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On the Galois structure of units in totally
real 𝒑-rational number fields

Zakariae Bouazzaoui and Donghyeok Lim

Abstract. The theory of factor-equivalence of integral lattices establishes
a far-reaching relationship between the Galois module structure of the unit
group of the ring of integers of a number field and its arithmetic. For a num-
ber field 𝐾 that is Galois over ℚ or an imaginary quadratic field, we prove a
necessary and sufficient condition on the quotients of class numbers of sub-
fields of 𝐾, for the quotient 𝐸𝐾 of the unit group of the ring of integers of 𝐾
modulo the subgroup of roots of unity to be factor equivalent to the standard
cyclic Galois module. Using strong arithmetic properties of totally real 𝑝-
rational number fields, we prove that the non-abelian𝑝-rational𝑝-extensions
of ℚ do not admit Minkowski units, thereby extending a result of Burns to
non-abelian number fields. We also study the relative Galois module struc-
ture of 𝐸𝐿 for varying Galois extensions 𝐿∕𝐹 of totally real 𝑝-rational number
fields whose Galois groups are isomorphic to a fixed finite group 𝐺. In that
case, we prove that there exists a finite set Ω of ℤ𝑝[𝐺]-lattices such that for
every 𝐿, ℤ𝑝 ⊗ℤ 𝐸𝐿 is factor equivalent to ℤ𝑝[𝐺]𝑛 ⊕ 𝑋 as ℤ𝑝[𝐺]-lattices for
some 𝑋 ∈ Ω and an integer 𝑛 ≥ 0.
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1. Introduction
Let 𝑘 be a number field that is either ℚ or an imaginary quadratic number

field. For brevity, let us call such a number field admissible (cf. [12]). Let 𝐾
be a Galois extension of 𝑘 with Galois group 𝐺𝐾∕𝑘 such that the infinite places
of 𝑘 are unramified in 𝐾. Let 𝒪𝐾 be its ring of integers. In the late nineteenth
century, Minkowski proved that there exists a unit in𝒪𝐾 whose conjugates over
𝑘 generate a full-rank subgroup of 𝒪×

𝐾 . As a consequence of Minkowski’s the-
orem, if we regard 𝒪×

𝐾 as a ℤ[𝐺𝐾∕𝑘]-module, then there is an isomorphism of
ℚ[𝐺𝐾∕𝑘]-modules

ℚ⊗ℤ 𝒪×
𝐾 ≃ 𝐴𝐺𝐾∕𝑘 ∶= ℚ[𝐺𝐾∕𝑘]∕(𝑠𝐺𝐾∕𝑘 ).

For a finite group 𝐺, we write 𝑠𝐺 for the element
∑

𝑔∈𝐺 𝑔 in ℤ[𝐺] ⊂ ℚ[𝐺], and
write (𝑠𝐺) for the submodule generated by 𝑠𝐺 .
Despite the long history of interest in 𝒪×

𝐾 , the ℤ[𝐺𝐾∕𝑘]-module structure
of 𝒪×

𝐾 is barely understood until now. One of the principal problems in this
area is to determine if 𝐾 has a (strong) Minkowski unit, in other words, a unit
𝑢 ∈ 𝒪×

𝐾 whose conjugates over 𝑘 generate 𝒪×
𝐾 modulo the subgroup 𝜇(𝐾) of

roots of unity of𝐾. The problem is equivalent to asking whether the unit lattice
𝐸𝐾 ∶= 𝒪×

𝐾∕𝜇(𝐾) is isomorphic to the standard cyclic Galois module 𝒜𝐺𝐾∕𝑘 ∶=
ℤ[𝐺𝐾∕𝑘]∕(𝑠𝐺𝐾∕𝑘 ) as ℤ[𝐺𝐾∕𝑘]-modules.
Studying theGaloismodule structure of the unit lattice is complicated for the

following reasons. First of all, it is very difficult to compute a system of funda-
mental units. Therefore, number theorists tried to use arithmetic information
on 𝐾 to study the cyclicity of 𝐸𝐾 as a ℤ[𝐺𝐾∕𝑘]-module. However, the involved
arithmetic information is still difficult to obtain. Lastly, to be sure that certain
arithmetic information suffices to guarantee that 𝐸𝐾 is cyclic, we need enough
results on the classification of ℤ[𝐺𝐾∕𝑘]-lattices of the same rank as 𝐸𝐾 . How-
ever, even for a finite group 𝐺 with a simple structure, classifying integral rep-
resentations of 𝐺 is very difficult. Hence, studying the Galois module structure
of the unit lattice requires knowledge of both the theory of integral represen-
tations of finite groups and the arithmetic of number fields. We examine both
aspects of the problem in this paper, which is organized into 8 sections.

I. Representation-Theoretic Part (§2 – §5)

Several approaches have been introduced to study the integral Galoismodule
structure of 𝐸𝐾 . One approach is to study whether ℤ𝑝 ⊗ℤ 𝐸𝐾 is isomorphic to
ℤ𝑝[𝐺𝐾∕𝑘]∕(𝑠𝐺𝐾∕𝑘 ) ≃ ℤ𝑝 ⊗ℤ 𝒜𝐺𝐾∕𝑘 as ℤ𝑝[𝐺𝐾∕𝑘]-modules for every prime 𝑝 (the
problem of existence of localMinkowski units), by using theKrull-Schmidt the-
orem. This approach has limitations because there are many non-isomorphic
indecomposableℤ𝑝[𝐺]-lattices even for finite groups 𝐺 with simple structures.
In this context, recall that twoℤ[𝐺]-lattices𝑀 and𝑁 are said to be genus equiv-
alent if we have ℤ𝑝[𝐺] ⊗ℤ 𝑀 ≃ ℤ𝑝[𝐺] ⊗ℤ 𝑁 for every prime 𝑝.
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In the 1980s, A. Fröhlich and his students began to develop the theory of
factor equivalence between integral lattices. This approach is computationally
more effective because instead of studying each lattice, it focuses on comparing
two lattices from the start. Although factor equivalence is weaker than genus
equivalence, it nevertheless has profound applications in number theory, ex-
plaining how arithmetic influences the Galois module structure of the unit lat-
tice for general Galois groups. Moreover, it was fruitful in yielding a necessary
and sufficient condition for the existence of local Minkowski units, valid for all
abelian extensions [12].
In the 2010s, A. Bartel revisited the connection between the integral Galois

module structure of unit lattices and the arithmetic of number fields. In [1],
Bartel used the regulator constant of integral lattices (cf. [24]) to obtain the
most general Brauer-Kuroda type formula for dihedral extensions of number
fields of degree 2𝑝 for an odd prime 𝑝. The regulator constant establishes a re-
lationship between the Galois module structure of the unit lattice of a number
field and a quotient of Dirichlet regulators of its subfields. In fact, the factor
equivalence and the regulator constants are closely related. This connection is
made precise by a theorem of Bartel [2, Cor. 2.12], which states that for a finite
group 𝐺, two ℤ[𝐺] latticesℳ and𝒩 with isomorphic self-dual rational repre-
sentations are factor equivalent if and only if their regulator constants coincide
for all 𝐺-relations (for the precise definition of 𝐺-relations, see Definition 3.13
and Example 3.14).

In the first part of this paper, we establish a formula for the regulator con-
stants of 𝒜𝐺 = ℤ[𝐺]∕(𝑠𝐺) (Proposition 4.1), which yields the following theo-
rem.

Theorem A. Let 𝐾 be a number field that is Galois over an admissible field 𝑘
with Galois group 𝐺𝐾∕𝑘. Assume that 𝐾∕𝑘 is unramified at the infinite places
of 𝑘. For each subgroup𝐻 of𝐺𝐾∕𝑘, let ℎ𝐾𝐻 (resp. 𝑤𝐾𝐻 ) denote the class number
(resp. the number of roots of unity) of the fixed field 𝐾𝐻 . Define 𝜆(𝐻) to be the
order of the kernel of the map

𝐻1(𝐻, 𝜇(𝐾)) → 𝐻1(𝐻,𝒪×
𝐾)

induced by the embedding 𝜇(𝐾) ↪ 𝒪×
𝐾 . Then, 𝐸𝐾 is factor equivalent to 𝒜𝐺𝐾∕𝑘

if and only if the equality

∏

𝐻≤𝐺𝐾∕𝑘

(
|𝐻| ⋅ ℎ𝐾𝐻 ⋅ 𝜆(𝐻)

𝑤𝐾𝐻
)
𝑛𝐻

= 1

holds for every 𝐺-relation
∑

𝐻≤𝐺𝐾∕𝑘
𝑛𝐻𝐻 of 𝐺𝐾∕𝑘.

Theorem A generalizes the previously known necessary conditions on quo-
tients of class numbers of subfields for the existence of Minkowski units, ex-
tending them to all non-cyclic finite groups.
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II. Arithmetic Part (§6 – §8)

Even for number fields of small degree, it is very difficult to obtain detailed
information on unit lattices, since the relevant arithmetic invariants are chal-
lenging to analyze. In [12], Burns exploited strong arithmetic properties of 𝑝-
power genus field extensions to study the existence of local Minkowski units in
abelian 𝑝-extensions of admissible fields. In the second part of this work, we
investigate the Galois module structure of the unit lattices for a new family of
number fields, namely totally real 𝑝-rational number fields.
Let 𝑝 be an odd prime. A number field 𝐹 is called 𝑝-rational if the Galois

group of the maximal pro-𝑝 extension 𝐹𝑆𝑝 of 𝐹 that is unramified outside the
set 𝑆𝑝 of 𝑝-adic primes is a free pro-𝑝 group (cf. [58, 39]). Totally real 𝑝-rational
number fields form an interesting class to work with. Their 𝑝-class numbers
can be computed rather explicitly, a feature that is not often available in general
and which makes it possible to carry out our theory in practice. Moreover, they
give rise to infinitely many infinite non-abelian pro-𝑝 towers, which not only
allow us to study non-abelian cases but also provide a wealth of examples to
which our results apply. In §7, we establish the following theorem on the non-
existence of Minkowski units.

TheoremB. Let𝑝 be an oddprime. If𝐹 is a non-abelian𝑝-rational𝑝-extension
of ℚ, then 𝐹 does not have a local Minkowski unit.

Theorem B provides an infinite family of non-abelian number fields with-
out Minkowski units. This result may be viewed as a non-abelian extension of
Burns’s theorem on the existence of local Minkowski units in 𝑝-power genus
field extensions of admissible number fields (cf. [12, Thm. 5]).
We also study in §8 the relative Galois module structure of unit lattices for

varying Galois extensions of totally real 𝑝-rational number fields with Galois
group isomorphic to a fixed finite group 𝐺. Note that in this setting the base
field is not required to be admissible. Since the ℤ-rank of the unit lattice is un-
bounded as the extension varies, infinitely many non-isomorphic indecompos-
able ℤ𝑝[𝐺]-lattices can occur in the Krull-Schmidt decomposition of its 𝑝-adic
completion.
In [14], Burns established that for every finite group 𝐺 and a finite set 𝑆 of

primes ofℤ containing 𝑝, there exists a natural infinite family of relative Galois
extensionsℒ∕𝒦 withGal(ℒ∕𝒦) ≃ 𝐺 in which the sum of theℤ𝑝-ranks of the
non-projective indecomposable components in a Krull-Schmidt decomposition
ofℤ𝑝⊗ℤ𝐸ℒ,𝑆 (as aℤ𝑝[𝐺]-lattice) is uniformly bounded. Here,𝐸ℒ,𝑆 denotes the
quotient of 𝑆-unit group 𝒪×

ℒ,𝑆 ofℒ by 𝜇(ℒ). It then follows from the Jordan-
Zassenhaus theorem that only finitely many non-isomorphic indecomposable
ℤ𝑝[𝐺]-lattices appear in the Krull-Schmidt decomposition of ℤ𝑝 ⊗ℤ 𝐸ℒ,𝑆 for
such extensionsℒ∕𝒦 belonging to this family.
In §8, we observe a similar phenomenon in the relative Galois module struc-

ture of the group of ordinary units when the number fields are totally real and
𝑝-rational.
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Theorem C. Let 𝐺 be a finite group. Then, there exists a finite setΩ ofℤ𝑝[𝐺]-
lattices such that for every relative Galois extension ℒ∕𝒦 of totally real 𝑝-
rational number fields with Gal(ℒ∕𝒦) ≃ 𝐺, there exists 𝑋 ∈ Ω and a non-
negative integer𝑚 such that ℤ𝑝 ⊗ℤ 𝐸ℒ is factor equivalent to 𝑋 ⊕ ℤ𝑝[𝐺]𝑚 as
ℤ𝑝[𝐺]-lattices.

The arithmetic of a totally real 𝑝-rational number field becomes particularly
simple when there is a unique 𝑝-adic prime (cf. §6.2). In this case, Theorem C
can be sharpened. We now make this setting more precise.
Let 𝑝 be an odd prime, and let 𝐹 be a totally real 𝑝-rational number field.

Fix a finite non-𝑝-adic prime 𝔮 of 𝐹 that does not split in the cyclotomic ℤ𝑝-
extension 𝐹∞∕𝐹. Denote by 𝐹𝑆𝑝∪{𝔮} (resp. 𝐹{𝔮}) the maximal pro-𝑝 extension
of 𝐹 unramified outside 𝑆𝑝 ∪ {𝔮} (resp. unramified outside 𝔮). We remark that
Gal(𝐹𝑆𝑝∪{𝔮}∕𝐹) is a Demuškin group of rank 2, while 𝐹{𝔮}∕𝐹 is finite. For a finite
group 𝐺, we denote by 𝐼𝐺 the augmentation ideal of the group ring ℤ[𝐺].

Theorem D. Suppose that 𝑝 does not split in 𝐹𝑆𝑝∪{𝔮}. Then, for every Galois
extensionℒ∕𝒦 of number fields satisfying

𝐹{𝔮} ⊆ 𝒦 ⊆ ℒ ⊂ 𝐹𝑆𝑝∪{𝔮}
with Galois group 𝐺, the lattice 𝐸ℒ is factor equivalent to

𝒜𝐺 ⊕ 𝐼𝐺 ⊕ℤ⊕ℤ[𝐺][𝒦∶ℚ]−2

as ℤ[𝐺]-lattices.

Notations
For a finite group 𝐺, let 𝑠𝐺 ∶=

∑
𝑔∈𝐺 𝑔 denote the trace element, 𝐼𝐺 the aug-

mentation ideal, and 𝒜𝐺 ∶= ℤ[𝐺]∕(𝑠𝐺) the standard cyclic ℤ[𝐺]-module. We
write 𝐺ab for the abelianization of 𝐺, and (𝐺 ∶ 𝐻) for the index of 𝐻 in 𝐺 for
every subgroup𝐻 of 𝐺. For an abelian group𝐴, rk𝑝(𝐴) denotes its 𝑝-rank. If𝑋
is a 𝐺-set, 𝑋𝐺 is the subset fixed by 𝐺. For a natural number 𝑛, |𝑛|𝑝 denotes its
𝑝-part, and for 𝑥 ∈ ℚ×, 𝑣𝑝(𝑥) denotes the 𝑝-adic valuation. Finally, all modules
over a ring 𝑅 are understood to be left 𝑅-modules.

For an extension 𝐿∕𝐾 of number fields, we write Ram(𝐿∕𝐾) for the set of
places of 𝐾 that ramify in 𝐿. If 𝐿∕𝐾 is Galois, we denote 𝐺𝐿∕𝐾 ∶= Gal(𝐿∕𝐾).
For a number field 𝐹, we let ℎ𝐹 denote its class number,𝑤𝐹 the number of roots
of unity in 𝐹, and 𝑅𝐹 its Dirichlet regulator. If 𝑣 is a place of 𝐹, then 𝐹𝑣 denotes
the completion of 𝐹 at 𝑣.

In the sections devoted to 𝑝-rationality, we adopt the following notation. We
fix an odd prime𝑝 and denote by 𝔥𝐹 the𝑝-class number of a number field𝐹. We
write𝐹∞ for its cyclotomicℤ𝑝-extension, 𝐹𝑛 for the 𝑛-th layer of 𝐹∞∕𝐹, and𝐻𝐹
for the Hilbert 𝑝-class field of 𝐹. We also let 𝑆𝑝 denote the set of 𝑝-adic places
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of a number field. Since the base field will always be clear from the context,
this notation will cause no ambiguity.
In addition, we introduce the following notation, which will be used fre-

quently in §6.2 and §7. For a finite set 𝑆 of places of 𝐹, we write 𝐹𝑆 for the
maximal pro-𝑝 extension of 𝐹 unramified outside 𝑆. If 𝔮 is a non-𝑝-adic prime
of 𝐹, we set:
𝔮𝐿 : the unique prime above 𝔮 in an extension 𝐹 ⊂ 𝐿 ⊂ 𝐹𝑆𝑝∪{𝔮} (when 𝐹

is 𝑝-rational and 𝑆𝑝 ∪ {𝔮} is primitive for (𝐹, 𝑝), see Lemma 6.15);
𝐿el𝑝,𝔮 : the maximal elementary abelian 𝑝-extension of 𝐿 contained in 𝐹𝑆𝑝∪{𝔮}

(in the same setting as above);
𝑝𝐿 : the unique prime of 𝐿 above 𝑝 for 𝐹 ⊂ 𝐿 ⊂ 𝐹𝑆𝑝∪{𝔮} (when 𝑝 does not

split in 𝐹𝑆𝑝∪{𝔮});
ℐ𝐿,𝑣 : the inertia subgroup of 𝐺𝐿el𝑝,𝔮∕𝐿 at 𝑣 (see the discussion preceding

Lemma 7.6).
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2. Genus equivalence
Throughout this section, let 𝑘 be an admissible field and𝐾∕𝑘 a Galois exten-

sion of number fields in which the infinite places of 𝑘 are unramified. Since the



GALOIS STRUCTURES OF UNITS IN TOTALLY REAL 𝑝-RATIONAL FIELDS 1445

ℤ[𝐺𝐾∕𝑘]-module structure of 𝐸𝐾 is difficult to study (cf. [10, 53]), it is natural to
first examine theℤ𝑝[𝐺𝐾∕𝑘]-module structure ofℤ𝑝⊗ℤ 𝐸𝐾 for all primes 𝑝. For
a Dedekind domain 𝑅 and a finite group 𝐺, a finitely generated 𝑅[𝐺]-module
that is torsion-free as an 𝑅-module is called an 𝑅[𝐺]-lattice.

Definition 2.1. Two 𝑅[𝐺]-lattices 𝑀 and 𝑁 are said to be genus equivalent if
for every non-zero prime 𝔭 of 𝑅, we have

𝑅𝔭 ⊗𝑅 𝑀 ≃ 𝑅𝔭 ⊗𝑅 𝑁

as 𝑅𝔭[𝐺]-modules, where 𝑅𝔭 denotes the completion of 𝑅 at 𝔭.

