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On certain Fourier expansions for the
Riemann zeta function

Alexander E. Patkowski

Abstract. We build on a recent paper on Fourier expansions for the Rie-
mann zeta function. We establish Fourier expansions for certain 𝐿-functions,
and offer series representations involving the Whittaker function𝑊𝛾,𝜇(𝑧) for
the coefficients. Fourier expansions for the reciprocal of the Riemann zeta
function are also stated. A new expansion for the Riemann xi function is pre-
sented in the third section by constructing an integral formula using Mellin
transforms for its Fourier coefficients.
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1. Introduction and main results
The measure

𝜇(𝐵) ∶= 1
2𝜋 ∫

𝐵

𝑑𝑦
1
4
+ 𝑦2

,

for each 𝐵 in the Borel set 𝔅, has been applied in the work of [7] as well as
Coffey [3], providing interesting applications in analytic number theory. For
the measure space (ℝ,𝔅, 𝜇),

‖𝑔‖22 ∶= ∫
ℝ
|𝑔(𝑡)|2𝑑𝜇, (1)
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1382 ALEXANDER E. PATKOWSKI

is the𝐿2(𝜇)normof𝑓(𝑥).Here (1.1) is finite, and𝑓(𝑥) ismeasurable [10, pg.326,
Definition 11.34]. In a recent paper by Elaissaoui and Guennoun [7], an inter-
esting Fourier expansion was presented which states that, if 𝑓(𝑥) ∈ 𝐿2(𝜇), then

𝑓(𝑥) =
∑

𝑛∈ℤ
𝑎𝑛𝑒−2𝑖𝑛 arctan(2𝑥) =

∑

𝑛∈ℤ
𝑎𝑛
⎛
⎜
⎝

1
2
− 𝑖𝑥

1
2
+ 𝑖𝑥

⎞
⎟
⎠

𝑛

, (2)

where

𝑎𝑛 =
1
2𝜋 ∫

ℝ
𝑓(𝑦)𝑒2𝑖𝑛 arctan(2𝑦)

𝑑𝑦
1
4
+ 𝑦2

. (3)

By selecting 𝑥 = 1
2
tan(𝜙), we return to the classical Fourier expansion, since

𝑓( 1
2
tan(𝜙)) is periodic in𝜋.Themainmethod applied in their paper to compute

the constants 𝑎𝑛 is the Cauchy residue theorem. However, it is possible (as
noted therein) to directly work with the integral

𝑎𝑛 =
1
2𝜋 ∫

𝜋

−𝜋
𝑓(12 tan(

𝜙
2 ))𝑒

𝑖𝑛𝜙𝑑𝜙. (4)

Many remarkable resultswere extracted from the Fourier expansion (1.2)–(1.3),
including criteria for the Lindelöf Hypothesis (Theorem 4.6 of [7]). In fact, the
Lindelöf Hypothesis is part of the motivation for selecting the probability mea-
sure 𝜇 [7].
Let 𝜌 denote any nontrivial zeros of 𝜁(𝑠) in the critical region 𝛼 ∈ (0, 1),

whereℜ(𝜌) = 𝛼, ℑ(𝜌) = 𝛽. The goal of this paper is to offer some more appli-
cations of (1.2)–(1.3), including a criteria for the Riemann hypothesis. Recall
that the Riemann Hypothesis is the statement that all 𝜌 have 𝛼 = 1

2
. Equiv-

alently, the functional equation says that this would mean all 𝜌 are such that
𝛼 ∉ ( 1

2
, 1).

Theorem 1.1. For 𝜎 > 1, 𝑥 ∈ ℝ,

1
𝜁(𝜎 + 𝑖𝑥)

= 1

𝜁(𝜎 + 1
2
)
+
∑

𝑛≥1
𝑎̄𝑛𝑒−2𝑖𝑛 arctan(2𝑥),

where

𝑎̄𝑛 =
1
𝑛!

∑

𝑛≥𝑘>0

(𝑛
𝑘

)(−1)𝑛(𝑛 − 1)!
(𝑘 − 1)!

lim
𝑠→0

𝜕𝑘

𝜕𝑠𝑘
1

𝜁(𝜎 + 1
2
− 𝑠)

.

