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On the sum of the inverses of element
orders of PSL(2,7)
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my(G)

ABSTRACT. For a finite group G, we write S(G) = - where

zkene((})
m,(G) denotes the number of elements of order k in G and 7,(G) is the set
of element orders of G. We show that the finite simple group PSL(2,7) is

uniquely determined by the value of this invariant. In particular, we prove

that if G is a finite non-solvable group with 8(G) = %, then G = PSL(2, 7).
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1. Introduction

Let G be a finite group, and 7(G) be the set of prime divisors of order of G.
The study of numerical invariants associated with the element orders of finite
groups has become an active topic in group theory. One such invariant is

o=y, MG

ken,(G)

where m; (G) is the number of elements of order k in G and 7,(G) is the set of
element orders of G. This parameter was introduced and investigated in [4],

where several classification and recognition results were obtained. In [2], the

authors proved that As is the only non-solvable group G satisfying 5(G) = %.

In this paper, we continue this line of research and focus on characterizing
the projective special linear group PSL(2,7). Our main result is the following
theorem:
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Theorem 1.1. Let G be a finite non-solvable group. Then
B(G) = % & G=PSL(2,7).

The proof combines group-theoretic arguments with known classification
results and relies on detailed calculations of 3(G) for candidate simple groups.
This contributes to the general program of recognizing finite simple groups via
numerical invariants.

2. Preliminaries

In order to establish our main theorem, we first collect several auxiliary re-
sults. These lemmas provide useful bounds for §(G) and help restrict the pos-
sible simple groups that may appear.

Lemma 2.1. [4, Lemma 2.2] If H < G, then B(H) < (G), with equality if and
onlyifH = G.

Lemma 2.2. [4, Lemma 2.3] If N < G, then B(G/N) < B(G), with equality if
andonly if N = 1.

Lemma 2.3. [5] Let G be a finite group, and m be a positive integer dividing |G |.
IfG,, ={g € G | g" = 1}, then m divides |G,,|.

Lemma 2.4. [3, Theorem 3.1] Let G be a finite group with fewer than 15 involu-
tions. Then solvable radical of G is nontrivial.

Lemma 2.5. Let G be a finite group whose Sylow 3-subgroups are all elementary
abelian of order 9 (so P = C; X Cj for every P € Syl,(G)). Let I be the set
of cyclic subgroups of order 3 in G. For H € I, let r(H) denote the number of
Sylow 3-subgroups of G that contain H. Then r(H) € {1, 4} for every such H, and

. — 1
8n3 = Dlpyeq 21(H), my = 2|J(|. Hence withr := @ZHG%"(H)’ we have

precisel): whenr(H) = 4 (resp. r(H) = 1) forall H.
Proof. Define

§={(g,P)| PeSyLL(G), g€ P, g#1, |g| =3}

Count by Sylows. Each P =~ C; X C5 has 8 nonidentity elements, all of order
3,50 |S| = 8ns.

Count by elements. For H = (g) € J, its two generators lie in exactly r(H)
Sylow 3-subgroups, giving 2r(H) pairs in 8. Summing over all H yields

S| = D) 2r(H).
HeX

On the other hand each cyclic subgroup of order 3 has two generators, so m; =
2|F|. Equating the two counts gives 8n; = ZHE% 2r(H), my = 2|¥|, and
therefore

ms = 8% In particular, 2n; < ms < 8ns, with equality on the left (resp. right)

8n — 1
m3=—, r =

— — r(H).
r |7 HeX
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Determination of r(H). Fix H = (g) of order 3 and let C := C;(H). A Sylow
3-subgroup of G contains H iff it is a Sylow 3-subgroup of C, so r(H) = n;(C).
If P < C is such a Sylow, conjugation by C induces a homomorphism C —
Aut(P) = GL,(3). Because H < P is a 1-dimensional subspace of P = [Fg
(2-dimensional vector space over the field with 3 elements), the image lies in
the stabilizer of a line in GL,(3), which has order 12. Thus C/0;(C) embeds
into a group of order dividing 12, so r(H) = n3(C) divides |C : O5(C)|, and
by Sylow’s theorem congruence r(H) = 1 (mod 3). The only possibilities are
r(H) € {1,4}. O

We observe that if L lcm{o(g) : g € G}is the exponent of group G,
then LB(G) = deG v € Z. In particular, if (G) = 1n lowest terms with

ged(a,b) =1, then b | L.

