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Another invariant for AT actions

David Handelman

Abstract. We construct a collection of numerical invariants for approxi-
mately transitive (AT) actions (ofℤ). We use them (sometimes supplemented
by other invariants) to show that members of various one-parameter families
of AT actions are mutually non-isomorphic. In particular, we construct con-
tinua of AT systems that are not conjugate to their inverses.
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Introduction
Let (𝑋, 𝜇) be a measure space, and let 𝑇∶ 𝑋 → 𝑋 be a measurable invertible

ergodic transformation.The classification of (𝑇,𝑋, 𝜇) with respect to measur-
able conjugacy was shown [CW] to be equivalent to the classification (up to
isomorphism) of their von Neumann algebra crossed products, 𝐿∞(𝑋) ⋊𝑇 ℤ,
and in turn of matrix-valued random walks in terms of a boundary (called the
Poisson boundary). Thiswas subsequently [GH] shown to be equivalent to clas-
sification of a measure-theoretic version of dimension groups.
Approximately transitive (AT) actions are those that can be expressed in ei-

ther of the latter two formulations as the 1×1matrix case or, respectively, rank
one (not in the ergodic sense, which is quite restrictive). In particular, AT ac-
tions correspond to direct limits, subject to an equivalence relation (that cor-
responds to conjugacy, isomorphism, etc., in the other formulations). We now
describe this.
Let (𝑃𝑚)𝑚∈ℕ be a sequence of Laurent polynomials or absolutely summable

Laurent series in one variable, with only nonnegative coefficients, and such that
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𝑃𝑚(1) = 1 for all 𝑚. This describes an AT (approximately transitive) action,
although there is no guarantee in this generality that it is nontrivial.
Let (𝑃𝑚) be a sequence of members of 𝑙1(ℤ) (which we usually view as func-

tions on theunit circle) such that𝑃 has only nonnegative coefficients and𝑃𝑚(1) =
1. We may form the direct limit

𝑙1(ℤ)
×𝑃1,,,→ 𝑙1(ℤ)

×𝑃2,,,→ 𝑙1(ℤ)
×𝑃3,,,→ 𝑙1(ℤ)

×𝑃4,,,→⋯ ,

where ×𝑃𝑚 ∶ 𝑙1(ℤ) → 𝑙1(ℤ), sending the 𝑚th copy of 𝑙1(ℤ) to the 𝑚 + 1st, is
given by multiplication of functions, that is, 𝑓 ↦ 𝑃𝑚 ⋅ 𝑓 (equivalently, by con-
volution with the distribution corresponding to 𝑃𝑖). We also assume that the
infinite product of the 𝑃𝑚 with any translation by powers of 𝑥, does not exist
(this is to guarantee nontrivial ergodicity in this context). There is a lot of struc-
ture preserved by the maps (such as positivity), and then there is a completion
process.
Fortunately, we do not have to go over this, because isomorphism is de-

scribed by a relatively simple equivalence relation involving almost commut-
ing diagrams. Let (𝑃𝑚) and (𝑄𝑚) be sequences as above. The following dia-
gram describes the equivalence relation. There exist telescopings, 𝑃(𝑢(𝑖)) ∶=
𝑃𝑢(𝑖)𝑃𝑢(𝑖)+1⋯𝑃𝑢(𝑖+1)−1 and 𝑄𝑣(𝑖) ∶= 𝑄𝑣(𝑖)𝑄𝑣(𝑖)+1⋯𝑄𝑣(𝑖+1)−1 (the functions 𝑢
and 𝑣 demarcate the telescopings):

⋯ // 𝑙1(ℤ) ×𝑃(𝑢(𝑖)) //

𝑅𝑖
��

𝑙1(ℤ) ×𝑃(𝑢(𝑖+1)) //

𝑅𝑖+1
��

𝑙1(ℤ) ×𝑃(𝑢(𝑖+2)) //

𝑅𝑖+2
��

𝑙1(ℤ) ×𝑃
(𝑢(𝑖+3))