Moreover, if the zeros of 𝜁(𝑠) are simple, we have

1
𝜁(𝜎 − 𝑖𝑥)

=
∑

𝑛∈ℤ
𝑎̂𝑛𝑒−2𝑖𝑛 arctan(2𝑥),
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where for 𝑛 ≥ 1,

𝑎̂𝑛 =
1
𝑛!

∑

𝑛≥𝑘≥0

(𝑛
𝑘

)(−1)𝑛(𝑛 − 1)!
(𝑘 − 1)!

lim
𝑠→0

𝜕𝑘

𝜕𝑠𝑘
1

𝜁(𝜎 − 1
2
+ 𝑠)

− 𝑆(𝑛, 𝜎),

where

𝑆(𝑛, 𝜎) =
∑

𝛽∶𝜁(𝜌)=0
(

𝜎 − 𝑖𝛽
1 − 𝜎 + 𝑖𝛽

)
𝑛 1
𝜁′(𝜌)(1 − 𝜎 + 𝑖𝛽)(𝜎 − 𝑖𝛽)

+
∑

𝑘≥1

⎛
⎜
⎝

1
2
+ 𝜎 + 2𝑘

1
2
− 𝜎 − 2𝑘

⎞
⎟
⎠

𝑛

1

𝜁′(−2𝑘)( 1
2
− 𝜎 − 2𝑘)( 1

2
+ 𝜎 + 2𝑘)

,

and 𝑎̂𝑛 = −𝑆(𝑛, 𝜎) for 𝑛 < 0, 𝑎̂0 = 1∕𝜁(𝜎 + 1
2
).

Corollary 1.2. For 𝜎 > 1,

1
2𝜋 ∫

ℝ

𝑑𝜇
|𝜁(𝜎 + 𝑖𝑦)|2

= 1

𝜁2(𝜎 + 1
2
)
+
∑

𝑘≥1
|𝑎̄𝑘|2,

where the 𝑎̄𝑛 are as defined in the previous theorem. Furthermore, even assuming
the Riemann Hypothesis, this integral diverges for 1

2
< 𝜎 < 1.

Next we consider a Fourier expansion with coefficients expressed as a series
involving theWhittaker function𝑊𝛾,𝜇(𝑧),which is a solution to the differential
equation [8, pg.1024, eq.(9.220)]

𝑑2𝑊
𝑑𝑧2

+ (−
1
4 +

𝛾
𝑧 +

1 − 4𝜇2

4𝑧2
)𝑊 = 0.

This function also has the representation [8, pg.1024, eq.(9.220)]

𝑊𝛾,𝜇(𝑧) =
Γ(−2𝜇)

Γ( 1
2
− 𝜇 − 𝛾)

𝑀𝛾,𝜇(𝑧) +
Γ(2𝜇)

Γ( 1
2
+ 𝜇 − 𝛾)

𝑀𝛾,−𝜇(𝑧).

Here the other Whittaker function𝑀𝛾,𝜇(𝑧) is given by

𝑀𝛾,𝜇(𝑧) = 𝑧𝜇+
1
2 𝑒−𝑧∕21𝐹1(𝜇 − 𝛾 + 1

2; 2𝜇 + 1; 𝑧),

where 1𝐹1(𝑎; 𝑏; 𝑧) is the well-known confluent hypergeometric function.

Theorem 1.3. Let 𝑣 be a complex number which is not an even integer. Then for
1 > 𝜎 > 1

2
, we have the expansion

𝜁(𝜎 + 𝑖𝑥) cos𝑣(arctan(2𝑥)) = 1
2𝜁(𝜎 +

1
2) +

∑

𝑛∈ℤ
𝑎̃𝑛𝑒−2𝑖𝑛 arctan(2𝑥),
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where

𝑎̃𝑛 =
(2𝜎2 − 4𝜎 + 5

2
)

2(𝜎 − 1
2
)2( 3

2
− 𝜎)2

⎛
⎜
⎝

3
2
− 𝜎

𝜎 − 1
2

⎞
⎟
⎠

𝑛

for 𝑛 < 0 and

𝑎̃𝑛 =
2Γ(𝑣 + 1)

Γ(𝑣
2
+ 𝑛 + 1)Γ(𝑣

2
− 𝑛 + 1)

+ 𝜋
2𝑣∕2+1

∑

𝑘>1
𝑘−𝜎 (

log(𝑘)
2 )

𝑣∕2 𝑊𝑛,− 𝑣+1
2
(log(𝑘))

Γ(1 + 𝑣
2
+ 𝑛)

for 𝑛 ≥ 1.

