, F, P), G, and G, two nonempty subsets of E; and E,, respectively,
and f a mapping from G, to G,. f is said to be:

(1) o-stable if both G, and G, are o-stable and

f(z Iakxk) = Z Iakf(xk)
k=1 k=1

forany {a,,k € N} € p(1) and any sequence {x,,,n € N}in G,.

(2) random sequentially continuous at x, € G, if G, is o-stable and if for any
sequence {x,,n € N} in G, convergent in T to x, there exists a random
subsequence {x,, ,k € N} of {x,,n € N}such that {f(x,, ),k € N} converges
in T, to f(xo). Further, f is said to be random sequentially continuous if f
is random sequentially continuous at any point in G.

Lemma 2.13. Let (Ey, || - ||;) and (E,, || - ||2) be two RN modules over K with base
(Q,#,P), G, C E; and G, C E, two nonempty o-stable subsets, and f : G; — G,
a random sequentially continuous mapping. Then for any sequence {x,,n € N}in
G, that converges in T ) to xo € G, there exists a random subsequence {x, ,k €
N} of {x,,,n € N} such that {x,,,k € N} converges a.s. to x, and {f(x,, ),k € N}
converges a.s. to f(x).

Proof. Since {x,,n € N} converges in 7, to x, € G, there exists a subse-
quence {x{,i € N} of {x,,,n € N} such that {xlf,i € N} converges a.s. to x,. We
can assume, without loss of generality, that {xlf ,i € N}is just {x,,n € N} itself,
namely, {x,,n € N} converges a.s. to x,. Further, since f is random sequen-
tially continuous, there exists a random subsequence {x,, , k € N}of{x,,n € N}
such that {f(x,, ), k € N} converges in T ; to f(xo).

For {f(x,, ),k € N}, there exists a subsequence {f (xnk,)’l € N} that con-
verges a.s. to f(x,). Clearly, {xnkl,l € N} is a subsequence of {x,, ,k € N} and
hence a random subsequence of {x,,, » € N}. By Lemma 2.11, {xnkl ,1 € N}also
converges a.s. to xg. (]
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The proof of Proposition 2.14 below is merely a slight modification to the
original proof of [24, Lemma 4.4|. The reader will find that the new proof essen-
tially only replace part (2) of [24, Lemma 3.5] with Lemma 2.11 in the original
proof of [24, Lemma 4.4].

Proposition 2.14. Let (Ey, ||-||) and (E,, ||-|]) be two RN modules over K with base
(Q,#,P), G, C E;and G, C E, two o-stable subsets, and f : G, — G, a o-stable
random sequentially continuous mapping. For asequence{(x}", x5, ---,x"),m €

N} in G, where L is a fixed positive integer and Gi is the I-th Cartesian power set
' ' MO MO M(O)
of G, if there exists a random subsequence {(x; " ,x, " , ),n € N} of

©
which such that {xM" n € N} converges in T, to some y; € Gl for eachi €

{1,2,---,13}, then there exists a random subsequence {(x , X 12\4 , e x "), n € N}
M«n M<o> M<0)
of {(x; " ,x," - ),n € N} such that {x ,n € N} converges in T ; to y;

and {f(xl. "),n € N} converges inT.,to f(y;) foreachi €{1,2,---,1}.

©

Proof. Since {xM" n € N} converges inJ, ,toy; foreachi €{1,2,---,1}, there

N MO M<0) M(o>
"“’x )nEN}Of{('x ) 2 [

N} such that {x ,n E N} converges a.s. to yl for each i e {1,2,---,1}. We

N
1’2’

exists a subsequence {(x ),n €

can assume, without loss of generality, that (o

MO M(m M(o> MO
O " x, ", ), n € N} itself, namely {x ,n € N} converges a.s. to y;

for eachl S {1 2 -, 13

For {x m” ,n € N}, since f is random sequentially continuous by Lemma
2.13 there exists a random subsequence {x, w ,k € N} of {x ,n € N} such
that {x; '(“(’)‘), k € N} converges a.s. to y; and {f (xllwsl?), k € N} converges a.s.

