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Verma Howe duality and LKB
representations

Abel Lacabanne, Daniel Tubbenhauer and Pedro Vaz

ABSTRACT. We establish a version of Howe duality that involves a tensor
product of Verma modules. Surprisingly, this duality leaves the realm of low-
est and highest weight modules. We quantize this duality, and as an applica-
tion, we prove that the (colored higher) LKB representations arise from this
duality and use this description to show that they are simple as modules for
the braid group and for various of its subgroups, including the pure braid

group.
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1. Introduction

Arguably the most classical form of Howe duality relates commuting ac-
tions of GL,,(C) and GL,(C) on the symmetric algebra of C" ®C", see [How89]
or [How95].

Howe’s approach turned out to be a game changer, even in fields beyond rep-
resentation theory. For example, quantum versions of these dualities provide
powerful and categorification-friendly descriptions of quantum invariants such
as the colored Jones polynomial.
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In this paper we prove a version of the Howe duality above where symmetric
powers are replaced by Verma modules. We call this duality Verma Howe du-
ality. To the best of our knowledge, Verma Howe duality is the first example
of a Howe duality that involves modules that are not lowest or highest weight
modules. Consequently, our proofs are very different from Howe’s proofs. For
example, Verma Howe duality is not a “limit” of symmetric Howe duality but
genuinely new.

Moreover, we give an application of Verma Howe duality: after extending
Verma Howe duality to quantum groups, which is fairly straightforward, we
show that the LKB (Lawrence-Krammer-Bigelow) representations and
their colored and higher counterparts arise from quantum Verma Howe du-
ality, which in turn enables us to show that the LKB representations are simple
modules of various subgroups of Artin’s braid group, including pure and han-
dlebody braid groups. One direct advantage of our approach is that we can work
over an arbitrary field and with a large variety of the involved parameters.

1A. Schur-Weyl(-Brauer) and Howe dualities.Three main themes in
Weyl’s seminal book “The classical groups” [Wey97] are the study of polyno-
mial invariants for actions of the eponymous classical groups, and, more or less
equivalent, decomposition of the tensor algebra for such an action, and, again
more or less equivalent, the description of the invariants in the tensor algebra.

The two most prominent examples that fit into Weyl’s setting are the cele-
brated Schur-Weyl duality [Sch01] for tensor invariants of GL,,(C) and
Brauer duality [Bra37] for tensor invariants of O,,(C) and SP,,(C) (for the
symplectic group m is even). Both of these were studied by using commuting
actions of GL,,,(C), and O,,,(C), SP,,,(C) on one side and the symmetric group S,
and the Brauer algebra, respectively, on the other side, both acting on a tensor
product of the defining representation of the classical groups in question. In
this commuting-action-approach, for example Schur-Weyl duality essentially
reads:

(A) There are commuting actions of GL,,(C) and S,, on (C™)®",
(B) The two actions generate each others centralizer.

(C) The GL,,(C)-S, bimodule (C™)®" can be explicitly decomposed into a
direct sum of nonisomorphic simple GL,,(C) modules tensored with
nonisomorphic simple S,, modules.

A statement of this form is what we call a double centralizer (a.k.a. double
commutant) approach.

Howe [How89], [How95] studied polynomial invariants, e.g. via symmetric
powers, of classical groups using a double centralizer approach, and the result-
ing dualities are called Howe dualities in this paper. A prominent example is
symmetric Howe duality where GL,,(C) and GL,(C) act on

D Symk(Cm ® CM).

keZs,
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Howe, albeit formulated differently, proves (A)-(C) as above for this and other
dualities.

It is not surprising that Howe-type dualities have been of paramount im-
portance for the representation theory of reductive groups ever since, see also
[CW12] for a summary of various such dualities, but are also pervasive in other
fields. For example, in the early stages of quantum group theory Jimbo stud-
ied quantum Schur-Weyl duality [Jim86], which, in one way or the other, is
central for the study of quantum invariants: that the Jones polynomial arises
from the Temperley-Lieb calculus [Jon85] is an instance of quantum Schur-
Weyl duality, although originally not formulated as such. And this is just the
tip of the iceberg.

It did not take long for quantum Howe dualities to appear, see [NUW96] for
an early reference. Also due to their relation to diagrammatics, quantum Howe
dualities have been studied intensively since their first appearance in the 1990s,
and also turned out to be very useful for the study of quantum invariants. For a
few type A examples of such quantum Howe dualities, see [LZZ11], [CKM14]
for quantum exterior and [RT16] for quantum symmetric Howe duality, and for
some more “exotic type A settings”, see [QS19], [TVW17] or [CW20], [BDK20].

Remark 1A.1. Quantum Howe dualities are of course not restricted to type A,
but the reader should be warned at this stage: experience tells us that quan-
tum Howe dualities often run into quantization issues and nonstandard quan-
tum objects tend to pop up. Examples are [NUW96], [ES18] or [ST19] where
coideal subalgebras as in [NS95] appear. There are even such phenomena that
are entirely in type A see e.g. [LTV23] and related quantization issues in [CK18],
[QW24].

Quantum exterior and symmetric Howe dualities as well as their Verma coun-
terparts are notable exceptions, and the quantization in these cases is not a big
deal. In fact, our proofs will mostly stay in the non-quantum setting and the
quantum case then follows using a flatness argument.

1B. What this paper does. The main theorem of this paper is Theorem 2B.3
where we formulate a (quantum) Verma Howe duality. To explain the main
points let us be less general than Theorem 2B.3 actually is. For example, as
we wrote in Remark 1A.1, quantization is not an issue for us and we can work
over with general fields and quite general parameters, see Remark 1B.1, but we
stay in the classical case in this introduction for simplicity. The classical, non-
quantum, version of Theorem 2B.3 is then still more general than the following.

To work with Verma modules we go from the Lie group to the Lie algebras.
For generic enough A; € C, where i € {1,...,n}, let M4 be the U(gl,) Verma
module of highest 8, weight ;. We take the tensor product M ® ... ® M*». For
the same reason as for symmetric Howe duality, we then take a certain direct
sum of the M4 ® ... ® M*». Call this direct sum M®* where 4 = (1, ..., 4,)).
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Now, essentially by definition, U(gl,) acts on M®4 and we also construct a
dual action of U(gl,) on M®4, Using the double centralizer approach, Theo-
rem 2B.3 states and proves (A)-(C) for the U(gl,)-U(gl, ) bimodule M®2,

Since all symmetric powers for U(gl,) are quotients of Verma modules, we
think of this Verma Howe duality as a generalization of symmetric Howe du-
ality (with a caveat, see subsection 1C below). Verma Howe duality is however
much more difficult to prove: Firstly, the whole setting is, by its very nature,
infinite dimensional and most of the classical statements need to be appropri-
ately reformulated and adjusted to the infinite dimensional setting. Second,
and more importantly, the simple U(gl,) appearing in (C) are neither high-
est nor lowest weight modules; they are simple dense (weight) modules in the
sense of [Mat00]. This is, to the best of our knowledge, very different from all
other Howe-type dualities in the literature and makes calculations (for exam-
ple actions of Casimir elements) much more involved. In particular, we need
to take quite a detour to identify the dense modules explicitly and we crucially
use results from [Maz03] and [MTLO5], and implicitly computer help, to iden-
tify them. (This is also our main reason to stay with U(gl,) instead of U(gl,,).)
Along the way we partially generalize [Maz03] so that we can use fairly general
parameters.

Remark 1B.1. Let us also stress that our approach works in quite some general-
ity. That is, we work over an arbitrary field [ and fix a quantum parameter that
is not a root of unity. Moreover, the 4; of the Verma modules are, up to a certain
degree, allowed to be integers, see Definition 2A.18 for a precise condition.

As an application of Theorem 2B.3 we prove that the (colored higher) LKB
representations constructed in [JK11] and [Mar20] are simple as modules of
the associated (colored) braid groups. This not just gives a new proof of [JK11,
Theorem 3] but also strengthens the result of Jackson-Kerler quite a bit: we
prove simplicity for much smaller groups, namely the corresponding pure braid
groups. Moreover, Jackson-Kerler work over K(g) for @ C K and with a generic
parameter for the LKB representations. Our setting is more general, see Re-
mark 1B.1. In fact, we think it is remarkable that the LKB representations stay
simple even after specializing some parameters or leaving characteristic zero.
Finally, since we can allow different parameters, our methods also relate the
LKB representations to handlebody braid groups as in e.g. [Ver98], [HOLO02],
[RT21] or [TV23].

1C. Outlook. Separate from the evident question how to replace U(gl,) by
U(gl,,), here are a few directions one could try to explore:

(a) While (A) and (B) as above often hold in more generality, (C) is using
that the underlying representation is semisimple. The nonsemisimple
versions of some of the above are known, see for example [DPS98] for
an integral version of quantum Schur-Weyl duality. But these are also
much more involved and often need some form of tilting theory.
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A nonsemisimple version Theorem 2B.3 would be a true generaliza-
tion of quantum symmetric Howe duality since the cases where only
symmetric powers appear within the Verma modules are precisely ruled
out by our condition in Definition 2A.18. However, we can still have
symmetric powers but need at least also a “generic enough” highest
weight.

