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Hypercontractive inequalities and
Nikol’skii-type inequalities on weighted
Bergman spaces

Zipeng Wang and Kenan Zhang

ABSTRACT. In this note, we obtain hypercontractive inequalities between
different weighted Bergman spaces. In addition, we establish Nikol’skii-type
inequalities for weighted Bergman spaces with optimal constants.
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1. Introduction

Let T be the unit circle and we identify the circle T with the interval [0, 27).
For 1 £ p < o0, LP(T) is the Banach space of LP-integrable functions on the
unit circle. Recall the Fourier coefficients f(n),n € Z of f € LP(T) are defined

by

2

fon= [ gieseas,
0
where d0 is the normalized Lebesgue measure on [0, 277). Then the Hardy space
HP(T) is the closed subspace of LP(T):
HP(T) ={f € LP(T) |f(n) = 0, for each negative integer n}.

Let f € L?(T), then f has a Fourier expansion

+00
fe®) = > f(nen.

n=—oo
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For 0 < r < 1, define the dilation operator

+00
(T,.f)E®) 1= D flmyrileine,

n=—oo

Observe that {T, }y<,<1 is a contractive operator semigroup on LP(T). The hy-
percontractive inequalities for T, are to determine the optimal range of r such
that

T, : LP(T) — LI(T)

is a contraction. In his celebrated work, Weissler [15] established the following
sharp criterion:

Ty fllzacry < [1fllzecry
if and only if r?> < (p — 1)/(q — 1). Moreover,

T\ fllzacry < I1f llmecr)

ifand only if r*> < p/q.

Let D be the unit disk and dA = dxdy /7 be the normalized area measure on
D. Suppose that 0 < p < 0o and 1 < a < o0, the standard weighted Bergman
space A2 (D) consists of analytic functions on the unit disk such that

4y == <f If(Z)lpdAa(Z))p < oo,
D

where dA,(z) = (a — 1)(1 — |z|?)*“2d A(z). Recall each analytic function f on
D has the following Taylor expansion at O:

+00
fl2)= Z a,z", VzeD.
n=0

Then the dilation operator can be formally written as

+00
T,f(z) := Z a,r"z" = f(rz), VzeD.
n=0

In a recent work Melentijevi¢ [10], the author obtained an optimal hypercon-
tractive constant r, = 4/ p/q such that

||Trf||Ag(|D) < ||f||A§(D), VO<r<ry

for0< p<g< o, 1<a<ooandq > 2. Melentijevi¢’s work is motivated by
Janson’s hypercontractive problem of dilation operators on spaces of analytic
functions. For background and recent developments on Janson’s problem, one
can consult [7] and [10].

The first goal of this paper is to extend Melentijevi¢’s work to the case of two
distinct weighted Bergman spaces Ag(ID) and A;([D).



1496 ZIPENG WANG AND KENAN ZHANG

Theorem 1.1. For1 < o, < 0and0 < p < g < oo,letq>2andfp < aq.
Then we have

T fllasoy < 11z M

forany f € AL(D)ifand only if r* < Bp/aq.
Remark 1.2. It is known that lin} [lf1l42 = |If|lge for f € HP. Hence, Theorem
a— «

1.1 is a generalization of Janson’s strong hypercontractive inequalities between
Hardy spaces in [6] for the case 0 < p < g < o0 and q > 2. The proofs of
Theorem 1.1 are inspired by some ideas and methods from [7] and [10]. After
our paper was uploaded to arXiv, Huang Yi and Zhang Jianyang informed us
that they had also obtained similar results.

Remark 1.3. We further note that in the recent work by Bao-Ma-Yan-Zhu [1],
the authors have formulated a highly general conjecture concerning contractive
embeddings, grounded in a new notion termed “tight fitting".