If 𝑝 does not divide |𝐺𝐾∕𝑘|, then we have

ℤ𝑝 ⊗ℤ 𝐸𝐾 ≃ ℤ𝑝 ⊗ℤ 𝒜𝐺𝐾∕𝑘

by representation theory (cf. [63, §15.5]). Therefore, the study of the genus
equivalence class of 𝐸𝐾 concerns only those primes 𝑝 dividing |𝐺𝐾∕𝑘|.
Aℤ𝑝[𝐺]-lattice is said to be indecomposable if it is not a direct sumof two proper
ℤ[𝐺]-sublattices. The Krull-Schmidt theorem is available for ℤ𝑝[𝐺]-lattices.

Theorem 2.2. (cf. [19, p. 83]) Let𝑀 be a ℤ𝑝[𝐺]-lattice, and suppose that

𝑀 ≃ 𝑈1 ⊕⋯⊕𝑈𝑚 ≃ 𝑉1 ⊕⋯⊕𝑉𝑛
are two decompositions of 𝑀 into indecomposable ℤ𝑝[𝐺]-sublattices. Then, we
have 𝑚 = 𝑛, and after a suitable reindexing we have 𝑈𝑖 ≃ 𝑉𝑖 as ℤ𝑝[𝐺]-lattices
for every 1 ≤ 𝑖 ≤ 𝑚.

Therefore, if we classify the indecomposableℤ𝑝[𝐺𝐾∕𝑘]-lattices ofℤ𝑝-rank at
most |𝐺𝐾∕𝑘|, then in principle, we can study the ℤ𝑝[𝐺𝐾∕𝑘]-module structure of
ℤ𝑝 ⊗ℤ 𝐸𝐾 by computing the multiplicity of each indecomposable ℤ𝑝[𝐺𝐾∕𝑘]-
lattice in the Krull-Schmidt decomposition of ℤ𝑝 ⊗ℤ 𝐸𝐾 .

Example 2.3. (i) If 𝐺 is cyclic of order 𝑝, then by a theorem of Diederich-
sen, there are precisely three isomorphism classes of indecomposable
ℤ𝑝[𝐺]-lattices [22]. From this, we can easily check the genus equiva-
lence of 𝐸𝐾 and 𝒜𝐺𝐾∕𝑘 for every cyclic extension 𝐾∕𝑘 of prime degree.

(ii) When 𝐺 is the elementary abelian 𝑝-group (ℤ∕𝑝ℤ)2 of rank 2, Payan,
Bouvier, and Duval classified indecomposable ℤ𝑝[𝐺]-lattices that can
be realized asℤ𝑝[𝐺]-sublattices ofℤ𝑝⊗ℤ𝐸𝐾 for someGalois extensions
𝐾∕𝑘 with Galois group 𝐺𝐾∕𝑘 ≃ 𝐺 (cf. [8, 26, 27]). In [27], Duval used
these results to study the genus equivalence of 𝐸𝐾 and𝒜𝐺𝐾∕𝑘 in the case
𝐺𝐾∕𝑘 ≃ (ℤ∕𝑝ℤ)2.

(iii) Assume that𝐺𝐾∕𝑘 is a metacyclic group of the formℤ∕𝑝ℤ⋊𝑇, where 𝑇
is a cyclic group whose order divides 𝑝 − 1. Marszalek obtained neces-
sary and sufficient conditions for the genus equivalence of𝐸𝐾 and𝒜𝐺𝐾∕𝑘
for the case when the action of𝑇 onℤ∕𝑝ℤ is faithful by using the classi-
fication of integral representations [54, 55]. The interested readers can
also refer to [43, 44].
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The study of the genus equivalence class of𝐸𝐾 has not been extended tomore
generalGalois groups, because the classification of the indecomposable integral
representations is highly complicated, even for groups with simple structures.

Remark 2.4. (i) In [41, 42], Heller and Reiner studied the indecompos-
able ℤ𝑝[ℤ∕𝑝𝑒ℤ]-lattices for 𝑒 ≥ 2. In [41], they proved that there
are precisely 4𝑝 + 1 non-isomorphic indecomposable representations
ofℤ∕𝑝2ℤ overℤ𝑝. However, there are infinitely many non-isomorphic
indecomposable representations overℤ𝑝 if 𝑒 is larger than 2 [42]. There
has beenno attempt to classify indecomposableℤ𝑝[ℤ∕𝑝3ℤ]-lattices even
for small ℤ𝑝-ranks.

(ii) Duval obtained a necessary and sufficient condition for the genus equiv-
alence between 𝐸𝐾 and 𝒜𝐺𝐾∕𝑘 only in the cases 𝑝 = 2 or 3 for 𝐺𝐾∕𝑘 ≃
(ℤ∕𝑝ℤ)2, as the classificationwas too difficult and incomplete for larger
𝑝. For an illustration of the difficulty of classifying integral representa-
tions of (ℤ∕𝑝ℤ)2 overℤ𝑝, see the table on page 241 of [27], which is far
from exhaustive for general 𝑝.

3. Factor equivalence, theorems of Burns and regulator constant
In this section, we explain basic concepts in the theory of factor equivalence

and its application to the Galois module structure of unit lattices. We then
present some basic results on the regulator constants. Lastly, we explain the
connection between factor equivalence and regulator constants.

3.1. Factor equivalence of integral lattices. Throughout this section, let 𝐾
be a finite extension of ℚ or ℚ𝑝. We write 𝒪𝐾 for its ring of integers and Id𝐾
for its group of fractional ideals. For a finite group 𝐺, denote by 𝒮(𝐺) the set of
subgroups of 𝐺.
As in the theory of genus equivalence, the theory of factor equivalence [59]

compares two𝒪𝐾[𝐺]-latticesℳ and𝒩 such that we have𝐾⊗𝒪𝐾
ℳ ≃ 𝐾⊗𝒪𝐾

𝒩
as 𝐾[𝐺]-modules. From such a 𝐾[𝐺]-isomorphism, one obtains an injective
𝒪𝐾[𝐺]-module homomorphism 𝚤 ∶ ℳ → 𝒩. The relation of factor equiva-
lence ofℳ and𝒩 is defined in terms of the factorisability of a natural function
associated with 𝚤. We therefore begin by introducing the notion of factorisabil-
ity of general functions from 𝒮(𝐺) to an abelian group 𝑋.

Definition 3.1. (cf. [2, 16, 21]) Let 𝐺 be a finite group and 𝑋 be an abelian
group written multiplicatively. A function 𝑓∶ 𝒮(𝐺) → 𝑋 is said to be factoris-
able if there exists an injection of abelian groups 𝜓 ∶ 𝑋 ↪ 𝑌 for some 𝑌 and a
function 𝑔∶ Irr(𝐺) → 𝑌 defined on a full set Irr(𝐺) of isomorphism classes of
irreducible complex characters of 𝐺 such that

𝜓(𝑓(𝐻)) =
∏

𝜒∈Irr(𝐺)
𝑔(𝜒)⟨𝜒,ℂ[𝐺∕𝐻]⟩

holds for all𝐻 ∈ 𝒮(𝐺), where ⟨𝜒, ℂ[𝐺∕𝐻]⟩ denotes the multiplicity of 𝜒 in the
representation ℂ[𝐺∕𝐻].
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In [11, 12, 30], Fröhlich and Burns focused on the case when 𝐺 is abelian. In
this situation, the factorisability of a function 𝑓 ∶ 𝒮(𝐺) ⟶ 𝑋 can be studied
via its factorisable quotient 𝑓. For a finite abelian group 𝐺, define a binary re-
lation on 𝐺 by declaring 𝑥, 𝑦 ∈ 𝐺 to be related if and only if they generate the
same cyclic subgroup of 𝐺. This defines an equivalence relation, and we call
each equivalence class 𝐷 a division of 𝐺. Given a function 𝑓 ∶ 𝒮(𝐺)⟶ 𝑋, we
associate a function 𝑓′ on the set of divisions of 𝐺 with values in 𝑋 by

𝑓′(𝐷) ∶=
∏

𝐶<𝐷

𝑓(𝐶)𝜇((𝐷∶𝐶)),

where 𝐷 denotes the subgroup of 𝐺 generated by any element 𝑥 ∈ 𝐷, and 𝜇 is
the Möbius function. We define the factorisable quotient 𝑓 ∶ 𝒮(𝐺)⟶ 𝑋 of 𝑓
by

𝑓(𝐻) ∶= (
∏

𝐷⊂𝐻
𝑓′(𝐷)) ⋅ 𝑓(𝐻)−1

for every 𝐻 ∈ 𝒮(𝐺). It is known that for general 𝑓, one always has 𝑓(𝐻) = 1
for all cyclic subgroups𝐻 of 𝐺. We have the following proposition.
Proposition 3.2. ([29, 30]) Let 𝐺 be a finite abelian group and 𝑓∶ 𝒮(𝐺) → 𝑋
a function from 𝒮(𝐺) to an abelian group 𝑋. Then 𝑓 is factorisable if and only if
we have 𝑓(𝐻) = 1 for all subgroups𝐻 of 𝐺.
With thenotion of factorisability of a function, we candefine the factor equiv-

alence between two 𝒪𝐾[𝐺]-lattices.
Definition 3.3. Let ℳ,𝒩 and 𝚤 ∶ ℳ → 𝒩 be as in the beginning of this
subsection. Two latticesℳ and𝒩 are said to be factor equivalent if the function
from 𝒮(𝐺) to the group Id𝐾 defined by

𝐻 ⟶ [𝒩𝐻 ∶ 𝚤(ℳ𝐻) ]𝒪𝐾

is factorisable, where [𝒩𝐻 ∶ 𝚤(ℳ𝐻) ]𝒪𝐾
∈ Id𝐾 denotes the order ideal (cf. [19,

§80]) of the 𝒪𝐾-torsion module𝒩𝐻∕𝚤(ℳ𝐻).
Remark 3.4. (cf. [21, Prop. 2.5]) We record the following basic facts:

(i) The definition of factor equivalence does not depend on the choice of 𝚤.
(ii) The factor equivalence is an equivalence relation.
The following fact is well-known, but we provide a proof for the readers’

convenience.
Lemma 3.5. Letℳ and𝒩 be two 𝒪𝐾[𝐺]-lattices. If they are genus equivalent,
then they are factor equivalent.
Proof. There is a canonical isomorphism Id𝐾 ≃

⨁
𝔭 Id𝐾𝔭 where 𝔭 runs over

themaximal ideals of𝒪𝐾 . Under this isomorphism, the ideal [𝒩𝐻 ∶ 𝚤(ℳ𝐻) ]𝒪𝐾
corresponds to the element

( [ (𝒪𝐾𝔭 ⊗𝒪𝐾
𝒩)𝐻 ∶ (1 ⊗ 𝚤) ((𝒪𝐾𝔭 ⊗𝒪𝐾

ℳ)𝐻) ]𝒪𝐾𝔭
)
𝔭
∈
⨁

𝔭
Id𝐾𝔭 .
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Hence,𝒩 andℳ are factor equivalent if and only if 𝒪𝐾𝔭 ⊗𝒪𝐾
𝒩 and 𝒪𝐾𝔭 ⊗𝒪𝐾

ℳ are factor equivalent for all maximal ideals 𝔭. The latter can be checked
by applying Remark 3.4 (i) to the isomorphic 𝒪𝐾𝔭[𝐺]-lattices 𝒪𝐾𝔭 ⊗𝒪𝐾

ℳ and
𝒪𝐾𝔭 ⊗𝒪𝐾

𝒩. □

Applying the theory of factor equivalence to arithmetic Galois modules has
proved fruitful, with one lattice taken to be an arithmetic object and the other
a standard (module-theoretic) lattice, as illustrated by the following examples
(cf. [21, 30]).

Example 3.6. (i) For a Galois extension 𝐿∕𝐾 of number fields, the normal
basis theorem gives an isomorphism

𝐾 ⊗𝒪𝐾
𝒪𝐿 ≃ 𝐾[𝐺𝐿∕𝐾] ≃ 𝐾 ⊗𝒪𝐾

𝒪𝐾[𝐺𝐿∕𝐾]

of𝐾[𝐺𝐿∕𝐾]-modules. Hence it is natural to study the factor equivalence
between 𝒪𝐿 and 𝒪𝐾[𝐺𝐿∕𝐾].

(ii) Let 𝐿∕𝐾 be a Galois extension of number fields, and let 𝑆 be a finite set
of places of 𝐿 containing the set 𝑆𝐿,∞ of all the archimedean places of
𝐿. Assume that 𝑆 is invariant under the action of 𝐺𝐿∕𝐾 . Let 𝑋𝑆 denote
the free abelian group generated by 𝑆, and let 𝑌𝑆 be the kernel of the
augmentation map 𝑋𝑆 → ℤ, which maps each element of 𝑆 to 1. By
the generalized Dirichlet-Herbrand theorem on 𝑆-units (cf. [35, Thm.
I.3.7]), the multiplicative group 𝒪×

𝐿,𝑆 of 𝑆-units of 𝐿 satisfies an isomor-
phism

ℚ⊗ℤ 𝒪×
𝐿,𝑆 ≃ ℚ⊗ℤ 𝑌𝑆

of ℚ[𝐺𝐿∕𝐾]-modules. Therefore, we can study the factor equivalence
between 𝐸𝐿,𝑆 ∶= 𝒪×

𝐿,𝑆∕𝜇(𝐿) and 𝑌𝑆. We remark that if 𝐿 is a Galois
extension over an admissible field 𝑘 where no infinite places of 𝑘 are
ramified, then 𝑌𝑆𝐿,∞ is isomorphic to the augmentation ideal 𝐼𝐺𝐿∕𝑘 as
ℤ[𝐺𝐿∕𝑘]-lattices.

3.2. Theorems of Burns. As in §3.1, let 𝐾 be a finite extension of ℚ or ℚ𝑝.
When𝐺 is a finite abelian group, Burns [11] investigatedwhen the factor equiv-
alence of two 𝒪𝐾[𝐺]-lattices implies the genus equivalence. Building on this,
in [12], he obtained a necessary and sufficient condition for the genus equiva-
lence of𝐸𝐿 and𝒜𝐺𝐿∕𝑘 , valid for all abelian extensions 𝐿∕𝑘 of admissible number
fields 𝑘 unramified at the infinite places. In this subsection, we briefly explain
these results, assuming throughout that 𝐺 is abelian and that 𝐿∕𝑘 is an abelian
extension of an admissible field unramified at the infinite places.

3.2.1. Arithmetic criteria for the existence of local Minkowski units in
Abelian extensions. Let 𝒜 be a 𝐾-algebra that is a quotient of 𝐾[𝐺], and let
𝑋 be an 𝒪𝐾[𝐺]-lattice such that 𝒜 acts on 𝐾 ⊗𝒪𝐾

𝑋. We then set

𝔄(𝒜,𝑋) ∶= { 𝜆 ∈ 𝒜 | 𝜆 ⋅ 𝑋 ⊆ 𝑋 }.



GALOIS STRUCTURES OF UNITS IN TOTALLY REAL 𝑝-RATIONAL FIELDS 1449

Suppose now that 𝐾 ⊗𝒪𝐾
𝑋 is a subrepresentation of the regular representa-

tion 𝐾[𝐺]. Then it is necessarily cyclic as a 𝐾[𝐺]-module by the semisimplicity
of 𝐾[𝐺]. Since 𝐺 is abelian, the action of 𝐾[𝐺] factors through the unique quo-
tient 𝐾-algebra 𝐾(𝑋) of 𝐾[𝐺]. The induced action of 𝐾(𝑋) on 𝐾⊗𝒪𝐾

𝑋 is faith-
ful. Consequently, 𝔄(𝐾(𝑋), 𝑋) is an 𝒪𝐾-order in 𝐾(𝑋), called the associated
order of 𝑋 in 𝐾(𝑋).
A normal subgroup𝐻 of 𝐺 is called cocyclic (written𝐻 <𝑐 𝐺) if the quotient

𝐺∕𝐻 is cyclic. Burns introduced another equivalence relation on𝒪𝐾[𝐺]-lattices
called the order-equivalence.

Definition 3.7. (cf. [11, §2], [12, §1]) Two 𝒪𝐾[𝐺]-lattices 𝑋 and 𝑌 are said to
be order-equivalent (written𝑋◦𝑌) if for every cocyclic subgroup𝐻 of𝐺 one has

𝔄(𝐾[𝐺∕𝐻], 𝑋𝐻) = 𝔄(𝐾[𝐺∕𝐻], 𝑌𝐻).

Let𝔐𝐾,𝐺 denote themaximal𝒪𝐾-order in𝐾[𝐺], and for every𝒪𝐾[𝐺]-lattice
𝑀, let𝑀𝔐𝐾,𝐺 denote themaximal𝔐𝐾,𝐺-module contained in𝑀. We also write
𝐺̂ for the group of characters of 𝐺. For each subgroup𝐻 of 𝐺, we let𝐻⟂ denote
the subgroup of 𝐺̂ consisting of characters that are trivial on𝐻.
Given 𝒪𝐾[𝐺]-lattices 𝑋 and 𝑌 with 𝐾 ⊗𝒪𝐾

𝑋 ≃ 𝐾 ⊗𝒪𝐾
𝑌 as 𝐾[𝐺]-modules,

we define the defect function (cf. [11, p. 260], [29, (1.16)])

𝐽(𝑋, 𝑌) ∶ 𝒮(𝐺̂) → Id𝐾 .

For every subgroup𝐻⟂ of 𝐺̂, it is given by

𝐽(𝑋, 𝑌)(𝐻⟂) =
[𝑋𝐻 ∶ (𝑋𝔐𝐾,𝐺 )𝐻]𝒪𝐾

[𝑌𝐻 ∶ (𝑌𝔐𝐾,𝐺 )𝐻]𝒪𝐾

.

The defect function is important in the works of Fröhlich and Burns, since𝑋
and 𝑌 are factor equivalent if and only if 𝐽(𝑋, 𝑌) is factorisable (cf. [29, (1.17)
in p. 411]). Using the order-equivalence, Burns proved the following theorem.

Theorem 3.8. (cf. [11, Thm. 2]) Let 𝐾 be a field of one of the following types:
(𝑖) a number field in which no prime divisor of |𝐺| ramifies in 𝐾∕ℚ, or
(𝑖𝑖) an absolutely unramified local field, i.e. a finite unramified extension of

ℚ𝑝.
Let 𝑋 be an 𝒪𝐾[𝐺]-lattice such that 𝐾 ⊗𝒪𝐾

𝑋 is isomorphic to a quotient 𝑄 of
𝐾[𝐺], and let 𝔄 = 𝔄(𝑄,𝑋) be the associated order of 𝑋 in 𝑄. Then, 𝑋 and 𝔄
are genus equivalent if and only if both 𝑋◦𝔄 and ˜𝐽(𝑋,𝔄)(𝐺̂) = 𝒪𝐾 hold, where
˜𝐽(𝑋,𝔄) denotes the factorisable quotient of the defect function 𝐽(𝑋,𝔄).