(b) Several papers discuss dualities involving one Verma and tensor prod-
ucts of finite dimensional modules, see e.g. [ILZ21] or [LV21]. It would
be interesting to compare these to this work, also with an eye on cate-
gorification of the story as in [LNV21].

(c) Another interesting direction is the identification of the LKB represen-
tations with specialized parameters as cell representations of algebras
within the symmetric web category from [RT16]. We suspect that this
is a consequence of Verma Howe duality for (the quantum version of)
Ai € Z5q. Note that special cases of this are known: Jones’ work [Jon85]
implicitly showed the respective statement for the Burau representa-
tion and the Temperley-Lieb calculus, and [Zin01] implicitly showed
an analog for the LKB representation. Note that Temperley-Lieb and
the Brauer-type calculus used in [Jon85] and [Zin01], respectively, are
special cases of the symmetric web calculus. (For the Temperley-Lieb
calculus this is clear, while the Brauer-type calculus makes its appear-
ance due to the “small number coincidence” that matches SO;(C) rep-
resentations and odd dimensional SL,(C) representations.) In [For96,
Lemma 6] it is shown that the reduced Burau representation of the n
strand braid group is simple if and only if quantum » does not vanish,
and Verma Howe duality should be helpful to prove similar results for
the other LKB representations.

(d) A striking question is how to categorify Verma Howe duality. We sus-
pect this should be related to categorification of tensor products of in-
finite dimensional representations as in [DN21]. One could also hope,
in some sense, that a categorification of LKB representations would be
an upshot of such a categorical Verma Howe duality.

Acknowledgments. We like to thank Volodymyr Mazorchuk for many help-
ful exchanges of emails, and for explaining various properties of dense modules
to us. We also thank the referee for helpful comments. Part of this paper were
done after having consulted Magma and Mathematica. Their help is gratefully
acknowledged.

2. A duality involving Verma modules

In this section we state a duality that we call (quantum) Verma Howe du-

ality.
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Remark 2.1. We use colors in this paper, but these are a visual aid and do not
have other significance. In particular, the paper is readable in black-and-white
without restrictions.

2A. Vermaand dense modules. The following specifies the underlying field:

Notation 2A.1. Fix an arbitrary field K and an element q € K\ {0} that is not
of finite order. We call q the quantum parameter.

We additionally allow g = +1, but then we assume that K is of characteristic
zero. This is the non-quantum or classical case. The reader is warned that
the below is tailor-made for the quantum case and needs to be adjusted for the
classical case. We leave the adjustments to the reader.

We consider the quantum enveloping algebra U,(gl,) of gl, over K with
respect to the quantum parameter g. We specify our conventions later on in
subsection 3B and for now it is enough to know that Uq(glz) is, as a [ algebra,
generated by E, F, Lfl and L;—Ll.

From now on fixn € Z5,.

Notation 2A.2.
(a) We use a bold font for tuples, e.g. A = (44, ..., 4,,) € K".

(b) Whenever an index of tuple is not defined but appears in a formula,
then the associated element is zero, by convention. For example, 1, =
Asn = 0if we specify 4 = (44, ..., 4,).

(c) We will also use sums of the form a; +a, + ...+ ax_; + g, fork € Z,

very often in this paper, and we abbreviate them to za; = Zi.;l
(d) Denote by ¢; = (0,...,0,1,0,...,0) the tuple with the ith entry being 1,
and a; = €; —€;,;. We also use ¢;; below meaning a matrix-style nota-

tion with only one nonzero entry.

a;.

Definition 2A.3. Given 1 € K we consider the field Kg = K(g"). We define
the quantum numbers as [x]; = qx_q:x € Kf}, where x € Zorx € A +
q-q-

Z. Similarly, for A € K" we use the field Kﬁ; = K(g",...,g*) and quantum

numbers will be elements of IK;*.

The following will be often used silently throughout:
Lemma 2A.4. All quantum numbers are nonzero and thus invertible.

Proof. Easy since Notation 2A.1 forces this to be true, in particular, we need
characteristic zero for ¢ = +1. Details are omitted. O

Remark 2A.5. The tuple 4 € K" consist of the underlying parameters that we
use. Note that our formulation includes the case where the quantum parame-
ter g and the 4; are formal variables by e.g. choosing K = Q(Z, 74, ..., Z,,), for
indeterminates Z and Z;, and q = Z, A; = Z;. In contrast, the parameters could
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bein Z C KK, but we partially need to avoid that, see e.g. Definition 2A.18 below.
It is allowed that some (or even all) of the A; are the same.

We consider U,y(gl,) also over fields such as Kfl‘ by scalar extension. The
parameters only play a role for U,(gl,) modules and not for U,(gl,) itself.

Definition 2A.6. For any 1 € K the (quantum) dual Verma module Mf} of
highest weight 1 is Mé = K{}{mﬂi € Zyo}tasa Kg vector space and the left
U,(gl,) action is
E-m; =il - ”;’liﬂa F-m;=[1- i.]q TMi, A7)
Ly-my=q""-my, L,-m=gq -m,
where we use the quantum numbers from Definition 2A.3 and let m_; = 0.
More generally, we define Mg’t for t € K by tensoring Mj}‘zr with the one
dimensional U,(gl,) module of highest g, weight (¢, ).

We call the Mg Verma modules for simplicity although they coincide with
what are often called dual Verma modules in the literature, e.g. our modules
correspond to M in [HumO8].

Remark 2A.8. The highest weight of M{}t is strictly speaking (g#, g°), but in Defi-
nition 2A.6, and throughout, we use the notion weight in the sense of classical
31, weight combinatorics. We however sometimes need to be more specific.

For example, for Mg’t we need the gl, weight notation and the classical highest

weight of Mg’t is (A — t, t) which is the same as (1 — 2¢t, 0) when restricted to 81,
weight notation. Whenever we use gl, notation we point that out.

Example 2A.9. The U,(gl,) module Mfl1 is given by the usual picture but with
slightly more generic quantum numbers in the action:

A=2-5 A=2-3

24
[iﬂq [i4qA q /zq /1]q Ao]q

M s q/ \Q/ B \Q/ B \Q/ B \Q/ q

q ms my

moves to the right, F moves to the left, K = LL; lisa loop.
The highest weight is A. O

We will also use the quantum enveloping algebra U,(gl,) of gl,,, again
over K{}, with conventions specified later on, see subsection 3B. The generators
are E;, F; fori € {1,..,n —1},and L;—rl fori €{1,...,n}.

Notation 2A.10. We consider U,(gl,) and U,4(gl,) as different algebras, even
if n = 2. All Uy(gl,) modules used in this paper are left Uy(gl,) modules,
while all Uy(gl,) modules used in this paper are right U,(g[,,) modules. If we
mean either Ugy(gl,) or Uy(gl,), then we will write U,(g[,; ). Similarly for their
classical versions, and we will often drop the adjectives left and right.
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We will need certain U,(gl, ) modules with bases indexed by:

Definition 2A.11. Fixm = (my,...m,) € K"andy = (y,..., y,—1) € K1
such that my,—ms, ..., m,_1—m, € Zyyandy;,—m, & Zforalli € {1,..,n—1}. A
GT (Gelfand-Tsetlin) pattern GT; for (m, y) is a triangular array of the form

X Xno Xpn

GT)‘C’ = X31 X3 X33 (2A12)
X21 X22
X11
where X = (X,11, s Xpp» X(n—1)1,---) (i.e. the pattern read row-wise) is such that:
(i) x,; = m,; fori € {1,...,n} (m gives the top row),
(i) x;; —y; € Zfori € {1,...,n} (y gives the first diagonal up to integers),
(ii)) xjx — X(j—1k € Zxo and X(j_1)k — Xjk+1) € Lo for j € {3,...,n} and
k €{2,..,j} that s,
Xk 2 X j(k+1)
\4 1
X(j—Dk

A two diagonal GT pattern (appearing in Verma Howe duality) is a GT
pattern with m = (x,, = =4, + b, c,0,...,0) with b,c € Z to be chosen and y
determined by y; = =4, fori € {1, ...,n — 1}. Letting c¢,, = ¢, we denote these by

Xy Gy 0 0

GTy. = 0 : (2A.13)

with x = (x4, ..., x,) € (K{;)” as above and ¢ = (cy, ...,¢,) € Zgl.

In (2A.12) and (2A.13) we have shaded the parts of the GT patterns which
play significantly different roles. We call the shaded block to the right the inte-
gral part of the pattern since all the patterns we need will have integral entries
in this part, and nonintegral entries otherwise.

Definition 2A.14. Consider two diagonal GT patterns. Define the dense mod-
ule,asa Kf} vector space, as

D;"’y = K{}{GT;C |GTx is a two diagonal GT pattern for (m, y)}
and the Uy(gl,) action is given later in (3B.7) (on a different basis).

Example 2A.15. If n = 2, then the only entry in a GT patterns that is not
completely determined by (m, y) is x;;. The latter is some integer shift of y,,
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so we can index a basis of D;"’y as {w;|i € Z}. For certain values of A;, B; and C;
that can be explicitly obtained from (3B.7) the picture is then

A A A A A As
q -2 q -1 q 0 q 1 q 2 q 3
R R L A L A A RS
DY as X RN N RN RN N\ e RN N
q w_, w_; wo w; w, w;

moves to the right, F moves to the left, K isa loop.

