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A Goldbach theorem for Laurent series
semidomains

Nathan Kaplan and Harold Polo

Abstract. A semidomain is a subsemiring of an integral domain. One can
think of a semidomain as an integral domain inwhich additive inverses are no
longer required. A semidomain 𝑆 is additively reduced if 0 is the only invert-
ible element of the monoid (𝑆, +), while 𝑆 is additively atomic if the monoid
(𝑆, +) is atomic (i.e., every non-invertible element 𝑠 ∈ 𝑆 can be written as
the sum of finitely many irreducibles of (𝑆, +)). In this paper, we describe
the additively reduced and additively atomic semidomains 𝑆 for which every
Laurent series 𝑓 ∈ 𝑆J𝑥±1K that is not a monomial can be written as the sum
of at most three multiplicative irreducibles. In particular, we show that, for
each 𝑘 ∈ ℕ, every polynomial 𝑓 ∈ ℕ[𝑥

±1

1
, … , 𝑥

±1

𝑘
] that is not a monomial

can be written as the sum of two multiplicative irreducibles provided that
𝑓(1, … , 1) > 3.
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1. Introduction
The Goldbach conjecture, proposed by Goldbach in a letter to Euler in 1742,

remains one of the oldest andmost famous unsolved problems inmathematics.
In modern terms, the conjecture states that every even integer greater than 2
can be written as the sum of two prime numbers.
Since the 1960s, analogues of the Goldbach conjecture for classes of poly-

nomial rings have been investigated by several authors. In 1965, Hayes [10]
showed that polynomials 𝑓 ∈ ℤ[𝑥] with deg(𝑓) > 1 can be represented as the
sumof two irreducibles. Hisworkwas later extended by Saidak [15], Kozek [11],
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and Pollack [14]. On the other hand, variations of the Goldbach conjecture for
polynomials over finite fields have been studied by Effinger andHayes [5], Ben-
der [1], Car and Gallardo [3], and others. More recently, Paran [13] examined a
version of the Goldbach conjecture in the ring of formal power series over the
integers.
Liao and the second author [12] initiated the study of analogues of the Gold-

bach conjecture for polynomial semirings. Specifically, they showed that every
𝑓 ∈ ℕ[𝑥±1] that is not a monomial can be written as the sum of twomultiplica-
tive irreducibles provided that𝑓(1) > 3 [12, Theorem1]. It is worthmentioning
that the proof uses a fact about the distribution of prime numbers in ℤ. Note
that this theorem is closely connected to the Goldbach conjecture. This result is
about partitioning a fixed set of units into two subsets, where each subset repre-
sents an irreducible Laurent polynomial with positive integer coefficients, just
as the Goldbach conjecture concerns the partitioning of a fixed set of units into
two subsets, where each subset represents a positive prime. Moreover, if the
Goldbach conjecture were true then, using the fact that 𝑓 ∈ ℕ[𝑥±1] is a multi-
plicative irreduciblewhen𝑓(1) is a primenumber, one could prove that Laurent
polynomials 𝑓 ∈ ℕ[𝑥±1] for which 𝑓(1) is an even number greater than 2 can
be written as the sum of two irreducibles. In this paper, we provide a gener-
alization of [12, Theorem 1], from which we recover the cited result without
relying on specific information about prime numbers.
There are polynomial semirings for which no analogue of the Goldbach con-

jecture holds. For instance, consider the semiring ℕ[
√
2][𝑥±1]. It is not dif-

ficult to show that if
√
2 = 𝑎 + 𝑏 for some 𝑎, 𝑏 ∈ ℕ[

√
2] then either 𝑎 = 0

or 𝑏 = 0. As a consequence, we obtain that for any 𝑛 ∈ ℕ, the polynomial
√
2𝑥𝑛 +

√
2𝑥𝑛−1 +⋯ +

√
2𝑥 +

√
2 cannot be written as the sum of 𝑛 or fewer

multiplicative irreducibles. A major goal of this article is to clarify the differ-
ences between semirings such asℕ[𝑥±1] andℕ[

√
2][𝑥±1] and explain how these

differences are connected to analogues of the Goldbach conjecture for classes
of Laurent polynomials with coefficients in a semiring.
Following [9], we say that a semidomain is a subsemiring of an integral do-

main. One can think of a semidomain as an integral domain in which additive
inverses are no longer required. Clearly, the class of semidomains contains the
class of integral domains. Classes of polynomial semidomains have been inves-
tigated before in the literature (see, for instance, [2,4,6]). Note that a semido-
main𝑆 consists of twomonoids, namely (𝑆⧵{0}, ⋅) and (𝑆, +). A semidomain𝑆 is
additively reduced if 0 is the only invertible element of themonoid (𝑆, +), while
𝑆 is additively atomic if the monoid (𝑆, +) is atomic (i.e., every non-invertible
element 𝑠 ∈ 𝑆 can be written as the sum of finitely many irreducibles of (𝑆, +)).
It is easy to see that the set of nonnegative integers is an additively reduced and
additively atomic semidomain.
This paper is structured as follows. In Section 2, we review some of the stan-

dard notation and terminology we use throughout the article. In Section 3, we
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describe the additively reduced and additively atomic semidomains 𝑆 for which
every Laurent polynomial 𝑓 ∈ 𝑆[𝑥±1] that is not a monomial can be written as
the sumof atmost twomultiplicative irreducibles, andwe identify the ones that
cannot be written as the sum of exactly two irreducibles. In particular, we show
that for each 𝑘 ∈ ℕ, every polynomial 𝑓 ∈ ℕ[𝑥

±1

1
, … , 𝑥

±1

𝑘
] that is not a mono-

mial can be written as the sum of two multiplicative irreducibles provided that
𝑓(1, … , 1) > 3. In Section 4, we characterize the additively reduced and addi-
tively atomic semidomains 𝑆 for which every Laurent series 𝑓 ∈ 𝑆J𝑥±1K that
is not a monomial can be written as the sum of at most three multiplicative
irreducibles. For such an 𝑆, we show that every Laurent series that is not a
polynomial can be written as the sum of at most three irreducibles in at least
2ℵ0 ways.

2. Preliminaries
We now review some of the standard notation and terminology that we will

use later. For a comprehensive background on semiring theory, we recommend
the monograph [7]. Let ℚ, ℤ, ℕ, and ℕ0 denote the set of rational numbers,
integers, positive integers, and nonnegative integers, respectively. For 𝑚, 𝑛 ∈

ℕ0, let J𝑚, 𝑛K ∶= {𝑘 ∈ ℤ ∣ 𝑚 ≤ 𝑘 ≤ 𝑛}. Observe that if𝑚 > 𝑛, then J𝑚, 𝑛K = ∅.

2.1. Commutative monoids. Throughout this paper, amonoid is defined to
be a semigroup with identity that is cancellative and commutative. Unless we
specify otherwise, we will use multiplicative notation for monoids. For the rest
of the section, let𝑀 be a monoid. We use the notation𝑀× to denote the group
of units (i.e., invertible elements) of𝑀. We say that𝑀 is reduced provided that
the group of units of𝑀 is trivial. Given a subset 𝑆 of𝑀, we let ⟨𝑆⟩ denote the
smallest submonoid of𝑀 containing 𝑆.
For elements 𝑏, 𝑐 ∈ 𝑀, we say that 𝑏 divides 𝑐 in𝑀 and write 𝑏 ∣𝑀 𝑐 if there

exists 𝑏′ ∈ 𝑀 such that 𝑐 = 𝑏𝑏′. A submonoid 𝑁 of 𝑀 is divisor-closed if for
every 𝑐 ∈ 𝑁 and 𝑏 ∈ 𝑀 the relation 𝑏 ∣𝑀 𝑐 implies that 𝑏 ∈ 𝑁. Let 𝑆 be
a nonempty subset of 𝑀. We use the term common divisor of 𝑆 to refer to an
element 𝑑 ∈ 𝑀 that divides all elements of 𝑆. We call a common divisor 𝑑 of 𝑆
a greatest common divisor if it is divisible by all other common divisors of 𝑆. We
denote by gcd

𝑀
(𝑆) the set consisting of all greatest common divisors of 𝑆 and

drop the subscript when there is no risk of confusion.
An element 𝑎 ∈ 𝑀⧵𝑀× is called an atom (or irreducible) if for every 𝑏, 𝑐 ∈ 𝑀

the equality 𝑎 = 𝑏𝑐 implies that either 𝑏 ∈ 𝑀× or 𝑐 ∈ 𝑀×. We denote by the set
of atoms of𝑀 by A (𝑀). We say that𝑀 is atomic if every element in𝑀 ⧵ 𝑀×

can be written as a finite product of atoms. On the other hand, we say that𝑀
is antimatter ifA (𝑀) = ∅. It is not hard to show that if𝑀 is an atomic monoid
that is antimatter, then𝑀 is an abelian group.

