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On the sum of the inverses of element
orders of 𝐏𝐒𝐋(𝟐, 𝟕)

Alireza Khalili Asboei and Habib Rahimi Esbo

Abstract. For a finite group 𝐺, we write 𝛽(𝐺) = ∑
𝑘∈𝜋𝑒(𝐺)

𝑚𝑘 (𝐺)
𝑘

, where
𝑚𝑘(𝐺) denotes the number of elements of order 𝑘 in 𝐺 and 𝜋𝑒(𝐺) is the set
of element orders of 𝐺. We show that the finite simple group PSL(2, 7) is
uniquely determined by the value of this invariant. In particular, we prove
that if 𝐺 is a finite non-solvable group with 𝛽(𝐺) = 998

21
, then 𝐺 ≅ PSL(2, 7).
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1. Introduction
Let 𝐺 be a finite group, and 𝜋(𝐺) be the set of prime divisors of order of 𝐺.

The study of numerical invariants associated with the element orders of finite
groups has become an active topic in group theory. One such invariant is

𝛽(𝐺) =
∑

𝑘∈𝜋𝑒(𝐺)

𝑚𝑘(𝐺)
𝑘 ,

where𝑚𝑘(𝐺) is the number of elements of order 𝑘 in 𝐺 and 𝜋𝑒(𝐺) is the set of
element orders of 𝐺. This parameter was introduced and investigated in [4],
where several classification and recognition results were obtained. In [2], the
authors proved that 𝐴5 is the only non-solvable group 𝐺 satisfying 𝛽(𝐺) = 599

30
.

In this paper, we continue this line of research and focus on characterizing
the projective special linear group PSL(2, 7). Our main result is the following
theorem:
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Theorem 1.1. Let 𝐺 be a finite non-solvable group. Then

𝛽(𝐺) = 998
21

⟺ 𝐺 ≅ PSL(2, 7).

The proof combines group-theoretic arguments with known classification
results and relies on detailed calculations of 𝛽(𝐺) for candidate simple groups.
This contributes to the general program of recognizing finite simple groups via
numerical invariants.

2. Preliminaries
In order to establish our main theorem, we first collect several auxiliary re-

sults. These lemmas provide useful bounds for 𝛽(𝐺) and help restrict the pos-
sible simple groups that may appear.

Lemma 2.1. [4, Lemma 2.2] If 𝐻 ≤ 𝐺, then 𝛽(𝐻) ≤ 𝛽(𝐺), with equality if and
only if𝐻 = 𝐺.
Lemma 2.2. [4, Lemma 2.3] If 𝑁 ⊴ 𝐺, then 𝛽(𝐺∕𝑁) ≤ 𝛽(𝐺), with equality if
and only if𝑁 = 1.
Lemma 2.3. [5] Let 𝐺 be a finite group, and𝑚 be a positive integer dividing |𝐺|.
If 𝐺𝑚 = {𝑔 ∈ 𝐺 | 𝑔𝑚 = 1}, then𝑚 divides |𝐺𝑚|.
Lemma 2.4. [3, Theorem 3.1] Let 𝐺 be a finite group with fewer than 15 involu-
tions. Then solvable radical of 𝐺 is nontrivial.

Lemma 2.5. Let 𝐺 be a finite group whose Sylow 3-subgroups are all elementary
abelian of order 9 (so 𝑃 ≅ 𝐶3 × 𝐶3 for every 𝑃 ∈ Syl3(𝐺)). Let ℋ be the set
of cyclic subgroups of order 3 in 𝐺. For 𝐻 ∈ ℋ, let 𝑟(𝐻) denote the number of
Sylow 3-subgroups of 𝐺 that contain𝐻. Then 𝑟(𝐻) ∈ {1, 4} for every such𝐻, and
8 𝑛3 =

∑
𝐻∈ℋ 2 𝑟(𝐻), 𝑚3 = 2|ℋ|. Hence with 𝑟 ∶= 1

|ℋ|
∑

𝐻∈ℋ 𝑟(𝐻), we have

𝑚3 =
8 𝑛3
𝑟
. In particular, 2𝑛3 ≤ 𝑚3 ≤ 8𝑛3, with equality on the left (resp. right)

precisely when 𝑟(𝐻) = 4 (resp. 𝑟(𝐻) = 1) for all𝐻.
Proof. Define

𝒮 = {(𝑔, 𝑃) ∣ 𝑃 ∈ Syl3(𝐺), 𝑔 ∈ 𝑃, 𝑔 ≠ 1, |𝑔| = 3}.
Count by Sylows. Each 𝑃 ≅ 𝐶3 × 𝐶3 has 8 nonidentity elements, all of order