to f(y;). Let M(l) = M,(q?{) for each k € N, namely, Ml(cl) = ZZI I(nk=l)Ml(0)-

MO M<1> M(l) ) MO O
Then {(x Xy e " ),n € N} is a random subsequence of {(x; " ,x, " ,
MO

o xN "), n € N}lS_]USt

M
" ),n € N} such that {x " ,n € N} still converges a.s. to y; for each

ie {1, 2,--+, 1} (by Lemma 2.11) and {f(lewfﬁ)), n € N} converges a.s. to f(y;).
For {xME‘U n e N} by Lemma 2.13 there exists a random subsequence
{x, " ,k € N} of {x ,n € N} such that {ng‘) k € N} converges a.s. to y,
and {f(x, 5'1")) k € N} converges a.s. to f(y,). Since f is o-stable, it is easy
to see that {f(x, 5‘1")) k € N}is also a random subsequence of {f (x ) n e
N}, then {f (ng‘)) k € N} still converges a.s. to f(y;). Let M @) = M, (1) for



1554 QIANG TU, XIAOHUAN MU, TIEXIN GUO, GUANG YANG AND YUANYUAN SUN

M2 M@ M@ )

each k € N, then {(x1 X, e, x " ),n € N} is a random subsequence of
MO y© Vo ive) )

{Gc " X, . x) " ), n € N} such that {x;™" ,n € N} still converges a.s. to y;

@
foreachi € {1,2,---,1} and {f(le" ),n € N} converges a.s. to f(y;) for each

ie{l1,2}.
) ) IYICIYO) MO
Inductively, we can obtain a random subsequence {(xl X, . X, "),ne

ORO) ©) 0
MY M M M
N}of {(x; " ,x;," ,-+-,x; " ),n € N} such that {x; " ,n € N} converges a.s. to

0
y; foreachi € {1,2,---,1} and {f(xfw" ),n € N} converges a.s. to f(y;) for each
i € {1,2,---,1}. Finally, taking M,, = Mﬁl for each n € N, we can, of course,
obtain our desired result. O

3. Proof of Theorem 2.9: Random Kakutani fixed point theorem

As pointed out in Section 1, the proof of Theorem 2.9 relies on the equiva-
lence between a o-stable random sequentially compact set and a stably sequen-
tially compact set. To present the notion of a stably sequentially compact set,
we first recall Definition 3.1 below, where the notion of a stable subsequence is
a strengthened version of the original notion introduced in [23].

Definition 3.1. Let (E, || - ||) be an RN module over K with base (Q,F,P), G a
o-stable subset of E and {x,,, n € N} a sequence in G.

(1) A o-stable mapping x from L°(F,N) to G is called a stable sequence in G,
denoting x(u) by x,, for each u € L°(F,N).
(2) Foreachu € L°(F,N), define

o
Xy = Z I(u=n)xn.
n=1

Then {x,,u € L°(F,N)} is a stable sequence in G, called the stable sequence
generated by {x,,n € N}.

(3) A stable sequence {y,,v € L°(F,N)} is called a stable subsequence of a stable
sequence{x,,u € LO(F,N)}ifthere exists a o-stable mapping ¢ : L(F,N) —
L°(F,N) such that the following two conditions are satisfied:

() Yy = Xy for each v € L%(F,N);
(ii) p(n) < p(n+1)on1 foreachn € N.
For simplicity, we may also write {x,, v € L°(F,N)} for {y,, v € L°(F,N)}.

According to part (3) of Definition 3.1, it is easy to check that {x,,v €
LO°(F,N)}is also a subnet of {x,,, u € L°(F,N)}.

Let E be an L°(F, K)-module and G be a o-stable subset of E. A subset H of
G is said to be stably finite if there exist a sequence {G,,n € N} of nonempty
finite subsets of G and {a,,,n € N} € p(1) such that H = Z:;l I,,0(Gp).