2.2. Semirings andSemidomains. A semiring 𝑆 is a (nonempty) set endowed
with two binary operations denoted by ‘⋅’ and ‘+’ and calledmultiplication and
addition, respectively, such that the following conditions hold:



1412 NATHAN KAPLAN AND HAROLD POLO

(1) (𝑆⧵{0}, ⋅) is a commutative semigroupwith an identity element denoted
by 1;

(2) (𝑆, +) is a monoid with its identity element denoted by 0;
(3) 𝑏 ⋅ (𝑐 + 𝑑) = 𝑏 ⋅ 𝑐 + 𝑏 ⋅ 𝑑 for all 𝑏, 𝑐, 𝑑 ∈ 𝑆.

We usually write 𝑏𝑐 instead of 𝑏 ⋅ 𝑐 for elements 𝑏, 𝑐 in a semiring 𝑆. We would
like to emphasize that amore general notion of a ‘semiring’ does not usually as-
sume the commutativity of the underlying multiplicative semigroup, but
throughout this article wewill assume that themultiplication operation is com-
mutative. A subset 𝑆′ of a semiring 𝑆 is a subsemiring of 𝑆 if (𝑆′, +) is a sub-
monoid of (𝑆, +) that contains 1 and is closed under multiplication. Clearly,
every subsemiring of 𝑆 is a semiring.

Definition 2.1. A semidomain is a subsemiring of an integral domain.

Let 𝑆 be a semidomain. We say that (𝑆 ⧵ {0}, ⋅) is the multiplicative monoid
of 𝑆, and we denote it by 𝑆∗. Following standard notation from ring theory, we
refer to the units of the multiplicative monoid 𝑆∗ simply as units, and we let
𝑆× denote the group of units of 𝑆. For 𝑏, 𝑐 ∈ 𝑆 such that 𝑏 divides 𝑐 in 𝑆∗, we
write 𝑏 ∣𝑆 𝑐 (instead of 𝑏 ∣𝑆∗ 𝑐). Also, for a nonempty subset 𝐵 of 𝑆, we use
gcd(𝐵) to denote the set of greatest common divisors of 𝐵 in the monoid 𝑆∗. On
the other hand, we denote the set of atoms of the multiplicative monoid 𝑆∗ by
A (𝑆) instead ofA (𝑆∗), while we denote the set of atoms of the additivemonoid
(𝑆, +) by A+(𝑆).
A semidomain 𝑆 is additively reduced if 0 is the only invertible element of the

monoid (𝑆, +). In this paper, we work with additively reduced semidomains
𝑆 for which (𝑆, +) is atomic and A+(𝑆) = 𝑆×. In this context, we can write
nonzero elements 𝑠 ∈ 𝑆∗ as 𝑠 = 𝑢𝑠 + 𝑣𝑠, where 𝑢𝑠 ∈ 𝑆× and 𝑣𝑠 ∈ 𝑆; observe
that if 𝑠 ∉ 𝑆× then 𝑣𝑠 ∈ 𝑆∗. This class of semidomains includes familiar ex-
amples such as the semiring of nonnegative integers ℕ0, which provides the
natural framework for the Goldbach conjecture. Furthermore, this structural
condition is preserved under passage to Laurent polynomial extensions: if a
semidomain 𝑆 satisfies the above condition then so does 𝑆[𝑥±1]. We take advan-
tage of this fact in Corollary 3.8. Finally, note that if A+(𝑆) ⊈ 𝑆×, then for any
𝑎 ∈ A+(𝑆) ⧵ 𝑆

× the polynomial 𝑎𝑥2 + 𝑎𝑥 + 𝑎 ∈ 𝑆[𝑥±1] cannot be expressed as
the sum of at most two multiplicative irreducibles.

2.3. Laurent polynomials and Laurent series. Let 𝑅 be an integral domain
containing 𝑆 as a subsemiring. Then the semiring of polynomials 𝑆[𝑥] over 𝑆
is a subsemiring of 𝑅[𝑥], and so 𝑆[𝑥] is also a semidomain. The elements of
𝑆[𝑥] are also polynomials in 𝑅[𝑥]. As a result, all the standard terminology for
polynomials can be applied to elements of 𝑆[𝑥], including degree and leading
coefficient. Similarly, the semiring of Laurent series with finitely many negative
terms 𝑆J𝑥±1K over 𝑆 is also a semidomain. Throughout the paper, when we re-
fer to Laurent series, we refer only to Laurent series with finitelymany negative
terms. For the rest of this section, let 𝑆 be an additively reduced semidomain.
The semiring of Laurent polynomials 𝑆[𝑥±1] over 𝑆 is embedded in 𝑆J𝑥±1K.
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In fact, since 𝑆 is additively reduced, the multiplicative monoid 𝑆[𝑥±1]∗ is a
divisor-closed submonoid of𝑆J𝑥±1K∗. Consequently, the inclusionA (𝑆[𝑥±1]) ⊆

A (𝑆J𝑥±1K) holds. Moreover, it is not hard to see that

𝑆
q
𝑥±1

y×
= 𝑆

[
𝑥±1

]×
=
{
𝑠𝑥𝑘 ∣ 𝑠 ∈ 𝑆× and 𝑘 ∈ ℤ

}
.

Finally, given a Laurent series 𝑓 =
∑∞

𝑖=0
𝑠𝑖𝑥

𝑘𝑖 ∈ 𝑆J𝑥±1K, we refer to the set
{𝑘𝑖 ∣ 𝑠𝑖 ≠ 0, 𝑖 ∈ ℕ0} as the support of 𝑓, which we denote by 𝗌𝗎𝗉𝗉(𝑓).

3. Laurent polynomials as the sum of two irreducibles
In this section, we describe the additively reduced and additively atomic

semidomains 𝑆 for which every Laurent polynomial 𝑓 ∈ 𝑆[𝑥±1] that is not a
monomial can be written as the sum of at most two multiplicative irreducibles,
and we identify the ones that cannot be written as the sum of exactly two ir-
reducibles. In particular, we show that, for each 𝑘 ∈ ℕ, every polynomial
𝑓 ∈ ℕ0[𝑥

±1

1
, … , 𝑥

±1

𝑘
] that is not a monomial can be written as the sum of two

multiplicative irreducibles provided that 𝑓(1, … , 1) > 3. This result general-
izes [12, Theorem 1].
Throughout this section, whenever we consider a polynomial expression

∑𝑛

𝑖=0
𝑠𝑖𝑥

𝑘𝑖 ∈ 𝑆[𝑥±1], we assume that 𝑘0 > ⋯ > 𝑘𝑛 and 𝑠0, … , 𝑠𝑛 ∈ 𝑆∗ unless we
specify otherwise. Following [4], we say that a nonzero polynomial 𝑓 ∈ 𝑆[𝑥±1]

ismonolithic if 𝑓 = 𝑔ℎ implies that either 𝑔 or ℎ is a monomial in 𝑆[𝑥±1]. Our
next lemma explains the connection between monolithic and irreducible poly-
nomials. Recall that for a nonempty subset 𝐵 of a semidomain 𝑆, gcd(𝐵) is a
(possibly empty) subset of 𝑆.

Lemma 3.1. Let 𝑓 =
∑𝑛

𝑖=0
𝑠𝑖𝑥

𝑘𝑖 ∈ 𝑆[𝑥±1] such that |𝗌𝗎𝗉𝗉(𝑓)| > 1. Then
𝑓 is multiplicative irreducible in 𝑆[𝑥±1] if and only if 𝑓 is monolithic and 1 ∈

gcd(𝑠0, … , 𝑠𝑛).

Proof. The direct implication follows from the fact that 𝑆[𝑥±1]× = {𝑠𝑥𝑘 ∣ 𝑠 ∈

𝑆× and 𝑘 ∈ ℤ}. Suppose now that 𝑓 is monolithic and 1 ∈ gcd(𝑠0, … , 𝑠𝑛). Let
𝑔, ℎ ∈ 𝑆[𝑥±1] such that𝑓 = 𝑔ℎ. Since𝑓 ismonolithic, without loss of generality
wemay assume that 𝑔 is amonomial. Thuswe canwrite 𝑔 = 𝑠𝑥𝑘 for some 𝑠 ∈ 𝑆

and 𝑘 ∈ ℤ. Since 1 ∈ gcd(𝑠0, … , 𝑠𝑛), we have that 𝑠 ∈ 𝑆×. Therefore 𝑔 is a unit
of 𝑆[𝑥±1], which implies that 𝑓 is irreducible. □

Observe that being monolithic is a relaxation of the property of being irre-
ducible. Next, we introduce sufficient conditions under which a polynomial is
monolithic. The following two lemmas will play an important role in the proof
of the main result of this section.