3, so |𝒮| = 8 𝑛3.
Count by elements. For 𝐻 = ⟨𝑔⟩ ∈ ℋ, its two generators lie in exactly 𝑟(𝐻)

Sylow 3-subgroups, giving 2𝑟(𝐻) pairs in 𝒮. Summing over all𝐻 yields

|𝒮| =
∑

𝐻∈ℋ
2 𝑟(𝐻).

On the other hand each cyclic subgroup of order 3 has two generators, so𝑚3 =
2|ℋ|. Equating the two counts gives 8𝑛3 = ∑

𝐻∈ℋ 2 𝑟(𝐻), 𝑚3 = 2|ℋ|, and
therefore

𝑚3 =
8𝑛3
𝑟
, 𝑟 = 1

|ℋ|
∑

𝐻∈ℋ
𝑟(𝐻).
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Determination of 𝑟(𝐻). Fix 𝐻 = ⟨𝑔⟩ of order 3 and let 𝐶 ∶= 𝐶𝐺(𝐻). A Sylow
3-subgroup of 𝐺 contains 𝐻 iff it is a Sylow 3-subgroup of 𝐶, so 𝑟(𝐻) = 𝑛3(𝐶).
If 𝑃 ≤ 𝐶 is such a Sylow, conjugation by 𝐶 induces a homomorphism 𝐶 →
Aut(𝑃) ≅ GL2(3). Because 𝐻 ≤ 𝑃 is a 1-dimensional subspace of 𝑃 ≅ 𝔽23
(2-dimensional vector space over the field with 3 elements), the image lies in
the stabilizer of a line in GL2(3), which has order 12. Thus 𝐶∕𝑂3(𝐶) embeds
into a group of order dividing 12, so 𝑟(𝐻) = 𝑛3(𝐶) divides |𝐶 ∶ 𝑂3(𝐶)|, and
by Sylow’s theorem congruence 𝑟(𝐻) ≡ 1 (mod 3). The only possibilities are
𝑟(𝐻) ∈ {1, 4}. □

We observe that if 𝐿 = lcm{𝑜(𝑔) ∶ 𝑔 ∈ 𝐺} is the exponent of group 𝐺,
then 𝐿𝛽(𝐺) = ∑

𝑔∈𝐺
𝐿
𝑜(𝑔)

∈ ℤ. In particular, if 𝛽(𝐺) = 𝑎
𝑏
in lowest terms with

gcd(𝑎, 𝑏) = 1, then 𝑏 ∣ 𝐿.

Let 𝐶𝑛 be cyclic of order 𝑛. Then (well-known) 𝛽(𝐶𝑛) =
∑

𝑑∣𝑛
𝜑(𝑑)
𝑑
, where 𝜑

is Euler’s totient function. In particular 𝑛𝛽(𝐶𝑛) ∈ ℤ.

Proposition 2.6. If 𝐶𝑛 is cyclic and 𝛽(𝐶𝑛) =
998
21
, then 21 ∣ 𝑛.

Proof. We have 𝑛𝛽(𝐶𝑛) ∈ ℤ. Writing 𝛽(𝐶𝑛) =
998
21

in lowest terms and using
gcd(998, 21) = 1, we obtain 21 ∣ 𝑛. □

Proposition 2.7. Let 𝐺 be a nontrivial finite 𝑝-group. Then 𝛽(𝐺) ≠ 998
21
.

Proof. Let 𝐿 = exp(𝐺). For a 𝑝-group the exponent 𝐿 is a power of 𝑝. We have
𝐿𝛽(𝐺) ∈ ℤ. If 𝛽(𝐺) = 998

21
then

𝐿 ⋅ 998
21

∈ ℤ.

