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Distributions as travelling waves in a
classical conservation law

C.O.R. Sarrico

Abstract. The present paper concerns the propagation of distributional
travelling waves in models ruled by the equation 𝑢𝑡 + [𝜙(𝑢)]𝑥 = 0, where
𝜙 stands for an entire function. Using the concept of 𝛼-solution defined in
the setting of a distributional product, it is possible to establish a deeper in-
sight about the propagation of such waves. The set of 𝛼-solutions contains
all weak solutions for this equation and allows us to understand that, in the
nonlinear case, the propagation is not possible for a large class of important
profiles (all nonconstant continuous profiles are included). However some
profiles that are not continuous functions, others that are not functions, and
also others that are not measures may propagate. As a particular case, the
characterization of all profiles that, locally, are bounded variation functions,
is easily established. A brief survey of ideas and formulas used to compute
𝜙(𝑢) when 𝑢 is a distribution is included.
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1. Introduction and contents
Let us consider the conservation law

𝑢𝑡 + [𝜙(𝑢)]𝑥 = 0 (1)

where 𝑥 ∈ ℝ is the space variable, 𝑡 ∈ 𝐼 = [0, +∞[ is the time variable, 𝑢 =
𝑢(𝑥, 𝑡), is the unknown state variable and 𝜙 ∶ ℂ → ℂ is an entire function that
takes real values on the real axis.
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In the present paper we study the propagation of distributional travelling
waves for equation (1). Such propagation is a relevant physical phenomenon.
Discontinuous functions, Dirac-delta measures and their distributional deriva-
tives are respectively idealizations for sharp jumps, localized high picks and
single sharp localized oscillations.
The difficulties in evaluating 𝜙(𝑢)when 𝑢 is a distributionwill be afforded by

our theory of distributional products. We stress that we do not assume any clas-
sical result about conservation laws; thus, an easier and more general frame-
work to discover singular solutions to this and others equations is presented.
Themain question is a necessary and sufficient condition for the propagation

of a distributional profile as travelling wavewith a certain speed 𝛾′(𝑡), supposed
a continuous function of 𝑡. This condition has a lot of consequences. One of
them is the impossibility of propagation of nonconstant continuous profiles in
the nonlinear case. Possibly, this is one of the reasons for the absence in the
literature of a significant number of references to travelling waves for equation
(1). For the same equation with source terms, see [3, 2, 33, 28] and references
therein. Thus, we will seek for travelling waves among distributions that do
not correspond to continuous functions. We present explicit particular cases
including profiles that are singularmeasures and profiles that are notmeasures.
The condition for the propagation of a distributional profile also allows us to

characterize all locally bounded variation functions that can be taken as profiles
of travelling waves for equation (1). In all cases, the speed of propagation is
computed.
For such purpose, we adopt a solution concept defined in the framework of

a distributional product. This concept extends both the classical solution con-
cept and the concept of weak solution (for this one see [22], p.868, Remark
13). Our distributional product is not defined by approximation; it is known
that processes involving weak limits of sequences of continuous functions may
not yield to mathematically consistent solutions (see [24], section II) and also
frequently these solutions cannot be substituted in the equations owing to the
difficulties in multiplying distributions or computing 𝜙(𝑢) when 𝑢 is a distri-
bution.
In our framework, the product of two distributions is a distribution that de-

pends on the choice of a function 𝛼 encoding the indeterminacy inherent to
such products. As a consequence, the solutions of differential equations with
such products may depend, or not, on 𝛼. We call such solutions 𝛼-solutions.
When the solutions depend on 𝛼, the future behavior of the system cannot

be fully predicted. We will give an example at the end of example 6.6. This fact
might be due to physical features omitted in the formulation of the model with
the goal of simplifying it. Solutions not depending on 𝛼mean that the physical
system can exhibit such solutions.
The 𝛼-solutions can be substituted directly in the equations and represent a

significant advance in the study of singular solutions of nonlinear equations or
systems. One of the key advantages of this method is the fact that, for many
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problems, the 𝛼-solutions remain independent of 𝛼. This feature has led to an
increasing adoption of this method by several authors as evidenced by recent
publications such as [30, 32, 5, 6, 7, 27, 29, 8, 9, 10, 1, 4, 31]).
Another reason regards to important simplifications: the Rankine-Hugoniot

shock conditions and their multiple generalizations are not necessary and, as
far as we know, the final result is the same (see for example, [13, 14, 6]).
Also interestingly, in a recent paper [8], Pang et al. studied a degenerate

system of conservation laws and compared the exact 𝛼-solutions, computed by
our methods, with the numerical solutions obtained by the Nessyahu-Tadmor
scheme. It happens that the exact solutions coincide with the corresponding
numerical solutions. For more problems where the concept of 𝛼-solution was
also applied, the reader may see [23, 22, 16, 25, 19, 21] and other works of the
author.
The present paper is organized as follows: in Sections 2, 3 and 4 we present

some ideas about our product of distributions, and we define powers of distri-
butions, all this with the goal of giving a sense to 𝜙(𝑢), the composition of an
entire function with a distribution. In Section 5, the concept of 𝛼-solution for
equation (1) is defined. Finally in Section 6, we give the necessary and sufficient
conditions for the propagation of a distributional profile for the equation (1). In
this section, we also establish several consequences of this result including the
characterization of all profiles that locally are bounded variation functions and
may emerge as travelling waves in models ruled by the mentioned equation.