//

𝑅𝑖+3
��

⋯

��⋯ // 𝑙1(ℤ) ×𝑄(𝑣(𝑖)) //

𝑆𝑖
99

𝑙1(ℤ) ×𝑄(𝑣(𝑖+1)) //

𝑆𝑖+1
99

𝑙1(ℤ) ×𝑄(𝑣(𝑖+2)) //

𝑆𝑖+2
99

𝑙1(ℤ) ×𝑄
(𝑣(𝑖+3))

//

𝑆𝑖+3
::

⋯

Here𝑅𝑖, 𝑆𝑗 are elements of 𝑙1(ℤ)with only nonnegative coefficients, and𝑅𝑖(1) =
𝑆𝑗(1) = 1 (we can reduce to the case that additionally, 𝑅𝑖 and 𝑆𝑗 are Laurent
polynomials—the corresponding distributions are finite), and multiplication
by 𝑅𝑖 sends the 𝑢(𝑖)th copy of 𝑙1(ℤ) in the top row to the 𝑣(𝑖)th copy of 𝑙1(ℤ) in
the bottom row, while 𝑆𝑗 sends the 𝑣(𝑗) copy in the bottom row to the 𝑢(𝑗+1)st
copy in the top row. The functions 𝑢 and 𝑣 serve as index functions.
In particular, 𝑅𝑗+1𝑆𝑗 sends the 𝑣(𝑗)th copy on the bottom row to the 𝑣(𝑗+1)st

(on the same row). Butwehave another obviousmap that does this, specifically,
the product𝑄𝑣(𝑗+1)−1𝑄𝑣(𝑗+1)−2⋯𝑄𝑣(𝑗), whichwe have denoted𝑄(𝑣(𝑗)). Thenwe
require the summability condition

∑

𝑗

‖‖‖‖𝑅𝑗+1𝑆𝑗 − 𝑄(𝑗)‖‖‖‖ <∞.

(The 𝑙1(ℤ)-norm is used.)
Similarly, 𝑆𝑖𝑅𝑖 sends the 𝑢(𝑖)th copy of 𝑙1(ℤ) on the top row to the 𝑢(𝑖 + 1).

Set 𝑃(𝑖) to be the corresponding product, 𝑃𝑢(𝑖+1)−1𝑃𝑢(𝑖+1)−2…𝑃𝑢(𝑖)+1𝑃𝑢(𝑖). Then
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we require that
∑

𝑖

‖‖‖‖𝑅𝑖𝑆𝑖 − 𝑃(𝑢(𝑖))‖‖‖‖ <∞.

The existence of 𝑅𝑖, 𝑆𝑗 satisfying all these conditions is equivalent to there
being an isomorphism between the von Neumann algebras, or conjugacy of the
corresponding ergodic transformations, etc. [GH, Theorem 3.1]. (So we don’t
have to know how to define the Poisson boundary, for example.)
Ifℳ is the (isomorphism class of) von Neumann algebra corresponding to

the sequence (𝑃𝑚) (or any sequence equivalent to it), we typically write, ℳ
corresponds to the system (𝑃𝑚) or vice versa.
While this yields the correct notion of isomorphism, it is rarely easy to decide

on isomorphism or nonisomorphism of two systems using it. Invariants have
been developed. The best known and earliest is the 𝑇-set, corresponding to
eigenvalues of the transformation on a suitable Banach space. This is relatively
easy to calculate, but only coarsely separates systems (algebras). Amassive fam-
ily of numerical invariants was introduced in [GH] and used there and in [H],
which we will call mass-cancellation invariants (they will be defined and used
in section 3). An unpublished result of Giordano, Handelman, and Munteanu
asserts that the 𝑇-set invariants can be recovered from the mass-cancellation
invariants.
Mass cancellation invariants are often useful, but very often, are difficult to

calculate. In this paper, we introduce a family of numerical invariants that are
generally easier to calculate. We use them to show that for many natural one-
parameter families of AT actions (more precisely, their vonNeumann algebras),
(ℳ(𝑟)){𝑟∈ℝ∣𝑟>0}, the members,ℳ(𝑟) are mutually non-isomorphic.
The model for this is the one-parameter family of systems given byℳ(𝑟) =