Since gcd(998, 21) = 1, this implies 21 ∣ 𝐿. But 𝐿 is a power of a single prime 𝑝,
while 21 = 3 ⋅ 7 has two distinct prime divisors; therefore no power of a single
prime can be divisible by 21. This contradiction shows a nontrivial 𝑝-group
cannot have 𝛽(𝐺) = 998

21
. □

If 𝐺 is finite nilpotent then 𝐺 ≅ ∏
𝑝 𝑃𝑝 the direct product of its Sylow 𝑝-

subgroups 𝑃𝑝. When gcd(|𝐴|, |𝐵|) = 1 by [4, Lemma 2.6]

𝛽(𝐴 × 𝐵) = 𝛽(𝐴)𝛽(𝐵).

Thus for nilpotent 𝐺,
𝛽(𝐺) =

∏

𝑝
𝛽(𝑃𝑝).

Proposition 2.8. Let 𝐺 be a nontrivial finite nilpotent group. Then 𝛽(𝐺) ≠ 998
21
.
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Proof. Since𝐺 is nilpotentwehave a direct product decomposition𝐺 ≅ ∏
𝑝 𝑃𝑝

into its Sylow 𝑝-subgroups 𝑃𝑝, and for such coprime direct products 𝛽 is mul-
tiplicative:

𝛽(𝐺) =
∏

𝑝
𝛽(𝑃𝑝).

For each prime 𝑝, write 𝛽(𝑃𝑝) in lowest terms as

𝛽(𝑃𝑝) =
𝑎𝑝
𝑝𝑒𝑝

, 𝑎𝑝 ∈ ℤ≥1, 𝑒𝑝 ∈ ℤ≥0, gcd(𝑎𝑝, 𝑝) = 1.

(That 𝑝𝑒𝑝 is a 𝑝-power follows from the standard fact that 𝑝 ⋅ 𝛽(𝑃𝑝) ∈ ℤ: 𝑚𝑝𝑘
is divisible by 𝜑(𝑝𝑘) = 𝑝𝑘−1(𝑝 − 1), hence

𝑝 𝛽(𝑃𝑝) = 𝑝 +
∑

𝑘≥1

𝑚𝑝𝑘

𝑝𝑘−1
∈ ℤ,

so in lowest terms the denominator of 𝛽(𝑃𝑝) divides a power of 𝑝.)
Assume, for contradiction, that

∏

𝑝
𝛽(𝑃𝑝) =

998
21 .

Separate the 𝑝 = 3, 7 factors from the rest and set

𝛽(𝑃3) =
𝐴
3𝛼 , 𝛽(𝑃7) =

𝐵
7𝛽
, 𝑇 ∶=

∏

𝑝≠3,7
𝛽(𝑃𝑝) =

∏

𝑝≠3,7

𝑎𝑝
𝑝𝑒𝑝

.

Then
𝐴
3𝛼 ⋅

𝐵
7𝛽

⋅ 𝑇 = 998
21 .

Since the only primes appearing in the denominator on the right are 3 and 7,
all prime powers 𝑝𝑒𝑝 with 𝑝 ≠ 3, 7 in the denominator of 𝑇 must cancel within
𝑇 itself. Therefore 𝑇 is in fact an integer:

𝑇 ∈ ℤ≥1.
Moreover, for a nontrivial 𝑝-group 𝑃𝑝 we have 𝛽(𝑃𝑝) > 1; in particular, if any
Sylow 𝑝-subgroup with 𝑝 ≠ 3, 7 is nontrivial then the corresponding factor
𝛽(𝑃𝑝) ≥ 2 can occur (indeed examples like 𝐶4 give 𝛽 = 2), so 𝑇 is a positive
integer ≥ 2 unless all such Sylow subgroups are trivial.
Next, observe that 𝛼, 𝛽 ∈ {0, 1}. Indeed, as above 𝑝 𝛽(𝑃𝑝) ∈ ℤ, so in lowest

terms the denominator of 𝛽(𝑃𝑝) divides 𝑝 (not a higher 𝑝-power); hence the
total denominator contributed by 𝑝 = 3, 7 on the left is 3𝛼7𝛽 . Comparing with
the right-hand side, whose denominator is exactly 21 = 3 ⋅ 7, we must have
𝛼 = 𝛽 = 1. Thus write