The module D;"’y has neither a highest nor a lowest weight. Note also that the
conventions for the scalars in this example are different from Example 2A.9.
(That is also why the basis vectors here are denoted by w; and not by m;.) But
that can be fixed by appropriate base change.

Remark 2A.16. For Uy(gl,) there are four interval-type pictures as in Exam-
ple 2A.9 and Example 2A.15. First, a finite interval [a, b], having a highest
and a lowest weight, which corresponds to a finite dimensional U,(gl,) mod-
ule. One could also use |—oo, b] or [a, oo[, and the associated U,(gl,) modules
are Verma and coVerma modules, respectively. These have either a highest or
a lowest weight. Finally, the interval |—oco, co[= R corresponds to the dense
modules and these have neither a highest nor a lowest weight. In this sense,
dense modules are a natural family of U,(gl,) modules.

More generally, dense modules appear in the study of weight modules for
Uy(gl}). That is, every simple weight module of U,(gl,) is dense or induced
from a dense module, see [Fut87] and [Fer90], which reduces the classification
of simple weight modules to dense modules. Hence, one could say that dense
modules are prototypical weight modules.

Lemma 2A.17. (2A.7) and Definition 2A.14 endow Mg and D;"’y , respectively,
with structures of Uy(gl,) and U,(gl,) modules.

Proof. Well-known and easy for M*, and this follows from (3B.7) below for D;"’y .
O

Definition 2A.18. We call 1 admissible parameters if exists a permutation
o € Aut{l, ..., n} such that sA,¢y & Zforallk € {1,...,n}.

Example 2A.19. Note that Definition 2A.18 allows to have some A; € Z. For
example, the parameters A = (1,2, 3, 7,4, 5,6) € R’ are admissible. (}

We will need admissible parameters because of Remark 2B.6 below and also
because of:

Lemma 2A.20. For admissible parameters we have that the U,(gl,) module Mfl1
and the Uy(gl,,) module DZ’C are simple. Similarly, Mg’t isasimple U,(gl,) module
if A — 2t is generic.

Proof. For the dense modules we will show this later in Lemma 3A.28 while

A ¢ Z implies simplicity of M}, as usual in the theory, cf. [Humo08, Section
1.5]. O
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2B. Verma Howe duality. Since we work with infinite dimensional Kf} vec-
tor spaces and their homomorphisms, we need to be careful with respect to
finite vs. infinite sums. To avoid convergence issues, we use the following def-
inition, where rings, as throughout, are associative and unital.

Definition 2B.1. Let $ C T be two rings, and let M be a left (or right) T mod-
ule. We call $ a dense subring of T (with respect to M) if for any t € T and
my, ...,my € Mthere exists s € $ such thats-m; =t -m; (orm; - s = m; - t) for
iefl,..k}

We say {s;|i € I} C T densely-generates T (with respect to a fixed M) if
{s;|i € I} generates a dense subring of T and we write {s;|i € I} »,; T in this
case.

Notation 2B.2. We also write Endg (M) instead of Endgo»(M), i.e. we suppress
the necessary but not enlightening appearance of the opposite ring.

We will write DZ’C for the dense modules with b, ¢ as in Definition 3A.18.
Let $ be a ring. For a left or right $ module M, the ring $’ = Endg(M) is called
the centralizer of $ (on M). We call the following theorem (quantum) Verma
Howe duality:
Theorem 2B.3.
(a) There are commuting actions

U,(gl,) C u®* =‘$n M QL @M O U (gl,).

(b) Let qSZ be the algebra homomorphism induced by the U (gL, ) actions from
(a). Then, for admissible parameters A:

$: Ug(aly) »a Endy g (MY, 87 Ug(al,,) >4 Endy, oS-

That is, the two actions densely-generate the others centralizer.

(c) Foradmissible parameters A we have the decomposition of the U,(gl,)-
Uy(gl,,) bimodule M?’l into

DA SAn+g—t.t g—t,t
My" = g%BZ Mg ®D; . (2B.4)
t€Z50
The various M?"Jrg_t’[ and D§_[’t are nonisomorphic simple U,(gl,) mod-

ules respectively Uy(gl, ) modules.
There is also a similar statement in the non-quantum case which the reader can
spell out easily themselves by removing all q above.

The proof of Theorem 2B.3 is nontrivial and given in its own section, see
section 3 below.
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Remark 2B.5. If M in Definition 2B.1 is finitely generated, then densely-
generating the centralizer is the same as generating the centralizer. In this case
Theorem 2B.3 is a classical Schur-Weyl(-Brauer) or Howe duality as in the in-
troduction. The formulation above is copied from [AST17, Section 3], which
also gives an overview of Schur-Weyl(-Brauer) dualities.

Remark 2B.6. We suspect that Theorem 2B.3.(b) works without assuming that
we have admissible parameters, and we would expect tilting theory as in the
proofs of Lemma 3A.9 and Lemma 3B.10 below to play a major role. However,
note that Mf} for A € Z is not tilting which makes the nonsemisimple situation
much more delicate. Note that Theorem 2B.3 for 4 € ZZ could be used to
generalize (quantum) symmetric Howe duality as in, for example, [How95,
Theorem 2.1.2] and [RT16, Theorem 2.6].

Remark 2B.7. The GT patterns in Theorem 2B.3 always have many zeros, ex-
actly as in (2A.13). This is because we consider U,(gl,) and not U,y(gl,,) for
general m € Z,.

Remark 2B.8. Verma Howe duality as in Theorem 2B.3 is formulated for
(Uq(glz), Uq(gIn)). If the reader likes to work with the special linear group
instead of the general linear group, then they can replace (Uq(glz), Uq(gIn))
with (Uy(81,), Uy(gl,)) or (Uy(gl,), Uy(81,,)) in Theorem 2B.3.

3. The proof of Verma Howe duality

We first prove the classical version of Theorem 2B.3, and then use a flatness
argument to get the quantum version. Recall that in the classical case we as-
sume that K is of characteristic zero.

3A. The classical case. We will need the Lie algebra gl, and it elements of
the form E;;. These are the kxk matrices with a one in the ith row and jth
column and zeros otherwise.

Lemma 3A.1. If Theorem 2B.3 holds for A € K", then it holds for any permuta-
tion of A as well.

Proof. This follows since the category of g, -representations is symmetric. [

Notation 3A.2.

(a) Wealsowrite E; = Ej(;1), F; = E(j;1y; and L; = E;;. For gL, we simplify
this notation anduse E =E; = (J})and F = F; = (99), and we also
have L; = (39)and L, = (J9).

(b) We denote the operators used in actions by e.g. ¢;; to distinguish then
from the elements of the Lie algebras. The operators are always ele-

ments of some endomorphism space. The appearing operators will al-
ways be denoted using lowercase letters.
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(c) By Lemma 3A.1 we can and will assume that =4, ¢ Z for all k €
{1,...,n}instead of 34, & Z forall k € {1, ..., n}. This will be of impor-
tance in some of our formulas.

We need the following realization of M®4, Let K[X =1 Y] be the algebra gen-
erated by indeterminates X*' = (X¥',.., X)) and Y = (Y},...,Y,,). We shift

the exponents of the X in K[X*', Y] by A so that powers of the variables X and

Y are now in 4 + Z" and Z’;O, respectively. The resulting K vector space is

denoted by P4 = K[X**Z", Y]. We view P* as a K[X*, Y] bimodule, meaning
that we allow multiplication by X l.il and by Y;. We also use P* defined similarly.

Definition 3A.3. For i € {1,...,n} we let operators dx, and dy, act on P* as
Jormal derivations, i.e. forr € Zand s € Z,, we define

Ox X =6, (A +1)- Xy Y8 =0,
ainj. = 51',].5' . Yf_l, GY[X;H'F =0,
and we then extend these rules to all of P* linearly and by the Leibniz rule.

We let the algebra U(gl,) act on P* by
E = e = Xay, F = f = YaX, Ll = ll = XaX, L2 > l2 = YaY. (3A.4)
The action (3A.4) extends to an action of U(gl,) on

n
P > @ PA
i=1
by using the usual coproduct of U(gl,) determined by A(x) = x ® 1+ 1 ® x for
all x € gl,.
We have a dual action of U(gl,)) on P# determined by

Eij s eij = Xian + Yl'ayj. (3A5)

In particular, E; acts as e;(;41), F; acts as e(;1); and L; acts as e;;.
Forr € Zands € Z let lel”YiS be of degree r + s. This gives us a Z"

grading on P*. Ford = (dy, ...,d,) € Z" we denote the Z" graded piece of P* of
degree d by (P*),.

Lemma 3A.6. The graded K vector space
Pr~ @ (PYy

dezn
is an U(gl,) module when endowed with (3A.4) that is isomorphic to M®% that
decomposes as above. Moreover, it is also an U(gl, ) module when endowed with
(3A.5), and the two actions commute.