Let C[zy, ..., z,] be the space of all complex polynomials on C" and write
z = (zy,...,2,) € C". For a m-homogeneous polynomial P(z) € C|zy,..., z,],
as a corollary of Weissler’s hypercontractive work [15], we have

m
q
[|P[|gracrny < (\/;) P ee(rnys

1Py = ( f |p(z)|pdm(z)>p

and dm(z) is the Haar measure on T". For a complex polynomial P in C|z,, ..., z, ],
we write

where

P(z) = Z ¢z,
yeNr

yl “ee

where y = (y1,...,¥,) € N"is a multi-index and 2" = z; zi. Let |y| =

n
2. 7;- Then the degree of the polynomial P is defined by
j=1

deg(P) := max{|y| : ¢, # O}

Let m be the degree of the polynomial P. The famous Nikol’skii-type inequality
[11, 12] states that for any complex polynomial P in C[z,,...,z,] and 0 < q <
p < oo,

1Pllrracrny < ClIP| ey,
where the constant C = C(n, m, p, q).

By hypercontractive inequalities of the Poisson transform between Hardy
spaces [15], Defant and Mastylo [4] obtained a dimension-free estimate of
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Nikol’skii-type inequality for Hardy spaces. In particular, for 0 < p < g < o0,
the optimal constant in Nikol’skii-type inequality for Hardy spaces is

C(m, p,q) =( %) .

Forn > 1,0 < p<ooand 1 < a < oo, recall the weighted Bergman space
AP(D™) on the polydisc D" is

AL(D") = gf € HO" | If 15 50, *

T f G s 2P AA(21) -+ dAn(z) < 0|,
ID)VI

where H(D") is the set of analytic functions on D". Inspired by ideas from [4],
we have the following dimension-free Nikol’skii-type inequality for the weighted
Bergman spaces with optimal constants.

Theorem 1.4. For1 < o, < c0oand0 < p < g < oo, letq > 2andfp < aq.
Then for any positive integer m,n and a complex polynomial P € C|z,...,z,]
with degree m
m
aq
p ny < — p ny- 2
Il ”AZ([D)\( ﬁp> [l ||A§(|D) 2

C(oc,ﬁ,p,q)=,/%

is the best possible such that for each positive integers n,m and P € Clz,, ..., z,]
with degree m, the following inequality holds

The constant

1Pz < €@ B P @) 1Pz oy

2. The proof of Theorem 1.1

2.1. The Necessity. We start with a simple but useful lemma in [6] to prove
the necessity for Theorem 1.1.

Lemma2.1. For1l < a < 00,0 < p < oo and a real numbere, let f(z) =1+¢z.
As the real number € approaches 0, we have

_ _ P 3
||f||A§(|D) = ||1+£Z||A§(|D) =1+ @E + 0(e).

Proof. Fix z € C, then
4
11+ ez|P = (1 + 2cRez + £2|z|?)?

: % <§ - 1) (2¢Rez + £2|z|2)2 +0(%).

N =

=1+ % (2eRez + &%|z|?) +
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Integrating on the unit disk with respect to the measure dA,, one gets

1

(f 1+ szlPdAa(z))P
D

-2
=1+ %azf |z|?dA,(2) + pT f (2eRez + 52|z|2)2 dA,(z) + O(e?)
D D

=1+ %sz <||z||A2(D) + (p — 2)||Rez| |A2(D)) + 0(e3)
=1+ 2e2 4 0(e)
This completes the proof of Lemma 2.1. O
For any f € AY(D) and r € [0,1), recall that
T,f(z) = f(rz), zeD.
Then, by Lemma 2.1,

[|1 + erz| lAZ(D) —14+ L2y 0(e3).

48
Assume the hypercontractive inequality (1) holds, let f(z) = 1 + ez, we have
11+ EVZ||Ag(|D) < I+ ez|| 4oy

Hence,
1+ el < 1+ e 1+ 0(e3).
44 4a
As € approaches 0, it follows that
2 < ﬁ_p
aq

This achieves the necessary part of Theorem 1.1.