2. The multiplication of distributions
The present section concerns some formulas from our theory of distribu-

tional products that are of interest in the sequel. To get a general view of our
distributional products, see [20] Sections 2 and 3 and also [23] Sections 2, 3 and
4. Details are given in [11].
Let 𝒟 be the space of indefinitely differentiable complex-valued functions

defined onℝ, with compact support, and let𝒟′ be the space of Schwartz distri-
butions. In our theory, each function 𝛼 ∈ 𝒟 with ∫ +∞−∞ 𝛼 = 1 affords a general
product 𝑇𝛼̇𝑆 ∈ 𝒟′ of 𝑇 ∈ 𝒟′ with 𝑆 ∈ 𝒟′. The exact definition of this general
𝛼-product can be seen in [22] Section 2, formula (2.2).
Our general𝛼-product is bilinear and is transformed as usual by translations,

that is,

𝜏𝑎(𝑇𝛼̇𝑆) = (𝜏𝑎𝑇)𝛼̇(𝜏𝑎𝑆), (2)

where 𝜏𝑎 denotes the usual translation operator in distributional sense. In gen-
eral, associativity and commutativity do not hold. Recall that in the setting of
the classical products of distributions, the commutative property is a conven-
tion inherent to the definition of such products and the associative property
does not hold in general (see the monograph of Schwartz [26] pp. 117, 118,
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121, where these products are defined). The usual differential rules are satis-
fied, including the Leibniz formula, which must be written in the form

𝐷(𝑇𝛼̇𝑆) = (𝐷𝑇)𝛼̇𝑆 + 𝑇𝛼̇(𝐷𝑆), (3)

where𝐷 is the derivative operator in distributional sense. This general𝛼-product
is not consistent with the Schwartz products of distributions with functions but
it is possible to define certain 𝛼-products in order to recover that consistency.
This happens with the 𝛼-product

𝑇𝛼̇𝑆 = 𝑇𝛽 + (𝑇 ∗ 𝛼)𝑓 (4)

for𝑇 ∈ 𝒟′𝑝 and 𝑆 = 𝛽+𝑓 ∈ 𝐶𝑝⊕𝒟′
𝜇, where𝑝 ∈ {0, 1, 2, … ,∞},𝒟′𝑝 is the space

of distributions of order ≤ 𝑝 in the sense of Schwartz (𝒟′∞ means 𝒟′), 𝒟′
𝜇 is

the space of distributions whose support has Lebesgue measure zero, 𝑇𝛽 is the
usual Schwartz product of a𝒟′𝑝-distribution with a 𝐶𝑝-function and (𝑇 ∗ 𝛼)𝑓
is the usual product of a 𝐶∞-function with a distribution. For instance, if 𝛽 is a
continuous function, we have for any 𝛼,

𝛿𝛼̇𝛽 = 𝛿𝛼̇(𝛽 + 0) = 𝛿𝛽 + (𝛿 ∗ 𝛼)0 = 𝛽(0)𝛿, (5)

𝛽𝛼̇𝛿 = 𝛽𝛼̇(0 + 𝛿) = 𝛽0 + (𝛽 ∗ 𝛼)𝛿 = [(𝛽 ∗ 𝛼)(0)]𝛿, (6)
𝛿𝛼̇𝛿 = 𝛿𝛼̇(0 + 𝛿) = 𝛿0 + (𝛿 ∗ 𝛼)𝛿 = 𝛼𝛿 = 𝛼(0)𝛿, (7)
𝛿𝛼̇(𝐷𝛿) = (𝛿 ∗ 𝛼)𝐷𝛿 = 𝛼𝐷𝛿 = 𝛼(0)𝐷𝛿 − 𝛼′(0)𝛿 (8)

(𝐷𝛿)𝛼̇𝛿 = (𝐷𝛿 ∗ 𝛼)𝛿 = 𝛼′𝛿 = 𝛼′(0)𝛿, (9)

𝐻𝛼̇𝛿 = (𝐻 ∗ 𝛼)𝛿 = [∫
+∞

−∞
𝛼(−𝜏)𝐻(𝜏) 𝑑𝜏] 𝛿 = (∫

0

−∞
𝛼) 𝛿, (10)

𝐻𝛼̇(𝐷𝛿) = (𝐻 ∗ 𝛼)(𝐷𝛿) = (∫
0

−∞
𝛼) (𝐷𝛿) − 𝛼(0)𝛿, (11)

(𝐷𝛿)𝛼̇(𝐷𝛿) = (𝐷𝛿 ∗ 𝛼)(𝐷𝛿) = 𝛼′(𝐷𝛿) = 𝛼′(0)(𝐷𝛿) − 𝛼′′(0)𝛿 (12)
The 𝛼-product (4) is consistent with all Schwartz products of 𝒟′𝑝-distribu-

tions with 𝐶𝑝-functions if the 𝐶𝑝-functions are placed at the right-hand side. It
also keeps the bilinearity and satisfies (2) and (3), this one clearly under certain
natural conditions; for 𝑇 ∈ 𝒟′𝑝 we must suppose 𝑆 ∈ 𝒞𝑝+1 ⊕𝒟′

𝜇.
From Leibniz formula (3), it is possible to define new 𝛼-products. The fol-

lowing formula was constructed this way (for details see [15], Section 2),

𝑇𝛼̇𝑆 = 𝑇𝑤 + (𝑇 ∗ 𝛼)𝑓, (13)

for 𝑇 ∈ 𝒟′−1 and 𝑆 = 𝑤 + 𝑓 ∈ 𝐿1𝑙𝑜𝑐 ⊕ 𝒟′
𝜇, where 𝒟′−1 denotes the space

of distributions 𝑇 ∈ 𝒟′ such that 𝐷𝑇 ∈ 𝒟′0, and 𝑇𝑤 is the usual pointwise
product of 𝑇 ∈ 𝒟′−1 with𝑤 ∈ 𝐿1𝑙𝑜𝑐. Thus, locally, 𝑇 can be read as a function of
bounded variation and𝒟′−1 as the space of locally bounded variation functions.
For instance, since𝐻 ∈ 𝒟′−1 and𝐻 = 𝐻 + 0 ∈ 𝐿1𝑙𝑜𝑐 ⊕𝒟′

𝜇, we have

𝐻𝛼̇𝐻 = 𝐻𝐻 + (𝐻 ∗ 𝛼)0 = 𝐻, (14)
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for any 𝛼. More generally, if 𝑇 ∈ 𝒟′−1 and 𝑆 ∈ 𝐿1𝑙𝑜𝑐 then 𝑇𝛼̇𝑆 = 𝑇𝑆, for any 𝛼,
because by (13) we can write

𝑇𝛼̇𝑆 = 𝑇𝛼̇(𝑆 + 0) = 𝑇𝑆 + (𝑇 ∗ 𝛼)0 = 𝑇𝑆.

