New York Journal of Mathematics

New York J. Math. 31 (2025) 1494-1506.

Hypercontractive inequalities and Nikol'skiĭ-type inequalities on weighted Bergman spaces

Zipeng Wang and Kenan Zhang

ABSTRACT. In this note, we obtain hypercontractive inequalities between different weighted Bergman spaces. In addition, we establish Nikol'skiĭ-type inequalities for weighted Bergman spaces with optimal constants.

CONTENTS

1.	Introduction	1494
2.	The proof of Theorem 1.1	1497
3.	Proof of Theorem 1.4	1500
Acknowledgement		1505
References		1505

1. Introduction

Let \mathbb{T} be the unit circle and we identify the circle \mathbb{T} with the interval $[0, 2\pi)$. For $1 \leq p < \infty$, $L^p(\mathbb{T})$ is the Banach space of L^p -integrable functions on the unit circle. Recall the Fourier coefficients $\hat{f}(n)$, $n \in \mathbb{Z}$ of $f \in L^p(\mathbb{T})$ are defined by

$$\hat{f}(n) = \int_0^{2\pi} f(e^{i\theta})e^{-in\theta}d\theta,$$

where $d\theta$ is the normalized Lebesgue measure on $[0, 2\pi)$. Then the Hardy space $H^p(\mathbb{T})$ is the closed subspace of $L^p(\mathbb{T})$:

$$H^p(\mathbb{T}) = \{ f \in L^p(\mathbb{T}) \mid \hat{f}(n) = 0, \text{ for each negative integer } n \}.$$

Let $f \in L^2(\mathbb{T})$, then f has a Fourier expansion

$$f(e^{i\theta}) = \sum_{n=-\infty}^{+\infty} \hat{f}(n)e^{in\theta}.$$

Kenan Zhang is the corresponding author.

Received August 14, 2025.

²⁰²⁰ Mathematics Subject Classification. 32A36, 30H20, 46E15.

Key words and phrases. Poisson transform, hypercontractive inequality, Bergman spaces, Nikol'skiĭ-type inequalities.

For $0 \le r < 1$, define the dilation operator

$$(T_r f)(e^{i\theta}) := \sum_{n=-\infty}^{+\infty} \hat{f}(n) r^{|n|} e^{in\theta}.$$

Observe that $\{T_r\}_{0 \le r < 1}$ is a contractive operator semigroup on $L^p(\mathbb{T})$. The hypercontractive inequalities for T_r are to determine the optimal range of r such that

$$T_r: L^p(\mathbb{T}) \to L^q(\mathbb{T})$$

is a contraction. In his celebrated work, Weissler [15] established the following sharp criterion:

$$||T_r f||_{L^q(\mathbb{T})} \le ||f||_{L^p(\mathbb{T})}$$

if and only if $r^2 \le (p-1)/(q-1)$. Moreover,

$$||T_r f||_{H^q(\mathbb{T})} \le ||f||_{H^p(\mathbb{T})}$$

if and only if $r^2 \leq p/q$.

Let \mathbb{D} be the unit disk and $dA = dxdy/\pi$ be the normalized area measure on \mathbb{D} . Suppose that $0 and <math>1 < \alpha < \infty$, the standard weighted Bergman space $A^p_{\alpha}(\mathbb{D})$ consists of analytic functions on the unit disk such that

$$||f||_{A^p_{\alpha}(\mathbb{D})}:=\left(\int_{\mathbb{D}}|f(z)|^pdA_{\alpha}(z)
ight)^{rac{1}{p}}<\infty,$$

where $dA_{\alpha}(z) = (\alpha - 1)(1 - |z|^2)^{\alpha - 2}dA(z)$. Recall each analytic function f on \mathbb{D} has the following Taylor expansion at 0:

$$f(z) = \sum_{n=0}^{+\infty} a_n z^n, \quad \forall z \in \mathbb{D}.$$

Then the dilation operator can be formally written as

$$T_r f(z) := \sum_{n=0}^{+\infty} a_n r^n z^n = f(rz), \quad \forall z \in \mathbb{D}.$$

In a recent work Melentijević [10], the author obtained an optimal hypercontractive constant $r_0 = \sqrt{p/q}$ such that

$$||T_r f||_{A^q_{\alpha}(\mathbb{D})} \le ||f||_{A^p_{\alpha}(\mathbb{D})}, \quad \forall 0 < r \le r_0$$

for $0 , <math>1 < \alpha < \infty$ and $q \ge 2$. Melentijević's work is motivated by Janson's hypercontractive problem of dilation operators on spaces of analytic functions. For background and recent developments on Janson's problem, one can consult [7] and [10].

The first goal of this paper is to extend Melentijević's work to the case of two distinct weighted Bergman spaces $A^p_\alpha(\mathbb{D})$ and $A^q_\beta(\mathbb{D})$.

Theorem 1.1. For $1 < \alpha, \beta < \infty$ and $0 , let <math>q \ge 2$ and $\beta p \le \alpha q$. Then we have

$$||T_r f||_{A^q_{\sigma}(\mathbb{D})} \leqslant ||f||_{A^p_{\sigma}(\mathbb{D})} \tag{1}$$

for any $f \in A^p_{\alpha}(\mathbb{D})$ if and only if $r^2 \leq \beta p/\alpha q$.

Remark 1.2. It is known that $\lim_{\alpha \to 1} \|f\|_{A^p_\alpha} = \|f\|_{H^p}$ for $f \in H^p$. Hence, Theorem 1.1 is a generalization of Janson's strong hypercontractive inequalities between Hardy spaces in [6] for the case $0 and <math>q \ge 2$. The proofs of Theorem 1.1 are inspired by some ideas and methods from [7] and [10]. After our paper was uploaded to arXiv, Huang Yi and Zhang Jianyang informed us that they had also obtained similar results.