2.2. The Sufficiency. For0 < p < g < oo, let

p=1a

then ,
F_a,,
a p~

By Kulikov’s inequality [7, Corollary 1.3], it is easy to see
111 |A;,(D) < f1Lary-

Since the AZ(D) norm of T, f decreases as r decreases, it suffices to prove that
there holds

||Trf||Aq(|D) ||f||A‘1 ,(D)
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forr =4/Bp/aq. It is equivalent to
B - 1)/ |f(rz)|9(1 — |z|?)F2dA(z) < (B’ — 1)/ If(2)|2Q1 — |z|*)F'~2d A(z).
D D

By the polar coordinates, we need to prove
1 27
#-1 [ pa-pp ( Ji If(rpele)lqde) dp
0 0

1 2
<@ -1 [ pa-pp ( | |f<pei9)|qde) dp.
0 0
Denote p = 1/y and

27
(y) = f FFe®))eds,
0

it is sufficient to verify

1 1
(B - l)f (1= y)P=20(r?y)dy < (B - 1)f (1 —y)P 20 (y)dy
0 0

when r = 4/Bp/aq = +/B/B'. Since q > 2, by [10, Lemma 1], ® is C? smooth
and ®”(y) > 0. Using integration by parts, we have

1 1
B-1 f (1 - y)P20(r?y)dy = @(0) + r? f (1 —y)F 1@’ (r2y)dy
0 0
;,.2
B
2

1
— 0(0) + L/(0) + f (1= »)P0" (r2y)dy
B A

1
= ®(0) + —2'(0) + %4 f (1 = y)P@"(r?y)dy
0

1, 1 : Y g "

and

1 1
B -1 f (1 -y)f'20(y)dy = ®(0) + f (1 - y)f' 1@/ (y)dy
0 0

1
= 2(0) + 7 @/(0) + o f (1— ) " (y)dy.
B B Jo

Then it suffices to prove

2 y B 1
/ (1 - 7) " (y)dy < / (1 - y)F @ (y)dy.
0 r 0
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Note that 8’ /8 = aq/Bp > 1, the function g(y) = (1 —y)# /# is convex. Hence,

forall 0 < y < B/B' = r?, we have

gy)>2g0)+g'(0)y=1- ry—z

Note that ®”(y) > 0, we have

r2 y ﬁ r2 ’
f (1 - 7) " (y)dy < f (1= y)F'@"(y)dy
0 r 0

1
< f (1— ) &"()dy.
0

This completes the whole proof.

3. Proof of Theorem 1.4

Before proving Nikol’skii-type inequality for the weighted Bergman spaces,
we need a hypercontractive inequality for high dimensions. Let n be a positive

integer and f € AL(D"). Assume that z = (zy,...,z,) € D" and r = (11, ...

with 0 < r; < 1fori =1,...,n. Define an operator

(Tef)z) = f(r1z1,...,7p2,), z € D"
The following lemma is a corollary of Theorem 1.1.

)

Lemma 3.1. Forl < a,f < ooand0 < p<qg<oo,letq > 2 fp <aq,and

r= (.., rp)with0 <r; <1fori=1,..,n Thenwe have

||Trf||Ag(D") < 1 Hazony

forany f € AL(D") if and only ifrl.2 < Bp/aq,foralli=1,2,..,n.

Proof. We prove the necessity first. Assume that
ITef ason < 11 1Lazcon)
forany f € Ag([D"). Foreachl i< n,letg e Ag([D) and
f(Z) = f(Zla v s Zijy ey Zn) L= g(zi),
then f € Ag([D”) and
12y = 1181l 42@)-
Moreover,
(Tef)(2) = (Trig)(zi)-
Then we have
IT,,8lLaso) < gl Lazcoy
By Theorem 1.1, we get rl.2 < Bp/aqforeachi=1,2,..,n.

