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Verma Howe duality and LKB
representations

Abel Lacabanne, Daniel Tubbenhauer and Pedro Vaz

Abstract. We establish a version of Howe duality that involves a tensor
product of Vermamodules. Surprisingly, this duality leaves the realm of low-
est and highest weight modules. We quantize this duality, and as an applica-
tion, we prove that the (colored higher) LKB representations arise from this
duality and use this description to show that they are simple as modules for
the braid group and for various of its subgroups, including the pure braid
group.
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1. Introduction
Arguably the most classical form of Howe duality relates commuting ac-

tions ofGL𝑚(ℂ) andGL𝑛(ℂ) on the symmetric algebra ofℂ𝑚⊗ℂ𝑛, see [How89]
or [How95].
Howe’s approach turned out to be a game changer, even in fields beyond rep-

resentation theory. For example, quantum versions of these dualities provide
powerful and categorification-friendly descriptions of quantum invariants such
as the colored Jones polynomial.
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In this paper we prove a version of the Howe duality above where symmetric
powers are replaced by Verma modules. We call this duality Verma Howe du-
ality. To the best of our knowledge, Verma Howe duality is the first example
of a Howe duality that involves modules that are not lowest or highest weight
modules. Consequently, our proofs are very different from Howe’s proofs. For
example, Verma Howe duality is not a “limit” of symmetric Howe duality but
genuinely new.
Moreover, we give an application of Verma Howe duality: after extending

Verma Howe duality to quantum groups, which is fairly straightforward, we
show that the LKB (Lawrence–Krammer–Bigelow) representations and
their colored and higher counterparts arise from quantum Verma Howe du-
ality, which in turn enables us to show that the LKB representations are simple
modules of various subgroups of Artin’s braid group, including pure and han-
dlebody braid groups. One direct advantage of our approach is thatwe canwork
over an arbitrary field and with a large variety of the involved parameters.

1A. Schur–Weyl(–Brauer) and Howe dualities.Three main themes in
Weyl’s seminal book “The classical groups” [Wey97] are the study of polyno-
mial invariants for actions of the eponymous classical groups, and, more or less
equivalent, decomposition of the tensor algebra for such an action, and, again
more or less equivalent, the description of the invariants in the tensor algebra.
The two most prominent examples that fit into Weyl’s setting are the cele-

brated Schur–Weyl duality [Sch01] for tensor invariants of GL𝑚(ℂ) and
Brauer duality [Bra37] for tensor invariants of O𝑚(ℂ) and SP𝑚(ℂ) (for the
symplectic group 𝑚 is even). Both of these were studied by using commuting
actions ofGL𝑚(ℂ), andO𝑚(ℂ), SP𝑚(ℂ) on one side and the symmetric group 𝑆𝑛
and the Brauer algebra, respectively, on the other side, both acting on a tensor
product of the defining representation of the classical groups in question. In
this commuting-action-approach, for example Schur–Weyl duality essentially
reads:

(A) There are commuting actions of GL𝑚(ℂ) and 𝑆𝑛 on (ℂ𝑚)⊗𝑛.
(B) The two actions generate each others centralizer.
(C) The GL𝑚(ℂ)-𝑆𝑛 bimodule (ℂ𝑚)⊗𝑛 can be explicitly decomposed into a

direct sum of nonisomorphic simple GL𝑚(ℂ) modules tensored with
nonisomorphic simple 𝑆𝑛 modules.

A statement of this form is what we call a double centralizer (a.k.a. double
commutant) approach.
Howe [How89], [How95] studied polynomial invariants, e.g. via symmetric

powers, of classical groups using a double centralizer approach, and the result-
ing dualities are called Howe dualities in this paper. A prominent example is
symmetric Howe duality where GL𝑚(ℂ) and GL𝑛(ℂ) act on

⨁

𝑘∈ℤ≥0

Sym𝑘(ℂ𝑚 ⊗ℂ𝑛).
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Howe, albeit formulated differently, proves (A)-(C) as above for this and other
dualities.
It is not surprising that Howe-type dualities have been of paramount im-

portance for the representation theory of reductive groups ever since, see also
[CW12] for a summary of various such dualities, but are also pervasive in other
fields. For example, in the early stages of quantum group theory Jimbo stud-
ied quantum Schur–Weyl duality [Jim86], which, in one way or the other, is
central for the study of quantum invariants: that the Jones polynomial arises
from the Temperley–Lieb calculus [Jon85] is an instance of quantum Schur–
Weyl duality, although originally not formulated as such. And this is just the
tip of the iceberg.
It did not take long for quantumHowedualities to appear, see [NUW96] for

an early reference. Also due to their relation to diagrammatics, quantumHowe
dualities have been studied intensively since their first appearance in the 1990s,
and also turned out to be very useful for the study of quantum invariants. For a
few type 𝐴 examples of such quantum Howe dualities, see [LZZ11], [CKM14]
for quantum exterior and [RT16] for quantum symmetric Howe duality, and for
some more “exotic type𝐴 settings”, see [QS19], [TVW17] or [CW20], [BDK20].

Remark 1A.1. Quantum Howe dualities are of course not restricted to type 𝐴,
but the reader should be warned at this stage: experience tells us that quan-
tum Howe dualities often run into quantization issues and nonstandard quan-
tum objects tend to pop up. Examples are [NUW96], [ES18] or [ST19] where
coideal subalgebras as in [NS95] appear. There are even such phenomena that
are entirely in type𝐴 see e.g. [LTV23] and related quantization issues in [CK18],
[QW24].
Quantumexterior and symmetricHowedualities aswell as theirVerma coun-

terparts are notable exceptions, and the quantization in these cases is not a big
deal. In fact, our proofs will mostly stay in the non-quantum setting and the
quantum case then follows using a flatness argument.

1B. What this paper does. The main theorem of this paper is Theorem 2B.3
where we formulate a (quantum) Verma Howe duality. To explain the main
points let us be less general than Theorem 2B.3 actually is. For example, as
we wrote in Remark 1A.1, quantization is not an issue for us and we can work
over with general fields and quite general parameters, see Remark 1B.1, but we
stay in the classical case in this introduction for simplicity. The classical, non-
quantum, version of Theorem 2B.3 is then still more general than the following.
To work with Verma modules we go from the Lie group to the Lie algebras.

For generic enough 𝜆𝑖 ∈ ℂ, where 𝑖 ∈ {1, ..., 𝑛}, let 𝙼𝜆𝑖 be the 𝑈(𝔤𝔩2) Verma
module of highest 𝔰𝔩2 weight 𝜆𝑖. We take the tensor product 𝙼𝜆1 ⊗ ...⊗𝙼𝜆𝑛 . For
the same reason as for symmetric Howe duality, we then take a certain direct
sum of the 𝙼𝜆1 ⊗ ...⊗ 𝙼𝜆𝑛 . Call this direct sum 𝙼⊕𝝀 where 𝝀 = (𝜆1, ..., 𝜆𝑛).
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Now, essentially by definition, 𝑈(𝔤𝔩2) acts on 𝙼
⊕𝝀 and we also construct a

dual action of 𝑈(𝔤𝔩𝑛) on 𝙼
⊕𝝀. Using the double centralizer approach, Theo-

rem 2B.3 states and proves (A)-(C) for the 𝑈(𝔤𝔩2)-𝑈(𝔤𝔩𝑛) bimodule 𝙼
⊕𝝀.

Since all symmetric powers for 𝑈(𝔤𝔩2) are quotients of Verma modules, we
think of this Verma Howe duality as a generalization of symmetric Howe du-
ality (with a caveat, see subsection 1C below). Verma Howe duality is however
much more difficult to prove: Firstly, the whole setting is, by its very nature,
infinite dimensional and most of the classical statements need to be appropri-
ately reformulated and adjusted to the infinite dimensional setting. Second,
and more importantly, the simple 𝑈(𝔤𝔩𝑛) appearing in (C) are neither high-
est nor lowest weight modules; they are simple dense (weight) modules in the
sense of [Mat00]. This is, to the best of our knowledge, very different from all
other Howe-type dualities in the literature and makes calculations (for exam-
ple actions of Casimir elements) much more involved. In particular, we need
to take quite a detour to identify the dense modules explicitly and we crucially
use results from [Maz03] and [MTL05], and implicitly computer help, to iden-
tify them. (This is also our main reason to stay with𝑈(𝔤𝔩2) instead of𝑈(𝔤𝔩𝑚).)
Along the way we partially generalize [Maz03] so that we can use fairly general
parameters.

Remark 1B.1. Let us also stress that our approach works in quite some general-
ity. That is, we work over an arbitrary field𝕂 and fix a quantum parameter that
is not a root of unity. Moreover, the 𝜆𝑖 of the Vermamodules are, up to a certain
degree, allowed to be integers, see Definition 2A.18 for a precise condition.

As an application of Theorem 2B.3 we prove that the (colored higher) LKB
representations constructed in [JK11] and [Mar20] are simple as modules of
the associated (colored) braid groups. This not just gives a new proof of [JK11,
Theorem 3] but also strengthens the result of Jackson–Kerler quite a bit: we
prove simplicity formuch smaller groups, namely the corresponding pure braid
groups. Moreover, Jackson–Kerlerwork over𝕂(𝑞) forℚ ⊂ 𝕂 andwith a generic
parameter for the LKB representations. Our setting is more general, see Re-
mark 1B.1. In fact, we think it is remarkable that the LKB representations stay
simple even after specializing some parameters or leaving characteristic zero.
Finally, since we can allow different parameters, our methods also relate the
LKB representations to handlebody braid groups as in e.g. [Ver98], [HOL02],
[RT21] or [TV23].

1C. Outlook. Separate from the evident question how to replace 𝑈(𝔤𝔩2) by
𝑈(𝔤𝔩𝑚), here are a few directions one could try to explore:

(a) While (A) and (B) as above often hold in more generality, (C) is using
that the underlying representation is semisimple. The nonsemisimple
versions of some of the above are known, see for example [DPS98] for
an integral version of quantum Schur–Weyl duality. But these are also
much more involved and often need some form of tilting theory.
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A nonsemisimple version Theorem 2B.3 would be a true generaliza-
tion of quantum symmetric Howe duality since the cases where only
symmetric powers appearwithin theVermamodules are precisely ruled
out by our condition in Definition 2A.18. However, we can still have
symmetric powers but need at least also a “generic enough” highest
weight.

(b) Several papers discuss dualities involving one Verma and tensor prod-
ucts of finite dimensional modules, see e.g. [ILZ21] or [LV21]. It would
be interesting to compare these to this work, also with an eye on cate-
gorification of the story as in [LNV21].

(c) Another interesting direction is the identification of the LKB represen-
tations with specialized parameters as cell representations of algebras
within the symmetric web category from [RT16]. We suspect that this
is a consequence of Verma Howe duality for (the quantum version of)
𝜆𝑖 ∈ ℤ≥0. Note that special cases of this are known: Jones’ work [Jon85]
implicitly showed the respective statement for the Burau representa-
tion and the Temperley–Lieb calculus, and [Zin01] implicitly showed
an analog for the LKB representation. Note that Temperley–Lieb and
the Brauer-type calculus used in [Jon85] and [Zin01], respectively, are
special cases of the symmetric web calculus. (For the Temperley–Lieb
calculus this is clear, while the Brauer-type calculus makes its appear-
ance due to the “small number coincidence” that matches SO3(ℂ) rep-
resentations and odd dimensional SL2(ℂ) representations.) In [For96,
Lemma 6] it is shown that the reduced Burau representation of the 𝑛
strand braid group is simple if and only if quantum 𝑛 does not vanish,
and Verma Howe duality should be helpful to prove similar results for
the other LKB representations.

(d) A striking question is how to categorify Verma Howe duality. We sus-
pect this should be related to categorification of tensor products of in-
finite dimensional representations as in [DN21]. One could also hope,
in some sense, that a categorification of LKB representations would be
an upshot of such a categorical Verma Howe duality.

Acknowledgments. We like to thank Volodymyr Mazorchuk for many help-
ful exchanges of emails, and for explaining various properties of densemodules
to us. We also thank the referee for helpful comments. Part of this paper were
done after having consulted Magma and Mathematica. Their help is gratefully
acknowledged.

2. A duality involving Vermamodules
In this section we state a duality that we call (quantum) Verma Howe du-

ality.
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Remark 2.1. We use colors in this paper, but these are a visual aid and do not
have other significance. In particular, the paper is readable in black-and-white
without restrictions.

2A. Vermaanddensemodules. The following specifies the underlyingfield:

Notation 2A.1. Fix an arbitrary field 𝕂 and an element 𝑞 ∈ 𝕂 ⧵ {0} that is not
of finite order. We call 𝑞 the quantum parameter.
We additionally allow 𝑞 = ±1, but then we assume that𝕂 is of characteristic

zero. This is the non-quantum or classical case. The reader is warned that
the below is tailor-made for the quantum case and needs to be adjusted for the
classical case. We leave the adjustments to the reader.

We consider the quantum enveloping algebra 𝑈𝑞(𝔤𝔩2) of 𝔤𝔩2 over 𝕂 with
respect to the quantum parameter 𝑞. We specify our conventions later on in
subsection 3B and for now it is enough to know that𝑈𝑞(𝔤𝔩2) is, as a 𝕂 algebra,
generated by 𝐸, 𝐹, 𝐿±11 and 𝐿±12 .
From now on fix 𝑛 ∈ ℤ≥1.

Notation 2A.2.
(a) We use a bold font for tuples, e.g. 𝝀 = (𝜆1, ..., 𝜆𝑛) ∈ 𝕂𝑛.
(b) Whenever an index of tuple is not defined but appears in a formula,

then the associated element is zero, by convention. For example, 𝜆<1 =
𝜆>𝑛 = 0 if we specify 𝝀 = (𝜆1, ..., 𝜆𝑛).

(c) We will also use sums of the form 𝑎1 + 𝑎2 + ...+ 𝑎𝑘−1 + 𝑎𝑘 for 𝑘 ∈ ℤ≥1

very often in this paper, and we abbreviate them to Σ𝑎𝑘 =
∑𝑘

𝑖=1 𝑎𝑖.
(d) Denote by 𝝐 𝑖 = (0, ..., 0, 1, 0, ..., 0) the tuple with the 𝑖th entry being 1,

and 𝜶 𝑖 = 𝝐 𝑖 − 𝝐 𝑖+1. We also use 𝝐 𝑖𝑗 below meaning a matrix-style nota-
tion with only one nonzero entry.

Definition 2A.3. Given 𝜆 ∈ 𝕂 we consider the field 𝕂𝜆
𝑞 = 𝕂(𝑞𝜆). We define

the quantum numbers as [𝑥]𝑞 = 𝑞𝑥−𝑞−𝑥

𝑞−𝑞−1
∈ 𝕂𝜆

𝑞, where 𝑥 ∈ ℤ or 𝑥 ∈ 𝜆 +

ℤ. Similarly, for 𝝀 ∈ 𝕂𝑛 we use the field 𝕂𝝀
𝑞 = 𝕂(𝑞𝜆1 , ..., 𝑞𝜆𝑛) and quantum

numbers will be elements of 𝕂𝝀
𝑞 .

The following will be often used silently throughout:

Lemma 2A.4. All quantum numbers are nonzero and thus invertible.

Proof. Easy since Notation 2A.1 forces this to be true, in particular, we need
characteristic zero for 𝑞 = ±1. Details are omitted. □

Remark 2A.5. The tuple 𝝀 ∈ 𝕂𝑛 consist of the underlying parameters that we
use. Note that our formulation includes the case where the quantum parame-
ter 𝑞 and the 𝜆𝑖 are formal variables by e.g. choosing 𝕂 = ℚ(𝑍, 𝑍1, ..., 𝑍𝑛), for
indeterminates 𝑍 and 𝑍𝑖, and 𝑞 = 𝑍, 𝜆𝑖 = 𝑍𝑖. In contrast, the parameters could



VERMA HOWE DUALITY AND LKB REPRESENTATIONS 1513

be inℤ ⊂ 𝕂, but we partially need to avoid that, see e.g. Definition 2A.18 below.
It is allowed that some (or even all) of the 𝜆𝑖 are the same.