Proof. That (3A.4) defines a homogeneous action of U(gl,) is easy to see.
The resulting U(gl,) module is isomorphic to M®? as in the classical gl, the-
ory: For d = 0 the basis elements of (P*), are of the form X*~"Y" for r € Zs,
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and e.g. f(X*"Y") = (A —r) - X*"~1y"*1. Comparing this with the classical
version of Example 2A.9 shows that (P*), = M*. For general d € Z the story is
just shifted and we get (P*); & M**4, These isomorphisms extend to P* =~ MN®4
by using the coproduct.

That (3A.5) defines an U(g[, ) action and that the two actions commute are
direct calculations. 0

We always use the two actions (3A.4) and (3A.5) for the remainder of this
section. Note that Lemma 3A.6 gives us a U(gl,)-U(gl,) bimodule structure
on P4,

Notation 3A.7. ForZ = (Z,,...,Z,) and b = (by, ..., b,)) we write zb = Zfl

7z

n

Lemma 3A.8. The element X**"Y* is annihilated by E € gl, ifand onlyifs = 0.
Proof. This holds since e = X0y so that e(X**"Y*) = 5 . X4+r+lys-1, O

An U(gl,) module is called countable semisimple if it is a countable direct
sum of countable dimensional simple U(gl,) modules.

Lemma 3A.9. For admissible parameters A the U(gl,) module P4 is countable
semisimple.

Proof. Extending e.g. [K&h10, Section 2] to [Kfl‘, we let O denote enlarged cate-
gory O. We will not define O here as it can be defined, mutatis mutandis, as in
[K4h10, Section 2] with the same properties as therein. In particular, we have
Pt = NPt € 0.

By the usual Yoga, the M4 are costandard objects in @. The usual Yoga, see
e.g. [K&h10, Proposition 2.7] or [AST18, Section 2] and the extra notes for that
paper in the arXiv version of it, also gives that tensor products of U(gl,) mod-
ules with a costandard filtration have a costandard filtration. Moreover, the
condition =4; ¢ Z for alli € {1,...,n} ensures that all appearing costandard
filtration factors have highest weight not being in Z. Thus, all costandard fil-
tration factors are tilting since they are simple and costandard, which is also a
consequence of the usual Yoga.

It then follows that M® decomposes into a direct sum of indecomposable
tilting U(gl,) modules in O, and tracking the highest weight as in Lemma 3A.8
and using that 4 is admissible shows that these indecomposable tilting U(gl,)
modules are actually simple and of the form M* for generic u € K.

Finally, everything involved is clearly countable, so we are done. O

Lemma 3A.10. Let A be admissible. As U(gl,) modules we have
Pll ~ MGB/I i~ @ M2/1n+g—t,t ® @2/1,1+g—t,t, (3A.11)
gez

t€Z5

where D> +8~LE s a multiplicity K vector space.
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Proof. ForgenericA € Kandany’ € K one can decompose M*@M* explicitly,
i.e. as U(gl,) modules we have

M/l ® M/l’ i~ @ M/1+/1'—t,[ ® @/1+/1'—[,t’ (3A12)

tEZ5

for some countable dimensional multiplicity K vector space D**4' =4, This de-
composition (3A.12) follows from Lemma 3A.8 and Lemma 3A.9 and the uni-
versal property of Verma modules.

More general, the decomposition (3A.12) can then be proven by using the
proof of Lemma 3A.9 which shows that P4 is a(n infinite) direct sum of of simple
tilting U(gl,) modules. The point is that the characters of simple tilting U(gl,)
modules are well-known, since these are Verma modules, and we of course
know the character of P4 itself. Using this and semisimplicity Lemma 3A.9, we
hence get the claimed formula by successively identifying the characters in P2,
That is, we first get

pl ~ MEBA ~ @ M/11+d1 R..Q M/ln+dn i~ @ MEA,,+Zdn—t,t ® @2/1"+Edn—t,t,

dezr dez"
tE€Z5g
and then grouping isomorphic U(gl,) modules gives (3A.11). O

We now aim to identify D>+t from (3A.11) explicitly. To this end, we
define a KK sub vector space D¢ of P4 that we will use for this purpose:

Definition 3A.13. Write a;; = det(x, 3! ), a; = aji41), @ = (a1, ..., ay—;) and
l=(y...l,-1) € ZL . Forb € Zand ¢ € Zy let

Db’c = KBDQ[ C Pi,
where Bp,, = Bp,(b,¢) = {X*"al|zr, = b —c,3l,_; = c}
Lemma 3A.14. For fixed c € Z let Hr’s a,s be a product of ¢ determinants.
Then ], a. € K[X*'{al|zl,_; = c}.

Proof. The determinant of the singular matrix

X, X, Y,
det(Xi X; Yi) = X,a0; — X0, + X;a,; =0

N N N

gives the relation a,; = Xl._l(Xrais +X,a,;)foralli € {1, ..., n}. Thisrelation can
then be successively applied to prove the statement. O

Lemma 3A.15. The U(gl,) action from Lemma 3A.6 stabilizes D> C P,
Proof. A straightforward calculation gives
a, ifj=r,
eij(ay) =qa, ifj=s,
0 else.
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Using this we get

el-j(X}”Hal) = el‘j(Xl-Hﬂ)al +Xi+reij(al)

— (/11' +r)- X/l+r+ei—ej al + lj—l -X“’a"efl ag_1 +lj X Xl+ral—sj Qij+1) -
N—— N——
rewrite rewrite

Now we use the rewriting as in the proof of Lemma 3A.14 on the marked terms,
and we are done. Explicitly, we get

el-i(X’1+ral) :(/11 +r + li—l + ll) . Xl+ral’
’ 4 i Atr—a; .
e+ X a) =(A; + 1y + L) - XAl 4y, - X e (3A16)
€(i+1)i(X’1+ral) =(A;+r;+1,_1) Lyl Iy AT gl-a;

Here we used a;(;15)

= X\ (X0 +X;00) aswellas a1y = X' (Xioai+
Xin1Gi1)-

O

We want to show that DP< is a dense module as in Theorem 2B.3. To do

this we need an analog of the GT basis, and to define it we need to prepare the
definition with some preliminaries.

Notation 3A.17.
(a) Ford = (dy,....,d,_;) € Z’Zlal, we denote by (‘:) € Zs, the multino-
mial-type number defined by the expansion H:L:_II(Z‘.X DEED (‘:) X5,

(b) Welet(k); = k(k+1)-...- (k+1—1)be the (increasing) Pochhammer
symbol.

(c) Wewrite (4, r,d, j) for (x4, +zry — ji + g 4j,—j, " -+ GApy + 2y —
Jn1+ Vg, +j,_,—j,_,» Where j € Z" with j,_, = j, =0.
Definition 3A.18. For the GT pattern

GTye = 0

X1
¢ =0,¢, =c,
d=(c;—c¢1,63—Cyye0 Cy — Cp_1),
Ir; = X; — 2/11' —2Ci1 + Cit1s

we defined = (dy,...,d,_,) and r = (ry,

...,F,) as above. The associated GT
vector is

n . . n-2 .
CTar = X jezn (d+zf’_z ), r.d, j) - XM Ee Ui qdt S s g phe. (3A.19)

i=1 Ji%i

The set of these GT vectors is denoted by Bgr.
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The following manipulation of one of the scalars defining GT 4, will come in
handy.

Lemma 3A.20. We have( ; ) H (dx+1+Jl+1)

d;

Proof. By using (=X;)% = (2X;_; + X;)% = Yo (ij)(zXl-_l)di‘le.j recursively.

O

Letz, = Zl<j<i<k ejie;j for k € {1,...,n}. We need what we call the Casimir
elements of gl , which are defined for k € {1,...,n}as

k

Casy = ), EjE;+ Z E>=2z+ ) (Ey—Ej)+XYE. (3A21)
1<i#j<k 1<j<i<k i=1

The notation is such that Casy is the usual Casimir element of gl,. We write

casy, for the associated operator. For Lemma 3A.23 below, which is the main

lemma regarding the Casimir elements, we need the following formula for the

action of zj.

Lemma 3A.22. We have z;(X*™"a!) = s - X**"a! + e with s € K and an error
term e given by

k
S = Z ((Al + ri)(z“ﬂ'i—l + 2ri_q + Zln - li—l — li =+ i— 1)

i=1
+ (l - l)ll + (l - 2)li_2 + (li—l + li)zli—2>,
k-1
e =l z Ai+r)- X/1+r+€k+6k+1—€i—€i+1al—ek+gi.
i=1
Proof. A tedious calculation using the previous formulas. 0

Lemma 3A.23. Let A be admissible. The Casimir elements separate Bgr (on
weight spaces), and By is a basis of D,

Proof. The proof splits into three steps.

Separation. We first assume that the Casimir elements act by a scalar on Bg.
We let v, = x,€; + ce, where we recall that x;, = =rp — A —2c)_; + Cyp- We
assume the scalar is

Casy, acts on GTgq, by (v + 20", 1) = x,.(x; + k — 1) + ¢ (cr + k — 3),
(3A.24)

where p®) = % Zi.czl(k — 2i + 1) - ¢; mimics the usual half-sum of the positive
roots of g .