Remark 1.3. We further note that in the recent work by Bao-Ma-Yan-Zhu [1], the authors have formulated a highly general conjecture concerning contractive embeddings, grounded in a new notion termed "tight fitting".

Let $\mathbb{C}[z_1, ..., z_n]$ be the space of all complex polynomials on \mathbb{C}^n and write $\mathbf{z} = (z_1, ..., z_n) \in \mathbb{C}^n$. For a *m*-homogeneous polynomial $P(\mathbf{z}) \in \mathbb{C}[z_1, ..., z_n]$, as a corollary of Weissler's hypercontractive work [15], we have

$$||P||_{H^q(\mathbb{T}^n)} \leqslant \left(\sqrt{\frac{q}{p}}\right)^m ||P||_{H^p(\mathbb{T}^n)},$$

where

$$||P||_{H^p(\mathbb{T}^n)} = \left(\int_{\mathbb{T}^n} |P(\mathbf{z})|^p dm(\mathbf{z})\right)^{\frac{1}{p}}$$

and $dm(\mathbf{z})$ is the Haar measure on \mathbb{T}^n . For a complex polynomial P in $\mathbb{C}[z_1, \dots, z_n]$, we write

$$P(\mathbf{z}) = \sum_{\gamma \in \mathbb{N}^n} c_{\gamma} \mathbf{z}^{\gamma},$$

where $\gamma=(\gamma_1,\ldots,\gamma_n)\in\mathbb{N}^n$ is a multi-index and $\mathbf{z}^{\gamma}=z_1^{\gamma_1}\cdots z_n^{\gamma_n}$. Let $|\gamma|=\sum_{j=1}^n\gamma_j$. Then the degree of the polynomial P is defined by

$$\deg(P) := \max\{|\gamma| : c_{\gamma} \neq 0\}.$$

Let m be the degree of the polynomial P. The famous Nikol'skiĭ-type inequality [11, 12] states that for any complex polynomial P in $\mathbb{C}[z_1, ..., z_n]$ and $0 < q < p < \infty$,

$$||P||_{H^q(T^n)} \leqslant C||P||_{H^p(\mathbb{T}^n)},$$

where the constant C = C(n, m, p, q).

By hypercontractive inequalities of the Poisson transform between Hardy spaces [15], Defant and Mastyło [4] obtained a dimension-free estimate of

Nikol'skiĭ-type inequality for Hardy spaces. In particular, for 0 , the optimal constant in Nikol'skiĭ-type inequality for Hardy spaces is

$$C(m, p, q) = \left(\sqrt{\frac{q}{p}}\right)^m.$$

For $n \ge 1, 0 and <math>1 < \alpha < \infty$, recall the weighted Bergman space $A^p_\alpha(\mathbb{D}^n)$ on the polydisc \mathbb{D}^n is

$$A^p_{\alpha}(\mathbb{D}^n) = \left\{ f \in H(\mathbb{D}^n) \,\middle|\, \|f\|^p_{A^p_{\alpha}(\mathbb{D}^n)} \, := \int_{\mathbb{D}^n} |f(z_1, \dots, z_n)|^p dA_{\alpha}(z_1) \cdots dA_{\alpha}(z_n) < \infty \right\},$$

where $H(\mathbb{D}^n)$ is the set of analytic functions on \mathbb{D}^n . Inspired by ideas from [4], we have the following dimension-free Nikol'skiĭ-type inequality for the weighted Bergman spaces with optimal constants.

Theorem 1.4. For $1 < \alpha, \beta < \infty$ and $0 , let <math>q \ge 2$ and $\beta p \le \alpha q$. Then for any positive integer m, n and a complex polynomial $P \in \mathbb{C}[z_1, ..., z_n]$ with degree m

$$||P||_{A^q_{\beta}(\mathbb{D}^n)} \leqslant \left(\sqrt{\frac{\alpha q}{\beta p}}\right)^m ||P||_{A^p_{\alpha}(\mathbb{D}^n)}. \tag{2}$$

The constant

$$C(\alpha,\beta,p,q) = \sqrt{\frac{\alpha q}{\beta p}}$$

is the best possible such that for each positive integers n, m and $P \in \mathbb{C}[z_1, ..., z_n]$ with degree m, the following inequality holds

$$||P||_{A^q_{\sigma}(\mathbb{D}^n)} \leqslant C(\alpha, \beta, p, q)^m ||P||_{A^p_{\sigma}(\mathbb{D}^n)}.$$

2. The proof of Theorem 1.1

2.1. The Necessity. We start with a simple but useful lemma in [6] to prove the necessity for Theorem 1.1.

Lemma 2.1. For $1 < \alpha < \infty, 0 < p < \infty$ and a real number ε , let $f(z) = 1 + \varepsilon z$. As the real number ε approaches 0, we have

$$||f||_{A^p_{\alpha}(\mathbb{D})} = ||1 + \varepsilon z||_{A^p_{\alpha}(\mathbb{D})} = 1 + \frac{p}{4\alpha} \varepsilon^2 + O(\varepsilon^3).$$