We consider 𝑈𝑞(𝔤𝔩2) also over fields such as 𝕂𝝀
𝑞 by scalar extension. The

parameters only play a role for 𝑈𝑞(𝔤𝔩2)modules and not for 𝑈𝑞(𝔤𝔩2) itself.

Definition 2A.6. For any 𝜆 ∈ 𝕂 the (quantum) dual Verma module 𝙼𝜆𝑞 of
highest weight 𝜆 is 𝙼𝜆𝑞 = 𝕂𝜆

𝑞{𝑚𝑖|𝑖 ∈ ℤ≥0} as a 𝕂𝜆
𝑞 vector space and the left

𝑈𝑞(𝔤𝔩2) action is
𝐸 · 𝑚𝑖 = [𝑖]𝑞 ⋅ 𝑚𝑖−1, 𝐹 · 𝑚𝑖 = [𝜆 − 𝑖]𝑞 ⋅ 𝑚𝑖+1,

𝐿1 · 𝑚𝑖 = 𝑞𝜆−𝑖 ⋅ 𝑚𝑖, 𝐿2 · 𝑚𝑖 = 𝑞𝑖 ⋅ 𝑚𝑖,
(2A.7)

where we use the quantum numbers from Definition 2A.3 and let𝑚−1 = 0.
More generally, we define 𝙼𝜆,𝑡𝑞 for 𝑡 ∈ 𝕂 by tensoring 𝙼𝜆−2𝑡𝑞 with the one

dimensional 𝑈𝑞(𝔤𝔩2)module of highest 𝔤𝔩2 weight (𝑡, 𝑡).

We call the 𝙼𝜆𝑞 Verma modules for simplicity although they coincide with
what are often called dual Verma modules in the literature, e.g. our modules
correspond to𝑀∨ in [Hum08].

Remark 2A.8. The highest weight of 𝙼𝜆𝑞 is strictly speaking (𝑞𝜆, 𝑞0), but in Defi-
nition 2A.6, and throughout, we use the notionweight in the sense of classical
𝔰𝔩2 weight combinatorics. We however sometimes need to be more specific.
For example, for 𝙼𝜆,𝑡𝑞 we need the 𝔤𝔩2 weight notation and the classical highest
weight of 𝙼𝜆,𝑡𝑞 is (𝜆 − 𝑡, 𝑡) which is the same as (𝜆 − 2𝑡, 0) when restricted to 𝔰𝔩2
weight notation. Whenever we use 𝔤𝔩2 notation we point that out.

Example 2A.9. The 𝑈𝑞(𝔤𝔩2)module 𝙼
𝜆
𝑞 is given by the usual picture but with

slightly more generic quantum numbers in the action:

𝙼𝜆𝑞 ↭ 𝑚0

[𝜆−0]𝑞

[0]𝑞

𝑞𝜆−2⋅0

𝑚1

[𝜆−1]𝑞

[1]𝑞

𝑞𝜆−2⋅1

𝑚2

[𝜆−2]𝑞

[2]𝑞

𝑞𝜆−2⋅2

𝑚3

[𝜆−3]𝑞

[3]𝑞

𝑞𝜆−2⋅3

𝑚4

[𝜆−4]𝑞

[4]𝑞

𝑞𝜆−2⋅4

𝑚5

[𝜆−5]𝑞

[5]𝑞

𝑞𝜆−2⋅5

[6]𝑞

⋯ ,

𝐸 moves to the right, 𝐹 moves to the left, 𝐾 = 𝐿1𝐿−12 is a loop.

The highest weight is 𝜆. ◊

We will also use the quantum enveloping algebra 𝑈𝑞(𝔤𝔩𝑛) of 𝔤𝔩𝑛, again
over𝕂𝝀

𝑞 , with conventions specified later on, see subsection 3B. The generators
are 𝐸𝑖, 𝐹𝑖 for 𝑖 ∈ {1, ..., 𝑛 − 1}, and 𝐿±1𝑖 for 𝑖 ∈ {1, ..., 𝑛}.

Notation 2A.10. We consider 𝑈𝑞(𝔤𝔩2) and 𝑈𝑞(𝔤𝔩𝑛) as different algebras, even
if 𝑛 = 2. All 𝑈𝑞(𝔤𝔩2) modules used in this paper are left 𝑈𝑞(𝔤𝔩2) modules,
while all 𝑈𝑞(𝔤𝔩𝑛)modules used in this paper are right 𝑈𝑞(𝔤𝔩𝑛)modules. If we
mean either𝑈𝑞(𝔤𝔩2) or𝑈𝑞(𝔤𝔩𝑛), then we will write𝑈𝑞(𝔤𝔩𝑘). Similarly for their
classical versions, and we will often drop the adjectives left and right.
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We will need certain 𝑈𝑞(𝔤𝔩𝑛)modules with bases indexed by:

Definition 2A.11. Fix 𝒎 = (𝑚1, ..., 𝑚𝑛) ∈ 𝕂𝑛 and 𝒚 = (𝑦1, ..., 𝑦𝑛−1) ∈ 𝕂𝑛−1

such that𝑚2−𝑚3, ..., 𝑚𝑛−1−𝑚𝑛 ∈ ℤ≥0 and 𝑦𝑖−𝑚2 ∉ ℤ for all 𝑖 ∈ {1, ..., 𝑛−1}. A
GT (Gelfand–Tsetlin) pattern 𝐺𝑇𝑥⃗ for (𝒎, 𝒚) is a triangular array of the form

𝐺𝑇𝑥⃗ =

𝑥𝑛1 𝑥𝑛2 ... ... 𝑥𝑛𝑛... ... ... ...
𝑥31 𝑥32 𝑥33

𝑥21 𝑥22
𝑥11

(2A.12)

where 𝑥⃗ = (𝑥𝑛1, ..., 𝑥𝑛𝑛, 𝑥(𝑛−1)1, ...) (i.e. the pattern read row-wise) is such that:
(i) 𝑥𝑛𝑖 = 𝑚𝑖 for 𝑖 ∈ {1, ..., 𝑛} (𝒎 gives the top row),
(ii) 𝑥𝑖1 − 𝑦𝑖 ∈ ℤ for 𝑖 ∈ {1, ..., 𝑛} (𝒚 gives the first diagonal up to integers),
(iii) 𝑥𝑗𝑘 − 𝑥(𝑗−1)𝑘 ∈ ℤ≥0 and 𝑥(𝑗−1)𝑘 − 𝑥𝑗(𝑘+1) ∈ ℤ≥0 for 𝑗 ∈ {3, ..., 𝑛} and

𝑘 ∈ {2, ..., 𝑗}, that is,

𝑥𝑗𝑘 ≥ 𝑥𝑗(𝑘+1)
≥

≥
𝑥(𝑗−1)𝑘

.

A two diagonal GT pattern (appearing in Verma Howe duality) is a GT
pattern with 𝒎 = (𝑥𝑛 = Σ𝜆𝑛 + 𝑏, 𝑐, 0, ..., 0) with 𝑏, 𝑐 ∈ ℤ to be chosen and 𝒚
determined by 𝑦𝑖 = Σ𝜆𝑖 for 𝑖 ∈ {1, ..., 𝑛 − 1}. Letting 𝑐𝑛 = 𝑐, we denote these by

𝐺𝑇𝒙,𝒄 =

𝑥𝑛 𝑐𝑛 0 ... 0
𝑥𝑛−1 𝑐𝑛−1

... ...... ... 0
𝑥2 𝑐2

𝑥1

, (2A.13)

with 𝒙 = (𝑥1, ..., 𝑥𝑛) ∈ (𝕂𝜆
𝑞)𝑛 as above and 𝒄 = (𝑐2, ..., 𝑐𝑛) ∈ ℤ𝑛−1

≥0 .

In (2A.12) and (2A.13) we have shaded the parts of the GT patterns which
play significantly different roles. We call the shaded block to the right the inte-
gral part of the pattern since all the patterns we need will have integral entries
in this part, and nonintegral entries otherwise.

Definition 2A.14. Consider two diagonal GT patterns. Define the densemod-
ule, as a 𝕂𝜆

𝑞 vector space, as

𝙳𝒎,𝒚𝑞 = 𝕂𝜆
𝑞{𝐺𝑇𝑥⃗|𝐺𝑇𝑥⃗ is a two diagonal GT pattern for (𝒎, 𝒚)}

and the 𝑈𝑞(𝔤𝔩𝑛) action is given later in (3B.7) (on a different basis).

Example 2A.15. If 𝑛 = 2, then the only entry in a GT patterns that is not
completely determined by (𝒎, 𝒚) is 𝑥11. The latter is some integer shift of 𝑦1,
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so we can index a basis of 𝙳𝒎,𝒚𝑞 as {𝑤𝑖|𝑖 ∈ ℤ}. For certain values of𝐴𝑖, 𝐵𝑖 and 𝐶𝑖
that can be explicitly obtained from (3B.7) the picture is then

𝙳𝒎,𝒚𝑞 ↭ 𝑤3

1

−[𝐵3]𝑞[𝐶3]𝑞

𝑞𝐴3

𝑤2

1

−[𝐵2]𝑞[𝐶2]𝑞

𝑞𝐴2

𝑤1

1

−[𝐵1]𝑞[𝐶1]𝑞

𝑞𝐴1

𝑤0

1

−[𝐵0]𝑞[𝐶0]𝑞

𝑞𝐴0

𝑤−1

1

−[𝐵−1]𝑞[𝐶−1]𝑞

𝑞𝐴−1

𝑤−2

1

−[𝐵−2]𝑞[𝐶−2]𝑞

𝑞𝐴−2

1

−[𝐵−3]𝑞[𝐶−3]𝑞

⋯ ⋯ ,

𝐸 moves to the right, 𝐹 moves to the left, 𝐾 is a loop.

The module 𝙳𝒎,𝒚𝑞 has neither a highest nor a lowest weight. Note also that the
conventions for the scalars in this example are different from Example 2A.9.
(That is also why the basis vectors here are denoted by 𝑤𝑖 and not by 𝑚𝑖.) But
that can be fixed by appropriate base change. ◊

Remark 2A.16. For 𝑈𝑞(𝔤𝔩2) there are four interval-type pictures as in Exam-
ple 2A.9 and Example 2A.15. First, a finite interval [𝑎, 𝑏], having a highest
and a lowest weight, which corresponds to a finite dimensional 𝑈𝑞(𝔤𝔩2) mod-
ule. One could also use ]−∞, 𝑏] or [𝑎,∞[, and the associated𝑈𝑞(𝔤𝔩2)modules
are Verma and coVerma modules, respectively. These have either a highest or
a lowest weight. Finally, the interval ]−∞,∞[= ℝ corresponds to the dense
modules and these have neither a highest nor a lowest weight. In this sense,
dense modules are a natural family of 𝑈𝑞(𝔤𝔩2)modules.
More generally, dense modules appear in the study of weight modules for

𝑈𝑞(𝔤𝔩𝑘). That is, every simple weight module of 𝑈𝑞(𝔤𝔩𝑘) is dense or induced
from a dense module, see [Fut87] and [Fer90], which reduces the classification
of simple weight modules to dense modules. Hence, one could say that dense
modules are prototypical weight modules.

Lemma 2A.17. (2A.7) and Definition 2A.14 endow 𝙼𝜆𝑞 and 𝙳
𝒎,𝒚
𝑞 , respectively,

with structures of𝑈𝑞(𝔤𝔩2) and𝑈𝑞(𝔤𝔩𝑛)modules.

Proof. Well-knownand easy for𝙼𝜆𝑞, and this follows from (3B.7) below for𝙳𝒎,𝒚𝑞 .
□

Definition 2A.18. We call 𝝀 admissible parameters if exists a permutation
𝜎 ∈ Aut{1, ..., 𝑛} such that Σ𝜆𝜎(𝑘) ∉ ℤ for all 𝑘 ∈ {1, ..., 𝑛}.

Example 2A.19. Note that Definition 2A.18 allows to have some 𝜆𝑖 ∈ ℤ. For
example, the parameters 𝝀 = (1, 2, 3, 𝜋, 4, 5, 6) ∈ ℝ7 are admissible. ◊

We will need admissible parameters because of Remark 2B.6 below and also
because of:

Lemma 2A.20. For admissible parameters we have that the𝑈𝑞(𝔤𝔩2)module 𝙼
𝜆
𝑞

and the𝑈𝑞(𝔤𝔩𝑛)module𝙳
𝑏,𝑐
𝑞 are simple. Similarly, 𝙼𝜆,𝑡𝑞 is a simple𝑈𝑞(𝔤𝔩2)module

if 𝜆 − 2𝑡 is generic.

Proof. For the dense modules we will show this later in Lemma 3A.28 while
𝜆 ∉ ℤ implies simplicity of 𝙼𝜆𝑞, as usual in the theory, cf. [Hum08, Section
1.5]. □
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2B. Verma Howe duality. Since we work with infinite dimensional 𝕂𝝀
𝑞 vec-

tor spaces and their homomorphisms, we need to be careful with respect to
finite vs. infinite sums. To avoid convergence issues, we use the following def-
inition, where rings, as throughout, are associative and unital.

Definition 2B.1. Let S ⊂ T be two rings, and let 𝙼 be a left (or right)Tmod-
ule. We call S a dense subring of T (with respect to 𝙼) if for any 𝑡 ∈ T and
𝑚1, ..., 𝑚𝑘 ∈ 𝙼 there exists 𝑠 ∈ S such that 𝑠 · 𝑚𝑖 = 𝑡 · 𝑚𝑖 (or𝑚𝑖 · 𝑠 = 𝑚𝑖 · 𝑡) for
𝑖 ∈ {1, ..., 𝑘}.
We say {𝑠𝑖|𝑖 ∈ 𝐼} ⊂ T densely-generates T (with respect to a fixed 𝙼) if

{𝑠𝑖|𝑖 ∈ 𝐼} generates a dense subring of T and we write {𝑠𝑖|𝑖 ∈ 𝐼} ↠𝑑 T in this
case.

Notation 2B.2. We also write EndS(𝙼) instead of EndS𝑜𝑝(𝙼), i.e. we suppress
the necessary but not enlightening appearance of the opposite ring.

We will write 𝙳𝑏,𝑐𝑞 for the dense modules with 𝑏, 𝑐 as in Definition 3A.18.
LetS be a ring. For a left or rightSmodule 𝙼, the ringS′ = EndS(𝙼) is called

the centralizer of S (on 𝙼). We call the following theorem (quantum) Verma
Howe duality:

Theorem 2B.3.
(a) There are commuting actions

𝑈𝑞(𝔤𝔩2)

↻

𝙼⊕𝝀𝑞 =
⨁

𝒅∈ℤ𝑛
𝙼𝜆1+𝑑1𝑞 ⊗ ...⊗ 𝙼𝜆𝑛+𝑑𝑛𝑞 ↺ 𝑈𝑞(𝔤𝔩𝑛).

(b) Let𝜙𝑘𝑞 be the algebra homomorphism induced by the𝑈𝑞(𝔤𝔩𝑘) actions from
(a). Then, for admissible parameters 𝝀:

𝜙2𝑞 ∶ 𝑈𝑞(𝔤𝔩2) ↠𝑑 End𝑈𝑞(𝔤𝔩𝑛)(𝙼
⊕𝝀
𝑞 ), 𝜙𝑛𝑞 ∶ 𝑈𝑞(𝔤𝔩𝑛) ↠𝑑 End𝑈𝑞(𝔤𝔩2)(𝙼

⊕𝝀
𝑞 ).

That is, the two actions densely-generate the others centralizer.
(c) Foradmissible parameters𝝀 we have the decomposition of the 𝑈𝑞(𝔤𝔩2)-

𝑈𝑞(𝔤𝔩𝑛) bimodule 𝙼
⊕𝝀
𝑞 into

𝙼⊕𝝀𝑞 ≅
⨁
𝑔∈ℤ
𝑡∈ℤ≥0

𝙼Σ𝜆𝑛+𝑔−𝑡,𝑡𝑞 ⊗ 𝙳𝑔−𝑡,𝑡𝑞 . (2B.4)

The various 𝙼Σ𝜆𝑛+𝑔−𝑡,𝑡𝑞 and 𝙳𝑔−𝑡,𝑡𝑞 are nonisomorphic simple𝑈𝑞(𝔤𝔩2)mod-
ules respectively𝑈𝑞(𝔤𝔩𝑛)modules.