On a weight space we have ¢, = a — x; for some a € Z. Hence, we get the
parabola in + (2 = 2a)xy + a? + ka — 3a from (3A.24). Assume that there are
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two values x; and xl’c as in the nonintegral part of GT patterns which satisfy this
parabola. Solving

2x; + (2 = 2a)x; + a* + ka — 3a = 2(x})* + (2 — 2a)x, + a* + ka — 3a

gives either x; = x; or x; + x, —a = —1. The second solution gives x; € Z,
which contradicts admissibility.

Note that this implies that the Casimir elements separate, so it remains to
verify (3A.24).

Scalar verification. We thus need to compute casi(GTq4,). The calculation
that casy(GTq4,) equals (3A.24) boils down to a longish manipulation of sym-
bols where one reindexes the sum defining GT, appropriately. We sketch the
main step in this calculation now.

(a) First, we use the second expression of Casy, in (3A.21). As before, we
use z;, = 21 <j<i<k Cji®ij and we also write h; for the Cartan part so

that cas, = 2z, + hy. By (3A.16), the Cartan part gives hk(X“ral) =

s - X**" al with scalar
S,= Z (Ai+ri+li_1+li—/‘lj—rj—lj_1—lj)
1<j<i<k

k
+ Z(Al +r; + li—l + li)Z € K.
i=1
(b) We also have the scalar s from Lemma 3A.22. Thus, we get, again using
Lemma 3A.22, that
cas,(X*al) = 2s +5') - X Tal +e, (3A.25)

where e is the error term in Lemma 3A.22.

(c) Next, we need to take the sum of (3A.25) as in the definition of the GT
vectors. The resulting expression can then by manipulated as in the
next few bullet points.

(d) We change the summation and use a few tricks to get the same expres-
sions defining the GT vectors from (3A.19):
« For the part with the multinomial scalars we use Lemma 3A.20

and the well-known formula (‘;:1) = S(Cb’) to rewrite e.g.

(di—l + ji—l) _ Jiza2 (di—l + ji—l)
Ji—=1] dii+jiaN ji[#0] 7

We further use (“;1) = ﬂ(‘;) to rewrite for example
a

(di—l + ji—l) _ di1 + ji-1 — Ji—2 (di—l + ji—l)

Ji—2 di_1 + jiz Ji—2
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Here we marked the parts that we change to match the GT vectors.
(If a = 0 in these formulas, then we would use a(Z:i) = b(Z) and
a(a:) =(a-— b)(‘;) which give 0 = 050 we can ignore these cases.)

+ We rewrite the Pochhammer symbols as well, for example:

(4; +zr; — ji)d‘+j‘_j‘_1
1
B ZAi +zr; — ji

1 (24; + zr; — ji)di+ ji_].i—l.

We again highlight the parts we change to match the expressions
in the GT vectors.

(e) All introduced fractions disappear in the end. To elaborate, we get
ki_)l < kf[l L-)(di + Ji — Ji-1)
i=1 \ 1= di+ i

'H;;.H(z/ll +zr+d—jio + 1)

k-1 .
Hl=i (E/ll +zr -+ 1)

(A + 21 = ji — Jion + 1)

The sum of the two first terms is:

k-1 . k .
II._, Ji Hi=3(2/1i +zr+di—jia+1)

k- . k— .
Hi=3l(di +Ji) Hi=31(2/1i +zr—ji+1)

We continue, analyzing three, four etc. terms, until we find
Je—1GA + 2+ die — i + 1).

®) This implies that the overall scalar for the j € Z’;gz summand of GTy,
is

k
2Ai+ri+di+ di—1)(2di—2”)
i=3

k
+ 3 (s + o D D (3A.26)

it 2, Rl s R i gy = D)

We marked the dependencies on j.
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(g) The dependencies on j in (3A.26) cancel and we get casy(GTq,) = s” -
GTg, for the scalar

k k
"= Y+ +di+di)edi o+ Y (G- +2riy)d;

i=3 i=2
+(Al + r; + di)(zll-_l + Zri_q +i— 1) + (l - 2)di—1)

k
+ Z ((k —-2i+ 1)(/11 +r + di—l + dl) + (/‘ll +r + di—l + di)Z) e K.
i=1
(h) Finally, matching s” with (3A.24) is done by comparing the linear and
the quadratic terms separately. This is again tedious, but straightfor-
ward.

Basis. The linear independence of B follows from (3A.24) and that B spans
follows because the definition of GTy, implies that By is upper triangular
(with an appropriate order) to Bp,;. O

Remark 3A.27. We were able to guess the formulas in (3A.24) because of signif-
icant help of Magma and Mathematica, which were used to find the GT bases
expressions in Definition 3A.18, as well as the formula given in [MTLO5, (6.2)].
The computationally expensive proof of Lemma 3A.23 was then also obtained
by computer help. We however stress that everything can be done by hand and
computers were only used to guess the various steps.

Lemma 3A.28. For admissible parameters A we have that D€ is a simple dense
U(gl,) module that has a GT pattern realization.

Proof. We first show that D€ is a simple U(g!,) module. To this end, we use
that the Casimir elements separate the GT patterns in Bgr, see Lemma 3A.23,
and then we use similar arguments as in [Maz03, Lemma 3]. That is, we claim
that the e;; act injectively (and thus, bijectively) on GT4, and also that the ac-
tion graph of the ¢;; action on Bgy is strongly connected.

The first claim follows from Lemma 3A.23, which implies that it is enough
to show injectivity on Bgr, and the formulas for the action of ¢;; on GT4, that
we get from (3A.16).

For the second claim we compute that

A + 21+ 1) (34 + 3Fig + digq)
Z/1i+zrl-+dl-+1
N d; (A4 2141 +di+dig +1)
E/‘li+2ri+di+1

ei(i+1)(GTd,r) = . GTd,r+oti

: GTd+oci_1,r—cx,-_1 ’

with the second term being zero ifi = 1 orifd + a;_; & Z;‘al. There is also
a similar formula for e(;1);(GT4,) with swapped signs in front of the «; and
similar coefficients. Note that all appearing coefficients are nonzero since we
have admissible parameters.
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Thus, the action graph is strongly connected and hence, the ¢;; act bijectively
and have a strongly connected action graph, showing that D¢ is a simple al,
module.

Finally, it follows from the definitions that D€ is a dense U(g[,) module in
the sense of e.g. the introduction of [Maz03]. O

Let D?¢ denote the dense U(gl,)) module defined in [Maz03, Section 3] asso-
ciated to a two diagonal GT pattern.

Proposition 3A.29. Assume that we have admissible parameters satisfying A; ¢
Z fori € {1,...,n}. We have an isomorphism of U(g\, ) modules D =~ Db<,

Proof. We have also verified that D¢ is simple and dense in Lemma 3A.28.
Thus, we can use the classification of these modules from [Mat00], see also
[Maz03, Section 2.3]. O

Remark 3A.30. Note that the isomorphism in Proposition 3A.29 is not explicit.
Any explicit isomorphism would divide, or multiply, by our parameters plus
integers. That is why we need the assumption 4; ¢ Z fori € {1, ..., n} in Propo-
sition 3A.29.

Abusing notation, we will write D?¢ instead of D€ to refer to its underlying
GT pattern realization.

Proof of the classical version of Theorem 2B.3. There are three statements
to verify.

Commuting actions. By Lemma 3A.6, we can consider the U(gl,)-U(gl,)
bimodule P# and it remains to verify the centralizer property and the U(gl,)-
U(gl,) bimodule decomposition of Theorem 2B.3.

All parameters in this proof are admissible from now on.

Bimodule decomposition. Let b = g — t and ¢ = t. The U(gl,)-U(gl,) bi-
module decomposition follows from Lemma 3A.28 after identifying D with
the multiplicity space D**n+8~%! from Lemma 3A.10 as a K vector space. Note
that Db is a U(gl,) module so it has a Z" grading coming from the U(gl,)
weight spaces. At the same time, because P# is an U(gl,)-U(gl,) bimodule,
Lemma 3A.10 implies that D**+8~! is also a U(gl,) module, so we also have
the notion of U(gl, ) weight spaces. Explicitly, m in either Db or DI+sLl ig
of degree d € Z" if e;;(m) = (4; + d;) - m. We apply this definition and (3A.16)
to Bp,; and get

Zdim Db = Y 5b+c,zdn(c+z_2)zd’
dezn

where we use Z = (Zy,...,Z,) to keep track of the graded pieces and Zdimy
means graded dimensions. Moreover, using ¥, _ (") = (m:_l), we get
- C

t
ZdimKP’l — Z (t+n—1)Zd — Z ( Z (c+n—2)>zd.
dezn ! dez" \c=0

tEZ5 tEZ5
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Thus, (3A.11) implies that

Zdimy DY = Zdim D™+ = ¥ 8,5 (V7727 (3A.31)
dezn ¢
Finally, note that D¢ ¢ ©>+8-tL because e(Bp,;) = {0}, as a simple calcula-
tion shows. Hence, D¢ = D n+g=41
Dense. Thus, it remains to prove that have dense subrings induced from the
U(gl,)and U(gl,)) actions. We denote their images in Endy(P*) by $ and T, re-
spectively. The U(gl,)-U(gl, ) bimodule decomposition implies that T is dense
in &’ since

U(gIZ) >4 EndU(gI )( @ MZ/ln+g—t,t ® Dg_t’t) = EndU(gI )(P/l)
n gez n
te€Z5

Similarly, with swapped roles of U(gl,) and U(gl,), we get that 3 is dense in
. 0

Remark 3A.32. Note that (3A.31) implies that the dense modules we use have
weight spaces of constant dimension. This is actually true in more generality,
see e.g. [Maz03, Lemma 2].