(Exp 𝑟𝑥2𝑖 ) (here Exp is the normalized version of the exponential function,
Expℎ(𝑥) = 𝑒−ℎ(1) expℎ(𝑥) = exp(ℎ(𝑥) − ℎ(1)), when ℎ has no negative co-
efficients). With the new invariants, it is easy to check for this example, the
ℳ(𝑟) are mutually nonisomorphic (something that was already known); but
we extend this type of result considerably.
On the other hand, mass cancellation invariants can distinguish (in many

cases) an AT transformation from its inverse—which the new invariants can-
not.
Section 1 describes the new invariant, and presents some elementary prop-

erties. Section 2 contains applications to divisible systems (where the 𝑃𝑚 are
compound Poisson), culminating in the nonisomorphism Theorem 2.12. Sec-
tion 3 contains applications to not necessarily divisible systems. Here, there
are more complications, necessitating that mass cancellation invariants assist
in distinguishing systems. Section 4 contains results about nonisomorphism
between (tensor) powers of systems.
We describe a numerical invariant for equivalence (measure-theoretic iso-

morphism) that often allows to distinguishmembers of one-parameter families
of these.
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1. The invariant
It is not one invariant, but an uncountable collection of numerical invari-

ants, analogous to those in [GH, H]. Let (𝑤𝑘)𝑘∈ℕ be a sequence of complex
numbers of modulus 1. To the sequence, we wish to associate a number, de-
noted 𝒮((𝑤𝑘), (𝑃𝑚)), in [0, 1], so that the assignment (𝑃𝑚) ↦ 𝒮((𝑤𝑘), (𝑃𝑚)) is
an isomorphism invariant for (𝑃𝑚). In other words, each sequence (𝑤𝑘) yields
an isomorphism invariant for AT actions. Most sequences of elements of the
circle yield uninteresting or simply uncomputable invariants, but for the ex-
amples we have in mind, there are natural choices of sequences which yield
nonisomorphism results.
Fix the sequences (𝑤𝑘) and (𝑃𝑚). In direct analogy with the invariant dis-

cussed in [GH], [H], define for each 𝑙 ∈ ℕ, the number 𝑆𝑘,𝑙 defined as

𝑆𝑘,𝑙 = lim
𝑑→∞

||||||||||

𝑚=𝑙+𝑑∏

𝑚=𝑙
𝑃𝑚(𝑤𝑘)

||||||||||
(1)

That the limit exists follows from |𝑃(𝑧)| ≤ 1 when 𝑃 has no negative coeffi-
cients, 𝑃(1) = 1, and |𝑧| = 1. Now define

𝑆𝑙 = inf
𝑘∈ℕ

𝑆𝑘,𝑙.

Finally, set 𝒮((𝑤𝑘), (𝑃𝑚)) = lim𝑙 𝑆𝑙. That the limit exists follows from 𝑆𝑙 ≤ 𝑆𝑙+1.
This is a number in the unit interval, but there is no guarantee that it is nonzero
or not 1.
Our first task is to show that this is indeed an isomorphism invariant. This

is routine, but a proof is presented to convince the skeptics (and is more con-
vincing than Arthur Cayley’s proof of the Cayley-Hamilton theorem).