There is also a similar statement in the non-quantum case which the reader can
spell out easily themselves by removing all 𝑞 above.

The proof of Theorem 2B.3 is nontrivial and given in its own section, see
section 3 below.
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Remark 2B.5. If 𝙼 in Definition 2B.1 is finitely generated, then densely-
generating the centralizer is the same as generating the centralizer. In this case
Theorem 2B.3 is a classical Schur–Weyl(–Brauer) or Howe duality as in the in-
troduction. The formulation above is copied from [AST17, Section 3], which
also gives an overview of Schur–Weyl(–Brauer) dualities.

Remark 2B.6. We suspect that Theorem 2B.3.(b) works without assuming that
we have admissible parameters, and we would expect tilting theory as in the
proofs of Lemma 3A.9 and Lemma 3B.10 below to play a major role. However,
note that 𝙼𝜆𝑞 for 𝜆 ∈ ℤ≥0 is not tiltingwhichmakes the nonsemisimple situation
much more delicate. Note that Theorem 2B.3 for 𝝀 ∈ ℤ𝑛

≥0 could be used to
generalize (quantum) symmetric Howe duality as in, for example, [How95,
Theorem 2.1.2] and [RT16, Theorem 2.6].

Remark 2B.7. The GT patterns in Theorem 2B.3 always have many zeros, ex-
actly as in (2A.13). This is because we consider 𝑈𝑞(𝔤𝔩2) and not 𝑈𝑞(𝔤𝔩𝑚) for
general𝑚 ∈ ℤ≥1.

Remark 2B.8. Verma Howe duality as in Theorem 2B.3 is formulated for(
𝑈𝑞(𝔤𝔩2), 𝑈𝑞(𝔤𝔩𝑛)

)
. If the reader likes to work with the special linear group

instead of the general linear group, then they can replace
(
𝑈𝑞(𝔤𝔩2), 𝑈𝑞(𝔤𝔩𝑛)

)

with
(
𝑈𝑞(𝔰𝔩2), 𝑈𝑞(𝔤𝔩𝑛)

)
or
(
𝑈𝑞(𝔤𝔩2), 𝑈𝑞(𝔰𝔩𝑛)

)
in Theorem 2B.3.

3. The proof of Verma Howe duality
We first prove the classical version of Theorem 2B.3, and then use a flatness

argument to get the quantum version. Recall that in the classical case we as-
sume that 𝕂 is of characteristic zero.

3A. The classical case. We will need the Lie algebra 𝔤𝔩𝑘 and it elements of
the form 𝐸𝑖𝑗. These are the 𝑘×𝑘 matrices with a one in the 𝑖th row and 𝑗th
column and zeros otherwise.

Lemma 3A.1. If Theorem 2B.3 holds for 𝝀 ∈ 𝕂𝑛, then it holds for any permuta-
tion of 𝝀 as well.

Proof. This follows since the category of 𝔤𝔩𝑘-representations is symmetric. □

Notation 3A.2.
(a) We also write 𝐸𝑖 = 𝐸𝑖(𝑖+1), 𝐹𝑖 = 𝐸(𝑖+1)𝑖 and 𝐿𝑖 = 𝐸𝑖𝑖. For 𝔤𝔩2, we simplify

this notation and use 𝐸 = 𝐸1 =
( 0 1
0 0
)
and 𝐹 = 𝐹1 =

( 0 0
1 0
)
, and we also

have 𝐿1 =
( 1 0
0 0
)
and 𝐿2 =

( 0 0
0 1
)
.

(b) We denote the operators used in actions by e.g. 𝑒𝑖𝑗 to distinguish then
from the elements of the Lie algebras. The operators are always ele-
ments of some endomorphism space. The appearing operators will al-
ways be denoted using lowercase letters.
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(c) By Lemma 3A.1 we can and will assume that Σ𝜆𝑘 ∉ ℤ for all 𝑘 ∈
{1, ..., 𝑛} instead of Σ𝜆𝜎(𝑘) ∉ ℤ for all 𝑘 ∈ {1, ..., 𝑛}. This will be of impor-
tance in some of our formulas.

We need the following realization of 𝙼⊕𝝀. Let 𝕂[𝑿±1, 𝒀] be the algebra gen-
erated by indeterminates 𝑿±1 = (𝑋±1

1 , ..., 𝑋±1
𝑛 ) and 𝒀 = (𝑌1, ..., 𝑌𝑛). We shift

the exponents of the 𝑋 in 𝕂[𝑿±1, 𝒀] by 𝝀 so that powers of the variables 𝑿 and
𝒀 are now in 𝝀 + ℤ𝑛 and ℤ𝑛

≥0, respectively. The resulting 𝕂 vector space is
denoted by 𝙿𝝀 = 𝕂[𝑿𝝀+ℤ𝑛

, 𝒀]. We view 𝙿𝝀 as a 𝕂[𝑿±1, 𝒀] bimodule, meaning
that we allowmultiplication by𝑋±1

𝑖 and by𝑌𝑖. We also use 𝙿𝜆 defined similarly.

Definition 3A.3. For 𝑖 ∈ {1, ..., 𝑛} we let operators 𝜕𝑋𝑖 and 𝜕𝑌𝑖 act on 𝙿
𝜆 as

formal derivations, i.e. for 𝑟 ∈ ℤ and 𝑠 ∈ ℤ≥0 we define

𝜕𝑋𝑖𝑋
𝜆+𝑟
𝑗 = 𝛿𝑖,𝑗(𝜆 + 𝑟) ⋅ 𝑋𝜆+𝑟−1

𝑖 , 𝜕𝑋𝑖𝑌
𝑠
𝑗 = 0,

𝜕𝑌𝑖𝑌
𝑠
𝑗 = 𝛿𝑖,𝑗𝑠 ⋅ 𝑌𝑠−1

𝑖 , 𝜕𝑌𝑖𝑋
𝜆+𝑟
𝑗 = 0,

and we then extend these rules to all of 𝙿𝜆 linearly and by the Leibniz rule.

We let the algebra 𝑈(𝔤𝔩2) act on 𝙿
𝜆 by

𝐸 ↦ 𝑒 = 𝑋𝜕𝑌 , 𝐹 ↦ 𝑓 = 𝑌𝜕𝑋 , 𝐿1 ↦ 𝑙1 = 𝑋𝜕𝑋 , 𝐿2 ↦ 𝑙2 = 𝑌𝜕𝑌 . (3A.4)

The action (3A.4) extends to an action of 𝑈(𝔤𝔩2) on

𝙿𝝀 ≅
𝑛⨂

𝑖=1
𝙿𝜆𝑖

by using the usual coproduct of𝑈(𝔤𝔩2) determined by ∆(𝑥) = 𝑥⊗1+1⊗𝑥 for
all 𝑥 ∈ 𝔤𝔩2.
We have a dual action of 𝑈(𝔤𝔩𝑛) on 𝙿

𝝀 determined by

𝐸𝑖𝑗 ↦ 𝑒𝑖𝑗 = 𝑋𝑖𝜕𝑋𝑗 + 𝑌𝑖𝜕𝑌𝑗 . (3A.5)

In particular, 𝐸𝑖 acts as 𝑒𝑖(𝑖+1), 𝐹𝑖 acts as 𝑒(𝑖+1)𝑖 and 𝐿𝑖 acts as 𝑒𝑖𝑖.
For 𝑟 ∈ ℤ and 𝑠 ∈ ℤ≥0 let 𝑋𝜆+𝑟

𝑖 𝑌𝑠
𝑖 be of degree 𝑟 + 𝑠. This gives us a ℤ𝑛

grading on 𝙿𝝀. For 𝒅 = (𝑑1, ..., 𝑑𝑛) ∈ ℤ𝑛 we denote theℤ𝑛 graded piece of 𝙿𝝀 of
degree 𝒅 by (𝙿𝝀)𝒅.

Lemma 3A.6. The graded𝕂 vector space

𝙿𝝀 ≅
⨁

𝒅∈ℤ𝑛
(𝙿𝝀)𝒅

is an 𝑈(𝔤𝔩2) module when endowed with (3A.4) that is isomorphic to 𝙼
⊕𝝀 that

decomposes as above. Moreover, it is also an 𝑈(𝔤𝔩𝑛)module when endowed with
(3A.5), and the two actions commute.

Proof. That (3A.4) defines a homogeneous action of 𝑈(𝔤𝔩2) is easy to see.
The resulting𝑈(𝔤𝔩2)module is isomorphic to 𝙼

⊕𝝀 as in the classical 𝔤𝔩2 the-
ory: For 𝑑 = 0 the basis elements of (𝙿𝜆)0 are of the form 𝑋𝜆−𝑟𝑌𝑟 for 𝑟 ∈ ℤ≥0
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and e.g. 𝑓(𝑋𝜆−𝑟𝑌𝑟) = (𝜆 − 𝑟) ⋅ 𝑋𝜆−𝑟−1𝑌𝑟+1. Comparing this with the classical
version of Example 2A.9 shows that (𝙿𝜆)0 ≅ 𝙼𝜆. For general 𝑑 ∈ ℤ the story is
just shifted and we get (𝙿𝜆)𝑑 ≅ 𝙼𝜆+𝑑. These isomorphisms extend to 𝙿𝝀 ≅ 𝙼⊕𝝀
by using the coproduct.
That (3A.5) defines an 𝑈(𝔤𝔩𝑛) action and that the two actions commute are

direct calculations. □

We always use the two actions (3A.4) and (3A.5) for the remainder of this
section. Note that Lemma 3A.6 gives us a 𝑈(𝔤𝔩2)-𝑈(𝔤𝔩𝑛) bimodule structure
on 𝙿𝝀.

Notation 3A.7. For 𝒁 = (𝑍1, ..., 𝑍𝑛) and 𝒃 = (𝑏1, ..., 𝑏𝑛)we write 𝒁
𝒃 = 𝑍𝑏11 ⋅ ... ⋅

𝑍𝑏𝑛𝑛 .

Lemma 3A.8. The element𝑋𝜆+𝑟𝑌𝑠 is annihilated by𝐸 ∈ 𝔤𝔩2 if and only if 𝑠 = 0.

Proof. This holds since 𝑒 = 𝑋𝜕𝑌 so that 𝑒(𝑋𝜆+𝑟𝑌𝑠) = 𝑠 ⋅ 𝑋𝜆+𝑟+1𝑌𝑠−1. □

An𝑈(𝔤𝔩𝑘)module is called countable semisimple if it is a countable direct
sum of countable dimensional simple 𝑈(𝔤𝔩𝑘)modules.

Lemma 3A.9. For admissible parameters 𝝀 the 𝑈(𝔤𝔩2) module 𝙿
𝝀 is countable

semisimple.

Proof. Extending e.g. [Kåh10, Section 2] to𝕂𝝀
𝑞 , we let 𝒪̃ denote enlarged cate-

gory 𝒪. We will not define 𝒪̃ here as it can be defined, mutatis mutandis, as in
[Kåh10, Section 2] with the same properties as therein. In particular, we have
𝙿𝝀 ≅ 𝙼⊕𝝀 ∈ 𝒪̃.
By the usual Yoga, the 𝙼𝜆𝑖 are costandard objects in 𝒪̃. The usual Yoga, see

e.g. [Kåh10, Proposition 2.7] or [AST18, Section 2] and the extra notes for that
paper in the arXiv version of it, also gives that tensor products of 𝑈(𝔤𝔩2)mod-
ules with a costandard filtration have a costandard filtration. Moreover, the
condition Σ𝜆𝑖 ∉ ℤ for all 𝑖 ∈ {1, ..., 𝑛} ensures that all appearing costandard
filtration factors have highest weight not being in ℤ. Thus, all costandard fil-
tration factors are tilting since they are simple and costandard, which is also a
consequence of the usual Yoga.
It then follows that 𝙼⊕𝝀 decomposes into a direct sum of indecomposable

tilting𝑈(𝔤𝔩2)modules in 𝒪̃, and tracking the highest weight as in Lemma 3A.8
and using that 𝝀 is admissible shows that these indecomposable tilting 𝑈(𝔤𝔩2)
modules are actually simple and of the form 𝙼𝜇 for generic 𝜇 ∈ 𝕂.
Finally, everything involved is clearly countable, so we are done. □

Lemma 3A.10. Let 𝝀 be admissible. As𝑈(𝔤𝔩2)modules we have

𝙿𝝀 ≅ 𝙼⊕𝝀 ≅
⨁
𝑔∈ℤ
𝑡∈ℤ≥0

𝙼Σ𝜆𝑛+𝑔−𝑡,𝑡 ⊗𝔇Σ𝜆𝑛+𝑔−𝑡,𝑡, (3A.11)

where𝔇Σ𝜆𝑛+𝑔−𝑡,𝑡 is a multiplicity𝕂 vector space.
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Proof. For generic 𝜆 ∈ 𝕂 and any 𝜆′ ∈ 𝕂 one can decompose 𝙼𝜆⊗𝙼𝜆′ explicitly,
i.e. as 𝑈(𝔤𝔩2)modules we have

𝙼𝜆 ⊗ 𝙼𝜆′ ≅
⨁

𝑡∈ℤ≥0

𝙼𝜆+𝜆′−𝑡,𝑡 ⊗𝔇𝜆+𝜆′−𝑡,𝑡, (3A.12)

for some countable dimensional multiplicity𝕂 vector space𝔇𝜆+𝜆′−𝑡,𝑡. This de-
composition (3A.12) follows from Lemma 3A.8 and Lemma 3A.9 and the uni-
versal property of Verma modules.
More general, the decomposition (3A.12) can then be proven by using the

proof of Lemma3A.9which shows that 𝙿𝝀 is a(n infinite) direct sumof of simple
tilting𝑈(𝔤𝔩2)modules. The point is that the characters of simple tilting𝑈(𝔤𝔩2)
modules are well-known, since these are Verma modules, and we of course
know the character of 𝙿𝝀 itself. Using this and semisimplicity Lemma 3A.9, we
hence get the claimed formula by successively identifying the characters in 𝙿𝝀.
That is, we first get

𝙿𝝀 ≅ 𝙼⊕𝝀 ≅
⨁

𝒅∈ℤ𝑛
𝙼𝜆1+𝑑1 ⊗ ...⊗ 𝙼𝜆𝑛+𝑑𝑛 ≅

⨁

𝒅∈ℤ𝑛

𝑡∈ℤ≥0

𝙼Σ𝜆𝑛+Σ𝑑𝑛−𝑡,𝑡 ⊗𝔇Σ𝜆𝑛+Σ𝑑𝑛−𝑡,𝑡,

and then grouping isomorphic 𝑈(𝔤𝔩2)modules gives (3A.11). □

We now aim to identify 𝔇Σ𝜆𝑛+𝑔−𝑡,𝑡 from (3A.11) explicitly. To this end, we
define a 𝕂 sub vector space𝒟𝑏,𝑐 of 𝙿𝝀 that we will use for this purpose:

Definition 3A.13. Write 𝑎𝑖𝑗 = det
( 𝑥𝑖 𝑦𝑖
𝑥𝑗 𝑦𝑗

)
, 𝑎𝑖 = 𝑎𝑖(𝑖+1), 𝒂 = (𝑎1, ..., 𝑎𝑛−1) and

𝒍 = (𝑙1..., 𝑙𝑛−1) ∈ ℤ𝑛−1
≥0 . For 𝑏 ∈ ℤ and 𝑐 ∈ ℤ≥0 let

𝒟𝑏,𝑐 = 𝕂B𝐷𝑒𝑡 ⊂ 𝙿𝝀,

where B𝐷𝑒𝑡 = B𝐷𝑒𝑡(𝑏, 𝑐) = {𝑿𝝀+𝒓𝒂𝒍|Σ𝑟𝑛 = 𝑏 − 𝑐, Σ𝑙𝑛−1 = 𝑐}.

Lemma 3A.14. For fixed 𝑐 ∈ ℤ≥0 let
∏

𝑟,𝑠 𝑎𝑟𝑠 be a product of 𝑐 determinants.
Then

∏
𝑟,𝑠 𝑎𝑟𝑠 ∈ 𝕂[𝑿±1]{𝒂𝒍|Σ𝑙𝑛−1 = 𝑐}.