Proof. Fix $z \in \mathbb{C}$, then

$$\begin{aligned} |1 + \varepsilon z|^p &= \left(1 + 2\varepsilon \operatorname{Re}z + \varepsilon^2 |z|^2\right)^{\frac{p}{2}} \\ &= 1 + \frac{p}{2} \left(2\varepsilon \operatorname{Re}z + \varepsilon^2 |z|^2\right) + \frac{1}{2} \cdot \frac{p}{2} \left(\frac{p}{2} - 1\right) \left(2\varepsilon \operatorname{Re}z + \varepsilon^2 |z|^2\right)^2 + O\left(\varepsilon^3\right). \end{aligned}$$

Integrating on the unit disk with respect to the measure dA_{α} , one gets

$$\begin{split} &\left(\int_{\mathbb{D}}|1+\varepsilon z|^{p}dA_{\alpha}(z)\right)^{\frac{1}{p}}\\ =&1+\frac{1}{2}\varepsilon^{2}\int_{\mathbb{D}}|z|^{2}dA_{\alpha}(z)+\frac{p-2}{8}\int_{\mathbb{D}}\left(2\varepsilon\mathrm{Re}z+\varepsilon^{2}|z|^{2}\right)^{2}dA_{\alpha}(z)+O(\varepsilon^{3})\\ =&1+\frac{1}{2}\varepsilon^{2}\left(||z||_{A_{\alpha}^{2}(\mathbb{D})}^{2}+(p-2)||\mathrm{Re}z||_{A_{\alpha}^{2}(\mathbb{D})}^{2}\right)+O(\varepsilon^{3})\\ =&1+\frac{p}{4\alpha}\varepsilon^{2}+O(\varepsilon^{3}). \end{split}$$

This completes the proof of Lemma 2.1.

For any $f \in A^p_\alpha(\mathbb{D})$ and $r \in [0, 1)$, recall that

$$T_r f(z) = f(rz), \quad z \in \mathbb{D}.$$

Then, by Lemma 2.1,

$$||1 + \varepsilon r z||_{A^q_{\beta}(\mathbb{D})} = 1 + \frac{q}{4\beta} \varepsilon^2 r^2 + O(\varepsilon^3).$$

Assume the hypercontractive inequality (1) holds, let $f(z) = 1 + \varepsilon z$, we have

$$||1 + \varepsilon r z||_{A^q_{\beta}(\mathbb{D})} \le ||1 + \varepsilon z||_{A^p_{\alpha}(\mathbb{D})},$$

Hence,

$$1 + \frac{q}{4\beta}\varepsilon^2 r^2 \leqslant 1 + \frac{p}{4\alpha}\varepsilon^2 + O(\varepsilon^3).$$

As ε approaches 0, it follows that

$$r^2 \leqslant \frac{\beta p}{\alpha a}$$
.

This achieves the necessary part of Theorem 1.1.

2.2. The Sufficiency. For 0 , let

$$\beta' = \frac{q}{p} \cdot \alpha,$$

then

$$\frac{\beta'}{\alpha} = \frac{q}{p} \geqslant 1.$$

By Kulikov's inequality [7, Corollary 1.3], it is easy to see

$$||f||_{A^q_{\mathcal{O}'}(\mathbb{D})} \leqslant ||f||_{A^p_{\alpha}(\mathbb{D})}.$$

Since the $A^q_{\beta}(\mathbb{D})$ norm of T_rf decreases as r decreases, it suffices to prove that there holds

$$||T_r f||_{A^q_{\beta}(\mathbb{D})} \leqslant ||f||_{A^q_{\beta'}(\mathbb{D})}$$

for $r = \sqrt{\beta p/\alpha q}$. It is equivalent to

$$(\beta-1)\int_{\mathbb{D}}|f(rz)|^{q}(1-|z|^{2})^{\beta-2}dA(z) \leq (\beta'-1)\int_{\mathbb{D}}|f(z)|^{q}(1-|z|^{2})^{\beta'-2}dA(z).$$

By the polar coordinates, we need to prove

$$(\beta - 1) \int_0^1 \rho (1 - \rho^2)^{\beta - 2} \left(\int_0^{2\pi} |f(r\rho e^{i\theta})|^q d\theta \right) d\rho$$

$$\leq (\beta' - 1) \int_0^1 \rho (1 - \rho^2)^{\beta' - 2} \left(\int_0^{2\pi} |f(\rho e^{i\theta})|^q d\theta \right) d\rho.$$

Denote $\rho = \sqrt{y}$ and

$$\Phi(y) = \int_0^{2\pi} |f(\sqrt{y}e^{i\theta})|^q d\theta,$$

it is sufficient to verify

$$(\beta - 1) \int_0^1 (1 - y)^{\beta - 2} \Phi(r^2 y) dy \le (\beta' - 1) \int_0^1 (1 - y)^{\beta' - 2} \Phi(y) dy$$

when $r = \sqrt{\beta p/\alpha q} = \sqrt{\beta/\beta'}$. Since $q \ge 2$, by [10, Lemma 1], Φ is C^2 smooth and $\Phi''(y) \ge 0$. Using integration by parts, we have

$$(\beta - 1) \int_0^1 (1 - y)^{\beta - 2} \Phi(r^2 y) dy = \Phi(0) + r^2 \int_0^1 (1 - y)^{\beta - 1} \Phi'(r^2 y) dy$$

$$= \Phi(0) + \frac{r^2}{\beta} \Phi'(0) + \frac{r^4}{\beta} \int_0^1 (1 - y)^{\beta} \Phi''(r^2 y) dy$$

$$= \Phi(0) + \frac{1}{\beta'} \Phi'(0) + \frac{r^2}{\beta'} \int_0^1 (1 - y)^{\beta} \Phi''(r^2 y) dy$$

$$= \Phi(0) + \frac{1}{\beta'} \Phi'(0) + \frac{1}{\beta'} \int_0^{r^2} \left(1 - \frac{y}{r^2}\right)^{\beta} \Phi''(y) dy,$$

and

$$\begin{split} (\beta'-1)\int_0^1 (1-y)^{\beta'-2}\Phi(y)dy &= \Phi(0) + \int_0^1 (1-y)^{\beta'-1}\Phi'(y)dy \\ &= \Phi(0) + \frac{1}{\beta'}\Phi'(0) + \frac{1}{\beta'}\int_0^1 (1-y)^{\beta'}\Phi''(y)dy. \end{split}$$