Proposition 1.1. Suppose thatℳ1 corresponds to the system (𝑃𝑚) andℳ2 corre-
sponds to (𝑄𝑚). Let (𝑤𝑘) be a sequence of elements of the unit circle. Ifℳ1 ≅ℳ2,
then 𝒮((𝑤𝑘), (𝑃𝑚)) = 𝒮((𝑤𝑘), (𝑄𝑚)).
Proof. We are given the almost commuting diagram given above. Given 𝜖 > 0,
there exists 𝑗′ such that for all 𝑗 ≥ 𝑗,

‖‖‖‖𝑅𝑗𝑆𝑗−1𝑅𝑗−1𝑆𝑗−2⋯𝑅𝑗′+1𝑆𝑗′ − 𝑄(𝑣(𝑗))𝑄(𝑣(𝑗−1))⋯𝑄(𝑣(𝑗′))‖‖‖‖
< 𝜖 ‖‖‖‖𝑆𝑗−1𝑅𝑗−1𝑆𝑗−2⋯ 𝑆𝑗′+1𝑅𝑗′+1 − 𝑃(𝑢(𝑗))𝑃(𝑢(𝑗−1))⋯𝑄(𝑢(𝑗′))‖‖‖‖ < 𝜖

Now |𝑅𝑗𝑆𝑗⋯ 𝑆𝑗′(𝑤𝑘)| ≤ |𝑆𝑗⋯𝑅𝑗′+1(𝑤𝑘)| (the second product is simply the first
with the first and last terms deleted). As

|𝑄(𝑣(𝑗))𝑄(𝑣(𝑗−1))⋯𝑄(𝑣(𝑗′))(𝑤𝑘) − 𝑅𝑗𝑆𝑗−1𝑅𝑗−1𝑆𝑗−2⋯𝑅𝑗′+1𝑆𝑗′(𝑤𝑘)| < 𝜖

and similarly with the truncated version, we obtain 𝑆𝑘,𝑢(𝑗′) ≤ 𝑆𝑄𝑘,𝑣(𝑗′) + 𝜖 for
all sufficiently large 𝑗′. It follows that 𝑆𝑢(𝑗′) ≤ 𝑆𝑄𝑣(𝑗′) + 𝜖 for infinitely many 𝑗′,
and thus 𝒮((𝑤𝑘), (𝑃𝑚)) ≤ 𝒮((𝑤𝑘), (𝑄𝑚)) + 𝜖. As this is true for all 𝜖, we have
𝒮((𝑤𝑘), (𝑃𝑚)) ≤ 𝒮((𝑤𝑘), (𝑄𝑚)). Reversing the roles of 𝑃𝑚 and 𝑄𝑚, we obtain
the opposite inequality, so 𝒮((𝑤𝑘), (𝑃𝑚)) = 𝒮((𝑤𝑘), (𝑄𝑚)). □
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So we can write 𝒮((𝑤𝑘),ℳ) for 𝒮((𝑤𝑘), (𝑃𝑚)) if (𝑃𝑚) corresponds to ℳ. If
we replace inf by sup in the definition, we obtain another invariant—the upper
version; so the initial invariant is the lower one associated to (𝑤𝑘); but in most
of the examples here, the upper and lower ones agree. We never use the upper
invariant.
As noted before, it is similar to the mass cancellation invariants introduced

in [GH]. It has one advantage over these, in that it is usually easier to compute
with, at least if we make the appropriate choice for the sequence (𝑤𝑘).

Tensorproducts of actions. Ifℳ and𝒩 are the vonNeumannalgebra crossed
products associated to two actions, then we may form their von Neumann al-
gebra tensor product,ℳ⊗𝒩. If the actions are AT, say corresponding to (𝑃𝑚)
and (𝑄𝑚) respectively, then the action arising from the sequence of products
(𝑃𝑚𝑄𝑚) corresponds toℳ ⊗𝒩. However, it is not clear what the dynamical
interpretation should be; that is, if 𝑇 and 𝑈 are ergodic transformations, how
should 𝑇 ⊗ 𝑈 be defined? A first guess is 𝑇 × 𝑈, but this need not be ergodic.
An attempt to resolve this, intended for the topological, rather than measure-
theoretic, setting (minimal replacing ergodic) is given in [BH, Appendix A].
The invariant is frequently (but not always) multiplicative with respect to

tensor products, that is, ifℳ andℳ′ are AT actions, then 𝒮((𝑤𝑗),ℳ ⊗ℳ′) =
𝒮((𝑤𝑗),ℳ) ⋅ 𝒮((𝑤𝑗),ℳ′) often occurs. The 𝑗-fold tensor product of 𝑗 copies of
ℳ is denoted⊗𝑗ℳ.