We also use another 𝛼-product that is computed by the formula

𝑇𝛼̇𝑆 = 𝐷(𝑌𝛼̇𝑆) − 𝑌𝛼̇(𝐷𝑆), (15)

for 𝑇, 𝑌 ∈ 𝒟′ such that 𝐷𝑌 = 𝑇. It is applied in two instances:
(N) for 𝑇 ∈ 𝒟′0 ∩ 𝒟′

𝜇 and 𝑆, 𝐷𝑆 ∈ 𝐿1𝑙𝑜𝑐 ⊕𝒟′
𝑐, where𝒟′

𝑐 ⊂ 𝒟′
𝜇 is the space of

distributions whose support is at most countable;
(NP) for 𝑇 ∈ 𝒟′1 ∩ 𝒟′

𝜇 and 𝑆, 𝐷𝑆, 𝐷2𝑆 ∈ 𝐿1𝑙𝑜𝑐 ⊕𝒟′
𝑐.

In any case, the value of 𝑇𝛼̇𝑆 is independent of the choice of 𝑌 such that
𝐷𝑌 = 𝑇 (see [15], p. 1004 and [17] Section 2, for details). The compatibility of
(4), (13) and (15) is effective, that is, if the same 𝛼-product can be computed by
two different formulas, they give the same result. For the proof see [12] Lemma
3.3, [15] Section 3 and [17] Theorem 1. For instance, using (15) in case (N), and
(10), we have for any 𝛼,

𝛿𝛼̇𝐻=𝐷(𝐻𝛼̇𝐻) − 𝐻𝛼̇(𝐷𝐻)=𝐷𝐻 −𝐻𝛼̇𝛿

=𝛿 −
⎛
⎜
⎜
⎝

0

∫
−∞

𝛼
⎞
⎟
⎟
⎠

𝛿 =
⎛
⎜
⎜
⎝

+∞

∫
0

𝛼
⎞
⎟
⎟
⎠

𝛿,
(16)

so that
𝐻𝛼̇𝛿 + 𝛿𝛼̇𝐻 = 𝛿,

for any 𝛼. Another example applied in the sequel can be obtained using (15) in
case (NP),

(𝐷𝛿)𝛼̇𝐻 = 𝐷(𝛿𝛼̇𝐻) − 𝛿𝛼̇(𝐷𝐻) = 𝐷 [(∫
+∞

0
𝛼) 𝛿] − 𝛿𝛼̇𝛿

= (∫
+∞

0
𝛼) (𝐷𝛿) − 𝛼(0)𝛿.

(17)

In general, supp(𝑇𝛼̇𝑆) ⊂ supp 𝑆 as it happens for the usual product of func-
tions, but it may happen that supp(𝑇𝛼̇𝑆) ⊄ supp𝑇. This takes place, for exam-
ple, in the 𝛼-product (see (4)),

𝛿𝛼̇(𝜏1𝛿) = (𝛿 ∗ 𝛼)(𝜏1𝛿) = 𝛼(𝜏1𝛿) = 𝛼(1)(𝜏1𝛿).

Remark 2.1. We stress that the mentioned 𝛼-products are always considered in
a global sense, that is, they are not defined for distributions on proper subsets of
ℝ. For example, denoting by 𝑇Ω the restriction of 𝑇 ∈ 𝒟′ to an open set Ω of
ℝ, the 𝛼-product (𝑇Ω)𝛼̇(𝑆Ω) possibly make sense but only if Ω = ℝ. Clearly, also
(𝑇Ω)(𝑆Ω)mayhave a sense as a classical product of distributions. About the equal-
ity (𝑇𝛼̇𝑆)Ω = (𝑇Ω)(𝑆Ω), the reader can see some delicate results in [20], Section
3.
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3. Powers of distributions
Let𝑀 ⊂ 𝒟′ be a set of distributions such that, if 𝑇1, 𝑇2 ∈ 𝑀 then 𝑇1 𝛼̇𝑇2 is

well defined and 𝑇1 𝛼̇𝑇2 ∈ 𝑀. For each 𝑇 ∈ 𝑀, we define the 𝛼-power of 𝑇, 𝑇𝑛𝛼 ,
by the recurrence relation

𝑇𝑛𝛼 = (𝑇𝑛−1𝛼 )𝛼̇𝑇 for 𝑛 ≥ 1, with 𝑇0𝛼 = 1 for 𝑇 ≠ 0. (18)

Naturally, if 0 ∈ 𝑀, 0𝑛𝛼 = 0 for all 𝑛 ≥ 1.
Since our distributional products are consistent with the Schwartz products

of distributionswith functions, when the functions are placed on the right-hand
side, we have 𝛽𝑛𝛼 = 𝛽𝑛 for all 𝛽 ∈ 𝐶0 ∩ 𝑀. Thus, this definition is consistent
with the usual definition of powers of 𝐶0-functions. Moreover, if𝑀 is such that
𝜏𝑎𝑇 ∈ 𝑀 for all 𝑇 ∈ 𝑀 and all 𝑎 ∈ ℝ, then we also have

(𝜏𝑎𝑇)𝑛𝛼 = 𝜏𝑎(𝑇𝑛𝛼).

Taking, for instance,𝑀 = 𝐶𝑝⊕(𝒟′𝑝 ∩𝒟′
𝜇) and supposing 𝑇1, 𝑇2 ∈ 𝑀, we have

𝑇1 = 𝛽1 + 𝑓1, 𝑇2 = 𝛽2 + 𝑓2 and by (4) we can write

𝑇1 𝛼̇𝑇2 = 𝑇1𝛽2 + (𝑇1 ∗ 𝛼)𝑓2 = (𝛽1 + 𝑓1)𝛽2 + [(𝛽1 + 𝑓1) ∗ 𝛼]𝑓2
= 𝛽1𝛽2 + 𝑓1𝛽2 + [(𝛽1 + 𝑓1) ∗ 𝛼]𝑓2 ∈ 𝑀.

Therefore, we can define 𝛼-powers 𝑇𝑛𝛼 of distributions 𝑇 ∈ 𝐶𝑝 ⊕ (𝒟′𝑝 ∩ 𝒟′
𝜇).

For instance, using (7) we have 𝛿1𝛼 = 𝛿, and for 𝑛 ≥ 2, 𝛿𝑛𝛼 = [𝛼(0)]𝑛−1𝛿.
Setting 𝑀 = 𝒟′−1 and supposing 𝑇1, 𝑇2 ∈ 𝒟′−1, we have 𝑇2 = 𝑇2 + 0 ∈

𝐿1𝑙𝑜𝑐 ⊕𝒟′
𝜇. Then, by applying (13) we have,

𝑇1𝛼̇𝑇2 = 𝑇1 𝛼̇ (𝑇2 + 0) = 𝑇1𝑇2 + (𝑇1 ∗ 𝛼)0 = 𝑇1𝑇2 ∈ 𝒟′−1.

