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The complete Nevanlinna-Pick property for
sub-Bergman Hilbert spaces

Jiming Shen, Danyang Tian and Yixin Yang

ABSTRACT. In this paper, we show that for non-constant ¢ € H;°(D"), the
sub-Bergman Hilbert space #(K¥) over the n-disk with n > 2 does not have
the complete Nevanlinna-Pick property. Furthermore, we prove by different
methods that if ¢ is an inner function on D, the corresponding sub-Bergman
Hilbert space on D has the complete Nevanlinna-Pick property if and only if

@ is a Mobius map ([6]).
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1. Introduction

Let Xbeasetandlet k : X X X — C be a function of two variables. We call
k a positive semi-definite function on X if k is a self-adjoint (k(z, w) = k(w, z)),
and for any finite set {1;,4,,---, Ay} C X, the matrix [k(4;,4 j)]l{jfj:1 is positive
semi-definite, i.e. for every aq, oy, .-+, any € C, we have that

N

> aak(A;, ;) 2 0.

i,j=1
We will use the notation k > 0 to denote that k is positive semi-definite. We
can define an ordering on the set {k : X XX — C} by k; > k;, if and only if
ki —k, > 0.

A reproducing kernel Hilbert space is a Hilbert space H of functions on a set

X with the property that evaluation at each x € X is abounded linear functional
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on K. By the Riesz Representation theorem, there exists for each z € X and
function k, € J such that

(f.kz) = f(2)
for all f € . See more details on the reproducing kernel Hilbert spaces in
[1, 7].
The reproducing kernel Hilbert space corresponding to k is denoted by F (k).
A function ¢ : X — Cisamultiplieron K (k)ifpf € F(k)foreach f € H(k).
Let M(F(k)) be the set of all multipliers of # (k). By an application of closed
graph theorem, for each ¢ € M(F (k)) the multiplication operator

M, : FH(k) = H(k), f = of
is a bounded operator on H(k), and we define ||p|| M) = HM¢“. We set

M, (9C(0) = g € MIC(K) : [|My]| < 13

Complete Nevanlinna-Pick kernels are related to the solution of Nevanlinna-
Pick interpolation problems. If for a set X, whenever {1,,---,4,} C X, and
Wy, .-+, W, are s-by-t matrices such that

(I = W;WDk(;,4;) 2 0,

J
we can find a @ in the closed unit ball of
MHK)QCLHEk)QCS)={® : X > M, : f € H(k)® C* for f € H(k) ® C'}
such that

©(Al) = Wi’ l = 172, '”9N’

then k has sx¢-Pick property. If k has s x -Pick property for all positive integers
s and t, then we say k has the complete Nevanlinna-Pick property. For exam-

ple, the Hardy space H*(D) with Szegd kernel s(z, w) = 1; and the Drury-

_
—wz

Arveson space H ; with kernel k(z, w) = are the complete Nevanlinna-

1- Z’w>cd
Pick space.

We will introduce the equivalent characterizations of complete Nevanlinna-
Pick kernel from [2], which will be used in this paper.

Assume k(z,w) # 0 for all z,w € X. Then F((k) is a complete Nevanlinna-
Pick space if and only if for some z, € X,

k(ZO, w)k(za ZO)
k(zo, 2o)k(z, w)
is positive semi-definite. In this case, F, is positive for all z, € X. A kernel

k : X xX — Cissaid to be normalized at z, € X if k(z,zy) = 1forall z € X.
If k is normalized, then k is a complete Nevanlinna-Pick kernel if and only if

1
1-— > 0.
k(z,w) —

F, : XXX —C, (z,w)— 1 -
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For a kernel k on X and ¢ € M;(H(k)), the de Branges-Rovnyak space
JH (k%) associated to ¢ is the reproducing kernel Hilbert space on X with kernel
k% which is defined as

k?(z,w) = (1 — p(w)p(2))k(z, w) (z, w € X).