Lemma 1.2. Letℳ andℳ′ be AT, and let (𝑤𝑘) be a sequence of elements of the
unit circle.

(a) min
{
𝒮((𝑤𝑘),ℳ),𝒮((𝑤𝑘),ℳ′)

}

≥ 𝒮((𝑤𝑘),ℳ ⊗ℳ′) ≥ 𝒮((𝑤𝑘),ℳ) ⋅ 𝒮((𝑤𝑘),ℳ′);
(b) If 𝒮((𝑤𝑘),ℳ) ≠ 0, then 𝒮((𝑤𝑘),ℳ ⊗ℳ′) = 0 iff 𝒮((𝑤𝑘),ℳ′) = 0;
(c) 𝒮((𝑤𝑘), ⊗𝑗ℳ) = 𝒮((𝑤𝑘),ℳ)𝑗;
(d) If 𝒮((𝑤𝑘),ℳ) = 1, then 𝒮((𝑤𝑘),ℳ ⊗ℳ′) = 𝒮((𝑤𝑘),ℳ′).

Proof. Ifℳ is given by the sequence (𝑃𝑚) andℳ′ is given by (𝑃′𝑚), thenℳ ⊗
ℳ′ is given by (𝑃𝑚𝑃′𝑚) (the sequence of products). If 𝑆𝑘,𝑙, 𝑆′𝑘,𝑙, and 𝑆

′′
𝑘,𝑙 represent

themoduli of the products for (𝑃𝑚), (𝑃′𝑚) and (𝑃𝑚𝑃′𝑚) respectively, thenwehave
𝑆′′𝑘,𝑙 = 𝑆𝑘,𝑙 ⋅ 𝑆′𝑘,𝑙. Taking infima over 𝑘, we obtain 𝑆

′′
𝑙 ≥ 𝑆𝑙 ⋅ 𝑆′𝑙 . Taking limits as

𝑙 →∞, the right inequality of (a) follows.
Next, we see that 𝑆′′𝑘,𝑙 = 𝑆𝑘,𝑙 ⋅ 𝑆′𝑘,𝑙 ≤ min

{
𝑆𝑘,𝑙, 𝑆′𝑘,𝑙

}
, and the left side of (a)

follows.
(b) If 𝒮((𝑤𝑘),ℳ′) = 0, then 𝒮((𝑤𝑘),ℳ ⊗ℳ′) = 0 follows from the left side of
(a). If 𝒮((𝑤𝑘),ℳ′) ≠ 0, then 𝒮((𝑤𝑘),ℳ ⊗ℳ′) ≠ 0 follows from the right side
of (a).
(c) Follows from |𝑃𝑚(𝑤𝑘)𝑗| = |𝑃𝑚(𝑤𝑘)|𝑗.
(d) Follows from both parts of (a). □

An immediate consequence of Lemma 1.2(c) is the following.



1170 DAVID HANDELMAN

Lemma 1.3. Letℳ be an AT system, and suppose there exists a sequence (𝑤𝑘)
of elements of the unit circle such that 𝒮((𝑤𝑘),ℳ) ∉ {0, 1}. Then the 𝑗-fold tensor
products,

{
⊗𝑗ℳ

}
𝑗=1,2,… are mutually non-isomorphic.

The following construction is obvious, but is given here for completeness.

Example 1.4. Two AT systems, ℳ1 andℳ2, and a sequence of roots of unity,
(𝑤𝑘), such that 𝒮((𝑤𝑘),ℳ1 ⊗ℳ2) ≠ 𝒮((𝑤𝑘),ℳ1) ⋅ 𝒮((𝑤𝑘),ℳ2).

