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On the Galois structure of units in totally
real p-rational number fields
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ABSTRACT. The theory of factor-equivalence of integral lattices establishes
a far-reaching relationship between the Galois module structure of the unit
group of the ring of integers of a number field and its arithmetic. For a num-
ber field K that is Galois over Q or an imaginary quadratic field, we prove a
necessary and sufficient condition on the quotients of class numbers of sub-
fields of K, for the quotient Ey of the unit group of the ring of integers of K
modulo the subgroup of roots of unity to be factor equivalent to the standard
cyclic Galois module. Using strong arithmetic properties of totally real p-
rational number fields, we prove that the non-abelian p-rational p-extensions
of Q do not admit Minkowski units, thereby extending a result of Burns to
non-abelian number fields. We also study the relative Galois module struc-
ture of E;, for varying Galois extensions L /F of totally real p-rational number
fields whose Galois groups are isomorphic to a fixed finite group G. In that
case, we prove that there exists a finite set Q of Z,[G]-lattices such that for
every L, Z, ®; E, is factor equivalent to Z,[G]" @ X as Z,[G]-lattices for
some X € Q and an integer n > 0.
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1. Introduction

Let k be a number field that is either Q or an imaginary quadratic number
field. For brevity, let us call such a number field admissible (cf. [12]). Let K
be a Galois extension of k with Galois group Gk, such that the infinite places
of k are unramified in K. Let Ok be its ring of integers. In the late nineteenth
century, Minkowski proved that there exists a unit in Ox whose conjugates over
k generate a full-rank subgroup of O%. As a consequence of Minkowski’s the-
orem, if we regard Of as a Z[Gg /i ]-module, then there is an isomorphism of
Q[Gk /i ]-modules

Q ®Z O; = AGK/k = @[GK/k]/(SGK/k)'

For a finite group G, we write sg for the element Zg <c &in Z[G] c Q[G], and

write (sg) for the submodule generated by s;.

Despite the long history of interest in O%, the Z[G /k]-module structure
of O is barely understood until now. One of the principal problems in this
area is to determine if K has a (strong) Minkowski unit, in other words, a unit
u € Oy whose conjugates over k generate Ox modulo the subgroup u(K) of
roots of unity of K. The problem is equivalent to asking whether the unit lattice

Eg := Og/u(K) is isomorphic to the standard cyclic Galois module A, K =

Z|Gx i1/ (s6y ) as Z[ Gy ]-modules.

Studying the Galois module structure of the unit lattice is complicated for the
following reasons. First of all, it is very difficult to compute a system of funda-
mental units. Therefore, number theorists tried to use arithmetic information
on K to study the cyclicity of Ex as a Z[Gg /i ]-module. However, the involved
arithmetic information is still difficult to obtain. Lastly, to be sure that certain
arithmetic information suffices to guarantee that Ey is cyclic, we need enough
results on the classification of Z[Gy /i ]-lattices of the same rank as Ex. How-
ever, even for a finite group G with a simple structure, classifying integral rep-
resentations of G is very difficult. Hence, studying the Galois module structure
of the unit lattice requires knowledge of both the theory of integral represen-
tations of finite groups and the arithmetic of number fields. We examine both
aspects of the problem in this paper, which is organized into 8 sections.

I. Representation-Theoretic Part (§2 - §5)

Several approaches have been introduced to study the integral Galois module
structure of Ex. One approach is to study whether Z, ® 7 Ex is isomorphic to
ZP[GK/k]/(SGK/k) ~Zp Q7 Acy, as Z p|Gg /i ]-modules for every prime p (the
problem of existence of local Minkowski units), by using the Krull-Schmidt the-
orem. This approach has limitations because there are many non-isomorphic
indecomposable Z ,[G]-lattices even for finite groups G with simple structures.
In this context, recall that two Z[G]-lattices M and N are said to be genus equiv-
alent if we have Z,[G] ® 7 M ~ Z,|G] ®z N for every prime p.
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In the 1980s, A. Frohlich and his students began to develop the theory of
factor equivalence between integral lattices. This approach is computationally
more effective because instead of studying each lattice, it focuses on comparing
two lattices from the start. Although factor equivalence is weaker than genus
equivalence, it nevertheless has profound applications in number theory, ex-
plaining how arithmetic influences the Galois module structure of the unit lat-
tice for general Galois groups. Moreover, it was fruitful in yielding a necessary
and sufficient condition for the existence of local Minkowski units, valid for all
abelian extensions [12].

In the 2010s, A. Bartel revisited the connection between the integral Galois
module structure of unit lattices and the arithmetic of number fields. In [1],
Bartel used the regulator constant of integral lattices (cf. [24]) to obtain the
most general Brauer-Kuroda type formula for dihedral extensions of number
fields of degree 2p for an odd prime p. The regulator constant establishes a re-
lationship between the Galois module structure of the unit lattice of a number
field and a quotient of Dirichlet regulators of its subfields. In fact, the factor
equivalence and the regulator constants are closely related. This connection is
made precise by a theorem of Bartel [2, Cor. 2.12], which states that for a finite
group G, two Z[G] lattices M and V' with isomorphic self-dual rational repre-
sentations are factor equivalent if and only if their regulator constants coincide
for all G-relations (for the precise definition of G-relations, see Definition 3.13
and Example 3.14).

In the first part of this paper, we establish a formula for the regulator con-
stants of A = Z[G]/(sg) (Proposition 4.1), which yields the following theo-
rem.

Theorem A. Let K be a number field that is Galois over an admissible field k
with Galois group Gk /. Assume that K /k is unramified at the infinite places
of k. For each subgroup H of Gk, let hgn (resp. wgn) denote the class number
(resp. the number of roots of unity) of the fixed field K¥. Define A(H) to be the
order of the kernel of the map

HIY(H, w(K)) — H'(H, O%)

induced by the embedding u(K) < (9;;. Then, Ey is factor equivalent to Ag, "
if and only if the equality

b (|H| - -A(H))”H ~1

H<Gy WgH

holds for every G-relation ), H<Gy ngH of Gk .

Theorem A generalizes the previously known necessary conditions on quo-
tients of class numbers of subfields for the existence of Minkowski units, ex-
tending them to all non-cyclic finite groups.
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II. Arithmetic Part (§6 - §8)

Even for number fields of small degree, it is very difficult to obtain detailed
information on unit lattices, since the relevant arithmetic invariants are chal-
lenging to analyze. In [12], Burns exploited strong arithmetic properties of p-
power genus field extensions to study the existence of local Minkowski units in
abelian p-extensions of admissible fields. In the second part of this work, we
investigate the Galois module structure of the unit lattices for a new family of
number fields, namely totally real p-rational number fields.

Let p be an odd prime. A number field F is called p-rational if the Galois
group of the maximal pro-p extension Fg, of F that is unramified outside the
set S, of p-adic primes is a free pro-p group (cf. [58, 39]). Totally real p-rational
number fields form an interesting class to work with. Their p-class numbers
can be computed rather explicitly, a feature that is not often available in general
and which makes it possible to carry out our theory in practice. Moreover, they
give rise to infinitely many infinite non-abelian pro-p towers, which not only
allow us to study non-abelian cases but also provide a wealth of examples to
which our results apply. In §7, we establish the following theorem on the non-
existence of Minkowski units.

Theorem B. Let p be an odd prime. If F is a non-abelian p-rational p-extension
of Q, then F does not have a local Minkowski unit.

Theorem B provides an infinite family of non-abelian number fields with-
out Minkowski units. This result may be viewed as a non-abelian extension of
Burns’s theorem on the existence of local Minkowski units in p-power genus
field extensions of admissible number fields (cf. [12, Thm. 5]).

We also study in §8 the relative Galois module structure of unit lattices for
varying Galois extensions of totally real p-rational number fields with Galois
group isomorphic to a fixed finite group G. Note that in this setting the base
field is not required to be admissible. Since the Z-rank of the unit lattice is un-
bounded as the extension varies, infinitely many non-isomorphic indecompos-
able Z ,[G]-lattices can occur in the Krull-Schmidt decomposition of its p-adic
completion.

In [14], Burns established that for every finite group G and a finite set S of
primes of Z containing p, there exists a natural infinite family of relative Galois
extensions & /¥ with Gal(¥ /#) ~ G in which the sum of the Z ,-ranks of the
non-projective indecomposable components in a Krull-Schmidt decomposition
of Z,®7E s (as a Z y[G]-lattice) is uniformly bounded. Here, E<, g denotes the
quotient of S-unit group OE;’S of & by u(<£). It then follows from the Jordan-
Zassenhaus theorem that only finitely many non-isomorphic indecomposable
Z,[G]-lattices appear in the Krull-Schmidt decomposition of Z, ® 7 E¢ 5 for
such extensions & / ¥ belonging to this family.

In §8, we observe a similar phenomenon in the relative Galois module struc-
ture of the group of ordinary units when the number fields are totally real and
p-rational.
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Theorem C. Let G be a finite group. Then, there exists a finite set Q of Z,[G]-
lattices such that for every relative Galois extension & /% of totally real p-
rational number fields with Gal(¥ /&) ~ G, there exists X € Q and a non-
negative integer m such that 7, ® 7 E is factor equivalent to X @ Z,[G]™ as
Z,|G]-1attices.

The arithmetic of a totally real p-rational number field becomes particularly
simple when there is a unique p-adic prime (cf. §6.2). In this case, Theorem C
can be sharpened. We now make this setting more precise.

Let p be an odd prime, and let F be a totally real p-rational number field.
Fix a finite non-p-adic prime q of F that does not split in the cyclotomic Z -
extension F /F. Denote by F S, Ula} (resp. Fyg;) the maximal pro-p extension
of F unramified outside S, U {q} (resp. unramified outside q). We remark that
Gal(Fs yq;/F) is a Demuskin group of rank 2, while Fy,; /F is finite. For a finite
group G, we denote by I; the augmentation ideal of the group ring Z[G].

Theorem D. Suppose that p does not split in Fg,ufap- Then, for every Galois
extension & /& of number fields satisfying

Figy € X € £ CFs,yq)
with Galois group G, the lattice E is factor equivalent to
Ac® 16 ®Z @ Z[G] 72
as Z[G]-lattices.

Notations
For a finite group G, let s; := Zg < § denote the trace element, I the aug-

mentation ideal, and A; := Z[G]/(sg) the standard cyclic Z[G]-module. We
write G2 for the abelianization of G, and (G : H) for the index of H in G for
every subgroup H of G. For an abelian group A, rk,(A) denotes its p-rank. If X
is a G-set, X is the subset fixed by G. For a natural number n, |n| P denotes its
p-part, and for x € Q*, v,(x) denotes the p-adic valuation. Finally, all modules
over a ring R are understood to be left R-modules.

For an extension L/K of number fields, we write Ram(L/K) for the set of
places of K that ramify in L. If L/K is Galois, we denote G /g := Gal(L/K).
For a number field F, we let hy denote its class number, wy the number of roots
of unity in F, and Ry its Dirichlet regulator. If v is a place of F, then F, denotes
the completion of F at v.

In the sections devoted to p-rationality, we adopt the following notation. We
fix an odd prime p and denote by hr the p-class number of a number field F. We
write F, for its cyclotomic Z ,-extension, F, for the n-th layer of F,, /F, and Hp
for the Hilbert p-class field of F. We also let S, denote the set of p-adic places
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of a number field. Since the base field will always be clear from the context,
this notation will cause no ambiguity.

