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An alternative geometric proof of
a theorem of Horrocks

Dhruv Sidana and Jebasingh R

ABSTRACT. We give a geometric proof of Horrocks’ theorem, which states
that a vector bundle on the affine line over a local ring, extending to the pro-
jective line, is trivial. Unlike Horrocks’ original approach via formal coho-
mology, our method uses semicontinuity and cohomology and base-change
to construct a nowhere-vanishing section.

1. Introduction

Jean-Pierre Serre in his article Faisceaux algébriques cohérents [6] raised the
following question: Let k be a field. Are vector bundles over A} (affine n-space)
trivial? Over twenty years, there was progress made towards solving this. Fi-
nally, Daniel Quillen [5] and Andrei Suslin [8] independently proved the result.
A detailed exposition can be found in [4]. One of the key steps in the complete
solution to Serre’s problem is due to Horrocks [3].

Theorem 1.1. (Horrocks) Let R be a local ring and F be a vector bundle on Allz
which extends to a vector bundle on IP}Q. Then F is trivial.

The crucial step in the proof is to produce a nowhere-vanishing section of
F. This is achieved by Horrocks using formal cohomology, whereas we use
semicontinuity and base-change theorem to produce such a section.

Acknowledgement. We thank Prof. Aravind Asok and the anonymous ref-
eree for their valuable comments and suggestions that improved this article.

2. Proof

The proof relies on the following results concerning base change and the
semicontinuity of cohomology. We present the result as stated in [7, Tag 0BDM].

Theorem 2.1. Let f : X — S be a flat, proper morphism of finite presentation.
Let & be a Ox-module of finite presentation, flat over S. For a fixed i € Z. Con-
sider the function

Bi S = N, s dimyoH (X, Fy)

Then we have
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(1) formation of B; commutes with arbitrary base change
(2) The functions f3; are upper semi-continuous

Lemma 2.2. Let f : X — S be a flat, proper morphism of finite presentation. Let
F be a Ox-module of finite presentation, flat over S. The function

s - XXy, Fy) = D (~DPdim, o HP (X, F)
p
is locally constant on S.

The following fundamental result on cohomology and base change is well
known when the base scheme is locally Noetherian. The statement, however,
holds without this assumption, and the proof is obtained by reducing to the
Noetherian case via “Noetherian approximation”. Although this argument can
be found in several sources, we include it here for completeness.

Proposition 2.3. Let f : X — S be a proper and finitely presented morphism of
schemes. Let & be a finitely presented sheaf on X which is flat over S. Suppose that
forapoints € S and integerithe map ¢ : R"f*(}")s®osysk(s) — H{(X,, FQx(s))
is surjective. Then the following hold
(1) There is an open neighbourhood U C S containing s such that ¢ is an
isomorphism
(2) ¢V is surjective if and only if R f . F is a vector bundle in an open neigh-
bourhood of s

Proof. The statement is local on S, we can assume S is affine and we can write
S = limy, S; where S; are affine schemes of finite type over Z. Since f is
finitely presented, there exists 0 € A and a finitely presented morphism f :
Xy = Sp such that X ~ X, Xg, S [7, Tag 01ZM]. For each 1 > 0, we define
Xy = X(Xg, Sy and we have X ~ X;; Xg, S. By [7, Tag 081C, Tag 05M5], X — S,
is proper for A > 0. By [7, Tag 01ZR, Tag OB8W, Tag O5LY], there exists an
index u € A and a coherent sheaf #, on X, that pulls back to # under X — X ,.
For 1 > u, set  to the pull back of F, under X; — X,,. By [7, Tag 01ZR, Tag
OB8W, Tag O5LY], ¥, is flat for S; for A > 0. We apply [1, 3.2.1] to the data
X; — S, and ¥, for 1 > 0 and we deduce the proposition for X — S and F
under the base change S — S;. ]

We now state a key result, due to Dedekind-Weber, and independently,
Birkhoff, which is instrumental to the proof. For a proof, the reader may
refer to [2, Theorem 4.1].

Theorem 2.4. Let € be a rank r vector bundle on IP’}(. Then & = O(a;)) ® --- &
O(a,) for a unique nonincreasing sequence of integers a,, a,, - , a,.

Proof of Horrocks’s theorem. Let &£ be a vector bundle on Pllz which is an
extension of F. Let & be the restriction of & to the special fibre Pl where
k = R/m. Then it follows from Theorem 2.4 that

& = @®L,0p (a),
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for some integers a;. We may assume a; > 0,for1 < i < m, and q; = O,
for some i, by suitably twisting &' and &. Note that twisting(tensoring by line
bundle) does not affect the hypothesis as the assertion is local, hence we get

that & has a nowhere vanishing section and H'(P}, 8') =0.

We claim € has a nowhere vanishing section. Then we have an exact se-
quence given by a nowhere vanishing section of £

0—>(9|p11€—>8—>8/(9p11z—>0

Now, restriction of & to the Azle splits. In particular, ¥ = F ' XY Al with the

rank of #" strictly less than the rank of #. Then the proof follows by induction
on the rank. Now we show that & has a nowhere vanishing section.

Since R is local every closed subset of SpecR contains the unique maximal
ideal m, using Theorem 2.1, we have the following inequality:
dim, HO(P, . €,) < dimHO(P, &)
for all y € SpecR.
Moreover, R being local, it follows from Lemma 2.2 that the function y —
x(&,) is constant and we conclude

dimy HO(PL, &) < dim, ) H(PL &)

k() 7Y
Combining, we have dim, H*(P!, &) = dim,{(y)Ho(P}c(y), &) and

1 1 —
H'(PL &) =0

for all y € SpecR.

Letm : P112 — SpecR be the structure map. Then, the pullback map ¢ :
HO(PL, &) - HO(PL, &) factors as

HOPL, &) —28 HOPL, &)

LA

T.EQRk

where the surjectivity of ¢° is given by Proposition 2.3 as H' (P! O &y) = 0 for
all y € SpecR. Hence, the pullback map ¢ is surjective.

Finally, we show the pullback of nowhere vanishing section is nowhere van-
ishing. Let s be a nowhere vanishing section of &'. Suppose s = ¢(t), where ¢
is not a nowhere vanishing section of £. Then as the map 7 : IP’}Q — SpecR is
proper the image of V' (¢)(the pullback of the locus where ¢ vanishes is the locus
where the pulled-back section s vanishes) is closed, R being local implies V'(¢)
contains m, which is absurd.
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V() —— V()

1 i’

1 1
PL —— P}

! 1

Speck —— SpecR
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