Remark 3.9. The original formulation of Theorem 3.8 in [11, Thm. 2] is stated
with 𝐺-◦-equivalence in place of order equivalence. Since order equivalence
implies 𝐺-◦-equivalence while genus equivalence implies order equivalence,
the present formulation, as used also in [12], follows directly from Theorem 2
of [11].



1450 ZAKARIAE BOUAZZAOUI AND DONGHYEOK LIM

We now return to the setting of local Minkowski units. Recall that 𝐿∕𝑘 is
an abelian extension of an admissible field unramified at the infinite places.
One easily checks that ℚ ⊗ℤ 𝐸𝐿 is a subrepresentation of ℚ[𝐺𝐿∕𝑘], and that
ℚ(𝐸𝐿) = 𝐴𝐺𝐿∕𝑘 (the specialization of 𝐾(𝑋) with 𝐾 = ℚ,𝑋 = 𝐸𝐿).
At first sight, Theorem 3.8 appears to relate 𝐸𝐿 to 𝔄(𝐴𝐺𝐿∕𝑘 , 𝐸𝐿), which con-

tains 𝒜𝐺𝐿∕𝑘 . However, its significance lies in showing that certain arithmetic
necessary conditions for the genus equivalence of 𝐸𝐿 and 𝒜𝐺𝐿∕𝑘 are actually
sufficient.

The arithmetic necessary conditions are expressed in terms of the factoris-
able quotients of two functions

ℎ𝐿∕𝑘, 𝑤𝐿∕𝑘 ∶ 𝒮(𝐺𝐿∕𝑘)⟶ ℕ,

where 𝐺𝐿∕𝑘 denotes the character group of 𝐺𝐿∕𝑘. They are defined by

ℎ𝐿∕𝑘(𝐻⟂) ∶= lcm( ℎ𝐿𝐻 , |𝐺𝐿∕𝑘| ), 𝑤𝐿∕𝑘(𝐻⟂) ∶= lcm(𝑤𝐿𝐻 , |𝐺𝐿∕𝑘| )

for every 𝐻⟂ ∈ 𝒮(𝐺𝐿∕𝑘). Here, lcm(𝑎, 𝑏) denotes the least common multiple
of 𝑎, 𝑏 ∈ ℕ. Recall that ℎ𝐿𝐻 (resp. 𝑤𝐿𝐻 ) stands for the class number (resp. the
number of roots of unity) of 𝐿𝐻 . For each abelian group 𝐺, define

𝔍̃𝐺 ∶=
(∏

𝑝
𝑝𝐽𝑝

)
⋅ |𝐺|−1,

where, for every prime 𝑝, we write 𝐽𝑝 for the number of non-trivial divisions of
the 𝑝-Sylow subgroup of 𝐺.

Theorem3.10. ([12, Thm. 3]) Let 𝑘 be an admissible field. Let𝐿∕𝑘 be an abelian
extension unramified at the infinite places. Then, 𝐸𝐿 is genus equivalent to𝒜𝐺𝐿∕𝑘
if and only if we have both

ℎ̃𝐿∕𝑘(𝐺𝐿∕𝑘) = 𝑤̃𝐿∕𝑘(𝐺𝐿∕𝑘) ⋅ 𝔍̃𝐺𝐿∕𝑘 ,

and 𝐻̂0(𝐻, 𝐸𝐿) = 1 for every cocyclic subgroup𝐻 of 𝐺𝐿∕𝑘.

A noteworthy feature of this theorem is that it applies to all abelian Galois
groups, since its proof does not rely on the classification of integral represen-
tations of 𝐺𝐿∕𝑘 over ℤ𝑝. The functions ℎ𝐿∕𝑘 and 𝑤𝐿∕𝑘 are related to the factor
equivalence of 𝐸𝐿 and the lattice 𝑌𝑆𝐿,∞ introduced in Example 3.6 (ii) (cf. [21,
Thm. 5.2], [30, Thm. 7 (Multiplicative)]). The invariant 𝔍̃𝐺 appears when con-
sidering the factor equivalence of 𝒜𝐺 and 𝐼𝐺 (cf. [12, page 75], [29]). Since
𝑌𝑆𝐿,∞ is isomorphic to 𝐼𝐺𝐿∕𝑘 , this accounts for the appearance of these quantities
in Theorem 3.10.

3.2.2. Applications of the arithmetic criteria to genus field extensions.
The existence of local Minkowski units in a general Galois extension cannot
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be settled by representation-theoretic considerations alone. Since the arith-
metic of general extensions is highly intricate, it is necessary to apply the arith-
metic criteria in special cases where the number fields enjoy suitable arith-
metic properties. Using Theorem 3.10 together with the theory of central class
fields (cf. [28]), Burns proved the existence of local Minkowski units for certain
abelian 𝑝-extensions of admissible fields. This subsection briefly reviews these
results and explains how they motivate our approach.
Throughout this subsection, let 𝑘 be an admissible field and 𝑝 a prime that

does not divide ℎ𝑘𝑤𝑘. Following [12], an abelian 𝑝-extension 𝐿 of 𝑘 is called a
𝑝-power genus field extension if we have

𝐺𝐿∕𝑘 =
⨁

𝑣∈Ram(𝐿∕𝑘)
𝐼𝐿∕𝑘,𝑣,

where 𝐼𝐿∕𝑘,𝑣 denotes the inertia subgroup of 𝐺𝐿∕𝑘 at 𝑣. By a formula of Furuta
[31], 𝐿 is a 𝑝-power genus field extension of 𝑘 if and only if 𝑝 does not divide
the genus number of 𝐿 over 𝑘.

To state Burns’s theorem, we recall some notation from [66]. For each finite
place 𝑣 of 𝑘, let 𝔭𝑣 denote the maximal ideal of the valuation ring 𝒪𝑘𝑣 for the
local field 𝑘𝑣, and write 𝐍𝔭𝑣 ∈ ℕ for its ideal norm. Let ℎ𝑣 be the smallest
positive integer such that the ℎ𝑣-th power of the prime ideal of 𝑘 corresponding
to 𝑣 is principal, and fix a generator 𝜋𝑣 of this principal ideal.
If 𝑣 does not divide 𝑝, fix an element 𝑥𝑣 ∈ 𝒪×

𝑘𝑣
whose class in the residue

field 𝜅𝑣 ∶= 𝒪𝑘𝑣∕𝔭𝑣 generates the multiplicative group 𝜅
×
𝑣 . If 𝑣 divides 𝑝 and

𝐼𝐿∕𝑘,𝑣 is cyclic, then fix 𝑥𝑣 ∈ 𝒪×
𝑘𝑣
whose class in

𝒪×
𝑘𝑣
∕𝑁𝐿𝑤∕𝑘𝑣𝒪

×
𝐿𝑤
≃ 𝐼𝐿∕𝑘,𝑣

generates the group, where𝑤 is a fixed prime of 𝐿 above 𝑣. For 𝑥 ∈ 𝒪×
𝑘𝑣
, define

[ 𝑣, 𝑥 ] = {
𝑚 mod (𝐍𝔭𝑣 − 1) if 𝑣 ∤ 𝑝 and 𝑥 ≡ 𝑥𝑚𝑣 (mod 𝔭𝑣)
𝑠 mod |𝐼𝐿∕𝑘,𝑣| if 𝑣 ∣ 𝑝, 𝐼𝐿∕𝑘,𝑣 is cyclic, and 𝑥 ≡ 𝑥𝑠𝑣 (mod 𝑁𝐿𝑤∕𝑘𝑣𝒪

×
𝐿𝑤
)

For finite places 𝑣, 𝑣′ ∈ Ram(𝐿∕𝑘), we consider 𝜋𝑣′ ∈ 𝑘× as an element of
𝒪𝑘𝑣 and evaluate [𝑣, 𝜋𝑣′]. Although 𝑥𝑣 and𝜋𝑣 are chosen arbitrarily, this choice
does not affect the 𝑝-divisibility of [𝑣, 𝜋𝑣′].

In [28, 66], for an admissible field 𝑘 and a prime𝑝 ∤ ℎ𝑘𝑤𝑘, the𝑝-power genus
field extensions 𝐿 of 𝑘 with 𝑝 ∤ ℎ𝐿 were completely characterized in terms of
the set Ram(𝐿∕𝑘) and the 𝑝-divisibility of [𝑣𝑖, 𝜋𝑣𝑗 ] for 𝑣𝑖, 𝑣𝑗 ∈ Ram(𝐿∕𝑘) (cf.
[12, Thm. 4]). Building on this, Burns [12] gave a complete characterization of
the existence of local Minkowski units in such 𝐿.
As a preliminary remark, note that if 𝐿 is a 𝑝-power degree genus field exten-

sion of 𝑘with 𝑝 ∤ ℎ𝐿 and rk𝑝(𝐺𝐿∕𝑘) ≤ 2, then we have |Ram(𝐿∕𝑘)| = rk𝑝(𝐺𝐿∕𝑘)
(cf. [12, Thm. 4.(b)]). In particular, the group 𝐼𝐿∕𝑘,𝑣 is cyclic for every 𝑣 ∈
Ram(𝐿∕𝑘).
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Theorem 3.11. ([12, Thm. 5]) Let 𝑘 be an admissible field. Let 𝑝 be a prime not
dividing ℎ𝑘𝑤𝑘. Let 𝐿 be a 𝑝-power degree genus field extension of 𝑘 with 𝑝 ∤ ℎ𝐿.
Then 𝐸𝐿 and𝒜𝐺𝐿∕𝑘 are genus equivalent if and only if one of the following holds:

(i) Ram(𝐿∕𝑘) = {𝑣1}, and the group 𝐺𝐿∕𝑘 is cyclic;
(ii) Ram(𝐿∕𝑘) = {𝑣1, 𝑣2}, the 𝑝-rank of 𝐺𝐿∕𝑘 is 2, and both [𝑣1, 𝜋𝑣2] and

[𝑣2, 𝜋𝑣1] are not divisible by 𝑝.

Remark 3.12. Consider the case 𝑘 = ℚ with 𝑝 an odd prime. By class field
theory, 𝐼𝐿∕ℚ,𝑣 is cyclic for every prime 𝑣 and every abelian 𝑝-extension 𝐿∕ℚ.
Since ℚ has class number 1, we may take 𝜋𝑞 = 𝑞 for each rational prime 𝑞. It
is known (cf. [12, page 86]) that:

(i) [ 𝑝, 𝑞 ] is divisible by 𝑝 if and only if 𝑞 ≡ 1 (mod 𝑝2), and
(ii) [ 𝑞, 𝑝 ] is divisible by 𝑝 if and only if 𝑝 is a 𝑝-th power residue modulo

𝑞.

Let 𝐿 be a 𝑝-power genus field extension of ℚ ramified precisely at 𝑝 and 𝑞.
If [ 𝑝, 𝑞 ] is not divisible by 𝑝, then ℎ𝐿 is prime to 𝑝 by a theorem of Fröhlich (cf.
[12, Thm. 4.(b)]). In this case, 𝐿 is moreover 𝑝-rational (cf. Corollary 6.10).
In §6we shall extend Theorem 3.11 to non-abelian 𝑝-extensions ofℚ unram-

ified outside 𝑝 and 𝑞 such that [ 𝑝, 𝑞 ] is not divisible by 𝑝.

3.3. Factor equivalence and regulator constants. In this subsection, we
present basic properties of the regulator constant that will be useful in later
sections. We also recall the theorem of Bartel on the relationship between the
theory of factor equivalence and the theory of regulator constants.

3.3.1. Basic facts on regulator constants. Let 𝐺 be a finite group and ℛ
a principal ideal domain with field of fractions 𝒦. Throughout this subsec-
tion, we assume that𝒦 has characteristic prime to |𝐺|. The regulator constant
𝒞Θ(ℳ) is an element of𝒦×∕ℛ×2, defined for every pair (ℳ,Θ) of a 𝐺-relation
Θ and an ℛ[𝐺]-latticeℳ such that𝒦 ⊗ℛ ℳ is a self-dual representation of 𝐺
over𝒦. The theory of regulator constant was introduced by Tim and Vladimir
Dokchitser in [25] and has played a central role in several subsequent works.

Definition 3.13. A formal sum Θ =
∑

𝐻≤𝐺 𝑛𝐻𝐻 of subgroups 𝐻 of 𝐺 with
coefficients 𝑛𝐻 ∈ ℤ is called a 𝐺-relation if there is an isomorphism

⨁

𝐻≤𝐺
𝑛𝐻<0

ℚ[𝐺∕𝐻]−𝑛𝐻 ≃
⨁

𝐻≤𝐺
𝑛𝐻>0

ℚ[𝐺∕𝐻]𝑛𝐻

of ℚ[𝐺]-modules.

The set of 𝐺-relations forms a subgroup of the free abelian group ℤ[𝒮(𝐺)]
over the set 𝒮(𝐺) of subgroups of 𝐺. Its ℤ-rank is known to equal the number
of conjugacy classes of non-cyclic subgroups of 𝐺 (cf. [63, §13.1, Thm. 30]).

Example 3.14. (i) If 𝐺 is cyclic, then there are no non-trivial 𝐺-relations.
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(ii) If𝐺 is isomorphic to (ℤ∕𝑝ℤ)2 for a prime𝑝, then the group of𝐺-relations
is generated over ℤ by the 𝐺-relation

1 + 𝑝 ⋅ 𝐺 −
∑

𝐻
𝐻,

where 𝐻 runs over the subgroups of 𝐺 of order 𝑝, and 1 denotes the
trivial subgroup.

Definition 3.15. ([24, Rem. 2.27]) Let ℛ,𝒦,𝐺, andℳ be as above. Let ⟨⋅, ⋅⟩ ∶
ℳ×ℳ ⟶ℒ be aℛ-bilinear, 𝐺-invariant pairing that is non-degenerate, with
values in some extension ℒ of 𝒦. Let Θ =

∑
𝐻≤𝐺 𝑛𝐻𝐻 be a 𝐺-relation. The

regulator constant 𝒞Θ(ℳ) ofℳ with respect to Θ is defined by

𝒞Θ(ℳ) =
∏

𝐻≤𝐺
det ( 1

|𝐻|
⟨⋅, ⋅⟩||||ℳ𝐻)

𝑛𝐻
∈ ℒ×∕ℛ×2,

where each determinant is taken with respect to any ℛ-basis ofℳ𝐻 .

Remark 3.16. (i) It is known that 𝒞Θ(ℳ) is independent of the particular
choice of pairing (cf. [24, Thm. 2.17]). Since𝒦⊗ℛℳ is self-dual, there
exists a non-degenerate𝐺-invariant𝒦-bilinear pairing on𝒦⊗ℛℳwith
values in𝒦. Therefore, 𝒞Θ(ℳ) is in fact defined in𝒦×∕ℛ×2.

(ii) Whenℛ is equal toℤ, the regulator constants 𝒞Θ(ℳ) take values inℚ×

because ℛ×2 is trivial.
(iii) The rational representations of the form

⨁

𝐻≤𝐺
ℚ[𝐺∕𝐻]𝑎𝐻 , (𝑎𝐻 ∈ ℕ)

are called permutation representations. It is known that permutation
representations are self-dual (cf. [1, §3]). Therefore, the regulator con-
stant can be used to study ℤ[𝐺]-lattices whose rational representations
are isomorphic to 𝐴𝐺 ⊕ℚ[𝐺]𝑚 for𝑚 ≥ 0, where 𝐴𝐺 denotes the repre-
sentation ℚ[𝐺]∕(𝑠𝐺).

(iv) The readers can also refer to [1, §3] and [13, Lem. 4.3] for other con-
ceptual formulations of the regulator constant.

The following lemma is immediate from the definition.

Lemma 3.17. Let Θ and Θ′ be 𝐺-relations, and letℳ andℳ′ be ℛ[𝐺]-lattices
whose rational representations are self-dual. Then we have

𝒞Θ(ℳ ⊕ℳ′) = 𝒞Θ(ℳ) ⋅ 𝒞Θ(ℳ′), 𝒞Θ+Θ′(ℳ) = 𝒞Θ(ℳ) ⋅ 𝒞Θ′(ℳ).

The following properties of 𝐺-relations and the regulator constants will be
useful.

Lemma 3.18. ([24, Exam. 2.30]) If
∑

𝐻≤𝐺 𝑛𝐻𝐻 is a 𝐺-relation, then we have∑
𝐻≤𝐺 𝑛𝐻 = 0.
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Lemma 3.19. ([24, Lem. 2.46], [65, Rem. 3.2]) If 𝐻 is a cyclic subgroup of 𝐺,
then we have

𝒞Θ(ℛ[𝐺∕𝐻]) = 1

for every 𝐺-relation Θ.

For a finite group𝐺, there are two natural ways to construct𝐺-relations from
those of its subgroups and quotient groups.

(i) Let 𝐻 be a subgroup of 𝐺 and let Θ =
∑

𝐻′≤𝐻 𝑛𝐻′𝐻′ be an 𝐻-relation.
Then, Θ is also a 𝐺-relation, which we denote by Ind𝐺𝐻Θ.

(ii) Let 𝐵 be a normal subgroup of 𝐺 and set 𝐺′ = 𝐺∕𝐵. Suppose Θ′ =∑
𝐵≤𝐻≤𝐺 𝑎𝐻∕𝐵(𝐻∕𝐵) is a 𝐺

′-relation. Then,
∑

𝐵≤𝐻≤𝐺
𝑎𝐻∕𝐵𝐻

is a 𝐺-relation, called the inflation of Θ, and is denoted by Inf𝐺𝐺′ Θ′.
If ℳ is an ℛ[𝐺′]-lattice, then ℳ can be viewed as an ℛ[𝐺]-lattice via the

natural projection 𝐺 → 𝐺′. We denote this ℛ[𝐺]-lattice by Inf𝐺𝐺′ ℳ. Similarly,
if 𝒩 is an ℛ[𝐺]-lattice and 𝐻 ≤ 𝐺, we denote by Res𝐺𝐻𝒩 the corresponding
ℛ[𝐻]-lattice obtained by restriction. Then, we have the following proposition.

Proposition 3.20. ([24, Prop. 2.45]) The following statements hold:
(i) Let 𝐺 be a finite group and 𝐺′ a quotient of 𝐺. For every 𝐺′-relation Θ′

and everyℛ[𝐺′]-latticeℳ with self-dual rational representation, we have

𝒞Inf𝐺𝐺′ Θ′(Inf
𝐺
𝐺′ ℳ) = 𝒞Θ′(ℳ).

(ii) Let 𝐻 be a subgroup of 𝐺. For every 𝐻-relation Θ and every ℛ[𝐺]-lattice
𝒩 with self-dual rational representation, we have

𝒞Ind𝐺𝐻 Θ(𝒩) = 𝒞Θ(Res
𝐺
𝐻𝒩).