In addition, we introduce the following notation, which will be used fre-
quently in §6.2 and §7. For a finite set S of places of F, we write Fg for the
maximal pro-p extension of F unramified outside S. If q is a non-p-adic prime
of F, we set:

qr : the unique prime above q in an extension F C L C F s, Ula} (when F
is p-rational and S, U {q} is primitive for (F, p), see Lemma 6.15);
Lf,l’q : the maximal elementary abelian p-extension of L contained in F’ s, Ula}
(in the same setting as above);

pr  : the unique prime of L above pfor F C L C F s, Ula} (when p does not
splitin Fspu{q})§

Jpv - theinertia subgroup of GLzlq /L atv (see the discussion preceding
Lemma 7.6).
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2. Genus equivalence

Throughout this section, let k be an admissible field and K /k a Galois exten-
sion of number fields in which the infinite places of k are unramified. Since the



GALOIS STRUCTURES OF UNITS IN TOTALLY REAL p-RATIONAL FIELDS 1445

Z[Gk i ]-module structure of Ex is difficult to study (cf. [10, 53]), it is natural to
first examine the Z,[Gg i ]-module structure of Z, ® 7 Ex for all primes p. For
a Dedekind domain R and a finite group G, a finitely generated R[G]-module
that is torsion-free as an R-module is called an R[G]-lattice.

Definition 2.1. Two R[G]-lattices M and N are said to be genus equivalent if
for every non-zero prime p of R, we have

as Ry[G]-modules, where R, denotes the completion of R at p.

If p does not divide |Gk x|, then we have
Zp ®Z EK >~ Zp ®Z AGK/k

by representation theory (cf. [63, §15.5]). Therefore, the study of the genus
equivalence class of Ex concerns only those primes p dividing |Gk |-

A Zp[G]-lattice is said to be indecomposable if it is not a direct sum of two proper
Z|[G]-sublattices. The Krull-Schmidt theorem is available for Z,[G]-lattices.

Theorem 2.2. (¢f. [19, p. 83)) Let M be a Z,|G]-lattice, and suppose that
M2U1®...@Umzvl®...®vn

are two decompositions of M into indecomposable Z ,|G]-sublattices. Then, we
have m = n, and after a suitable reindexing we have U; ~ V; as Z ,[G]-lattices
foreveryl <i < m.

Therefore, if we classify the indecomposable Z,[G i ]-lattices of Z ,-rank at
most |G /i |, then in principle, we can study the Z,[Gy /¢ ]-module structure of
Z, ®z Eg by computing the multiplicity of each indecomposable Z,[Gg /i]-
lattice in the Krull-Schmidt decomposition of Z,, ® 7 Ex.

Example 2.3. (i) If G is cyclic of order p, then by a theorem of Diederich-
sen, there are precisely three isomorphism classes of indecomposable
Zp[G]-lattices [22]. From this, we can easily check the genus equiva-
lence of Ex and Ag, " for every cyclic extension K /k of prime degree.

(ii) When G is the elementary abelian p-group (Z/pZ)? of rank 2, Payan,
Bouvier, and Duval classified indecomposable Z,[G]-lattices that can
be realized as Z ,[G]-sublattices of Z, ® 7 Ex for some Galois extensions
K /k with Galois group Gk, =~ G (cf. [8, 26, 27]). In [27], Duval used
these results to study the genus equivalence of Ex and A, " in the case
Gy ~ (Z/pZ)*.

(iii) Assume that G/ is a metacyclic group of the form Z/pZ X T, where T
is a cyclic group whose order divides p — 1. Marszalek obtained neces-
sary and sufficient conditions for the genus equivalence of Ex and Ag, "
for the case when the action of T on Z / pZ is faithful by using the classi-
fication of integral representations [54, 55]. The interested readers can
also refer to [43, 44].
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The study of the genus equivalence class of Ex has not been extended to more
general Galois groups, because the classification of the indecomposable integral
representations is highly complicated, even for groups with simple structures.

Remark 2.4. (i) In [41, 42], Heller and Reiner studied the indecompos-
able Z,[Z/p°®Z]-lattices for e > 2. In [41], they proved that there
are precisely 4p + 1 non-isomorphic indecomposable representations
of Z/p*Z over Z p- However, there are infinitely many non-isomorphic
indecomposable representations over Z, if e is larger than 2 [42]. There
hasbeen no attempt to classify indecomposable Z [ Z/ p3Z]-lattices even
for small Z ,-ranks.

(ii) Duval obtained a necessary and sufficient condition for the genus equiv-
alence between Ex and Ag, " only in the cases p = 2 or 3 for Gg /i ~

(Z/pZ)?, as the classification was too difficult and incomplete for larger
p. For an illustration of the difficulty of classifying integral representa-
tions of (Z/pZ)* over Z,, see the table on page 241 of [27], which is far
from exhaustive for general p.

3. Factor equivalence, theorems of Burns and regulator constant

In this section, we explain basic concepts in the theory of factor equivalence
and its application to the Galois module structure of unit lattices. We then
present some basic results on the regulator constants. Lastly, we explain the
connection between factor equivalence and regulator constants.

3.1. Factor equivalence of integral lattices. Throughout this section, let K
be a finite extension of Q or Q,. We write Ok for its ring of integers and Idg
for its group of fractional ideals. For a finite group G, denote by $(G) the set of
subgroups of G.

As in the theory of genus equivalence, the theory of factor equivalence [59]
compares two Og[G]-lattices M and NV such that we have K® o M ~ K®, N
as K[G]-modules. From such a K[G]-isomorphism, one obtains an injective
Ox[G]-module homomorphism 1 : M — N. The relation of factor equiva-
lence of M and 2V is defined in terms of the factorisability of a natural function
associated with 1. We therefore begin by introducing the notion of factorisabil-
ity of general functions from §(G) to an abelian group X.

Definition 3.1. (cf. [2, 16, 21]) Let G be a finite group and X be an abelian
group written multiplicatively. A function f : §(G) — X is said to be factoris-
able if there exists an injection of abelian groups ¢ : X < Y for some Y and a
function g : Irr(G) — Y defined on a full set Irr(G) of isomorphism classes of
irreducible complex characters of G such that
P = I gGo*cemh
x€lrr(G)

holds for all H € 8(G), where (y, C[G/H]) denotes the multiplicity of y in the
representation C[G/H].
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In [11, 12, 30], Frohlich and Burns focused on the case when G is abelian. In
this situation, the factorisability of a function f : §(G) — X can be studied
via its factorisable quotient f. For a finite abelian group G, define a binary re-
lation on G by declaring x,y € G to be related if and only if they generate the
same cyclic subgroup of G. This defines an equivalence relation, and we call
each equivalence class D a division of G. Given a function f : $(G) — X, we
associate a function f’ on the set of divisions of G with values in X by

f'@) := T ey,
c<D
where D denotes the subgroup of G generated by any element x € D, and p is
the Mobius function. We define the factorisable quotient f : $(G) — X of f
by
fan = (@) - ran
DCH

for every H € S(G). It is known that for general f, one always has f(H) = 1
for all cyclic subgroups H of G. We have the following proposition.

Proposition 3.2. ([29, 30]) Let G be a finite abelian group and f : S(G) — X
a function from S(G) to an abelian group X. Then f is factorisable if and only if
we have f(H) = 1 for all subgroups H of G.

With the notion of factorisability of a function, we can define the factor equiv-
alence between two Ox[G]-lattices.

Definition 3.3. Let M, N and: : M — XN be as in the beginning of this
subsection. Two lattices M and )V are said to be factor equivalent if the function
from S(G) to the group Idg defined by

H— [N ()],
is factorisable, where [ NH : i(MH) ]y, € Idg denotes the order ideal (cf. [19,
§80]) of the Ok-torsion module N /i(MH).

Remark 3.4. (cf. [21, Prop. 2.5]) We record the following basic facts:

(i) The definition of factor equivalence does not depend on the choice of 1.
(ii) The factor equivalence is an equivalence relation.

The following fact is well-known, but we provide a proof for the readers’
convenience.

Lemma 3.5. Let M and N be two Ok[G|-lattices. If they are genus equivalent,
then they are factor equivalent.

Proof. There is a canonical isomorphism Idg ~ @p IdKp where p runs over

the maximal ideals of Og. Under this isomorphism, the ideal [ N'H : 1(M™) ],
corresponds to the element

(1(Ox, ®0, M : 1 @D (O, ®0, W0, ) €D,
b p
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Hence, V' and M are factor equivalent if and only if Ok, ®o, N and Ok, ®o,
M are factor equivalent for all maximal ideals p. The latter can be checked
by applying Remark 3.4 (i) to the isomorphic Ok, [G]-lattices Ok, ®o, M and
Ok, ®o, N 0

Applying the theory of factor equivalence to arithmetic Galois modules has
proved fruitful, with one lattice taken to be an arithmetic object and the other
a standard (module-theoretic) lattice, as illustrated by the following examples
(cf. [21, 30]).

Example 3.6. (i) Fora Galois extension L/K of number fields, the normal
basis theorem gives an isomorphism

K ®p, O ~K[Gy/k] =~ K ®p, Ok|[Gy/k]

of K[Gy /x]-modules. Hence it is natural to study the factor equivalence
between O;, and Og[Gy k]|

(ii) Let L/K be a Galois extension of number fields, and let S be a finite set
of places of L containing the set Sy , of all the archimedean places of
L. Assume that S is invariant under the action of Gy k. Let X5 denote
the free abelian group generated by S, and let Y5 be the kernel of the
augmentation map Xg — Z, which maps each element of S to 1. By
the generalized Dirichlet-Herbrand theorem on S-units (cf. [35, Thm.
1.3.7]), the multiplicative group (92< 5 of S-units of L satisfies an isomor-
phism ’

Q®z O:,S ~QQ®zYs

of Q[G/k]-modules. Therefore, we can study the factor equivalence
between E; g := Of /u(L) and Yg. We remark that if L is a Galois
extension over an admissible field k where no infinite places of k are
ramified, then Y, _ is isomorphic to the augmentation ideal I, ) 38
Z[Gy i ]-lattices.

3.2. Theorems of Burns. As in §3.1, let K be a finite extension of Q or Q,,.
When G is a finite abelian group, Burns [11] investigated when the factor equiv-
alence of two Og[G]-lattices implies the genus equivalence. Building on this,
in [12], he obtained a necessary and sufficient condition for the genus equiva-
lence of E; and Ag, o valid for all abelian extensions L /k of admissible number
fields k unramified at the infinite places. In this subsection, we briefly explain
these results, assuming throughout that G is abelian and that L/k is an abelian
extension of an admissible field unramified at the infinite places.

3.2.1. Arithmetic criteria for the existence of local Minkowski units in
Abelian extensions. Let A be a K-algebra that is a quotient of K[G], and let
X be an Og[G]-lattice such that A acts on K ®, X. We then set

AAX) :={AeA|1-XCX}
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Suppose now that K ® 9, X is a subrepresentation of the regular representa-
tion K[G]. Then it is necessarily cyclic as a K[G]-module by the semisimplicity
of K[G]. Since G is abelian, the action of K[G] factors through the unique quo-
tient K-algebra K(X) of K[G]. The induced action of K(X) on K ®, X is faith-
ful. Consequently, 2(K(X),X) is an Og-order in K(X), called the associated
order of X in K(X).

A normal subgroup H of G is called cocyclic (written H <. G) if the quotient
G/H is cyclic. Burns introduced another equivalence relation on Og[G]-lattices
called the order-equivalence.

Definition 3.7. (cf. [11, §2], [12, §1]) Two Og[G]-lattices X and Y are said to
be order-equivalent (written X oY) if for every cocyclic subgroup H of G one has

AK[G/H], XT) = AKK[G/H], YH).

Let Mg ¢ denote the maximal Ok -order in K[G], and for every Og|[G]-lattice
M, let M™xc denote the maximal IN k.c-module contained in M. We also write
G for the group of characters of G. For each subgroup H of G, we let H denote
the subgroup of G consisting of characters that are trivial on H.