Lemma 3.2. Let 𝑆 be an additively reduced semidomain, and let

𝑓 =

𝑛∑

𝑖=0

𝑠𝑖𝑥
𝑘𝑖 ∈ 𝑆[𝑥±1].

The following statements hold.
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(1) If |𝗌𝗎𝗉𝗉(𝑓)| ≥ 2 and 𝑘1 <
𝑘0+𝑘𝑛

2
then 𝑓 is monolithic.

(2) If |𝗌𝗎𝗉𝗉(𝑓)| > 3 and 𝑘1 ≤
𝑘0+𝑘𝑛

2
then 𝑓 is monolithic.

Proof. Scaling 𝑓 by an appropriate power of 𝑥, wemay assume that 𝑘𝑛 = 0. We
argue by contradiction. Suppose that𝑓 is notmonolithic, that is, 𝑓 = 𝑔ℎ, where
neither 𝑔 nor ℎ is a monomial in 𝑆[𝑥±1]. Scaling by appropriate powers of 𝑥,
we may also assume that 𝑔 and ℎ are elements of 𝑆[𝑥] satisfying 𝑔(0)ℎ(0) ≠ 0.
Suppose that 𝑘1 <

𝑘0

2
. Let 𝑠 and 𝑠′ be the leading coefficients of 𝑔 and ℎ,

respectively. Since 𝑆 is additively reduced and ℎ(0) ≠ 0, we see that 𝗌𝗎𝗉𝗉(𝑔) ⊆
𝗌𝗎𝗉𝗉(𝑔ℎ). Since ℎ is not a monomial, deg(𝑔ℎ) > deg(𝑔). We conclude that
deg(𝑔) ∈ {𝑘1, … , 𝑘𝑛}. Consequently, deg(𝑔) ≤ 𝑘1 <

𝑘0

2
. A similar argument

implies that deg(ℎ) < 𝑘0

2
. Since 𝑘0 = deg(𝑓) = deg(𝑔ℎ), this is a contradiction.

We conclude that 𝑓 is monolithic. This completes the proof that statement (1)
holds.
We now prove statement (2). Without loss of generality, we may assume

that 𝑘1 =
𝑘0

2
and deg(𝑔) ≥ deg(ℎ). This implies that deg(𝑔) ≥ 𝑘0

2
. Since 𝑆 is

additively reduced, ℎ is not a monomial, and ℎ(0) ≠ 0, we must have deg(𝑔) =
𝑘0

2
. Hence deg(ℎ) = 𝑘0

2
. Since |𝗌𝗎𝗉𝗉(𝑓)| > 3, either 𝑔 or ℎ is not a binomial,

which implies that 𝑘1 >
𝑘0

2
. This is a contradiction and so statement (2) holds.

□

Lemma 3.3. Let 𝑆 be an additively reduced semidomain, and let

𝑓 =

𝑛∑

𝑖=0

𝑠𝑖𝑥
𝑘𝑖 ∈ 𝑆[𝑥±1].

The following statements hold.

(1) If |𝗌𝗎𝗉𝗉(𝑓)| ≥ 2 and 𝑘𝑛−1 >
𝑘0+𝑘𝑛

2
then 𝑓 is monolithic.

(2) If |𝗌𝗎𝗉𝗉(𝑓)| > 3 and 𝑘𝑛−1 ≥
𝑘0+𝑘𝑛

2
then 𝑓 is monolithic.

Proof. We follow the same strategy as in the proof of Lemma 3.2. Scaling 𝑓 by
an appropriate power of 𝑥, we may assume that 𝑘𝑛 = 0. Suppose that 𝑓 = 𝑔ℎ

where neither 𝑔 norℎ is amonomial in 𝑆[𝑥±1]. Scaling by appropriate powers of
𝑥, wemay also assume that 𝑔 and ℎ are elements of 𝑆[𝑥] satisfying 𝑔(0)ℎ(0) ≠ 0.
Suppose that𝑘𝑛−1 >

𝑘0

2
. Let𝑑 = deg(𝑔) and𝑑′ = deg(ℎ). Since 𝑆 is additively

reduced and 𝑔(0)ℎ(0) ≠ 0, we see thatmin(𝑑, 𝑑′) ≥ 𝑘𝑛−1 >
𝑘0

2
. This contradicts

the fact that 𝑑 + 𝑑′ = 𝑘0, and we conclude that statement (1) holds.
We now prove statement (2). We may assume that 𝑘𝑛−1 =

𝑘0

2
. Observe that

deg(𝑔) ≥
𝑘0

2
since 𝑆 is additively reduced and ℎ(0) ≠ 0. Similarly, deg(ℎ) ≥ 𝑘0

2
.

Consequently, we must have deg(𝑔) = deg(ℎ) =
𝑘0

2
. Since |𝗌𝗎𝗉𝗉(𝑓)| > 3, either
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𝑔 or ℎ is not a binomial, which implies that 𝑘𝑛−1 <
𝑘0

2
. This is a contradiction,

and therefore statement (2) holds. □

Now we are in a position to describe the additively reduced and additively
atomic semidomains 𝑆 for which the Laurent polynomial extension 𝑆[𝑥±1] sat-
isfies an analogue of the Goldbach conjecture. We will deal with binomials and
trinomials separately, and then address the general case.

Lemma 3.4. Let 𝑆 be an additively reduced and additively atomic semidomain
for which A+(𝑆) = 𝑆×. Suppose 𝑓 ∈ 𝑆[𝑥±1] has |𝗌𝗎𝗉𝗉(𝑓)| = 2. The following
statements hold.

(1) If 𝑓 is not of the form 𝑓 = 𝑎𝑥𝑘0 + 𝑏𝑥𝑘1 , where either 𝑎 ∈ 𝑆× or 𝑏 ∈ 𝑆×

then 𝑓 is the sum of two multiplicative irreducibles.
(2) If 𝑓 = 𝑎𝑥𝑘0 + 𝑏𝑥𝑘1 , where either 𝑎 ∈ 𝑆×or 𝑏 ∈ 𝑆× then 𝑓 is irreducible.

Proof. We can write 𝑓 = 𝑎𝑥𝑘0 + 𝑏𝑥𝑘1 for some 𝑎, 𝑏 ∈ 𝑆∗ and 𝑘0, 𝑘1 ∈ ℤ.
Since (𝑆, +) is atomic and A+(𝑆) = 𝑆×, we can write 𝑎 = 𝑢𝑎 + 𝑣𝑎 and 𝑏 =

𝑢𝑏 +𝑣𝑏, where 𝑢𝑎, 𝑢𝑏 ∈ 𝑆×. If either 𝑣𝑎 = 0 or 𝑣𝑏 = 0 then 𝑓 is irreducible, and
statement (2) immediately follows. On the other hand, if 𝑣𝑎𝑣𝑏 ≠ 0 then we can
write

𝑓 =
[
𝑢𝑎𝑥

𝑘0 + 𝑣𝑏𝑥
𝑘1
]
+
[
𝑣𝑎𝑥

𝑘0 + 𝑢𝑏𝑥
𝑘1
]
,

where the summands between brackets are irreducible by Lemma 3.1. There-
fore statement (1) holds. □

Lemma 3.5. Let 𝑆 be an additively reduced and additively atomic semidomain
for which A+(𝑆) = 𝑆×. Suppose 𝑓 ∈ 𝑆[𝑥±1] has |𝗌𝗎𝗉𝗉(𝑓)| = 3. Then 𝑓 can be
written as the sum of two multiplicative irreducibles unless 𝑓 is the sum of three
units, in which case 𝑓 is irreducible.

Proof. Write 𝑓 = 𝑎𝑥𝑘0 + 𝑏𝑥𝑘1 + 𝑐𝑥𝑘2 with 𝑎𝑏𝑐 ≠ 0, and suppose that 𝑓 is not
the sum of three units. We split our reasoning into the following two cases.
Case 1: 𝑏 ∈ 𝑆×. Since 𝑓 is not the sum of three units, either 𝑎 ∉ 𝑆× or 𝑐 ∉ 𝑆×.
Suppose that 𝑎 ∉ 𝑆×. Since (𝑆, +) is atomic and A+(𝑆) = 𝑆×, we can write
𝑎 = 𝑢𝑎 + 𝑣𝑎, where 𝑢𝑎 ∈ 𝑆× and 𝑣𝑎 ∈ 𝑆∗. Thus,

𝑓 =
[
𝑢𝑎𝑥

𝑘0 + 𝑐𝑥𝑘2
]
+
[
𝑣𝑎𝑥

𝑘0 + 𝑏𝑥𝑘1
]
.