Proof. The determinant of the singular matrix

det(
𝑋𝑟 𝑋𝑟 𝑌𝑟
𝑋𝑖 𝑋𝑖 𝑌𝑖
𝑋𝑠 𝑋𝑠 𝑌𝑠

) = 𝑋𝑟𝑎𝑖𝑠 − 𝑋𝑖𝑎𝑟𝑠 + 𝑋𝑠𝑎𝑟𝑖 = 0

gives the relation 𝑎𝑟𝑠 = 𝑋−1
𝑖 (𝑋𝑟𝑎𝑖𝑠+𝑋𝑠𝑎𝑟𝑖) for all 𝑖 ∈ {1, ..., 𝑛}. This relation can

then be successively applied to prove the statement. □

Lemma 3A.15. The𝑈(𝔤𝔩𝑛) action from Lemma 3A.6 stabilizes𝒟𝑏,𝑐 ⊂ 𝙿𝝀.

Proof. A straightforward calculation gives

𝑒𝑖𝑗(𝑎𝑟𝑠) =
⎧

⎨
⎩

𝑎𝑖𝑠 if 𝑗 = 𝑟,
𝑎𝑟𝑖 if 𝑗 = 𝑠,
0 else.
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Using this we get

𝑒𝑖𝑗(𝑿
𝝀+𝒓𝒂𝒍) = 𝑒𝑖𝑗(𝑿

𝝀+𝒓)𝒂𝒍 + 𝑿𝝀+𝒓𝑒𝑖𝑗(𝒂𝒍)

= (𝜆𝑖 + 𝑟𝑖) ⋅ 𝑿
𝝀+𝒓+𝝐 𝑖−𝝐𝑗𝒂𝒍 + 𝑙𝑗−1 ⋅ 𝑿

𝝀+𝒓𝒂𝒍−𝝐𝑗−1 𝑎(𝑗−1)𝑖
⏟⏟⏟
rewrite

+𝑙𝑗 ⋅ 𝑿
𝝀+𝒓𝒂𝒍−𝝐𝑗 𝑎𝑖(𝑗+1)

⏟⏟⏟
rewrite

.

Nowwe use the rewriting as in the proof of Lemma 3A.14 on themarked terms,
and we are done. Explicitly, we get

𝑒𝑖𝑖(𝑿
𝝀+𝒓𝒂𝒍) =(𝜆𝑖 + 𝑟𝑖 + 𝑙𝑖−1 + 𝑙𝑖) ⋅ 𝑿

𝝀+𝒓𝒂𝒍,

𝑒𝑖(𝑖+1)(𝑿
𝝀+𝒓𝒂𝒍) =(𝜆𝑖 + 𝑟𝑖 + 𝑙𝑖+1) ⋅ 𝑿

𝝀+𝒓+𝜶 𝑖𝒂𝒍 + 𝑙𝑖+1 ⋅ 𝑿
𝝀+𝒓−𝜶 𝑖+1𝒂𝒍+𝜶 𝑖 ,

𝑒(𝑖+1)𝑖(𝑿
𝝀+𝒓𝒂𝒍) =(𝜆𝑖 + 𝑟𝑖 + 𝑙𝑖−1) ⋅ 𝑿

𝝀+𝒓−𝜶 𝑖𝒂𝒍 + 𝑙𝑖−1 ⋅ 𝑿
𝝀+𝒓+𝜶 𝑖−1𝒂𝒍−𝜶 𝑖 .

(3A.16)

Hereweused𝑎𝑖(𝑖+2) = 𝑋−1
𝑖+1(𝑋𝑖𝑎𝑖+1+𝑋𝑖+2𝑎𝑖) aswell as𝑎(𝑖−1)(𝑖+1) = 𝑋−1

𝑖 (𝑋𝑖−1𝑎𝑖+
𝑋𝑖+1𝑎𝑖−1). □

We want to show that 𝒟𝑏,𝑐 is a dense module as in Theorem 2B.3. To do
this we need an analog of the GT basis, and to define it we need to prepare the
definition with some preliminaries.

Notation 3A.17.
(a) For 𝒅 = (𝑑1, ..., 𝑑𝑛−1) ∈ ℤ𝑛−1

≥0 , we denote by
(𝒅
𝒔

)
∈ ℤ≥0 the multino-

mial-typenumber defined by the expansion
∏𝑛−1

𝑖=1 (Σ𝑋𝑖)
𝑑𝑖 =

∑
𝒔
(𝒅
𝒔

)
⋅𝑿𝒔.

(b) We let (𝑘)𝑙 = 𝑘(𝑘 + 1) ⋅ ... ⋅ (𝑘 + 𝑙 − 1) be the (increasing) Pochhammer
symbol.

(c) Wewrite Π(𝝀, 𝒓, 𝒅, 𝒋) for (Σ𝜆1+Σ𝑟1−𝑗1+1)𝑑1+𝑗1−𝑗0 ⋅ ... ⋅ (Σ𝜆𝑛−1+Σ𝑟𝑛−1−
𝑗𝑛−1 + 1)𝑑𝑛−1+𝑗𝑛−1−𝑗𝑛−2 , where 𝒋 ∈ ℤ𝑛 with 𝑗𝑛−1 = 𝑗𝑛 = 0.

Definition 3A.18. For the GT pattern

𝐺𝑇𝒙,𝒄 =

𝑥𝑛 𝑐𝑛 0 ... 0
𝑥𝑛−1 𝑐𝑛−1

... ...... ... 0
𝑥2 𝑐2

𝑥1

,

𝑐1 = 0, 𝑐𝑛 = 𝑐,
𝒅 = (𝑐2 − 𝑐1, 𝑐3 − 𝑐2, ..., 𝑐𝑛 − 𝑐𝑛−1),

Σ𝑟𝑖 = 𝑥𝑖 − Σ𝜆𝑖 − Σ𝑐𝑖−1 + 𝑐𝑖+1,

we define 𝒅 = (𝑑1, ..., 𝑑𝑛−1) and 𝒓 = (𝑟1, ..., 𝑟𝑛) as above. The associated GT
vector is

𝐺𝑇𝒅,𝒓 =
∑

𝒋∈ℤ𝑛−2
≥0

( 𝒅
𝒅+

∑𝑛−2
𝑖=1 𝑗𝑖𝜶 𝑖

)
Π(𝝀, 𝒓, 𝒅, 𝒋) ⋅ 𝑿𝝀+𝒓−

∑𝑛
𝑖=1(𝑗𝑖−𝑗𝑖−2)𝝐 𝑖𝒂𝒅+

∑𝑛−2
𝑖=1 𝑗𝑖𝜶 𝑖 ∈ 𝒟𝑏,𝑐. (3A.19)

The set of these GT vectors is denoted by B𝐺𝑇.
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The followingmanipulation of one of the scalars defining𝐺𝑇𝒅,𝒓 will come in
handy.

Lemma 3A.20. We have
( 𝒅
𝒅+

∑𝑛−2
𝑖=1 𝑗𝑖𝜶 𝑖

)
=
∏𝑛−2

𝑖=1
(𝑑𝑖+1+𝑗𝑖+1

𝑗𝑖

)
.

Proof. By using (Σ𝑋𝑖)𝑑𝑖 = (Σ𝑋𝑖−1 + 𝑋𝑖)𝑑𝑖 =
∑𝑑𝑖

𝑗=0
(𝑑𝑖
𝑗

)
(Σ𝑋𝑖−1)𝑑𝑖−𝑗𝑋

𝑗
𝑖 recursively.

□

Let 𝑧𝑘 =
∑

1≤𝑗<𝑖≤𝑘 𝑒𝑗𝑖𝑒𝑖𝑗 for 𝑘 ∈ {1, ..., 𝑛}. We need what we call the Casimir
elements of 𝔤𝔩𝑛, which are defined for 𝑘 ∈ {1, ..., 𝑛} as

𝐶𝑎𝑠𝑘 =
∑

1≤𝑖≠𝑗≤𝑘
𝐸𝑖𝑗𝐸𝑗𝑖 +

𝑘∑

𝑖=1
𝐸2𝑖𝑖 = 2𝑧𝑘 +

∑

1≤𝑗<𝑖≤𝑘
(𝐸𝑖𝑖 − 𝐸𝑗𝑗) +

𝑘∑

𝑖=1
𝐸2𝑖𝑖. (3A.21)

The notation is such that 𝐶𝑎𝑠𝑘 is the usual Casimir element of 𝔤𝔩𝑘. We write
𝑐𝑎𝑠𝑘 for the associated operator. For Lemma 3A.23 below, which is the main
lemma regarding the Casimir elements, we need the following formula for the
action of 𝑧𝑘.

Lemma 3A.22. We have 𝑧𝑘(𝑿
𝝀+𝒓𝒂𝒍) = 𝑠 ⋅ 𝑿𝝀+𝒓𝒂𝒍 + 𝑒 with 𝑠 ∈ 𝕂 and an error

term 𝑒 given by

𝑠 =
𝑘∑

𝑖=1

(
(𝜆𝑖 + 𝑟𝑖)(Σ𝜆𝑖−1 + Σ𝑟𝑖−1 + Σ𝑙𝑛 − 𝑙𝑖−1 − 𝑙𝑖 + 𝑖 − 1)

+ (𝑖 − 1)𝑙𝑖 + (𝑖 − 2)𝑙𝑖−2 + (𝑙𝑖−1 + 𝑙𝑖)Σ𝑙𝑖−2
)
,

𝑒 =𝑙𝑘
𝑘−1∑

𝑖=1
(𝜆𝑖 + 𝑟𝑖) ⋅ 𝑿

𝝀+𝒓+𝝐𝑘+𝝐𝑘+1−𝝐 𝑖−𝝐 𝑖+1𝒂𝒍−𝝐𝑘+𝝐 𝑖 .

Proof. A tedious calculation using the previous formulas. □

Lemma 3A.23. Let 𝝀 be admissible. The Casimir elements separate B𝐺𝑇 (on
weight spaces), and B𝐺𝑇 is a basis of𝒟𝑏,𝑐.

Proof. The proof splits into three steps.
Separation. Wefirst assume that the Casimir elements act by a scalar onB𝐺𝑇.

We let 𝜈𝑘 = 𝑥𝑘𝝐1 + 𝑐𝑘𝝐2 where we recall that 𝑥𝑘 = Σ𝑟𝑘 − Σ𝜆𝑘 − Σ𝑐𝑘−1 + 𝑐𝑘+1. We
assume the scalar is

𝐶𝑎𝑠𝑘 acts on 𝐺𝑇𝒅,𝒓 by ⟨𝜈𝑘 + 2𝜌(𝑘), 𝜈𝑘⟩ = 𝑥𝑘(𝑥𝑘 + 𝑘 − 1) + 𝑐𝑘(𝑐𝑘 + 𝑘 − 3),
(3A.24)

where 𝜌(𝑘) = 1
2

∑𝑘
𝑖=1(𝑘 − 2𝑖 + 1) ⋅ 𝝐 𝑖 mimics the usual half-sum of the positive

roots of 𝔤𝔩𝑛.
On a weight space we have 𝑐𝑘 = 𝑎 − 𝑥𝑘 for some 𝑎 ∈ ℤ. Hence, we get the

parabola 2𝑥2𝑘 + (2 − 2𝑎)𝑥𝑘 + 𝑎2 + 𝑘𝑎 − 3𝑎 from (3A.24). Assume that there are
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two values 𝑥𝑘 and 𝑥′𝑘 as in the nonintegral part of GT patterns which satisfy this
parabola. Solving

2𝑥2𝑘 + (2 − 2𝑎)𝑥𝑘 + 𝑎2 + 𝑘𝑎 − 3𝑎 = 2(𝑥′𝑘)
2 + (2 − 2𝑎)𝑥′𝑘 + 𝑎2 + 𝑘𝑎 − 3𝑎

gives either 𝑥𝑘 = 𝑥′𝑘 or 𝑥𝑘 + 𝑥′𝑘 − 𝑎 = −1. The second solution gives 𝑥′𝑘 ∈ ℤ,
which contradicts admissibility.
Note that this implies that the Casimir elements separate, so it remains to

verify (3A.24).
Scalar verification. We thus need to compute 𝑐𝑎𝑠𝑘(𝐺𝑇𝒅,𝒓). The calculation

that 𝑐𝑎𝑠𝑘(𝐺𝑇𝒅,𝒓) equals (3A.24) boils down to a longish manipulation of sym-
bols where one reindexes the sum defining 𝐺𝑇𝒅,𝒓 appropriately. We sketch the
main step in this calculation now.

(a) First, we use the second expression of 𝐶𝑎𝑠𝑘 in (3A.21). As before, we
use 𝑧𝑘 =

∑
1≤𝑗<𝑖≤𝑘 𝑒𝑗𝑖𝑒𝑖𝑗 and we also write ℎ𝑘 for the Cartan part so

that 𝑐𝑎𝑠𝑘 = 2𝑧𝑘 + ℎ𝑘. By (3A.16), the Cartan part gives ℎ𝑘(𝑿
𝝀+𝒓𝒂𝒍) =

𝑠′ ⋅ 𝑿𝝀+𝒓𝒂𝒍 with scalar

𝑠′ =
∑

1≤𝑗<𝑖≤𝑘
(𝜆𝑖 + 𝑟𝑖 + 𝑙𝑖−1 + 𝑙𝑖 − 𝜆𝑗 − 𝑟𝑗 − 𝑙𝑗−1 − 𝑙𝑗)

+
𝑘∑

𝑖=1
(𝜆𝑖 + 𝑟𝑖 + 𝑙𝑖−1 + 𝑙𝑖)2 ∈ 𝕂.

(b) We also have the scalar 𝑠 from Lemma 3A.22. Thus, we get, again using
Lemma 3A.22, that

𝑐𝑎𝑠𝑘(𝑿
𝝀+𝒓𝒂𝒍) = (2𝑠 + 𝑠′) ⋅ 𝑿𝝀+𝒓𝒂𝒍 + 𝑒, (3A.25)

where 𝑒 is the error term in Lemma 3A.22.
(c) Next, we need to take the sum of (3A.25) as in the definition of the GT

vectors. The resulting expression can then by manipulated as in the
next few bullet points.

(d) We change the summation and use a few tricks to get the same expres-
sions defining the GT vectors from (3A.19):
∙ For the part with the multinomial scalars we use Lemma 3A.20
and the well-known formula

(𝑎−1
𝑏−1

)
= 𝑏

𝑎

(𝑎
𝑏

)
to rewrite e.g.

(𝑑𝑖−1 + 𝑗𝑖−1 −1

𝑗𝑖−2 −1

)
=

𝑗𝑖−2
𝑑𝑖−1 + 𝑗𝑖−1

(𝑑𝑖−1 + 𝑗𝑖−1 +0

𝑗𝑖−2 +0

)
.

We further use
(𝑎−1
𝑏

)
= 𝑎−𝑏

𝑎

(𝑎
𝑏

)
to rewrite for example

(𝑑𝑖−1 + 𝑗𝑖−1 −1
𝑗𝑖−2

)
=
𝑑𝑖−1 + 𝑗𝑖−1 − 𝑗𝑖−2

𝑑𝑖−1 + 𝑗𝑖−1

(𝑑𝑖−1 + 𝑗𝑖−1 +0
𝑗𝑖−2

)
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Here wemarked the parts that we change tomatch the GT vectors.
(If 𝑎 = 0 in these formulas, then we would use 𝑎

(𝑎−1
𝑏−1

)
= 𝑏

(𝑎
𝑏

)
and

𝑎
(𝑎−1
𝑏

)
= (𝑎−𝑏)

(𝑎
𝑏

)
which give 0 = 0 so we can ignore these cases.)

∙ We rewrite the Pochhammer symbols as well, for example:

(Σ𝜆𝑖 + Σ𝑟𝑖 − 𝑗𝑖 +2 )𝑑𝑖+𝑗𝑖−𝑗𝑖−1 −1

= 1
Σ𝜆𝑖 + Σ𝑟𝑖 − 𝑗𝑖 + 1

(Σ𝜆𝑖 + Σ𝑟𝑖 − 𝑗𝑖 +1 )𝑑𝑖+𝑗𝑖−𝑗𝑖−1 +0
.