Given Og[G]-lattices X and Y with K ® 9, X ~ K ®, Y as K[G]-modules,
we define the defect function (cf. [11, p. 260], [29, (1.16)])

JX,Y) : 8(G) — 1dg.
For every subgroup H* of G, it is given by
[XH : (XMke) ],
[YH © (Y¥we) ],

JX,Y)HY) =

The defect function is important in the works of Frohlich and Burns, since X
and Y are factor equivalent if and only if J(X,Y) is factorisable (cf. [29, (1.17)
in p. 411]). Using the order-equivalence, Burns proved the following theorem.

Theorem 3.8. (cf. [11, Thm. 2]) Let K be a field of one of the following types:

(i) a number field in which no prime divisor of |G| ramifies in K /Q, or
(ii) an absolutely unramified local field, i.e. a finite unramified extension of
Qp.
Let X be an Og|G]-lattice such that K ® o, X is isomorphic to a quotient Q of
K[G], and let A = A(Q, X) be the associated order of X in Q. Then, X and A
are genus equivalent if and only if both X o2 and Jm)(é) = Ok hold, where
Jm) denotes the factorisable quotient of the defect function J(X, 2).

Remark 3.9. The original formulation of Theorem 3.8 in [11, Thm. 2] is stated
with G-o-equivalence in place of order equivalence. Since order equivalence
implies G-o-equivalence while genus equivalence implies order equivalence,
the present formulation, as used also in [12], follows directly from Theorem 2
of [11].
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We now return to the setting of local Minkowski units. Recall that L/k is
an abelian extension of an admissible field unramified at the infinite places.
One easily checks that Q ® Ej is a subrepresentation of Q[G; /], and that
Q(E;) = AGL/k (the specialization of K(X) with K = Q,X = E;).

At first sight, Theorem 3.8 appears to relate E; to Q[(AGL /k,E 1), which con-
tains Ag, /- However, its significance lies in showing that certain arithmetic
necessary conditions for the genus equivalence of Ej, and Ag, /. are actually
sufficient.

The arithmetic necessary conditions are expressed in terms of the factoris-
able quotients of two functions

hy e wrsk © SGr) — N,
where E/\k denotes the character group of Gy ;. They are defined by
hyp(HY) = lem(hpn, [Gopl), wyy(HY) = lem(wpn, |Gl )

for every H € § (@). Here, lcm(a, b) denotes the least common multiple
of a,b € N. Recall that h;» (resp. w;#) stands for the class number (resp. the
number of roots of unity) of L*. For each abelian group G, define

So =] p") 161
p

where, for every prime p, we write J,, for the number of non-trivial divisions of
the p-Sylow subgroup of G.

Theorem 3.10. ([12, Thm. 3]) Let k be an admissible field. Let L /k be an abelian
extension unramified at the infinite places. Then, Ey, is genus equivalent to Ag, I
if and only if we have both

hrj(Gry) = WG - Say
and H(H, E;) = 1 for every cocyclic subgroup H of Gy, .

A noteworthy feature of this theorem is that it applies to all abelian Galois
groups, since its proof does not rely on the classification of integral represen-
tations of Gy, over Z,. The functions h; /. and wy ;. are related to the factor
equivalence of E; and the lattice Ys, introduced in Example 3.6 (ii) (cf. [21,

Thm. 5.2], [30, Thm. 7 (Multiplicative)]). The invariant §; appears when con-
sidering the factor equivalence of A; and I (cf. [12, page 75], [29]). Since
Ys, . isisomorphic to I, e this accounts for the appearance of these quantities
in Theorem 3.10.

3.2.2. Applications of the arithmetic criteria to genus field extensions.
The existence of local Minkowski units in a general Galois extension cannot
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be settled by representation-theoretic considerations alone. Since the arith-
metic of general extensions is highly intricate, it is necessary to apply the arith-
metic criteria in special cases where the number fields enjoy suitable arith-
metic properties. Using Theorem 3.10 together with the theory of central class
fields (cf. [28]), Burns proved the existence of local Minkowski units for certain
abelian p-extensions of admissible fields. This subsection briefly reviews these
results and explains how they motivate our approach.

Throughout this subsection, let k be an admissible field and p a prime that
does not divide hjw;. Following [12], an abelian p-extension L of k is called a
p-power genus field extension if we have

Gr/k = EB Ik

veRam(L/k)

where I} ;. , denotes the inertia subgroup of Gy /; at v. By a formula of Furuta
[31], L is a p-power genus field extension of k if and only if p does not divide
the genus number of L over k.

To state Burns’s theorem, we recall some notation from [66]. For each finite
place v of k, let p, denote the maximal ideal of the valuation ring O, for the
local field k,, and write Np, € N for its ideal norm. Let h, be the smallest
positive integer such that the h,-th power of the prime ideal of k corresponding
to v is principal, and fix a generator 7, of this principal ideal.

If v does not divide p, fix an element x,, € (9;; whose class in the residue

field x, := O, /p, generates the multiplicative group ;. If v divides p and
I kv is cyclic, then fix x, € OZ whose class in

Op /N1, /i, Or, = I jico

generates the group, where w is a fixed prime of L above v. For x € O} , define

_\mmod (Np,—1) ifvtp and x=x7 (mod p,)
~ |s mod 5 kol ifv| p, Iy iscyclic, and x = xj (mod Ny OF )

[v,x]

For finite places v,v’ € Ram(L/k), we consider 7, € k* as an element of
Oy, and evaluate [v, 77,/ ]. Although x, and 7, are chosen arbitrarily, this choice
does not affect the p-divisibility of [v, 77,/ ].

In [28, 66], for an admissible field k and a prime p + h,wy, the p-power genus
field extensions L of k with p } h; were completely characterized in terms of
the set Ram(L/k) and the p-divisibility of [v;, 7ij] for v;,v; € Ram(L/k) (cf.
[12, Thm. 4]). Building on this, Burns [12] gave a complete characterization of
the existence of local Minkowski units in such L.

As a preliminary remark, note that if L is a p-power degree genus field exten-
sion of k with p + hy and rk,(Gy /) < 2, then we have |Ram(L/k)| = rk,(Gy, k)
(cf. [12, Thm. 4.(b)]). In particular, the group Iy i, is cyclic for every v €
Ram(L/k).
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Theorem 3.11. ([12, Thm. 5]) Let k be an admissible field. Let p be a prime not
dividing hjwy. Let L be a p-power degree genus field extension of k with p } h;.
Then Er and Ag, . are genus equivalent if and only if one of the following holds:

(i) Ram(L/k) = {v,}, and the group Gy ;. is cyclic;
(i) Ram(L/k) = {v,v,}, the p-rank of Gy is 2, and both [vy, 7, ] and
[v,, 7Ty, | are not divisible by p.

Remark 3.12. Consider the case k = Q with p an odd prime. By class field
theory, I; /q,, is cyclic for every prime v and every abelian p-extension L/Q.
Since @ has class number 1, we may take 7, = g for each rational prime g. It
is known (cf. [12, page 86]) that:
(i) [ p,q]is divisible by p if and only if g = 1 (mod p?), and
(ii) [q, p ] is divisible by p if and only if p is a p-th power residue modulo
q.

Let L be a p-power genus field extension of Q ramified precisely at p and gq.
If [ p, q ] is not divisible by p, then h; is prime to p by a theorem of Frohlich (cf.
[12, Thm. 4.(b)]). In this case, L is moreover p-rational (cf. Corollary 6.10).

In §6 we shall extend Theorem 3.11 to non-abelian p-extensions of Q unram-
ified outside p and g such that [ p, q ] is not divisible by p.

3.3. Factor equivalence and regulator constants. In this subsection, we
present basic properties of the regulator constant that will be useful in later
sections. We also recall the theorem of Bartel on the relationship between the
theory of factor equivalence and the theory of regulator constants.

3.3.1. Basic facts on regulator constants. Let G be a finite group and R
a principal ideal domain with field of fractions K. Throughout this subsec-
tion, we assume that X has characteristic prime to |G|. The regulator constant
Co(M) is an element of KX /R*?2, defined for every pair (M, ®) of a G-relation
O and an R[G]-lattice M such that X ®4 M is a self-dual representation of G
over K. The theory of regulator constant was introduced by Tim and Vladimir
Dokchitser in [25] and has played a central role in several subsequent works.

Definition 3.13. A formal sum © = .. . nyH of subgroups H of G with
coefficients ny; € Z is called a G-relation if there is an isomorphism
P alc/HI" ~ P QlG/H]™

H<G H<G
ng<0 ng>0

of Q[G]-modules.

The set of G-relations forms a subgroup of the free abelian group Z[S(G)]
over the set §(G) of subgroups of G. Its Z-rank is known to equal the number
of conjugacy classes of non-cyclic subgroups of G (cf. [63, §13.1, Thm. 30]).

Example 3.14. (i) If G is cyclic, then there are no non-trivial G-relations.
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(ii) If G isisomorphicto(Z/pZ)? for a prime p, then the group of G-relations
is generated over Z by the G-relation

1+p.G—ZH,
H

where H runs over the subgroups of G of order p, and 1 denotes the
trivial subgroup.

Definition 3.15. ([24, Rem. 2.27]) Let R, X, G, and M be as above. Let (-, -) :
M XM — £ be a R-bilinear, G-invariant pairing that is non-degenerate, with
values in some extension £ of X. Let @ = ., _.nyH be a G-relation. The
regulator constant Co (M) of M with respect to © is defined by

_ R M X2
C’@(M)—IE[Gdet<|Hl(,)|MH> € £ R,

where each determinant is taken with respect to any R-basis of M.

Remark 3.16. (i) Itis known that Cg(M) is independent of the particular
choice of pairing (cf. [24, Thm. 2.17]). Since X ® M is self-dual, there
exists a non-degenerate G-invariant X -bilinear pairing on X ® M with
values in K. Therefore, Co (M) is in fact defined in KX /R*2.

(i) When R is equal to Z, the regulator constants Cg(M) take values in Q*
because R*? is trivial.
(iii) The rational representations of the form

Palc/Hlw,  (ay eN)

H<G

are called permutation representations. It is known that permutation
representations are self-dual (cf. [1, §3]). Therefore, the regulator con-
stant can be used to study Z[G]-lattices whose rational representations
are isomorphic to Ag @ Q[G]™ for m > 0, where A5 denotes the repre-
sentation Q[G]/(sg).

(iv) The readers can also refer to [1, §3] and [13, Lem. 4.3] for other con-
ceptual formulations of the regulator constant.

The following lemma is immediate from the definition.

Lemma 3.17. Let © and ©' be G-relations, and let M and M’ be R[G |-lattices
whose rational representations are self-dual. Then we have

@@(M @ M’) = e@(M) . e@(M/), G@+@/(.7V[) = C’@(M) . G@/(M)

The following properties of G-relations and the regulator constants will be
useful.

Lemma 3.18. ([24, Exam. 2.30]) If 3., . hyH is a G-relation, then we have

ZHSG”’H :0
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Lemma 3.19. ([24, Lem. 2.46], [65, Rem. 3.2]) If H is a cyclic subgroup of G,
then we have

Co(RIG/H]D =1
for every G-relation ©.
For a finite group G, there are two natural ways to construct G-relations from
those of its subgroups and quotient groups.
(i) Let H be a subgroup of G and let ® = }} ., ,, nyH' be an H-relation.