Since 𝑏 ∈ 𝑆×, each binomial between brackets is irreducible by Lemma 3.1.
The argument when 𝑐 ∉ 𝑆× is identical.
Case 2: 𝑏 ∉ 𝑆×. We can write 𝑏 = 𝑢𝑏 + 𝑣𝑏 where 𝑢𝑏 ∈ 𝑆× and 𝑣𝑏 ∈ 𝑆∗, and we
can write 𝑎 = 𝑢𝑎 + 𝑣𝑎 where 𝑢𝑎 ∈ 𝑆× and 𝑣𝑎 ∈ 𝑆. Thus,

𝑓 =
[
𝑢𝑎𝑥

𝑘0 + 𝑣𝑏𝑥
𝑘1
]
+
[
𝑣𝑎𝑥

𝑘0 + 𝑢𝑏𝑥
𝑘1 + 𝑐𝑥𝑘2

]
. (3.1)

The first summand in Equation (3.1) is irreducible as 𝑣𝑏 ∈ 𝑆∗. If 𝑣𝑎 = 0 then
the second summand is also irreducible, which concludes the proof. Therefore,
we suppose that 𝑣𝑎 ≠ 0.
We argue by contradiction. Suppose that 𝑔 = 𝑣𝑎𝑥

𝑘0+𝑢𝑏𝑥
𝑘1+𝑐𝑥𝑘2 is reducible.

Then 𝑔 is the product of two binomials. This implies that 𝑢𝑏 = 𝑠 + 𝑠′ for some
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𝑠, 𝑠′ ∈ 𝑆∗. Consequently, we have that 1 = 𝑢−1
𝑏
𝑠 + 𝑢−1

𝑏
𝑠′ which, in turn, implies

that A+(𝑆) = ∅. Indeed, every element 𝑎 ∈ 𝑆∗ can be written as 𝑎 = 𝑎𝑢−1
𝑏
𝑠 +

𝑎𝑢−1
𝑏
𝑠′ for nonzero summands 𝑎𝑢−1

𝑏
𝑠 and 𝑎𝑢−1

𝑏
𝑠′. However, this contradicts the

assumption that 1 ∈ A+(𝑆). Therefore 𝑔 is irreducible, completing the proof in
this case.
Arguing as in the proof of Case 2, if 𝑓 is the sum of three units then it is

irreducible, completing the proof. □

Next, we describe the additively reduced and additively atomic semidomains
𝑆 for which the Laurent polynomial extension 𝑆[𝑥±1] satisfies an analogue of
the Goldbach conjecture.

Theorem3.6. Let 𝑆 be an additively reduced and additively atomic semidomain.

(A) The following statements are equivalent:
(1) A+(𝑆) = 𝑆×;

(2) every 𝑓 ∈ 𝑆[𝑥±1] with |𝗌𝗎𝗉𝗉(𝑓)| > 1 can be expressed as the sum of at
most two multiplicative irreducibles;

(3) there exists 𝑘 ∈ ℕ such that every 𝑓 ∈ 𝑆[𝑥±1] with |𝗌𝗎𝗉𝗉(𝑓)| > 1 can
be expressed as the sum of at most 𝑘 multiplicative irreducibles.

(B) Moreover, suppose any of the statements in (A) holds and 𝑓 ∈ 𝑆[𝑥±1] does
not have one of the following forms:
(a) 𝑓 = 𝑎𝑥𝑘0 + 𝑏𝑥𝑘1, where either 𝑎 ∈ 𝑆×or 𝑏 ∈ 𝑆×;
(b) 𝑓 = 𝑎𝑥𝑘0 + 𝑏𝑥𝑘1 + 𝑐𝑥𝑘2 , where 𝑎, 𝑏, 𝑐 ∈ 𝑆×.
Then 𝑓 is the sum of exactly two irreducible polynomials in 𝑆[𝑥±1].

Proof. (2) ⟹ (3)∶ This is obvious.
(3) ⟹ (1) ∶ Since 𝑆 is additively reduced, if 𝑎 ∈ A+(𝑆) ⧵ 𝑆

× then there
is no constant 𝑘 ∈ ℕ such that every element of 𝑆[𝑥±1] can be written as the
sum of at most 𝑘 irreducibles. Indeed, for any 𝑛 ∈ ℕ, the polynomial

∑𝑛

𝑖=0
𝑎𝑥𝑘𝑖

cannot be expressed as the sum of 𝑛 or fewer irreducibles. Consequently, the
inclusion A+(𝑆) ⊆ 𝑆× holds.
We argue by contradiction. Let 𝑢 ∈ 𝑆×and suppose that 𝑢 ∉ A+(𝑆). There

exist 𝑎, 𝑏 ∈ 𝑆∗ such that 𝑢 = 𝑎 + 𝑏. This implies 1 = 𝑢−1𝑎 + 𝑢−1𝑏 which,
in turn, implies that A+(𝑆) = ∅. Since (𝑆, +) is atomic and antimatter, it must
be an additive group. This contradicts the assumption that 𝑆 is an additively
reduced semidomain. Therefore A+(𝑆) = 𝑆×.
(1) ⟹ (2)∶By virtue of Lemma 3.4 and Lemma 3.5, we need only consider

the case where |𝗌𝗎𝗉𝗉(𝑓)| > 3. Write 𝑓 =
∑𝑛

𝑖=0
𝑠𝑖𝑥

𝑘𝑖 , where 𝑠0, … , 𝑠𝑛 ∈ 𝑆∗.
Scaling by an appropriate power of 𝑥, we may assume that 𝑘0 > ⋯ > 𝑘𝑛 = 0.
It is possible to write 𝑠0 = 𝑢0 + 𝑣0 and 𝑠𝑛 = 𝑢𝑛 + 𝑣𝑛 with 𝑢0, 𝑢𝑛 ∈ 𝑆×. Let
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𝑓∗ =
∑𝑛

𝑖=0
𝑠∗
𝑖
𝑥𝑘𝑖 , where

𝑠∗
𝑖
=

⎧
⎪

⎨
⎪

⎩

𝑣0 𝑖 = 0,

𝑠𝑖 𝑘𝑖 >
𝑘0

2
,

𝑢𝑛 𝑖 = 𝑛,

0 otherwise.
Observe that 𝑓∗ is either a unit or an irreducible by Lemma 3.1 and Lemma 3.3.
Similarly, let 𝑓∗ =

∑𝑛

𝑖=0
𝑡∗
𝑖
𝑥𝑘𝑖 , where

𝑡∗
𝑖
=

⎧
⎪

⎨
⎪

⎩

𝑢0 𝑖 = 0,

𝑠𝑖 𝑘𝑖 <
𝑘0

2
,

𝑣𝑛 𝑖 = 𝑛,

0 otherwise.

Again, 𝑓∗ is either a unit or an irreducible by Lemma 3.1 and Lemma 3.2. Note
that since |𝗌𝗎𝗉𝗉(𝑓)| > 3, either 𝑓∗ or 𝑓∗ is not a unit. We split our reasoning
into the following two cases.
Case 1: either 𝑓∗ or 𝑓∗ is a unit. Suppose that 𝑓∗ is a unit. In this case, we have
that 𝑠0 ∈ 𝑆× and 𝑘1 ≤

𝑘0

2
. Thus,

𝑓 =
[
𝑠1𝑥

𝑘1 + 𝑢𝑛𝑥
𝑘𝑛
]
+
[
𝑠0𝑥

𝑘0 + 𝑠2𝑥
𝑘2 +⋯+ 𝑠𝑛−1𝑥

𝑘𝑛−1 + 𝑣𝑛𝑥
𝑘𝑛
]
.