Proof. Let 𝜏 be a positive real number less than 1
2
, and let 𝑤𝑘 = exp(2𝑖𝜋∕2𝑘).

Define

𝑃𝑚 =
⎧

⎨
⎩

1+2𝑥2𝑚

3
if𝑚 is even

1+𝜏𝑥2𝑚

1+𝜏
if𝑚 is odd.

Letℳ1 denote the AT action determined by (𝑃𝑚). If we interchange even with
odd in the definition of 𝑃𝑚, we obtainℳ2. It is routine to verify that, for the
infinite products,

(1 − 8
9) (1 −

4𝜏
(1 + 𝜏)2

⋅ 12) (1 −
8
9 sin

2 2𝜋
16 ) (1 −

4𝜏
(1 + 𝜏)2

sin2 2𝜋32 ) ⋅ ⋯

< (1 − 4𝜏
(1 + 𝜏)2

) (1 − 8
9 ⋅

1
2) (1 −

4𝜏
(1 + 𝜏)2

sin2 2𝜋16 ) ⋅ ⋯ .

This implies that for every 𝑙, 𝑆𝑙 (forℳ1) is the square root of the top product,
hence this is𝒮((𝑤𝑘),ℳ). The same inequality yields that this is also𝒮((𝑤𝑘),ℳ2).
However,ℳ1⊗ℳ2 is given by the sequence (𝑄𝑚 = (1+2𝑥2𝑚)(1+𝜏𝑥2𝑚)∕3(1+

𝜏)), and it is easy to check that

𝒮((𝑤𝑘)),ℳ1⊗ℳ2) = (
∏

(1 − 8
9 sin

2 2𝜋
2𝑚 )

1∕2
⋅
∏

(1 − 4𝜏
(1 + 𝜏)2

sin2 2𝜋2𝑚 ))
1∕2

,

which is not 𝒮((𝑤𝑘),ℳ1) ⋅ 𝒮((𝑤𝑘),ℳ2) = 𝒮((𝑤𝑘),ℳ1)2. □

Ifℳ ⊗ℳ ≅ℳ (as occurs for many odometers), then the values of the new
invariants can only be 0 or 1, no matter what the choice of sequence (𝑤𝑘). A lit-
tlemore generally, ifℳ(𝑟) (for 𝑟 ∈ ℝ++) is a one-parameter family ofAT actions
such thatℳ(𝑟)⊗ℳ(𝑟′) ≅ℳ(𝑟+𝑟′) and the invariants 𝒮((𝑤𝑘), ⋅) aremultiplica-
tive on {ℳ(𝑟)} (themodel example above, (Exp 𝑟𝑥2𝑖 ), satisfies these properties),
then for fixed (𝑤𝑘), the map 𝜙∶ ℝ++ → [0, 1] given by 𝑟 ↦ 𝒮((𝑤𝑘),ℳ(𝑟)) sat-
isfies 𝜙(𝑟 + 𝑟′) = 𝜙(𝑟)𝜙(𝑟′) (e.g., 𝜙(𝑟) = 𝛾𝑟 for some 𝛾 ≤ 1). In this case, if
𝜙(𝑟) ∉ {0, 1} for some 𝑟, then ℳ(𝑟) ≅ ℳ(𝑟′) entails 𝑟 = 𝑟′ (Corollary 2.2),
which is precisely the conclusion we want.