2. Proof of main theorems
In our proof of Corollary 1.2, we will require a well-known result [13, pg.331,

Theorem 11.45] on functions in 𝐿2(𝜇).

Lemma 2.1. Define the coefficients 𝑎𝑛 = ∫𝑋 𝑓𝜅𝑛𝑑𝜇, where {𝜅𝑛} is a complete
orthonormal set. If 𝑓(𝑥) ∈ 𝐿2(𝜇), and 𝑓(𝑥) has the representation

∑
𝑛=1 𝑎𝑛𝜅𝑛,

then
∫
𝑋
|𝑓(𝑥)|2𝑑𝜇 =

∑

𝑛=1
|𝑎𝑛|2.

Proof of Theorem 1.1. First note that for 𝜎 > 1

𝑎̄𝑛 =
1
2𝜋 ∫

ℝ
𝑒2𝑖𝑛 arctan(2𝑦)

𝑑𝑦

𝜁(𝜎 + 𝑖𝑦)( 1
4
+ 𝑦2)

𝑑𝑦

= 1
2𝜋𝑖

∫
( 1
2
)

( 𝑠
1 − 𝑠

)𝑛 𝑑𝑠

𝜁(𝜎 − 1
2
+ 𝑠)𝑠(1 − 𝑠)

. (5)

We replace 𝑠 by 1 − 𝑠 and apply the residue theorem by moving the line of
integration to the left. By the Leibniz rule, we compute the residue at the pole
𝑠 = 0 of order 𝑛 + 1, 𝑛 ≥ 0, as

1
𝑛! lim𝑠→0

𝑑𝑛

𝑑𝑠𝑛
𝑠𝑛+1

⎛
⎜
⎝
(1 − 𝑠

𝑠 )
𝑛 1

𝜁(𝜎 + 1
2
− 𝑠)𝑠(1 − 𝑠)

⎞
⎟
⎠

= 1
𝑛! lim𝑠→0

𝑑𝑛

𝑑𝑠𝑛
(1 − 𝑠)𝑛−1

𝜁(𝜎 + 1
2
− 𝑠)

(6)

= 1
𝑛!

∑

𝑛≥𝑘≥0

(𝑛
𝑘

)(−1)𝑛(𝑛 − 1)!
(𝑘 − 1)!

lim
𝑠→0

𝜕𝑘

𝜕𝑠𝑘
1

𝜁(𝜎 + 1
2
− 𝑠)

The residue at 𝑠 = 0 if 𝑛 = 0 is−1∕𝜁(𝜎+ 1
2
). There are no additional poles when

𝑛 < 0. Since the sum in (2.2) is zero for 𝑘 = 0 it reduces to the one stated in the
theorem.
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Next we consider the second statement. The integrand in

1
2𝜋𝑖

∫
( 1
2
)
(1 − 𝑠

𝑠 )
𝑛 𝑑𝑠

𝜁(𝜎 − 1
2
+ 𝑠)𝑠(1 − 𝑠)

(7)

has simple poles at 𝑠 = 1 − 𝜎 + 𝑖𝛽, whereℑ(𝜌) = 𝛽. The integrand in (2.3) also
has simple poles at 𝑠 = 1

2
− 𝜎 − 2𝑘, and a pole of order 𝑛 + 1, 𝑛 > 0, at 𝑠 = 0.

We compute,

1
𝑛! lim𝑠→0

𝑑𝑛

𝑑𝑠𝑛
𝑠𝑛+1

⎛
⎜
⎝
(1 − 𝑠

𝑠 )
𝑛 1

𝜁(𝜎 − 1
2
+ 𝑠)𝑠(1 − 𝑠)

⎞
⎟
⎠

= 1
𝑛! lim𝑠→0

𝑑𝑛

𝑑𝑠𝑛
(1 − 𝑠)𝑛−1

𝜁(𝜎 − 1
2
+ 𝑠)

= 1
𝑛!

∑

𝑛≥𝑘≥0

(𝑛
𝑘

)(−1)𝑛(𝑛 − 1)!
(𝑘 − 1)!

lim
𝑠→0

𝜕𝑘

𝜕𝑠𝑘
1

𝜁(𝜎 − 1
2
+ 𝑠)

.