The first summand between brackets is clearly irreducible. The second sum-
mand is irreducible by Lemma 3.1 and Lemma 3.2. The case in which 𝑓∗ is a
unit can be handled similarly. We leave its proof to the reader.
Case 2: neither 𝑓∗ nor 𝑓∗ is a unit. In this case, both 𝑓∗ and 𝑓∗ are irre-
ducible. Note that 𝑓 = 𝑓∗ + 𝑓∗ unless there exists 𝑗 ∈ J0, 𝑛K satisfying that
𝑘𝑗 =

𝑘0

2
. Consequently, let us assume that such an index 𝑗 ∈ J0, 𝑛K exists. If

|𝗌𝗎𝗉𝗉(𝑓∗)| ≥ 3 (resp., |𝗌𝗎𝗉𝗉(𝑓∗)| ≥ 3) then 𝑓∗ + 𝑠𝑗𝑥
𝑘𝑗 (resp., 𝑓∗ + 𝑠𝑗𝑥

𝑘𝑗 ) is ir-
reducible by Lemma 3.3 (resp., Lemma 3.2), which concludes our argument.
Hence, we may assume that |𝗌𝗎𝗉𝗉(𝑓∗)| = |𝗌𝗎𝗉𝗉(𝑓∗)| = 2. On the other hand,
if 𝑣0 = 0 (resp., 𝑣𝑛 = 0) then 𝑓∗ + 𝑠𝑗𝑥

𝑘𝑗 (resp., 𝑓∗ + 𝑠𝑗𝑥
𝑘𝑗 ) is irreducible by

Lemma 3.1 and Lemma 3.3 (resp., Lemma 3.2), which concludes our argument.
Therefore we need only consider the case where 𝑣0𝑣𝑛 ≠ 0. But this, along with
the fact that |𝗌𝗎𝗉𝗉(𝑓∗)| = |𝗌𝗎𝗉𝗉(𝑓∗)| = 2, implies that |𝗌𝗎𝗉𝗉(𝑓)| = 3, which is
a contradiction.
The last part of the theorem follows from Lemma 3.4 and Lemma 3.5. □

Corollary 3.7. Every𝑓 ∈ ℕ0[𝑥
±1] can bewritten as the sum of twomultiplicative

irreducibles provided that 𝑓(1) > 3 and |𝗌𝗎𝗉𝗉(𝑓)| > 1.

Corollary 3.7 was first proved in [12] using information about the distribu-
tion of prime numbers in the positive integers. We have recovered this result
without relying on specific information about prime numbers. In fact, we can
now easily extend this result.
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Corollary 3.8. Fix 𝑘 ∈ ℕ. Every 𝑓 ∈ ℕ0[𝑥
±1

1
, … , 𝑥

±1

𝑘
] can be written as the sum

of two multiplicative irreducibles provided that 𝑓(1, … , 1) > 3 and |𝗌𝗎𝗉𝗉(𝑓)| > 1.

Proof. We proceed by induction on 𝑘. The result clearly holds for 𝑘 = 1. Sup-
pose that, for some 𝑘 ≥ 1, every polynomial 𝑓 ∈ ℕ0[𝑥

±1

1
, … , 𝑥

±1

𝑘
] can be written

as the sum of two irreducibles provided that 𝑓(1, … , 1) > 3 and |𝗌𝗎𝗉𝗉(𝑓)| > 1.
Now set 𝑆 ∶= ℕ0[𝑥

±1

1
, … , 𝑥

±1

𝑘
], and observe that the monoid (𝑆, +) is reduced

and atomic. Moreover, it is not hard to see that

A+(𝑆) = 𝑆× =
{
𝑥
𝑛1
1
⋯𝑥

𝑛𝑘

𝑘
∣ 𝑛𝑖 ∈ ℤ for every 𝑖 ∈ J1, 𝑘K

}
.

We note that 𝑔(𝑥1, … , 𝑥𝑘) ∈ A+(𝑆) if and only if 𝑔(1, … , 1) = 1.
By Theorem 3.6, we have that every 𝑓 ∈ 𝑆

[
𝑥
±1

𝑘+1

]
is the sum of exactly two

multiplicative irreducibles unless 𝑓 has one of the following forms:
(a) 𝑓 = 𝑎𝑥

𝑡0

𝑘+1
+ 𝑏𝑥

𝑡1

𝑘+1
, where either 𝑎 ∈ 𝑆× or 𝑏 ∈ 𝑆×;

(b) 𝑓 = 𝑎𝑥
𝑡0

𝑘+1
+ 𝑏𝑥

𝑡1

𝑘+1
+ 𝑐𝑥

𝑡2

𝑘+1
, where 𝑎, 𝑏, 𝑐 ∈ 𝑆×.

If 𝑓 = 𝑎𝑥
𝑡0

𝑘+1
+ 𝑏𝑥

𝑡1

𝑘+1
+ 𝑐𝑥

𝑡2

𝑘+1
or 𝑓 = 𝑎𝑥

𝑡0

𝑘+1
+ 𝑏𝑥

𝑡1

𝑘+1
, where 𝑎, 𝑏, 𝑐 ∈ 𝑆×,

then 𝑓(1, … , 1) ≤ 3. Therefore we need only consider the case where 𝑓 =

𝑎𝑥
𝑡0

𝑘+1
+ 𝑏𝑥

𝑡1

𝑘+1
and either 𝑎 ∉ 𝑆× or 𝑏 ∉ 𝑆×. Without loss of generality, assume

that 𝑎 ∈ 𝑆× and 𝑏 ∉ 𝑆×. It is not hard to see that if 𝑏 is the sum of two units
of 𝑆 then 𝑓(1,⋯ , 1) = 3. Then we may further assume that 𝑏 is not the sum of
two units and we can write 𝑏 = 𝑢𝑏 + 𝑢′

𝑏
+ 𝑣𝑏 with 𝑢𝑏, 𝑢′𝑏 ∈ 𝑆× and 𝑣𝑏 ∈ 𝑆∗. In

this case,
𝑓 =

[
𝑎𝑥

𝑡0

𝑘+1
+ 𝑣𝑏𝑥

𝑡1

𝑘+1

]
+
[
𝑢𝑏𝑥

𝑡1

𝑘+1
+ 𝑢′

𝑏
𝑥
𝑡1

𝑘+1

]
.

It is clear that the summands between brackets are multiplicative irreducibles.
□

Some of the auxiliary results established in the lead-up to Theorem 3.6 have
applications that extend beyond its proof, as the following example demon-
strates.

Example 3.9. The semidomain ℚ≥0 is additively reduced but not additively
atomic. Indeed, the set of additive atoms A+(ℚ≥0) is empty. As a result, we
cannot apply Theorem 3.6 directly to determine whether an analogue of the
Goldbach conjecture holds for ℚ≥0[𝑥

±1]. However, by combining Lemma 3.2,
Lemma 3.3, and Theorem 3.6, we can still establish such a result. Showing that
every binomial and trinomial in ℚ≥0[𝑥

±1] can be expressed as a sum of two
multiplicative irreducibles is straightforward, so we leave this to the reader.
Consider 𝑓 ∈ ℚ≥0[𝑥

±1] with |𝗌𝗎𝗉𝗉(𝑓)| > 3 and choose 𝑁 ∈ ℕ such that
𝑁𝑓 ∈ ℕ0[𝑥

±1]. Theorem 3.6 implies that we can write 𝑁𝑓 = 𝑔 + ℎ, where 𝑔
and ℎ are multiplicative irreducibles in ℕ0[𝑥

±1]. The argument from the proof
of that theorem shows that each of 𝑔 and ℎ is either a binomial or satisfies one
of the structural conditions in Lemma 3.2 or Lemma 3.3. If 𝑔 is a binomial, then
𝑔∕𝑁 is a multiplicative irreducible in ℚ≥0[𝑥

±1]. If 𝑔 satisfies one of the struc-
tural conditions in Lemma 3.2 or Lemma 3.3, then because these lemmas hold
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for all additively reduced semidomains, 𝑔∕𝑁 is irreducible in ℚ≥0[𝑥
±1]. The

corresponding statements hold for ℎ and ℎ∕𝑁. Therefore, every 𝑓 ∈ ℚ≥0[𝑥
±1]

with |𝗌𝗎𝗉𝗉(𝑓)| > 1 can be written as a sum of two multiplicative irreducibles.