Then it suffices to prove

$$\int_0^{r^2} \left(1 - \frac{y}{r^2}\right)^{\beta} \Phi''(y) dy \leqslant \int_0^1 (1 - y)^{\beta'} \Phi''(y) dy.$$

Note that $\beta'/\beta = \alpha q/\beta p \ge 1$, the function $g(y) = (1-y)^{\beta'/\beta}$ is convex. Hence, for all $0 \le y \le \beta/\beta' = r^2$, we have

$$g(y) \geqslant g(0) + g'(0)y = 1 - \frac{y}{r^2},$$

Note that $\Phi''(y) \ge 0$, we have

$$\int_{0}^{r^{2}} \left(1 - \frac{y}{r^{2}}\right)^{\beta} \Phi''(y) dy \le \int_{0}^{r^{2}} (1 - y)^{\beta'} \Phi''(y) dy$$
$$\le \int_{0}^{1} (1 - y)^{\beta'} \Phi''(y) dy.$$

This completes the whole proof.

3. Proof of Theorem 1.4

Before proving Nikol'skiĭ-type inequality for the weighted Bergman spaces, we need a hypercontractive inequality for high dimensions. Let n be a positive integer and $f \in A^p_\alpha(\mathbb{D}^n)$. Assume that $\mathbf{z} = (z_1, \dots, z_n) \in \mathbb{D}^n$ and $\mathbf{r} = (r_1, \dots, r_n)$ with $0 \le r_i < 1$ for $i = 1, \dots, n$. Define an operator

$$(\mathbf{T}_{\mathbf{r}}f)(\mathbf{z}) = f(r_1 z_1, \dots, r_n z_n), \quad \mathbf{z} \in \mathbb{D}^n.$$

The following lemma is a corollary of Theorem 1.1.

Lemma 3.1. For $1 < \alpha, \beta < \infty$ and $0 , let <math>q \ge 2$, $\beta p \le \alpha q$, and $r = (r_1, \dots, r_n)$ with $0 \le r_i < 1$ for $i = 1, \dots, n$. Then we have

$$||T_r f||_{A^q_{\sigma}(\mathbb{D}^n)} \leqslant ||f||_{A^p_{\sigma}(\mathbb{D}^n)} \tag{3}$$

for any $f \in A^p_{\alpha}(\mathbb{D}^n)$ if and only if $r_i^2 \leq \beta p/\alpha q$, for all i = 1, 2, ..., n.

Proof. We prove the necessity first. Assume that

$$||\mathbf{T}_{\mathbf{r}}f||_{A^q_{\alpha}(\mathbb{D}^n)} \leqslant ||f||_{A^p_{\alpha}(\mathbb{D}^n)}$$

for any $f \in A^p_\alpha(\mathbb{D}^n)$. For each $1 \le i \le n$, let $g \in A^p_\alpha(\mathbb{D})$ and

$$f(\mathbf{z}) = f(z_1, ..., z_i, ..., z_n) := g(z_i),$$

then $f \in A^p_{\alpha}(\mathbb{D}^n)$ and

$$||f||_{A^p_\alpha(\mathbb{D}^n)} = ||g||_{A^p_\alpha(\mathbb{D})}.$$

Moreover,

$$(\mathbf{T_r} f)(\mathbf{z}) = (T_{r_i} g)(z_i).$$

Then we have

$$||T_{r_i}g||_{A^q_\beta(\mathbb{D})} \leqslant ||g||_{A^p_\alpha(\mathbb{D})}.$$

By Theorem 1.1, we get $r_i^2 \le \beta p/\alpha q$ for each i = 1, 2, ..., n.

We proceed by induction on n to prove the sufficiency. Suppose that $r_i^2 \le \beta p/\alpha q$ for all i=1,2,...,n. First, the inequality (3) is true for n=1 by Theorem

1.1. Assume that the lemma is valid for n = k - 1. We will prove the inequality (3) still holds when n = k. Recall that

$$||\mathbf{T}_{\mathbf{r}}f||_{A^{q}_{\beta}(\mathbb{D}^{k})} = \left(\int_{\mathbb{D}^{k}} |f(r_{1}z_{1}, \dots, r_{k-1}z_{k-1}, r_{k}z_{k})|^{q} dA_{\beta}(z_{1}) \cdots dA_{\beta}(z_{k-1}) dA_{\beta}(z_{k})\right)^{\frac{1}{q}}.$$

By Fubini's Theorem and Theorem 1.1, we have

$$\begin{split} \|\mathbf{T}_{\mathbf{r}}f\|_{A^q_{\beta}(\mathbb{D}^k)} &= \left[\int_{\mathbb{D}^{k-1}} \left(\int_{\mathbb{D}} |f(r_1z_1,\ldots,r_{k-1}z_{k-1},r_kz_k)|^q dA_{\beta}(z_k)\right) dA_{\beta}(z_1) \cdots dA_{\beta}(z_{k-1})\right]^{\frac{1}{q}} \\ &\leqslant \left[\int_{\mathbb{D}^{k-1}} \left(\int_{\mathbb{D}} |f(r_1z_1,\ldots,r_{k-1}z_{k-1},z_k)|^p dA_{\alpha}(z_k)\right)^{\frac{q}{p}} dA_{\beta}(z_1) \cdots dA_{\beta}(z_{k-1})\right]^{\frac{1}{q}}. \end{split}$$