We again highlight the parts we change to match the expressions
in the GT vectors.

(e) All introduced fractions disappear in the end. To elaborate, we get

𝑘−1∑

𝑖=1
(
𝑘−1∏

𝑙=𝑖

𝑗𝑙
𝑑𝑙 + 𝑗𝑙

)(𝑑𝑖 + 𝑗𝑖 − 𝑗𝑖−1)

⋅
∏𝑘

𝑙=𝑖+1(Σ𝜆𝑙 + Σ𝑟𝑙 + 𝑑𝑙 − 𝑗𝑙−1 + 1)
∏𝑘−1

𝑙=𝑖 (Σ𝜆𝑙 + Σ𝑟𝑙 − 𝑗𝑙 + 1)
(Σ𝜆𝑖 + Σ𝑟𝑖 − 𝑗𝑖 − 𝑗𝑖−1 + 1).

The sum of the two first terms is:

∏𝑘−1
𝑖=2 𝑗𝑖

∏𝑘−1
𝑖=3 (𝑑𝑖 + 𝑗𝑖)

∏𝑘
𝑖=3(Σ𝜆𝑖 + Σ𝑟𝑖 + 𝑑𝑖 − 𝑗𝑖−1 + 1)
∏𝑘−1

𝑖=3 (Σ𝜆𝑖 + Σ𝑟𝑖 − 𝑗𝑖 + 1)
.

We continue, analyzing three, four etc. terms, until we find

𝑗𝑘−1(Σ𝜆𝑘 + Σ𝑟𝑘 + 𝑑𝑘 − 𝑗𝑘−1 + 1).

(f) This implies that the overall scalar for the 𝒋 ∈ ℤ𝑛−2
≥0 summand of 𝐺𝑇𝒅,𝒓

is

𝑘∑

𝑖=3
(𝜆𝑖 + 𝑟𝑖 + 𝑑𝑖 + 𝑑𝑖−1)(Σ𝑑𝑖−2 +𝑗𝑖−2 )

+
𝑘∑

𝑖=2

(
(Σ𝜆𝑖−1 + Σ𝑟𝑖−1 −𝑗𝑖−1 − 𝑗𝑖−2 )(𝑑𝑖 +𝑗𝑖 − 𝑗𝑖−1 )

+(𝜆𝑖 + 𝑟𝑖 + 𝑑𝑖 +𝑗𝑖−2 − 𝑗𝑖−1 )(Σ𝜆𝑖−1 + Σ𝑟𝑖−1 −𝑗𝑖−1 − 𝑗𝑖−2 + 𝑖 − 1)

+(𝑖 − 2)(𝑑𝑖−1 +𝑗𝑖−1 − 𝑗𝑖−2 )
)
+𝑗𝑘−1(Σ𝜆𝑘 + Σ𝑟𝑘 + 𝑑𝑘 − 𝑗𝑘−1 + 1) .

(3A.26)

We marked the dependencies on 𝒋.
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(g) The dependencies on 𝒋 in (3A.26) cancel and we get 𝑐𝑎𝑠𝑘(𝐺𝑇𝒅,𝒓) = 𝑠′′ ⋅
𝐺𝑇𝒅,𝒓 for the scalar

𝑠′′ =
𝑘∑

𝑖=3
(𝜆𝑖 + 𝑟𝑖 + 𝑑𝑖 + 𝑑𝑖−1)Σ𝑑𝑖−2 +

𝑘∑

𝑖=2

(
(Σ𝜆𝑖−1 + Σ𝑟𝑖−1)𝑑𝑖

+(𝜆𝑖 + 𝑟𝑖 + 𝑑𝑖)(Σ𝜆𝑖−1 + Σ𝑟𝑖−1 + 𝑖 − 1) + (𝑖 − 2)𝑑𝑖−1
)

+
𝑘∑

𝑖=1

(
(𝑘 − 2𝑖 + 1)(𝜆𝑖 + 𝑟𝑖 + 𝑑𝑖−1 + 𝑑𝑖) + (𝜆𝑖 + 𝑟𝑖 + 𝑑𝑖−1 + 𝑑𝑖)2

)
∈ 𝕂.

(h) Finally, matching 𝑠′′ with (3A.24) is done by comparing the linear and
the quadratic terms separately. This is again tedious, but straightfor-
ward.

Basis. The linear independence of B𝐺𝑇 follows from (3A.24) and that B𝐺𝑇 spans
follows because the definition of 𝐺𝑇𝒅,𝒓 implies that B𝐺𝑇 is upper triangular
(with an appropriate order) to B𝐷𝑒𝑡. □

Remark 3A.27. Wewere able to guess the formulas in (3A.24) because of signif-
icant help of Magma and Mathematica, which were used to find the GT bases
expressions in Definition 3A.18, as well as the formula given in [MTL05, (6.2)].
The computationally expensive proof of Lemma 3A.23 was then also obtained
by computer help. We however stress that everything can be done by hand and
computers were only used to guess the various steps.

Lemma 3A.28. For admissible parameters 𝝀we have that𝒟𝑏,𝑐 is a simple dense
𝑈(𝔤𝔩𝑛)module that has a GT pattern realization.

Proof. We first show that𝒟𝑏,𝑐 is a simple 𝑈(𝔤𝔩𝑛)module. To this end, we use
that the Casimir elements separate the GT patterns in B𝐺𝑇, see Lemma 3A.23,
and then we use similar arguments as in [Maz03, Lemma 3]. That is, we claim
that the 𝑒𝑖𝑗 act injectively (and thus, bijectively) on 𝐺𝑇𝒅,𝒓 and also that the ac-
tion graph of the 𝑒𝑖𝑗 action on B𝐺𝑇 is strongly connected.
The first claim follows from Lemma 3A.23, which implies that it is enough

to show injectivity on B𝐺𝑇, and the formulas for the action of 𝑒𝑖𝑗 on 𝐺𝑇𝒅,𝒓 that
we get from (3A.16).
For the second claim we compute that

𝑒𝑖(𝑖+1)(𝐺𝑇𝒅,𝒓) =
(Σ𝜆𝑖 + Σ𝑟𝑖 + 1) (Σ𝜆𝑖+1 + Σ𝑟𝑖+1 + 𝑑𝑖+1)

Σ𝜆𝑖 + Σ𝑟𝑖 + 𝑑𝑖 + 1
⋅ 𝐺𝑇𝒅,𝒓+𝜶 𝑖

+
𝑑𝑖 (Σ𝜆𝑖+1 + Σ𝑟𝑖+1 + 𝑑𝑖 + 𝑑𝑖+1 + 1)

Σ𝜆𝑖 + Σ𝑟𝑖 + 𝑑𝑖 + 1
⋅ 𝐺𝑇𝒅+𝜶 𝑖−1,𝒓−𝜶 𝑖−1 ,

with the second term being zero if 𝑖 = 1 or if 𝒅 + 𝜶 𝑖−1 ∉ ℤ𝑛−1
≥0 . There is also

a similar formula for 𝑒(𝑖+1)𝑖(𝐺𝑇𝒅,𝒓) with swapped signs in front of the 𝜶𝑗 and
similar coefficients. Note that all appearing coefficients are nonzero since we
have admissible parameters.
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Thus, the action graph is strongly connected and hence, the 𝑒𝑖𝑗 act bijectively
and have a strongly connected action graph, showing that 𝒟𝑏,𝑐 is a simple 𝔤𝔩𝑛
module.
Finally, it follows from the definitions that𝒟𝑏,𝑐 is a dense𝑈(𝔤𝔩𝑛)module in

the sense of e.g. the introduction of [Maz03]. □

Let 𝙳𝑏,𝑐 denote the dense𝑈(𝔤𝔩𝑛)module defined in [Maz03, Section 3] asso-
ciated to a two diagonal GT pattern.
Proposition 3A.29. Assume that we have admissible parameters satisfying 𝜆𝑖 ∉
ℤ for 𝑖 ∈ {1, ..., 𝑛}. We have an isomorphism of𝑈(𝔤𝔩𝑛)modules𝒟

𝑏,𝑐 ≅ 𝙳𝑏,𝑐.

Proof. We have also verified that 𝒟𝑏,𝑐 is simple and dense in Lemma 3A.28.
Thus, we can use the classification of these modules from [Mat00], see also
[Maz03, Section 2.3]. □

Remark 3A.30. Note that the isomorphism in Proposition 3A.29 is not explicit.
Any explicit isomorphism would divide, or multiply, by our parameters plus
integers. That is why we need the assumption 𝜆𝑖 ∉ ℤ for 𝑖 ∈ {1, ..., 𝑛} in Propo-
sition 3A.29.
Abusing notation, we will write 𝙳𝑏,𝑐 instead of𝒟𝑏,𝑐 to refer to its underlying

GT pattern realization.

Proof of the classical version of Theorem 2B.3. There are three statements
to verify.
Commuting actions. By Lemma 3A.6, we can consider the 𝑈(𝔤𝔩2)-𝑈(𝔤𝔩𝑛)

bimodule 𝙿𝝀 and it remains to verify the centralizer property and the 𝑈(𝔤𝔩2)-
𝑈(𝔤𝔩𝑛) bimodule decomposition of Theorem 2B.3.
All parameters in this proof are admissible from now on.
Bimodule decomposition. Let 𝑏 = 𝑔 − 𝑡 and 𝑐 = 𝑡. The 𝑈(𝔤𝔩2)-𝑈(𝔤𝔩𝑛) bi-

module decomposition follows from Lemma 3A.28 after identifying 𝒟𝑏,𝑐 with
the multiplicity space𝔇Σ𝜆𝑛+𝑔−𝑡,𝑡 from Lemma 3A.10 as a 𝕂 vector space. Note
that 𝒟𝑏,𝑐 is a 𝑈(𝔤𝔩𝑛) module so it has a ℤ

𝑛 grading coming from the 𝑈(𝔤𝔩𝑛)
weight spaces. At the same time, because 𝙿𝝀 is an 𝑈(𝔤𝔩2)-𝑈(𝔤𝔩𝑛) bimodule,
Lemma 3A.10 implies that𝔇Σ𝜆𝑛+𝑔−𝑡,𝑡 is also a 𝑈(𝔤𝔩𝑛)module, so we also have
the notion of 𝑈(𝔤𝔩𝑛) weight spaces. Explicitly,𝑚 in either𝒟𝑏,𝑐 or𝔇Σ𝜆𝑛+𝑔−𝑡,𝑡 is
of degree 𝒅 ∈ ℤ𝑛 if 𝑒𝑖𝑖(𝑚) = (𝜆𝑖 + 𝑑𝑖) ⋅ 𝑚. We apply this definition and (3A.16)
to B𝐷𝑒𝑡 and get

𝒁dim𝕂𝒟𝑏,𝑐 =
∑

𝒅∈ℤ𝑛
𝛿𝑏+𝑐,Σ𝑑𝑛

(𝑐+𝑛−2
𝑐

)
𝒁𝒅,

where we use 𝒁 = (𝑍1, ..., 𝑍𝑛) to keep track of the graded pieces and 𝒁dim𝕂
means graded dimensions. Moreover, using

∑𝑡
𝑐=0

(𝑐+𝑛−2
𝑐

)
=
(𝑡+𝑛−1

𝑡

)
, we get

𝒁dim𝕂𝙿𝝀 =
∑

𝒅∈ℤ𝑛

𝑡∈ℤ≥0

(𝑡+𝑛−1
𝑡

)
𝒁𝒅 =

∑

𝒅∈ℤ𝑛

𝑡∈ℤ≥0

(
𝑡∑

𝑐=0

(𝑐+𝑛−2
𝑐

)
)𝒁𝒅.
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Thus, (3A.11) implies that

𝒁dim𝕂𝒟𝑏,𝑐 = 𝒁dim𝕂𝔇Σ𝜆𝑛+𝑔−𝑡,𝑡 =
∑

𝒅∈ℤ𝑛
𝛿𝑏+𝑐,Σ𝑑𝑛

(𝑐+𝑛−2
𝑐

)
𝒁𝒅. (3A.31)

Finally, note that 𝒟𝑏,𝑐 ⊂ 𝔇Σ𝜆𝑛+𝑔−𝑡,𝑡 because 𝑒(B𝐷𝑒𝑡) = {0}, as a simple calcula-
tion shows. Hence,𝒟𝑏,𝑐 = 𝔇Σ𝜆𝑛+𝑔−𝑡,𝑡.
Dense. Thus, it remains to prove that have dense subrings induced from the

𝑈(𝔤𝔩2) and𝑈(𝔤𝔩𝑛) actions. We denote their images inEnd𝕂(𝙿
𝝀) byS andT, re-

spectively. The𝑈(𝔤𝔩2)-𝑈(𝔤𝔩𝑛) bimodule decomposition implies thatT is dense
in S′ since

𝑈(𝔤𝔩2) ↠𝑑 End𝑈(𝔤𝔩𝑛)
( ⨁
𝑔∈ℤ
𝑡∈ℤ≥0

𝙼Σ𝜆𝑛+𝑔−𝑡,𝑡 ⊗ 𝙳𝑔−𝑡,𝑡
)
≅ End𝑈(𝔤𝔩𝑛)(𝙿

𝝀).

Similarly, with swapped roles of 𝑈(𝔤𝔩2) and 𝑈(𝔤𝔩𝑛), we get that S is dense in
T′. □

Remark 3A.32. Note that (3A.31) implies that the dense modules we use have
weight spaces of constant dimension. This is actually true in more generality,
see e.g. [Maz03, Lemma 2].

3B. The quantum case. We now specify our quantum conventions.

Notation 3B.1.
(a) Let 𝝁 = (𝜇1, ..., 𝜇𝑛) denote a tuple of variables, 𝔸𝑣 = ℤ[𝑣, 𝑣−1] the A-

form, 𝔸′
𝑣 = ℚ(𝑣) the field of fractions of 𝔸𝑣, 𝔸

𝝁
𝑣 = 𝔸𝑣[𝝁, 𝑣𝜇1 , ..., 𝑣𝜇𝑛]

and 𝔸′,𝝁
𝑣 the field of fractions of 𝔸𝝁

𝑣 .
(b) For a fixed ring S and choices 𝑣, 𝑣−1 ∈ S and 𝝁̄ = (𝜇̄1, ..., 𝜇̄𝑛) ∈ S𝑛 such

that 𝑣𝜇̄1 , ..., 𝑣𝜇̄𝑛 ∈ S, we can specialize any construction defined with
coefficients from𝔸𝝁

𝑣 using −⊗𝔸𝝁
𝑣
Swhere we see S as an𝔸𝝁

𝑣 module by
𝑣±1 ↦ 𝑣±1 and𝝁 ↦ 𝝁̄. Wewill use this alwayswithout the bar notation.
We can similarly specialize from𝔸𝑣 instead of𝔸

𝝁
𝑣 in the very same way.

(c) The classical and the quantum specializations are 𝑣 ↦ 1 and 𝑣 ↦ 𝑞,
respectively, and 𝝁 ↦ 𝝀 for S = 𝕂 as fixed in subsection 2A. Similarly
for 𝔸𝑣 instead of 𝔸

𝝁
𝑣 .