For Laurent polynomials 𝑓, 𝑔, ℎ ∈ 𝑆[𝑥±1], we say that {𝑔, ℎ} is aGoldbach de-
composition of 𝑓 if 𝑓 = 𝑔+ℎ and both 𝑔 and ℎ are multiplicative irreducibles in
𝑆[𝑥±1]. We conclude this section by pointing out that, for an additively reduced
semidomain 𝑆 satisfying that (𝑆, +) is atomic and A+(𝑆) = 𝑆×, the number of
Goldbach decompositions of a Laurent polynomial in 𝑆[𝑥±1] depends on the
semidomain 𝑆. While every 𝑓 ∈ ℕ0[𝑥

±1] has finitelymanyGoldbach decompo-
sitions, there exist semidomains 𝑆 for which some polynomials in 𝑆[𝑥±1] have
infinitely many Goldbach decompositions. Consider the following example:

Example 3.10. Consider the additive monoid 𝑀 =

⟨(
2

3

)𝑘
∣ 𝑘 ∈ ℤ

⟩

, which is

clearly reduced. It is known that 𝑀 is atomic and A (𝑀) = {
(
2

3

)𝑘
∣ 𝑘 ∈ ℤ }

[8, Proposition 3.5]. Observe that 𝑀 is, in fact, a semidomain as it is closed
with respect to the usual multiplication of rational numbers. Denoting this
semidomain by 𝑆, we have that A+(𝑆) = 𝑆×. By Theorem 3.6, we know that a
binomial 𝑎𝑥𝑘0 + 𝑏𝑥𝑘1 ∈ 𝑆[𝑥±1] can be written as the sum of two multiplicative
irreducibles whenever 𝑎, 𝑏 ∉ 𝑆×. However, the polynomial 𝑓 =

4

3
𝑥 + 2 has

infinitely many Goldbach decompositions in 𝑆[𝑥±1]. In fact, using the identity

2
(
2

3

)𝑛
= 3

(
2

3

)𝑛+1
, it is not hard to show that, for every 𝑛 ∈ ℕ, we can write

4

3
=
(
2

3

)𝑛
+ 𝑠𝑛 for some 𝑠𝑛 ∈ 𝑆∗. Thus, for every 𝑛 ∈ ℕ, we have that

𝑓 = [(
2

3
)

𝑛

𝑥 + 1] + [𝑠𝑛𝑥 + 1] ,

where each summand between brackets is irreducible.

4. Laurent series as the sum of three irreducibles
Recall that for an additively reduced semidomain 𝑆, we denote the semido-

main consisting of all Laurent series with coefficients in 𝑆 that have finitely
many negative terms by 𝑆J𝑥±1K. In this section, we characterize the additively
reduced semidomains 𝑆 such that (𝑆, +) is atomic and every Laurent series
𝑓 ∈ 𝑆J𝑥±1K that is not a monomial can be written as the sum of at most three
multiplicative irreducibles. For such an 𝑆, we show that every Laurent series
with coefficients in 𝑆 that is not a polynomial can be written as the sum of at
most three irreducibles in at least 2ℵ0 ways.
Throughout this section, whenever we consider a Laurent series expression

𝑓 =
∑∞

𝑖=0
𝑠𝑖𝑥

𝑘𝑖 ∈ 𝑆J𝑥±1K, we tacitly assume that 𝑘𝑖 < 𝑘𝑖+1 for every 𝑖 ∈ ℕ0 and,
unless we specify otherwise, we also assume that 𝑠𝑖 ≠ 0 for every 𝑖 ∈ ℕ0.
We start by extending the property of beingmonolithic to the context of Lau-

rent series with coefficients in a semidomain. We say that a nonzero Laurent
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series 𝑓 ∈ 𝑆J𝑥±1K is monolithic if 𝑓 = 𝑔ℎ implies that either 𝑔 or ℎ is a mono-
mial in 𝑆J𝑥±1K. We have the following analogue of Lemma 3.1.

Lemma 4.1. Let 𝑓 =
∑∞

𝑖=0
𝑠𝑖𝑥

𝑘𝑖 ∈ 𝑆J𝑥±1K with 𝑠𝑖 ∈ 𝑆 for every 𝑖 ∈ ℕ0. Suppose
that |𝗌𝗎𝗉𝗉(𝑓)| > 1. Then 𝑓 is multiplicative irreducible in 𝑆J𝑥±1K if and only if 𝑓
is monolithic and 1 ∈ gcd ({𝑠𝑖 ∣ 𝑖 ∈ ℕ0}).

Proof. The direct implication follows readily upon noticing that 𝑆J𝑥±1K× ={
𝑠𝑥𝑘 ∣ 𝑠 ∈ 𝑆× and 𝑘 ∈ ℤ

}
. The rest of the proof proceeds as in Lemma 3.1. We

leave the details to the reader. □

Next, we introduce sufficient conditions under which a Laurent series is
monolithic. The following two lemmas will play an important role in the proof
of the main result of this section.

Lemma 4.2. Suppose 𝑓 =
∑∞

𝑖=0
𝑠𝑖𝑥

𝑘𝑖 ∈ 𝑆J𝑥±1K with 𝑠𝑖 ∈ 𝑆∗ for every 𝑖 ∈ ℕ0

and 𝑘1 − 𝑘0 < 𝑘𝑖+1 − 𝑘𝑖 for every 𝑖 ∈ ℕ. Then 𝑓 is monolithic.

Proof. We argue by contradiction. Suppose that 𝑓 is not monolithic, that is,
𝑓 = 𝑔ℎ, where neither 𝑔 nor ℎ is a monomial in 𝑆J𝑥±1K. We can write 𝑔 =
∑∞

𝑖=0
𝑑𝑖𝑥

𝑡𝑖 and ℎ =
∑∞

𝑖=0
𝑒𝑖𝑥

𝑟𝑖 , where 𝑑0, 𝑑1, 𝑒0, 𝑒1 ∈ 𝑆∗ and 𝑑𝑖, 𝑒𝑖 ∈ 𝑆 for every
𝑖 ∈ ℕ. It is possible that 𝑔 or ℎ could be a polynomial that is not a monomial.
Note that 𝑘0 = 𝑡0 + 𝑟0. Switching the roles of 𝑔 and ℎ if necessary, assume that
𝑡1 − 𝑡0 ≤ 𝑟1 − 𝑟0. This implies that 𝑘1 = 𝑡1 + 𝑟0. Thus,

𝑡1 − 𝑡0 = (𝑡1 + 𝑟0) − (𝑡0 + 𝑟0) = 𝑘1 − 𝑘0.

Since 𝑆 is additively reduced and 𝑘1 < 𝑡1 + 𝑟1, we see that 𝑡1 + 𝑟1 = 𝑘𝑗+1 for
some 𝑗 ≥ 1. Since 𝑡0 + 𝑟1 is in the support of 𝑓, we see that 𝑘𝑗 ≥ 𝑡0 + 𝑟1. For
this 𝑗 we have

𝑘𝑗+1 − 𝑘𝑗 ≤ (𝑡1 + 𝑟1) − (𝑡0 + 𝑟1) = 𝑡1 − 𝑡0 = 𝑘1 − 𝑘0.

This is a contradiction and we conclude that 𝑓 is monolithic. □

Lemma 4.3. Let 𝑓 =
∑∞

𝑖=0
𝑠𝑖𝑥

𝑘𝑖 ∈ 𝑆J𝑥±1Kwith 𝑠𝑖 ∈ 𝑆∗ for every 𝑖 ∈ ℕ0. Suppose
that for some𝑁 ∈ ℕ, the sequence (𝑘𝑁+𝑖+1 −𝑘𝑁+𝑖)𝑖∈ℕ is strictly increasing. Then
𝑓 is monolithic.

Proof. We follow the same strategy as in the proof of Lemma 4.2. Suppose that
𝑓 = 𝑔ℎ, where neither 𝑔 nor ℎ is a monomial in 𝑆J𝑥±1K. We can write 𝑔 =
∑∞

𝑖=0
𝑑𝑖𝑥

𝑡𝑖 and ℎ =
∑∞

𝑖=0
𝑒𝑖𝑥

𝑟𝑖 , where 𝑑0, 𝑑1, 𝑒0, 𝑒1 ∈ 𝑆∗ and 𝑑𝑖, 𝑒𝑖 ∈ 𝑆 for every
𝑖 ∈ ℕ. It is possible that 𝑔 or ℎ could be a polynomial that is not a monomial. If
𝑔 and ℎ are both polynomials then so is 𝑓, which is a contradiction. Switching
the roles of 𝑔 and ℎ if necessary, we can assume that ℎ is not a polynomial.
Therefore, we may assume that 𝑒𝑖 ∈ 𝑆∗ for every 𝑖 ∈ ℕ0.
Let𝑁′ ∈ ℕ such that𝑁′ > 𝑁 and 𝑘𝑁′+1 −𝑘𝑁′ > 𝑡1 − 𝑡0. Since 𝑆 is additively

reduced, 𝑟𝑁′+1 ∈ 𝗌𝗎𝗉𝗉(ℎ), and 𝑡0, 𝑡1 ∈ 𝗌𝗎𝗉𝗉(𝑔), we have that {𝑡0 + 𝑟𝑁′+1, 𝑡1 +

𝑟𝑁′+1} ⊆ 𝗌𝗎𝗉𝗉(𝑓). This implies 𝑘𝑗 = 𝑡0 + 𝑟𝑁′+1 for some 𝑗, and it is clear that
𝑘𝑗+1 ≤ 𝑡1 + 𝑟𝑁′+1. Therefore 𝑘𝑗+1 − 𝑘𝑗 ≤ 𝑡1 − 𝑡0, which is a contradiction. We
conclude that 𝑓 is monolithic. □
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Now we are in a position to prove the main result of this section.