Since 0 , by Minkowski's inequality and the induction hypothesis, we have

$$\begin{split} \|\mathbf{T}_{\mathbf{r}}f\|_{A^q_{\beta}(\mathbb{D}^k)} &\leqslant \left[\int_{\mathbb{D}} \left(\int_{\mathbb{D}^{k-1}} |f(r_1z_1,\ldots,r_{k-1}z_{k-1},z_k)|^q dA_{\beta}(z_1) \cdots dA_{\beta}(z_{k-1}) \right)^{\frac{p}{q}} dA_{\alpha}(z_k) \right]^{\frac{1}{p}} \\ &\leqslant \left[\int_{\mathbb{D}} \left(\int_{\mathbb{D}^{k-1}} |f(z_1,\ldots,z_{k-1},z_k)|^p dA_{\alpha}(z_1) \cdots dA_{\alpha}(z_{k-1}) \right) dA_{\beta}(z_k) \right]^{\frac{1}{p}} \\ &= ||f||_{A^p_{\alpha}(\mathbb{D}^k)}. \end{split}$$

This completes the proof of Lemma 3.1.

As a direct corollary of Lemma 3.1, the inequality (2) holds for m-homogeneous polynomials. For given $n \in \mathbb{N}$, we define a new norm for

$$Q(\mathbf{z},w)\in\mathbb{C}[z_1,\dots,z_n,z_{n+1}].$$

Denote

$$||Q||_{A^p_\alpha(\mathbb{D}^n,\mathbf{z})\times H^p(\mathbb{T},w)}^p=\int_{\mathbb{T}}\int_{\mathbb{D}^n}|Q(\mathbf{z},w)|^pdA_\alpha(\mathbf{z})dw,$$

where $dA_{\alpha}(\mathbf{z}) = dA_{\alpha}(z_1) \cdots dA_{\alpha}(z_n)$ and dw is the normalized arc length on the unit circle \mathbb{T} . The following homogeneous technique of general complex polynomials is known. However, we cannot locate a suitable reference. For the sake of completeness, we include a short proof.

Lemma 3.2. For a given $n \in \mathbb{N}$, let $\mathbf{z} = (z_1, ..., z_n) \in \mathbb{D}^n$, $P(\mathbf{z}) \in \mathbb{C}[z_1, ..., z_n]$ be a complex polynomial with degree m, then there exists an m-homogeneous polynomial $Q(\mathbf{z}, w) \in \mathbb{C}[z_1, ..., z_n, z_{n+1}]$ such that

$$||P||_{A^p_{\alpha}(\mathbb{D}^n)}=||Q||_{A^p_{\alpha}(\mathbb{D}^n,\mathbf{z})\times H^p(\mathbb{T},w)}.$$

Proof. For a polynomial *P* in $\mathbb{C}[z_1, ..., z_n]$, write

$$P(\mathbf{z}) = \sum_{\gamma \in \mathbb{N}^n} c_{\gamma} \mathbf{z}^{\gamma},$$

where $\gamma = (\gamma_1, ..., \gamma_n) \in \mathbb{N}^n$ is a multi-index. Let deg P = m and

$$Q(\mathbf{z},w) = \sum_{\gamma \in \mathbb{N}^n} c_{\gamma} \mathbf{z}^{\gamma} w^{m-|\gamma|} \in \mathbb{C}[z_1,\dots,z_n,z_{n+1}],$$

where $|\gamma| = \gamma_1 + \cdots + \gamma_n$. Then $Q(\mathbf{z}, w)$ is *m*-homogeneous. For 0 , recall that

$$\begin{aligned} ||Q||_{A_{\alpha}^{p}(\mathbb{D}^{n},\mathbf{z})\times H^{p}(\mathbb{T},w)}^{p} &= \int_{\mathbb{T}} \int_{\mathbb{D}^{n}} |Q(\mathbf{z},w)|^{p} dA_{\alpha}(\mathbf{z}) dw \\ &= \int_{\mathbb{T}} \int_{\mathbb{D}^{n}} \left| \sum_{\gamma \in \mathbb{N}^{n}} c_{\gamma} \mathbf{z}^{\gamma} w^{m-|\gamma|} \right|^{p} dA_{\alpha}(\mathbf{z}) dw. \end{aligned}$$

Since $w \in \mathbb{T}$, let $\xi = (z_1 w^{-1}, \dots, z_n w^{-1})$, we have

$$\begin{aligned} ||Q||_{A^p_{\alpha}(\mathbb{D}^n,\mathbf{z})\times H^p(\mathbb{T},w)}^p &= \int_{\mathbb{T}} \int_{\mathbb{D}^n} \left| \sum_{\gamma \in \mathbb{N}^n} c_{\gamma} (z_1 w^{-1})^{\gamma_1} \dots (z_n w^{-1})^{\gamma_n} \right|^p dA_{\alpha}(\mathbf{z}) dw \\ &= \int_{\mathbb{T}} \int_{\mathbb{D}^n} \left| \sum_{\gamma \in \mathbb{N}^n} c_{\gamma} \xi_1^{\gamma_1} \dots \xi_n^{\gamma_n} \right|^p dA_{\alpha}(\xi) dw \\ &= ||P||_{A^p_{\alpha}(\mathbb{D}^n)}^p. \end{aligned}$$

This completes the proof.