For 𝑘 ∈ ℤ≥1, let 𝑈𝔸(𝔤𝔩𝑘) denote the quantum enveloping algebra over
𝔸𝑣 of 𝔤𝔩𝑘. We use the conventions, excluding the Hopf algebra structure, from
[Lus90] or [APW91] with 𝐾±1

𝑖 = 𝐿±1𝑖 𝐿∓1𝑖+1. The 𝔸𝑣 algebra 𝑈𝔸(𝔤𝔩𝑘) specializes
to either𝑈(𝔤𝔩𝑘) for 𝑣 ↦ 1 and to𝑈𝑞(𝔤𝔩𝑘) for 𝑣 ↦ 𝑞. The classical specialization
is the one we studied in subsection 3A.
We use the same notation as in Definition 2A.3 for quantum numbers, but

we see them as elements of𝔸𝑣 or𝔸
𝝁
𝑣 in general, and these specialize to the ones

in Definition 2A.3.
The 𝔸′

𝑣 algebra 𝑈𝑣(𝔤𝔩𝑘) is generated by 𝐸𝑖, 𝐹𝑖 for 𝑖 ∈ {1, ..., 𝑘 − 1}, and 𝐿±1𝑖
for 𝑖 ∈ {1, ..., 𝑘} such that the 𝐿±1𝑖 commute with one another, 𝐿−1𝑖 is the inverse
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of 𝐿𝑖, and

𝐿𝑖𝐸𝑗 = 𝑣𝛿𝑖,𝑗−𝛿𝑖,𝑗+1 ⋅ 𝐸𝑗𝐿𝑖, 𝐿𝑖𝐹𝑗 = 𝑣−𝛿𝑖,𝑗+𝛿𝑖,𝑗+1 ⋅ 𝐹𝑗𝐿𝑖,

𝐸𝑖𝐹𝑗 − 𝐹𝑗𝐸𝑖 = 𝛿𝑖,𝑗
𝐿𝑖𝐿−1𝑖+1−𝐿

−1
𝑖 𝐿𝑖+1

𝑣−𝑣−1
,

[2]𝑣 ⋅ 𝐸𝑖𝐸𝑗𝐸𝑖 = 𝐸2𝑖 𝐸𝑗 + 𝐸𝑗𝐸2𝑖 , if |𝑖 − 𝑗| = 1,
𝐸𝑖𝐸𝑗 − 𝐸𝑗𝐸𝑖 = 0, if |𝑖 − 𝑗| > 1,

[2]𝑣 ⋅ 𝐹𝑖𝐹𝑗𝐹𝑖 = 𝐹2𝑖 𝐹𝑗 + 𝐹𝑗𝐹2𝑖 , if |𝑖 − 𝑗| = 1,
𝐹𝑖𝐹𝑗 − 𝐹𝑗𝐹𝑖 = 0, if |𝑖 − 𝑗| > 1,

for all suitable 𝑖, 𝑗. We also choose the Hopf algebra structure on𝑈𝔸(𝔤𝔩𝑘) given
by

∆(𝐸𝑖) = 𝐸𝑖 ⊗ 𝐿𝑖𝐿−1𝑖+1 + 1 ⊗ 𝐸𝑖, 𝜖(𝐸𝑖) = 0, 𝑆(𝐸𝑖) = −𝐸𝑖𝐿−1𝑖 𝐿𝑖+1,

∆(𝐹𝑖) = 𝐹𝑖 ⊗ 1 + 𝐿−1𝑖 𝐿𝑖+1 ⊗𝐹𝑖, 𝜖(𝐹𝑖) = 0, 𝑆(𝐹𝑖) = −𝐿𝑖𝐿−1𝑖+1𝐹𝑖,

with 𝐿±1𝑖 being group like.
Following [Lus90],𝑈𝔸(𝔤𝔩𝑘) is the𝔸𝑣 subalgebra of𝑈𝑣(𝔤𝔩𝑘) generated by the

divided powers for 𝐸𝑖 and 𝐹𝑖, i.e.

𝐸(𝑗)𝑖 =
𝐸𝑗𝑖
[𝑗]𝑣!

, 𝐹(𝑗)𝑖 =
𝐹𝑗𝑖
[𝑗]𝑣!

, 𝑖 ∈ {1, ..., 𝑘 − 1}, 𝑗 ∈ ℤ≥0,

and also by some adjustments of the 𝐿𝑖, see [APW91]. As the Hopf algebra
structure of 𝑈𝔸(𝔤𝔩𝑘) we take the one induced by 𝑈𝑣(𝔤𝔩𝑘).

Remark 3B.2. The 𝔸𝑣 algebra 𝑈𝔸(𝔤𝔩𝑘) specializes to 𝑈(𝔤𝔩𝑘) for 𝑣 ↦ 1 and to
𝑈𝑞(𝔤𝔩𝑘) for 𝑣 ↦ 𝑞. In both cases the divided power generators are only needed
for 𝑗 = 1.

We scalar extend 𝑈𝔸(𝔤𝔩𝑘) to an 𝔸
𝝁
𝑣 algebra, keeping the same notation. The

additional parameters only play a role for𝑈𝔸(𝔤𝔩𝑘)modules and not for𝑈𝔸(𝔤𝔩𝑘)
itself.

Lemma 3B.3. Definition 2A.6 works verbatim over𝔸𝝁
𝑣 giving𝑈𝔸(𝔤𝔩2)modules.

Proof. All appearing scalars can be interpreted in 𝔸𝝁
𝑣 . □

The 𝑈𝔸(𝔤𝔩2) modules from Lemma 3B.3 are the integral Verma modules.
We denote these as before but using 𝔸 as a subscript, e.g. 𝙼𝜇𝔸 is the integral
version of𝙼𝜆𝑞. Using theHopf algebra structurewe can thendefine𝙼

⊕𝝁
𝔸 similarly

as we defined 𝙼⊕𝝀𝑞 .

Remark 3B.4. We now copy the approach taken in subsection 3A. That is, we
define a quantum polynomial algebra 𝙿𝝁𝔸 on which 𝑈𝔸(𝔤𝔩2) and 𝑈𝔸(𝔤𝔩𝑛) act
by quantum derivatives in the spirit of e.g. [Kas95, Section VII.3]. This is done
such that 𝙿𝝁𝔸 ≅ 𝙼⊕𝝁𝔸 as𝑈𝔸(𝔤𝔩2)-𝑈𝔸(𝔤𝔩𝑛) bimodules. However, we do not use the
language of quantum derivatives because of the various quantum parameters
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appear everywhere which make this setup cumbersome instead of helpful. For
example, one would have relations of the form 𝑌𝑗𝑋𝑖 = 𝑋𝑖𝑌𝑗 + (𝑣 − 𝑣−1)𝑋𝑗𝑌𝑖
and commutativity turns into quantum commutativity. In order to avoid these
technical difficulties we decided to define 𝙿𝝁𝔸 instead as a free 𝔸

𝝁
𝑣 module with

an explicit biaction defined on basis elements. The reader is still invited to think
of the below as quantum derivatives acting on a quantum polynomial algebra.

Definition 3B.5. We define the free 𝔸𝝁
𝑣 module

𝙿𝝁𝔸 = 𝔸𝝁
𝑣 {𝑿

𝝁+𝒓
𝒀
𝒔
|𝒓 ∈ ℤ𝑛, 𝒔 ∈ ℤ𝑛

≥0}

where we, as before, use formal parameters.

Write 𝑋𝜇𝑖+𝑟𝑖
𝑖 = [𝜇𝑖 + 𝑟𝑖]𝑣! ⋅ 𝑋

𝜇𝑖+𝑟𝑖
𝑖 and 𝑌𝑠𝑖

𝑖 = [𝑠𝑖]𝑣! ⋅ 𝑌
𝑠𝑖
𝑖 . We let 𝑈𝑣(𝔤𝔩2) act on

the scalar extension of 𝙿𝝁𝔸 to 𝔸
′,𝝁
𝑣 by

𝐸 · 𝑿𝝁+𝒓𝒀𝒔 =
𝑛∑

𝑖=1
𝑣Σ𝜇𝑛+Σ𝑟𝑛−Σ𝜇𝑖−Σ𝑟𝑖−Σ𝑠𝑛+Σ𝑠𝑖 [𝑠𝑖]𝑣 ⋅ 𝑿

𝝁+𝒓+𝝐 𝑖𝒀𝒔−𝝐 𝑖 ,

𝐹 · 𝑿𝝁+𝒓𝒀𝒔 =
𝑛∑

𝑖=1
𝑣−Σ𝜇𝑖−1−Σ𝑟𝑖−1+Σ𝑠𝑖−1[𝜇𝑖 + 𝑟𝑖]𝑣 ⋅ 𝑿

𝝁+𝒓−𝝐 𝑖𝒀𝒔+𝝐 𝑖 ,

𝐿1 · 𝑿
𝝁+𝒓𝒀𝒔 = 𝑣Σ𝜇𝑛+Σ𝑟𝑛 ⋅ 𝑿𝝁+𝒓𝒀𝒔,

𝐿2 · 𝑿
𝝁+𝒓𝒀𝒔 = 𝑣Σ𝑠𝑛 ⋅ 𝑿𝝁+𝒓𝒀𝒔.

(3B.6)

We also define an 𝑈𝑣(𝔤𝔩𝑛) action on the scalar extension of 𝙿
𝝁
𝔸 to 𝔸

′,𝝁
𝑣 by

𝑿𝝁+𝒓𝒀𝒔 · 𝐸𝑖 =[𝜇𝑖+1 + 𝑟𝑖+1]𝑣𝑣𝜇𝑖+𝑟𝑖−𝜇𝑖+1−𝑟𝑖+1 ⋅ 𝑿
𝝁+𝒓+𝜶 𝑖𝒀𝒔

+ [𝑠𝑖+1]𝑣 ⋅ 𝑿
𝝁+𝒓𝒀𝒔+𝜶 𝑖 ,

𝑿𝝁+𝒓𝒀𝒔 · 𝐹𝑖 =[𝜇𝑖 + 𝑟𝑖]𝑣 ⋅ 𝑿
𝝁+𝒓−𝜶 𝑖𝒀𝒔

+ 𝑣−𝜇𝑖−𝑟𝑖+𝜇𝑖+1+𝑟𝑖+1[𝑠𝑖]𝑣 ⋅ 𝑿
𝝁+𝒓𝒀𝒔−𝜶 𝑖 ,

𝑿𝝁+𝒓𝒀𝒔 · 𝐿𝑖 =𝑣𝜇𝑖+𝑟𝑖+𝑠𝑖 ⋅ 𝑿
𝝁+𝒓𝒀𝒔.

(3B.7)

As before, we also get graded pieces (𝙿𝝁𝔸)𝒅 for 𝒅 ∈ ℤ𝑛.

Lemma 3B.8. The graded free𝔸𝑣 module

𝙿𝝁𝔸 ≅
⨁

𝒅∈ℤ𝑛
(𝙿𝝁𝔸)𝒅

is an 𝑈𝔸(𝔤𝔩2) module when endowed with the 𝔸
𝝁
𝑣 -version of (3B.6) that decom-

poses as above and is isomorphic to 𝙼⊕𝝁𝔸 . Moreover, it is also an 𝑈𝔸(𝔤𝔩𝑛)module
when endowed with the𝔸𝝁

𝑣 -version of (3B.7), and the two actions commute.

Proof. A direct calculation verifies that (3B.6) and (3B.7) give the scalar exten-
sion of 𝙿𝝁𝔸 the structure of an𝑈𝑣(𝔤𝔩2)-𝑈𝑣(𝔤𝔩𝑛) bimodule. One then checks that
(3B.6) and (3B.7) when successively applied to 𝐸(𝑗)𝑖 and 𝐹(𝑗)𝑖 has coefficients

in 𝔸𝝁
𝑣 when acting on the basis of the elements of the form 𝑿

𝝁+𝒓
𝒀
𝒔
(to see
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this it is helpful to keep the quantum derivative picture from Remark 3B.4 and
𝜕𝑋

𝑋𝑟

𝑟!
= 𝑋𝑟−1

(𝑟−1)!
in mind), so the biaction can be restricted and gives an 𝑈𝔸(𝔤𝔩2)-

𝑈𝔸(𝔤𝔩𝑛) bimodule structure on 𝙿
𝝁
𝔸.

The final claim that 𝙿𝝁𝔸 ≅ 𝙼⊕𝝁𝔸 as𝑈𝔸(𝔤𝔩2)-𝑈𝔸(𝔤𝔩𝑛) bimodules can be verified
as in Lemma 3A.6. □

Definition 3B.9.
(a) We call an 𝔸𝝁

𝑣 module 𝙼 (generically) flat if its free and all specializa-
tions to characteristic zero fields where 𝝁 are specialized to admissible
parameters are of the same dimension.

(b) We call an 𝑈𝔸(𝔤𝔩𝑘) module 𝙼 (generically) flat if it is flat as an 𝔸𝝁
𝑣

module and if all specializations of End𝑈𝔸(𝔤𝔩𝑘)(𝙼) to characteristic zero
fields where 𝝁 are specialized to admissible parameters are of the same
dimension.

(c) By being (generically) flat as an𝑈𝔸(𝔤𝔩2)-𝑈𝔸(𝔤𝔩𝑛) bimodulewemean
being flat as an 𝑈𝔸(𝔤𝔩2)module and as an 𝑈𝔸(𝔤𝔩𝑛)module.

Lemma 3B.10. The 𝑈𝔸(𝔤𝔩2)-𝑈𝔸(𝔤𝔩𝑛) bimodule 𝙼
⊕𝝁
𝔸 ≅ 𝙿𝝁𝔸 is flat, its classical

specialization is the𝑈(𝔤𝔩2)-𝑈(𝔤𝔩𝑛) bimodule 𝙼
⊕𝝀 ≅ 𝙿𝝀 and its quantum special-

ization is the𝑈𝑞(𝔤𝔩2)-𝑈𝑞(𝔤𝔩𝑛) bimodule 𝙼
⊕𝝀
𝑞 ≅ 𝙿𝝀𝑞 .

Proof. Thequantumversion of Lemma3A.9 holds aswell, with the sameproof.
This implies that 𝙼𝝁𝔸 is tilting when specialized to characteristic zero fields with
𝝁 ↦ 𝝀 for𝝀 admissible parameters. Therefore 𝙼𝝁𝔸 is flat by the usual arguments,
see e.g. the arXiv appendix to [AST18]. Moreover, comparison of formulas im-
plies that the specializations are the claimed ones. □

Remark 3B.11. For the below note that, by their very construction, all 𝑈𝔸(𝔤𝔩𝑘)
modules used in this paper are of type (1, ..., 1) in the sense of e.g. [APW91,
Section 1.4] or [Jan96, Section 5.2].