Proof. Let ⟨ , ⟩ be a𝐺′-invariantℛ-bilinear non-degenerate pairing onℳ. Then
⟨ , ⟩ is also a 𝐺-invariant non-degenerate pairing on Inf𝐺𝐺′ ℳ. The first equality
follows from computing both regulator constants with ⟨ , ⟩. The second equal-
ity can be checked similarly by using a 𝐺-invariant ℛ-bilinear pairing on𝒩 as
an𝐻-bilinear pairing on Res𝐺𝐻𝒩. □

Lastly, we mention a result on 𝑣𝑝(𝒞Θ(ℳ)) for rational primes 𝑝 when ℛ is
equal to ℤ.

Proposition 3.21. ([1, Prop. 3.9]) Suppose thatℛ is equal toℤ. Let 𝐺 be a finite
group and 𝐵 be a normal subgroup of 𝐺 such that the quotient group 𝐶 = 𝐺∕𝐵 is
cyclic. Let 𝑝 be a prime not dividing |𝐵|. Then, we have 𝑣𝑝(𝒞Θ(ℳ)) = 0 for every
𝐺-relationΘ and everyℤ[𝐺]-latticeℳ whose rational representation is self-dual.
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3.3.2. Theorems of Bartel. The regulator constant yields a new criterion to
verify the factor equivalence of two ℤ[𝐺]-lattices.

Theorem 3.22. ([2, Cor. 2.12]) Let 𝐺 be a finite group. Letℳ and 𝒩 be two
ℤ[𝐺]-lattices with the same self-dual rational representation. Then, ℳ and 𝒩
are factor equivalent if and only if we have

𝒞Θ(ℳ) = 𝒞Θ(𝒩)

for all 𝐺-relations Θ.

The factor equivalence of two lattices can be studied locally, as shown in the
following proposition.

Proposition 3.23. Let𝐺 be a finite group and 𝑝 a prime. Letℳ and𝒩 beℤ[𝐺]-
lattices as in Theorem 3.22. Then,ℤ𝑝⊗ℤℳ andℤ𝑝⊗ℤ𝒩 are factor equivalent
as ℤ𝑝[𝐺]-lattices if and only if we have

𝑣𝑝(𝒞Θ(ℳ)) = 𝑣𝑝(𝒞Θ(𝒩))

for all 𝐺-relations Θ.

Proof. For an injective ℤ[𝐺]-morphism 𝚤 ∶ ℳ → 𝒩 and a 𝐺-relation Θ =∑
𝐻≤𝐺 𝑛𝐻𝐻, we have

𝒞Θ(ℳ)∕𝒞Θ(𝒩) =
∏

𝐻≤𝐺
[𝒩𝐻 ∶ 𝚤(ℳ𝐻) ]2𝑛𝐻 (1)

(cf. [2, Lem. 2.11]). The claim follows from the equality

[ (ℤ𝑝 ⊗ℤ 𝒩)𝐻 ∶ (1 ⊗ 𝚤)((ℤ𝑝 ⊗ℤ ℳ)𝐻) ]ℤ𝑝
= |[𝒩𝐻 ∶ 𝚤(ℳ𝐻) ]|𝑝

and [2, Prop. 2.4.(4)]. □

Corollary 3.24. Let 𝐺 be a finite 𝑝-group, and let ℳ and 𝒩 be ℤ[𝐺]-lattices
affording the same self-dual rational representation. Thenℳ and𝒩 are factor
equivalent if and only if we have

𝑣𝑝(𝒞Θ(ℳ)) = 𝑣𝑝(𝒞Θ(𝒩))

for all 𝐺-relations Θ.

Proof. By the proof of Lemma 3.5,ℳ and𝒩 are factor equivalent if and only if
ℤ𝓁⊗ℤℳ andℤ𝓁⊗ℤ𝒩 are factor equivalent asℤ𝓁[𝐺]-lattices for every prime
𝓁. Since 𝐺 is a 𝑝-group, these lattices are isomorphic for all 𝓁 ≠ 𝑝. Hence, the
claim follows from Proposition 3.23. □

In [30], Fröhlich obtained a theorem [30, Thm. 7 (Multiplicative)] on the fac-
tor equivalence of 𝑆-units and 𝑌𝑆 (cf. Example 3.6). This theorem of Fröhlich
was generalized by de Smit, who also gave a simplified proof [21, Thm. 5.2].
In [1], Bartel independently proved a theorem (Theorem 3.25) on the regulator
constant of the 𝑆-units. He later verified that his theorem is equivalent to the
theorem of de Smit (cf. [2, page 8]) by using Theorem 3.22. The following theo-
rem of Bartel provides an arithmetic description of the regulator constant of the
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unit lattice, which is the principal integral lattice in this paper. Although his
theorem is formulated for general 𝑆-units, we restrict here to the special case of
the group of ordinary units.

Theorem 3.25. ([1, Prop. 2.15]) Let 𝐿∕𝐾 be a finite Galois extension of number
fields with Galois group 𝐺. For each subgroup𝐻 of 𝐺, write 𝜆(𝐻) for the order of
the kernel of the map

𝐻1(𝐻, 𝜇(𝐿))⟶ 𝐻1(𝐻,𝒪×
𝐿 )

induced by the inclusion 𝜇(𝐿) ↪ 𝒪×
𝐿 . If Θ =

∑
𝐻≤𝐺 𝑛𝐻𝐻 is a 𝐺-relation, then we

have

𝒞Θ(𝐸𝐿) = 𝒞Θ(ℤ) ⋅
∏

𝐻≤𝐺
(
𝑅𝐿𝐻
𝜆(𝐻)

)
2𝑛𝐻

,

where ℤ in 𝒞Θ(ℤ) denotes the ℤ[𝐺]-lattice ℤ with trivial 𝐺-action.

Remark 3.26. Let Θ =
∑

𝐻≤𝐺 𝑛𝐻𝐻 be a 𝐺-relation. One checks

𝒞Θ(ℤ) =
∏

𝐻≤𝐺
|𝐻|−𝑛𝐻

using the bilinear map ⟨𝑛,𝑚⟩ ∶= 𝑛𝑚 on ℤ.

Remark 3.27. ([1, Lem. 2.14]) Let 𝐿∕𝐾 be a Galois extension of number fields
with Galois group 𝐺. Let 𝐻 be a subgroup of 𝐺. The embedding 𝒪×

𝐿𝐻 ↪ 𝒪×
𝐿

induces an embedding 𝐸𝐿𝐻 ↪ 𝐸𝐻𝐿 . We can easily check

𝜆(𝐻) = [𝐸𝐻𝐿 ∶ 𝐸𝐿𝐻 ]

by using cohomology.

4. Regulator constants of some standard lattices
In this section, we derive formulae for 𝒞Θ(𝒜𝐺) and 𝒞Θ(𝐼𝐺) that hold for gen-

eral finite groups 𝐺 and 𝐺-relations Θ. In [29], Fröhlich proved that𝒜𝐺 and 𝐼𝐺
are not factor equivalent when 𝐺 is a non-cyclic abelian group. We provide a
proof of this theorem by explicitly showing that if 𝐺 is not cyclic, then we have
𝒞Θ(𝒜𝐺) ≠ 𝒞Θ(𝐼𝐺) for some 𝐺-relation Θ. Our formulae will be useful in the
study of the Galois module structure of unit lattices in later sections. When 𝐺
is cyclic, the lattices 𝒜𝐺 and 𝐼𝐺 are factor equivalent, because 𝐺 has no non-
trivial 𝐺-relations. Therefore, in this section, we assume that 𝐺 is non-cyclic.

Proposition 4.1. Let 𝐺 be a non-cyclic finite group, and let Θ =
∑

𝐻≤𝐺 𝑛𝐻𝐻 be
a 𝐺-relation. Then we have

𝒞Θ(𝒜𝐺) =
∏

𝐻≤𝐺
|𝐻|𝑛𝐻 . (2)

Proof. By Remark 3.16 (i), we may compute 𝒞Θ(𝒜𝐺)with any non-degenerate
bilinear𝐺-invariant pairing on𝒜𝐺 . Let ( , ) denote the pairing onℤ[𝐺] defined



GALOIS STRUCTURES OF UNITS IN TOTALLY REAL 𝑝-RATIONAL FIELDS 1457

by (𝑔, 𝑔′) ∶= 𝛿𝑔,𝑔′ for all 𝑔, 𝑔′ ∈ 𝐺, where 𝛿𝑔,𝑔′ denotes the Kronecker delta
symbol. Define a second pairing ⟨ , ⟩ on ℤ[𝐺] by

⟨𝑥, 𝑦⟩ ∶= ( 𝑥 − 1
|𝐺|

∑

𝑔∈𝐺
𝑔𝑥 , 𝑦 − 1

|𝐺|
∑

𝑔∈𝐺
𝑔𝑦 )

for all 𝑥, 𝑦 ∈ ℤ[𝐺]. A straightforward computation shows that ⟨𝑔, 𝑔′⟩ = 𝛿𝑔,𝑔′ −
1∕|𝐺| for all 𝑔, 𝑔′ ∈ 𝐺. From this, one checks that both the left and right kernels
of ⟨ , ⟩ coincide with the subspace (𝑠𝐺) of ℤ[𝐺] generated by 𝑠𝐺 . Hence, ⟨ , ⟩
induces a non-degenerate bilinear pairing on 𝒜𝐺 . The 𝐺-invariance of ⟨ , ⟩ on
𝒜𝐺 follows directly from its 𝐺-invariance on ℤ[𝐺].
We can compute 𝒞Θ(𝒜𝐺) by evaluating the determinant det

(
⟨, ⟩|(𝒜𝐺)𝐻

)
for

each subgroup 𝐻 of 𝐺. For each subgroup 𝐻 of 𝐺, the set {𝑠𝐻 ⋅ 𝜎}𝜎∉𝐻 of the

classes of 𝑠𝐻 ⋅ 𝜎 ∈ ℤ[𝐺]with 𝜎 ∉ 𝐻, taken in𝒜𝐺 , forms aℤ-basis of
(
𝒜𝐺

)𝐻
. By

definition of ⟨ , ⟩, we have

⟨
𝑠𝐻 ⋅ 𝑔1, 𝑠𝐻 ⋅ 𝑔2

⟩
=

⎧
⎪

⎨
⎪
⎩

|𝐻| ⋅ (|𝐺| − |𝐻|)
|𝐺|

if 𝐻𝑔1 = 𝐻𝑔2,

−|𝐻|
2

|𝐺|
if 𝐻𝑔1 ≠ 𝐻𝑔2.

Consequently, thematrix of
( 1
|𝐻|
⟨, ⟩|(𝒜𝐺)𝐻

)
with respect to the basis {𝑠𝐻 ⋅ 𝜎}𝜎∉𝐻

is the following circulant matrix of rank (𝐺 ∶ 𝐻) − 1:

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

|𝐺|−|𝐻|
|𝐺|

− |𝐻|
|𝐺|

⋯ − |𝐻|
|𝐺|

− |𝐻|
|𝐺|

− |𝐻|
|𝐺|

|𝐺|−|𝐻|
|𝐺|

⋯ − |𝐻|
|𝐺|

− |𝐻|
|𝐺|

⋮ ⋮ ⋱ ⋮ ⋮
− |𝐻|
|𝐺|

− |𝐻|
|𝐺|

⋯ |𝐺|−|𝐻|
|𝐺|

− |𝐻|
|𝐺|

− |𝐻|
|𝐺|

− |𝐻|
|𝐺|

⋯ − |𝐻|
|𝐺|

|𝐺|−|𝐻|
|𝐺|

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(3)

By the formula for the determinant of circulant matrices (cf. [18, Thm. 1]), the
determinant of (3) equals

1
|𝐺|(𝐺∶𝐻)−1

⋅
(𝐺∶𝐻)−2∏

𝑗=0
( (|𝐺| − |𝐻|) − |𝐻|

(
𝜔𝑗 + 𝜔2𝑗 +⋯+ 𝜔((𝐺∶𝐻)−2)𝑗

)
),

where 𝜔 denotes a primitive ((𝐺 ∶ 𝐻) − 1)th root of unity. The factor in the
product equals |𝐻|when 𝑗 = 0, and |𝐺| otherwise. Therefore, the determinant
det

( 1
|𝐻|
⟨, ⟩|(𝒜𝐺)𝐻

)
is equal to |𝐻||𝐺|−1. Hence, we have

𝒞Θ(𝒜𝐺) =
∏

𝐻≤𝐺

(
|𝐻||𝐺|−1

)𝑛𝐻 . (4)

By Lemma 3.18, the exponent of |𝐺| in (4) is 0. □
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Proposition 4.2. Let 𝐺 be a non-cyclic finite group. Let Θ =
∑

𝐻≤𝐺 𝑛𝐻𝐻 be a
𝐺-relation. Then we have

𝒞Θ(𝐼𝐺) =
∏

𝐻≤𝐺
|𝐻|−𝑛𝐻 .

Proof. Weuse the restriction to 𝐼𝐺 of the pairing ( , )defined onℤ[𝐺] by (𝑔, 𝑔′) =
𝛿𝑔,𝑔′ for 𝑔, 𝑔′ ∈ 𝐺. This pairing is 𝐺-invariant and symmetric. Moreover, the
left kernel of ( , ) is trivial, because if

∑
𝜏∈𝐺 𝑎𝜏𝜏 ∈ 𝐼𝐺 lies in the left kernel, then

we have ( ∑

𝜏∈𝐺
𝑎𝜏𝜏 , 𝜎 − 1

)
= 𝑎𝜎 − 𝑎1 = 0

for all 𝜎 ∈ 𝐺. From
∑

𝜏∈𝐺 𝑎𝜏 = 0, we deduce 𝑎1 = 0. By the symmetry of the
pairing, the right kernel is also trivial.
For every subgroup𝐻 of𝐺, the submodule (𝐼𝐺)𝐻 coincides with the kernel of

the restriction of the augmentation map to 𝑠𝐻 ⋅ ℤ[𝐺] = (ℤ[𝐺])𝐻 . Hence, (𝐼𝐺)𝐻
is equal to 𝑠𝐻 ⋅ 𝐼𝐺 with ℤ-basis {𝑠𝐻 ⋅ (𝜎 − 1)}𝐻𝜎≠𝐻 . For this basis, we have

1
|𝐻|

⋅
(
𝑠𝐻 ⋅ (𝜎 − 1), 𝑠𝐻 ⋅ (𝜏 − 1)

)
= {

2 if 𝐻𝜎 = 𝐻𝜏,
1 otherwise.

Thus, the matrix ( 1
|𝐻|

(
𝑠𝐻 ⋅ (𝜎 − 1), 𝑠𝐻 ⋅ (𝜏 − 1)

)
)
𝐻𝜏,𝐻𝜎≠𝐻

is the circulant

matrix of rank (𝐺 ∶ 𝐻) − 1, whose diagonal entries are equal to 2 and whose
off-diagonal entries are equal to 1. Its determinant is equal to

(𝐺∶𝐻)−2∏

𝑗=0
(2 + (𝜔𝑗 + 𝜔2𝑗 +⋯+ 𝜔((𝐺∶𝐻)−2)𝑗)), (5)

where 𝜔 denotes a primitive ((𝐺 ∶ 𝐻) − 1)th root of unity. The product (5)
equals (𝐺 ∶ 𝐻). In conclusion, we have

𝒞Θ(𝐼𝐺) =
∏

𝐻≤𝐺
(𝐺 ∶ 𝐻)𝑛𝐻 =

∏

𝐻≤𝐺
|𝐻|−𝑛𝐻 .

The last equality follows from Lemma 3.18. □

The formulae for the regulator constants of 𝒜𝐺 and 𝐼𝐺 yield the following
corollary.

Corollary 4.3. For every non-cyclic group 𝐺 and every 𝐺-relation Θ, we have
𝒞Θ(𝒜𝐺) = 𝒞Θ(𝐼𝐺)−1. In particular, 𝒜𝐺 and 𝐼𝐺 are not factor equivalent if 𝐺 is
not cyclic.

Proof. The first part of the statement follows immediately fromProposition 4.1
and Proposition 4.2. By Theorem 3.22, the ℤ[𝐺]-lattices 𝒜𝐺 and 𝐼𝐺 are factor
equivalent if and only if we have 𝒞Θ(𝒜𝐺) = 𝒞Θ(𝐼𝐺) for every 𝐺-relation Θ. By
Remark 3.26, this is equivalent to 𝒞Θ(𝐼𝐺) = 𝒞Θ(ℤ) = 1 for all Θ. By [4, Cor.
9.2], for a prime 𝑙, there exists a𝐺-relationΘwith 𝑣𝑙(𝒞Θ(ℤ)) ≠ 1 if and only if𝐺
has a subquotient isomorphic to (ℤ∕𝑙ℤ)2 or toℤ∕𝑙ℤ⋊ℤ∕𝑝ℤ for a prime 𝑝 such
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that ℤ∕𝑝ℤ acts faithfully on ℤ∕𝑙ℤ. It remains to show that such a subquotient
exists if 𝐺 is not cyclic.
Suppose that 𝐺 is a non-cyclic group. If 𝐺 has no subquotient of the form

(ℤ∕𝑙ℤ)2 for any prime 𝑙, then all the Sylow subgroups of 𝐺 are cyclic. By [62,
Thm. 10.1.10], the group 𝐺 admits a presentation

⟨ 𝑎, 𝑏 | 𝑎𝑚 = 1 = 𝑏𝑛, 𝑏−1𝑎𝑏 = 𝑎𝑟 ⟩
for some integers 𝑚, 𝑛, 𝑟 > 0 with (𝑟 − 1)𝑛 relatively prime to 𝑚. For every
quotient𝒬 of𝐺, write 𝑎𝒬 and 𝑏𝒬 for the classes of 𝑎 and 𝑏 in𝒬 respectively. For
any element 𝑥 of a group, let ⟨𝑥⟩ be the cyclic subgroup generated by 𝑥. Since
𝑟−1 is coprime to𝑚, the commutator subgroup [𝐺, 𝐺] is equal to ⟨𝑎⟩. Hence, for
every prime 𝑙 dividing𝑚, the quotient 𝐺(𝑙) ∶= 𝐺∕⟨𝑎𝑙⟩ is non-abelian. Let 𝐺(𝑙)′
be the quotient of𝐺(𝑙) by the subgroup of elements of ⟨𝑏𝐺(𝑙)⟩ that commutewith
𝑎𝐺(𝑙). Then, the quotient 𝐺(𝑙)′ is isomorphic to a semi-direct product ℤ∕𝑙ℤ ⋊
ℤ∕𝑛′ℤ for some 𝑛′|𝑛 such that ℤ∕𝑛′ℤ acts faithfully on ℤ∕𝑙ℤ. For each prime
divisor 𝑝 of 𝑛′, the subgroup of 𝐺(𝑙)′ generated by 𝑎𝐺(𝑙)′ and 𝑏

𝑛′∕𝑝
𝐺(𝑙)′ is a non-

abelian group of order 𝑝𝑙. □

5. Proof of Theorem A
In this section, we prove Theorem A. Let 𝐿 be a number field. From the

analytic class number formula and the functional equation of the Dedekind
zeta function 𝜁𝐿, we obtain the following formula

𝜁∗𝐿(0) = −
ℎ𝐿
𝑤𝐿

𝑅𝐿 (6)

for the special value of 𝜁𝐿(𝑠) at 0. The Artin formalism for Artin 𝐿-functions,
togetherwith (6), yields the following theoremproved independently by Brauer
[9] and by Kuroda [49].