(3)

We proceed by induction on n to prove the sufficiency. Suppose that rl.z <
Bp/aqforalli =1,2,...,n. First, the inequality (3) is true for n = 1 by Theorem
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1.1. Assume that the lemma is valid for n = k — 1. We will prove the inequality
(3) still holds when n = k. Recall that

1

q
”TerAZ(Dk) = (/ﬂ;k [ f(r1z1s s Frm1 215 TR Zi)|9d Ag(2y) -+ dAﬁ(Zk—l)dAﬁ(zk)) .

By Fubini’s Theorem and Theorem 1.1, we have

”TerAg(Dk) = AH (jl; | f(riz1, ---,Vk—1Zk—1,Vka)|quﬁ(Zk)> dAg(zy) -+~ dAp(zk—1)

|
Q=

[ q
p
< f (f |f(”121,---,Vk—1Zk—1,Zk)|pdAa(Zk)> dAg(zy) -+ dAg(zi_1)
Dk-1 \JD

Since 0 < p < g < o, by Minkowski’s inequality and the induction hypothesis,
we have

o=

q
”TerAg(Dk) < /.;(/Dm [f(riz1, s Fi—12k-1, 21)|9d Ag(Zy) -+ dAﬁ(Zk—l)) dAq(zy)

1

< /(fk |f(Z15 e s Zim15 Z1)IP A AL (21) - dAa(Zk—l)) dAﬁ(zk)]p
D \JDk-1

=| Ifl IAg(Dk)-
This completes the proof of Lemma 3.1. O
Asadirect corollary of Lemma 3.1, the inequality (2) holds for m-homogeneous
polynomials. For given n € N, we define a new norm for
Q(z,w) € Clzy, .., Zps Zyg1]-
Denote

1R, e = f f 100z, WP dAL@)duw,
o > > T n

where dA,(z) = dA,(z;) - dA.(z,) and dw is the normalized arc length on
the unit circle T. The following homogeneous technique of general complex
polynomials is known. However, we cannot locate a suitable reference. For the
sake of completeness, we include a short proof.

Lemma 3.2. Foragivenn € N, letz = (z4,...,2,) € D", P(z) € C|zy,...,2,] be
a complex polynomial with degree m, then there exists an m-homogeneous poly-
nomial Q(z,w) € Clz, ..., 2y, Z,41] sSuch that

||P||A5(DH) = ||Q||Ag(|])n,z)pr(1r,w)-
Proof. For a polynomial P in C|zy, ..., z,], write

P(z) = Z ¢z,

yeNr
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where y = (¥4, ...,¥,) € N" is a multi-index. Let deg P = m and

Q(z,w) = Z c},zywm_“’I € Clz1, 5 Zn> Zny1 s
yeNr

where |y| = y; + --- + ¥,,. Then Q(z, w) is m-homogeneous. For 0 < p < oo,
recall that

p — p
QI yp n yerrot /T/I;m |Q(z, w)|PdA,(z)dw
= ff Z c},z}’wm‘“’I dA,(z)dw.
T JD" [yeNn
Sincew € T, let ¢ = (z;w™, ..., z,w™!), we have
p
p — -1 14 -1 Vn
1 g = | [ |2 @) dacai
T JD" |yeNn
p
= f DL E dAL(E)dw
T JD" |yeNn
— p
= 1IPIIG,
This completes the proof. (|

Now we are ready to prove Theorem 1.4. Assume that
P(z) = Z ¢z’ € Clzy, ..., 2z,]
yeNr

is a polynomial. We divide the problem into two cases. For the case 1 < o <
B < 0. Let

p’=Ep
a b

then0 < p < p’ < q < o0, p’/B = p/a. By Kulikov’s inequality [7, Corollary
1.3], one gets

P11y oy < Pl Lazony:
Then it suffices to prove

m
aq 3 q
||P||A;(Dn><( @> ”P”AZ’@")‘(‘/?) 11y

Letro =+/p'/q <1,rq = (ry,...,1y) and

Q(z,w) = Z c},z}’wm‘“’I € Clzy, s Zpg1]
yeNr

m
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be an m-homogeneous polynomial. Since for each w € T, Q(z,w) € Ag([D”).
By Lemma 3.1 and Minkowski’s inequality, we have