Let C,, be cyclic of order n. Then (well-known) (C,,) = D, din d where @
is Euler’s totient function. In particular nﬁ(C )EZ.

Proposition 2.6. If C,, is cyclic and (C,,) = then 21 | n.

Proof. We have ng(C,) € Z. Writing B(C,,) = % in lowest terms and using
gcd(998,21) = 1, we obtain 21 | n. O
Proposition 2.7. Let G be a nontrivial finite p-group. Then B(G) # %

Proof. Let L = exp(G). For a p-group the exponent L is a power of p. We have
LAG) e Z. 1 B(G) = = " then

L- = ez
Since gcd(998, 21) = 1, this implies 21 | L. But L is a power of a single prime p,
while 21 = 3 - 7 has two distinct prime divisors; therefore no power of a single

prime can be divisible by 21. This contradiction shows a nontrivial p-group

cannot have (G) = 9918 O

If G is finite nilpotent then G = Hp P, the direct product of its Sylow p-
subgroups P,. When gcd(|A|, |B|) = 1 by [4, Lemma 2.6]

B(A x B) = B(A)B(B).
Thus for nilpotent G,
BG) =[] BP,).
p

Proposition 2.8. Let G be a nontrivial finite nilpotent group. Then $(G) # %.
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Proof. Since G is nilpotent we have a direct product decomposition G = Hp P,

into its Sylow p-subgroups P, and for such coprime direct products 8 is mul-
tiplicative:

BG) =[] BP,).
14

For each prime p, write S(P,) in lowest terms as

a
B(P,) = p—i, a, € Zs1, e, € Z5y, ged(a,, p) = 1.
(That p® is a p-power follows from the standard fact that p - (P,) € Z: m«
is divisible by ¢(p*) = p*~1(p — 1), hence
pRP)=p+ .

k-1
k>1 P

so in lowest terms the denominator of 3(P,,) divides a power of p.)
Assume, for contradiction, that

998

Separate the p = 3,7 factors from the rest and set

Bey=5.  Aep=2.  1i=[]Ae)= ] oE

p#3,7 p#3.7

mpk

e Z,

Then
A B T_998

3@ 76 0 T 21
Since the only primes appearing in the denominator on the right are 3 and 7,
all prime powers p° with p # 3,7 in the denominator of T must cancel within
T itself. Therefore T is in fact an integer:

TEZs.

Moreover, for a nontrivial p-group P, we have (P,) > 1; in particular, if any
Sylow p-subgroup with p # 3,7 is nontrivial then the corresponding factor
B(P,) > 2 can occur (indeed examples like C, give § = 2), so T is a positive
integer > 2 unless all such Sylow subgroups are trivial.

Next, observe that a, § € {0,1}. Indeed, as above p B(Pp) € Z, so in lowest
terms the denominator of B(P,) divides p (not a higher p-power); hence the
total denominator contributed by p = 3,7 on the left is 3*7°. Comparing with
the right-hand side, whose denominator is exactly 21 = 3 - 7, we must have
a = 8 = 1. Thus write

35(P3)=A€ZZI, 76(P7)=B€ZZI'
Since P;, P, are nontrivial, we also have the crude lower bounds

A=3B(P;) >3+ (3-1)=5  B=780P,) > 7+ (7-1)=13,
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because there is at least one subgroup of order p in a nontrivial p-group, con-

tributing (p — 1) elements of order p and hence at least (p — 1)/p to .