2. Bounded AT actions
Here we give reasonably general sufficient conditions so that one-parameter

families of AT actions,ℳ(𝑟) (for 𝑟 a positive real number), given by, for exam-
ple, (𝑃𝑚,𝑟 = exp

(
𝑟(ℎ𝑚(𝑥𝑛

𝑚) − 1)
)
(for some positive integer 𝑛 ≥ 2) where each
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ℎ𝑚 ∈ 𝑙1(ℤ) has no negative coefficients and ℎ𝑚(1) = 1, satisfyℳ(𝑟′) ≅ ℳ(𝑟)
implies 𝑟 = 𝑟′. The corresponding distributions are compound Poisson, and
therefore divisible.
Let 𝑓 = ∑

𝑡∈ℤ 𝑎𝑡𝑥
𝑡 be an element of 𝑙1(ℤ), that is,∑|𝑎𝑡| < ∞, such that all

the coefficients, 𝑎𝑡, are nonnegative. In that case, ‖𝑓‖ = 𝑓(1). In general, for
𝑓 ∈ 𝑙1(ℤ)), ‖𝑓‖ ≥ sup𝑧∈𝕋 |𝑓(𝑧)|. We say 𝑓 has finite second moment, if 𝑓 has
only nonnegative coefficients, 𝑓(1) = 1, and ∑ 𝑎𝑡𝑡2 < ∞. This implies that
the real and imaginary parts of 𝑓 (as a function on the unit circle) are twice
differentiable. When 𝑓 has finite second moment, we define 𝜇2(𝑓) ∶=

∑ 𝑎𝑡𝑡2;
this is 𝑓′(1) + 𝑓′′(1). The first moment, 𝜇1(𝑓) =

∑ 𝑎𝑡𝑡 = 𝑓′(1), is defined if
merely

∑ 𝑎𝑡|𝑡| <∞, but need not be positive.
First we discuss a fairly general divisible AT situation. Let 𝐻𝑚 be elements

of 𝑙1(ℤ) with no negative coefficients. Define 𝑃𝑚 = Exp𝐻𝑚 ∶= exp(𝐻𝑚 −
𝐻𝑚(1)), and letℳ denote the system corresponding to the sequence (𝑃𝑚). In
this generality, there is no guarantee that the action is nontrivial.
For real 𝑟 > 0, define ℳ(𝑟) to be the action obtained from the sequence(

𝑃𝑚,𝑟 ∶= Exp(𝑟𝐻𝑚)
)
(= (exp(𝑟(𝐻𝑚 −𝐻𝑚(1))). The following is elementary.

Proposition 2.1. Letℳ be the action determined by (Exp𝐻𝑚), with correspond-
ingℳ(𝑟) = (Exp 𝑟𝐻𝑚) for positive real 𝑟. Suppose that 𝒮((𝑤𝑘),ℳ) = 𝑆 for some
choice of sequence of elements of the unit circle, (𝑤𝑘). Then for all 𝑟, we have
𝒮((𝑤𝑘),ℳ(𝑟)) = 𝑆𝑟.

Remark. Our convention is that 𝑆𝑟 is exp(𝑟 ln 𝑆) if 𝑆 > 0, and 0 if 𝑆 = 0.

Proof. If 𝑤 is of absolute value 1, then
||||𝑃𝑚,𝑟(𝑤)

|||| = exp
(
Re(𝑟(𝐻𝑚,𝑟(𝑤) −𝐻(1)))

)

= (exp(Re(𝐻𝑚(𝑤) −𝐻(1)))𝑟 .

It follows that 𝑆𝑘,𝑙,𝑟 ∶= lim𝑑→∞
∏𝑙+𝑑

𝑗=𝑙 |𝑃𝑗,𝑟(𝑤𝑘)| is the exponential (in 𝑟) of 𝑆𝑘,𝑙,1.
Thus for fixed 𝑟, the infimum over 𝑘 of 𝑆𝑘,𝑙,𝑟 is just the exponential of the corre-
sponding number with 𝑟 = 1 (because 𝑟 ↦ 𝛾𝑟 is order preserving). Now taking
limits (as 𝑙 →∞), the result follows. □

Recall that for 𝐻 ∈ 𝑙1(ℤ) with only nonnegative coefficients and 𝐻(1) = 1,
Exp𝐻 denotes exp(𝐻 − 1) ∈ 𝑙1(ℤ).