3B. The quantum case. We now specify our quantum conventions.

Notation 3B.1.

(a) Let u = (uy, ..., 4,) denote a tuple of variables, A, = Z[v,v™!] the A-
M M Mn p v
orm, A/ = Q(v) the field of fractions of A,, Al = A, [u, vH, ..., v4n]
v v
and A* the field of fractions of A%

(b) For afixed ring $ and choices 0, 0! € $and 2 = (1, ..., i1,) € $" such
that o™, ...,0% € 8, we can specialize any construction defined with
coefficients from Af using _ ® ak B where we see 5 as an Al module by
vl 5 ol and u — 2. We will use this always without the bar notation.
We can similarly specialize from A, instead of A% in the very same way.

(c) The classical and the quantum specializations are v — 1 and v — g,
respectively, and u — A for $ = K as fixed in subsection 2A. Similarly
for A, instead of AL

For k € Z5;, let Up(gl,) denote the quantum enveloping algebra over
A, of gl,. We use the conventions, excluding the Hopf algebra structure, from
[Lus90] or [APW91] with KL.il = Li“—LlLi‘_jrll. The A, algebra U (gl, ) specializes
to either U(gl,; ) forv = 1and to U,(gl,) for v = q. The classical specialization
is the one we studied in subsection 3A.

We use the same notation as in Definition 2A.3 for quantum numbers, but
we see them as elements of A, or A% in general, and these specialize to the ones
in Definition 2A.3.

The A}, algebra U,(gl,) is generated by E;, F; for i € {1,...,k — 1}, and Ll.il
fori € {1, ..., k} such that the Liil commute with one another, Li‘1 is the inverse
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of L;, and
LE; = 0%+ . E;L;, LF;= 000 - F;L;,

LiL7 L —L7'Li
ELF] _F]EL = 5i,jl+1—l

v—v-1
[2], - E;E;E; = EJE; + E;E7, if |i — j| = 1,
[2], - FiF;F; = F?F; + F;F}, if li— j| =1,

>

for all suitable i, j. We also choose the Hopf algebra structure on Ux (gl ) given
by
A(E)=E®LL L +1®E;, ¢€(E) =0, S(E;)=-EL 'Ly,
AF)=F,®1+L'Liy, ®F;, eF)=0, S(F,)=-LL\F,
with L*' being group like.
Following [Lus90], Ux(gl, ) is the A, subalgebra of U,,(gl, ) generated by the
divided powers for E; and F;, i.e.
B F
)] i @) i . .
EY =—F"=—ie{l,.,.k—1},j € Z5,,
UL T L =
and also by some adjustments of the L;, see [APW91]. As the Hopf algebra
structure of Ux (g!, ) we take the one induced by U, (gl ).

Remark 3B.2. The A, algebra Ux(gl,) specializes to U(gl,) for v = 1 and to
Uq(gly) for v = g. In both cases the divided power generators are only needed
for j =1.

We scalar extend Ux (g1, ) to an A algebra, keeping the same notation. The

additional parameters only play a role for Ux (g!; ) modules and not for U (gl )
itself.

Lemma 3B.3. Definition 2A.6 works verbatim over Ak, giving Ua(gl,) modules.

Proof. All appearing scalars can be interpreted in Af. O

The Ux(gl,) modules from Lemma 3B.3 are the integral Verma modules.
We denote these as before but using A as a subscript, e.g. MX is the integral

version of Mj}. Using the Hopf algebra structure we can then define Mf” similarly
as we defined I‘/Iga’1 .

Remark 3B.4. We now copy the approach taken in subsection 3A. That is, we
define a quantum polynomial algebra PX on which Ux(gl,) and Ux(gl,) act
by quantum derivatives in the spirit of e.g. [Kas95, Section VII.3]. This is done
such that P‘/; = M?’u as Up(gl,)-Ua(gl, ) bimodules. However, we do not use the
language of quantum derivatives because of the various quantum parameters
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appear everywhere which make this setup cumbersome instead of helpful. For
example, one would have relations of the form Y;X; = X;Y; + (v — v hHx Y
and commutativity turns into quantum commutativity. In order to avoid these
technical difficulties we decided to define P’:\ instead as a free AY module with
an explicit biaction defined on basis elements. The reader is still invited to think
of the below as quantum derivatives acting on a quantum polynomial algebra.

Definition 3B.5. We define the free AY’ module

—pAr—s
Ph=AUX Y |rez' sezl}
where we, as before, use formal parameters.

7 —Hitr . =i
Write X7 = [ + 11,0 X;  and Y = [5;],! - Y; . We let U,(gl,) act on
the scalar extension of P’g to Al* by

n
E-XFTYS = Z UEHn Iy —Zp—Zr =58, +35; [Si]u B Gasad Ys—ei’
i=1

n
F-XMYS = 3 o7 o ety 4], - XETTOYTE (3B.6)
i=1
Ll ~XM+TYS — vzun.'.z;»n 'XM-H.YS,
Ly - XFTTYS = v . XFTYS,
We also define an U, (gl,) action on the scalar extension of P‘/g to AL’” by
XHtTys - E; =[Uj4q + Tigq |yuH iR i D Gkl ‘4l
+ [Sj+1]v . Xﬂ+rYs+O£i’
XHTYS CF =[w; + 1], - XETTTRYS (3B.7)
+ v T g ] XKty ST
XHITYS . L =pritrits L XRITY S,
As before, we also get graded pieces (P’/';)d ford € Z".
Lemma 3B.8. The graded free A, module

Ph @ P
dezn

is an Up(gl,) module when endowed with the AL -version of (3B.6) that decom-
poses as above and is isomorphic to Mi" . Moreover, it is also an Ux(gl,) module
when endowed with the A"U‘ -version of (3B.7), and the two actions commute.

Proof. A direct calculation verifies that (3B.6) and (3B.7) give the scalar exten-
sion of P’/_g the structure of an U,(gl,)-U,(g!,) bimodule. One then checks that

(3B.6) and (3B.7) when successively applied to Ei(j ) and Fl.(j ) has coefficients

. . . —u+r—s
in Af when acting on the basis of the elements of the form X Y (to see
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this it is helpful to keep the quantum derivative picture from Remark 3B.4 and
bd erl
1)
Ua(gl,) bimodule structure on PX.

The final claim that PX = M?ﬂ as Ua(gl,)-Ua(gl,) bimodules can be verified
as in Lemma 3A.6. ([

b in mind), so the biaction can be restricted and gives an Ux(gl,)-

Definition 3B.9.

(a) Wecall an Af}‘ module M (generically) flat if its free and all specializa-
tions to characteristic zero fields where u are specialized to admissible
parameters are of the same dimension.

(b) We call an Ux(gl,) module M (generically) flat if it is flat as an Al
module and if all specializations of EndUA(gIk)(M) to characteristic zero
fields where u are specialized to admissible parameters are of the same
dimension.

(c) By being (generically) flat as an U, (gl,)-Ux(gl,) bimodule we mean
being flat as an Ux (gl,) module and as an U, (gl,) module.

Lemma 3B.10. The Ux(gl,)-Ux(gl,) bimodule Mfﬂ = PX is flat, its classical
specialization is the U(gl,)-U(gl, ) bimodule M®4 ~ P* and its quantum special-
ization is the Uy(gl,)-U,(gl,) bimodule M;e'l = P{}.

Proof. The quantum version of Lemma 3A.9 holds as well, with the same proof.
This implies that MX is tilting when specialized to characteristic zero fields with

M — Afor A admissible parameters. Therefore M‘/g is flat by the usual arguments,
see e.g. the arXiv appendix to [AST18]. Moreover, comparison of formulas im-
plies that the specializations are the claimed ones. O

Remark 3B.11. For the below note that, by their very construction, all Ux(gl,)
modules used in this paper are of type (1,...,1) in the sense of e.g. [APW91,
Section 1.4] or [Jan96, Section 5.2].

Proof of Theorem 2B.3. As we will see now, using flatness, the quantum
Verma Howe duality theorem follows from the classical case. Our exposition
below follows [ST19, Section 7A], but flatness arguments along the same lines
are very common in the literature.

Commuting actions. To use Lemma 3B.10, one first needs to establish the
existence of the commuting actions as in Theorem 2B.3 in the quantum case
independently of the classical case. This is done in Lemma 3B.8, so we can
focus on the U,(gl,)-Uy(g!,) bimodule decomposition.

As before in the classical case, all parameters in this proof are admissible
from now on.

Bimodule decomposition. We will now repeatedly use Lemma 3B.10. We
compare the U,(gl,) module M?’l and the U(gl,) module M®4, and we see that
the weights of these modules are the same under the usual identification of
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quantum and classical weights. Moreover, the weight multiplicities are also
the same and all finite. It follows then from Lemma 3B.10 that we have
DA SAn+g—t,t A, +g—tt
Mg = D M ® 9,

geZ
tEZ5y

as the quantum analog of (3A.11), where @Z/M'g_t’[ are multiplicity K{} vector

spaces. We actually know that these multiplicity Kf} vector spaces are Ug(gl )
modules by the quantum specialization of the previously established U, (gl,)-

U,(gl,) bimodule structure.