The residue at the pole 𝑠 = 1 − 𝜎 + 𝑖𝛽, is
∑

𝛽∶𝜁(𝜌)=0
(

𝜎 − 𝑖𝛽
1 − 𝜎 + 𝑖𝛽

)
𝑛 1
𝜁′(𝜌)(1 − 𝜎 + 𝑖𝛽)(𝜎 − 𝑖𝛽)

,

and at the pole 𝑠 = 1
2
− 𝜎 − 2𝑘 is

∑

𝑘≥1

⎛
⎜
⎝

1
2
+ 𝜎 + 2𝑘

1
2
− 𝜎 − 2𝑘

⎞
⎟
⎠

𝑛

1

𝜁′(−2𝑘)( 1
2
− 𝜎 − 2𝑘)( 1

2
+ 𝜎 + 2𝑘)

,

The residue at the pole 𝑛 = 0, 𝑠 = 0, is −1∕𝜁(𝜎 − 1
2
). □

Proof of Corollary 1.2. This result readily follows from application of Theo-
rem 1.1 to Lemma 2.1 with 𝑋 = ℝ. In the first part of the theorem, note from
[14, pg.191, Theorem 8.7], if 𝜎 > 1,

|||||||
1
𝜁(𝑠)

|||||||
≤

𝜁(𝜎)
𝜁(2𝜎)

.

Hence
1

|||𝜁(𝑠)|||
2 (𝑡2 + 1

4
)
= 𝑂 ( 1

|𝑡|2
) ,

as 𝑡 → ∞, and 1∕𝜁(𝜎 + 𝑖𝑡) ∈ 𝐿2(𝜇), for 𝜎 > 1. The convergence of the series∑
𝑘 |𝑎̄𝑛|

2 follows by applying [10, pg.580, Lemma 12.6]. In the second part of
the theorem, note from [14, pg.377] or [14, pg.372]

1
𝜁(𝑠)

= 𝑂
⎛
⎜
⎝

|𝑠|

𝜎 − 1
2

⎞
⎟
⎠
.
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Hence

1
|||𝜁(𝑠)|||

2 (𝑡2 + 1
4
)
= 𝑂 (

|𝑠|2

|𝑡|2
) = 𝑂(1),

as 𝑡 → ∞, and 1∕𝜁(𝜎 + 𝑖𝑡) ∉ 𝐿2(𝜇), for 1
2
< 𝜎 < 1. □

Proof of Theorem 1.3. It is clear that

cos𝑣(2 arctan(2𝑦)) = (
1 − 4𝑦2

1 + 4𝑦2
)
𝑣

= 𝑂(1).

Comparing with [7, Theorem 1.2] we see our function belongs to 𝐿2(𝜇). We
compute that

𝑎̃𝑛 =
1
2𝜋 ∫

𝜋

−𝜋
𝑓(12 tan(

𝜙
2 ))𝑒

𝑖𝑛𝜙𝑑𝜙

= 1
2𝜋 ∫

𝜋

−𝜋
𝜁(𝜎 + 𝑖

2 tan(
𝜙
2 )) cos

𝑣(
𝜙
2 )𝑒

𝑖𝑛𝜙𝑑𝜙

= 1
2𝜋 (∫

𝜋

0
𝜁(𝜎 + 𝑖

2 tan(
𝜙
2 )) cos

𝑣(
𝜙
2 )𝑒

𝑖𝑛𝜙𝑑𝜙 + ∫
0

−𝜋
𝜁(𝜎 + 𝑖

2 tan(
𝜙
2 )) cos

𝑣(
𝜙
2 )𝑒

𝑖𝑛𝜙𝑑𝜙)

= 1
2𝜋 (∫

𝜋

0
𝜁(𝜎 + 𝑖

2 tan(
𝜙
2 )) cos

𝑣(
𝜙
2 )𝑒

𝑖𝑛𝜙𝑑𝜙 + ∫
𝜋

0
𝜁(𝜎 − 𝑖

2 tan(
𝜙
2 )) cos

𝑣(
𝜙
2 )𝑒

−𝑖𝑛𝜙𝑑𝜙)

= 1
2𝜋 (∫

𝜋

0
𝜁(𝜎 + 𝑖

2 tan(
𝜙
2 )) cos

𝑣(
𝜙
2 )𝑒

𝑖𝑛𝜙𝑑𝜙 + ∫
𝜋

0
𝜁(𝜎 − 𝑖

2 tan(
𝜙
2 )) cos

𝑣(
𝜙
2 )𝑒

−𝑖𝑛𝜙𝑑𝜙)