Thus, we also can define 𝛼-powers 𝑇𝑛𝛼 of distributions 𝑇 ∈ 𝒟′−1 by the recur-
rence relation (18) and clearly we get,

𝑇𝑛𝛼 = 𝑇𝑛, (19)

that is, in distributional sense the 𝛼-powers of functions that, locally, are of
bounded variation coincidewith the usual powers of these functionswhen con-
sidered as distributions. In the sequel and for short, we will write 𝑇𝑛 instead of
𝑇𝑛𝛼 , supposing 𝛼 fixed. For instance, we will write 𝛿3 = [𝛼(0)]2𝛿.

4. Composition of an entire function with a distribution
Let 𝜙∶ ℂ → ℂ be an entire function. Then we have,

𝜙(𝑧) = 𝑎0 + 𝑎1𝑧 + 𝑎2𝑧2 +⋯ (20)

for the sequence 𝑎𝑛 =
𝜙(𝑛)(0)
𝑛!

of complex numbers and for all 𝑧 ∈ ℂ. Given 𝛼, if
𝑇 ∈ [𝐶𝑝 ⊕ (𝒟′𝑝 ∩ 𝒟′

𝜇)] ∪ 𝒟′−1, we define the composition 𝜙◦𝑇 by formula

𝜙◦𝑇 = 𝑎0 + 𝑎1𝑇 + 𝑎2𝑇2 +⋯ (21)
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whenever this series converge in 𝒟′. Clearly, this definition is consistent with
the usual meaning of 𝜙◦𝑇, when 𝑇 ∈ 𝐶0 ∪ 𝒟′−1, and we have 𝜏𝑎(𝜙◦𝑇) =
𝜙◦(𝜏𝑎𝑇), if 𝜙◦𝑇 or 𝜙◦(𝜏𝑎𝑇) are well defined. Remember that, such as 𝑇𝑛, 𝜙◦𝑇
may depend on 𝛼. For instance, we will use the following result:

Theorem 4.1. Let 𝜙∶ ℂ → ℂ be an entire function. Then, given 𝛼, we have

𝜙◦𝛿 =
⎧

⎨
⎩

𝜙(0) + 𝜙′(0)𝛿 if 𝛼(0) = 0,
𝜙(0) + 𝜙(𝛼(0))−𝜙(0)

𝛼(0)
𝛿 if 𝛼(0) ≠ 0.

(22)

Proof. Let 𝜙 be defined by (20). Using definition (21) and the formula 𝛿𝑛 =
[𝛼(0)]𝑛−1𝛿, we have,

𝜙◦𝛿 = 𝑎0 + 𝑎1𝛿 + 𝑎2𝛿2 + 𝑎3𝛿3 +⋯

= 𝑎0 + 𝑎1𝛿 + 𝑎2𝛼(0)𝛿 + 𝑎3𝛼(0)2𝛿 +⋯ (23)

= 𝑎0 + [𝑎1 + 𝑎2𝛼(0) + 𝑎3𝛼(0)2 +⋯]𝛿.

Thus, if 𝛼(0) = 0 we have 𝜙◦𝛿 = 𝑎0 + 𝑎1𝛿. If 𝛼(0) ≠ 0, setting
𝑆 = 𝑎1 + 𝑎2𝛼(0) + 𝑎3𝛼(0)2 +⋯

we have
𝛼(0)𝑆 = 𝑎1𝛼(0) + 𝑎2𝛼(0)2 + 𝑎3𝛼(0)3 +⋯ = 𝜙

(
𝛼(0)

)
− 𝑎0,

and

𝑆 =
𝜙
(
𝛼(0)

)
− 𝑎0

𝛼(0)
,

follows. Also from (23) we have 𝜙◦𝛿 = 𝑎0 + 𝑆𝛿 and the result follows immedi-
ately, since 𝑎0 = 𝜙(0) and 𝑎1 = 𝜙′(0). □

5. The 𝜶-solution concept for equation (1)
Let 𝐼 be an interval of ℝ with more than one point and let ℱ(𝐼) be the space

of continuously differentiable maps 𝑢̃ ∶ 𝐼 → 𝒟′ in the sense of the usual topol-
ogy of𝒟′. For 𝑡 ∈ 𝐼, the notation [𝑢̃(𝑡)](𝑥) is sometimes used for emphasizing
that the distribution 𝑢̃(𝑡) acts on functions 𝜉 ∈ 𝒟 depending on 𝑥.
Let Σ(𝐼) be the space of functions 𝑢 ∶ ℝ × 𝐼 → ℝ such that:
(a) for each 𝑡 ∈ 𝐼, 𝑢(𝑥, 𝑡) ∈ 𝐿1𝑙𝑜𝑐(ℝ);
(b) 𝑢̃ ∶ 𝐼 → 𝒟′, defined by [𝑢̃(𝑡)](𝑥) = 𝑢(𝑥, 𝑡) belongs to ℱ(𝐼).
The natural injection 𝑢 ↦ 𝑢̃ from Σ(𝐼) into ℱ(𝐼) identifies any function in

Σ(𝐼)with a certain map inℱ(𝐼). Since 𝐶1(ℝ×𝐼) ⊂ Σ(𝐼), we can write the inclu-
sions

𝐶1(ℝ×𝐼) ⊂ Σ(𝐼) ⊂ ℱ(𝐼),
the last one clearly in the sense of the mentioned identification. Thus, identi-
fying 𝑢 with 𝑢̃ the equation (1) reads as follows:

𝑑𝑢̃
𝑑𝑡
(𝑡) + 𝐷[𝜙◦𝑢̃(𝑡)] = 0. (24)
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Definition 5.1. Given 𝛼, the function 𝑢̃ ∈ ℱ(𝐼) will be called an 𝛼- solution of
the equation (24) on 𝐼, if 𝜙◦𝑢̃(𝑡) is well defined, and this equation is satisfied for
all 𝑡 ∈ 𝐼.
Thus, the equation (24) is seen as an evolution equation in the time interval