Proof of Theorem 2B.3. As we will see now, using flatness, the quantum
Verma Howe duality theorem follows from the classical case. Our exposition
below follows [ST19, Section 7A], but flatness arguments along the same lines
are very common in the literature.
Commuting actions. To use Lemma 3B.10, one first needs to establish the

existence of the commuting actions as in Theorem 2B.3 in the quantum case
independently of the classical case. This is done in Lemma 3B.8, so we can
focus on the 𝑈𝑞(𝔤𝔩2)-𝑈𝑞(𝔤𝔩𝑛) bimodule decomposition.
As before in the classical case, all parameters in this proof are admissible

from now on.
Bimodule decomposition. We will now repeatedly use Lemma 3B.10. We

compare the 𝑈𝑞(𝔤𝔩2)module 𝙼
⊕𝝀
𝑞 and the 𝑈(𝔤𝔩2)module 𝙼

⊕𝝀, and we see that
the weights of these modules are the same under the usual identification of
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quantum and classical weights. Moreover, the weight multiplicities are also
the same and all finite. It follows then from Lemma 3B.10 that we have

𝙼⊕𝝀𝑞 ≅
⨁
𝑔∈ℤ
𝑡∈ℤ≥0

𝙼Σ𝜆𝑛+𝑔−𝑡,𝑡𝑞 ⊗𝔇Σ𝜆𝑛+𝑔−𝑡,𝑡
𝑞

as the quantum analog of (3A.11), where𝔇Σ𝜆𝑛+𝑔−𝑡,𝑡
𝑞 are multiplicity 𝕂𝝀

𝑞 vector
spaces. We actually know that these multiplicity 𝕂𝝀

𝑞 vector spaces are 𝑈𝑞(𝔤𝔩𝑛)
modules by the quantum specialization of the previously established 𝑈𝑣(𝔤𝔩2)-
𝑈𝑣(𝔤𝔩𝑛) bimodule structure.
We want to show that all appearing 𝔇Σ𝜆𝑛+𝑔−𝑡,𝑡

𝑞 are simple as 𝑈𝑞(𝔤𝔩𝑛) mod-
ules. This is equivalent to the action giving a surjection

𝑓∶ 𝑈𝑞(𝔤𝔩𝑛) ↠ End𝑈𝑞(𝔤𝔩2)(𝙼
𝝀
𝑞). (3B.12)

Now, setting 𝑣 ↦ 1 or 𝑣 ↦ 𝑞 , respectively, and 𝝁 ↦ 𝝀 in the𝔸𝝁
𝑣 version, we can

identify 𝙼⊕𝝁𝔸 with 𝙼⊕𝝀, and the biactions of𝑈𝔸(𝔤𝔩2)∕(𝑣−1, 𝝁−𝝀)-𝑈𝔸(𝔤𝔩𝑛)∕(𝑣−
1, 𝝁−𝝀) and𝑈(𝔤𝔩2)-𝑈(𝔤𝔩𝑛) coincide under this specialization, and verbatim for
𝑈𝑞(𝔤𝔩2)-𝑈𝑞(𝔤𝔩𝑛) instead of 𝑈(𝔤𝔩2)-𝑈(𝔤𝔩𝑛). In particular, the images of these
two actions agree. It follows now from the classical version of Theorem 2B.3
that the action map 𝑓 is surjective classically. Thus, Lemma 3B.10 implies that
(3B.12) holds and𝔇Σ𝜆𝑛+𝑔−𝑡,𝑡

𝑞 are simple as 𝑈𝑞(𝔤𝔩𝑛)modules.
Comparison of definitions verifies that the classical version of𝔇Σ𝜆𝑛+𝑔−𝑡,𝑡

𝑞 and
𝙳𝑔−𝑡,𝑡𝑞 are 𝔇Σ𝜆𝑛+𝑔−𝑡,𝑡 and 𝙳𝑔−𝑡,𝑡, respectively. By the classification recalled in
[Maz03, Section 2.3] (originally proven in [Mat00])we get also that𝔇Σ𝜆𝑛+𝑔−𝑡,𝑡 ≅
𝙳𝑔−𝑡,𝑡, as before. Finally,𝔇Σ𝜆𝑛+𝑔−𝑡,𝑡

𝑞 and 𝙳𝑔−𝑡,𝑡𝑞 are of type (1, ..., 1), by construc-
tion, and true quantum deformation in the sense of [Maz03, Section 2.1] which
implies𝔇Σ𝜆𝑛+𝑔−𝑡,𝑡

𝑞 ≅ 𝙳𝑔−𝑡,𝑡𝑞 .
Dense. By Lemma 3B.10 and the 𝑈𝑞(𝔤𝔩2)-𝑈𝑞(𝔤𝔩𝑛) bimodule decomposition

from (2B.4), the argument is now the same as in the classical case. □

4. The colored higher LKB representations are simple
Recall that we have fixed 𝑛 ∈ ℤ≥1 and parameters 𝝀 = (𝜆1, ..., 𝜆𝑛) ∈ 𝕂𝑛.

4A. Pure and colored braids. Let B𝑛 denote the braid groupwith 𝑛 strands
which can be illustrated using the usual diagrammatics, e.g.

, 𝛽𝑖,𝑖+1 =
𝑖+1

𝑖+1

𝑖

𝑖
, 𝛽−1𝑖,𝑖+1 =

𝑖

𝑖

𝑖+1

𝑖+1
.

(4A.1)

As displayed above, the transposition generators, crossing the 𝑖th and (𝑖 + 1)th
strand, of B𝑛 are denoted by 𝛽𝑖,𝑖+1 and 𝛽−1𝑖,𝑖+1.
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Recall that the pure braid group is the subgroup PB𝑛 ⊂ B𝑛 of all elements
with the bottomand the top of each strand in the sameposition. More generally,
we define:

Definition 4A.2. Let P({1, ..., 𝑛}) be the set of partitions of {1, ..., 𝑛}. For every
𝑆 ∈ P({1, ..., 𝑛}), the braid group that is pure on 𝑆 is the subgroup B𝑆𝑛 ⊂ B𝑛
such that the strands with bottom points in 𝐴 ∈ 𝑆 have their top points in 𝐴 as
well.

Example 4A.3. We have B{[1],...,[𝑛]}𝑛 = PB𝑛 and B
{[1,...,𝑛]}
𝑛 = B𝑛, where we use

square brackets for the parts of the partition. Moreover, the leftmost braid in
(4A.1) is pure on the partition 𝑆 = {[1], [2], [3, 4, 5, 8, 9], [6], [7]}, and 𝑆 is the
finest partition such that the braid is pure on it. ◊

Example 4A.4. The handlebody braid group of genus 𝑔 ∈ ℤ≥0 with 𝑛 ∈ ℤ≥1
strands is the subgroup of B𝑔+𝑛 that is pure on 𝑆 = {[1], ..., [𝑔], [𝑔+1, ..., 𝑔+𝑛]}.
(For 𝑔 = 0, by convention, B𝑔+𝑛 is the classical braid group B𝑛.) The first 𝑔
strands in the handlebody braid group are core strands, while the remaining
strands are usual strands, see e.g. [RT21, Section 2] for the topological back-
ground. ◊

Definition 4A.5. We associate a partition 𝑆(𝝀) ∈ P({1, ..., 𝑛}) to 𝝀 by

𝑖, 𝑗 are in the same component of 𝑆(𝝀) ⇔ 𝜆𝑖 = 𝜆𝑗.

We denote the corresponding subgroup of the braid group by B𝝀𝑛 = B𝑆(𝝀)𝑛 .

Example 4A.6. If all 𝜆𝑖 are different, then B𝝀𝑛 = PB𝑛, and if 𝝀 = (𝜆, ..., 𝜆),
then B𝝀𝑛 = B𝑛. For the leftmost braid in (4A.1) the finest set of parameters is
𝝀 = (𝜆1, 𝜆2, 𝜆3, 𝜆3, 𝜆3, 𝜆6, 𝜆7, 𝜆3, 𝜆3) for pairwise distinct 𝜆𝑖. ◊

Example 4A.7. For the handlebody braid group as in Example 4A.4, a natural
choice of 𝝀 is 𝜆1 = ... = 𝜆𝑔 ∉ ℤ and 𝜆𝑔+1 = ... = 𝜆𝑔+𝑛 ∈ ℤ otherwise. Note that
such a choice of parameters is admissible for 𝑔 > 0. ◊

4B. LKB representations. We again work over 𝔸𝝁
𝑣 and 𝕂𝝀

𝑞 . We always con-
sider 𝙼𝝁𝔸 = 𝙼𝜇1𝔸 ⊗ ...⊗𝙼𝜇𝑛𝔸 as a𝑈𝔸(𝔤𝔩2)module via (3B.6) (note that 𝙿

𝝁
𝔸 ≅ 𝙼⊕𝝁𝔸 =

⨁
𝒅∈ℤ𝑛 𝙼

𝜇1+𝑑1
𝔸 ⊗ ... ⊗ 𝙼𝜇𝑛+𝑑𝑛𝔸 , but the direct sum is only needed for the dual

action).
We now adjust the construction from [JK11, Section 3] (and the references

to [Kas95] therein) to our setting. See also [Mar20, Definition 2.19].

Definition 4B.1. Let 𝑡±1 ∈ End𝔸𝝁
𝑣
(𝙼𝜇𝑖𝔸 ⊗ 𝙼

𝜇𝑗
𝔸 ) defined by

𝑡±1(𝑚𝑘 ⊗𝑚𝑙) = 𝑣±(−𝑙𝜇𝑖−𝑘𝜇𝑗+2𝑘𝑙) ⋅ (𝑚𝑘 ⊗𝑚𝑙).
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Write 𝐹[𝑟] = (𝑣−𝑣−1)𝑟

[𝑟]𝑣 !
𝐹𝑟 for 𝑟 ∈ ℤ≥0. Define the R matrix and its inverse on

𝙼𝜇1𝔸 ⊗ 𝙼𝜇2𝔸 as

𝑟𝜇𝑖 ,𝜇𝑗 ∶ 𝙼
𝜇𝑖
𝔸 ⊗ 𝙼

𝜇𝑗
𝔸 → 𝙼

𝜇𝑗
𝔸 ⊗ 𝙼𝜇𝑖𝔸 , 𝑟𝜇𝑖 ,𝜇𝑗 = 𝑠◦𝑡+1◦(

∞∑

𝑙=0
𝑣𝑙(𝑙−1)∕2 ⋅ 𝑒𝑙 ⊗ 𝑓[𝑙]),

𝑟−1𝜇𝑖 ,𝜇𝑗 ∶ 𝙼
𝜇𝑖
𝔸 ⊗ 𝙼

𝜇𝑗
𝔸 → 𝙼

𝜇𝑗
𝔸 ⊗ 𝙼𝜇𝑖𝔸 , 𝑟−1𝜇𝑖 ,𝜇𝑗 = (

∑∞
𝑙=0(−1)

𝑙𝑣−𝑙(𝑙−1)∕2 ⋅ 𝑒𝑙 ⊗ 𝑓[𝑙])◦𝑡−1◦𝑠,

where 𝑠 is the swap map 𝑠(𝑥 ⊗ 𝑦) = 𝑦 ⊗ 𝑥.

Lemma 4B.2. The operators 𝑟𝜇𝑖 ,𝜇𝑗 and 𝑟
−1
𝜇𝑖 ,𝜇𝑗 are well-defined, i.e. the appearing

summations are finite on every𝑚𝑘 ⊗𝑚𝑙.

Proof. This holds because the operator 𝑒 is locally nilpotent. □

Graphically we will denote these operators by

𝑟𝜇𝑖 ,𝜇𝑗 ↭
𝜇𝑗

𝜇𝑗

𝜇𝑖

𝜇𝑖
, 𝑟−1𝜇𝑖 ,𝜇𝑗 ↭

𝜇𝑖

𝜇𝑖

𝜇𝑗

𝜇𝑗
. (4B.3)

We now define a B𝝀𝑛 action on 𝙼𝝀𝔸 by colored reading. That is, one colors the
strands of 𝛽 ∈ B𝝀𝑛 by 𝝀, and then we get an element of End𝔸𝝁

𝑣
(𝙼𝝀𝔸) by composing

the relevant version of (4B.3) from bottom to top. We call this element 𝑟𝛽 .

Example 4B.4. For 𝝀 = (𝜇1, 𝜇2, 𝜇3, 𝜇3, 𝜇3, 𝜇6, 𝜇7, 𝜇3, 𝜇3) and the leftmost braid
in (4A.1) we get

𝜇3

𝜇3

𝜇2𝜇1 𝜇3

𝜇3𝜇1 𝜇6

𝜇7

𝜇7

𝜇3

𝜇3

𝜇3

𝜇3

𝜇6 𝜇3

𝜇3𝜆2

⇝ 𝑟𝛽 = 𝑟𝜇2,𝜇1◦𝑟𝜇3,𝜇1◦...◦𝑟
−1
𝜇1,𝜇3◦𝑟𝜇1,𝜇2 ∈ End𝕂𝝀

𝑞
(𝙼𝝀𝔸).

The endomorphism 𝑟𝛽 has eighteen 𝑅 matrix factors in total. ◊

Definition 4B.5. A refinement 𝝆 of 𝝁 is a set of parameters that gives a refined
partition compared to 𝝁 when applying Definition 4A.5. We write 𝝆 ≤ 𝝁 for
refinements of 𝝁.

Notation 4B.6. For𝑈𝑣(𝔤𝔩2)we extend scalars to𝔸
′
𝑣 or𝔸

′,𝝁
𝑣 but do not indicate

this in the notation.

Similar to the braid group action in symmetric Howe duality, the braid group
acts on one 𝔤𝔩𝑛 weight space of 𝙼

⊕𝝀
𝔸 and this action commutes with the 𝔤𝔩2

action:
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Lemma 4B.7.
(a) (4B.3) and colored reading endows 𝙼𝝁𝔸 with the structure of a B

𝝆
𝑛 module

for 𝝆 ≤ 𝝁.
(b) Colored reading commutes with the𝑈𝑣(𝔤𝔩2) action coming from (3B.6).

(c) The image of B𝝆𝑛 under this module structure is in End𝑈𝑣(𝔤𝔩2)(𝙼
𝝁
𝔸).

Proof. One first proves, by copying [JK11, Theorem 7], that (4B.3) satisfies the
colored braid relations, e.g.

𝜇𝑗

𝜇𝑗

𝜇𝑖

𝜇𝑖

=

𝜇𝑗

𝜇𝑗

𝜇𝑖

𝜇𝑖

,

𝜇𝑗

𝜇𝑗

𝜇𝑖

𝜇𝑖

𝜇𝑙

𝜇𝑙

𝜇𝑘

𝜇𝑘

=

𝜇𝑗

𝜇𝑗

𝜇𝑖

𝜇𝑖

𝜇𝑙

𝜇𝑙

𝜇𝑘

𝜇𝑘

,

𝜇𝑘

𝜇𝑘

𝜇𝑗

𝜇𝑗

𝜇𝑖

𝜇𝑖

=

𝜇𝑘

𝜇𝑘

𝜇𝑗

𝜇𝑗

𝜇𝑖

𝜇𝑖

.

Hence, 𝑟𝛽 is independent of the choices in colored reading, and we obtain the
claimed B𝝁𝑛 module structure. For B

𝝆
𝑛 ⊂ B𝝁𝑛 this B

𝝁
𝑛 module structure restricts

to B𝝆𝑛.
That the two actions commute follows because of the well-known fact (and

easy calculation) that the R matrices are 𝑈𝑣(𝔤𝔩2) equivariant with respect to
(3B.6).
The final claim follows since the action maps commute with the𝑈𝑣(𝔤𝔩2) ac-

tion on 𝙼𝝁𝔸. □

We thus have a 𝑈𝑣(𝔤𝔩2)-B
𝝆
𝑛 bimodule structure on 𝙼

𝝁
𝔸.

Remark 4B.8. Lemma 4B.7 can be strengthened: the image of B𝝆𝑛 commutes
with the action of the𝔸𝝁

𝑣 subalgebra of𝑈𝔸(𝔤𝔩2) generated by𝐸,𝐹
[𝑟] for 𝑟 ∈ ℤ≥0,

𝐿±11 and 𝐿±12 .

We now turn our attention to the (colored higher) LKB representations,
which, following [JK11, Section 3], we define as follows:

Definition 4B.9. Let ker(𝑒) and ker(𝑘 −
∏𝑛

𝑖=1 𝑣
𝜇𝑖𝑣−2𝑙) = ker(𝑘 − 𝑣Σ𝜇𝑛−2𝑙) be

the kernels of the indicated operators coming from the 𝑈𝑣(𝔤𝔩2) action on 𝙼
𝝁
𝔸.

For 𝑙 ∈ ℤ≥0 the 𝑙th LKB representation is defined as 𝙻𝙺𝙱
𝑛,𝑙
𝔸,𝝁 = ker(𝑒)∩ker(𝑘−

𝑣Σ𝜇𝑛−2𝑙).

Lemma 4B.10. For 𝝆 ≤ 𝝁 the free 𝔸𝝁
𝑣 module 𝙻𝙺𝙱

𝑛,𝑙
𝔸,𝝁 is stable under the B

𝝆
𝑛

action.
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Proof. Note first that the definition of 𝙻𝙺𝙱𝑛,𝑙𝔸,𝝁 only involves the operators 𝑒, 𝑘

and𝔸𝝁
𝑣 multiples of the identity. Hence, 𝙻𝙺𝙱

𝑛,𝑙
𝔸,𝝁 is defined over𝔸

𝝁
𝑣 , by construc-

tion. The rest can be proven, mutatis mutandis, as in [JK11, Theorem 1]. □

Example 4B.11. With respect to the basis {𝑚𝑖|𝑖 ∈ ℤ≥0} in Example 2A.9,
𝙻𝙺𝙱𝑛,1𝔸,𝝁 has a basis given by an 𝑛 fold tensor product of 𝑚𝑖 with one entry be-
ing𝑚1 and all other entries being𝑚0. Hence, the 𝔸

𝝁
𝑣 rank is

(𝑛−1
1

)
. In general,

𝙻𝙺𝙱𝑛,𝑙𝔸,𝝁 is of 𝔸
𝝁
𝑣 rank

(𝑛+𝑙−2
𝑙

)
. ◊

Remark 4B.12. The representation 𝙻𝙺𝙱𝑛,𝑙𝔸,𝝁 has between two and 𝑛 + 1 parame-
ters, depending on 𝝁. For example, for 𝝁 = (𝜇, ..., 𝜇) one has 𝑣 and 𝜇 as param-
eters.