Theorem 5.1 (Brauer–Kuroda). Let 𝐿∕𝐾 be a Galois extension of number fields
with Galois group 𝐺. If there is a 𝐺-relation Θ =

∑
𝐻≤𝐺 𝑛𝐻𝐻, then we have the

equality
∏

𝐻≤𝐺
(
ℎ𝐿𝐻𝑅𝐿𝐻
𝑤𝐿𝐻

)
𝑛𝐻

= 1. (7)

We shall use the following equivalent form of (7), which is more convenient for
our purpose :

∏

𝐻≤𝐺
ℎ𝑛𝐻𝐿𝐻 =

(∏

𝐻≤𝐺
𝑅𝑛𝐻𝐿𝐻

)−1
×
(∏

𝐻≤𝐺
𝑤𝑛𝐻
𝐿𝐻
)
. (8)

Theorem 5.2 (Theorem A). Let 𝐿 be a Galois extension of an admissible field 𝑘
with Galois group 𝐺. Suppose that no infinite places of 𝑘 are ramified in 𝐿. Then
𝐸𝐿 is factor equivalent to𝒜𝐺 as ℤ[𝐺]-lattices if and only if we have the equality

∏

𝐻≤𝐺
|𝐻|𝑛𝐻 =

∏

𝐻≤𝐺
ℎ−𝑛𝐻𝐿𝐻 ⋅

∏

𝐻≤𝐺
(
𝜆(𝐻)
𝑤𝐿𝐻

)
−𝑛𝐻
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for all 𝐺-relations Θ =
∑

𝐻≤𝐺 𝑛𝐻𝐻.

Proof. By Theorem 3.22, 𝐸𝐿 is factor-equivalent to 𝒜𝐺 as ℤ[𝐺]-lattices if and
only if we have 𝒞Θ(𝐸𝐿) = 𝒞Θ(𝒜𝐺) for all 𝐺-relations Θ. By Theorem 3.25 and
Proposition 4.1, this holds if and only if we have

∏

𝐻≤𝐺
|𝐻|𝑛𝐻 = 𝒞Θ(ℤ) ⋅

∏

𝐻≤𝐺
(
𝑅𝐿𝐻
𝜆(𝐻)

)
2𝑛𝐻

(9)

for all 𝐺-relations Θ =
∑

𝐻≤𝐺 𝑛𝐻𝐻. By the equality (8) and Remark 3.26, the
condition (9) is equivalent to the condition

∏

𝐻≤𝐺
|𝐻|2𝑛𝐻 =

∏

𝐻≤𝐺
ℎ−2𝑛𝐻𝐿𝐻 ⋅

∏

𝐻≤𝐺
𝜆(𝐻)−2𝑛𝐻 ⋅

∏

𝐻≤𝐺
𝑤2𝑛𝐻
𝐿𝐻 . (10)

Taking the positive square root of (10) yields the claim. □

Remark 5.3. ([9, §2]) Brauer proved that for every Galois extension 𝐿∕𝐾 of
number fields and every 𝐺𝐿∕𝐾-relation Θ =

∑
𝐻≤𝐺𝐿∕𝐾

𝑛𝐻𝐻, the quotient
∏

𝐻≤𝐺𝐿∕𝐾
𝑤𝑛𝐻
𝐿𝐻 is a power of 2.

Let 𝐿 and 𝐺 be as in Theorem 5.2. If 𝐿 is totally real, then we have 𝑤𝐿𝐻 = 2
for all subgroups𝐻 of 𝐺. Then, the quotients of𝑤𝐿𝐻 ’s are equal to 1 by Lemma
3.18. Furthermore, if 𝐺 has an odd order, then we have 𝜆(𝐻) = 1 for every
subgroup𝐻 of 𝐺. Therefore, we have the following corollary.

Corollary 5.4. Let 𝐿 be a real Galois number field of odd degree. Let 𝐺 be the
Galois group of 𝐿 overℚ. Then, theℤ[𝐺]-lattices 𝐸𝐿 and𝒜𝐺 are factor equivalent
if and only if we have the equality

∏

𝐻≤𝐺
|𝐻|𝑛𝐻 =

∏

𝐻≤𝐺
ℎ−𝑛𝐻𝐿𝐻

for all 𝐺-relations Θ =
∑

𝐻≤𝐺 𝑛𝐻𝐻.

Remark 5.5. Theorem A is a generalization of the necessary conditions on
the quotient of class numbers of subfields for the existence of local Minkowski
units that were obtained by Burns [12, Thm. 3], Duval [27, Rem. 5.3 (a)], and
Marszalek [55, Thm. 2.8. (b)].

Example 5.6. Let 𝐺 = (ℤ∕𝑝ℤ)2⋊ℤ∕𝑝ℤ be the Heisenberg group of order 𝑝3
with 𝑝 ≥ 3. It has the 𝐺-relation

Θ = 𝐼 − 𝐼𝑍 − 𝐽 + 𝐽𝑍,

where𝑍 denotes the center of𝐺, and 𝐼 and 𝐽 are twonon-conjugate, non-central
subgroups of order 𝑝. Let 𝐿 be a Galois extension of ℚ with Galois group 𝐺.
Then, the factor equivalence of 𝐸𝐿 and𝒜𝐺 is subject to the following necessary
condition

ℎ𝐿𝐼ℎ𝐿𝐽𝑍
ℎ𝐿𝐽ℎ𝐿𝐼𝑍

= 1.
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Remark 5.7. For a finite group 𝐺, a 𝐺-relationΘ =
∑

𝐻≤𝐺 𝑛𝐻𝐻 is called useful
(cf. [6]) if we have 𝑛1 ≠ 0 for the trivial subgroup 1 of 𝐺. For a certain useful
𝐺-relation Θ (cf. [3, Assumption 1.3]), the index

[ℳ ∶
∑

𝑛𝐻 ⋅𝑛1<0
ℳ𝐻] ∈ ℕ

is finite for every ℤ[𝐺]-latticeℳ. In [3], the authors studied the relationship
between this index, the rational representation ℚ⊗ℤ ℳ, and the factor equiv-
alence class of ℳ for 𝐺-relations satisfying [3, Assumption 1.3]. As a conse-
quence, if ℳ is the unit lattice of a Galois extension 𝐿 of an admissible field
𝑘 where no infinite places of 𝑘 are ramified in 𝐿, then the index (for the 𝐺-
relations satisfying [3, Assumption 1.3]) is uniquely determined by the factor
equivalence class ofℳ.

Remark 5.8. In [3], the authors showed that the regulator constant can be used
to obtain analogous results on the integral Galois module structure of higher K-
groups of number fields and the Mordell-Weil groups of elliptic curves.

6. The arithmetic properties of totally real 𝒑-rational number
fields
The theory of factor equivalence provides a method to study the Galois mod-

ule structure of unit lattices in terms of class numbers. However, applying the
theory in practice is usually difficult because class numbers are notoriously hard
to compute. Burns exploited the strong arithmetic properties of 𝑝-power genus
field extensions of admissible fields to study the existence of local Minkowski
units (cf. §3.2).
In the remainder of this paper, we examine the Galois module structure of

unit lattices for another special family of totally real number fields, called 𝑝-
rational fields. The 𝑝-rational fields were investigated in [45, 58, 57] to con-
struct infinitely many non-abelian extensions ofℚ satisfying Leopoldt’s conjec-
ture at the prime 𝑝. It has long been observed that many arithmetic problems
become simpler when the field is 𝑝-rational. In the totally real case, this prin-
ciple appears to be more amenable to direct treatment, since the Galois group
of the maximal pro-𝑝 extension unramified outside 𝑝 has a simpler structure
(cf. [37, Figure 1]), which permits more straightforward methods of relating
the defect of 𝑝-rationality to the complexity of the problems (cf. [38, 37]). Moti-
vated by this perspective, we apply the strong arithmetic properties of𝑝-rational
fields to prove the non-existence of Minkowski units in non-abelian 𝑝-rational
𝑝-extensions ofℚ (§7), and to study the relative Galois module structure of unit
lattices in Galois extensions of totally real 𝑝-rational fields (§8).

The abundance of 𝑝-rational fields in our context is illustrated by the follow-
ing two facts:
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(i) By a theorem of Movahhedi (Theorem 6.8), if a number field 𝐹 is 𝑝-
rational, then there exists an infinite family of infinite pro-𝑝 towers of
𝑝-rational 𝑝-extensions of 𝐹.

(ii) It is widely believed that a number field 𝐹 is 𝑝-rational for many primes
𝑝. In [36], Gras even conjectured that 𝐹 is 𝑝-rational for all but finitely
many primes 𝑝.

Thus, our results on the Galois module structure of unit lattices apply to a large
family of number fields.
We will focus on the Galois module structure of unit lattices in non-cyclic

Galois extensions of number fields, as the theory of factor equivalence becomes
trivial when the Galois group is cyclic (cf. Proposition 3.2 and the remark pre-
ceding it).

6.1. Totally real 𝒑-rational number fields. Let 𝐹 be a number field and 𝑝
an odd prime. We write 𝐹∞ for the cyclotomic ℤ𝑝-extension of 𝐹. For each
integer 𝑛 ≥ 0, let 𝐹𝑛 denote the 𝑛th layer of the extension 𝐹∞∕𝐹. We write 𝐻𝐹
for the 𝑝-Hilbert class field of 𝐹, and 𝔥𝐹 for the 𝑝-class number of 𝐹. For a set
𝑆 of primes of 𝐹, let 𝐹𝑆 denote the maximal pro-𝑝 extension of 𝐹 unramified
outside 𝑆, and write 𝐺𝑆(𝐹) for the Galois group of 𝐹𝑆 over 𝐹. We denote by 𝑆𝑝
the set of 𝑝-adic primes of 𝐹. By local class field theory, a non-𝑝-adic prime 𝔮 of
𝐹 can ramify in a pro-𝑝 extension of 𝐹 only if its ideal norm𝐍𝔮 is congruent to
1 modulo 𝑝 (see [46, §8.5] for an elementary explanation). Thus, without this
congruence, the situation is vacuous, andwemay assume that every non-𝑝-adic
prime in 𝑆 satisfies this congruence.
In this subsection, we briefly recall some arithmetic properties of totally real

𝑝-rational number fields that will be useful later. Except for Proposition 6.5,
Conjecture 6.6, and Theorem 6.8, we assume throughout that 𝐹 is totally real.
For more general information on 𝑝-rational number fields, the reader is re-
ferred to [35, 45, 56, 58, 57, 5].
Several equivalent characterizations of 𝑝-rationality can be found in the lit-

erature, for example, in [56, page 22].

Definition 6.1. Anumber field 𝐹 is said to be 𝑝-rational if one of the following
equivalent conditions holds:

(1) The Galois group 𝐺𝑆𝑝(𝐹) is a free pro-𝑝 group, where 𝑆𝑝 is the set of
𝑝-adic primes of 𝐹;

(2) We have an isomorphism𝐺𝑆𝑝(𝐹)
ab ≃ ℤ𝑐𝐹+1

𝑝 , where 𝑐𝐹 denotes the num-
ber of complex places of 𝐹.

In particular, a totally real number field 𝐹 is 𝑝-rational precisely when we
have

𝐺𝑆𝑝(𝐹) ≃ 𝐺𝑆𝑝(𝐹)
ab ≃ ℤ𝑝.

Example 6.2. By the Kronecker–Weber theorem, the rational number field ℚ
is 𝑝-rational for every prime 𝑝.
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We now return to the setting of a general totally real 𝑝-rational field. Since
𝐹∞ is a subfield of 𝐹𝑆𝑝 , we have 𝐹𝑆𝑝 = 𝐹∞ in this case. Therefore, 𝐻𝐹 is a
subfield of 𝐹∞, and we obtain the following proposition.

Proposition 6.3. Let 𝐹 be a totally real 𝑝-rational number field. Let 𝑚 be the
largest integer such that 𝐹𝑚∕𝐹 is unramified. Then, we have 𝔥𝐹 = 𝑝𝑚.

As an immediate consequence of Proposition 6.3, we can observe the fol-
lowing lemma. We also note in passing that, in fact, in a Galois 𝑝-extension
of totally real 𝑝-rational number fields, at most one non-𝑝-adic prime can be
ramified, while there is no such restriction on the 𝑝-adic places (cf. Corollary
6.10).

Lemma 6.4. Let 𝐿∕𝐹 be an extension of totally real 𝑝-rational number fields.
Then, the following claims are valid.

(i) We have the inequalities 𝔥𝐹 ⋅ |[𝐿 ∶ 𝐹]|−1𝑝 ≤ 𝔥𝐿 ≤ 𝔥𝐹 ⋅ [𝐿 ∶ 𝐹].
(ii) If 𝐿∕𝐹 is a cyclic extension of degree 𝑝 that is unramified outside 𝑝, then

we have 𝔥𝐿 = max{𝔥𝐹∕𝑝, 1}.
(iii) If 𝐿∕𝐹 is a cyclic extension of degree 𝑝 that is ramified precisely at a non-

𝑝-adic prime, then we have 𝔥𝐿 = 𝔥𝐹 .

Proof. (i) The left inequality follows from the inclusion 𝐿𝐻𝐹 ⊆ 𝐻𝐿 and
the equalities

[𝐿𝐻𝐹 ∶ 𝐿] = [𝐻𝐹 ∶ 𝐻𝐹 ∩ 𝐿] = 𝔥𝐹 ⋅ [𝐻𝐹 ∩ 𝐿 ∶ 𝐹]−1.

Since𝐻𝐿 is contained in 𝐿∞ = 𝐿𝐹∞, there is some𝑚 ∈ ℕ such that𝐻𝐿
is equal to the compositum of 𝐿 and 𝐹𝑚. Every 𝑝-adic prime of 𝐹 has
ramification index at most [𝐿 ∶ 𝐹] in the extension 𝐻𝐿∕𝐹. Hence, the
degree [𝐹𝑚 ∶ 𝐹], which is bounded above by the product of 𝔥𝐹 and the
maximal ramification index of the 𝑝-adic primes of 𝐹 in the extension
𝐹𝑚∕𝐹, is in turn bounded above by 𝔥𝐹 ⋅ [𝐿 ∶ 𝐹]. Therefore, we have
𝔥𝐿 = [𝐻𝐿 ∶ 𝐿] ≤ [𝐹𝑚 ∶ 𝐹] ≤ 𝔥𝐹 ⋅ [𝐿 ∶ 𝐹].

(ii) If 𝐿∕𝐹 is unramified outside 𝑝, then 𝐿 is equal to 𝐹1. If 𝐹 has 𝑝-class
number 1, then at least one prime of 𝐹 is totally ramified in 𝐹∞. Hence,
we have 𝔥𝐹 = 𝔥𝐿 = 1. If we have 𝐻𝐹 ≠ 𝐹, then we have 𝐻𝐹 = 𝐻𝐿
because 𝐻𝐹∕𝐿 is unramified and 𝐹∞∕𝐻𝐹 is totally ramified at some 𝑝-
adic prime. Thus, we have 𝔥𝐿 = [𝐻𝐹 ∶ 𝐿] = 𝑝−1𝔥𝐹 .

(iii) Let 𝑟 be an integer such that𝐻𝐹 is equal to 𝐹𝑟−1. Then 𝐹𝑟∕𝐹 is ramified
at some 𝑝-adic prime of 𝐹 say 𝔭. Since 𝔭 is unramified in 𝐿∕𝐹, 𝐹𝑟𝐿∕𝐿 is
ramified at the primes of 𝐿 above 𝔭. Thus, we have 𝐻𝐿 ⊊ 𝐹𝑟𝐿 and con-
sequently 𝐻𝐿 = 𝐻𝐹𝐿. The claim follows because 𝐿 and 𝐻𝐹 are linearly
disjoint over 𝐹.

□

The 𝑝-rationality of number fields satisfies the following descending prop-
erty.
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Proposition 6.5. (cf. [32, Thm. I.1], [56, Prop. 5 on page 30]) Let 𝐿∕𝐹 be an
extension of number fields. If 𝐿 is 𝑝-rational, then 𝐹 is also 𝑝-rational.

By Propositions 6.3 and 6.5, we can study the 𝑝-part of the quotients of class
numbers of subfields appearing in TheoremA, and investigate the factor equiv-
alence class ofℤ𝑝⊗ℤ 𝐸𝐹 when 𝐹 is a totally real 𝑝-rational Galois extension of
ℚ. Therefore, understanding the existence of Galois extensions of totally real
𝑝-rational fields with various Galois groups is also of interest in the study of the
Galois module structure of unit lattices.
For finite𝑝-groups, one can apply the results ofMovahhedi [57] on the ascent

of 𝑝-rationality in Galois 𝑝-extensions of number fields. However, the problem
for general groups remains poorly understood. Some recent progress has been
made for groups of the form (ℤ∕2ℤ)𝑡 for 𝑡 ≥ 1 (cf. [17, 39, 47, 52]).
We also record the following conjecture due to Gras, which indicates that

studying𝑝-rational fields can yield results of a rather general nature for number
fields.

Conjecture 6.6. ([36]) A number field is 𝑝-rational for all but finitely many
primes.

To state the theorem of Movahhedi (Theorem 6.8), we first recall the notion
of a primitive set of places (cf. [34, 56]). Let 𝐹 be a number field. Let 𝐹𝑆𝑝(1)
denote the maximal elementary abelian extension of 𝐹 in 𝐹𝑆𝑝 . Hence, if 𝐹 is
𝑝-rational, then the Galois group Gal(𝐹𝑆𝑝(1)∕𝐹) of 𝐹𝑆𝑝(1) over 𝐹 is isomorphic
to (ℤ∕𝑝ℤ)𝑐𝐹+1 as a vector space over the finite field ℤ∕𝑝ℤ.

Definition 6.7. Let 𝐹 be a number field. Let 𝑆 be a finite set of finite places
of 𝐹 containing 𝑆𝑝. The set 𝑆 is called primitive for (𝐹, 𝑝) if the set of Frobe-
nius automorphisms in Gal(𝐹𝑆𝑝(1)∕𝐹) at the finite non-𝑝-adic primes of 𝑆 are
linearly independent over ℤ∕𝑝ℤ.

With this notion, we can now state the following theorem.