3 𝛽(𝑃3) = 𝐴 ∈ ℤ≥1, 7 𝛽(𝑃7) = 𝐵 ∈ ℤ≥1.
Since 𝑃3, 𝑃7 are nontrivial, we also have the crude lower bounds

𝐴 = 3𝛽(𝑃3) ≥ 3 + (3 − 1) = 5, 𝐵 = 7 𝛽(𝑃7) ≥ 7 + (7 − 1) = 13,
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because there is at least one subgroup of order 𝑝 in a nontrivial 𝑝-group, con-
tributing (𝑝 − 1) elements of order 𝑝 and hence at least (𝑝 − 1)∕𝑝 to 𝛽.
Now multiply both sides of 𝛽(𝐺) = 998

21
by 21:

(3 𝛽(𝑃3)) ⋅ (7 𝛽(𝑃7)) ⋅ 𝑇 = 998,
i.e.

𝐴 ⋅ 𝐵 ⋅ 𝑇 = 998 = 2 ⋅ 499.
Here 𝐴, 𝐵, 𝑇 are positive integers with 𝐴 ≥ 5 and 𝐵 ≥ 13. Since 998 has
only prime factors 2 and 499, the only positive divisors of 998 are 1, 2, 499, 998.
Therefore 𝑇 must itself be one of {1, 2, 499, 998}, and consequently 𝐴 ⋅ 𝐵 must
be the complementary divisor in {998, 499, 2, 1} respectively. But 𝐴 ≥ 5 and
𝐵 ≥ 13 rule out all these possibilities: 𝐴 ⋅ 𝐵 ≥ 65 cannot be 1, 2, or 499, and
𝐴 ⋅ 𝐵 = 998 would force (𝐴, 𝐵) ∈ {(2, 499), (499, 2)}, which again contradicts
𝐴 ≥ 5, 𝐵 ≥ 13. Thus no such factorization is possible.
The only remaining way to avoid the contradiction would be 𝑇 = 1, i.e. all

Sylow subgroups with 𝑝 ≠ 3, 7 are trivial and hence 𝐺 ≅ 𝑃3 × 𝑃7. But then we
still need 𝐴 ⋅ 𝐵 = 998 with 𝐴 ≥ 5, 𝐵 ≥ 13, which has no solution as above.
Hence no nilpotent 𝐺 satisfies 𝛽(𝐺) = 998

21
. □

3. Proof of main theorem
We first note that

𝛽(PSL(2, 7)) = 1 + 21
2
+ 56

3
+ 42

4
+ 48

7
= 998

21
.

Now suppose 𝐺 is a finite non-solvable group with 𝛽(𝐺) = 998
21
. From the

definition of 𝛽(𝐺), all prime divisors appearing in denominators must divide
|𝐺|. Since 𝛽(𝐺) = 998

21
, it follows that {3, 7} ⊆ 𝜋(𝐺). Since 𝐺 is a non-solvable

group, we have 2 ∈ 𝜋(𝐺). Let𝑁 be the solvable radical of 𝐺, and choose a chief
factor 𝐾∕𝑁 of 𝐺. Then 𝐾∕𝑁 ≅ 𝑆𝑡 for some non-abelian simple group 𝑆 and
integer 𝑡 ≥ 1. By Lemmas 2.1 and 2.2 we have

𝛽(𝐾∕𝑁) ≤ 𝛽(𝐺) = 998
21
.

We will show that 𝐾∕𝑁 ≅ PSL(2, 7). By Lemma 2.4, every non-abelian sim-
ple group 𝑆 satisfies 𝑚2(𝑆) ≥ 15. If 𝑡 ≥ 2, then the direct product structure
forces 𝑚2(𝐾∕𝑁) ≥ 255, whence 𝛽(𝐾∕𝑁) > 998

21
, a contradiction. Therefore

𝑡 = 1 and 𝐾∕𝑁 ≅ 𝑆.
If 3 ∉ 𝜋(𝑆), then 𝑆 ≅ 𝑆𝑧(2𝑝) for some odd prime 𝑝. By [1, Proposition 3.3]

one has
𝑚2(𝑆𝑧(2𝑝)) = (𝑞 − 1)(𝑞2 + 1) ≥ 455,

so again 𝛽(𝑆) > 998
21
, a contradiction. Hence 3 ∈ 𝜋(𝑆). Moreover, due to the

simplicity of𝑆, it hasmore than one cyclic subgroup for any prime𝑝 ∈ 𝜋(𝑆). On
the other hand, 𝑝 ∣ (1+𝑚𝑝(𝑆)). Therefore, we have the estimate𝑚𝑝(𝑆) ≥ 𝑝2−1,
and in particular𝑚3(𝑆) ≥ 8.
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If there exists a prime 𝑝 ≥ 37 in 𝜋(𝑆), then 𝑚𝑝(𝑆)
𝑝