Then, O is also a G-relation, which we denote by Indﬁ@.
(ii) Let B be a normal subgroup of G and set G’ = G/B. Suppose @' =
ay/p(H/B) is a G'-relation. Then,

Z aH/BH
B<H<G

ZBSHSG

is a G-relation, called the inflation of ©, and is denoted by Inf g, o’

If M is an R[G']-lattice, then M can be viewed as an R[G]-lattice via the
natural projection G — G’. We denote this R[G]-lattice by Inf g, M. Similarly,

if V is an R[G]-lattice and H < G, we denote by Resg]\f the corresponding
R[H]-1attice obtained by restriction. Then, we have the following proposition.

Proposition 3.20. ([24, Prop. 2.45]) The following statements hold:

(i) Let G be a finite group and G’ a quotient of G. For every G’-relation ©’
and every R|G'|-lattice M with self-dual rational representation, we have

G
eInfg, @,(InfG/ M) = @@)/(M).

(ii) Let H be a subgroup of G. For every H-relation © and every R|G]-lattice
N with self-dual rational representation, we have
Crpag o(V) = Co(Resy N).
Proof. Let(, )beaG’-invariant R-bilinear non-degenerate pairing on M. Then
(, )is also a G-invariant non-degenerate pairing on Infg, M. The first equality
follows from computing both regulator constants with (, ). The second equal-
ity can be checked similarly by using a G-invariant R-bilinear pairing on V" as
an H-bilinear pairing on Resfl N. (]

Lastly, we mention a result on v,(Ce(M)) for rational primes p when R is
equal to Z.

Proposition 3.21. ([1, Prop. 3.9]) Suppose that R is equal to Z. Let G be a finite
group and B be a normal subgroup of G such that the quotient group C = G/B is
cyclic. Let p be a prime not dividing |B|. Then, we have v,(Co(M)) = 0 for every
G-relation © and every Z|G-lattice M whose rational representation is self-dual.
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3.3.2. Theorems of Bartel. The regulator constant yields a new criterion to
verify the factor equivalence of two Z[G]-lattices.

Theorem 3.22. ([2, Cor. 2.12]) Let G be a finite group. Let M and N be two
Z|G]-lattices with the same self-dual rational representation. Then, M and N
are factor equivalent if and only if we have

Co(M) = Co(NV)
for all G-relations ©.

The factor equivalence of two lattices can be studied locally, as shown in the
following proposition.

Proposition 3.23. Let G be a finite group and p a prime. Let M and N be Z|G]-
lattices as in Theorem 3.22. Then, Z, @ M and Z,, ®7 N are factor equivalent
as Z ,|G]-lattices if and only if we have

Up(Ce(M) = v,(Ce(N)
for all G-relations ©.

Proof. For an injective Z[G]-morphism 1: M — N and a G-relation ® =
ZH<G nyH, we have

Co(M)/CoN) = T [NH = uth) 2 (1)
H<G

(cf. [2, Lem. 2.11]). The claim follows from the equality
[(Z, ®z V) 1 A®D(Z, @2 M) ]z, = I[N ™ ]|,
and [2, Prop. 2.4.(4)]. O

Corollary 3.24. Let G be a finite p-group, and let M and N be Z[G]-lattices
affording the same self-dual rational representation. Then M and N are factor
equivalent if and only if we have

Up(Co(M)) = v,(Ce(N)
for all G-relations ©.

Proof. By the proof of Lemma 3.5, M and V" are factor equivalent if and only if
Ze @z M and Z, ®7 N are factor equivalent as Z,[G]-lattices for every prime
¢. Since G is a p-group, these lattices are isomorphic for all ¢ # p. Hence, the
claim follows from Proposition 3.23. (]

In [30], Frohlich obtained a theorem [30, Thm. 7 (Multiplicative)] on the fac-
tor equivalence of S-units and Y (cf. Example 3.6). This theorem of Frohlich
was generalized by de Smit, who also gave a simplified proof [21, Thm. 5.2].
In [1], Bartel independently proved a theorem (Theorem 3.25) on the regulator
constant of the S-units. He later verified that his theorem is equivalent to the
theorem of de Smit (cf. [2, page 8]) by using Theorem 3.22. The following theo-
rem of Bartel provides an arithmetic description of the regulator constant of the
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unit lattice, which is the principal integral lattice in this paper. Although his
theorem is formulated for general S-units, we restrict here to the special case of
the group of ordinary units.

Theorem 3.25. ([1, Prop. 2.15]) Let L/K be a finite Galois extension of number
fields with Galois group G. For each subgroup H of G, write A(H) for the order of
the kernel of the map

H\(H, w(L)) — H(H, 0%)

induced by the inclusion u(L) < Of. If® = 3}, < "l is a G-relation, then we
have -

Riu i
Co(EL) = Co(Z) - ;
oL E(A(H))

where Z in Cg(Z) denotes the Z[G]-lattice Z with trivial G-action.
Remark 3.26. Let @ = .. nyH be a G-relation. One checks

Co(2) = [ 1HI™™

H<G

using the bilinear map (n,m) := nmon Z.

Remark 3.27. ([1, Lem. 2.14]) Let L /K be a Galois extension of number fields
with Galois group G. Let H be a subgroup of G. The embedding O}, < Of

induces an embedding E;n < Ef . We can easily check
AH) = [Ef' : Epn]

by using cohomology.

4. Regulator constants of some standard lattices

In this section, we derive formulae for Cg(A;) and Cg(I;) that hold for gen-
eral finite groups G and G-relations ©. In [29], Frohlich proved that A; and I5
are not factor equivalent when G is a non-cyclic abelian group. We provide a
proof of this theorem by explicitly showing that if G is not cyclic, then we have
Co(Ag) # Cg(ly) for some G-relation ®. Our formulae will be useful in the
study of the Galois module structure of unit lattices in later sections. When G
is cyclic, the lattices Ag and I; are factor equivalent, because G has no non-
trivial G-relations. Therefore, in this section, we assume that G is non-cyclic.

Proposition 4.1. Let G be a non-cyclic finite group, and let © = ZH < eH be
a G-relation. Then we have -

Co(Ag) = [ 1HI". (2)

H<G

Proof. By Remark 3.16 (i), we may compute Cg(A;) with any non-degenerate
bilinear G-invariant pairing on Ag. Let (, ) denote the pairing on Z[G] defined



GALOIS STRUCTURES OF UNITS IN TOTALLY REAL p-RATIONAL FIELDS 1457

by (g,g') 1= 8,y forall g,g’ € G, where §,, denotes the Kronecker delta
symbol. Define a second pairing (, ) on Z[G] by

(x,y) := x—ﬁZg Y- |G|Zgy)

geG gei

for all x,y € Z|G]. A straightforward computation shows that (g, g’) = Sgg' —
1/|G|forallg, g’ € G. From this, one checks that both the left and right kernels
of (, ) coincide with the subspace (sg) of Z[G] generated by s;. Hence, (, )
induces a non-degenerate bilinear pairing on Ag. The G-invariance of (, ) on
A follows directly from its G-invariance on Z[G].

We can compute Cg(Ag) by evaluating the determinant det((, MNea G)H) for

each subgroup H of G. For each subgroup H of G, the set {sy; - 0},¢ of the

H
classes of s;; - 0 € Z[G] with o ¢ H, taken in A, forms a Z-basis of (4g) . By
definition of {, ), we have

|H| - (G| — |H])
G|
_|HP
G|

lf Hgl = ng,

<SH'g1’ SH'g2> =
if Hg, # Hg,.

Consequently, the matrix of( o (:)(agyn ) With respect to the basis {5y - 0}ogn

is the following circulant matrix of rank (G : H) — 1:

Gl=Hl 1= =L H]
el A

|Gl |G| |G |G|

: : : (3)
_lH o _H o [Gl-lH] _iHl
R S et

|G| |G| |G| |G|

By the formula for the determinant of circulant matrices (cf. [18, Thm. 1]), the
determinant of (3) equals

(G:H)-2
H <(|G| — |H|]) — |H|(«/ + &% + - + w((G:H)—2)j)>,
j=0

_ 1
|G|(G:H)-1

where w denotes a primitive ((G : H) — 1)th root of unity. The factor in the
product equals |[H| when j = 0, and |G| otherwise. Therefore, the determinant

det( |H|< M4z ) is equal to |H||G| ™. Hence, we have
n
Co(Ae) = [T (HIIGIT)™. )
H<G

By Lemma 3.18, the exponent of |G| in (4) is 0. O
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Proposition 4.2. Let G be a non-cyclic finite group. Let ® = ., . nyH bea
G-relation. Then we have

Colg) = [ [ 1HI™™.

H<G

Proof. We use the restriction to I; of the pairing (, ) defined on Z[G]by(g,g’) =
8q¢ for g, g’ € G. This pairing is G-invariant and symmetric. Moreover, the
left kernel of (, ) is trivial, because if ZT cc W T € Ig liesin the left kernel, then
we have
(Yat,0-1)=a,—a, =0
7€G

for all o0 € G. From ZfeG a, = 0, we deduce a; = 0. By the symmetry of the
pairing, the right kernel is also trivial.

For every subgroup H of G, the submodule (I;)" coincides with the kernel of
the restriction of the augmentation map to s - Z[G] = (Z[G])". Hence, (I5)"
is equal to s - I with Z-basis {sy; - (6 — 1)}gyp. For this basis, we have

1 2 if Ho = Hr,
— - (Sy-(c—1 , Sy - (T — 1 = .
|H| ( i ( ) s+ )) 1 otherwise.
Thus, the matrix (IFII( sy-(0—=1), sy -(—=1) )) is the circulant

Ht,Ho#H
matrix of rank (G : H) — 1, whose diagonal entries are equal to 2 and whose

off-diagonal entries are equal to 1. Its determinant is equal to

(G:H)-2
H (2 + () + @ 4 -+ w((G:H)—Z)j)), (5)
j=0
where w denotes a primitive ((G : H) — 1)th root of unity. The product (5)
equals (G : H). In conclusion, we have

Colg) = [[(G : Hyw = [ IH|™.

H<G H<G
The last equality follows from Lemma 3.18. ]

The formulae for the regulator constants of A; and I yield the following
corollary.

Corollary 4.3. For every non-cyclic group G and every G-relation ©, we have
Co(Ag) = Co()™L. In particular, A and I are not factor equivalent if G is
not cyclic.

Proof. The first part of the statement follows immediately from Proposition 4.1
and Proposition 4.2. By Theorem 3.22, the Z[G]-lattices Ag and I; are factor
equivalent if and only if we have Cg(Ag) = Cg(I;) for every G-relation ©. By
Remark 3.26, this is equivalent to Cg(I5) = Co(Z) = 1 for all ®. By [4, Cor.
9.2], for a prime [, there exists a G-relation ® with v;(Cg(Z)) # 1ifand onlyif G
has a subquotient isomorphic to (Z/1Z)* or to Z /1Z X} Z ] pZ for a prime p such
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that Z/pZ acts faithfully on Z/1Z. It remains to show that such a subquotient
exists if G is not cyclic.

Suppose that G is a non-cyclic group. If G has no subquotient of the form
(72 /17)? for any prime [, then all the Sylow subgroups of G are cyclic. By [62,
Thm. 10.1.10], the group G admits a presentation

(a,bla™=1=>b",b"lab=a")

for some integers m,n,r > 0 with (r — 1)n relatively prime to m. For every
quotient Q of G, write ag and b, for the classes of a and b in Q respectively. For
any element x of a group, let (x) be the cyclic subgroup generated by x. Since
r—11is coprime to m, the commutator subgroup [G, G] is equal to (a). Hence, for
every prime [ dividing m, the quotient G(I) := G /{a') is non-abelian. Let G(I)
be the quotient of G(I) by the subgroup of elements of (b;)) that commute with
ag@- Then, the quotient G(I)’ is isomorphic to a semi-direct product Z/1Z X
Z/n'Z for some n’|n such that Z /n’Z acts faithfully on Z/1Z. For each prime
divisor p of n’, the subgroup of G(I)’ generated by ag(y and bgl({)lf is a non-
abelian group of order pl. O

5. Proof of Theorem A

In this section, we prove Theorem A. Let L be a number field. From the
analytic class number formula and the functional equation of the Dedekind
zeta function ¢{;, we obtain the following formula

h
¢:(0) = —w—LLRL (6)

for the special value of {;(s) at 0. The Artin formalism for Artin L-functions,
together with (6), yields the following theorem proved independently by Brauer
[9] and by Kuroda [49].