Theorem6.8. ([57, Thm.2]) Let𝐹 be a𝑝-rational number field. Let𝐿 be aGalois
𝑝-extension of 𝐹. Then, 𝐿 is 𝑝-rational if and only if the set Ram(𝐿∕𝐹) ∪ 𝑆𝑝 is
primitive for (𝐹, 𝑝), where Ram(𝐿∕𝐹) denotes the set of primes ramified in 𝐿∕𝐹.

Remark 6.9. The readers can also refer to [32, 33] for a class field theoretic
approach on the ascent of 𝑝-rationality under the Leopoldt conjecture at 𝑝.

Corollary 6.10. Let𝐹 be a totally real 𝑝-rational number field. For a non-𝑝-adic
prime 𝔮 of 𝐹, the set 𝑆𝑝 ∪ {𝔮} is primitive for (𝐹, 𝑝) if and only if 𝔮 does not split in
𝐹1. It follows that if 𝐿 is a Galois 𝑝-extension of 𝐹, then 𝐿 is 𝑝-rational if and only
if there exists such a prime 𝔮 with Ram(𝐿∕𝐹) ⊆ 𝑆𝑝 ∪ {𝔮}.

Remark 6.11. If 𝐹 is 𝑝-rational, then it is easily seen that 𝑝-rationality ascends
in the pro-𝑝 tower 𝐹𝑆𝑝∕𝐹, since every closed subgroup of a free pro-𝑝 group is
free (cf. [64, Cor. 3 on page 31]). In comparison, Theorem 6.8 addresses the
ascent in larger pro-𝑝 towers.
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By Chebotarev’s density theorem, Theorem 6.8 ensures the existence of in-
finitely many towers of 𝑝-rational 𝑝-extensions of a number field 𝐹, provided
that 𝐹 itself is 𝑝-rational.
Moreover, when 𝐹 is 𝑝-rational and the set 𝑆 is primitive for the pair (𝐹, 𝑝),

the structure of the Galois group𝐺𝑆(𝐹) is well understood, thanks to a theorem
of Movahhedi. We state Movahhedi’s theorem below in the case where 𝐹 is
totally real.

Proposition 6.12. ([58, Thm. 3.3]) Let 𝐹 be a totally real 𝑝-rational number
field. Let 𝔮 be a non-𝑝-adic prime of 𝐹 such that 𝑆 = 𝑆𝑝 ∪ {𝔮} is primitive for
(𝐹, 𝑝). Then, 𝐺𝑆(𝐹) is the Demuškin group of rank 2 with minimal presentation

⟨ 𝜎, 𝜏 | 𝜏𝐍𝔮−1[𝜏, 𝜎] = 1 ⟩,

where𝐍𝔮 is the ideal norm of the prime ideal 𝔮.

By Proposition 6.12, the group 𝐺𝑆(𝐹) is a Demuškin group of rank 2. This
yields information on the 𝐺-relations needed to apply Proposition 3.23 to the
ℤ𝑝[𝐺𝐿∕𝐹]-lattice ℤ𝑝⊗ℤ 𝐸𝐿, where 𝐿∕𝐹 is a Galois 𝑝-extension contained in 𝐹𝑆
(cf. §7). Moreover, the group structure can be exploited to obtain more precise
information on the 𝑝-class group (cf. §6.2).

Proposition 6.13. ([58, Lem. 2.5]) Let 𝐹 be a totally real 𝑝-rational number
field. Let 𝑆 be a finite set of primes of 𝐹 containing 𝑆𝑝. Then we have

𝐺𝑆(𝐹)ab ≃ ℤ𝑝 ×
∏

𝑣
ℤ∕𝜇𝑝(𝐹𝑣)ℤ,

where 𝑣 runs over the finite non-𝑝-adic primes of 𝑆, and 𝜇𝑝(𝐹𝑣) denotes the num-
ber of 𝑝-power roots of unity in the completion 𝐹𝑣 of 𝐹 at 𝑣.

In particular, Proposition 6.13 implies the following corollary, which may
also be understood from the fact that every open subgroup of aDemuškin group
of rank 2 has generator rank 2.

Corollary 6.14. Let 𝔮 be a finite non-𝑝-adic prime of 𝐹 that does not split in 𝐹∞.
Then, themaximal elementary abelian extension of𝐹 in𝐹𝑆𝑝∪{𝔮} is the compositum
of 𝐹1 and a cyclic 𝑝-extension of 𝐹 in which 𝔮 is ramified (note that 𝑝 may also
ramify in that cyclic extension).

By the Burnside Basis theorem, Corollary 6.14 implies the following.

Lemma 6.15. ([57, Thm. 2]) Let𝐹 be a totally real𝑝-rational number field and 𝔮
a non-𝑝-adic prime such that 𝑆𝑝∪{𝔮} is primitive for (𝐹, 𝑝). Then, 𝔮 does not split
in 𝐹𝑆𝑝∪{𝔮}. In this situation, for any finite extension 𝐿 of 𝐹 contained in 𝐹𝑆𝑝∪{𝔮}, we
denote by 𝔮𝐿 the unique prime of 𝐿 above 𝔮.

For a totally real 𝑝-rational field 𝐹 and a finite non-𝑝-adic prime 𝔮 of 𝐹 such
that 𝑆𝑝 ∪{𝔮} is primitive for (𝐹, 𝑝), we will frequently consider finite extensions
𝐿∕𝐹 contained in the tower 𝐹𝑆𝑝∪{𝔮}. By Corollary 6.14, for each such extension
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𝐿, there exists a unique elementary abelian extension of 𝐿 in𝐹𝑆𝑝∪{𝔮}. Since these
extensions play a central role, we fix the following notation.
For the base field 𝐹, we denote by 𝐹el𝑝,𝔮 the maximal elementary abelian ex-

tension of 𝐹 contained in 𝐹𝑆𝑝∪{𝔮}. By definition and Lemma 6.15, we have

𝐹𝑆𝑝∪{𝔮} = 𝐿𝑆𝑝∪{𝔮𝐿} and Gal(𝐹𝑆𝑝∪{𝔮}∕𝐿) = 𝐺𝑆𝑝∪{𝔮𝐿}(𝐿).

Hence, we define 𝐿el𝑝,𝔮𝐿 analogously, and, for simplicity, write 𝐿
el
𝑝,𝔮 instead. By

Corollary 6.14, this is the unique extension of𝐿 in𝐹𝑆𝑝∪{𝔮}with𝐺𝐿el𝑝,𝔮∕𝐿 ≃ (ℤ∕𝑝ℤ)2.
Since the base field 𝐹 and the prime 𝔮 are clear from the context, the short-

hand 𝐿el𝑝,𝔮 will cause no ambiguity. In particular, we obtain the following field
diagram.

𝐹𝑆𝑝∪{𝔮} = 𝐿𝑆𝑝∪{𝔮𝐿}

𝐿el𝑝,𝔮𝐿 ∶= 𝐿el𝑝,𝔮

𝐿

𝐹

Φ(𝐺𝑆𝑝∪{𝔮𝐿}(𝐿))

𝐺𝑆𝑝∪{𝔮𝐿}(𝐿)

(ℤ∕𝑝ℤ)2

𝐺𝑆𝑝∪{𝔮}(𝐹)

where Φ(𝐺𝑆𝑝∪{𝔮𝐿}(𝐿)) denotes the Frattini subgroup of 𝐺𝑆𝑝∪{𝔮𝐿}(𝐿).

6.2. On the 𝒑-class numbers in a pro-𝒑 tower of totally real 𝒑-rational
number fields when 𝒑 does not split. We have seen in Proposition 6.3 and
Lemma 6.4 that the 𝑝-class numbers of totally real 𝑝-rational fields are rela-
tively easy to analyze. When there is a unique 𝑝-adic prime, these results can
be refined further. This refinement will play an important role in the proof of
Theorem B in the next section. In order to make this refinement precise, we
now consider a totally real 𝑝-rational field 𝐹 together with a finite non-𝑝-adic
prime 𝔮, and introduce the following hypothesis on the triple (𝐹, 𝑝, 𝔮).

𝑆𝑝 ∪ {𝔮} is primitive for (𝐹, 𝑝), and 𝑝 does not split in 𝐹𝑆𝑝∪{𝔮}. (U)
By the Burnside basis theorem, the triple (𝐹, 𝑝, 𝔮) satisfies condition (U) pre-

cisely when 𝐹 has a unique 𝑝-adic prime and the local degree of this prime in
the extension 𝐹el𝑝,𝔮 is 𝑝2. In this subsection, we obtain a structural result on the
𝑝-class numbers of number fields in the tower 𝐹𝑆𝑝∪{𝔮}∕𝐹 for those (𝐹, 𝑝, 𝔮) sat-
isfying (U), by exploiting the inertia subgroup of𝐺𝑆𝑝∪{𝔮}(𝐹) at the unique 𝑝-adic
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place of 𝐹𝑆𝑝∪{𝔮}. For each number field 𝐹 ⊆ 𝐿 ⊂ 𝐹𝑆𝑝∪{𝔮}, we denote by 𝑝𝐿 the
unique prime of 𝐿 lying above 𝑝.
The inertia subgroup of𝐺𝑆𝑝∪{𝔮}(𝐹) at the unique 𝑝-adic place of 𝐹𝑆𝑝∪{𝔮} corre-

sponds to the maximal tamely ramified extension 𝐹{𝔮} of 𝐹 contained in 𝐹𝑆𝑝∪{𝔮}.

Lemma 6.16. (cf. [50, Thm. 1.1]) Let 𝐹 be a totally real 𝑝-rational number field.
Let 𝔮 be a non-𝑝-adic prime of 𝐹 such that 𝑆𝑝 ∪ {𝔮} is primitive for (𝐹, 𝑝). Then,
the extension 𝐹{𝔮}∕𝐹 is finite.

Proof. Since𝐺{𝔮}(𝐹) is a quotient of theDemuškin group𝐺𝑆𝑝∪{𝔮}(𝐹), it is power-
ful (cf. [23, Chap. 3]) with generator rank at most 2. By [23, Thm. 8.32], 𝐺{𝔮}(𝐹)
admits an open uniformly powerful subgroup 𝒰. By [23, Thm. 3.8], the gener-
ator rank of 𝒰 is at most 2. If 𝐺{𝔮}(𝐹) is infinite, then so is 𝒰, and in this case
𝒰 admits a quotient isomorphic toℤ𝑝 (cf. [23, Exercise 3.11]). It follows that if
𝐹{𝔮}∕𝐹 were infinite, then 𝐹{𝔮} would contain a ℤ𝑝-extension of a finite exten-
sion of 𝐹, which is impossible since in any ℤ𝑝-extension of a number field at
least one 𝑝-adic prime must ramify. Therefore 𝐹{𝔮}∕𝐹 is finite. □

Proposition 6.17. Suppose that (𝐹, 𝑝, 𝔮) satisfies (U). Then, we have 𝔥𝐿 = 1 for
every number field 𝐿 with 𝐹{𝔮} ⊆ 𝐿 ⊂ 𝐹𝑆𝑝∪{𝔮}.

Proof. Let 𝐿 be a number field as above. Then 𝑝𝐿 is totally ramified in 𝐹𝑆𝑝∪{𝔮}
becauseGal(𝐹𝑆𝑝∪{𝔮}∕𝐿) is a subgroup of the inertia subgroup of𝐺𝑆𝑝∪{𝔮}(𝐹) at the
𝑝-adic place of 𝐹𝑆𝑝∪{𝔮}. Since 𝑝𝐿 is ramified in 𝐿1, the conclusion follows from
Proposition 6.3. □

Example 6.18. Note that (ℚ, 𝑝, 𝑞) satisfies (U) if and only if both [ 𝑝, 𝑞 ] and
[ 𝑞, 𝑝 ] are not divisible by 𝑝 (cf. Remark 3.12). For example, the triple (ℚ, 7, 71)
satisfies (U). In that case, the 𝑝-class number is 1 along the towerℚ𝑆𝑝∪{𝑞}∕ℚ{𝑞}
by Proposition 6.17.

Remark 6.19. Itmay be difficult to generalize Proposition 6.17 to a pro-𝑝 tower
𝐹𝑆𝑝∪{𝔮}∕𝐹 in which 𝑝 splits, since one need to take into account all the inertia
subgroups of 𝐺𝑆𝑝∪{𝔮}(𝐹) at the 𝑝-adic places. For example, one may recall that
the 𝑝-class field tower of 𝐹 is the subfield of 𝐹𝑆𝑝 fixed by the inertia subgroups
of 𝐺𝑆𝑝(𝐹) at the 𝑝-adic places.

Corollary 6.20. Suppose that (𝐹, 𝑝, 𝔮) satisfies (U). Let 𝐿 be a finite extension of
𝐹 in 𝐹𝑆𝑝∪{𝔮}. The extension 𝐹𝑆𝑝∪{𝔮}∕𝐿 is totally ramified at 𝑝𝐿 if and only if 𝐹{𝔮} is
a subfield of 𝐿.

Proof. Suppose that𝑝𝐿 is totally ramified in𝐹𝑆𝑝∪{𝔮}∕𝐿. Thenwe have𝐹{𝔮}𝐿 = 𝐿
because 𝐹{𝔮}𝐿∕𝐿 is unramified at 𝑝𝐿. The sufficiency is trivial. □

Now, we study the 𝑝-class numbers in a cyclic extension 𝐿∕𝐾 of number
fields with [𝐿 ∶ 𝐾] = 𝑝 contained in 𝐹𝑆𝑝∪{𝔮}∕𝐹 for a triple (𝐹, 𝑝, 𝔮) satisfying
(U). By (ii) and (iii) of Lemma 6.4, it remains to treat the case where 𝐿∕𝐾 is
ramified both at 𝑝𝐾 and 𝔮𝐾 .
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Proposition 6.21. Suppose that (𝐹, 𝑝, 𝔮) satisfies (U). Let 𝐿∕𝐾 be a cyclic exten-
sion of number fields of degree 𝑝 contained in 𝐹𝑆𝑝∪{𝔮}∕𝐹, ramified at both 𝑝𝐾 and
𝔮𝐾 . Then, we have

𝔥𝐿 = {
𝔥𝐾 if 𝐹{𝔮} ⊆ 𝐻𝐾 ,
𝑝 ⋅ 𝔥𝐾 otherwise.

Proof. For all integers 𝑚 ≥ 0, we have 𝐿𝑚 = 𝐿𝐾𝑚 because 𝐿∕𝐾 is ramified at
𝔮𝐾 . By the 𝑝-rationality of 𝐾, there is some integer 𝑛 ≥ 0 such that we have
𝐻𝐾 = 𝐾𝑛. Then, 𝔥𝐿 is equal to one of 𝑝𝑛 and 𝑝𝑛+1 by Lemma 6.4 (i).
By Proposition 6.3, we have 𝔥𝐿 = 𝑝𝑛+1 if and only if 𝐿𝑛+1∕𝐿𝑛 is unramified.

Since 𝐾𝑛∕𝐾 is unramified, both 𝑝𝐾𝑛 and 𝔮𝐾𝑛 are ramified in 𝐿𝑛∕𝐾𝑛. Since the
ramification index of 𝔮𝐾𝑛 in 𝐿𝑛+1∕𝐾𝑛 is 𝑝, we can check that 𝐺𝐿𝑛+1∕𝐾𝑛 is isomor-
phic to (ℤ∕𝑝ℤ)2. In particular, 𝐿𝑛+1 is equal to (𝐾𝑛)el𝑝,𝔮.
If 𝐿𝑛+1∕𝐿𝑛 is ramified at 𝑝𝐿𝑛 , then 𝐺𝐿𝑛+1∕𝐾𝑛 coincides with the inertia sub-

group at 𝑝𝐿𝑛+1 . By the Burnside basis theorem, this occurs if and only if 𝑝𝐾𝑛
is totally ramified in 𝐹𝑆𝑝∪{𝔮} (cf. [60, Chap. II, Thm. 10.7]). Hence, the claim
follows from Corollary 6.20. □

Even though condition (U) may appear restrictive, we can find many triples
(𝐹, 𝑝, 𝔮) satisfying (U) under the Gras Conjecture (Conjecture 6.6). Let 𝐹 be
a totally real cyclic extension of ℚ. According to the conjecture, there are ex-
pected to be infinitely many rational primes 𝑝 such that

∙ 𝐹 is 𝑝-rational,
∙ 𝑝 ∤ [𝐹 ∶ ℚ],
∙ 𝑝 does not split in 𝐹.

In the following proposition, we assume that 𝑝 is such a prime, so that 𝐹 is
𝑝-rational. Examples of this type can be found in [51].

Proposition 6.22. Let 𝐹 and 𝑝 be as above. Let 𝑞 be a rational prime such that
(ℚ, 𝑝, 𝑞) satisfies (U) (cf. Example 6.18). Then, for every prime 𝔮 of 𝐹 above 𝑞, the
hypothesis (U) is satisfied by (𝐹, 𝑝, 𝔮).

Proof. Let 𝑆𝑞 be the set of primes of 𝐹 above 𝑞. Since 𝑝 is prime to [𝐹 ∶ ℚ],
every element 𝔮 of 𝑆𝑞 does not split in 𝐹∞ = 𝐹ℚ∞ by the primitivity of the
set 𝑆𝑝 ∪ {𝑞}. Hence, the set 𝑆𝑝 ∪ {𝔮} is primitive for (𝐹, 𝑝) for every 𝔮 ∈ 𝑆𝑞 by
Corollary 6.10.
It remains to show that the unique𝑝-adic prime𝔭 of𝐹 does not split in𝐹𝑆𝑝∪{𝔮}

for every 𝔮 ∈ 𝑆𝑞. By the Burnside basis theorem, this happens if and only if 𝔭
does not split in 𝐹el𝑝,𝔮 (cf. [60, Chap. II, Prop. 9.6]). Since [𝐹 ∶ ℚ] is prime to
𝑝, 𝔭 is totally ramified in 𝐹∞∕𝐹. In particular, we have 𝔥𝐹 = 1. Therefore, the
ramification index of 𝔭 in 𝐹el𝑝,𝔮∕𝐹 is at least 𝑝, and 𝔭 splits in 𝐹el𝑝,𝔮 only if there
exists a cyclic extension𝐹(𝔮) of𝐹 of degree 𝑝 in which 𝔭 splits and 𝔮 is ramified.
Such an extension 𝐹(𝔮) is unique if it exists.
Since 𝐺𝐹∕ℚ acts transitively on 𝑆𝑞, the pro-𝑝 extensions {𝐹𝑆𝑝∪{𝔮}}𝔮∈𝑆𝑞 are con-

jugate to each other over ℚ. Hence, if 𝐹(𝔮) exists for some 𝔮 ∈ 𝑆𝑞, then 𝐹(𝔮)
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exists for every 𝔮 ∈ 𝑆𝑞. Letℱ be the compositumof the fields𝐹(𝔮) for all 𝔮 ∈ 𝑆𝑞.
Then, 𝔭 splits completely inℱ.
On the other hand, by class field theory and the triviality of the 𝑝-class group

of 𝐹, ℱ contains the compositum of 𝐹 and the subfield𝒦 of ℚ(𝜁𝑞) with [𝒦 ∶
ℚ] = 𝑝. Since 𝑝 does not split inℚ𝑆𝑝∪{𝑞}, the residue class degree of 𝑝 in𝒦 is 𝑝.
Hence, the residue class degree of 𝔭 inℱ is divisible by 𝑝, a contradiction. □

Remark 6.23. In fact, for every odd prime 𝑝, there exist infinitelymany primes
𝑞 such that (ℚ, 𝑝, 𝑞) satisfy (U). For a proof, we refer the readers to the appli-
cation of the Gras-Munnier theorem in [15].