𝐼 and we have the following results:
Theorem 5.2. If 𝑢 is a classical solution of (1) onℝ×𝐼 then, for any 𝛼, 𝑢̃ ∈ ℱ(𝐼)
defined by [𝑢̃(𝑡)](𝑥) = 𝑢(𝑥, 𝑡) is an 𝛼-solution of (24) on 𝐼.
Note that by a classical solution of (1) onℝ×𝐼, wemean a𝐶1-function 𝑢(𝑥, 𝑡)

that satisfies (1) on ℝ × 𝐼.
Theorem 5.3. If 𝑢∶ ℝ × 𝐼 → ℝ is a 𝐶1-function and, for a certain 𝛼, 𝑢̃ ∈ ℱ(𝐼)
defined by [𝑢̃(𝑡)](𝑥) = 𝑢(𝑥, 𝑡) is an 𝛼-solution of (24) on 𝐼, then 𝑢 is a classical
solution of (1) onℝ × 𝐼.
For the proof, it is enough to observe that the𝐶1-functions 𝑢(𝑥, 𝑡) can be read

as continuously differentiable function 𝑢̃ ∈ ℱ(𝐼) defined by [𝑢̃(𝑡)](𝑥) = 𝑢(𝑥, 𝑡)
and to use the consistency of the 𝛼-products with the classical Schwartz prod-
ucts as well as the consistency of the operation ◦with the usual composition of
𝐶1-functions.
Remark 5.4. Recall that, for the 𝛼-products (4), (13) or (15), 𝑇𝛼̇𝑆 = 𝑇𝑆 for any
𝛼, if 𝑇 ∈ 𝒟′𝑝 and 𝑆 ∈ 𝐶𝑝, that is, if 𝑇𝑆 is a classical Schwartz product. Also
recall that 𝜙◦𝑇 has the usual meaning when 𝑇 corresponds to a 𝐶1-function (see
the initial part of Section 4).
As a consequence, an𝛼-solution 𝑢̃ in this sense, read as a usual distributional

solution𝑢 affords a general and consistent extension of the concept of a classical
solution for the equation (1). In this sense, we also call 𝑢 an 𝛼-solution of (1)
on 𝐼. Thus, from now on, 𝛼-solutions are referred as according to (1) or (24).

6. Travelling waves
We introduce the following definition:

Definition 6.1. Let 𝛾 ∶ 𝐼 = [0, +∞[→ ℝ be a 𝐶1-function. Then, given 𝛼, the
wave profile 𝑈 ∈ 𝒟′ 𝛼-propagates according to (1) or (24) with the movement
𝛾(𝑡) (and speed 𝛾′(𝑡)) if the travelling wave 𝑢̃(𝑡) = 𝜏𝛾(𝑡)𝑈 is an 𝛼-solution of (24)
on 𝐼.
Note that any constant profile𝑈 𝛼-propagates according to (1) or (24). Thus,

from now on, we always consider𝑈 ∈ 𝒟′ nonconstant, that is, such that𝐷𝑈 ≠
0.
Theorem 6.2. Let 𝑈 ∈ 𝒟′ such that 𝐷𝑈 ≠ 0. Moreover suppose that, given 𝛼,
the composition 𝜙◦𝑈 is well defined. Then if 𝛾 ∶ 𝐼 → ℝ is a 𝐶1-function, the
profile𝑈 𝛼-propagate according to (24) with the movement 𝛾(𝑡), if and only if the
following two conditions are satisfied:
(a) the speed 𝛾′(𝑡) = 𝑐 is a constant function;
(b) 𝑐𝐷𝑈 = 𝐷(𝜙◦𝑈).
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Remark 6.3. This result can be seen as a particular case of Theorem 7 p. 8 in
[18] or even as a particular case of Theorem 5 p. 249 in [14]. However, for the
sake of completeness we will give the following

Proof. Let us suppose that, given 𝛼, the profile 𝑈 𝛼-propagates, according to
(24), with the movement 𝛾(𝑡). Then 𝑢̃(𝑡) = 𝜏𝛾(𝑡)𝑈 is an 𝛼-solution of (24) and
we have:

𝑑𝑢̃
𝑑𝑡
(𝑡) = −𝛾′(𝑡)𝜏𝛾(𝑡)𝐷𝑈,

𝜙◦𝑢̃(𝑡) = 𝜙◦𝜏𝛾(𝑡)𝑈 = 𝜏𝛾(𝑡)(𝜙◦𝑈).
Thus, from (24) such 𝛼-propagation holds if and only if

−𝛾′(𝑡)𝜏𝛾(𝑡)𝐷𝑈 + 𝜏𝛾(𝑡)𝐷(𝜙◦𝑈) = 0,
and applying the operator 𝜏−𝛾(𝑡) to this equality we get

𝛾′(𝑡)𝐷𝑈 = 𝐷(𝜙◦𝑈). (25)
Since the right-hand side of (25) does not depend on 𝑡 and𝐷𝑈 ≠ 0, we conclude
that 𝛾′(𝑡) = 𝑐 is a constant function and (a), (b) follows immediately. □

Remember that in the equality (b) of this Theorem, 𝑈 is always a global dis-
tribution and, in general, cannot be replaced with a distribution defined on a
proper open set of ℝ. In fact, the definition of 𝜙◦𝑈 contains 𝛼-products of dis-
tributions. See (21) and Remark 1.

Example 6.4. For short, we will take 𝑝 = ∫ 0−∞ 𝛼 and 𝑞 = ∫ +∞0 𝛼. Consider
Burger’s inviscid equation, that is, equation (1) with 𝜙(𝑢) = 1

2
𝑢2. For the profile

𝑈 = 1 − 𝐻 + 𝑚𝛿, with 𝑚 ∈ ℝ, we have, using (7), (10), (16) and noting that
𝑝 + 𝑞 = 1,

𝑈2 = 𝑈𝛼̇𝑈 = 1 − 𝐻 +𝑚𝛿 − 𝐻 +𝐻 −𝑚𝑝𝛿 +𝑚𝛿 −𝑚𝑞𝛿 + 𝑚2𝛼(0)𝛿
= 1 − 𝐻 +𝑚[1 + 𝑚𝛼(0)]𝛿.

Then equation (b) of Theorem 6.2 turns out to be

−𝑐𝛿 + 𝑐𝑚(𝐷𝛿) = −12𝛿 +
𝑚
2 [1 + 𝑚𝛼(0)](𝐷𝛿).