= 1
𝜋 ∫

𝜋

0
cos𝑣(

𝜙
2 )

∑

𝑘≥1
𝑘−𝜎 cos (12 tan(

𝜙
2 ) log(𝑘) − 𝑛𝜙) 𝑑𝜙

= 1
𝜋 ∫

𝜋

0
cos𝑣(

𝜙
2 ) cos (𝑛𝜙) 𝑑𝜙 +

1
𝜋 ∫

𝜋

0
cos𝑣(

𝜙
2 )

∑

𝑘>1
𝑘−𝜎 cos (12 tan(

𝜙
2 ) log(𝑘) − 𝑛𝜙) 𝑑𝜙

= 2
𝜋 ∫

𝜋∕2

0
cos𝑣(𝜙) cos (𝑛2𝜙) 𝑑𝜙

+ 2
𝜋 ∫

𝜋∕2

0
cos𝑣(𝜙)

∑

𝑘>1
𝑘−𝜎 cos (12 tan(𝜙) log(𝑘) − 𝑛2𝜙) 𝑑𝜙.

Now by [8, pg.397] forℜ(𝑣) > 0, we have

∫
𝜋∕2

0
cos𝑣−1(𝑦) cos(𝑏𝑦)𝑑𝑦 =

𝜋Γ(𝑣)

Γ(𝑣+𝑏+1
2

)Γ(𝑣−𝑏+1
2

)
. (8)
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Let ℤ− denote the set of negative integers. Then, by [8, pg.423] with 𝑎 > 0,
ℜ(𝑣) > −1, 𝑣+𝛾

2
≠ ℤ−,

∫
𝜋∕2

0
cos𝑣(𝑦) cos(𝑎 tan(𝑦) − 𝛾𝑦)𝑑𝑦 = 𝜋𝑎𝑣∕2

2𝑣∕2+1

𝑊𝛾∕2,− 𝑣+1
2
(2𝑎)

Γ(1 + 𝑣+𝛾
2
)
. (9)

Hence, if we put 𝑏 = 2𝑛 and replace 𝑣 by 𝑣 + 1 in (2.4), and select 𝑎 = 1
2
log(𝑘)

and 𝛾 = 2𝑛 in (2.5), we find

𝑎̃𝑛 =
2Γ(𝑣 + 1)

Γ(𝑣
2
+ 𝑛 + 1)Γ(𝑣

2
− 𝑛 + 1)

+ 𝜋
2𝑣∕2+1

∑

𝑘>1
𝑘−𝜎 (

log(𝑘)
2 )

𝑣∕2 𝑊𝑛,− 𝑣+1
2
(log(𝑘))

Γ(1 + 𝑣
2
+ 𝑛)

.

(10)
Hence 𝑣 cannot be a negative even integer.
The interchange of the series and integral is justified by absolute convergence

for 𝜎 > 1
2
. To see this, note that [8, pg.1026, eq.(9.227), eq.(9.229)]

𝑊𝛾,𝜇(𝑧) ∼ 𝑒−𝑧∕2𝑧𝛾,

as |𝑧| → ∞, and

𝑊𝛾,𝜇(𝑧) ∼ (4𝑧𝛾 )
1∕4𝑒−𝛾+𝛾 log(𝛾) sin(2

√
𝛾𝑧 − 𝛾𝜋 − 𝜋

4 ),

as |𝛾| → ∞. Here the notation 𝑓(𝑥) ∼ 𝑔(𝑥)means that lim𝑥→∞ 𝑓(𝑥)∕𝑔(𝑥) = 1.
Using (2.6) as coefficients for 𝑛 < 0 is inadmissible, due to the resulting sum
over 𝑛 being divergent. On the other hand, it can be seen that

𝑎̃𝑛 =
1
2𝜋 ∫

ℝ
𝑒2𝑖𝑛 arctan(2𝑦)

𝜁(𝜎 + 𝑖𝑦) cos𝑣(arctan(2𝑦))𝑑𝑦

( 1
4
+ 𝑦2)

= 1
2𝜋𝑖

∫
( 1
2
)

𝜁(𝜎 − 1
2
+ 𝑠)2(2𝑠2 − 2𝑠 + 1)

(2𝑠(1 − 𝑠))2
( 𝑠
1 − 𝑠

)𝑛
𝑑𝑠

= 1
2𝜋𝑖

∫
( 1
2
)

𝜁(𝜎 + 1
2
− 𝑠)2(2𝑠2 − 2𝑠 + 1)

(2𝑠(1 − 𝑠))2
(1 − 𝑠

𝑠 )
𝑛
𝑑𝑠.