7. Non-existence of Minkowski units in non-abelian 𝒑-rational
𝒑-extensions of ℚ
In this section, we will prove Theorem B. Let 𝐹 be a non-abelian 𝑝-rational

Galois 𝑝-extension ofℚ. Since 𝐺𝐹∕ℚ is a 𝑝-group, we may apply the theorem of
Tornehave and Bouc on the generators of 𝐺-relations of finite 𝑝-groups 𝐺. We
shall show that the factor equivalence class of 𝐸𝐹 can be analyzed via Galois
extensions 𝐿∕𝐾 of subfields of 𝐹 with 𝐺𝐿∕𝐾 ≃ (ℤ∕𝑝ℤ)2. To begin, let us recall
the theorem of Tornehave and Bouc.

Theorem 7.1. (cf. [4, Thm. 5.3], [7, Cor. 6.16]) Let 𝐺 be a finite 𝑝-group. Then,
all 𝐺-relations are ℤ-linear combinations of ones of the form Ind𝐺𝐻 Inf

𝐻
𝐻∕𝐵 Θ for

pairs (𝐻∕𝐵,Θ) of subquotients 𝐻∕𝐵 of 𝐺 and 𝐻∕𝐵-relations Θ of the following
types:

(i) 𝐻∕𝐵 ≃ (ℤ∕𝑝ℤ)2 with the𝐻∕𝐵-relation Θ

1 −
∑

𝐶
𝐶 + 𝑝 ⋅ 𝐻∕𝐵,

where 𝐶 runs over all the subgroups of𝐻∕𝐵 of order 𝑝.
(ii) 𝐻∕𝐵 is the Heisenberg group of order 𝑝3 and Θ is the𝐻∕𝐵-relation

𝐼 − 𝐼𝑍 − 𝐽 + 𝐽𝑍,

where 𝑍 is the center of 𝐻∕𝐵 and 𝐼, 𝐽 are two non-conjugate non-central
subgroups of𝐻∕𝐵 of order 𝑝.

(iii) 𝐻∕𝐵 is isomorphic to the dihedral group 𝐷2𝑛 for some 𝑛 ≥ 4 and Θ is the
𝐻∕𝐵-relation

𝐼 − 𝐼𝑍 − 𝐽 + 𝐽𝑍,
where 𝑍 is the center of 𝐻∕𝐵 and 𝐼, 𝐽 are two non-conjugate non-central
subgroups of𝐻∕𝐵 of order 2.

Let 𝐿∕𝐾 be a Galois 𝑝-extension of number fields. Let𝐻∕𝐵 be a subquotient
of 𝐺𝐿∕𝐾 , and let

Θ =
∑

𝐵≤𝐻′≤𝐻
𝑛𝐻′(𝐻′∕𝐵)
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be an𝐻∕𝐵-relation. A straightforward computation shows that we have

Ind
𝐺𝐿∕𝐾
𝐻 Inf𝐻𝐻∕𝐵Θ =

∑

𝐵≤𝐻′≤𝐻
𝑛𝐻′𝐻′.

By Theorem 3.25, we then obtain the equality

𝒞
Ind

𝐺𝐿∕𝐾
𝐻 Inf𝐻𝐻∕𝐵Θ

(𝐸𝐿) = 𝒞
Ind

𝐺𝐿∕𝐾
𝐻 Inf𝐻𝐻∕𝐵Θ

(ℤ) ⋅
∏

𝐵≤𝐻′≤𝐻
(
𝑅𝐿𝐻′
𝜆(𝐻′)

)
2𝑛𝐻′

. (11)

Applying Theorem 5.1, (11) becomes

𝒞
Ind

𝐺𝐿∕𝐾
𝐻 Inf𝐻𝐻∕𝐵Θ

(𝐸𝐿) = 𝒞
Ind

𝐺𝐿∕𝐾
𝐻 Inf𝐻𝐻∕𝐵Θ

(ℤ) ⋅
∏

𝐵≤𝐻′≤𝐻
(

𝑤𝐿𝐻′

𝜆(𝐻′) ⋅ ℎ𝐿𝐻′
)
2𝑛𝐻′

. (12)

Since 𝐺𝐿∕𝐾 is a 𝑝-group, Proposition 3.21 implies that we have

𝑣𝑙
(
𝒞
Ind

𝐺𝐿∕𝐾
𝐻 Inf𝐻𝐻∕𝐵Θ

(𝐸𝐿 )
)
= 0 for all primes 𝑙 ≠ 𝑝.

Since the same holds for the regulator constants of the latticeℤ, the product in
(12) involving𝑤𝐿𝐻′ , 𝜆(𝐻′), and ℎ𝐿𝐻′ can be replaced by its 𝑝-part. In particular,
if 𝐿 is totally real, then we obtain the following observation.

Proposition 7.2. Let 𝐿∕𝐾 be a Galois 𝑝-extension of totally real number fields.
Then, the factor equivalence class of 𝐸𝐿 as a ℤ[𝐺𝐿∕𝐾]-lattice is uniquely deter-
mined by the quotients of 𝑝-class numbers of subfields of 𝐿 associated with the
pairs (𝐻∕𝐵,Θ) in Theorem 7.1.

Proof. The quotients involving𝑤𝐿𝐻′ in (12) are equal to 1 by Lemma 3.18. The
claim follows because we have 𝜆(𝐻′) = 1. □

The following corollary is helpful in studying the existence of Minkowski
units in Galois 𝑝-extensions of ℚ.

Corollary 7.3. Let 𝑝 be an odd prime, and let 𝐿∕ℚ be a Galois 𝑝-extension. Then
𝐸𝐿 is factor equivalent to𝒜𝐺𝐿∕ℚ as ℤ[𝐺𝐿∕ℚ]-lattices if and only if we have

∏

𝐵≤𝐻′≤𝐻
𝔥𝑛𝐻′
𝐿𝐻′

=
∏

𝐵≤𝐻′≤𝐻
ℎ𝑛𝐻′
𝐿𝐻′

=
∏

𝐵≤𝐻′≤𝐻
|𝐻′|−𝑛𝐻′ =

∏

𝐵≤𝐻′≤𝐻
|𝐻′∕𝐵|−𝑛𝐻′ (13)

for all the pairs (𝐻∕𝐵,Θ) consisting of a subquotient𝐻∕𝐵 of 𝐺𝐿∕ℚ and an𝐻∕𝐵-
relation

Θ =
∑

𝐵≤𝐻′≤𝐻
𝑛𝐻′ (𝐻′∕𝐵)

as in Theorem 7.1.

For Galois 𝑝-extensions of totally real 𝑝-rational number fields, Proposition
7.2 can be refined as follows.
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Proposition 7.4. Let 𝐿∕𝐾 be aGalois𝑝-extension of totally real𝑝-rational num-
ber fields. Then the factor equivalence class of 𝐸𝐿 as a ℤ[𝐺𝐿∕𝐾]-lattice is deter-
mined by the quotients of 𝑝-class numbers of subfields of 𝐿 associated to the pairs
(𝐻∕𝐵,Θ) in Theorem 7.1 such that𝐻∕𝐵 ≃ (ℤ∕𝑝ℤ)2.

Proof. ByTheorem7.1 and Proposition 7.2, it suffices to prove that𝐺𝐿∕𝐾 has no
subquotient𝐻∕𝐵 isomorphic to theHeisenberg group of order 𝑝3. By Corollary
6.10 and Proposition 6.12, 𝐺𝐿∕𝐾 is isomorphic to a subquotient of a Demuškin
group of rank 2. It is known that open subgroups of a Demuškin group of rank
2 are themselves Demuškin of rank 2 (cf. [64, §4.5]). Hence, every subquo-
tient of a Demuškin group of rank 2 is powerful. The claim follows since the
Heisenberg group of order 𝑝3 is not powerful. □

Now, we give a proof of Theorem B. Let 𝐹 be a non-abelian 𝑝-rational 𝑝-
extension ofℚ, and let 𝐹ab be the maximal subfield of 𝐹 that is abelian overℚ.
By group theory, 𝐹ab∕ℚ is not cyclic. Sinceℚ is 𝑝-rational, there exists a non-𝑝
prime 𝑞 such that Ram(𝐹∕ℚ) = {𝑝, 𝑞}. Hence, 𝐹 is contained in ℚ𝑆𝑝∪{𝑞}, and
the arithmetic of 𝐹 can be analyzed via the tower ℚ𝑆𝑝∪{𝑞}∕ℚ.
The case where 𝑝 splits in 𝐹 is easy and can be settled immediately.

Lemma 7.5. If 𝑝 splits in 𝐹, then 𝐹 does not admit a local Minkowski unit.

Proof. It is well known that if 𝐹 admits a local Minkowski unit, then so does
every subfield of𝐹 that is Galois overℚ. By the Burnside basis theorem, 𝑝 splits
in 𝐹 if and only if it splits in ℚ{𝑞}. In this case, Theorem 3.11 (ii) together with
Remark 3.12 implies that 𝐹 does not admit a local Minkowski unit. □

Hence, it remains to prove Theorem B in the case where 𝑝 does not split
in 𝐹. In what follows, we work under this assumption. Following §6.2, we
denote by 𝑝𝐾 the unique 𝑝-adic prime of each subfield 𝐾 of 𝐹 (both 𝐾 and 𝐹
being contained in ℚ𝑆𝑝∪{𝑞}). By Corollary 7.3 and Proposition 7.4, 𝐸𝐹 is factor
equivalent to 𝒜𝐺𝐹∕ℚ if and only if the equality (13) holds for every extension
𝐾el
𝑝,𝑞∕𝐾 contained in 𝐹. For ease of notation, we set

ℐ𝐾,𝑝 ∶= the inertia subgroup of 𝐺𝐾el
𝑝,𝑞∕𝐾 at 𝑝𝐾el

𝑝,𝑞
,

ℐ𝐾,𝑞 ∶= the inertia subgroup of 𝐺𝐾el
𝑝,𝑞∕𝐾 at 𝑞𝐾el

𝑝,𝑞
.

Lemma 7.6. Let 𝐹 be a 𝑝-rational non-cyclic 𝑝-extension ofℚ with a unique 𝑝-
adic prime. Let 𝑞 be the rational non-𝑝 prime with Ram(𝐹∕ℚ) = {𝑝, 𝑞}. Let 𝐾 be
a subfield of 𝐹 with 𝐾el

𝑝,𝑞 ⊆ 𝐹. The following claims are valid:
(i) We have ℐ𝐾,𝑝 ≠ 1 and ℐ𝐾,𝑞 ≃ ℤ∕𝑝ℤ.
(ii) If we have ℐ𝐾,𝑝 = 𝐺𝐾el

𝑝,𝑞∕𝐾 , then the necessary condition (13) associated to
𝐾el
𝑝,𝑞∕𝐾 is not satisfied.

(iii) If we have ℐ𝐾,𝑝 ≠ 𝐺𝐾el
𝑝,𝑞∕𝐾 and ℐ𝐾,𝑝 ≠ ℐ𝐾,𝑞, then the necessary condition

(13) associated to 𝐾el
𝑝,𝑞∕𝐾 is satisfied.
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(iv) If we have ℐ𝐾,𝑝 = ℐ𝐾,𝑞, then the necessary condition (13) associated to
𝐾el
𝑝,𝑞∕𝐾 is satisfied if and only if 𝔥𝐾el

𝑝,𝑞
= 𝔥𝐾 .

Proof. (i) The subgroup ℐ𝐾,𝑝 must be non-trivial because otherwise 𝑝𝐾
splits in 𝐾el

𝑝,𝑞. Since 𝐾 is 𝑝-rational and 𝐺𝐾el
𝑝,𝑞∕𝐾 is not cyclic, we have

ℐ𝐾,𝑞 ≠ 1. The cyclicity of ℐ𝐾,𝑞 follows from the class field theory.
(ii) The Galois group 𝐺𝐾el

𝑝,𝑞∕𝐾 is the maximal elementary abelian quotient
of 𝐺𝑆𝑝∪{𝑞𝐾}(𝐾). If ℐ𝐾,𝑝 = 𝐺𝐾el

𝑝,𝑞∕𝐾 , then 𝐺𝑆𝑝∪{𝑞𝐾}(𝐾) coincides with the
inertia subgroup at the unique 𝑝-adic prime by the Burnside basis the-
orem. Hence, every subfield of 𝐹 containing𝐾 has 𝑝-class number 1 by
Proposition 6.17 and Corollary 6.20. Therefore, the quotient of 𝑝-class
groups in (13) associated with 𝐾el

𝑝,𝑞∕𝐾 is 1, and so the equality in (13)
fails.

(iii) The group ℐ𝐾,𝑝 is non-trivial by (i). By the 𝑝-rationality of 𝐾, the sub-
group ℐ𝐾,𝑞 corresponds to the first layer 𝐾1 of 𝐾∞∕𝐾. Let 𝐾′ be the
subfield of 𝐾el

𝑝,𝑞 fixed by the subgroup ℐ𝐾,𝑝. By the assumption, the ex-
tensions 𝐾el

𝑝,𝑞∕𝐾′ and 𝐾1∕𝐾 are ramified precisely at the 𝑝-adic primes.
Hence, we have

𝔥𝐾 = 𝔥𝐾1 = 𝔥𝐾′ = 𝔥𝐾el
𝑝,𝑞
= 1

by Lemma 6.4 (ii). For any other degree 𝑝-extension 𝑁 of 𝐾 in 𝐾el
𝑝,𝑞

distinct from 𝐾′ and 𝐾1, the extension 𝐾el
𝑝,𝑞∕𝑁 is unramified, since 𝐾el

𝑝,𝔮
is equal to both𝑁𝐾1 and𝑁𝐾′. By Lemma 6.4 (i), we then have 𝔥𝑁 = 𝑝
for all such𝑁. Thus, condition (13) is satisfied for the extension𝐾el

𝑝,𝑞∕𝐾.
(iv) In this case, the first layer 𝐾1 of 𝐾∞∕𝐾 is the subfield of 𝐾el

𝑝,𝑞 corre-
sponding to the subgroup ℐ𝐾,𝑝 = ℐ𝐾,𝑞. For any degree-𝑝 extension𝑁 of
𝐾 contained in 𝐾el

𝑝,𝑞 other than 𝐾1, we have 𝐾el
𝑝,𝑞 = 𝑁1. Therefore, we

have
𝔥𝐾 = 𝑝 ⋅ 𝔥𝐾1 , 𝔥𝑁 = 𝑝 ⋅ 𝔥𝐾el

𝑝,𝑞

for all such 𝑁 by Proposition 6.3. From these identities, the claim fol-
lows.

□

Before proving Theorem B, we recall a well-known fact about the subgroup
lattice of the non-abelian semi-direct product ℤ∕𝑝2ℤ⋊ℤ∕𝑝ℤ.

Lemma 7.7. Let 𝑝 be an odd prime, and let 𝐺 ≃ ℤ∕𝑝2ℤ ⋊ ℤ∕𝑝ℤ be the non-
abelian semidirect product. Then, 𝐺 has a unique subgroup 𝐻 isomorphic to
(ℤ∕𝑝ℤ)2. Moreover, every subgroup of 𝐺 of order 𝑝 is contained in𝐻.

Proof. By elementary arguments, one checks that the center 𝑍(𝐺) of 𝐺 coin-
cides with the commutator subgroup [𝐺, 𝐺]. Every subgroup of 𝐺 of order 𝑝2
must contain the center, because otherwise 𝐺 would be abelian. Since the quo-
tient 𝐺∕𝑍(𝐺) = 𝐺∕[𝐺, 𝐺] is isomorphic to (ℤ∕𝑝ℤ)2, there are precisely 𝑝 + 1
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subgroups of 𝐺 of order 𝑝2. It is known that 𝐺 admits the following presenta-
tion (cf. [62, Exercise 5.3.6])

⟨ 𝑥, 𝑦 ∣ 𝑥𝑝2 = 1 = 𝑦𝑝, 𝑦−1𝑥𝑦 = 𝑥1+𝑝 ⟩.

Using the congruence

(𝑥𝑦)𝑛 ≡ 𝑥𝑛𝑦𝑛(𝑦−1𝑥−1𝑦𝑥)𝑛(𝑛−1)∕2 ≡ [[𝐺, 𝐺], 𝐺]

(cf. [23, §0.1]), we can check that the elements 𝑥𝑦𝑖 for 1 ≤ 𝑖 ≤ 𝑝 generate
𝑝 distinct normal cyclic subgroups of order 𝑝2. Therefore, the non-cyclic sub-
group𝐻 of order 𝑝2 generated by 𝑥𝑝 and 𝑦 is the unique subgroup of 𝐺 isomor-
phic to (ℤ∕𝑝ℤ)2. The last claim follows because every subgroup of order 𝑝 is
either equal to 𝑍(𝐺) or generates a rank-2 elementary abelian subgroup with
𝑍(𝐺). □

Proof of Theorem B. First, the extension 𝐹∕𝐹ab is cyclic and 𝑞𝐹ab is totally
ramified in 𝐹. If 𝐹∕𝐹ab were not cyclic, then we would have (𝐹ab)el𝑝,𝑞 ⊆ 𝐹.
Then, we have a contradiction to the maximality of 𝐹ab because (𝐹ab)1, which
is a subfield of (𝐹ab)el𝑝,𝑞, is abelian overℚ. Similarly, 𝑞𝐹ab must be totally ramified
in 𝐹 because otherwise (𝐹ab)1 would be a subfield of 𝐹.
Since 𝐺𝐹∕𝐹ab is cyclic, there exists a unique extension 𝑊 of 𝐹ab in 𝐹 with

[𝑊 ∶ 𝐹ab] = 𝑝. As both𝐹 and𝐹ab are Galois overℚ, the same holds true for𝑊.
Let 𝑁 be the subfield of 𝐹ab such that 𝐺𝐹ab∕𝑁 is isomorphic to (ℤ∕𝑝ℤ)2. Then,
𝐺𝑊∕𝑁 is either isomorphic toℤ∕𝑝2ℤ×ℤ∕𝑝ℤ or to the non-abelian semi-direct
product ℤ∕𝑝2ℤ ⋊ ℤ∕𝑝ℤ. By considering their subgroup lattices, one finds a
subfield 𝑁 ⊊ 𝑊′ ⊊ 𝐹ab with 𝐺𝑊∕𝑊′ ≃ (ℤ∕𝑝ℤ)2 (cf. Lemma 7.7). We will
show that the necessary condition (13) associated with 𝑊∕𝑊′ for the factor
equivalence of 𝐸𝐹 and 𝒜𝐺𝐹∕ℚ is not satisfied.