Definition 3.2 ([23]). Let (E,|| - ||) be an RN module over KK with base (Q, ¥, P)
and G be a g-stable subset of E. G is said to be
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(1) stably sequentially compact if every stable sequence in G admits a stable sub-
sequence that converges in J . to a point of G.

(2) random totally bounded if, for any given € € Lg +(F), there exist a sequence
{G,, n € N} of nonempty finite subsets of G and {a,,,n € N} € p(1) such that

I, G C1, [0(G,) + B(6,¢)] foreach n € N.

Remark 3.3. In part (2) of Definition 3.2, 1, G C 1, [0(G,) + B(6, ¢)] for each
n € N implies that

GC > 1, 0(G,) +B(6,¢) = U B(x, ¢).

n=1 xeX, Io,0(Gy)

Hence, every random totally bounded set necessarily possesses a stably finite ran-
dom e-net. It should be noted that a stably finite set is neither finite nor even count-
able in general, and therefore a random totally bounded set is much more com-
plicated than a classical totally bounded set.

One can easily see that the strengthened notion of a stable subsequence still
makes Proposition 3.4 below hold, which will play a crucial role in the proof of
Theorem 2.9.

Proposition 3.4 ([23]). Let (E, || - ||) be an RN module over K with base (Q, F, P)
and G be a o-stable subset of E. Then the following statements are equivalent:

(1) G is stably sequentially compact.
(2) G is random totally bounded and complete.
(3) G is random sequentially compact.

Remark 3.5. In [23], the notions of stably sequentially compact sets and random
totally bounded sets were introduced in a d-o-stable random metric space. Def-
inition 3.2 and Proposition 3.4 are in fact special cases of [23, Definition 2.19]
and [23, Theorem 2.12], respectively, since a o-stable subset G of an RN module
(E, || - ||) naturally forms a d-o-stable random metric space (G, d), where the ran-
dom metricd : GXG — LY(¥) is defined by d(x,y) = ||x — y|| forany x,y € G
(see [23] for details). Here, we present only these special cases, since the present
work is only concerned with the setting of RN modules.

Lemma 3.6. Let (Eq, || - ||1) and (E,, || - ||2) be two RN modules over [ with base
(Q,F,P), X CE,Y CE, two o-stable subsets and F : X — 2Y \ {#§} a o-stable
mapping. For any a € By and any x € E;, if there exists a finitely stable subset
G of X such that I, x € 1,G, then I,F(x) C I,F(G).

Proof. Arbitrarily choose z € G and let x; = I;x + I,.z. Then x; € G, and we
have
I,F(x)+1,F(z)=F(I,x +1,z)=F(x;) C F(G),

implying I, F(x) C I,F(G). O
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Following the methodology employed in the proof of [24, Lemma 4.8], we
can establish Lemma 3.7 below. For completeness, we provide a detailed proof
here.

Lemma 3.7. Let (E, || - ||) be an RN module over K with base (Q, ¥, P) and G be
a o-stable L°-convex subset of E. Forr € LO++(5‘“) and a € By witha > 0, suppose
that there exists a finite subset {x, --- , x; } of G such that1,G C I,[o({x;, -+, X, })+
B(6,r)]. For a finite subset {y, -+, Vi} of G, define a mapping g : G — G by

k
1
gx) = ———— D a(x)y, ¥x €G,
o j(x) i=1
where foreachi € {1, ---,k}, the mapping o; : G — L?r(ﬁ‘“ ) is defined by
a;(x) = max{0,r — ||[I,x — I,x;||}, Vx € G.

Then we have the following statements:

(1) Zle a;(x) > 0on1forany x € G.

(2) giswell defined, o-stable and T .-continuous.