We will only use the residues at the pole 𝑠 = 0 when 𝑛 < 0 and 𝑠 = 𝜎 − 1
2
, and

outline the details to obtain an alternative expression for the 𝑎̃𝑛 for 𝑛 ≥ 0. The
integrand has a simple pole at 𝑠 = 𝜎 − 1

2
, a pole of order 𝑛 + 2 at 𝑠 = 0, and

when 𝑛 < 0 there is a simple pole when 𝑛 = −1, at 𝑠 = 0. The residue at the
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pole 𝑠 = 0 for 𝑛 ≥ 0 is computed as

1
𝑛! lim𝑠→0

𝑑𝑛+1

𝑑𝑠𝑛+1
𝑠𝑛+2

⎛
⎜
⎝

𝜁(𝜎 + 1
2
− 𝑠)2(2𝑠2 − 2𝑠 + 1)

(2𝑠(1 − 𝑠))2
(1 − 𝑠

𝑠 )
𝑛⎞
⎟
⎠

= 1
𝑛!2 lim𝑠→0

𝑑𝑛+1

𝑑𝑠𝑛+1
(𝜁(𝜎 + 1

2 − 𝑠)(2𝑠2 − 2𝑠 + 1)(1 − 𝑠)𝑛−2) .

(11)

And because the resulting sum is a bit cumbersome, we omit this form in our
stated theorem. The residue at the simple pole when 𝑛 = −1, at 𝑠 = 0 is
1
2
𝜁(𝜎 + 1

2
). Collecting our observations tells us that if 𝑛 < 0,

𝑎̃𝑛 =
(2𝜎2 − 4𝜎 + 5

2
)

2(𝜎 − 1
2
)2( 3

2
− 𝜎)2

⎛
⎜
⎝

3
2
− 𝜎

𝜎 − 1
2

⎞
⎟
⎠

𝑛

.

□

3. Riemann xi function
The Riemann xi function is given by

𝜉(𝑠) ∶= 1
2𝑠(𝑠 − 1)𝜋−

𝑠
2Γ( 𝑠2)𝜁(𝑠),

and Ξ(𝑦) = 𝜉( 1
2
+ 𝑖𝑦). In many recent works [4],[5], Riemann xi function in-

tegrals have been shown to have interesting evaluations. (See also [11] for an
interesting expansion for the Riemann xi function.) The classical application is
in the proof of Hardy’s theorem that there are infinitely many non-trivial zeros
on the lineℜ(𝑠) = 1

2
.

We will need to utilize Mellin transforms to prove our theorems. By Parse-
val’s formula [12, pg.83, eq.(3.1.11)], we have

∫
∞

0
𝑓(𝑦)𝑔(𝑦)𝑑𝑦 = 1

2𝜋𝑖
∫
(𝑟)
𝔐(𝑓(𝑦))(𝑠)𝔐(𝑔(𝑦))(1 − 𝑠)𝑑𝑠, (12)

provided that 𝑟 is chosen so that the integrand is analytic, and

∫
∞

0
𝑦𝑠−1𝑓(𝑦)𝑑𝑦 =∶ 𝔐(𝑓(𝑦))(𝑠).

From [12, pg.95, eq.(3.3.27)] with 𝑛 ≥ 0, 𝑥 > 1, 𝑐 > 0, we have

1
2𝜋𝑖

∫
(𝑐)

𝑥𝑠

𝑠𝑛+1
𝑑𝑠 =

(log(𝑥))𝑛

𝑛! . (13)

Now it is known [6, pg.207–208] that for anyℜ(𝑠) = 𝑢 ∈ ℝ,

Θ(𝑦) = 1
2𝜋𝑖

∫
(𝑢)
𝜉(𝑠)𝑦−𝑠𝑑𝑠, (14)
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where
Θ(𝑦) ∶= 2𝑦2

∑

𝑛≥1
(2𝜋2𝑛4𝑦2 − 3𝜋𝑛2)𝑒−𝜋𝑛2𝑦2 , (15)

for 𝑦 > 0. Define the operator𝔇𝑛,𝑦(𝑓(𝑦)) ∶= 𝑦 𝜕
𝜕𝑦

…𝑦 𝜕
𝜕𝑦

⏟⎴⎴⏟⎴⎴⏟
𝑛

(𝑓(𝑦)).