Theorem 5.1 (Brauer-Kuroda). Let L/K be a Galois extension of number fields
with Galois group G. If there is a G-relation © = ). n<g "uH, then we have the

equality i
uRpu\™
IT(2) -1 ™)

H<g\ WL#

We shall use the following equivalent form of (7), which is more convenient for

our purpose :
-1
[Trm = (TTRS) =< (JTwrm. )

H<G H<G H<G

Theorem 5.2 (Theorem A). Let L be a Galois extension of an admissible field k
with Galois group G. Suppose that no infinite places of k are ramified in L. Then
E; is factor equivalent to Ag as Z[G]-lattices if and only if we have the equality

[T - T T (242)™

H<G H<G H<g \ WLH
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for all G-relations © = ), . nyH.

Proof. By Theorem 3.22, E; is factor-equivalent to Ag as Z[G]-lattices if and
only if we have Cg(Er) = Cg(Ag) for all G-relations ©. By Theorem 3.25 and
Proposition 4.1, this holds if and only if we have

[Timr = co@- T (1) ©)
H<G i< VAH)
for all G-relations © = )}, . nyH. By the equality (8) and Remark 3.26, the
condition (9) is equivalent to the condition

[T 1EPw = [T - TTa@ 2 - TTwp. (10)

H<G H<G H<G H<G

Taking the positive square root of (10) yields the claim. O

Remark 5.3. ([9, §2]) Brauer proved that for every Galois extension L/K of

number fields and every Gpg-relation ® = > HE<Gy ngH, the quotient
15780

HHSGL/K w,; is a power of 2.

Let L and G be as in Theorem 5.2. If L is totally real, then we have win = 2
for all subgroups H of G. Then, the quotients of w;x’s are equal to 1 by Lemma
3.18. Furthermore, if G has an odd order, then we have A(H) = 1 for every
subgroup H of G. Therefore, we have the following corollary.

Corollary 5.4. Let L be a real Galois number field of odd degree. Let G be the
Galois group of L over Q. Then, the Z[G]-lattices E; and Ag are factor equivalent
if and only if we have the equality

[TiHm = TR

H<G H<G
for all G-relations © = 3, . nyH.

Remark 5.5. Theorem A is a generalization of the necessary conditions on
the quotient of class numbers of subfields for the existence of local Minkowski
units that were obtained by Burns [12, Thm. 3], Duval [27, Rem. 5.3 (a)], and
Marszalek [55, Thm. 2.8. (b)].

Example 5.6. Let G = (Z/pZ)* X Z/pZ be the Heisenberg group of order p*
with p > 3. It has the G-relation

O=1I-1Z-J+JZ,

where Z denotes the center of G, and I and J are two non-conjugate, non-central
subgroups of order p. Let L be a Galois extension of Q with Galois group G.
Then, the factor equivalence of E; and A is subject to the following necessary
condition

I’lLI hLJZ _

hL]hLIZ B
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Remark 5.7. For a finite group G, a G-relation © = ., . nyH is called useful
(cf. [6]) if we have n; # 0 for the trivial subgroup 1 of G. For a certain useful
G-relation O (cf. [3, Assumption 1.3]), the index

M D, mH]eN

nyg-n<0

is finite for every Z[G]-lattice M. In [3], the authors studied the relationship
between this index, the rational representation Q ® M, and the factor equiv-
alence class of M for G-relations satisfying [3, Assumption 1.3]. As a conse-
quence, if M is the unit lattice of a Galois extension L of an admissible field
k where no infinite places of k are ramified in L, then the index (for the G-
relations satisfying [3, Assumption 1.3]) is uniquely determined by the factor
equivalence class of M.

Remark 5.8. In [3], the authors showed that the regulator constant can be used
to obtain analogous results on the integral Galois module structure of higher K-
groups of number fields and the Mordell-Weil groups of elliptic curves.

6. The arithmetic properties of totally real p-rational number
fields

The theory of factor equivalence provides a method to study the Galois mod-
ule structure of unit lattices in terms of class numbers. However, applying the
theory in practice is usually difficult because class numbers are notoriously hard
to compute. Burns exploited the strong arithmetic properties of p-power genus
field extensions of admissible fields to study the existence of local Minkowski
units (cf. §3.2).

In the remainder of this paper, we examine the Galois module structure of
unit lattices for another special family of totally real number fields, called p-
rational fields. The p-rational fields were investigated in [45, 58, 57] to con-
struct infinitely many non-abelian extensions of Q satisfying Leopoldt’s conjec-
ture at the prime p. It has long been observed that many arithmetic problems
become simpler when the field is p-rational. In the totally real case, this prin-
ciple appears to be more amenable to direct treatment, since the Galois group
of the maximal pro-p extension unramified outside p has a simpler structure
(cf. [37, Figure 1]), which permits more straightforward methods of relating
the defect of p-rationality to the complexity of the problems (cf. [38, 37]). Moti-
vated by this perspective, we apply the strong arithmetic properties of p-rational
fields to prove the non-existence of Minkowski units in non-abelian p-rational
p-extensions of Q (§7), and to study the relative Galois module structure of unit
lattices in Galois extensions of totally real p-rational fields (§8).

The abundance of p-rational fields in our context is illustrated by the follow-
ing two facts:
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(i) By a theorem of Movahhedi (Theorem 6.8), if a number field F is p-
rational, then there exists an infinite family of infinite pro-p towers of
p-rational p-extensions of F.

(ii) Itis widely believed that a number field F is p-rational for many primes
p. In [36], Gras even conjectured that F is p-rational for all but finitely
many primes p.

Thus, our results on the Galois module structure of unit lattices apply to a large
family of number fields.

We will focus on the Galois module structure of unit lattices in non-cyclic
Galois extensions of number fields, as the theory of factor equivalence becomes
trivial when the Galois group is cyclic (cf. Proposition 3.2 and the remark pre-
ceding it).

6.1. Totally real p-rational number fields. Let F be a number field and p
an odd prime. We write F, for the cyclotomic Z,-extension of F. For each
integer n > 0, let F,, denote the nth layer of the extension F, /F. We write Hp
for the p-Hilbert class field of F, and § for the p-class number of F. For a set
S of primes of F, let Fg denote the maximal pro-p extension of F unramified
outside S, and write Gg(F) for the Galois group of Fg over F. We denote by S,
the set of p-adic primes of F. By local class field theory, a non-p-adic prime q of
F can ramify in a pro-p extension of F only if its ideal norm Nq is congruent to
1 modulo p (see [46, §8.5] for an elementary explanation). Thus, without this
congruence, the situation is vacuous, and we may assume that every non-p-adic
prime in S satisfies this congruence.

In this subsection, we briefly recall some arithmetic properties of totally real
p-rational number fields that will be useful later. Except for Proposition 6.5,
Conjecture 6.6, and Theorem 6.8, we assume throughout that F is totally real.
For more general information on p-rational number fields, the reader is re-
ferred to [35, 45, 56, 58, 57, 5].

Several equivalent characterizations of p-rationality can be found in the lit-
erature, for example, in [56, page 22].

Definition 6.1. A number field F is said to be p-rational if one of the following
equivalent conditions holds:
(1) The Galois group Gs, (F) is a free pro-p group, where S, is the set of
p-adic primes of F;
(2) We have an isomorphism GSp (F*~7
ber of complex places of F.

CF+1

b where cr denotes the num-

In particular, a totally real number field F is p-rational precisely when we
have

Gs, (F) = GSP(F)ab ~ 7,

Example 6.2. By the Kronecker-Weber theorem, the rational number field Q
is p-rational for every prime p.
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We now return to the setting of a general totally real p-rational field. Since
F, is a subfield of Fg , we have Fg = Fq in this case. Therefore, Hy is a
subfield of F,, and we obtain the following proposition.

Proposition 6.3. Let F be a totally real p-rational number field. Let m be the

m

largest integer such that F,,, /F is unramified. Then, we have hr = p™.

As an immediate consequence of Proposition 6.3, we can observe the fol-
lowing lemma. We also note in passing that, in fact, in a Galois p-extension
of totally real p-rational number fields, at most one non-p-adic prime can be
ramified, while there is no such restriction on the p-adic places (cf. Corollary
6.10).

Lemma 6.4. Let L/F be an extension of totally real p-rational number fields.
Then, the following claims are valid.

(i) We have the inequalities hr - |[L : F]|,' < b, <bp-[L : F].
(i) If L/F is a cyclic extension of degree p that is unramified outside p, then
we have Y); = max{hr/p, 1}.
(iii) If L/F is a cyclic extension of degree p that is ramified precisely at a non-
p-adic prime, then we have §; = hp.

Proof. (i) The left inequality follows from the inclusion LHr C H; and
the equalities

[LHg : L] =[Hp : HrNL] =Yg - [HeNL : F]7..

Since H; is contained in L., = LF, there is some m € N such that H;
is equal to the compositum of L and F,,. Every p-adic prime of F has
ramification index at most [L : F] in the extension H; /F. Hence, the
degree [F,, : F], which is bounded above by the product of ) and the
maximal ramification index of the p-adic primes of F in the extension
F,,/F, is in turn bounded above by §p - [L : F]. Therefore, we have
by =I[Hy : L] <[F,, : F]<hp-[L : F].

(ii) If L/F is unramified outside p, then L is equal to F;. If F has p-class
number 1, then at least one prime of F is totally ramified in F,. Hence,
we have hr = §); = 1. If we have Hp # F, then we have Hr = Hj
because Hy /L is unramified and F, /Hp is totally ramified at some p-
adic prime. Thus, we have §; = [Hp : L] = p~'hg.

(iii) Letr be an integer such that Hy is equal to F,_;. Then F, /F is ramified
at some p-adic prime of F say p. Since p is unramified in L /F, F,L/L is
ramified at the primes of L above p. Thus, we have H; C F,L and con-
sequently H; = HpL. The claim follows because L and Hp are linearly
disjoint over F.

O

The p-rationality of number fields satisfies the following descending prop-
erty.
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Proposition 6.5. (c¢f. [32, Thm. L.1], [56, Prop. 5 on page 30]) Let L/F be an
extension of number fields. If L is p-rational, then F is also p-rational.

By Propositions 6.3 and 6.5, we can study the p-part of the quotients of class
numbers of subfields appearing in Theorem A, and investigate the factor equiv-
alence class of Z, ® 7 Ep when F is a totally real p-rational Galois extension of
Q. Therefore, understanding the existence of Galois extensions of totally real
p-rational fields with various Galois groups is also of interest in the study of the
Galois module structure of unit lattices.

For finite p-groups, one can apply the results of Movahhedi [57] on the ascent
of p-rationality in Galois p-extensions of number fields. However, the problem
for general groups remains poorly understood. Some recent progress has been
made for groups of the form (Z/27)" for t > 1 (cf. [17, 39, 47, 52]).

We also record the following conjecture due to Gras, which indicates that
studying p-rational fields can yield results of a rather general nature for number
fields.

Conjecture 6.6. ([36]) A number field is p-rational for all but finitely many
primes.