When k is the Szego kernel, the #'(k?) is called sub-Hardy Hilbert space. When
k is the Bergman kernel, the ' (k?) is called sub-Bergman Hilbert space.

The de Branges-Rovnyak spaces are introduced by de Branges and Rovnyak
in [5]. The initial motivation of introducing the de Branges-Rovnyak spaces was
to study the invariant subspace problem. Sarason’s book [10] presented most
of the main developments. It was realized that these spaces have numerous
connections with other topics in complex analysis and operator theory, in par-
ticular through Toeplitz operators. Subsequently, Zhu introduced and studied
the sub-Bergman Hilbert spaces in [13, 14]. In this paper, we main focus on the
complete Nevanlinna-Pick property of the sub-Bergman Hilbert space over the
polydisk.

The following are known examples of the de Branges-Rovnyak spaces with
complete Nevanlinna-Pick property. In 2020, Chu presented the characteri-
zation of the sub-Hardy Hilbert spaces with complete Nevanlinna-Pick prop-
erty in [4]. In 2022, a similar characterization in the Drury-Arveson space was
obtained by Sautel in [11]. In 2023, Luo and Zhu proved that when did the
sub-Bergman Hilbert spaces have complete Nevanlinna-pick property in [6].
In 2024, we determined the complete Nevanlinna-Pick property for Beurling
type quotient module over the bidisk ([12]). Generally, Ahmed, Das and Panja
consider de Branges-Rovnyak spaces of a considerably large class of reproduc-
ing kernel Hilbert spaces and gave a characterization for them to be complete
Nevanlinna-Pick spaces in [3].

Our initial motivation was to consider Schur product and tensor product of
the Szegd kernels. A natural question is whether the corresponding de Branges-
Rovnyak space satisfies the complete Nevanlinna-Pick property.

The remainder of this paper is organized as follows. In Section 2, we show
that for non-constant holomorphic function ¢ € H*(D"), the sub-Bergman
Hilbert space

( 1 - p(w)p(2) )

(1 —wyz1)2(1 — Wy23)? - (1 — W, z,)?

over the polydisk does not have the complete Nevanlinna-Pick property. In
Section 3, we prove by a method different that the sub-Bergman Hilbert space

jLf(l—mqo(z))

(1 —wz)?

over the unit disk has the complete Nevanlinna-Pick property if and only if ¢
is a Mobius map, there we assume that ¢ € H°(D) is an inner function ([6]).
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2. The sub-Bergman Hilbert spaces over the polydisk

First, we introduce the Schur product and Tensor product. For two kernels
k, and k, on X, we define the Schur product of k; and k, by

(ky0ky)(z, w) = ky(z, wk,(z, w),

where z,w € X. The positive semi-definition property of k, ok, follows from
Schur’s theorem, see [7]. The Schur product of two Szegt kernels on D gener-
ates the kernel of Bergman space L2(D).

For two kernels k; and k, on X, we define the tensor product of k; and k, by

(k1 ® k3)((z1, 22), (W1, wy)) = kq(21, wyky(22, wy),

where z;, z,, w;, w, € X. By Theorem 5.11 in [7], we know that H(k; ® k) is
isometrically isomorphic to H(k;) ® H (k,), which is the reason why we call the
kernel as the tensor product of two kernels. The tensor product of two Szeg6
kernels on D generates the kernel of Hardy space H?(D?).

In [3], Ahmed, Das and Panja considered the Schur products, tensor prod-
ucts of n (n > 2) Szeg6 kernels and when is the corresponding de Branges-
Rovnyak space a complete Nevanlinna-Pick space. A natural question is: When
the Szego kernel is subjected to both Schur product and tensor product, which
de Branges-Rovnyak space has the complete Nevanlinna-Pick property? In this
case, the resulting reproducing kernel is that of the Bergman space L2 over the
bidisk, see as follows.