We want to show that all appearing @5’1"+g_t’[ are simple as U,(gl,) mod-

ules. This is equivalent to the action giving a surjection
: A
[ Uglal,) » Endy, (qr,)(Mp). (3B.12)

Now, setting v + 1 orv ~ q, respectively, and u ~ 4 in the A% version, we can
identify Mi?"‘ with M®4, and the biactions of Ua(gly)/(v—1,u—24)-Ux(gl,)/(v—
1,u—4)and U(gl,)-U(gl, ) coincide under this specialization, and verbatim for
Uq(al,)-Ugy(gl,) instead of U(gl,)-U(gl,). In particular, the images of these
two actions agree. It follows now from the classical version of Theorem 2B.3
that the action map f is surjective classically. Thus, Lemma 3B.10 implies that

(3B.12) holds and @?"Jrg_t’[ are simple as U,(gl,,) modules.

Comparison of definitions verifies that the classical version of LI

q
Dz_t’t are D +e-tt and D87, respectively. By the classification recalled in
[Maz03, Section 2.3] (originally proven in [Mat00]) we get also that D™ +8—5 ~
D8~%! | as before. Finally, @3/1"+g_t’t and D‘g_[’t are of type (1, ..., 1), by construc-
tion, and true quantum deformation in the sense of [Maz03, Section 2.1] which
. . A, +g—tit g—t,t
implies Dy =D, .

Dense. By Lemma 3B.10 and the U,(gl,)-U,(gl,,) bimodule decomposition
from (2B.4), the argument is now the same as in the classical case. O

and

4. The colored higher LKB representations are simple

Recall that we have fixed n € Z and parameters 4 = (44, ...,4,) € K".

4A. Pure and colored braids. Let B, denote the braid group with n strands
which can be illustrated using the usual diagrammatics, e.g.

NRERGVEV. EORNPTRRN
/*/:'L\é_/ s Bijie1 = X ) i,ii—l = N
1 A— i i+l i+l

(4A.1)

As displayed above, the transposition generators, crossing the ith and (i + 1)th

strand, of B,, are denoted by 3;;,, and ,6;.14_1.
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Recall that the pure braid group is the subgroup PB,, C B,, of all elements
with the bottom and the top of each strand in the same position. More generally,
we define:

Definition 4A.2. Let P({1, ..., n}) be the set of partitions of {1, ..., n}. For every
S € P({1,...,n}), the braid group that is pure on S is the subgroup BS C B,
such that the strands with bottom points in A € S have their top points in A as
well.

square brackets for the parts of the partition. Moreover, the leftmost braid in
(4A.1) is pure on the partition S = {[1],[2],[3,4,5,8,9],[6],[7]}, and S is the
finest partition such that the braid is pure on it.

Example 4A.4. The handlebody braid group of genus g € Z,,withn € Z5,
strands is the subgroup of B, , thatis pureon S = {[1], ..., [g],[g + 1, ....,g + n]}.
(For g = 0, by convention, B,,, is the classical braid group B,.) The first g
strands in the handlebody braid group are core strands, while the remaining
strands are usual strands, see e.g. [RT21, Section 2] for the topological back-
ground.

Definition 4A.5. We associate a partition S(4) € P({1, ..., n}) to 1 by
i, j are in the same component of S(4) & 4; = 4;.

We denote the corresponding subgroup of the braid group by B} = Biw.

Example 4A.6. If all 4; are different, then B;l1 = PB,,and if 1 = (41,...,1),
then B} = B,,. For the leftmost braid in (4A.1) the finest set of parameters is
A= (Al’ /12, /13, 13, /‘13, /16, 17, /13, /13) for pairWise distinct /‘li. O

Example 4A.7. For the handlebody braid group as in Example 4A.4, a natural
choice of Ais4; = ... =13 € Zand g, = ... = Ag,, € Z otherwise. Note that
such a choice of parameters is admissible for g > 0. O

4B. LKB representations. We again work over AY and Kf}. We always con-
sider My = M! ®...QM," as a Un(gl,) module via (3B.6) (note that Py = M?" =

Bacsn M‘/§+d1 R..8Q MX"er", but the direct sum is only needed for the dual
action).

We now adjust the construction from [JK11, Section 3] (and the references
to [Kas95] therein) to our setting. See also [Mar20, Definition 2.19].

Definition 4B.1. Let 1*! € Endu(My ® M,/) defined by

=1 (my @ my) = vEHTkHED L Gy @ my).
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(v—v1y

[rly!

Write FI'l =
U U
MA1 @)MA2 as

F" for r € Z(. Define the R matrix and its inverse on

Fu, © My @M > M/ @M, F, = sot+1o<l§) l=D/2 ol @ f[z]>,

v;luj M:“l ® M'“J Ml/_l\j ® M‘:\i, ;ll#/ (Zzo(—l)lv_[(l_l)/z el ® f[[])ot_los
where s is the swap map s(x ® y) =y ® x.

Lemma 4B.2. The operators ¥, A and ¥ V‘l jare well-defined, i.e. the appearing
summations are finite on every m;, @ m,.

Proof. This holds because the operator e is locally nilpotent. O

Graphically we will denote these operators by

M Hi M Hi

. \ 71 /

r:uiiﬂj “© \ > /"1 /'{j “© % ° (4B'3)
HMi Hj HMi Hj

We now define a B} action on M’l by colored reading. That is, one colors the
strands of 8 € B by 4, and then we get an element of End AE (M ) by composing
the relevant version of (4B.3) from bottom to top. We call this elernent Fg.

Example 4B.4. For A = (u;, iy, U3, M3, M3, Ue» 17, U3, M3) and the leftmost braid
in (4A.1) we get

M1 Ay M3 M3 M3 Me M7 M3 M3

TR

M1 Mo M3 M3 M3 He (M7 M3 U3

. el 1
I ="Try, um° #3’#1 0. eOF s Oy iy € EndK{} (MA)-
The endomorphism 7 has eighteen R matrix factors in total. O

Definition 4B.5. A refinement p of u is a set of parameters that gives a refined
partition compared to g when applying Definition 4A.5. We write p < u for
refinements of u.

Notation 4B.6. For U,(gl,) we extend scalars to A, or A* but do not indicate
this in the notation.

Similar to the braid group action in symmetric Howe duality, the braid group
. ®1 . . .
act§ on one gl weight space of My” and this action commutes with the gl,
action:
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Lemma 4B.7.

(a) (4B.3) and colored reading endows M’f\ with the structure of a B;, module
forp<p
(b) Colored reading commutes with the U,(gl,) action coming from (3B.6).

(c) The image of B, under this module structure is in EndUU(gIZ)(M’g).

Proof. One first proves, by copying [JK11, Theorem 7], that (4B.3) satisfies the
colored braid relations, e.g.

Hi Hj Hi Hj Hj M M M Hj My M Mg
N\ ’ N\ ] ] N\ ,
HMi Hj Hi Hj Hi Mj M K Hi Mj M M
Hic Kj M Mic Hj K
2
< =

N A

Hence, Fg is independent of the choices in colored reading, and we obtain the
claimed Bf, module structure. For B c B this B}, module structure restricts
to B,’:.

That the two actions commute follows because of the well-known fact (and
easy calculation) that the R matrices are U,(gl,) equivariant with respect to
(3B.6).

The final claim follows since the action maps commute with the U,(gl,) ac-
tion on M. O

We thus have a U,(gl,)-B}, bimodule structure on M; .

Remark 4B.8. Lemma 4B.7 can be strengthened: the image of B, commutes
with the action of the A% subalgebra of U (gl,) generated by E, F"l forr € Z,,
L* and L¥'.

We now turn our attention to the (colored higher) LKB representations,
which, following [JK11, Section 3], we define as follows:

Definition 4B.9. Let ker(e) and ker(k — H?zl vhiv~2) = ker(k — v*#n—2) be
the kernels of the indicated operators coming from the U, (gl,) action on M';.

Forl € Z, the lth LKB representation is defined as LKBX’IIJ = ker(e)nker(k—
Uzpcn—2l).

Lemma 4B.10. For p < u the free A module LKBZ”I# is stable under the B,
action.
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Proof. Note first that the definition of LKBX’IF only involves the operators e, k

and A¥ multiples of the identity. Hence, LKBX’I# is defined over A%, by construc-
tion. The rest can be proven, mutatis mutandis, as in [JK11, Theorem 1]. O

Example 4B.11. With respect to the basis {m;|i € Z.,} in Example 2A.9,
LKBX’L has a basis given by an n fold tensor product of m; with one entry be-

ing m, and all other entries being m,. Hence, the Af rank is (”;1) In general,

LKBX’}” is of A rank ("+l_2). O

Remark 4B.12. The representation LKB" g has between two and n + 1 parame-
ters, depending on u. For example, for ,u (u, ..., u) one has v and u as param-
eters.

n,1

Example 4B.13. The representation LKB"’ is always trivial, while LKB 1s the

(reduced) Burau representation of B, and LKB Au is its classical LKB repre-
sentation as in [Law90], or closer to our formulation, as in [JK11].
Or, to be completely precise, LKB A u is a multiparameter version of the con-

struction from [JK11], see also [Mar20]. Moreover, the representation LKB A

can then further be matched with it homological counterpart up to playing with
parameters, see [Koh12, Theorem 6.1] and [Mar22, Theorem 1.5] for a precise
statement.