Hence, if 𝑚 = 0 it follows 𝑐 = 1
2
. If 𝑚 ≠ 0 it follows 𝑐 = 1

2
and 𝛼(0) = 0. We

conclude that:
(i) if𝑚 = 0 the shock wave profile 𝑈 = 1 − 𝐻 𝛼-propagates with speed 𝑐 = 1

2
for any 𝛼.
(ii) If𝑚 ≠ 0 the delta shock wave profile 𝑈 = 1 − 𝐻 + 𝑚𝛿 𝛼-propagates with

speed 𝑐 = 1
2
for any 𝛼 such that 𝛼(0) = 0.

Remember that within the classical framework of conservation laws the prop-
agation of the profile 𝑈 = 1 − 𝐻 with speed 𝑐 = 1

2
is well known and can be

obtained from the Rankine-Hugoniot shock conditions. However, despite the im-
possibility of applying these conditions to the profile𝑈 = 1 − 𝐻 +𝑚𝛿, we get the
same speed by applying the concept of 𝛼-solution which, as we also mentioned,
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can also be seen as an extension of the concept of weak solution. Thus, in this
setting, we conclude that the perturbation 𝑚𝛿 does not modify the motion of the
profile𝑈 = 1 − 𝐻.

It is now interesting to see what happens exchanging the perturbation 𝑚𝛿
with𝑚(𝐷𝛿), which is not a measure.

Example 6.5. Taking 𝑈 = 1 − 𝐻 + 𝑚(𝐷𝛿) in Theorem (6.2) and 𝜙(𝑢) = 1
2
𝑢2,

as in Burger’s conservative inviscid equation, we have, using (17), (11) and (12),

𝑈2 = 𝑈𝛼̇𝑈 = 1−𝐻+𝑚(𝐷𝛿)−𝐻+𝐻−𝑚[𝑝(𝐷𝛿)−𝛼(0)𝛿]+𝑚𝐷𝛿−𝑚[𝑞(𝐷𝛿)−𝛼(0)𝛿]

+𝑚2[𝛼′(0)(𝐷𝛿)−𝛼′′(0)𝛿] = 1−𝐻 +𝑚[2𝛼(0) −𝑚𝛼′′(0)]𝛿 +𝑚[1+𝑚𝛼′(0)]𝐷𝛿,
and (b) of Theorem (6.2) turns out to be

𝑐[−𝛿 + 𝑚(𝐷2𝛿)] = −12𝛿 +
𝑚
2 [2𝛼(0) − 𝑚𝛼′′(0)](𝐷𝛿) + 𝑚

2 [1 + 𝑚𝛼′(0)](𝐷2𝛿).

Hence, if 𝑚 = 0 it follows 𝑐 = 1
2
. If 𝑚 ≠ 0 it follows 𝑐 = 1

2
, 𝛼′(0) = 0 and

2𝛼(0) − 𝛼′′(0) = 0. We conclude that the profile 𝑈 𝛼-propagates, according to

𝑢𝑡 + (𝑢
2

2
)
𝑥
= 0, with speed 𝑐 = 1

2
, for any 𝛼 such that 𝛼′(0) = 0 and 2𝛼(0) −

𝛼′′(0) = 0. Also in this case the perturbation𝑚(𝐷𝛿) does not modify the motion
of the profile𝑈 = 1 − 𝐻.

In these examples the 𝛼-propagation is always possible and the speed 𝑐 = 1
2

of the wave does not depend on 𝛼. Therefore, if such propagation is physically
observed, the speed of the wave is 1

2
. However, other situations may occur:

Example 6.6. Taking𝑈 = 𝛿 in Theorem (6.2) and using Theorem 4.1, the equa-
tion 𝑐𝐷𝑈 = 𝐷(𝜙◦𝑈) turns out to be

𝑐(𝐷𝛿) = {
𝜙′(0)(𝐷𝛿) if 𝛼(0) = 0
𝜙[𝛼(0)]−𝜙(0)

𝛼(0)
(𝐷𝛿) if 𝛼(0) ≠ 0 ,

and 𝑐 = 𝜙′(0) if 𝛼(0) = 0, or 𝑐 = 𝜙[𝛼(0)]−𝜙(0)
𝛼(0)

if 𝛼(0) ≠ 0, follows. For instance,

(i) taking 𝜙(𝑢) = 𝑢2

2
as in Burger’s inviscid equation we have 𝑐 = 0 if 𝛼(0) = 0,

or 𝑐 = 𝛼(0)
2
if 𝛼(0) ≠ 0. Hence, 𝑐 = 𝛼(0)

2
whichmeans that the speed 𝑐 of the profile

𝑈 = 𝛿 depends on 𝛼 and it is arbitrary;
(ii) taking 𝜙(𝑢) = 𝑢3 + 𝑢, we have 𝑐 = 𝜙′(0) = 1 if 𝛼(0) = 0, or 𝑐 =

𝜙[𝛼(0)]−𝜙(0)
𝛼(0)

= 𝛼(0)2 + 1 if 𝛼(0) ≠ 0. Hence, 𝑐 = 𝛼(0)2 + 1, which means that
the speed 𝑐 can take several values but it is not completely arbitrary; in fact, we
always have 𝑐 ≥ 1.

This means that, if the 𝛼-solutions of certain differential equations depend
on 𝛼, in certain cases a physical meaning can still be associated to such solu-
tions.
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When 𝜙′′ = 0, the equation (1) is linear and applying Theorem 6.2 it is easy
to conclude that any profile 𝑈 ∈ 𝒟′ 𝛼-propagates with speed 𝑐 = 𝜙′, which is
constant, and coincides with what is well known for the transport equation.
Now, suppose that 𝑈 ∈ 𝐶1 is a classical profile. Then, 𝐷𝑈 = 𝑈′ ≠ 0 and

𝜙◦𝑈 ∈ 𝐶1. Hence, the equality (b) of the preceding Theorem turns out to be
𝑐𝑈′ = (𝜙′◦𝑈)𝑈′, which is the equation we obtain when we seek for classical
𝐶1-travelling waves solutions 𝑢(𝑥, 𝑡) = 𝑈(𝑥 − 𝑐𝑡) for the equation (1). This
means that Definition 6.1 is a consistent extension of the travelling wave clas-
sical concept for the equation (1).
The following result is an important consequence of the preceding Theorem.