Theorem4.4. Let 𝑆 be an additively reduced and additively atomic semidomain.
The following statements are equivalent:

(1) A+(𝑆) = 𝑆×;
(2) every 𝑓 ∈ 𝑆J𝑥±1K with |𝗌𝗎𝗉𝗉(𝑓)| > 1 can be expressed as the sum of at

most three multiplicative irreducibles;
(3) there exists 𝑘 ∈ ℕ such that every 𝑓 ∈ 𝑆J𝑥±1K with |𝗌𝗎𝗉𝗉(𝑓)| > 1 can be

expressed as the sum of at most 𝑘 multiplicative irreducibles.

Proof. (2) ⟹ (3)∶ This is obvious.
(3) ⟹ (1)∶ Since 𝑆 is additively reduced, if 𝑎 ∈ A+(𝑆)⧵𝑆

× then there is no
constant 𝑘 ∈ ℕ such that every element of 𝑆J𝑥±1K can be written as the sum of
at most 𝑘 irreducibles. Indeed, the Laurent series

∑∞

𝑖=0
𝑎𝑥𝑖 cannot be expressed

as the sum of 𝑘 multiplicative irreducibles for any 𝑘 ∈ ℕ. Consequently, the
inclusion A+(𝑆) ⊆ 𝑆× holds.
We argue by contradiction. Let 𝑢 ∈ 𝑆×and suppose that 𝑢 ∉ A+(𝑆). There

exist 𝑎, 𝑏 ∈ 𝑆∗ such that 𝑢 = 𝑎 + 𝑏. This implies 1 = 𝑢−1𝑎 + 𝑢−1𝑏 which,
in turn, implies that A+(𝑆) = ∅. Since (𝑆, +) is atomic and antimatter, it must
be an additive group. This contradicts the assumption that 𝑆 is an additively
reduced semidomain. Therefore, A+(𝑆) = 𝑆×.
(1) ⟹ (2) ∶ Let 𝑓 ∈ 𝑆J𝑥±1K with |𝗌𝗎𝗉𝗉(𝑓)| > 1. Note that if a Laurent

polynomial 𝑔 ∈ 𝑆[𝑥±1] is irreducible then it is also irreducible when considered
as an element of 𝑆J𝑥±1K. Therefore if 𝑓 is a polynomial then the result follows
from Theorem 3.6 and the fact that A (𝑆[𝑥±1]) ⊆ A (𝑆J𝑥±1K).
For the rest of the proof, suppose that 𝑓 is not a polynomial. Then we can

write𝑓 =
∑∞

𝑖=0
𝑠𝑖𝑥

𝑘𝑖, where 𝑠𝑖 ∈ 𝑆∗ for every 𝑖 ∈ ℕ0. Set∆ ∶= min {𝑘𝑖+1 − 𝑘𝑖}𝑖∈ℕ0
and let 𝐽 = {𝑗 ∈ ℕ0 ∣ 𝑘𝑗+1 − 𝑘𝑗 = ∆}. We consider two cases.
Case 1: 𝐽 is a finite set. Let 𝛼 be the smallest index in 𝐽. It is not hard to see
that we can write 𝑓 = 𝑔 + ℎ, where 𝑔 =

∑∞

𝑖=0
𝑑𝑖𝑥

𝑡𝑖 , ℎ =
∑∞

𝑖=0
𝑒𝑖𝑥

𝑟𝑖 , and the
following conditions hold:

(a) 𝑑𝑖, 𝑒𝑖 ∈ 𝑆∗ for every 𝑖 ∈ ℕ0;
(b) 𝑑0 = 𝑠𝛼, 𝑡0 = 𝑘𝛼, 𝑑1 = 𝑠𝛼+1, and 𝑡1 = 𝑘𝛼+1;
(c) 𝑡1 − 𝑡0 < 𝑡𝑖+1 − 𝑡𝑖 for every 𝑖 ∈ ℕ;
(d) there exists 𝑁 ∈ ℕ such that the sequence (𝑟𝑁+𝑖+1 − 𝑟𝑁+𝑖)𝑖∈ℕ is strictly

increasing.
Since (𝑆, +) is atomic and A+(𝑆) = 𝑆×, we can write 𝑑2 = 𝑢2 + 𝑣2 and 𝑑3 =
𝑢3 + 𝑣3, where 𝑢2, 𝑢3 ∈ 𝑆×. Observe that

𝑓 =
[
𝑔 − 𝑣2𝑥

𝑡2 − 𝑢3𝑥
𝑡3
]
+
[
ℎ + 𝑣2𝑥

𝑡2 + 𝑢3𝑥
𝑡3
]
.

Note that the first summand between brackets is irreducible by Lemma 4.1 and
Lemma 4.2. On the other hand, the second summand between brackets is irre-
ducible by Lemma 4.1 and Lemma 4.3.
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Case 2 : 𝐽 is an infinite set. In this case, it is not hard to see that we can write
𝑓 = 𝑔 + ℎ, where 𝑔 =

∑∞

𝑖=0
𝑑𝑖𝑥

𝑡𝑖 , ℎ =
∑∞

𝑖=0
𝑒𝑖𝑥

𝑟𝑖 , and the following conditions
hold:

(a) 𝑑𝑖, 𝑒𝑖 ∈ 𝑆∗ for all 𝑖 ∈ ℕ0;

(b) 𝑑0, 𝑑2 ∈ 𝑆× and 𝑡3 − 𝑡2 = 𝑡1 − 𝑡0 = ∆;

(c) 𝑒𝓁 ∈ 𝑆× for some 𝓁 ∈ ℕ0;

(d) there exists 𝑁 ∈ ℕ such that the sequence (𝑟𝑁+𝑖+1 − 𝑟𝑁+𝑖)𝑖∈ℕ is strictly
increasing.

Thus,

𝑓 =

⎡
⎢
⎢

⎣

𝑑0𝑥
𝑡0 + 𝑑1𝑥

𝑡1 +

∞∑

𝑖=4
𝑖 is even

𝑑𝑖𝑥
𝑡𝑖

⎤
⎥
⎥

⎦

+

⎡
⎢
⎢

⎣

𝑑2𝑥
𝑡2 + 𝑑3𝑥

𝑡3 +

∞∑

𝑖=4
𝑖 is odd

𝑑𝑖𝑥
𝑡𝑖

⎤
⎥
⎥

⎦

+ ℎ.

The first and second summand between brackets are irreducible by Lemma 4.1
and Lemma 4.2 and ℎ is irreducible by Lemma 4.1 and Lemma 4.3. □

Corollary 4.5. Every 𝑓 ∈ ℕ0J𝑥±1K can be written as the sum of at most three
multiplicative irreducibles provided that 𝑓(1) > 3 and |𝗌𝗎𝗉𝗉(𝑓)| > 1.

Corollary 4.5 implies that most 𝑓 ∈ ℕ0J𝑥±1K can be written as the sum of at
most three multiplicative irreducibles. We have already established that every
polynomial with coefficients in ℕ0 can be written as the sum of at most two
multiplicative irreducibles and can show the corresponding statement formany
power series.

Example 4.6. The power series 𝑓 =
∑∞

𝑖=0
𝑥𝑖 ∈ ℕ0J𝑥±1K can be written as

𝑓 = [1 + 𝑥 +

∞∑

𝑖=2

𝑥2𝑖] + [𝑥2 + 𝑥3 +

∞∑

𝑖=2

𝑥2𝑖+1] ,

where each summand between brackets is irreducible by Lemmas 4.1 and 4.2.
Thus, 𝑓 can be expressed as the sum of two multiplicative irreducibles.
A similar decomposition applies to any power series 𝑔 =

∑∞

𝑖=0
𝑠𝑖𝑥

𝑘𝑖 ∈ ℕ0J𝑥±1K
whose support satisfies the spacing condition 𝑘1 − 𝑘0 = 𝑘2 − 𝑘1 ≤ 𝑘𝑖+1 − 𝑘𝑖 for
all 𝑖 ∈ ℕ0. In such cases, the structure of the support ensures that 𝑔 can also be
written as the sum of two multiplicative irreducibles.