To state the theorem of Movahhedi (Theorem 6.8), we first recall the notion
of a primitive set of places (cf. [34, 56]). Let F be a number field. Let F sp(l)
denote the maximal elementary abelian extension of F in F s,- Hence, if F is
p-rational, then the Galois group Gal(F sp(l) J/F)of F sp(l) over F is isomorphic
to (Z/pZ)‘r*! as a vector space over the finite field Z/pZ.

Definition 6.7. Let F be a number field. Let S be a finite set of finite places
of F containing S,. The set S is called primitive for (F, p) if the set of Frobe-
nius automorphisms in Gal(F sp(l) /F) at the finite non-p-adic primes of S are
linearly independent over Z/pZ.

With this notion, we can now state the following theorem.

Theorem 6.8. (|57, Thm.2]) Let F be a p-rational number field. Let L be a Galois
p-extension of F. Then, L is p-rational if and only if the set Ram(L/F) U S, is
primitive for (F, p), where Ram(L /F) denotes the set of primes ramified in L /F.

Remark 6.9. The readers can also refer to [32, 33] for a class field theoretic
approach on the ascent of p-rationality under the Leopoldt conjecture at p.

Corollary 6.10. Let F be a totally real p-rational number field. For a non-p-adic
prime q of F, the set S, U{q} is primitive for (F, p) if and only if q does not split in
Fy. It follows that if L is a Galois p-extension of F, then L is p-rational if and only
if there exists such a prime q with Ram(L/F) C S, U {q}.

Remark 6.11. If F is p-rational, then it is easily seen that p-rationality ascends
in the pro-p tower F s, /F, since every closed subgroup of a free pro-p group is
free (cf. [64, Cor. 3 on page 31]). In comparison, Theorem 6.8 addresses the
ascent in larger pro-p towers.
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By Chebotarev’s density theorem, Theorem 6.8 ensures the existence of in-
finitely many towers of p-rational p-extensions of a number field F, provided
that F itself is p-rational.

Moreover, when F is p-rational and the set S is primitive for the pair (F, p),
the structure of the Galois group G¢(F) is well understood, thanks to a theorem
of Movahhedi. We state Movahhedi’s theorem below in the case where F is
totally real.

Proposition 6.12. ([58, Thm. 3.3]) Let F be a totally real p-rational number
field. Let q be a non-p-adic prime of F such that S = S, U {q} is primitive for
(F, p). Then, Gs(F) is the Demuskin group of rank 2 with minimal presentation

(o,7 | N r,0]=1),
where Nq is the ideal norm of the prime ideal q.

By Proposition 6.12, the group Gg(F) is a Demuskin group of rank 2. This
yields information on the G-relations needed to apply Proposition 3.23 to the
Z,|Gy r]-lattice Z, ® 7 E;, where L/F is a Galois p-extension contained in Fg
(cf. §7). Moreover, the group structure can be exploited to obtain more precise
information on the p-class group (cf. §6.2).

Proposition 6.13. ([58, Lem. 2.5]) Let F be a totally real p-rational number
field. Let S be a finite set of primes of F containing S,,. Then we have

Gs(F)* =~ 7, x [ 2/uy(F,)Z,

where v runs over the finite non-p-adic primes of S, and p,(F,) denotes the num-
ber of p-power roots of unity in the completion F, of F at v.

In particular, Proposition 6.13 implies the following corollary, which may
also be understood from the fact that every open subgroup of a Demuskin group
of rank 2 has generator rank 2.

Corollary 6.14. Let q be a finite non-p-adic prime of F that does not splitin F .
Then, the maximal elementary abelian extension of F in Fg uiq I8 the compositum
of F; and a cyclic p-extension of F in which q is ramified (note that p may also
ramify in that cyclic extension).

By the Burnside Basis theorem, Corollary 6.14 implies the following.

Lemma 6.15. ([57, Thm. 2]) Let F be a totally real p-rational number field and q
a non-p-adic prime such that S, U{q} is primitive for (F, p). Then, q does not split
inFg q- In this situation, for any finite extension L of F contained in F S, Ulap We
denote by q; the unique prime of L above q.

For a totally real p-rational field F and a finite non- p-adic prime q of F such
that S, U{q} is primitive for (F, p), we will frequently consider finite extensions
L/F contained in the tower F s,ufa}- BY Corollary 6.14, for each such extension
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L, there exists a unique elementary abelian extension of L in Fg,ufap Since these
extensions play a central role, we fix the following notation.

For the base field F, we denote by F;{q the maximal elementary abelian ex-
tension of F contained in F q}. By definition and Lemma 6.15, we have

Fs,uqp = Ls,ugqy and  Gal(Fs,yiqi/L) = Gs,ufq,3(L)-

Hence, we define Lzl,qL analogously, and, for simplicity, write Lf,l,q instead. By
Corollary 6.14, thisis the unique extension of L in Fs Uiq} with GLzlq /L= (Z/p7)>.

Since the base field F and the prime q are clear from the context, the short-
hand L;l,q will cause no ambiguity. In particular, we obtain the following field
diagram.

Fs utqt = Ls,ufq;}

D(Gsputar (L)

Gs,uigy(F) Gsputary(L)
el . 7el
LP"]L T LP’CI
L (Z/pz)*

/

F
where q)(GSpU{qL}(L)) denotes the Frattini subgroup of Gspu{qL}(L)-

6.2. On the p-class numbers in a pro-p tower of totally real p-rational
number fields when p does not split. We have seen in Proposition 6.3 and
Lemma 6.4 that the p-class numbers of totally real p-rational fields are rela-
tively easy to analyze. When there is a unique p-adic prime, these results can
be refined further. This refinement will play an important role in the proof of
Theorem B in the next section. In order to make this refinement precise, we
now consider a totally real p-rational field F together with a finite non-p-adic
prime g, and introduce the following hypothesis on the triple (F, p, q).

Sp U {q} is primitive for (F, p),and p does not split in Fs,uar U)

By the Burnside basis theorem, the triple (F, p, q) satisfies condition (U) pre-
cisely when F has a unique p-adic prime and the local degree of this prime in
the extension Fgl’q is pz. In this subsection, we obtain a structural result on the
p-class numbers of number fields in the tower Fs,uiat /F for those (F, p, q) sat-
istying (U), by exploiting the inertia subgroup of GSPU{q}(F ) at the unique p-adic
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place of F' s,ulq}: FOr each number field F C L C F s,Ulqp We denote by p; the
unique prime of L lying above p.

The inertia subgroup of Gspu{q}(F) at the unique p-adic place of Fg q} COITE-
sponds to the maximal tamely ramified extension Fyg, of F contained in F s, Ula}

Lemma 6.16. (cf. [50, Thm. 1.1]) Let F be a totally real p-rational number field.
Let q be a non-p-adic prime of F such that S, U {q} is primitive for (F, p). Then,
the extension Fyq /F is finite.

Proof. Since G;,(F)isaquotient of the Demuskin group Gspu{q}(F), itis power-
ful (cf. [23, Chap. 3]) with generator rank at most 2. By [23, Thm. 8.32], G{4;(F)
admits an open uniformly powerful subgroup U. By [23, Thm. 3.8], the gener-
ator rank of U is at most 2. If Gyg(F) is infinite, then so is U, and in this case
U admits a quotient isomorphic to Z, (cf. [23, Exercise 3.11]). It follows that if
Fig /F were infinite, then Fig would contain a Z p-extension of a finite exten-
sion of F, which is impossible since in any Z ,-extension of a number field at
least one p-adic prime must ramify. Therefore Fyg;/F is finite. O

Proposition 6.17. Suppose that (F, p, q) satisfies (U). Then, we have §j; = 1 for
every number field L with Fgy C L C Fs,uiqr

Proof. Let L be a number field as above. Then p; is totally ramified in Fs Uiq}
because Gal(Fs yq;/L) is a subgroup of the inertia subgroup of G qy(F) at the
p-adic place of F' S, Ula} Since p; is ramified in L;, the conclusion follows from
Proposition 6.3. U

Example 6.18. Note that (Q, p, q) satisfies (U) if and only if both [ p,q | and
[ g, p ] are not divisible by p (cf. Remark 3.12). For example, the triple (Q, 7, 71)
satisfies (U). In that case, the p-class number is 1 along the tower @spu{q} / Qg
by Proposition 6.17.

Remark 6.19. It may be difficult to generalize Proposition 6.17 to a pro-p tower
Fg ufal /F in which p splits, since one need to take into account all the inertia
subgroups of Gspu{q}(F) at the p-adic places. For example, one may recall that
the p-class field tower of F is the subfield of Fg, fixed by the inertia subgroups
of Gs, (F) at the p-adic places.

Corollary 6.20. Suppose that (F, p, q) satisfies (U). Let L be a finite extension of
FinFg gy The extension Fspu{q}/L is totally ramified at py if and only if Fiq is
a subfield of L.

Proof. Suppose that p; is totally ramified in Fs Uiq} /L. Then we have FyyL = L
because FyqL/L is unramified at p;. The sufficiency is trivial. O

Now, we study the p-class numbers in a cyclic extension L/K of number
fields with [L : K] = p contained in Fs,uta} /F for a triple (F, p, q) satisfying
(U). By (ii) and (iii) of Lemma 6.4, it remains to treat the case where L/K is
ramified both at pr and qg.
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Proposition 6.21. Suppose that (F, p, q) satisfies (U). Let L/K be a cyclic exten-
sion of number fields of degree p contained in F’ s, ula} /F, ramified at both pg and
qx. Then, we have
_ bk if Fyy € Hg,

p - b otherwise.

by

Proof. For all integers m > 0, we have L,, = LK,, because L/K is ramified at
qg- By the p-rationality of K, there is some integer n > 0 such that we have
Hg = K,,. Then, Y is equal to one of p" and p"*! by Lemma 6.4 (i).

By Proposition 6.3, we have §j; = p"*! if and only if L,,,; /L, is unramified.
Since K,,/K is unramified, both px and qg_are ramified in L,/K,. Since the
ramification index of qg, in L,,;, /K, is p, we can check that G, /k isisomor-
phic to (Z/pZ)?. In particular, L., is equal to (K,)5,.

If L,41/L, is ramified at p; , then G;_, /¢, coincides with the inertia sub-
group at p; . By the Burnside basis theorem, this occurs if and only if pg,
is totally ramified in Fg yq; (cf. [60, Chap. II, Thm. 10.7]). Hence, the claim
follows from Corollary 6.20. (|

Even though condition (U) may appear restrictive, we can find many triples
(F, p, q) satisfying (U) under the Gras Conjecture (Conjecture 6.6). Let F be
a totally real cyclic extension of Q. According to the conjecture, there are ex-
pected to be infinitely many rational primes p such that

« Fis p-rational,

« pt[F Q]

« p does not splitin F.
In the following proposition, we assume that p is such a prime, so that F is
p-rational. Examples of this type can be found in [51].

Proposition 6.22. Let F and p be as above. Let q be a rational prime such that
(Q, p, q) satisfies (U) (cf. Example 6.18). Then, for every prime q of F above g, the
hypothesis (U) is satisfied by (F, p, q).

Proof. Let S, be the set of primes of F above g. Since p is prime to [F : Q],
every element q of S, does not split in F, = FQ,, by the primitivity of the
set S, U {q}. Hence, the set S, U {q} is primitive for (F, p) for every q € S, by
Corollary 6.10.

It remains to show that the unique p-adic prime p of F does not splitin Fs Uiq}
for every q € S;. By the Burnside basis theorem, this happens if and only if p
does not split in Ff,l’q (cf. [60, Chap. II, Prop. 9.6]). Since [F : Q] is prime to
D, p is totally ramified in F /F. In particular, we have §r = 1. Therefore, the
ramification index of p in F gl,q /F is at least p, and p splits in F;l,q only if there
exists a cyclic extension F(q) of F of degree p in which p splits and q is ramified.
Such an extension F(q) is unique if it exists.