Theorem 6.7. Suppose 𝜙′′ ≠ 0 and 𝑈 ∈ 𝒟′ such that, given 𝛼, 𝜙◦𝑈 is well
defined. In addition, suppose that there exists a nonempty open interval 𝐽 ⊂ ℝ,
such that 𝑈𝐽 corresponds to a nonconstant continuous function and (𝜙◦𝑈)𝐽 =
𝜙◦𝑈𝐽 . Then the profile𝑈 cannot 𝛼-propagates according to (24).

Proof. Suppose that𝑈 𝛼-propagate according to (24) with the movement 𝛾(𝑡).
Then from Theorem (6.2), (a) and (b) would be satisfied. Thus, from (b) we
would have 𝑐𝑈 = 𝜙◦𝑈 + 𝑘, where 𝑘 stands for a constant distribution. By
restriction to the interval 𝐽, we would have 𝑐𝑈𝐽 = 𝜙◦𝑈𝐽 + 𝑘𝐽 , where 𝑘𝐽 can be
identified with a constant. Then, we can write

𝑐𝑈𝐽(𝑥) = 𝜙[𝑈𝐽(𝑥)] + 𝑘𝐽 , (26)

for all𝑥 ∈ 𝐽. On the other hand, taking𝑤(𝑧) = 𝑐𝑧−𝜙(𝑧)−𝑘𝐽 ,𝑤 is not a constant
function (if 𝑤 = 𝑐𝑜𝑛𝑠𝑡. it would follow 𝜙′′ = 0 which contradicts 𝜙′′ ≠ 0), 𝑤 is
an entire function and from (26) we get 𝑤[𝑈𝐽(𝑥)] = 0 for all 𝑥 ∈ 𝐽. However,
we know that the roots of a nonconstant entire function are isolated points,
which means that, for all 𝑥 ∈ 𝐽, 𝑈𝐽(𝑥) takes values on a set of isolated points,
which is a contradiction because 𝑈𝐽 is continuous and nonconstant on 𝐽. The
statement is proved. □

Example 6.8. Let 𝑔 ∶ ℝ → ℝ be defined by 𝑔(𝑥) = 𝑥2. Then, for𝑈 = 𝑔 + 𝛿 and
𝜙(𝑢) = 1

2
𝑢2, we have, using (5) and (6),

𝑈2 = 𝑈𝛼̇𝑈 = 𝑔2 + 𝑔𝛼̇𝛿 + 𝛿𝛼̇𝑔 + 𝛿𝛼̇𝛿 = 𝑔2 + (𝑔 ∗ 𝛼)(0)𝛿 + 𝛼(0)𝛿,

and taking 𝐽 =]0, 1[ we have, for any 𝛼, (𝜙◦𝑈)𝐽 = ( 1
2
𝑈2)𝐽 = 1

2
𝑔2𝐽 , and also

𝜙◦𝑈𝐽 =
1
2
𝑔2𝐽 which is continuous and nonconstant. Then, the profile 𝑈 cannot

𝛼-propagate according to Burger’s conservative inviscid equation.

Since for distributions𝑈 corresponding to continuous functions, 𝜙◦𝑈 is con-
sistent with the usual meaning, 𝜙◦𝑈 corresponds to a continuous function and
taking 𝐽 = ℝ in the precedent Theorem, we conclude immediately that:

Corollary 6.9. If𝜙′′ ≠ 0 then, for any𝛼, any continuous and nonconstant profile
𝑈 cannot 𝛼-propagate according to (1).



1404 C.O.R. SARRICO

Thus, if we want to seek for nonconstant travelling wave profiles𝑈 ∈ 𝒟′, for
the nonlinear equation (1), we must seek them among distributions which do
not correspond to continuous functions. For profiles𝑈 that, locally, correspond
to bounded variation functions, since, for any 𝛼, 𝜙◦𝑈 is also consistent with the
usual meaning, taking 𝐽 = ℝ in Theorem 6.7, we get:

Corollary 6.10. Let 𝜙′′ ≠ 0 and 𝑈 ∈ 𝒟′−1 such that there exists a nonempty
open interval 𝐽 such that 𝑈𝐽 is continuous and nonconstant. Then the profile 𝑈
cannot 𝛼-propagate according to (1) for any 𝛼.

Example 6.11. Taking𝑈 ∶ ℝ → ℝ defined by𝑈(𝑥) = 𝑥 if 𝑥 ∈]0, 1[ and𝑈(𝑥) =
0 if 𝑥 ∈ ℝ∖]0, 1[, and 𝐽 =]0, 1[, we conclude that the discontinuous profile 𝑈 ∈
𝒟′−1 cannot 𝛼-propagate, according to the nonlinear equation (1), for any 𝛼.

Thus, if 𝜙′′ ≠ 0, the 𝛼-propagation of a profile 𝑈 ∈ 𝒟′−1 is possible only for
step functions. A necessary and sufficient condition for the 𝛼-propagation of a
profile𝑈 that, locally, is a bounded variation function is given in the following
result:

Theorem 6.12. Suppose 𝜙′′ ≠ 0,𝑈 a locally bounded variation function defined
on ℝ satisfying 𝐷𝑈 ≠ 0, and 𝑍 the set of points where 𝑈 is discontinuous. Then,
given any 𝛼, the profile 𝑈 𝛼-propagates according to (1) with the movement 𝛾(𝑡)
if and only if 𝑍 is not empty and the following two conditions are satisfied:
(a) In each maximal open interval 𝐽 ⊂ ℝ where 𝑈 is continuous, 𝑈𝐽 = 𝜆𝐽 is a

constant function;
(b) there exist two constants 𝑐, 𝑘0 such that

𝑐𝜆𝐽 = 𝜙(𝜆𝐽) + 𝑘0, (27)

for all 𝜆𝐽 .
In that case,𝑈 𝛼-propagates with the speed 𝛾′(𝑡) = 𝑐.

Remark 6.13. Recall that, from the theory of locally bounded variation functions,
𝑍 is a countable set.