Using an appropriate ground field and quantum parameter, LKB”’2 for A=

(4, ..., A) is a faithful B,, module by [Big01] and [Kra02], and thus, LKB 1s also
faithful for B, for all p. O

Specializing to the quantum case, the following is our main application of
Theorem 2B.3:

Theorem 4B.14. Assume that the parameters are admissible. Then the repre-
sentation LKBZ’f1 is a simple BY module forp < Aandalll € Zsy.

The proof of Theorem 4B.14 is given in section 5.

Remark 4B.15. Theorem 4B.14 extends and generalizes [JK11, Theorem 3] in
multiple ways. First, Theorem 4B.14 is a multiparameter version of [JK11, The-
orem 3]. Theorem 4B.14 also generalizes the result in loc. cit. to arbitrary fields
and generic g, and also allows much more general parameters. And even when
we have only one parameter, i.e. 4 = (4,...,4), and work over Q(4, q) The-
orem 4B.14 is stronger than [JK11, Theorem 3] since we e.g. also prove that
LKBZi is a simple PB,, module not just a simple B,, module. The proof given
below is also very different from the one given in [JK11], and we do not know
how to generalize the proof in [JK11] to e.g. include the various subgroups of
B,,, including the pure and handlebody braid groups.
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5. The proof of simplicity

Our proof of Theorem 4B.14 uses Verma versions of [LZ06, Theorem 5.5 and
Remark 8.6].

Remark 5.1. We think of Verma modules as limits of symmetric powers and
this was one of our main motivation to follow the approach taken in [LZ06].

5A. The classical case. Our ground field in this section is K.

Definition 5A.1. For k € Z, the infinitesimal pure braid group is the K
algebra PB;, generated by [S’fj for1 <i < j < k subject to

L85, B2 = 165, + B2, B3] = 62, B2, + 65,1 =0,
for pairwise distinct i, j, r, s, and [_, _] denotes the commutator. For k = 1 we
let PB;, = K.

Remark 5A.2. The motivation to study PB;, is that it gives rise to the so-called
monodromy representation of the KZ equation of the pure braid group PB,,
which works for very general tensor products of Lie algebra representations,
see [Koh02, Proposition 2.3] for details.

Definition 5A.3. Forall 1 <i < j < n define operators on M® =~ P4 by
Yf] = XinaXian + Xinﬁyian + YinaXian + Yinayiayj. (5A4)

Lemma 5A.5. The assignment ﬁfj > yfj endows M®* with the structure of a PB;
module. This PB;, action stabilizes M®*)4 forall d € 7"

Proof. A direct calculation, see also [LZ06, Theorem 2.1]. O

Remark 5A.6. The PB;, action on M®4 using (5A.4) factors through an PB;, ac-
tion on U(gl,)®", see [Koh02, Section 2]. This works as follows. Let B =
{E,F,Ly,L,} be the usual basis of gl,, and E* = F, F* = E, Ll.* = L;. Then
define Casimir-type elements by Cas;; = 3, _,1®7' @b ® 1% @ b* ®
18"J € U(gl,)®" for1 < i < j < k. Then B;; — Cas;; defines an PB;, action

that factors the PB, action given by B = i

We have M®* =~ @, (M®4), as PB;, modules, by construction. But we
in the end only need a fixed arbitrary direct summand (M®*); ~ Mht+d @
.. @ Mntdn Let PES, denote the image of the PB;, action from Lemma 5A.5
restricted to (M®4);. Note that PE;, C Endy ((M®4)y) but we will need the fol-

lowing stronger statement.

Lemma 5A.7. Assume that the parameters are admissible. We have PE;, C
El’ldU(g[z)((Mea/l)d) and PE; >4 EndU(grz)((MeBl)d).

Proof. The proof splits into several parts.
Containment. PE;, C Endy g, )((M®*),) follows from (5A.4) via a direct com-
putation.
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Applying Verma Howe duality. From Theorem 2B.3 we get commuting ac-
tions of U(gl,) and U(gl, ) on M®% and the U(gl,)-U(gl,) bimodule decompo-
sition

(MGBA)d ™ @ MZA,,+g—t,t ® (Dg—t,t)d’

teZ5,
with M*n+&-4! and D8~!! being simple. It follows that

EndU(gxz)((MéBi)d) ~ Endy( @@ (D874)y).

t€Z5

It remains to show that all endomorphisms of (D8~%!),; come from PE;, in the
dense sense.

The Casimir subalgebra. To this end, let Cas, C EndK((M;m )), by definition,
be the K algebra generated by (e;je;; + ejie;j,e|l < i < j < n1 <k <
n) with the endomorphisms as in (3A.5). It is important to observe that the
images of the Casimir operators Casy, from (3A.21) are in Cas,,. Moreover, note
that Cas,, C Endyg,)((M®*)¢) by Theorem 2B.3 and the elements of Cas,, are
homogeneous, and hence, Cas, acts on (D87%f),.

Simplicity. We aim to show that (D8~""); is simple as a Cas,, module. For this
we use an analog of [MTLO5, Theorem 6.1 and Remark 6.2], where the main
observation is that the Casimir operators Cas; from (3A.21) have a joint simple
spectrum on (D8~"*); with diagonal basis given by the GT vectors. This follows
from the proof of Lemma 3A.23.

Using the GT formulas from Definition 2A.14 it is not hard to see that the
action graph of the Cas; on (D87%!),; with vertices given by the relevant GT
vectors is strongly connected. Hence, as soon as a nonzero Cas, submodule
M c (D8 "!)4 contains at least one GT vector we have M = (D8~"!);. Finally,
since the spectrum of the Cas;, is simple with diagonal basis given by the GT
vectors by the above, every such M C (D8~"!); contains indeed a GT vector.

Wrap-up. 1t follows that Cas, generates the whole of Endy ((D8")g). A
calculation then verifies that ¢;je;; = yfj + ¢;; and e; acts as a scalar, which

completes the proof since the elements yfj generate PE;, by definition, and we
then have

PE;, »4 Endi( @ (D&7"")g) = Endy g, ((M®4),)

€750

which gives denseness. O

5B. The quantum case. Instead of infinitesimal braids we come back to the
pure braid groups. To this end, recall that (Mga’1 )a is a BS module for all p < A by
Lemma 4B.7. In particular, (MgM )a is a PB, module. Let PEZ,q be the image of

this action, and similarly for admissible parameter we let PE;, , be the respective
image.
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Lemma 5B.1. The K! algebra PE}, , contains an A subalgebra PE;,, whose
classical specialization contains PE;, and whose quantum specialization is PEsn,q.

Proof. First note that all appearing scalars are in A ¢ K%, so the construction
in subsection 4B works verbatim over A

The statement about the quantum specialization is then clear since this is
how the quantum specialization is defined.

For the classical specialization the same argument as [LZ06, Proof of Theo-
rem 7.5] works. O

Lemma 5B.2. Assume that the parameters are admissible. Then we have PE;, ; C
i i
Endy, g1, (MF1)q) and PE;, ¢ >4 Endy, qr,)(M1E1)a)-

Proof. PE, , C Enqu(gIZ)((Mga’l)d) follows from Lemma 4B.7 and the defini-
tion of the R matrices.
For the second statement recall that Mi"‘ is flat and specialize to M®4 classi-

callyand to MSM in the quantum case, see Lemma 3B.10. Thus, on the side of the
endomorphism algebra we can change between the classical and the quantum
case. Moreover, Lemma 5B.1 shows that PEZ,q is at least as big as PE;,. Taking
both together and using Lemma 5A.7 implies then the claim. O

We are ready for the final proof of this paper:

Proof of Theorem 4B.14. It is enough to consider B} = PB,,, so we restrict to
this case.

Note that (M;e/l )a is a Uy(gl,)-PB,, bimodule by Lemma 4B.7, and moreover
Lemma 5B.2 shows that PEj, , densely-generates the centralizer of U,(gl,) on

(M;m)d. Having this and the usual statements about simple modules of cen-
tralizers as e.g. in [GW09, Theorem 4.2.1], it remains to argue that the LKB
representations are PB,, submodules of some (D87"!);. (Note hereby that the
LKB story is finite dimensional and densely generates turns into generates, and
hence, [GW09, Theorem 4.2.1] applies.)

To see this we note that, as in the proof of the classical version of Theo-
rem 2B.3, D87 consists of highest weight vectors for the Uq(gIZ) action, so

the condition on LKBZ’f1 to be annihilated by e holds. Moreover, by (3B.6) we

get that K acts on DS~/ as the scalar g**»*8. In particular, for g = —2I we get
ker(k — g*»~2!) c D&%*, Hence, the LKB representations are PB, submodules
of some (D8~%) 4 (for some d € Z" depending on [) as desired. ([
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