Since G /q acts transitively on S,, the pro-p extensions {Fspu{q}}qesq are con-
jugate to each other over Q. Hence, if F(q) exists for some q € S, then F(q)
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exists for every q € S;. Let F be the compositum of the fields F(q) forallq € S,,.
Then, p splits completely in .

On the other hand, by class field theory and the triviality of the p-class group
of F, # contains the compositum of F and the subfield # of Q({,) with [F :
Q] = p. Since p does not split in @spu{q}’ the residue class degree of p in ¥ is p.
Hence, the residue class degree of p in & is divisible by p, a contradiction. [J

Remark 6.23. In fact, for every odd prime p, there exist infinitely many primes
q such that (Q, p, q) satisfy (U). For a proof, we refer the readers to the appli-
cation of the Gras-Munnier theorem in [15].

7. Non-existence of Minkowski units in non-abelian p-rational
p-extensions of Q

In this section, we will prove Theorem B. Let F be a non-abelian p-rational
Galois p-extension of Q. Since Gf q is a p-group, we may apply the theorem of
Tornehave and Bouc on the generators of G-relations of finite p-groups G. We
shall show that the factor equivalence class of Er can be analyzed via Galois
extensions L/K of subfields of F with Gy jx ~ (Z/ pZ)?. To begin, let us recall
the theorem of Tornehave and Bouc.

Theorem 7.1. (cf. [4, Thm. 5.3], [7, Cor. 6.16]) Let G be a finite p-group. Then,
all G-relations are Z-linear combinations of ones of the form Indg Infg /5 O for
pairs (H/B, ©) of subquotients H/B of G and H /B-relations © of the following
types:

(i) H/B ~ (Z/pZ)* with the H / B-relation ®

1->.C+p-H/B,
C

where C runs over all the subgroups of H / B of order p.
(ii) H/B is the Heisenberg group of order p> and © is the H / B-relation

I1-1Z7-J+JZ,

where Z is the center of H/B and I,J are two non-conjugate non-central
subgroups of H /B of order p.
(iii) H/B is isomorphic to the dihedral group D,. for some n > 4 and © is the
H /B-relation
I-1Z-J+JZ,
where Z is the center of H/B and I,J are two non-conjugate non-central
subgroups of H /B of order 2.

Let L/K be a Galois p-extension of number fields. Let H /B be a subquotient
of Gy k., and let

©= Y, ny(H'/B)

B<H'<H
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be an H /B-relation. A straightforward computation shows that we have

G
Ind,“Inff; ;@ = Y, nyH'.
B<H'<H

By Theorem 3.25, we then obtain the equality

RLH’ 2ngy
GlndgL/Klan/B@(EL)_elndeL/KInf’;/B@)(Z)' H (A(H’)) ' (D)

B<H'<H

Applying Theorem 5.1, (11) becomes

e 2ngp
Z)- —_— . 12
IndZL/KIan/BO( ) lez;ISH<MH')'hLH’> (12)

¢ GL/k (EL) =C

Ind

1y Ian/BG)

Since Gy /k is a p-group, Proposition 3.21 implies that we have
uy( eIndflL/KIan/BO(EL )) =0 forall primes [ # p.

Since the same holds for the regulator constants of the lattice Z, the product in
(12) involving w; s, A(H"), and hy s can be replaced by its p-part. In particular,
if L is totally real, then we obtain the following observation.

Proposition 7.2. Let L/K be a Galois p-extension of totally real number fields.
Then, the factor equivalence class of Ey, as a Z|Gy jk]-lattice is uniquely deter-
mined by the quotients of p-class numbers of subfields of L associated with the
pairs (H/B, ®) in Theorem 7.1.

Proof. The quotients involving w; x in (12) are equal to 1 by Lemma 3.18. The
claim follows because we have A(H) = 1. O

The following corollary is helpful in studying the existence of Minkowski
units in Galois p-extensions of Q.

Corollary 7.3. Let p be an odd prime, and let L /Q be a Galois p-extension. Then
Ey is factor equivalent to Ag, 10 08 Z|Gy jq-lattices if and only if we have

II vw= 11 niw= 11 1™ = I] 1=/BI™  (13)

B<H'<H B<H'<H B<H'<H B<H'<H
for all the pairs (H /B, ©) consisting of a subquotient H /B of G o and an H / B-
relation

@= Y, ny(H'/B)

B<H'<H

as in Theorem 7.1.

For Galois p-extensions of totally real p-rational number fields, Proposition
7.2 can be refined as follows.
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Proposition 7.4. Let L/K be a Galois p-extension of totally real p-rational num-
ber fields. Then the factor equivalence class of E;, as a Z[Gy jx]-lattice is deter-
mined by the quotients of p-class numbers of subfields of L associated to the pairs
(H/B,®) in Theorem 7.1 such that H/B ~ (Z / pZ)*.

Proof. By Theorem 7.1 and Proposition 7.2, it suffices to prove that G /x hasno
subquotient H /B isomorphic to the Heisenberg group of order p3. By Corollary
6.10 and Proposition 6.12, Gy /x is isomorphic to a subquotient of a Demuskin
group of rank 2. It is known that open subgroups of a Demuskin group of rank
2 are themselves Demuskin of rank 2 (cf. [64, §4.5]). Hence, every subquo-
tient of a Demuskin group of rank 2 is powerful. The claim follows since the
Heisenberg group of order p? is not powerful. O

Now, we give a proof of Theorem B. Let F be a non-abelian p-rational p-
extension of @, and let F2° be the maximal subfield of F that is abelian over Q.
By group theory, F2° /Q is not cyclic. Since Q is p-rational, there exists a non-p
prime g such that Ram(F/Q) = {p, q}. Hence, F is contained in Qs uigh and
the arithmetic of F can be analyzed via the tower Qs g3/ Q-

The case where p splits in F is easy and can be settled immediately.

Lemma 7.5. If p splits in F, then F does not admit a local Minkowski unit.

Proof. It is well known that if F admits a local Minkowski unit, then so does
every subfield of F that is Galois over Q. By the Burnside basis theorem, p splits
in F if and only if it splits in Q. In this case, Theorem 3.11 (ii) together with
Remark 3.12 implies that F does not admit a local Minkowski unit. O

Hence, it remains to prove Theorem B in the case where p does not split
in F. In what follows, we work under this assumption. Following §6.2, we
denote by px the unique p-adic prime of each subfield K of F (both K and F
being contained in @spu{q})- By Corollary 7.3 and Proposition 7.4, Ef is factor
equivalent to Ag, /0 if and only if the equality (13) holds for every extension

Kzl,q /K contained in F. For ease of notation, we set
Jgp = theinertia subgroup of Gel /k 3t Pxel
Jk,q = theinertia subgroup of Gel /k 3t gk -
Lemma 7.6. Let F be a p-rational non-cyclic p-extension of Q with a unique p-

adic prime. Let q be the rational non-p prime with Ram(F /Q) = {p, q}. Let K be
a subfield of F with Kf,l’q C F. The following claims are valid:

(i) Wehave I ,, # 1land Jx g ~ Z [ pZ.
(it) If we have Jg , = Kl /K> then the necessary condition (13) associated to
K;l,q /K is not satisfied.
(iit) If we have Jg , # GKZ{q /x and Jg , # Jk g, then the necessary condition
(13) associated to K;lq /K is satisfied.
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If we have Jx ,, = Ji 4, then the necessary condition (13) associated to
Kzl,q/K is satisfied if and only iff)K;{q = bg.

(i) The subgroup Ji , must be non-trivial because otherwise pg
splits in Kgl’q. Since K is p-rational and GKzlq /k is not cyclic, we have
Jk.q # 1. The cyclicity of I 4 follows from the class field theory.

The Galois group GK;{q /k is the maximal elementary abelian quotient
of GSpu{qK}(K)- If I, = GKZ{q/K’ then Gspu{qK}(K) coincides with the
inertia subgroup at the unique p-adic prime by the Burnside basis the-
orem. Hence, every subfield of F containing K has p-class number 1 by
Proposition 6.17 and Corollary 6.20. Therefore, the quotient of p-class
groups in (13) associated with K;l’q /K is 1, and so the equality in (13)
fails.

The group Ji j, is non-trivial by (i). By the p-rationality of K, the sub-
group Ji o corresponds to the first layer K; of K,/K. Let K’ be the

subfield of Klejl,q fixed by the subgroup Jx ,. By the assumption, the ex-
tensions Kf,l,q /K’ and K, /K are ramified precisely at the p-adic primes.

Hence, we have
bx = f)K1 =bhg = f)K;{q =1

by Lemma 6.4 (ii). For any other degree p-extension N of K in Kf,l,q
distinct from K’ and K, the extension Kgl’q /N is unramified, since Kzl,q
is equal to both NK; and NK’. By Lemma 6.4 (i), we then have §y = p
for all such N. Thus, condition (13) is satisfied for the extension Kf,l,q /K.
In this case, the first layer K; of K, /K is the subfield of K;l’q corre-
sponding to the subgroup Jx , = Jx 4. For any degree-p extension N of
K contained in Kf,l,q other than K;, we have Kgl,q = N,. Therefore, we
have
I)sz'f)Kla f)N=P‘f)K;{q

for all such N by Proposition 6.3. From these identities, the claim fol-

lows.
O

Before proving Theorem B, we recall a well-known fact about the subgroup
lattice of the non-abelian semi-direct product Z/p?Z X Z / pZ.

Lemma 7.7. Let p be an odd prime, and let G ~ 7 /p*Z X Z ] pZ be the non-
abelian semidirect product. Then, G has a unique subgroup H isomorphic to
(Z/ pZ)*. Moreover, every subgroup of G of order p is contained in H.

Proof.

By elementary arguments, one checks that the center Z(G) of G coin-

cides with the commutator subgroup [G, G]. Every subgroup of G of order p?
must contain the center, because otherwise G would be abelian. Since the quo-
tient G/Z(G) = G/[G,G] is isomorphic to (Z/pZ)?, there are precisely p + 1
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subgroups of G of order p?. It is known that G admits the following presenta-
tion (cf. [62, Exercise 5.3.6])

(x,y | xP" =1=yP, y~lxy = x!*P).
Using the congruence
(ep) = X"y () D2 = [[6,61,6]

(cf. [23, §0.1]), we can check that the elements xy’ for 1 < i < p generate
p distinct normal cyclic subgroups of order p?. Therefore, the non-cyclic sub-
group H of order p? generated by xP and y is the unique subgroup of G isomor-
phic to (Z/pZ)?*. The last claim follows because every subgroup of order p is
either equal to Z(G) or generates a rank-2 elementary abelian subgroup with
Z(G). 0

Proof of Theorem B. First, the extension F/F2 is cyclic and g is totally
ramified in F. If F/F were not cyclic, then we would have (Fab)iq C F.
Then, we have a contradiction to the maximality of F ab phecause (F ab)1, which
isa subfield of (Fab)le,l,q, is abelian over Q. Similarly, gz must be totally ramified
in F because otherwise (F2°); would be a subfield of F.

Since Gp/pa is cyclic, there exists a unique extension W of F in F with
[W : F2] = p. Asboth F and F?° are Galois over Q, the same holds true for W.
Let N be the subfield of F2° such that Gga /N is isomorphic to (Z/ pZ)?. Then,
Gw /N s either isomorphic to Z/ p*Z x 7/ pZ or to the non-abelian semi-direct
product Z/p?Z X Z/pZ. By considering their subgroup lattices, one finds a
subfield N ¢ W’ ¢ F?® with Gw wr =~ (Z/pZ)* (cf. Lemma 7.7). We will
show that the necessary condition (13) associated with W /W’ for the factor
equivalence of Ep and Ag, 0 is not satisfied.