Now multiply both sides of 8(G) = % by 21:

(3B(P3) - (7B(P7)-T = 998,
ie.
A-B-T =998 =2-499.

Here A,B, T are positive integers with A > 5 and B > 13. Since 998 has
only prime factors 2 and 499, the only positive divisors of 998 are 1, 2,499, 998.
Therefore T must itself be one of {1, 2,499,998}, and consequently A - B must
be the complementary divisor in {998,499, 2, 1} respectively. But A > 5 and
B > 13 rule out all these possibilities: A - B > 65 cannot be 1, 2, or 499, and
A - B = 998 would force (A, B) € {(2,499), (499, 2)}, which again contradicts
A > 5, B > 13. Thus no such factorization is possible.

The only remaining way to avoid the contradiction would be T = 1, i.e. all
Sylow subgroups with p # 3,7 are trivial and hence G = P; X P,. But then we
still need A - B = 998 with A > 5, B 9%8 13, which has no solution as above.

Hence no nilpotent G satisfies 5(G) = o O

3. Proof of main theorem

We first note that
42 | 48 998

21 56
5(PSL(2,7))—1+?+?+I+7—;.

Now suppose G is a finite non-solvable group with S(G) = %. From the

definition of B(G), all prime divisors appearing in denominators must divide

|G|. Since B(G) = %, it follows that {3, 7} C 7(G). Since G is a non-solvable

group, we have 2 € 7(G). Let N be the solvable radical of G, and choose a chief
factor K/N of G. Then K/N = S' for some non-abelian simple group S and
integer t > 1. By Lemmas 2.1 and 2.2 we have

BK/N) < B(G) = 2.

We will show that K/N = PSL(2,7). By Lemma 2.4, every non-abelian sim-
ple group S satisfies m,(S) > 15. If t > 2, then the direct product structure
forces m,(K/N) > 255, whence S(K/N) > %, a contradiction. Therefore
t=1land K/N = S.

If 3 ¢ 7(S), then S = Sz(2P) for some odd prime p. By [1, Proposition 3.3]
one has

my(Sz(2P)) = (q — 1(q* + 1) > 455,
so again B(S) > %, a contradiction. Hence 3 € 7(S). Moreover, due to the
simplicity of S, it has more than one cyclic subgroup for any prime p € 7(S). On
the other hand, p | (1+m(S)). Therefore, we have the estimate m,(S) > p*-1,
and in particular ms(S) > 8.
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If there exists a prime p > 37 in 7(S), then my(5) > 36.9, so
p

15 8 mp(S)  gog
> > = 4= =
ﬁ(G)_,B(S)_1+2+3+ D >21,

a contradiction. Therefore every prime in 7z(S) \ {2, 3} is at most 31. The finite
simple groups with prime divisors contained in

{2,3,5,7,11,13,17, 19, 23, 29, 31}

are listed in [9, Table 1]. Checking these groups (the GAP computation) shows

that, aside from A5 and PSL(2, 7), every other candidate satisfies S(G) > %.

Hence S = A5 or S = PSL(2, 7).

If S = PSL(2, 7), then the conclusion follows. Assume therefore that S =~ A;
and derive a contradiction.

Let K denote the full preimage in G of Cg/n(K/N), i.e. set

Then A; < G/K < Aut(4;) = Ss.

Assume N # K. Since N < K and N is the solvable radical, the subgroup K
is non-solvable. Applying Lemmas 2.1 and 2.2 to K and repeating the reduction
above, we obtain a normal subgroup T of K with

As SK/T < Ss.

By replacing K with K/T and N with N /T we may assume without loss of gen-
erality that T is the solvable radical of K.