≥ 36.9, so

𝛽(𝐺) ≥ 𝛽(𝑆) ≥ 1 + 15
2 + 8

3 +
𝑚𝑝(𝑆)
𝑝 > 998

21
,

a contradiction. Therefore every prime in 𝜋(𝑆) ⧵ {2, 3} is at most 31. The finite
simple groups with prime divisors contained in

{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31}
are listed in [9, Table 1]. Checking these groups (the GAP computation) shows
that, aside from 𝐴5 and PSL(2, 7), every other candidate satisfies 𝛽(𝐺) >

998
21
.

Hence 𝑆 ≅ 𝐴5 or 𝑆 ≅ PSL(2, 7).
If 𝑆 ≅ PSL(2, 7), then the conclusion follows. Assume therefore that 𝑆 ≅ 𝐴5

and derive a contradiction.
Let 𝐾 denote the full preimage in 𝐺 of 𝐶𝐺∕𝑁(𝐾∕𝑁), i.e. set

𝐾 = {𝑥 ∈ 𝐺 ∣ 𝑥𝑁 ∈ 𝐶𝐺∕𝑁(𝐾∕𝑁)}.
Then 𝐴5 ⊴ 𝐺∕𝐾 ≤ Aut(𝐴5) = 𝑆5.
Assume 𝑁 ≠ 𝐾. Since 𝑁 < 𝐾 and 𝑁 is the solvable radical, the subgroup 𝐾

is non-solvable. Applying Lemmas 2.1 and 2.2 to𝐾 and repeating the reduction
above, we obtain a normal subgroup 𝑇 of 𝐾 with

𝐴5 ⊴ 𝐾∕𝑇 ≤ 𝑆5.
By replacing 𝐾 with 𝐾∕𝑇 and𝑁 with𝑁∕𝑇 wemay assume without loss of gen-
erality that 𝑇 is the solvable radical of 𝐾.
Since 7 ∣ |𝐺| = |𝐴5||𝐾| or |𝑆5||𝐾|, we have 7 ∣ |𝐾|, and hence 7 ∣ |𝑇|. We

claim that 𝑇 is an elementary abelian 7-group. Indeed, because 𝑇 is solvable we
have 𝑂7(𝑇) ≠ 𝑇. Put 𝑇 = 𝑇∕𝑂7(𝑇) and 𝐾 = 𝐾∕𝑂7(𝑇). The Frattini quotient
𝑇∕Φ(𝑇) is elementary abelian of exponent 7. We have

𝐾∕𝑇 ≅ 𝐾∕𝑇 ≅
𝐾∕Φ(𝑇)
𝑇∕Φ(𝑇)

.

Replacing 𝑇 by 𝑇∕Φ(𝑇) we may assume 𝑇 is elementary abelian of exponent 7.
Write |𝑇| = 7𝑡. If 𝑡 ≥ 3 then𝑚7(𝑇) ≥ 342, so

𝛽(𝐺) ≥ 𝛽(𝑇) ≥ 1 + 𝑚7(𝑇)
7 > 998

21
,

a contradiction. Hence 𝑡 ≤ 2.
If 𝑡 = 2 then |𝐾| = 2940 or 5880. Note that by [6, Theorem 2.1],

𝑛3(𝐾)𝑛3(𝐺∕𝐾) ∣ 𝑛3(𝐺).
Since 𝐾∕𝑇 and 𝐺∕𝐾 are 𝐴5 or 𝑆5, we get 𝑛3(𝐺) ≥ 100. If 𝐺 has an element of
order 9, then the number of elements of order 9 satisfies

𝑚9(𝐺) = 𝑛3(𝐺)𝜙(9) ≥ 600,
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whence𝑚9(𝐺)∕9 > 𝛽(𝐺), a contradiction. Therefore every Sylow 3-subgroup of
𝐺 is elementary abelian 𝐶3 ×𝐶3. By Lemma 2.5, we obtain𝑚3 ≥ 2𝑛3(𝐺) ≥ 200,
and thus 𝛽(𝐺) > 998

21
, again a contradiction.