I
/N

F

Fab /pz)
@/pz)? w’
N

Since F2 contains @?},q, the prime g is ramified in F. Moreover, by the prim-
itivity of S, U {q}, we have g # 1 (mod p?). Hence, by local class field theory,

the ramification index of g in F2°/Q is exactly p.
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The prime g must also be ramified in W’ /Q), for otherwise F2° /W’ would be
ramified at gy, forcing Iy = Gy y and thereby contradicting Lemma 7.6
).

Since the compositum QW' is abelian over Q, the previous argument shows
that gy is unramified in W’'Qyq;/W’. Thus we deduce that Qg C Hy,r.

We now complete the proof by applying Lemma 7.6 to the extension W /W',
There are three possible cases for the relation among Ty ,, Ty 4, and Gy yyr.

() If we have Jy» , = Gy w», then Ep is not factor equivalent to Ag, 0 by
Lemma 7.6 (ii).

(ii) The case Jy» , # Gy wr and Ty , # Ty 4 (i-e., Lemma 7.6 (iii)) can-
not occur. Otherwise, we have §y» = 1 by the proof of Lemma 7.6 (iii).
Since Hy» = W’ contains Qyg;, we then obtain Gy, sy = Ty , by Corol-
lary 6.20, a contradiction.

(iii) If we have Ty , # Gy jyr and Ty , = Ty 4, then the necessary condi-
tion (13) associated to W /W’ is satisfied if and only if we have §y, = By
by Lemma 7.6 (iv). Furthermore, the proof of Lemma 7.6 (iv) shows that
this equality holds if and only if we have § = phy» for every degree-p
extension N of W in W in which both py» and gy, are ramified. Since
we have Quy C Hy, we have by = By for all such N by Proposition
6.21. Thus, the necessary condition is not satisfied.

O

8. Relative Galois module structure of the unit lattices of totally
real p-rational number fields

In this final section, we study the relative Galois module structure of the unit
lattices for Galois extensions of totally real p-rational number fields. We begin
by introducing the following notation, which is convenient for the discussion.
For each Galois extension L/K of number fields and each finite set S of places
of K, we write Sy for the set of places of L above S, and S; ; for the set of finite
places of L above S. We denote by O:,s the group OZSL of S;-units of L, and by
Clg(L) the Sy -ideal class group of L. As in the case of S, we let S, denote the
set of infinite places of a base field. Finally, we set E; g := (9>L<,S /u(L).

In [14], for a fixed general finite group G and varying Galois extensions L/K
of number fields with G; /x ~ G, Burns studied the Z,[G]-module structures of
the pro-p completions of several arithmetic objects attached to L. In particular,
his results apply to Z, ® Ej s for any finite set S of primes of K containing
Sp U S, U Ram(L/K). In this section, for every Galois extension L/K with
Gk = G, we fix a group isomorphism and consider E;, as a Z[G]-lattice.

This investigation of the Z,[G]-structure of Ej, g for varying L/K is of intrin-
sic interest because, as L/K varies, the Z ,-ranks of Z, ® 7 E}, s are unbounded.
Consequently, if the p-Sylow subgroup of G is not cyclic of order 1, p, or p?,
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then infinitely many non-isomorphic indecomposable Z,[G]-lattices can ap-
pear in the Krull-Schmidt decomposition of Z ,® 7 Ey, s (cf. [19, §81.A]). Beyond
this intrinsic interest, the knowledge of relative Galois module structures of the
unit lattices also has various applications in the study of tamely ramified pro-p
extensions of number fields (cf. [40, 50]).

Let S be a finite set of places of Q containing S, US,, and let L /K be a Galois
extension of number fields with Galois group G that is unramified outside S.
In [14], Burns proved that the sum of the Z ,-ranks of the non-projective com-
ponents in a Krull-Schmidt decomposition of Z, ® E; s (as Z,[G]-lattices) is
bounded above by a function that depends only on |G|, the p-rank of Clg(L({ ),
and |Sy r|. By the Jordan-Zassenhaus theorem (cf. [20, Thm. 24.2]), we obtain
the following result.

Theorem 8.1. ([14, Cor. 4.1]) Let S be a finite set of places of Q containing
Sp U S Let G be a finite group and b a natural number. Define Ext(G, S, b)
to be the family of Galois extensions of number fields L /K satisfying the following
conditions :

() Gk =G,
(it) {p €K,
(iii) L/K is unramified outside S,
(iv) tk,(Clg(L)) + S ¢| < b.
Then, there exists a finite set Q of Z p[ G-lattices such that for every L/K € Ext(G, S, b),
there exists X € Q and a projective Z ,[G]-lattice P with

Z,8,Es~X®P
as Z ,[G]-lattices.

Remark 8.2. Theorem 8.1 was obtained by analyzing the Krull-Schmidt de-
composition of étale cohomology groups and the compactly supported p-adic
étale cohomology groups of general p-adic Galois representations over number
fields. Theorem 8.1 is formulated in terms of S-units for S O S, U S, because
7,8z 0>L<,s is isomorphic to the étale cohomology group H'(Spec(Oy 5)¢;, Z (D).
The paper [14] also treats the ray class groups (cf. Artin-Verdier duality) and
higher algebraic K-groups (cf. Voevodsky’s Theorem). For further details we
refer the readers to [14, §4].

We conclude this paper by establishing that for Galois extensions of totally
real p-rational number fields, an analogous phenomenon occurs in the relative
Galois module structure of the group of ordinary units.

Theorem 8.3 (Theorem C). Let G be a finite group and p an odd prime. Then,
there exists a finite set Q of Z ,| G ]-lattices such that for every Galois extension L /K
of totally real p-rational number fields with Grjx ~ G, there exists X € Q and
an integer m > 0 such that Z, @ Ey, is factor equivalent to X & Z,[G]™ as
Z,|G]-lattices.
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Proof. By Lemma 6.4 (i), for every extension M /N of totally real p-rational
number fields, we have the inequalities

vp(hy) —vp(IM = NT) < v,(har) < vp(hy) +log [M @ N

Therefore, for any fixed G-relation ® and varying Galois extensions M /N of
totally real p-rational number fields with Gy;/y ~ G, only finitely many values
for v,(Cg(E))) can occur by Lemma 3.18.

Fix a Z-basis Y of the group of G-relations, and let E be the set of functions
f Y — Z such that there exists a Galois extension M /N of totally real p-
rational number fields with Gy;/y ~ G, such that

f(©) =v,(Co(En))

for every ® € Y. By the above argument, E is a finite set.

For each x € E, choose a Galois extension L, /K, of totally real p-rational
fields with minimal [K, : Q] such that we have G; =~ G and x(©) =
Up(Co(EL,)) for every ©® € Y. We now show that the set

Q={Zp ®ZELX}

satisfies the claim of the theorem.

Let L/K be a Galois extension of totally real p-rational fields with Gy jx =~
G. Proposition 3.23 implies that the factor equivalence class of Z, ®; E; as
a Z,[G]-lattice is uniquely determined by v,(Ce(Ey)) for all the G-relations
©® € Y. From the construction of E, there exists a unique y € E such that we
have v,(Cg(EL)) = y(O) for every ® € Y. We claim that Z, ® E is factor
equivalent to Z, @ V as Z,[G]-lattices, where we have

[L:Q]-I[L, : Q]
|G|

By the Dirichlet-Herbrand theorem (cf. [35, Lem. 1.3.6]), the two Z[G]-
lattices E; and V have the same rational representation. Moreover, for every
0 €Y, we have

XEE

Vi=E, & Z|G]™, with m=

Up(Co(V)) = v,(Co(EL,)) = vp(Co(EL))

The first equality follows from Lemma 3.17 and Lemma 3.19. The second equal-
ity follows from the construction of Eyp,. Therefore, by Proposition 3.23, we

conclude that Z, ® 7 Ey, is factor equivalent to Z, @7 V as Zp[G]-lattices. [J

As discussed in §6.2, the arithmetic is particularly simple in a pro-p tower of
totally real p-rational fields Fs,uiai /F for (F, p, q) satisfying (U).

Theorem 8.4 (Theorem D). Let F be a totally real p-rational number field, and
let q be a non-p-adic prime of F such that (F, p, q) satisfies (U). For every Galois
extension L/K satisfying

Figg €K C L CFspugp
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the Z|Gy jx]-lattices E;, and Ag, @I, DZS Z[GL/K][K “Q1=2 gre factor equiv-
alent.

Proof. Let L/K be a Galois extension of totally real p-rational fields as in the
statement of the theorem. From the isomorphisms Q[Gy /x| ~ Q®7 (I, s 2)
of Q[Gy /x]-modules, we have an isomorphism

Q®7E, ~0®, (/lGL/K ® g, 7Z® Z[GL/K][K:Q]—Z)

of Q[Gy /x]-modules. By Theorem 3.22, it remains to show that E; and Ag, )

Ig, e SZDZ[Gy k] [K:Q]-2 have the same regulator constants for all G-relations
of Gp k. By the Brauer-Kuroda theorem and Theorem 3.25, for a G-relation
®= ZHSGL/K nyH, we have

WrH
Co(EL) = Ce(2) - —_—
o(BL) = Co(2) Hgm(hm(m)

2nH

As a consequence, we have Cg(Er) = Cg(Z) by the argument used in the proof
of Proposition 7.2 and Proposition 6.17. On the other hand, we have

Co(Ag, ;. ® g, ® Z ® Z[Gp " ¥72) = Co(2)
by Lemma 3.17, Lemma 3.19, and Corollary 4.3. O

Remark 8.5. We remark that our results can be extended to other families of
Galois extensions provided that the Galois group and its relationship with in-
ertia subgroups at the ramified primes are sufficiently simple.

One easy example is when F is an imaginary number field with a unique
p-adic prime and p-class number 1. Then GSP(F ) coincides with the inertia
subgroup at the p-adic place. Hence, the p-adic prime of F is totally ramified
in Fg . As a consequence, every extension of F in Fgs, has p-class number 1.

Thus Theorem B holds for every extension L of F in F| s, that is Galois over an
imaginary quadratic field and has non-cyclic G /r. Moreover, Theorem D also
applies to every Galois extension of number fields in the tower Fg, /F, provided
F does not contain the pth roots of unity.

As an explicit illustration, for p = 3 one can take F = @(\/E, V-1) [67,
p. 239]. We note that this field is not 3-rational.

Remark 8.6. After this work was completed, the results of Burns in the direc-
tion of Theorem 8.1 on the S-unit group were extended to ordinary unit lattices
in [48, Thm. A]. Since the classification of integral representations is unavail-
able in general, information on the Z ,-ranks of the non-projective components
alone does not effectively bound the number of possible Z,[G]-module struc-
tures (cf. [48, Thm. B]).

Theorem C shows that the number of possible factor equivalence classes of
unit lattices of totally real p-rational fields—depending only on the set of G-
relations—is highly restricted, in sharp contrast with genus equivalence. This
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rigidity also indicates, however, that factor equivalence itself provides only lim-
ited information about the underlying Galois module structure.

For readers interested in the Krull-Schmidt decomposition of unit lattices in
cyclic p-extensions of totally real p-rational fields, we refer to [15]. In a different
direction, Ozaki obtained a result [61] on the Galois structure of unit lattices in
cyclic p-extensions, indicating that the range of genus equivalence classes of
the unit lattice is essentially as large as that of integral Z,|G]-modules.
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