Since 7 | |G| = |As]||K] or |S5||K]|, we have 7 | |K|, and hence 7 | |T|. We
claim that T is an elementary abelian 7-group. Indeed, because T is solvable we
have O7(T) # T. Put T = T/O"(T) and K = K/O’(T). The Frattini quotient
T/®(T) is elementary abelian of exponent 7. We have

K/o(®)
T/o(T)

Replacing T by T/®(T) we may assume T is elementary abelian of exponent 7.
Write |T| = 7'. If t > 3 then m,(T) > 342, so

K/T =K/T

IR

m,(T
B(G) > BT) > 1+ ML) 98
7 21
a contradiction. Hence ¢t < 2.
Ift = 2 then |K| = 2940 or 5880. Note that by [6, Theorem 2.1],
n3(K)n3(G/K) | n3(G).

Since K/T and G/K are As or S5, we get n3(G) > 100. If G has an element of
order 9, then the number of elements of order 9 satisfies

my(G) = n3(G)$(9) = 600,
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whence my(G)/9 > B(G), a contradiction. Therefore every Sylow 3-subgroup of
G is elementary abelian C; X C5. By Lemma 2.5, we obtain m3 > 2n;(G) > 200,

and thus 5(G) > %, again a contradiction.

If t = 1 a similar argument leads to a contradiction; hence N = K is the
solvable radical of G. Thus

As<G/N < Ss,

with N solvable. Repeating the previous reduction for N we may assume N is
an elementary abelian 7-group. As above |[N| = 7* with ¢t < 2.

Ift = 2then |G| = 2940 (when G/N = A;)or |G| = 5880 (when G/N = S;),
and m,(G) = m;(N) = 48.

Assume |G| = 5880. Since 3 } |N|, by [6, Theorem 2.1] we have n;(G/N) =
n;(G). Hence n3(G) = 10 = % and so m;(G) = 20. Similarly ns(G) = 6 and
If G had no element of order 35 then a Sylow 7-subgroup would act fixed-
point freely on the set of elements of order 5, forcing |P;| to divide m5 and
hence ms > 49, a contradiction. Therefore G has an element of order 35. By

Lemma 2.3, we get 35 | (1 + ms + m; + m3s), and since 24 | mss we deduce
mss Z 312.
On the other hand, ns(G) = 6 = INl((;ll’ T S0 |[Ng(Ps)| = 4 X 5% 49. As
G\{s
INg(Ps)/Cg(Ps)| | |Aut(Ps)| = 4, we have |Cg(Ps)] = 4 X 5% 49,2 X 5 X

49, or 5 X 49. In each case m,(C;(P5)) = 48. By [7, Lemma 2.3] we have
m;(Cq(Ps))ms = 1152 | mss, hence ms5 > 1152. Therefore

20 24 48 1152 _ 998
> et el T e Tt Nt
6(G)_1+3+5+7+35>21’
contradiction. Thus |G| # 5880. A similar calculation shows |G| # 2940.
Ift = 1 then |G| = 840 or 420. A GAP check shows the only non-solvable

group of order 420 is A5 X Cy; but for this group B(G) < %, a contradiction.
There are three non-solvable groups of order 840 with P, = C; X C;, namely
S5 X Cy X Cq,SL(2,5) X C; X C5, and As X C, X C; X C5, and in all these cases
B(G) > %, a contradiction.

Combining the contradictions above, we conclude that S =~ PSL(2,7), and
hence K/N = PSL(2,7). By Lemmas 2.1 and 2.2 this forces G = PSL(2,7),
completing the proof.

Now the natural question arises: if G is a finite group, is it true that S(G) =
% if and only if G = PSL(2,7)?

By our main theorem, the case of non-solvable groups is already settled.
Proposition 2.8 provides a partial step in this direction (the case of nilpotent
groups), but to fully resolve the above question we are led to the following:

28,9

Question. Does there exist a finite solvable group G such that §(G) = L



1438 A. K. ASBOEI AND H. R. ESBO

4.

Acknowledgment

We thank the referee for some extremely helpful remarks, which allowed us

to improve the paper.