If 𝑡 = 1 a similar argument leads to a contradiction; hence 𝑁 = 𝐾 is the
solvable radical of 𝐺. Thus

𝐴5 ⊴ 𝐺∕𝑁 ≤ 𝑆5,

with 𝑁 solvable. Repeating the previous reduction for 𝑁 we may assume 𝑁 is
an elementary abelian 7-group. As above |𝑁| = 7𝑡 with 𝑡 ≤ 2.
If 𝑡 = 2 then |𝐺| = 2940 (when𝐺∕𝑁 = 𝐴5) or |𝐺| = 5880 (when𝐺∕𝑁 = 𝑆5),

and𝑚7(𝐺) = 𝑚7(𝑁) = 48.
Assume |𝐺| = 5880. Since 3 ∤ |𝑁|, by [6, Theorem 2.1] we have 𝑛3(𝐺∕𝑁) =

𝑛3(𝐺). Hence 𝑛3(𝐺) = 10 = 𝑚3(𝐺)
𝜙(3)

and so𝑚3(𝐺) = 20. Similarly 𝑛5(𝐺) = 6 and
𝑚5(𝐺) = 24.
If 𝐺 had no element of order 35 then a Sylow 7-subgroup would act fixed-

point freely on the set of elements of order 5, forcing |𝑃7| to divide 𝑚5 and
hence 𝑚5 ≥ 49, a contradiction. Therefore 𝐺 has an element of order 35. By
Lemma 2.3, we get 35 ∣ (1 + 𝑚5 + 𝑚7 + 𝑚35), and since 24 ∣ 𝑚35 we deduce
𝑚35 ≥ 312.
On the other hand, 𝑛5(𝐺) = 6 = |𝐺|

|𝑁𝐺(𝑃5)|
, so |𝑁𝐺(𝑃5)| = 4 × 5 × 49. As

|𝑁𝐺(𝑃5)∕𝐶𝐺(𝑃5)| ∣ |Aut(𝑃5)| = 4, we have |𝐶𝐺(𝑃5)| = 4 × 5 × 49, 2 × 5 ×
49, or 5 × 49. In each case 𝑚7(𝐶𝐺(𝑃5)) = 48. By [7, Lemma 2.3] we have
𝑚7(𝐶𝐺(𝑃5))𝑚5 = 1152 ∣ 𝑚35, hence𝑚35 ≥ 1152. Therefore

𝛽(𝐺) ≥ 1 + 20
3 + 24

5 + 48
7 + 1152

35 > 998
21
,

contradiction. Thus |𝐺| ≠ 5880. A similar calculation shows |𝐺| ≠ 2940.
If 𝑡 = 1 then |𝐺| = 840 or 420. A GAP check shows the only non-solvable

group of order 420 is 𝐴5 × 𝐶7; but for this group 𝛽(𝐺) <
998
21
, a contradiction.

There are three non-solvable groups of order 840 with 𝑃7 = 𝐶7 × 𝐶7, namely
𝑆5 × 𝐶7 × 𝐶7, SL(2, 5) × 𝐶7 × 𝐶7, and 𝐴5 × 𝐶2 × 𝐶7 × 𝐶7, and in all these cases
𝛽(𝐺) > 998

21
, a contradiction.

Combining the contradictions above, we conclude that 𝑆 ≅ PSL(2, 7), and
hence 𝐾∕𝑁 ≅ PSL(2, 7). By Lemmas 2.1 and 2.2 this forces 𝐺 ≅ PSL(2, 7),
completing the proof.
Now the natural question arises: if 𝐺 is a finite group, is it true that 𝛽(𝐺) =

998
21

if and only if 𝐺 ≅ PSL(2, 7)?
By our main theorem, the case of non-solvable groups is already settled.

Proposition 2.8 provides a partial step in this direction (the case of nilpotent
groups), but to fully resolve the above question we are led to the following:
Question. Does there exist a finite solvable group 𝐺 such that 𝛽(𝐺) = 998

21
?
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