Proof. Suppose that𝑈 𝛼-propagates, according to (1), with themovement 𝛾(𝑡).
Then 𝑍 is not empty because, if 𝑍 were empty, 𝑈 would be continuous and
nonconstant, which contradicts Corollary 6.9.
On the other hand, from Theorem 6.2, the mentioned 𝛼-propagation holds

if and only if there exists a constant 𝑐 such that 𝛾′(𝑡) = 𝑐 for all 𝑡 and 𝑐𝐷𝑈 =
𝐷(𝜙◦𝑈), that is,

𝑐𝑈 = 𝜙◦𝑈 + 𝑘,
being 𝑘 a constant distribution. Since 𝑈 is a distribution corresponding to a
locally bounded variation function, 𝜙◦𝑈 corresponds to the usual meaning (as
we have mentioned before Theorem 4.1) and we can write

𝑐𝑈(𝑥) = 𝜙[𝑈(𝑥)] + 𝑘0, (28)

for almost all 𝑥 ∈ ℝ, being 𝑘0 the unique constant corresponding to the con-
stant distribution 𝑘.
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Let 𝜓 be the function defined by

𝜓(𝑧) = 𝑐𝑧 − 𝜙(𝑧) − 𝑘0. (29)

Then, 𝜓 is not a constant function because, if 𝜓 were constant, taken the sec-
ond derivative of both sides of (29) we would get 𝜙′′(𝑧) = 0, for all 𝑧, which
contradicts 𝜙′′ ≠ 0. Also from (28) we can write

𝜓[𝑈(𝑥)] = 0, (30)

for all 𝑥 ∈ ℝ∖𝑍 (recall that 𝑍 has Lebesgue measure zero). However, we know
that the zeros of an entire and nonconstant function are isolated points. Hence,
from (30), in eachmaximal open interval 𝐽 where𝑈 is continuous, and for each
𝑥 ∈ 𝐽, 𝑈(𝑥) is a zero of 𝜓, which means that the values of 𝑈(𝑥), for 𝑥 ∈ 𝐽,
are isolated points. Since 𝑈 is continuous in 𝐽, it follows that 𝑈𝐽 is constant.
Therefore, for eachmaximal open interval 𝐽 where𝑈 is continuous,𝑈(𝑥) = 𝜆𝐽 ,
being 𝜆𝐽 a constant. Finally, from (28), it follows 𝑐𝜆𝐽 = 𝜙(𝜆𝐽) + 𝑘0, for all 𝜆𝐽 ,
and the statement is proved. □

Example 6.14. According to equation (1), let us examine the possibility of the
𝛼-propagation of the profile

𝑈(𝑥) = { 𝑎 if 𝑥 < 0
𝑏 if 𝑥 > 0 ,

with 𝑎 ≠ 𝑏. We have 𝑍 = {0} not empty and two maximal open intervals 𝐽1 =
] −∞, 0[ and 𝐽2 =]0, +∞[ where 𝑈 is continuous with 𝑈𝐽1 = 𝜆1 = 𝑎 and 𝑈𝐽2 =
𝜆2 = 𝑏. Then we have two equations (27),

𝑐𝑎 = 𝜙(𝑎) + 𝑘0
𝑐𝑏 = 𝜙(𝑏) + 𝑘0,

and 𝑐 = 𝜙(𝑏)−𝜙(𝑎)
𝑏−𝑎

, 𝑘0 = 𝜙(𝑏)𝑎−𝜙(𝑎)𝑏
𝑏−𝑎

follows. Hence, for any 𝛼, the profile 𝑈

𝛼-propagates according to (1) with speed 𝑐 = 𝜙(𝑏)−𝜙(𝑎)
𝑏−𝑎

. As a particular case,

and for Burger’s inviscid equation, 𝜙(𝑢) = 𝑢2

2
and we get, for the profile speed

𝛾′(𝑡) = 𝑐 = 𝑎+𝑏
2
, for any 𝛼.

Example 6.15. Regarding the same equation (1), let us consider the profile

𝑈(𝑥) =
⎧

⎨
⎩

𝑎 if 𝑥 < 0
𝑏 if 0 < 𝑥 < 1
𝑐 if 𝑥 > 1

,

with 𝑎 ≠ 𝑏 and 𝑏 ≠ 𝑑. We have 𝑍 = {0, 1} not empty and three maximal intervals
𝐽1 =] − ∞, 0[, 𝐽2 =]0, 1[ and 𝐽3 =]1, +∞[ where 𝑈 is continuous, with 𝑈𝐽1 =
𝜆1 = 𝑎,𝑈𝐽2 = 𝜆2 = 𝑏 and𝑈𝐽3 = 𝜆3 = 𝑑.

Then we have three equations (27),

𝑐𝑎 = 𝜙(𝑎) + 𝑘0,
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𝑐𝑏 = 𝜙(𝑏) + 𝑘0,

𝑐𝑑 = 𝜙(𝑑) + 𝑘0,

and 𝑐 = 𝜙(𝑏)−𝜙(𝑎)
𝑏−𝑎

, 𝑘0 =
𝜙(𝑏)𝑎−𝜙(𝑎)𝑏

𝑏−𝑎
follows, jointly with the compatibility condi-

tion
[𝜙(𝑏) − 𝜙(𝑎)]𝑑 = [𝜙(𝑑) − 𝜙(𝑎)]𝑏 + [𝜙(𝑏) − 𝜙(𝑑)]𝑎.

Thus, if 𝑎 = 𝑑 the compatibility condition is always satisfied and the𝛼-propaga-
tion of the profile 𝑈 holds for any 𝛼, with the speed 𝛾′(𝑡) = 𝑐 = 𝜙(𝑏)−𝜙(𝑎)

𝑏−𝑎
.

If 𝑎 ≠ 𝑑 the 𝛼-propagation can be effective or not. For instance, in Burger’s
inviscid equation, 𝜙(𝑢) = 𝑢2

2
and the profile𝑈 with 𝑎 = 0, 𝑏 = 1 and 𝑑 = 2 does

not 𝛼-propagate for any 𝛼 because the compatibility condition is not satisfied.
Instead, for the equation 𝑢𝑡 + (𝑢3)𝑥 = 0, where 𝜙(𝑢) = 𝑢3 the profile𝑈 with

𝑎 = 0, 𝑏 = 1 and 𝑑 = −1, 𝛼-propagate with speed 𝛾′(𝑡) = 𝑐 = 𝜙(1)−𝜙(0)
1−0

= 1 for
any 𝛼, because the compatibility condition is satisfied.
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