1 Schur product 1
_—
1-wz (1-wz)?
tensor produtit ltensor product
1 Schur product 1

(1-w;z))(1-w,2;) (1= 21)?(1-10,2,)?

In this paper, we denote by K, the reproducing kernel for the Bergman space
L2(D"). Forp € H 1 (D"), the reproducing kernel of the corresponding sub-
Bergman Hilbert spaces over polydisk is

1 —
ST E— ) O N
(1 — w212 (1 — W,25)? - (1 — W, 2,)?
where z = (21,25, ,2,), W = (Wy,W,, -+, w,) € D". We make use of the

corresponding theory of complete Nevanlinna-Pick spaces in [3]. The following
notation is used in the theorem

HX(D,B(E, %)) ={p : D - B(E,F) | ¢ is holomorphic on D, [|g]| , < 1}.

Lemma 2.1 ([3], Theorem 3.1). Let k be a non-vanishing kernel on X such that
k is normalized at zq € X and

1= = g(2)gW)* - f(2)f(w)* (z,w € X),
(z,w)
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for some function f : X — B(&,C) and a non-zero functiong : X - B(F,C),
where £ and F are Hilbert spaces. Suppose that ¢ : X — D with ¢(z,) = 0isa
non-constant function in M, (J (k)). Then the de Branges-Rovnyak space F (k%)
is a complete Nevanlinna-Pick space if and only if there exists W € H{°(D, B((€ ®
C), F)) such that

f(2) = g@2)1(9(2)) and ¢(z) = g(2),(¢(2)) (z € X),

where for all ¢ € D, ¥(§) = [$1(), %2(D)], $1(§) € B(E, F), and ,(¢) €
B(C, F).

By using Lemma 2.1, we can obtain the characterization on the bidisk.

Theorem 2.2. Let ¢(z,, z,) be a non-constant holomorphic function in H}® (D?),

then the sub-Bergman Hilbert space (Kf ) over the bidisk does not have complete
Nevanlinna-Pick property.

Proof. It is not hard to check that
1 —

- Kz(z, w) B

= 2U0, 21 + 2W,2; — WoZ5 — W525

1—(1—z0))*(1 — z,W,)?

222W5z2 — AW, 2, W, 2,

= g(21, 22)g(wy, wy)* — f(23,22) f (wy, wp)*,

+ 207 2,2, + 21 2, W52Z5 — WD

where f,g : D* —» B(C* C) are given by

8(z1,25) = V221,V 22, V2222,V 22, 22),

and

f(z1,2,) = (Zf,Zg,Zfzg, 22,2;).

Then by Lemma 2.1, % (Kf ) is a complete Nevanlinna-Pick space if and only if
there exists ¥ € H*(D, B((C* @ C), C*)) such that

f(2) = g(2)p1(p(2)),
and
@(2) = g(2),(p(2)),

where z = (z,,2,) € D?,i.e.
(z},23,2}23,2212,) = (\/521, \/Ezz, \/Ezfzz, \/52122)1/’1(40(21, Z;), (2.1)
@(21,2) = (\/Ezl,\/522,\/52%22,\/52125)1#2(90(21,22))- (2.2)

For { € D, write

() = [$1(): %],
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where
8@) ¢§”<¢> ng”@) v,zﬁ;@)
Vo) 9o 3P o) B
hi)= m(;) G zp“)(;) ¢<“<§> € BELE,
¢ P ¢ ¢
and
zpfi@)
$o(0) = ‘”%%)Eg € B(C,C).
%“)

We now consider the slice functions ¢(0, z,) and ¢(z;, 0).
Suppose that one of ¢(0, z,) and ¢(z;,0) is identically zero. If ¢(z;,0) = 0,
by (2.1) we have

Z% = \/5211/)511)(?’(21, z,)) + \/EZzIPgll)(fp(Zl, z3))
+ V22229 (9(21, 2,)) + V22,229 (921, 2,)).
Let z, = 0, we obtain that