1

q
| |Tr0Q| |AZ(D",Z)><H‘1(1T,w) = (/ |Q(I'()Z, VOLU)lquﬁ(Z)dw)
T

Dn
1

f(./ |Q(z, rOw)|P’dAﬁ(z))p dw
T \JDn

1

Pl

VA

/

f (/ |Q(z, row)|qdw> ' dAg(z)
Dr \JT

Since for each z € D, Q(z, w) € HP(T). By Weissler’s work [15], one gets

1
pl

VA

||TrOQ||Ag(Dn,z)xHq(1r,w) < (// 1Q(z, w)|p,dAﬁ(Z)dw>
T JDn

= | |Q| |As’(Dn’z)xHP’(-|]—,LU)’

Note that Q is m-homogeneous, by Lemma 3.2, we complete the proof of the
casel < a < f3 < o0.
Forthecasel < § < a < o, let

I”0= B—p< £<1.
aq q

With similar arguments in the last case, we have

1

q
e, QI a2(0r zyxrra(Tw) = (f/ |Q(xoz, Vow)|quﬁ(Z)dw>
T Jon

f ( f QG row>|PdAa(z))P dw
T Dn
f ( f QG row>|qdw)q dA,(2)
Dr \JT

1

< ( f f IQ(Z,w)IpdAa(Z)dW)p
T JDn

= | |Q| |A§(D",z)><HP('D',w)'

Q=

/N

SR

/A

This completes the proof of the case 1 < f < a < 0.
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Now we show that the constant

Cla, B, prq) = %

is sharp. Let n be a positive integer. If one endows the polydisk D" with Borel
o-field B(D"), then we get a probability space (D", B(D"), dA,(z;) ... dAy(z,)).
Define

z; :D">C, z— 2z, 1<Li<n,

then {z;|1 < i < n} are independent identically distributed random variables.
Consider the 1-homogeneous polynomial

n
a
pa,n(z) = \/;Z Zj
i=1

for given n € N and a > 1. By the central limit theorem [8], the sequence of
polynomials p, ,, converges to the normal complex Gaussian random variable
G in distribution as n approaches oo. Then for a fixed integer m

tim (o2 g0y = T (B + 1))

n—oo

Note that p; , = py., /\/E. Therefore,

m 1
(L pem )
o= () ()
1 m
gm )q
=|—) T'|—=—+1) .
450" (x/E) (2

1

m m qm q

i e (eI
lim — = = -
n—co ||P1,n||A§(|Dn) B pm -

By the Stirling’s formula

lim ' pi’fn

n—oo

Similarly,

lim ' Py,

n—-oo

Hence,

1 1 1
Vorx™ e < T(x + 1) < V2rx" e " 1,
we have

1
-+
2

L 11 L IR S I S
(2ﬂ)2qm(%) 2qme_5 F(qu_i_l)qm (2ﬂ)2qm(%)2+2qme 2+6(qm)2

L r,r o i, 2+ L LR
(27T)2pm(m)2+2pme 2+6(pm)2 F(m + l)pm (27T)2pm(m)2+2pme_5
2 2 2
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Note that
Loam il 1 ]
Qmpn()r 2me 2L (gmm)in g
1 1 1 1 1 =e 6(Pm)2 1 -
(2 (B2 3 (pmm)m
and
1 1
Ingm

lim (gm)m = lim e =1.
m—oo m-—oo

It follows that

Consequently,

m m
) . IIpl,n”AZ(D") aq
lim | im ——— | =,/—=.
m—0o | n—co ||p1’n||Ag(|D") Bp
Therefore, the constant
aq

C(OCHB,P’Q)= 5

is sharp. Then the whole proof is complete now.
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