Example 4B.13. The representation𝙻𝙺𝙱𝑛,0𝔸,𝝁 is always trivial, while𝙻𝙺𝙱
𝑛,1
𝔸,𝝁 is the

(reduced) Burau representation of B𝑛, and 𝙻𝙺𝙱
𝑛,2
𝔸,𝝁 is its classical LKB repre-

sentation as in [Law90], or closer to our formulation, as in [JK11].
Or, to be completely precise, 𝙻𝙺𝙱𝑛,2𝔸,𝝁 is a multiparameter version of the con-

struction from [JK11], see also [Mar20]. Moreover, the representation 𝙻𝙺𝙱𝑛,𝑙𝔸,𝝁
can then further bematchedwith it homological counterpart up to playingwith
parameters, see [Koh12, Theorem 6.1] and [Mar22, Theorem 1.5] for a precise
statement.
Using an appropriate ground field and quantum parameter, 𝙻𝙺𝙱𝑛,2𝑞,𝝀 for 𝝀 =

(𝜆, ..., 𝜆) is a faithful B𝑛 module by [Big01] and [Kra02], and thus, 𝙻𝙺𝙱
𝑛,2
𝑞,𝝀 is also

faithful for B𝝆𝑛 for all 𝝆. ◊

Specializing to the quantum case, the following is our main application of
Theorem 2B.3:

Theorem 4B.14. Assume that the parameters are admissible. Then the repre-
sentation 𝙻𝙺𝙱𝑛,𝑙𝑞,𝝀 is a simple B

𝝆
𝑛 module for 𝝆 ≤ 𝝀 and all 𝑙 ∈ ℤ≥0.

The proof of Theorem 4B.14 is given in section 5.

Remark 4B.15. Theorem 4B.14 extends and generalizes [JK11, Theorem 3] in
multiple ways. First, Theorem 4B.14 is amultiparameter version of [JK11, The-
orem 3]. Theorem 4B.14 also generalizes the result in loc. cit. to arbitrary fields
and generic 𝑞, and also allowsmuchmore general parameters. And even when
we have only one parameter, i.e. 𝝀 = (𝜆, ..., 𝜆), and work over ℚ(𝜆, 𝑞) The-
orem 4B.14 is stronger than [JK11, Theorem 3] since we e.g. also prove that
𝙻𝙺𝙱𝑛,𝑙𝑞,𝝀 is a simple PB𝑛 module not just a simple B𝑛 module. The proof given
below is also very different from the one given in [JK11], and we do not know
how to generalize the proof in [JK11] to e.g. include the various subgroups of
B𝑛, including the pure and handlebody braid groups.
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5. The proof of simplicity
Our proof of Theorem 4B.14 uses Verma versions of [LZ06, Theorem 5.5 and

Remark 8.6].

Remark 5.1. We think of Verma modules as limits of symmetric powers and
this was one of our main motivation to follow the approach taken in [LZ06].

5A. The classical case. Our ground field in this section is 𝕂.

Definition 5A.1. For 𝑘 ∈ ℤ≥2 the infinitesimal pure braid group is the 𝕂
algebra PB𝜀𝑛 generated by 𝛽𝜀𝑖𝑗 for 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 subject to

[𝛽𝜀𝑖𝑗, 𝛽
𝜀
𝑟𝑠] = [𝛽𝜀𝑖𝑟 + 𝛽𝜀𝑖𝑠, 𝛽

𝜀
𝑟𝑠] = [𝛽𝜀𝑖𝑗, 𝛽

𝜀
𝑖𝑟 + 𝛽𝜀𝑗𝑟] = 0,

for pairwise distinct 𝑖, 𝑗, 𝑟, 𝑠, and [−, −] denotes the commutator. For 𝑘 = 1 we
let PB𝜀𝑛 = 𝕂.

Remark 5A.2. The motivation to study PB𝜀𝑛 is that it gives rise to the so-called
monodromy representation of the KZ equation of the pure braid group PB𝑛
which works for very general tensor products of Lie algebra representations,
see [Koh02, Proposition 2.3] for details.

Definition 5A.3. For all 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 define operators on 𝙼⊕𝝀 ≅ 𝙿𝝀 by
𝛾𝜀𝑖𝑗 = 𝑋𝑖𝑋𝑗𝜕𝑋𝑖𝜕𝑋𝑗 + 𝑋𝑖𝑌𝑗𝜕𝑌𝑖𝜕𝑋𝑗 + 𝑌𝑖𝑋𝑗𝜕𝑋𝑖𝜕𝑌𝑗 + 𝑌𝑖𝑌𝑗𝜕𝑌𝑖𝜕𝑌𝑗 . (5A.4)

Lemma 5A.5. The assignment 𝛽𝜀𝑖𝑗 ↦ 𝛾𝜀𝑖𝑗 endows 𝙼
⊕𝝀 with the structure of a PB𝜀𝑛

module. This PB𝜀𝑛 action stabilizes (𝙼⊕𝝀)𝒅 for all 𝒅 ∈ ℤ𝑛.

Proof. A direct calculation, see also [LZ06, Theorem 2.1]. □

Remark 5A.6. The PB𝜀𝑛 action on 𝙼⊕𝝀 using (5A.4) factors through an PB
𝜀
𝑛 ac-

tion on 𝑈(𝔤𝔩2)
⊗𝑛, see [Koh02, Section 2]. This works as follows. Let 𝐵 =

{𝐸, 𝐹, 𝐿1, 𝐿2} be the usual basis of 𝔤𝔩2, and 𝐸
⋆ = 𝐹, 𝐹⋆ = 𝐸, 𝐿⋆𝑖 = 𝐿𝑖. Then

define Casimir-type elements by 𝐶𝑎𝑠𝑖𝑗 =
∑

𝑏∈𝐵 1
⊗𝑖−1 ⊗ 𝑏 ⊗ 1⊗𝑗−𝑖−1 ⊗ 𝑏⋆ ⊗

1⊗𝑛−𝑗 ∈ 𝑈(𝔤𝔩2)
⊗𝑛 for 1 ≤ 𝑖 < 𝑗 ≤ 𝑘. Then 𝛽𝜀𝑖𝑗 ↦ 𝐶𝑎𝑠𝑖𝑗 defines an PB

𝜀
𝑛 action

that factors the PB𝜀𝑛 action given by 𝛽𝜀𝑖𝑗 ↦ 𝛾𝜀𝑖𝑗.

We have 𝙼⊕𝝀 ≅
⨁

𝒅∈ℤ𝑛(𝙼⊕𝝀)𝒅 as PB
𝜀
𝑛 modules, by construction. But we

in the end only need a fixed arbitrary direct summand (𝙼⊕𝝀)𝒅 ≅ 𝙼𝜆1+𝑑1 ⊗
... ⊗ 𝙼𝜆𝑛+𝑑𝑛 . Let PE𝜀𝑛 denote the image of the PB

𝜀
𝑛 action from Lemma 5A.5

restricted to (𝙼⊕𝝀)𝒅. Note that PE
𝜀
𝑛 ⊂ End𝕂

(
(𝙼⊕𝝀)𝒅

)
but we will need the fol-

lowing stronger statement.

Lemma 5A.7. Assume that the parameters are admissible. We have PE𝜀𝑛 ⊂
End𝑈(𝔤𝔩2)

(
(𝙼⊕𝝀)𝒅

)
and PE𝜀𝑛 ↠𝑑 End𝑈(𝔤𝔩2)

(
(𝙼⊕𝝀)𝒅

)
.

Proof. The proof splits into several parts.
Containment. PE𝜀𝑛 ⊂ End𝑈(𝔤𝔩2)

(
(𝙼⊕𝝀)𝒅

)
follows from (5A.4) via a direct com-

putation.
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Applying Verma Howe duality. From Theorem 2B.3 we get commuting ac-
tions of 𝑈(𝔤𝔩2) and 𝑈(𝔤𝔩𝑛) on 𝙼

⊕𝝀 and the 𝑈(𝔤𝔩2)-𝑈(𝔤𝔩𝑛) bimodule decompo-
sition

(𝙼⊕𝝀)𝒅 ≅
⨁

𝑡∈ℤ≥0

𝙼Σ𝜆𝑛+𝑔−𝑡,𝑡 ⊗ (𝙳𝑔−𝑡,𝑡)𝒅,

with 𝙼Σ𝜆𝑛+𝑔−𝑡,𝑡 and 𝙳𝑔−𝑡,𝑡 being simple. It follows that

End𝑈(𝔤𝔩2)
(
(𝙼⊕𝝀)𝒅

)
≅ End𝕂

( ⨁

𝑡∈ℤ≥0

(𝙳𝑔−𝑡,𝑡)𝒅
)
.

It remains to show that all endomorphisms of (𝙳𝑔−𝑡,𝑡)𝒅 come from PE𝜀𝑛 in the
dense sense.
The Casimir subalgebra. To this end, let Cas𝑛 ⊂ End𝕂

(
(𝙼⊕𝝀𝒅 )

)
, by definition,

be the 𝕂 algebra generated by ⟨𝑒𝑖𝑗𝑒𝑗𝑖 + 𝑒𝑗𝑖𝑒𝑖𝑗, 𝑒𝑘𝑘|1 ≤ 𝑖 < 𝑗 ≤ 𝑛, 1 ≤ 𝑘 ≤
𝑛⟩ with the endomorphisms as in (3A.5). It is important to observe that the
images of the Casimir operators 𝐶𝑎𝑠𝑘 from (3A.21) are in Cas𝑛. Moreover, note
that Cas𝑛 ⊂ End𝑈(𝔤𝔩2)

(
(𝙼⊕𝝀)𝒅

)
by Theorem 2B.3 and the elements of Cas𝑛 are

homogeneous, and hence, Cas𝑛 acts on (𝙳𝑔−𝑡,𝑡)𝒅.
Simplicity. We aim to show that (𝙳𝑔−𝑡,𝑡)𝒅 is simple as aCas𝑛 module. For this

we use an analog of [MTL05, Theorem 6.1 and Remark 6.2], where the main
observation is that the Casimir operators 𝐶𝑎𝑠𝑘 from (3A.21) have a joint simple
spectrum on (𝙳𝑔−𝑡,𝑡)𝒅 with diagonal basis given by the GT vectors. This follows
from the proof of Lemma 3A.23.
Using the GT formulas from Definition 2A.14 it is not hard to see that the

action graph of the 𝐶𝑎𝑠𝑘 on (𝙳𝑔−𝑡,𝑡)𝒅 with vertices given by the relevant GT
vectors is strongly connected. Hence, as soon as a nonzero Cas𝑛 submodule
𝙼 ⊂ (𝙳𝑔−𝑡,𝑡)𝒅 contains at least one GT vector we have 𝙼 = (𝙳𝑔−𝑡,𝑡)𝒅. Finally,
since the spectrum of the 𝐶𝑎𝑠𝑘 is simple with diagonal basis given by the GT
vectors by the above, every such 𝙼 ⊂ (𝙳𝑔−𝑡,𝑡)𝒅 contains indeed a GT vector.
Wrap-up. It follows that Cas𝑛 generates the whole of End𝕂

(
(𝙳𝑔−𝑡,𝑡)𝒅

)
. A

calculation then verifies that 𝑒𝑖𝑗𝑒𝑗𝑖 = 𝛾𝜀𝑖𝑗 + 𝑒𝑖𝑖 and 𝑒𝑖𝑖 acts as a scalar, which
completes the proof since the elements 𝛾𝜀𝑖𝑗 generate PE

𝜀
𝑛, by definition, and we

then have

PE𝜀𝑛 ↠𝑑 End𝕂
( ⨁

𝑡∈ℤ≥0

(𝙳𝑔−𝑡,𝑡)𝒅
)
≅ End𝑈(𝔤𝔩2)

(
(𝙼⊕𝝀)𝒅

)

which gives denseness. □

5B. The quantum case. Instead of infinitesimal braids we come back to the
pure braid groups. To this end, recall that (𝙼⊕𝝀𝑞 )𝒅 is a B

𝝆
𝑛 module for all 𝝆 ≤ 𝝀 by

Lemma 4B.7. In particular, (𝙼⊕𝝀𝑞 )𝒅 is a PB𝑛 module. Let PE
𝜀
𝑛,𝑞 be the image of

this action, and similarly for admissible parameterwe letPE𝜀𝑛,𝑣 be the respective
image.
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Lemma 5B.1. The 𝕂𝝀
𝑣 algebra PE

𝜀
𝑛,𝑣 contains an 𝔸

𝝁
𝑣 subalgebra PE

𝜀
𝑛,𝑣 whose

classical specialization contains PE𝜀𝑛 and whose quantum specialization is PE𝜀𝑛,𝑞.

Proof. First note that all appearing scalars are in𝔸𝝁
𝑣 ⊂ 𝕂𝝀

𝑣 , so the construction
in subsection 4B works verbatim over 𝔸𝝁

𝑣 .
The statement about the quantum specialization is then clear since this is

how the quantum specialization is defined.
For the classical specialization the same argument as [LZ06, Proof of Theo-

rem 7.5] works. □

Lemma5B.2. Assume that the parameters are admissible. ThenwehavePE𝜀𝑛,𝑞 ⊂
End𝑈𝑞(𝔤𝔩2)

(
(𝙼⊕𝝀𝑞 )𝒅

)
and PE𝜀𝑛,𝑞 ↠𝑑 End𝑈𝑞(𝔤𝔩2)

(
(𝙼⊕𝝀𝑞 )𝒅

)
.

Proof. PE𝜀𝑛,𝑞 ⊂ End𝑈𝑞(𝔤𝔩2)
(
(𝙼⊕𝝀𝑞 )𝒅

)
follows from Lemma 4B.7 and the defini-

tion of the 𝑅 matrices.
For the second statement recall that 𝙼⊕𝝁𝔸 is flat and specialize to 𝙼⊕𝝀 classi-

cally and to 𝙼⊕𝝀𝑞 in the quantum case, see Lemma 3B.10. Thus, on the side of the
endomorphism algebra we can change between the classical and the quantum
case. Moreover, Lemma 5B.1 shows that PE𝜀𝑛,𝑞 is at least as big as PE

𝜀
𝑛. Taking

both together and using Lemma 5A.7 implies then the claim. □

We are ready for the final proof of this paper:

Proof of Theorem 4B.14. It is enough to consider B𝝆𝑛 = PB𝑛, so we restrict to
this case.
Note that (𝙼⊕𝝀𝑞 )𝒅 is a 𝑈𝑞(𝔤𝔩2)-PB𝑛 bimodule by Lemma 4B.7, and moreover

Lemma 5B.2 shows that PE𝜀𝑛,𝑞 densely-generates the centralizer of 𝑈𝑞(𝔤𝔩2) on
(𝙼⊕𝝀𝑞 )𝒅. Having this and the usual statements about simple modules of cen-
tralizers as e.g. in [GW09, Theorem 4.2.1], it remains to argue that the LKB
representations are PB𝑛 submodules of some (𝙳𝑔−𝑡,𝑡)𝒅. (Note hereby that the
LKB story is finite dimensional and densely generates turns into generates, and
hence, [GW09, Theorem 4.2.1] applies.)
To see this we note that, as in the proof of the classical version of Theo-

rem 2B.3, 𝙳𝑔−𝑡,𝑡 consists of highest weight vectors for the 𝑈𝑞(𝔤𝔩2) action, so
the condition on 𝙻𝙺𝙱𝑛,𝑙𝑞,𝝀 to be annihilated by 𝑒 holds. Moreover, by (3B.6) we
get that 𝐾 acts on 𝙳𝑔−𝑡,𝑡 as the scalar 𝑞Σ𝜆𝑛+𝑔. In particular, for 𝑔 = −2𝑙 we get
ker(𝑘 − 𝑞Σ𝜆𝑛−2𝑙) ⊂ 𝙳𝑔−𝑡,𝑡. Hence, the LKB representations are PB𝑛 submodules
of some (𝙳𝑔−𝑡,𝑡)𝒅 (for some 𝒅 ∈ ℤ𝑛 depending on 𝑙) as desired. □
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