Theorem 3.1. For real numbers 𝑥 ∈ ℝ,

Ξ(𝑥) = 1

( 1
4
+ 𝑥2)

∑

𝑛∈ℤ
𝑎̆𝑛𝑒−2𝑖𝑛 arctan(2𝑥),

where 𝑎̆0 = 0, and for 𝑛 ≥ 1,

𝑎̆𝑛 =
(−1)𝑛

(𝑛 − 1)!
∫

1

0
log𝑛−1(𝑦)𝔇𝑛,𝑦(Θ(𝑦))𝑑𝑦,

and

𝑎̆−𝑛 = −
(−1)𝑛

(𝑛 − 1)!
∑

𝑛−1≥𝑘≥0

(𝑛 − 1
𝑘

) 𝑛!
(𝑘 + 1)!

𝜉(𝑘)(0).

Proof. Applying the operator 𝔇𝑛,𝑦 to (3.3)–(3.4), then applying the resulting
Mellin transform with (3.2) to (3.1), we have for 𝑐 < 1, 𝑛 ≥ 1,

(−1)𝑛

(𝑛 − 1)!
∫

1

0
log𝑛−1(𝑦)𝔇𝑛,𝑦(Θ(𝑦))𝑑𝑦 =

1
2𝜋𝑖

∫
(𝑐)

( 𝑠
1 − 𝑠

)𝑛
𝜉(𝑠)𝑑𝑠. (16)

On the other hand,

𝑎̆𝑛 =
1
2𝜋 ∫

ℝ
𝑒2𝑖𝑛 tan

−1(2𝑦)
( 1
4
+ 𝑦2)Ξ(𝑦)𝑑𝑦

( 1
4
+ 𝑦2)

𝑑𝑦 = 1
2𝜋𝑖

∫
( 1
2
)

( 𝑠
1 − 𝑠

)𝑛
𝜉(𝑠)𝑑𝑠

= 1
2𝜋𝑖

∫
( 1
2
)

( 𝑠
1 − 𝑠

)𝑛
𝜋−𝑠∕2 𝑠2(𝑠 − 1)𝜁(𝑠)Γ( 𝑠2)𝑑𝑠. (17)

This gives the coefficients for 𝑛 ≥ 1. If we place 𝑛 by −𝑛 in the integrand of
(3.6), we see that there is a pole of order 𝑛, 𝑛 > 0, at 𝑠 = 0. These residues are
computed in the same way as before, and so we leave the details to the reader.
Hence, for 𝑛 > 0, −2 < 𝑟′ < 0,

𝑎̆−𝑛 =
1
2𝜋𝑖

∫
( 1
2
)
(1 − 𝑠

𝑠 )
𝑛
𝜉(𝑠)𝑑𝑠

=
(−1)𝑛

(𝑛 − 1)!
∑

𝑛−1≥𝑘≥0

(𝑛 − 1
𝑘

) 𝑛!
(𝑘 + 1)!

𝜉(𝑘)(0) + 1
2𝜋𝑖

∫
(𝑟′)

(1 − 𝑠
𝑠 )

𝑛
𝜉(𝑠)𝑑𝑠

=
(−1)𝑛

(𝑛 − 1)!
∑

𝑛−1≥𝑘≥0

(𝑛 − 1
𝑘

) 𝑛!
(𝑘 + 1)!

𝜉(𝑘)(0). (18)
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In the third line we implemented the fact that the remaining residue from the
poles of Γ( 𝑠

2
) at negative even integers is zero due to the trivial zeros of 𝜁(𝑠). □

Now according to Coffey [1, pg.527], 𝜉(𝑛)(0) = (−1)𝑛𝜉(𝑛)(1), which may be
used to recast Theorem 3.1 in a slightly different form. The integral formulae
obtained in [2, pg.1152, eq.(28)], and another form in [9, pg.11106, eq.(12)], bear
some resemblance to the integral contained in (3.5). It would be interesting to
obtain a relationship to the coefficients 𝑎̆𝑛. Next we give a series evaluation for
a Riemann xi function integral.