The previous example illustrates that even though Theorem 4.4 provides a
general upper bound of three summands, many series, especially those with
well-structured supports, require only two. This suggests that the behavior we
observed for polynomials may extendmore broadly. Motivated by this observa-
tion, we propose a refinement of Theorem 4.4.
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Conjecture 4.7. Let 𝑆 be an additively reduced and additively atomic semido-
main. The following statements are equivalent:

(1) A+(𝑆) = 𝑆×;
(2) every 𝑓 ∈ 𝑆J𝑥±1K with |𝗌𝗎𝗉𝗉(𝑓)| > 1 can be expressed as the sum of at

most two multiplicative irreducibles;
(3) there exists 𝑘 ∈ ℕ such that every 𝑓 ∈ 𝑆J𝑥±1K with |𝗌𝗎𝗉𝗉(𝑓)| > 1 can be

expressed as the sum of at most 𝑘 multiplicative irreducibles.

In the previous section, we pointed out that, in an additively reduced and ad-
ditively atomic semidomain 𝑆 for which A+(𝑆) = 𝑆×, the number of Goldbach
decompositions of a Laurent polynomial in 𝑆[𝑥±1] depends on the semidomain
𝑆. Next, we show that a Laurent series 𝑓 ∈ 𝑆J𝑥±1K that is not a polynomial has
uncountably many representations as the sum of at most three multiplicative
irreducibles.
For a nonzero Laurent series 𝑓 ∈ 𝑆J𝑥±1K∗, we denote by ℜ(𝑓) the set con-

sisting of all unordered triples (𝑔1, 𝑔2, 𝑔3) satisfying that 𝑓 = 𝑔1 + 𝑔2 + 𝑔3 with
𝑔1, 𝑔2, 𝑔3 ∈ {0}∪A (𝑆J𝑥±1K). The elements ofℜ(𝑓) represent the different ways
in which we can write 𝑓 as the sum of at most three irreducibles.

Proposition 4.8. Let 𝑆 be an additively reduced and additively atomic semido-
main for whichA+(𝑆) = 𝑆×. Suppose that 𝑓 ∈ 𝑆J𝑥±1K is not a polynomial. Then
|ℜ(𝑓)| ≥ 2ℵ0.

Proof. Write 𝑓 =
∑∞

𝑖=0
𝑠𝑖𝑥

𝑘𝑖 , where 𝑠𝑖 ∈ 𝑆∗ for every 𝑖 ∈ ℕ0. We prove this
statement by showing that there is an injective function from the set of infinite
subsets of ℕ to ℜ(𝑓). We follow the proof of Theorem 4.4 closely. Set ∆ ∶=

min {𝑘𝑖+1 − 𝑘𝑖}𝑖∈ℕ0
and let 𝐽 = {𝑗 ∈ ℕ0 ∣ 𝑘𝑗+1 − 𝑘𝑗 = ∆}. We consider two

cases.
Case 1: 𝐽 is a finite set. Let 𝛼 and 𝛽 be the smallest and biggest index in 𝐽,
respectively. We already established that we can write 𝑓 = 𝑔 + ℎ, where 𝑔 =
∑∞

𝑖=0
𝑑𝑖𝑥

𝑡𝑖 , ℎ =
∑∞

𝑖=0
𝑒𝑖𝑥

𝑟𝑖 , and the following conditions hold:
(a) 𝑑𝑖, 𝑒𝑖 ∈ 𝑆∗ for every 𝑖 ∈ ℕ0;
(b) 𝑑0 = 𝑠𝛼, 𝑡0 = 𝑘𝛼, 𝑑1 = 𝑠𝛼+1, and 𝑡1 = 𝑘𝛼+1;
(c) 𝑡1 − 𝑡0 < 𝑡𝑖+1 − 𝑡𝑖 for every 𝑖 ∈ ℕ;
(d) there exists 𝑁 ∈ ℕ such that the sequence (𝑟𝑁+𝑖+1 − 𝑟𝑁+𝑖)𝑖∈ℕ is strictly

increasing.
It is not hard to see that we can strengthen condition (𝑑) as follows:

(d’) there exists 𝑁 ∈ ℕ such that 𝑟𝑁+𝑖+1 − 𝑟𝑁+1 < 𝑟𝑁+𝑖+2 − 𝑟𝑁+𝑖+1 for every
𝑖 ∈ ℕ.

It is clear that such an 𝑁 exists for which 𝑟𝑁+1 > max(𝑡3, 𝑘𝛽+1). Choose such a
value of 𝑁.
Let 𝐾 be an arbitrary infinite subset of the positive integers. Since (𝑆, +) is

atomic and A+(𝑆) = 𝑆×, we can write 𝑑2 = 𝑢2 + 𝑣2 and 𝑑3 = 𝑢3 + 𝑣3, where



1424 NATHAN KAPLAN AND HAROLD POLO

𝑢2, 𝑢3 ∈ 𝑆×. Observe that

𝑓 =
⎡
⎢

⎣

𝑔 − 𝑣2𝑥
𝑡2 − 𝑢3𝑥

𝑡3 +
∑

𝑖 ∈ℕ⧵𝐾

𝑒𝑁+𝑖 𝑥
𝑟𝑁+𝑖

⎤
⎥

⎦

+
⎡
⎢

⎣

ℎ + 𝑣2𝑥
𝑡2 + 𝑢3𝑥

𝑡3 −
∑

𝑖 ∈ℕ⧵𝐾

𝑒𝑁+𝑖 𝑥
𝑟𝑁+𝑖

⎤
⎥

⎦

.

The first summand between brackets is irreducible by Lemmas 4.1 and 4.2. The
second summand between brackets is irreducible by Lemmas 4.1 and 4.3. Since
distinct infinite subsets of the positive integers are associated to distinct un-
ordered triples of R(𝑓), our result follows.

Case 2 : 𝐽 is an infinite set. We already established that we can write 𝑓 = 𝑔+ℎ,
where 𝑔 =

∑∞

𝑖=0
𝑑𝑖𝑥

𝑡𝑖 , ℎ =
∑∞

𝑖=0
𝑒𝑖𝑥

𝑟𝑖 , and the following conditions hold:

(a) 𝑑𝑖, 𝑒𝑖 ∈ 𝑆∗ for all 𝑖 ∈ ℕ0;

(b) 𝑑0, 𝑑2 ∈ 𝑆× and 𝑡3 − 𝑡2 = 𝑡1 − 𝑡0 = ∆;

(c) 𝑒𝓁 ∈ 𝑆× for some 𝓁 ∈ ℕ0;

(d) there exists 𝑁 ∈ ℕ such that the sequence (𝑟𝑁+𝑖+1 − 𝑟𝑁+𝑖)𝑖∈ℕ is strictly
increasing.

As in Case 1, we can strengthen condition (𝑑) as follows:

(d’) there exists 𝑁 ∈ ℕ such that 𝑟𝑁+𝑖+1 − 𝑟𝑁+1 < 𝑟𝑁+𝑖+2 − 𝑟𝑁+𝑖+1 for every
𝑖 ∈ ℕ.

It is clear that such an 𝑁 exists for which 𝑟𝑁+1 > max(𝑡3, 𝑟𝓁). Choose such a
value of 𝑁.
Let 𝐾 be an arbitrary infinite subset of the positive integers. Let ℎ∗ = ℎ −

∑

𝑖∈ℕ⧵𝐾
𝑒𝑁+𝑖𝑥

𝑟𝑁+𝑖 and 𝑔∗ = 𝑔 +
∑

𝑖∈ℕ⧵𝐾
𝑒𝑁+𝑖𝑥

𝑟𝑁+𝑖 . Write 𝑔∗ =
∑∞

𝑖=0
𝑏𝑖𝑥

𝓁𝑖 where
𝓁0 < 𝓁1 < ⋯ and each 𝑏𝑖 ∈ 𝑆∗. By Lemma4.1 andLemma4.3, ℎ∗ is irreducible.
It is easy to see that the following conditions hold:

(𝑎∗) 𝑏0, 𝑏2 ∈ 𝑆× and 𝓁3 − 𝓁2 = 𝓁1 − 𝓁0 = ∆;

(𝑏∗) 𝑏𝑖 ∈ 𝑆∗ for all 𝑖 ∈ ℕ0.

We see that

𝑓 =

⎡
⎢
⎢

⎣

𝑏0𝑥
𝓁0 + 𝑏1𝑥

𝓁1 +

∞∑

𝑖=4
𝑖 is even

𝑏𝑖𝑥
𝓁𝑖

⎤
⎥
⎥

⎦

+

⎡
⎢
⎢

⎣

𝑏2𝑥
𝓁2 + 𝑏3𝑥

𝓁3 +

∞∑

𝑖=4
𝑖 is odd

𝑏𝑖𝑥
𝓁𝑖

⎤
⎥
⎥

⎦

+ ℎ∗.

The first and second summand between brackets are irreducible by Lemma 4.1
and Lemma 4.2. Since distinct infinite subsets of the positive integers are asso-
ciated to distinct unordered triples of R(𝑓), our result follows. □
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