= V29V(p(z,,00) = V2p{P(0),

which is a contradiction. If ¢(0, z,) = 0, it is also contradiction. Therefore, we
know that ¢(0, z,), ¢(z;,0) are not identically zero. However, by (2.1) we have

2212y = \/_Zﬁb (#(z1,2,) + \/_Zz¢ (p(z1,23))
+ \/EZ1Z2¢:(§4)(¢(Z15 ZZ)) + \/Ezlzgzl)44 (qo(zl’ Z2))~

Let z; = 0, we obtain that
1
0 = V22,9 (9(0, 2,)

holds for all z, € D, and hence z,bgi) = 0. On the other hand, let z, = 0, we have
%Y = 0. Thus

1 1
22,2, = V2222, (p(21. 2,)) + V22,229 (9(21. 2,))
i.e.
\/5 _ @® @®
= 2193, (9(21, 22)) + 29, (@(21, 22)),
which is a contradiction as the right hand side vanishes at (0, 0).
Therefore, there does not exist a ¥ satisfying the above conditions, which

implies that the sub-Bergman Hilbert space F (K;P ) does not have the complete
Nevanlinna-Pick property. (]

We suspect that why F (Kf ) lacks the complete Nevanlinna-Pick property
is that the reproducing kernel of the space L2(D?) is the tensor product of two
non-complete Nevanlinna-Pick kernels.
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Remark. The Bergman space L2(D?) does not have the complete Nevanlinna-
Pick property.

Proof. By definition, we need to check 1 — = (1 ) is not positive semi-definite.
20Z,Ww
Let
1
Ky (z, w)
=1-(1-02)*( - !,2,)*
= 2W0, 21 + 20,2, — W2Z] — W3Z5
2
1

F(z,w)=1-

+ 20}z, 2, + 2 2,525 — W

2,522 _ g5 o 1o
525 Z]W5z5 — 421 W) Z;.

For some 0 < |a| < 1, we let
/‘ll = (a’0)7/12 = (0, a)a 13 = (aaa) € [DZ,

then the matrix Fy; = [F(4;,4 j)]?’j:1 is

2|al* —|al* 0 2lal* —|a|*
0 2lal* = |al* 2lal* = |al* :

2lal*—lal* 2lal*—lal* 4lal®+4|al® - 6lal* - |al®
A straightforward computation shows that det(F3y3;) < 0, and this means that
F(z,w) is not positive. O

1 - o 1-p(w)p(2)
n [4], Chu proved that there exist many ¢ € H;°(D) such that # (1—_)
—wz
have the complete Nevanlinna-Pick property. However, for ¢ € H 1°°(ID2), it was
proved in [3] that
1 —p(w)p(z
3 - p(w)ep( )
(1 = w1211 — W,2,)

have the complete Nevanlinna-Pick property if and only if ¢ is M&bius map,
and for n > 3, [3] proved that no exists ¢ € H{°(D") for which

1 - p(w)p(2)
(1 =121 — Wy2;) -+ (1 — Wy2,)

F(

has the complete Pick property. In the case of Bergman space on D, Luo and
Zhu proved thatfor p € H*(D), the 7 (Kf ) have the complete Nevanlinna-Pick
property if and only if ¢ is Mobius map, see [6]. We suspect that when the kernel
k tensor product or Schur product with an additional factor, the set of functions
@ for which corresponding the de Branges-Rovnyak space have the complete
Nevanlinna-Pick property will diminish. In the following, we demonstrate this
conjecture in the setting of Bergman space over the polydisk.