Now we are ready to prove Theorem 1.4. Assume that

$$P(\mathbf{z}) = \sum_{\gamma \in \mathbb{N}^n} c_{\gamma} \mathbf{z}^{\gamma} \in \mathbb{C}[z_1, \dots, z_n]$$

is a polynomial. We divide the problem into two cases. For the case $1<\alpha<\beta<\infty$. Let

$$p' = \frac{\beta}{\alpha}p,$$

then $0 , <math>p'/\beta = p/\alpha$. By Kulikov's inequality [7, Corollary 1.3], one gets

$$||P||_{A_{\alpha}^{p'}(\mathbb{D}^n)} \leqslant ||P||_{A_{\alpha}^p(\mathbb{D}^n)}.$$

Then it suffices to prove

$$||P||_{A^q_{\beta}(\mathbb{D}^n)} \leqslant \left(\sqrt{\frac{\alpha q}{\beta p}}\right)^m ||P||_{A^{p'}_{\beta}(\mathbb{D}^n)} = \left(\sqrt{\frac{q}{p'}}\right)^m ||P||_{A^{p'}_{\beta}(\mathbb{D}^n)}$$

Let
$$r_0 = \sqrt{p'/q} < 1$$
, $\mathbf{r}_0 = (r_0, ..., r_0)$ and

$$Q(\mathbf{z},w) = \sum_{\gamma \in \mathbb{N}^n} c_{\gamma} \mathbf{z}^{\gamma} w^{m-|\gamma|} \in \mathbb{C}[z_1,\dots,z_{n+1}]$$

be an *m*-homogeneous polynomial. Since for each $w \in \mathbb{T}$, $Q(\mathbf{z}, w) \in A^p_{\alpha}(\mathbb{D}^n)$. By Lemma 3.1 and Minkowski's inequality, we have

$$\begin{aligned} ||\mathbf{T}_{\mathbf{r}_{0}}Q||_{A_{\alpha}^{q}(\mathbb{D}^{n},\mathbf{z})\times H^{q}(\mathbb{T},w)} &= \left(\int_{\mathbb{T}}\int_{\mathbb{D}^{n}}|Q(\mathbf{r}_{0}\mathbf{z},r_{0}w)|^{q}dA_{\beta}(\mathbf{z})dw\right)^{\frac{1}{q}} \\ &\leq \left(\int_{\mathbb{T}}\left(\int_{\mathbb{D}^{n}}|Q(\mathbf{z},r_{0}w)|^{p'}dA_{\beta}(\mathbf{z})\right)^{\frac{q}{p'}}dw\right)^{\frac{1}{q}} \\ &\leq \left(\int_{\mathbb{D}^{n}}\left(\int_{\mathbb{T}}|Q(\mathbf{z},r_{0}w)|^{q}dw\right)^{\frac{p'}{q}}dA_{\beta}(\mathbf{z})\right)^{\frac{1}{p'}} \end{aligned}$$

Since for each $\mathbf{z} \in \mathbb{D}$, $Q(\mathbf{z}, w) \in H^p(\mathbb{T})$. By Weissler's work [15], one gets

$$\begin{aligned} ||\mathbf{T}_{\mathbf{r}_{0}}Q||_{A_{\alpha}^{q}(\mathbb{D}^{n},\mathbf{z})\times H^{q}(\mathbb{T},w)} &\leq \left(\int_{\mathbb{T}}\int_{\mathbb{D}^{n}}|Q(\mathbf{z},w)|^{p'}dA_{\beta}(\mathbf{z})dw\right)^{\frac{1}{p'}} \\ &= ||Q||_{A_{\alpha}^{p'}(\mathbb{D}^{n},\mathbf{z})\times H^{p'}(\mathbb{T},w)}. \end{aligned}$$

Note that *Q* is *m*-homogeneous, by Lemma 3.2, we complete the proof of the case $1 < \alpha < \beta < \infty$.

For the case $1 < \beta < \alpha < \infty$, let

$$r_0 = \sqrt{\frac{\beta p}{\alpha q}} < \sqrt{\frac{p}{q}} < 1.$$

With similar arguments in the last case, we have

$$\begin{aligned} ||\mathbf{T}_{\mathbf{r}_{0}}Q||_{A_{\alpha}^{q}(\mathbb{D}^{n},\mathbf{z})\times H^{q}(\mathbb{T},w)} &= \left(\int_{\mathbb{T}}\int_{\mathbb{D}^{n}}|Q(\mathbf{r}_{0}\mathbf{z},r_{0}w)|^{q}dA_{\beta}(\mathbf{z})dw\right)^{\frac{1}{q}} \\ &\leq \left(\int_{\mathbb{T}}\left(\int_{\mathbb{D}^{n}}|Q(\mathbf{z},r_{0}w)|^{p}dA_{\alpha}(\mathbf{z})\right)^{\frac{q}{p}}dw\right)^{\frac{1}{q}} \\ &\leq \left(\int_{\mathbb{T}}\int_{\mathbb{D}^{n}}|Q(\mathbf{z},r_{0}w)|^{q}dw\right)^{\frac{p}{q}}dA_{\alpha}(\mathbf{z})^{\frac{1}{p}} \\ &\leq \left(\int_{\mathbb{T}}\int_{\mathbb{D}^{n}}|Q(\mathbf{z},w)|^{p}dA_{\alpha}(\mathbf{z})dw\right)^{\frac{1}{p}} \\ &= ||Q||_{A_{\alpha}^{p}(\mathbb{D}^{n},\mathbf{z})\times H^{p}(\mathbb{T},w)}. \end{aligned}$$

This completes the proof of the case $1 < \beta < \alpha < \infty$.