Proof. (1) For any given x € G, since
IaG c Ia[a({xla ) xk}) + B(65 }")] = U({Iaxl’ ’Iaxk}) + IaB(e, }"),
there exists {b;,i = 1 ~ k} € p(1) such that
k

I,X € D Inn i + I,B(6,T).
i=1

Hence, foreachi € {1,---,k},
Tann,X € Igpnp,X; + Ia/\biB(e, r),
implying
r—||[I;x —I,%;|| > 0onaAb;,
namely,
a;(x)>0onaAb;.
Since a;(x) € Lg(?) foreachi € {1, ---, k}, it follows that ZL a;(x) >0ona.
Besides, it is clear that Z;{ZI a;(x) > 0 on a for any x € G.
To sum up, Zle a;(x) > 0on 1.

(2) By (1), g is well defined. For any {a,,n € N} € p(1) and any sequence
{x,,n € N}in G, since G is g-stable and each ¢; is also o-stable, we have

© 1 k ©
g(z Ia,,xn) = - Z ai(z Ia,,xn)yi
n=1 Zj;l aj(Xeq Lo, Xn) =1 n=1
1 © k
= Z Ian(z a;(xp)yi)

ZZo=1 Ian(Zi;l aj(xn)) n=1 i=1
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k
=Zlan k : Zai(xn)yi

n=1 ijl aj(x,) i=1

= Z Iang(xn),

n=1

which shows that g is o-stable.
Further, since each a; is J.-continuous and (E, J7,) is a topological module
over the topological ring (L°(F, K), 7°.), g must be J.-continuous. O

Now we can prove Theorem 2.9.

Proof of Theorem 2.9. Since G is o-stable and random sequentially compact,
by Proposition 3.4 G is random totally bounded and 7, ;-complete, so we can,
without loss of generality, assume that E is 77 ;-complete (otherwise, we can
consider the 7, ;-completion of E and note that G is invariant in the process of
T ,-completion). Then E is o-stable.

Fix an n € N. Since G is random totally bounded, there exist {a,,,, m € N} €
p(1) and a sequence {G,, m € N} of finite subsets of G such that

— 1
- n n —).
GC mzzjl Iy, 0(Gp) + B(6, )

Let G, = {x,’; PO x:’n ,ki’n} for any m € N, and further, we can, without loss of

generality, assume that each a];, > 0. Foreachm € Nand eachi € {1,---,k}, },
arbitrarily choose y; . € F(x, ;) and define a mapping g, : G — G by

kn
1 m
() = ————— ) (O, VX €G,
moalt (x)i=1
Jj=1"m,j

wherea . : G — LY (%) is defined by

1
ay, ;(x) = max{0, P Moz x —Igrx, |1}, VX € G.
By Lemma 3.7, g/, is well defined, o-stable and J.-continuous, and hence the

noncompact Schauder fixed point theorem [24, Theorem 2.12] implies that g},
has a fixed point x}}, € G, then

[o4]
1
gnGan) =xp € > Imo(xp |, XD+ BO, ).
m=1

Moreover, for each m € Nand eachi € {1, ---, kJ},}, let

1
Dfn’i ={a€eBy : 0<a<a)and Iax;“n’l. e I,(x; + B(6, E))}
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and d” . =\/ D" , then it is easy to check that d” . is attained, namely,
m,i m,i m,i

1
Id:ln,ix:’l,i (S Id:ln’i(x:ln + B(@, E)), (31)
implying
oc:;,l.(xfn) > 0 on qu,i and oc,’;’l.(x,’ji) =0ona) A (dﬁq,i)c.

Therefore,
Ignay (xpm) =1Ign o (xp),Vm € N,i € {1, -, kp}. (3.2)
Let x,, = Z:lea;;lx;’q for any n € N, and further let {x,,u € L°(F,N)}
be the stable sequence generated by {x,,n € N}, then by Proposition 3.4 there

exists a stable subsequence {x,,v € Lo%(F,N)} of {x,,u € L°(F,N)} such
that {x,),v € L°(F,N)} converges in T, to some x € G. Next we will show

that x € F(x). Since F(x) is closed and {B(8, %) u € L%F,N)}isa 7T,-
neighborhood base at 6, it suffices to show that

x € F(x) + B, %), Yu € LOF.N).