References

(1]

(8]
[9]

ALAVI, SEYED H.; DANESHKHAH, ASHRAF., MOSAED, HOSEIN P. Groups of the same type
as Suzuki groups. Int. J. Group Theory. 8 (2019), no. 1, 35-42. MR3953262, Zbl 1443.20013,
doi: 10.22108/ijgt.2017.21556. 1435

ANABANTI, CHIMERE. S.; ASBOEI, ALIREZA K. Another characterization of As. Submitted
to Proceedings of the Japan Academy, Series A (2025). 1431

ASBOEI, ALIREZA K. Groups with fewer than 15 involutions. Commun Algebra 51(2023), no.
10, 4171-4175. MR4613261, Zbl 1521.20049, doi: 10.1080/00927872.2023.2198027. 1432
AZAD, MORTEZA B.; KHOSRAVI, BEHROOZ.; RASHIDI, HAMIDEH. On the sum of the in-
verses of the element orders in finite groups. Commun. Algebra. 51 (2023), no. 2, 694-698.
MR4532818, Zbl 1517.20033, doi: 10.1080/00927872.2022.2109043. 1431, 1432, 1433
FROBENIUS, FERDINAND G. VERALLGEMEINERUNG DES SYLOWSCHEN SATZES. Berlin
(1895), 981-993. JFM 26.0158.01, doi: 10.3931/e-rara-18880. 1432

HALL, MARSHAL J. On the number of Sylow subgroups in a finite group. J. Algebra 7 (1967),
363-371. MR0222159, Zbl 0178.02102, doi: 10.1016/0021-8693(67)90076-2 1436, 1437
SHAO, CHANGGUO.; JIANG, QINHUI. A new characterization of some linear groups by
NSE. J. Algebra Appl 13 (2014), no. 2, 1350094 (9 pages). MR3119655, Zbl 1291.20013,
doi: 10.1142/S0219498813500941. 1437

The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.14.0 (2024).
https://www.gap-system.org.

ZAVARNITSINE, ANDREI V. Finite simple groups with narrow prime spectrum. Sib. Elektron.
Mat. Izv 6 (2009), 1-12. MR2586673, Zbl 1289.20021. 1436

(A. K. Asboei) DEPARTMENT OF MATHEMATICS EDUCATION, FARHANGIAN UNIVERSITY, P.O.
B0OX 14665-889, TEHRAN, IRAN
a.khalili@cfu.ac.ir

(H.

R. Esbo) DEPARTMENT OF MATHEMATICS EDUCATION, BABOL, IRAN

hr1928200@gmail.com

This paper is available via http://nyjm.albany.edu/j/2025/31-55.html.


http://mathscinet.ams.org/mathscinet/article?mr=3953262
http://zbmath.org/1443.20013
http://dx.doi.org/10.22108/ijgt.2017.21556
http://mathscinet.ams.org/mathscinet/article?mr=4613261
http://zbmath.org/1521.20049
http://dx.doi.org/10.1080/00927872.2023.2198027
http://mathscinet.ams.org/mathscinet/article?mr=4532818
http://zbmath.org/1517.20033
http://dx.doi.org/10.1080/00927872.2022.2109043
http://zbmath.org/26.0158.01
http://dx.doi.org/10.3931/e-rara-18880
http://mathscinet.ams.org/mathscinet/article?mr=0222159
http://zbmath.org/0178.02102
http://dx.doi.org/10.1016/0021-8693(67)90076-2
http://mathscinet.ams.org/mathscinet/article?mr=3119655
http://zbmath.org/1291.20013
http://dx.doi.org/10.1142/S0219498813500941
https://www.gap-system.org
http://mathscinet.ams.org/mathscinet/article?mr=2586673
http://zbmath.org/1289.20021
mailto:a.khalili@cfu.ac.ir
mailto:hr192820@gmail.com
http://nyjm.albany.edu/j/2025/31-55.html

	1. Introduction
	2. Preliminaries
	3. Proof of main theorem
	4. Acknowledgment
	References