Theorem 2.3. Let n > 2, and let ¢(z) be a non-constant holomorphic function
in H°(D"), then the sub-Bergman Hilbert space I (Kf ) does not have complete
Nevanlinna-Pick property.
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Proof. Given ¢ € H*(D"), if p(0) = a # 0, let &(2) = 97%@ then ®(0) =0,

1-ap(2)’
and
1—d(w)d(z)
KP(z,w) =
n(51) (1= w,21)*(1 — Wy25)? -+ (1 — W, 2y, )2
_ (1 - 1a])A - p(w)g(2))
n P
IT(1 = w;z)*(1 — ap(w))(1 — ag(2))
i=1
= g(w)K (2, w)g(2),
where g(z) = 1—“_1;;;. Then by the definition, we know that K has the com-

plete Nevanlinna-Pick property if and only if K¥ has the complete Nevanlinna-
Pick property. Therefore, we can assume that ¢(0) = 0.

The proofis by induction on n. If n = 2, then Theorem 2.2 shows that (Kf )
does not have complete Nevanlinna-Pick property. Let n > 3, and suppose that
the result has been shown for n — 1. If 7 (K,f ) has complete Nevanlinna-Pick
property, then

S
Ki(z, w)
A= 02P0 - 0,2, (1 - 0,2,

Fiz,w)=1-

1 - p(w)e(2)
is positive. This implies that for any finite set {4, 4,, -+, A5} in D" such that

/11 — (ﬂ.(l) 1(2) ’/1(”—1)’0),

1 °>71
A’Z = (lgl)alEZ)a Tt ’A(n_l)y 0),

v =028, 20 0),

the matrix Fyyy = [F(4;,1 j)]?,]j=1 is positive, i.e.

F(Zlazz’ te 7Zn—1a 0’ wl’ w2, R wn—la 0)

_y_ Q=020 = 0,2)" -+ (1 = W1 Zpn)’

1- go(wl’ Wy, *+, wn—l’o)qD(Zl’ZZ’ ’Zn—l’o)

is positive. We write

Pn - [Dn_l - [D’ gon(zl’ZZ’ 1Zn—1) = gD(Zl,Zz, ’Zn—l’o)-

A necessary condition for #(K) to have complete Nevanlinna-Pick property
is that1 — is positive. By the inductive hypothesis, we have 1 — .

Pn
n—

is not

Pn
n—1 1
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positive. Therefore, there is no non-constant ¢ € H{°(D") such that € (K,f )
has the complete Nevanlinna-Pick property. O

3. The sub-Bergman Hilbert spaces over the unit disk

In this section, we assume that ¢ € H;°(D) is an inner function and prove

that the sub-Bergman Hilbert space (Kf ) has the complete Nevanlinna-Pick
property if and only if ¢ is a Mobius map ([6]).

The following lemmas can be obtained from [7], which will be used in our
proof.

Lemma 3.1 ([7], Theorem 5.1). Let H(k,) and F((k,) be the reproducing kernel
Hilbert spaces on set X. Then

F(ky) C FH(ky)
if and only if there exists a constant ¢ > 0, such that
k, < c%k,.
Moreover, ||f||}((k2) <c ||f||%(kl)for all f € H(ky).

Lemma 3.2 ([7], Theorem 5.4). Let H(k;) and H(k,) be the reproducing kernel
Hilbert spaces on set X, and let k = ki + k,, then

HE)={f = f1+ f2 1 [1 € H(kp), 2 € FH(ky)}.
For every f € H(k),
1 e = min A1 5egey + Ifalliay * f = Fi+ fa f1 € Fe(ky), fr € Fe(ky)).

Lemma 3.3 ([7],Theorem 5.7). Letgp : S — X bea functionandletk : XxX —
C be a positive kernel. Then

FH(kop) ={fop : f € H(k)}.
Moreover, for u € F(kop),
el oy = Min {llFllyegey : 1 = For).

Lemma 3.4. Suppose ¢(z) € H;°(D) is a non-constant inner function. A neces-

sary condition for (Kf ) to have complete Nevanlinna-Pick property is that ¢ is
a Mobius map on D.