For any given u € L%(F, N), since F is 7 .-upper semicontinuous, there exists
u, € L°(F,N) such that

F[G 1 (x + B, uil))] C F(x) + B, %). (3.3)

Since {x4(,), U € L°(F,N)} converges in 7, to x, there exists v, € L°(F,N) such
that

1
@(v) > 2u; and x,(,) € x + B(6, z—ul),Vv > Vp. (3.4)

Letv > v, be given. Foranyn € N,m € Nandi € {1, -, k}, }, by (3.1) we have

(o]
Lpw)=nind?, Xo) = Lpw)=niad?,, 2 lpw=nXi
=1

= I((O(U)=n)/\d:;’ixn
= I((p(v):n)/\dfn’ix:[n
1
€ I(¢(U)=n)/\d;’n,i (x:‘n)i + B(6, ﬁ))’
which, combined with (3.4), implies that
1
I(¢(U)=n)/\d:ln’ix;lq’l‘ € I(qa(v):n)/\d:ln‘i (X(p(v) + B(e’ ;))
1
$(v)
1

1
CI _ n B o B
= Hp)=m)Ad] (x +B(©, 2U1) +BG. @(v) 2

= lpoy=nmnd", ,(Xpw) + B(O, —))
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C Lp()=njrar, (x + B(O, uil))-
Furthermore, by Lemma 3.6 and (3.3) we have
Tigoy=mind?, Y € Lipwr=mnar, F(xp, ;)
€ lp)=nirar FIG 0 (x + B(6, uil))]

1
€ Itp)=nindy,, (F(x) + B(6, ﬂ))

foranyn e N,m € Nandi € {1, ---, kj}}. Arbitrarily choose y, € F(x), since
F(x) + B(6, Zi) — y, is a o-stable set with 6 € F(x) + B(6, i) — y., we have
u

Ipy=mndz, Yy ; = ¥+) € Lgoy=mdr, ,(F(x) + B(e ) Vi)
C —)—1y,
C F(x) + B(6, Zu) Vu

foranyn e N,m e Nandi € {1,---, k), }. Furthermore, F(x) + B(6, Zi) — Y, is
u
also L°-convex, by (3.2) we have

Xo(v) — Y«

= Z I((p(v)zn)(xn = Y.)

n=1
o0 oo
= 2 Ligw)=n) Z Iagn (X, = Y4)
n=1 =
- ©  knooal (xp)
m,iz"m
Z (pw=n) 2 Tap Z—(y,’;,i—y*)

m=1 112 ar .(x”)

a, {(Xm

S S & pw)=mnag T "

= 2 Lor=m 2 Loy Z o (ym,i — ¥+
n=1 m=1

= Z

i=1 Z] 1 OCm J(xm)

B (p()=nynd,, Fm i (Xm

Iip(v)=n) Z Z Vi = ¥
e ()
Jj=1 m,J
m,i m
= 2 lw=n 2 Tay 20 —o————Ttptr=mmar,, W = V)
n=1 m=1  i=1 ijl oc:’nj(x{‘n)

ol (X)) )
€ ZI<¢(U> n) Z I Z—(F(XHB(@,E)—y*)

m=1 = IZ] 1OCmJ(Xm))

1
C F(x) + B, 3) = V.,
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namely,
1
Xop(v) € F(x) + B(6, E) 3.5)

Since (3.5) holds for any v > vy and {x,), v € LO°(F,N)} converges in T, to x,
we have

x € [F(x) + B, %)]; C F(x) + B(@, %) + B, %) C F(x) + B(®, %).

O

4. Concluding remarks and open problems

As the notion of a 7 .-upper semicontinuous set-valued mapping is of topo-
logical nature, the notion of a 7, ;-upper semicontinuous set-valued mapping
can be introduced in a similar way.