𝐹

𝑊

𝐹ab

𝑊′

𝑁

ℤ∕𝑝ℤ

(ℤ∕𝑝ℤ)2

(ℤ∕𝑝ℤ)2

Since 𝐹ab containsℚel
𝑝,𝑞, the prime 𝑞 is ramified in 𝐹. Moreover, by the prim-

itivity of 𝑆𝑝 ∪ {𝑞}, we have 𝑞 ≢ 1 (mod 𝑝2). Hence, by local class field theory,
the ramification index of 𝑞 in 𝐹ab∕ℚ is exactly 𝑝.
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The prime 𝑞must also be ramified in𝑊′∕ℚ, for otherwise 𝐹ab∕𝑊′ would be
ramified at 𝑞𝑊′ , forcing ℐ𝑊′,𝑞 = 𝐺𝑊∕𝑊′ and thereby contradicting Lemma 7.6
(i).
Since the compositumℚ{𝑞}𝑊′ is abelian overℚ, the previous argument shows

that 𝑞𝑊′ is unramified in𝑊′ℚ{𝑞}∕𝑊′. Thus we deduce that ℚ{𝑞} ⊂ 𝐻𝑊′ .

We now complete the proof by applying Lemma 7.6 to the extension𝑊∕𝑊′.
There are three possible cases for the relation among ℐ𝑊′,𝑝, ℐ𝑊′,𝑞, and 𝐺𝑊∕𝑊′ .

(i) If we have ℐ𝑊′,𝑝 = 𝐺𝑊∕𝑊′ , then 𝐸𝐹 is not factor equivalent to 𝒜𝐺𝐹∕ℚ by
Lemma 7.6 (ii).

(ii) The case ℐ𝑊′,𝑝 ≠ 𝐺𝑊∕𝑊′ and ℐ𝑊′,𝑝 ≠ ℐ𝑊′,𝑞 (i.e., Lemma 7.6 (iii)) can-
not occur. Otherwise, we have 𝔥𝑊′ = 1 by the proof of Lemma 7.6 (iii).
Since𝐻𝑊′ = 𝑊′ containsℚ{𝑞}, we then obtain𝐺𝑊∕𝑊′ = ℐ𝑊′,𝑝 by Corol-
lary 6.20, a contradiction.

(iii) If we have ℐ𝑊′,𝑝 ≠ 𝐺𝑊∕𝑊′ and ℐ𝑊′,𝑝 = ℐ𝑊′,𝑞, then the necessary condi-
tion (13) associated to𝑊∕𝑊′ is satisfied if and only if we have 𝔥𝑊 = 𝔥𝑊′

byLemma7.6 (iv). Furthermore, the proof of Lemma7.6 (iv) shows that
this equality holds if and only if we have 𝔥𝑁 = 𝑝𝔥𝑊′ for every degree-𝑝
extension𝑁 of𝑊′ in𝑊 in which both 𝑝𝑊′ and 𝑞𝑊′ are ramified. Since
we have ℚ{𝑞} ⊆ 𝐻𝑊′ , we have 𝔥𝑊′ = 𝔥𝑁 for all such 𝑁 by Proposition
6.21. Thus, the necessary condition is not satisfied.

□

8. Relative Galois module structure of the unit lattices of totally
real 𝒑-rational number fields
In this final section, we study the relative Galois module structure of the unit

lattices for Galois extensions of totally real 𝑝-rational number fields. We begin
by introducing the following notation, which is convenient for the discussion.
For each Galois extension 𝐿∕𝐾 of number fields and each finite set 𝑆 of places
of 𝐾, we write 𝑆𝐿 for the set of places of 𝐿 above 𝑆, and 𝑆𝐿,𝑓 for the set of finite
places of 𝐿 above 𝑆. We denote by 𝒪×

𝐿,𝑆 the group 𝒪
×
𝐿,𝑆𝐿

of 𝑆𝐿-units of 𝐿, and by
Cl𝑆(𝐿) the 𝑆𝐿-ideal class group of 𝐿. As in the case of 𝑆𝑝, we let 𝑆∞ denote the
set of infinite places of a base field. Finally, we set 𝐸𝐿,𝑆 ∶= 𝒪×

𝐿,𝑆∕𝜇(𝐿).
In [14], for a fixed general finite group 𝐺 and varying Galois extensions 𝐿∕𝐾

of number fields with𝐺𝐿∕𝐾 ≃ 𝐺, Burns studied theℤ𝑝[𝐺]-module structures of
the pro-𝑝 completions of several arithmetic objects attached to 𝐿. In particular,
his results apply to ℤ𝑝 ⊗ℤ 𝐸𝐿,𝑆 for any finite set 𝑆 of primes of 𝐾 containing
𝑆𝑝 ∪ 𝑆∞ ∪ Ram(𝐿∕𝐾). In this section, for every Galois extension 𝐿∕𝐾 with
𝐺𝐿∕𝐾 ≃ 𝐺, we fix a group isomorphism and consider 𝐸𝐿 as a ℤ[𝐺]-lattice.
This investigation of theℤ𝑝[𝐺]-structure of 𝐸𝐿,𝑆 for varying 𝐿∕𝐾 is of intrin-

sic interest because, as 𝐿∕𝐾 varies, theℤ𝑝-ranks ofℤ𝑝⊗ℤ 𝐸𝐿,𝑆 are unbounded.
Consequently, if the 𝑝-Sylow subgroup of 𝐺 is not cyclic of order 1, 𝑝, or 𝑝2,
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then infinitely many non-isomorphic indecomposable ℤ𝑝[𝐺]-lattices can ap-
pear in theKrull-Schmidt decomposition ofℤ𝑝⊗ℤ𝐸𝐿,𝑆 (cf. [19, §81.A]). Beyond
this intrinsic interest, the knowledge of relative Galois module structures of the
unit lattices also has various applications in the study of tamely ramified pro-𝑝
extensions of number fields (cf. [40, 50]).
Let 𝑆 be a finite set of places ofℚ containing 𝑆𝑝∪𝑆∞, and let 𝐿∕𝐾 be a Galois

extension of number fields with Galois group 𝐺 that is unramified outside 𝑆.
In [14], Burns proved that the sum of the ℤ𝑝-ranks of the non-projective com-
ponents in a Krull-Schmidt decomposition of ℤ𝑝 ⊗ℤ 𝐸𝐿,𝑆 (as ℤ𝑝[𝐺]-lattices) is
bounded above by a function that depends only on |𝐺|, the𝑝-rank ofCl𝑆(𝐿(𝜁𝑝)),
and |𝑆𝐿,𝑓|. By the Jordan-Zassenhaus theorem (cf. [20, Thm. 24.2]), we obtain
the following result.

Theorem 8.1. ([14, Cor. 4.1]) Let 𝑆 be a finite set of places of ℚ containing
𝑆𝑝 ∪ 𝑆∞. Let 𝐺 be a finite group and 𝑏 a natural number. Define Ext(𝐺, 𝑆, 𝑏)
to be the family of Galois extensions of number fields 𝐿∕𝐾 satisfying the following
conditions :

(i) 𝐺𝐿∕𝐾 ≃ 𝐺,
(ii) 𝜁𝑝 ∈ 𝐾,
(iii) 𝐿∕𝐾 is unramified outside 𝑆,
(iv) rk𝑝(Cl𝑆(𝐿)) + |𝑆𝐿,𝑓| ≤ 𝑏.

Then, there exists a finite setΩ ofℤ𝑝[𝐺]-lattices such that for every𝐿∕𝐾 ∈ Ext(𝐺, 𝑆, 𝑏),
there exists 𝑋 ∈ Ω and a projective ℤ𝑝[𝐺]-lattice 𝑃 with

ℤ𝑝 ⊗ℤ 𝐸𝐿,𝑆 ≃ 𝑋 ⊕ 𝑃

as ℤ𝑝[𝐺]-lattices.

Remark 8.2. Theorem 8.1 was obtained by analyzing the Krull-Schmidt de-
composition of étale cohomology groups and the compactly supported 𝑝-adic
étale cohomology groups of general 𝑝-adic Galois representations over number
fields. Theorem 8.1 is formulated in terms of 𝑆-units for 𝑆 ⊃ 𝑆𝑝 ∪ 𝑆∞ because
ℤ𝑝⊗ℤ𝒪×

𝐿,𝑆 is isomorphic to the étale cohomology group𝐻
1(Spec(𝒪𝐿,𝑆)𝑒́𝑡, ℤ𝑝(1)).

The paper [14] also treats the ray class groups (cf. Artin-Verdier duality) and
higher algebraic K-groups (cf. Voevodsky’s Theorem). For further details we
refer the readers to [14, §4].

We conclude this paper by establishing that for Galois extensions of totally
real 𝑝-rational number fields, an analogous phenomenon occurs in the relative
Galois module structure of the group of ordinary units.

Theorem 8.3 (Theorem C). Let 𝐺 be a finite group and 𝑝 an odd prime. Then,
there exists a finite setΩ ofℤ𝑝[𝐺]-lattices such that for every Galois extension 𝐿∕𝐾
of totally real 𝑝-rational number fields with 𝐺𝐿∕𝐾 ≃ 𝐺, there exists 𝑋 ∈ Ω and
an integer 𝑚 ≥ 0 such that ℤ𝑝 ⊗ℤ 𝐸𝐿 is factor equivalent to 𝑋 ⊕ ℤ𝑝[𝐺]𝑚 as
ℤ𝑝[𝐺]-lattices.
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Proof. By Lemma 6.4 (i), for every extension 𝑀∕𝑁 of totally real 𝑝-rational
number fields, we have the inequalities

𝑣𝑝(𝔥𝑁) − 𝑣𝑝([𝑀 ∶ 𝑁]) ≤ 𝑣𝑝(𝔥𝑀) ≤ 𝑣𝑝(𝔥𝑁) + log𝑝[𝑀 ∶ 𝑁].

Therefore, for any fixed 𝐺-relation Θ and varying Galois extensions 𝑀∕𝑁 of
totally real 𝑝-rational number fields with 𝐺𝑀∕𝑁 ≃ 𝐺, only finitely many values
for 𝑣𝑝(𝒞Θ(𝐸𝑀)) can occur by Lemma 3.18.
Fix a ℤ-basis Υ of the group of 𝐺-relations, and let Ξ be the set of functions

𝑓 ∶ Υ → ℤ such that there exists a Galois extension 𝑀∕𝑁 of totally real 𝑝-
rational number fields with 𝐺𝑀∕𝑁 ≃ 𝐺, such that

𝑓(Θ) = 𝑣𝑝(𝒞Θ(𝐸𝑀))

for every Θ ∈ Υ. By the above argument, Ξ is a finite set.
For each 𝑥 ∈ Ξ, choose a Galois extension 𝐿𝑥∕𝐾𝑥 of totally real 𝑝-rational

fields with minimal [𝐾𝑥 ∶ ℚ] such that we have 𝐺𝐿𝑥∕𝐾𝑥 ≃ 𝐺 and 𝑥(Θ) =
𝑣𝑝(𝒞Θ(𝐸𝐿𝑥 )) for every Θ ∈ Υ. We now show that the set

Ω =
{
ℤ𝑝 ⊗ℤ 𝐸𝐿𝑥

}
𝑥∈Ξ

satisfies the claim of the theorem.
Let 𝐿∕𝐾 be a Galois extension of totally real 𝑝-rational fields with 𝐺𝐿∕𝐾 ≃

𝐺. Proposition 3.23 implies that the factor equivalence class of ℤ𝑝 ⊗ℤ 𝐸𝐿 as
a ℤ𝑝[𝐺]-lattice is uniquely determined by 𝑣𝑝(𝒞Θ(𝐸𝐿)) for all the 𝐺-relations
Θ ∈ Υ. From the construction of Ξ, there exists a unique 𝑦 ∈ Ξ such that we
have 𝑣𝑝(𝒞Θ(𝐸𝐿)) = 𝑦(Θ) for every Θ ∈ Υ. We claim that ℤ𝑝 ⊗ℤ 𝐸𝐿 is factor
equivalent to ℤ𝑝 ⊗ℤ 𝑉 as ℤ𝑝[𝐺]-lattices, where we have

𝑉 ∶= 𝐸𝐿𝑦 ⊕ℤ[𝐺]𝑚, with 𝑚 =
[𝐿 ∶ ℚ] − [𝐿𝑦 ∶ ℚ]

|𝐺|
.

By the Dirichlet-Herbrand theorem (cf. [35, Lem. I.3.6]), the two ℤ[𝐺]-
lattices 𝐸𝐿 and 𝑉 have the same rational representation. Moreover, for every
Θ ∈ Υ, we have

𝑣𝑝(𝒞Θ(𝑉)) = 𝑣𝑝(𝒞Θ(𝐸𝐿𝑦 )) = 𝑣𝑝(𝒞Θ(𝐸𝐿)).

Thefirst equality follows fromLemma3.17 andLemma3.19. The second equal-
ity follows from the construction of 𝐸𝐿𝑦 . Therefore, by Proposition 3.23, we
conclude that ℤ𝑝 ⊗ℤ 𝐸𝐿 is factor equivalent to ℤ𝑝 ⊗ℤ 𝑉 as ℤ𝑝[𝐺]-lattices. □

As discussed in §6.2, the arithmetic is particularly simple in a pro-𝑝 tower of
totally real 𝑝-rational fields 𝐹𝑆𝑝∪{𝔮}∕𝐹 for (𝐹, 𝑝, 𝔮) satisfying (U).

Theorem 8.4 (Theorem D). Let 𝐹 be a totally real 𝑝-rational number field, and
let 𝔮 be a non-𝑝-adic prime of 𝐹 such that (𝐹, 𝑝, 𝔮) satisfies (U). For every Galois
extension 𝐿∕𝐾 satisfying

𝐹{𝔮} ⊆ 𝐾 ⊆ 𝐿 ⊂ 𝐹𝑆𝑝∪{𝔮},
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theℤ[𝐺𝐿∕𝐾]-lattices𝐸𝐿 and𝒜𝐺𝐿∕𝐾⊕𝐼𝐺𝐿∕𝐾⊕ℤ⊕ℤ[𝐺𝐿∕𝐾][𝐾∶ℚ]−2 are factor equiv-
alent.

Proof. Let 𝐿∕𝐾 be a Galois extension of totally real 𝑝-rational fields as in the
statement of the theorem. From the isomorphismsℚ[𝐺𝐿∕𝐾] ≃ ℚ⊗ℤ (𝐼𝐺𝐿∕𝐾⊕ℤ)
of ℚ[𝐺𝐿∕𝐾]-modules, we have an isomorphism

ℚ⊗ℤ 𝐸𝐿 ≃ ℚ⊗ℤ (𝒜𝐺𝐿∕𝐾 ⊕ 𝐼𝐺𝐿∕𝐾 ⊕ℤ⊕ℤ[𝐺𝐿∕𝐾][𝐾∶ℚ]−2)

ofℚ[𝐺𝐿∕𝐾]-modules. By Theorem 3.22, it remains to show that 𝐸𝐿 and𝒜𝐺𝐿∕𝐾 ⊕
𝐼𝐺𝐿∕𝐾⊕ℤ⊕ℤ[𝐺𝐿∕𝐾][𝐾∶ℚ]−2 have the same regulator constants for all𝐺-relations
of 𝐺𝐿∕𝐾 . By the Brauer-Kuroda theorem and Theorem 3.25, for a 𝐺-relation
Θ =

∑
𝐻≤𝐺𝐿∕𝐾

𝑛𝐻𝐻, we have

𝒞Θ(𝐸𝐿) = 𝒞Θ(ℤ) ⋅
∏

𝐻≤𝐺𝐿∕𝐾

(
𝑤𝐿𝐻

ℎ𝐿𝐻𝜆(𝐻)
)
2𝑛𝐻

.

As a consequence, we have 𝒞Θ(𝐸𝐿) = 𝒞Θ(ℤ) by the argument used in the proof
of Proposition 7.2 and Proposition 6.17. On the other hand, we have

𝒞Θ(𝒜𝐺𝐿∕𝐾 ⊕ 𝐼𝐺𝐿∕𝐾 ⊕ℤ⊕ℤ[𝐺𝐿∕𝐾][𝐾∶ℚ]−2) = 𝒞Θ(ℤ)

by Lemma 3.17, Lemma 3.19, and Corollary 4.3. □

Remark 8.5. We remark that our results can be extended to other families of
Galois extensions provided that the Galois group and its relationship with in-
ertia subgroups at the ramified primes are sufficiently simple.
One easy example is when 𝐹 is an imaginary number field with a unique

𝑝-adic prime and 𝑝-class number 1. Then 𝐺𝑆𝑝(𝐹) coincides with the inertia
subgroup at the 𝑝-adic place. Hence, the 𝑝-adic prime of 𝐹 is totally ramified
in 𝐹𝑆𝑝 . As a consequence, every extension of 𝐹 in 𝐹𝑆𝑝 has 𝑝-class number 1.
Thus Theorem B holds for every extension 𝐿 of 𝐹 in 𝐹𝑆𝑝 that is Galois over an

imaginary quadratic field and has non-cyclic 𝐺𝐿∕𝐹 . Moreover, Theorem D also
applies to every Galois extension of number fields in the tower 𝐹𝑆𝑝∕𝐹, provided
𝐹 does not contain the 𝑝th roots of unity.
As an explicit illustration, for 𝑝 = 3 one can take 𝐹 = ℚ(

√
6,
√
−1) [67,

p. 239]. We note that this field is not 3-rational.

Remark 8.6. After this work was completed, the results of Burns in the direc-
tion of Theorem 8.1 on the 𝑆-unit group were extended to ordinary unit lattices
in [48, Thm. A]. Since the classification of integral representations is unavail-
able in general, information on theℤ𝑝-ranks of the non-projective components
alone does not effectively bound the number of possible ℤ𝑝[𝐺]-module struc-
tures (cf. [48, Thm. B]).
Theorem C shows that the number of possible factor equivalence classes of

unit lattices of totally real 𝑝-rational fields—depending only on the set of 𝐺-
relations—is highly restricted, in sharp contrast with genus equivalence. This
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rigidity also indicates, however, that factor equivalence itself provides only lim-
ited information about the underlying Galois module structure.
For readers interested in the Krull–Schmidt decomposition of unit lattices in

cyclic𝑝-extensions of totally real𝑝-rational fields, we refer to [15]. In a different
direction, Ozaki obtained a result [61] on the Galois structure of unit lattices in
cyclic 𝑝-extensions, indicating that the range of genus equivalence classes of
the unit lattice is essentially as large as that of integral ℤ𝑝[𝐺]-modules.
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