Proof. Without loss of generality, we can assume that ¢(0) = 0. If Kf (z,w)
>0, i.e.

has complete Nevanlinna-Pick property, then 1 — oD
L (zw

(1-wz? _ 2wz — w2 - P(W)p(2) -

1 - p(w)p(2) 1 - p(w)p(2)

1-—

(3.1)
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Let
ki(z,w) = L,
1= p(w)p(z)
wZZZ
kz(Z, w) ="
1 —i(w)qo(Z)
oz w) = —PE).
1 - p(w)gp(z)

By Lemma 3.1 and Lemma 3.2, the (3.1) holds if and only if
(k) 2 H(ky + k) and [ fllyggey < 1 g

forall f € H(k,+k,). Using Lemma 3.3, the corresponding reproducing kernel

Hilbert space of reproducing kernel — L s
1—p(w)e(2)
H(sop) = {fop : f € HXD)} = h(2) = 3} an(@(@)", 3 |ay|* < oof.
n=0 n=0
Thus

H(ky) = V225 (s0),
FH(ky) = Z2FH(sop),
H(ky) = p(z)F(s0p).
Since H(k;) 2 H(k, + k), then for every f € H*(D), there exists g € H*(D)
such that
(22 + 9(2)f (9(2)) = V228(p(2)).
By taking f = 1, then we also have g € H2(D) such that

22 + (z) = V228(¢(2)). (3.2)

We claim that ¢ has to be injective. Suppose that p(1,) = ¢(1,) for some pair
A # Ay, A1, 4, € D. Putting z = 1, and z = A4, in (3.2), we obtain that

2+ 9(4) = V24,8(p(A)),
22+ 9(Ay) = V22,8(0(4,)).

Then we have
A+ A
glo(ly) = —2.

V2

Moreover, we assume that ¢(0) = 0, thus we can let ¢(z) = zh(z). By ¢(z) is
an inner function, we know that h(z) is also inner function, and
z + h(z2)

(p(2)) = ;
8(p(z 7




1492 JIMING SHEN, DANYANG TIAN AND YIXIN YANG
thus
h(/ll) = /12, h(ﬂz) = /11-

But if go~(/11) = ¢(4,), then for each Ay near to A,, there exists 1, near to 4, such
that ¢(4,) = ¢(1,), and hence we have

h(;h) = /Tz, h(/iz) = /Tl-
This gives that

o(11) = p(4,) = poh(d;)
for each A; near to 4;, then

¢(z) = poh(z), Vz € N(4y),
there N(4,) is any domain of 4;. This forces ¢ = poh, and this gives that
zh(z) = h(z)hoh(z),

i.e. hoh(z) = z, we obtain that & is injective on D, and h~! = h. Therefore,
h(z) is a M&bius map. Let

a—z
h(z) = ‘81 —az
for some |a| < 1, || = 1,by h~! = h we have 8 = 1, thus
a—z
p(2) = T "az

Indeed, if ¢(z) is as described above, then

— _ __a-w a—z
20z — Wz? — Wz
_ 1 _ l1—aw 1-az
k#(z, w) 1— 1wz a-w a—z
l—aw 1-az

is not positive (see e.g. Lemma 2.9 in [12]), which is a contradiction. Therefore
@ must be injective, and ¢ is a Mobius map. O

Lemma 3.5. Suppose p(z) = ﬁ’la;_z, where |a| < 1, |f| = 1. Then ?C(Kf) isa
—az

complete Nevanlinna-Pick space.

Proof. If p(z) = 8 la__z for all z € D, then
—az
1— o) 2
Kw =20 Lol
(1 —wz)? 1-wz)1 —aw)(1 - az)
it is easy to check that Kf(z, w) is a complete Nevanlinna-Pick kernel. O

Thus, combining Lemma 3.4 and Lemma 3.5, we obtain the following theo-
rem.

Theorem 3.6. Let ¢ € H{°(D) is a non-constant inner function. Then the sub-
Bergman Hilbert space H (Kf ) over the unit disk has the complete Nevanlinna-
Pick property if and only if p(z) is a Mobius map.
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