Now we show that the constant

$$C(\alpha, \beta, p, q) = \sqrt{\frac{\alpha q}{\beta p}}$$

is sharp. Let n be a positive integer. If one endows the polydisk \mathbb{D}^n with Borel σ -field $\mathcal{B}(\mathbb{D}^n)$, then we get a probability space $(\mathbb{D}^n, \mathcal{B}(\mathbb{D}^n), dA_{\alpha}(z_1) \dots dA_{\alpha}(z_n))$. Define

$$z_i: \mathbb{D}^n \to \mathbb{C}, \quad \mathbf{z} \mapsto z_i, \quad 1 \leqslant i \leqslant n,$$

then $\{z_i|1 \le i \le n\}$ are independent identically distributed random variables. Consider the 1-homogeneous polynomial

$$p_{\alpha,n}(\mathbf{z}) = \sqrt{\frac{\alpha}{n}} \sum_{i=1}^{n} z_i$$

for given $n \in \mathbb{N}$ and $\alpha \geqslant 1$. By the central limit theorem [8], the sequence of polynomials $p_{\alpha,n}$ converges to the normal complex Gaussian random variable G in distribution as n approaches ∞ . Then for a fixed integer m

$$\lim_{n\to\infty} \left\| p_{\alpha,n}^m \right\|_{A_{\alpha}^p(\mathbb{D}^n)}^p = \Gamma\left(\frac{pm}{2} + 1\right).$$

Note that $p_{1,n} = p_{\alpha,n}/\sqrt{\alpha}$. Therefore,

$$\lim_{n\to\infty} \left\| p_{1,n}^m \right\|_{A^p_\alpha(\mathbb{D}^n)} = \left(\frac{1}{\sqrt{\alpha}}\right)^m \Gamma\left(\frac{pm}{2} + 1\right)^{\frac{1}{p}}.$$

Similarly,

$$\lim_{n\to\infty} \left\|p_{1,n}^m\right\|_{A^q_\beta(\mathbb{D}^n)} = \left(\frac{1}{\sqrt{\beta}}\right)^m \Gamma\left(\frac{qm}{2}+1\right)^{\frac{1}{q}}.$$

Hence,

$$\lim_{n\to\infty}\frac{||p^m_{1,n}||_{A^q_\beta(\mathbb{D}^n)}}{||p^m_{1,n}||_{A^p_\alpha(\mathbb{D}^n)}}=\left(\sqrt{\frac{\alpha}{\beta}}\right)^m\frac{\Gamma\left(\frac{qm}{2}+1\right)^{\frac{1}{q}}}{\Gamma\left(\frac{pm}{2}+1\right)^{\frac{1}{p}}}.$$

By the Stirling's formula

$$\sqrt{2\pi}x^{x+\frac{1}{2}}e^{-x} < \Gamma(x+1) < \sqrt{2\pi}x^{x+\frac{1}{2}}e^{-x+\frac{1}{12x}},$$

we have

$$\frac{(2\pi)^{\frac{1}{2qm}}(\frac{qm}{2})^{\frac{1}{2}+\frac{1}{2qm}}e^{-\frac{1}{2}}}{(2\pi)^{\frac{1}{2pm}}(\frac{pm}{2})^{\frac{1}{2}+\frac{1}{2pm}}e^{-\frac{1}{2}+\frac{1}{6(pm)^{2}}}} < \frac{\Gamma\left(\frac{qm}{2}+1\right)^{\frac{1}{qm}}}{\Gamma\left(\frac{pm}{2}+1\right)^{\frac{1}{pm}}} < \frac{(2\pi)^{\frac{1}{2qm}}(\frac{qm}{2})^{\frac{1}{2}+\frac{1}{2qm}}e^{-\frac{1}{2}+\frac{1}{6(qm)^{2}}}}{(2\pi)^{\frac{1}{2pm}}(\frac{pm}{2})^{\frac{1}{2}+\frac{1}{2pm}}e^{-\frac{1}{2}}}$$

Note that

$$\frac{(2\pi)^{\frac{1}{2qm}}(\frac{qm}{2})^{\frac{1}{2}+\frac{1}{2qm}}e^{-\frac{1}{2}}}{(2\pi)^{\frac{1}{2pm}}(\frac{pm}{2})^{\frac{1}{2}+\frac{1}{2pm}}e^{-\frac{1}{2}+\frac{1}{6(pm)^2}}}=e^{-\frac{1}{6(pm)^2}}\frac{(qm\pi)^{\frac{1}{2qm}}}{(pm\pi)^{\frac{1}{2pm}}}\sqrt{\frac{q}{p}},$$

and

$$\lim_{m\to\infty} (qm)^{\frac{1}{qm}} = \lim_{m\to\infty} e^{\frac{1}{qm}\ln qm} = 1.$$

It follows that

$$\lim_{m \to \infty} \frac{\Gamma\left(\frac{qm}{2} + 1\right)^{\frac{1}{qm}}}{\Gamma\left(\frac{pm}{2} + 1\right)^{\frac{1}{pm}}} = \sqrt{\frac{q}{p}}.$$

Consequently,

$$\lim_{m\to\infty}\left(\lim_{n\to\infty}\frac{||p_{1,n}^m||_{A^q_\beta(\mathbb{D}^n)}}{||p_{1,n}^m||_{A^p_\alpha(\mathbb{D}^n)}}\right)^{\frac{1}{m}}=\sqrt{\frac{\alpha q}{\beta p}}.$$

Therefore, the constant

$$C(\alpha,\beta,p,q) = \sqrt{\frac{\alpha q}{\beta p}}$$

is sharp. Then the whole proof is complete now.