Definition 4.1. Let (Ey, || - ||;) and (E,, || - ||2) be two RN modules over KK with
base (Q,F,P), X C E;,Y C E, two nonempty setsand F : X — 2Y \ {#} a
set-valued mapping. F is said to be T y-upper semicontinuous at x, € X if for
every J . y-neighborhood U of F(x,), there is a T ,-neighborhood V of x, such
that F(V nX) C U (equivalently, the upper inverse F*(U) is a T ;-neighborhood
of xo in X). Furthermore, F is said to be T ;-upper semicontinuous on X if it is
T ¢ p-upper semicontinuous at every point x € X.

The choice between T .-upper semicontinuity and 77, ;-upper semicontinuity
may lead to two different possible versions of the random Kakutani fixed point
theorem. We have established Theorem 2.9, which can be regarded as the J°-
version, whereas the 7 ;-version has been not yet established in this paper,
namely, Problem 4.2 below is still open.

Problem 4.2. Let (E,|| - ||) be an RN module over K with base (Q,%,P), G a
random sequentially compact L°-convex subset of E and F : G — 26\{0} a o-
stable T ;-upper semicontinuous mapping such that F(x) is closed and L°-convex
foreach x € G. Does F have a fixed point?

In comparing the two versions of the random Kakutani fixed point theorem,
a natural question arises as to whether one version implies the other. In the
case of single-valued mappings, the noncompact Schauder fixed point theorem
[24, Theorem 2.12] can be regarded as the J.-version, which in fact includes
the 7 y-version as a special case. More precisely, Guo et al. introduced the
notion of a random sequentially continuous single-valued mapping (see part
(5) of [24, Definition 2.11]) and proved that a o-stable single-valued mapping
f is random sequentially continuous if and only if it is 7 .-continuous (see [24,
Lemma 4.3]). Therefore, a o-stable J 4-continuous single-valued mapping is
T .-continuous since any J, ;-continuous single-valued mapping defined on a
o-stable set is necessarily random sequentially continuous.

Proposition 4.3 below is a known result in classical set-valued analysis.
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Proposition 4.3 ([2]). Let (X,Tx) and (Y,Ty) be two topological spaces and
F : X — 2Y\ {0} be a set-valued mapping. Then the following statements are
equivalent:

(1) F is upper semicontinuous on X;

(2) Forany x € X, any net {x,,a € A}in X converges to x and any Oy € Ty
with F(x) C Oy, there exists a, € A such that F(x,) C Oy forany a € A
with a > a.

Guided by Proposition 4.3 and in comparison with [24, Definition 2.11], one
can naturally introduce the following Definition 4.4.

Definition 4.4. Let (Ey, ||-||;) and (E,, ||-||,) be two RN modules over [ with base
(Q,F,P), X C E;,Y C E, two nonempty g-stable setsand F : X — 2Y \ {#} a
set-valued mapping. F is said to be random sequentially upper semicontinuous at
Xy € X if X is o-stable and if for any sequence {x,,n € N} in X converges in T ;
to xy and any 7 3-neighborhood V of F(x,), there exist a random subsequence
{x,,.k € N}of {x,,n € N} and k, € N such that

F(x,, ) CV,Vk > k.

Further, F is said to be random sequentially upper semicontinuous on X if F is
random sequentially upper semicontinuous at any point in X.

Since 77, ; is metrizable, it is easy to check that a 77 ;-upper semicontinuous
set-valued mapping defined on a o-stable set is necessarily random sequentially
upper semicontinuous. Then, in the spirit of [24], investigating Problem 4.5
below may serve as a crucial step toward resolving Problem 4.2, which also
clarifies the relative strength of the two versions of the random Kakutani fixed
point theorem.

Problem 4.5. Let (E, || - ||;) and (E,, || - ||2) be two RN modules over K with base
(Q,F,P), X CE,andY C E, two o-stable sets,and F : X — 2Y \ {#} a o-stable
set-valued mapping. Is it true that F is random sequentially upper semicontinuous
if and only if F is T .-upper semicontinuous?
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