Corollary 3.2. If the coefficients 𝑎̆𝑛 are as defined in Theorem 3.1., then

∫
ℝ
(14 + 𝑦2)2Ξ2(𝑦)𝑑𝜇 =

∑

𝑛∈ℤ
|𝑎̆𝑛|2.

Proof. This is an application of Theorem 3.1 to Lemma 2.1 with 𝑋 = ℝ. □

4. On the partial Fourier series
Here we make note of some interesting consequences of our computations

related to the partial sums of our Fourier series. First, we recall [10, pg.69] that

𝑁∑

𝑛=−𝑁
𝑎𝑛𝑒𝑖𝑛𝑥 =

1
2𝜋 ∫

𝜋

−𝜋
𝑓(𝑥 − 𝑦)𝐷𝑁(𝑦)𝑑𝑦, (19)

where

𝐷𝑁(𝑥) =
sin((𝑁 + 1

2
)𝑥)

sin(𝑥
2
)

.

Now making the change of variable 𝑦 = 2 arctan(2𝑦), we find (4.1) is equal to

1
2𝜋 ∫

ℝ
𝑓(𝑥 − 2 arctan(2𝑦))

𝐷𝑁(2 arctan(2𝑦))
1
4
+ 𝑦2

𝑑𝑦.

Recall [10, pg.71] that 𝐾𝑁(𝑥) is the Fejér kernel if

𝐾𝑁(𝑥) =
1

𝑁 + 1

𝑁∑

𝑛=0
𝐷𝑛(𝑥).

Theorem 4.1. Let 𝐾𝑁(𝑥) denote the Fejér kernel. Then, assuming the Riemann
hypothesis,

lim
𝑁→∞

1
2𝜋 ∫

ℝ

𝐾𝑁(𝑥0 − 2 arctan(2𝑦))

𝜁(𝜎 + 𝑖𝑦)( 1
4
+ 𝑦2)

𝑑𝑦 = 1

𝜁(𝜎 + 𝑖
2
tan(𝑥0

2
))
,

for 𝑥0 ∈ (−𝜋, 𝜋), 1
2
< 𝜎 < 1.
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Proof. Notice that 1∕𝜁(𝜎 + 𝑖
2
tan(𝑦

2
)) is continuous for 𝑦 ∈ (−𝜋, 𝜋) if there are

no singularities for 1
2
< 𝜎 < 1. Hence, we may apply [10, pg.29, Theorem 1.26]

to find 1∕𝜁(𝜎+ 𝑖
2
tan(𝑦

2
))would then be Riemann integrable on (−𝜋, 𝜋) if there

are no singularities for 1
2
< 𝜎 < 1. It is also periodic in 𝜋. Applying Fejér’s

theorem [10, pg.73, Theorem 1.59] with 𝑓(𝑦) = 1∕𝜁(𝜎 + 𝑖
2
tan(𝑦

2
)) implies the

result. □

Note that if 1∕𝜁(𝜎+ 𝑖
2
tan(𝑦

2
)) has even finitelymany points of discountinuity

for 1
2
< 𝜎 < 1, we would not be able to apply Fejér’s theorem. This is because

the function is unbounded by Montgomery’s omega result [14, pg.209], and
therefore not Riemann integrable by [10, pg.31, Proposition 1.29].

5. Concluding remarks
The Fourier series for the Riemann zeta function contained herein, just like

those in [7], are pointwise convergent. Seeing as how there exists a Fourier
series for 𝜁(𝜎 + 𝑖𝑡) in the region 1

2
< 𝜎 < 1, that is pointwise convergent, it

would be interesting if one existed that were absolutely convergent. Wiener’s
result [15, pg.14, Lemma IIe] says the following:

Lemma 5.1. (Wiener [15]) Suppose 𝑓(𝑥) has an absolutely convergent Fourier
series and 𝑓(𝑥) ≠ 0 for all 𝑥 ∈ ℝ. Then its reciprocal 1∕𝑓(𝑥) also has an abso-
lutely convergent Fourier series.

Therefore, assuming the Riemann Hypothesis, if 𝜁(𝜎 + 𝑖𝑡) has an absolutely
convergent Fourier series for 1

2
< 𝜎 < 1, then there exists an absolutely conver-

gent Fourier series for 1∕𝜁(𝜎 + 𝑖𝑡) in the same region.
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