Acknowledgement

The authors would like to thank the anonymous referee for the insightful and skillful report, which included many valuable suggestions.

We would like to express our gratitude to Professor Kunyu Guo for his insightful suggestions on the manuscript. This work is supported by National Natural Science Foundation of China (No. 12471116) and National Natural Science Foundation of Chongqing (Nos. CSTB2022BSXM-JCX0088 and 2022NSCQ-MSX0321).

References

- [1] BAO, GUANLONG; MA, PAN; YAN, FUGANG; ZHU, KEHE. Embedding and compact embedding between Bergman and Hardy spaces, arXiv:2502.08406. 1496
- [2] BECKNER, WILLIAM. Sobolev inequalities, the Poisson semigroup, and analysis on the sphere *Sⁿ*. *Proc. Nat. Acad. Sci. U.S.A.* **89** (1992), no.11, 4816–4819. MR1164616, Zbl 0766.46012, doi:10.1073/pnas.89.11.4816.
- [3] BREVIG, OLE FREDRIK; ORTEGA-CERDÀ, JOAQUIM; SEIP, KRISTIAN; ZHAO, JING. Contractive inequalities for Hardy spaces. Funct. Approx. Comment. Math. 59 (2018), no.1, 41–56. MR3858278, Zbl 1405.30054, doi: 10.7169/facm/1680.
- [4] DEFANT, ANDREAS; MASTYŁO, MIECZYSŁAW. L^p-norms and Mahler's measure of polynomials on the *n*-dimensional torus. *Constr. Approx.*, **44** (2016), no.1, 87–101. MR3514405, Zbl 1359.11083, doi: 10.1007/s00365-015-9319-x. 1496, 1497

- [5] FRANK, RUPERT L.; IVANISVILI, PAATA. Hypercontractivity of the semigroup of the fractional Laplacian on the *n*-sphere. *J. Funct. Anal.*, 281 (2021), no.8, Paper No. 109145, 10. MR4278128, Zbl 1472.39048, doi: 10.1016/j.jfa.2021.109145.
- [6] JANSON, SVANTE. On hypercontractivity for multipliers on orthogonal polynomials. Ark. Mat., 21 (1983), no.1, 97–110. MR0706641, Zbl 0516.42022, doi:10.1007/BF02384302. 1496, 1497
- [7] KULIKOV, ALEKSEI. Functionals with extrema at reproducing kernels. Geom. Funct. Anal., 32 (2022), no.4, 938–949. MR4472587, Zbl 1502.30151, doi:10.1007/s00039-022-00608-5.1495, 1496, 1498, 1502
- [8] LE GALL, JEAN-FRANÇOIS Measure theory, probability, and stochastic processes, GTM 295, Springer, Cham, 2022. MR4559717, Zbl 1526.60001, doi: 10.1007/978-3-031-14205-5. 1504
- [9] LIEB, ELLIOTT H.; SOLOVEJ, JAN PHILIP. Wehrl-type coherent state entropy inequalities for SU(1, 1) and its *AX* + *B* subgroup. In *Partial differential equations, spectral theory, and mathematical physics*. The Ari Laptev anniversary volume. Berlin: EMS Ser. Congr. Rep., 301–314. 2021. MR4331821, Zbl 1480.81064, doi: 10.4171/ECR/18-1/18.
- [10] MELENTIJEVIĆ, PETAR. Hypercontractive inequalities for weighted Bergman spaces. Bull. Lond. Math. Soc., 55 (2023), no.6, 2611–2616. MR4689542, Zbl 1532.30016, doi:10.1112/blms.12883. 1495, 1496, 1499
- [11] NIKOL'SKIĬ, S. M. Inequalities for entire functions of finite degree and their application in the theory of differentiable functions of several variables. *Trudy Mat. Inst. Steklov.*, **38** (1951), 244–278. MR0048565, Zbl 0049.32301. 1496
- [12] NIKOL'SKIĬ, S. M. Approximation of functions of several variables and imbedding theorems, Die Grundlehren der mathematischen Wissenschaften. Band 205. Springer-Verlag, Berlin-Heidelberg-New York, 1975. MR0374877, Zbl 0307.46024. 1496
- [13] PAVLOVIĆ, MIROSLAV. Function classes on the unit disc, de Gruyter Studies in Mathematics, vol. 52 *De Gruyter, Berlin*, 2014. MR3154590, Zbl 1296.30002, doi:10.1515/9783110281903.
- [14] STEIN, ELIAS M.; WEISS, GUIDO. Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, vol. 32 *Princeton University Press, Princeton, NJ*, 1971. *De Gruyter, Berlin*, 2014. MR0304972, Zbl 0232.42007.
- [15] WEISSLER, FRED B. Logarithmic Sobolev inequalities and hypercontractive estimates on the circle. J. Funct. Anal., 37 (1980), no.2, 218–234. MR0578933, Zbl 0463.46024, doi:10.1016/0022-1236(80)90042-7. 1495, 1496, 1503

(Zipeng Wang) COLLEGE OF MATHEMATICS AND STATISTICS, CHONGQING UNIVERSITY, CHONG-QING 401331, CHINA

 ${\tt zipengwang 2012@gmail.com}$

(Kenan Zhang) SCHOOL OF MATHEMATICAL SCIENCES, FUDAN UNIVERSITY, SHANGHAI 200433, CHINA

knzhang210m.fudan.edu.cn

This paper is available via http://nyjm.albany.edu/j/2025/31-58.html.