Corollary 2.2. Let (𝐻𝑚) be a sequence of elements of 𝑙1(ℤ)with only nonnegative
coefficients, and such that𝐻𝑚(1) = 1 for all𝑚. Let 𝑟 > 0, and letℳ(𝑟) be the AT
action determined by (Exp(𝑟(𝐻𝑚)). If for some choice of sequence of elements of
the unit circle, (𝑤𝑘), and some 𝑟′ > 0, we have 𝒮((𝑤𝑘),ℳ(𝑟′)) ∉ {0, 1}, thenℳ(𝑟)
are mutually non-isomorphic.

Proof. Without loss of generality, we may assume 𝑟′ = 1. Let 𝑆 = 𝒮((𝑤𝑘),
ℳ(1)); then by the preceding, 𝒮((𝑤𝑘),ℳ(𝑟)) = 𝑆𝑟, and of course 𝑟 ↦ 𝑆𝑟 is one
to one. □
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Thus, to determine whetherℳ(𝑟) ≅ ℳ(𝑟′) implies 𝑟 = 𝑟′, it is sufficient to
show that 𝑆 ∶= 𝒮((𝑤𝑘), (ℳ)) is neither zero or one. This is useful, as computing
𝑆 (an infinite product) exactly is problematic.
Let 𝑓 ∈ 𝑙1(ℤ) be such that 𝑓(1) = 1 and 𝑓 is C2, that is, 𝜇2(𝑓) < ∞. Define

𝑉(𝑓) to be 𝑓′′(1) + 𝑓′(1) − (𝑓′(1))2. It is straightforward that for 𝑓1 and 𝑓2, we
have𝑉(𝑓1𝑓2) = 𝑉(𝑓1)+𝑉(𝑓2), and if 𝑓 = 𝑥𝑛 for some integer 𝑛, then𝑉(𝑓) = 0.
In particular, 𝑉(𝑥𝑛𝑓) = 𝑉(𝑓), that is, 𝑉 is shift invariant.
Of course, 𝑉 is well-known. Let (𝑎𝑗)𝑖∈ℤ be a sequence of nonnegative real

numbers such that
∑ 𝑎𝑗 = 1, and ∑ 𝑎𝑗𝑗2 < ∞, and let 𝑓 = ∑ 𝑎𝑗𝑥𝑗; then

𝑉(𝑓) is simply the variance of the distribution (𝑎𝑗), or equivalently, of the cor-
responding integer-valued random variable 𝑋 defined by Pr(𝑋 = 𝑗) = 𝑎𝑗. In
our definition of 𝑉, there is no requirement that the 𝑎𝑗 be nonnegative or even
real. We can similarly define (unnormalized) skewness and kurtosis (provided
the third and fourthmoments respectively are finite), aswell as third and fourth
cumulants; the latter convert multiplication (of functions) to sums (as variance
does), but it is unlikely they will be of any use here.
The following three elementary results (Lemmas 2.3, 2.4, and Corollary 2.5)

are probably known, but I could not find references for them. The variance
results will be useful in section 3.

Lemma 2.3. Let 𝑓 =∑ 𝑎𝑗𝑥𝑗 have finite second moment, with 𝑓(1) = 1. Then

𝑉(𝑓) =
∑

𝑗<𝑗′
𝑎𝑗𝑎𝑗′(𝑗′ − 𝑗)2.

Proof. Everything is absolutely summable here, so there will be no problem
with the infinite sums. We observe

𝜇2(𝑓) = 1 ⋅ 𝜇2(𝑓) =
⎛
⎜
⎝

∑

𝑗
𝑎𝑗
⎞
⎟
⎠
⋅ (
∑

𝑡
𝑎𝑡𝑡2)

=
∑

𝑎2𝑗 +
∑

𝑗≠𝑗′
𝑎𝑗𝑎′𝑗(𝑗

′)2

=
∑

𝑎2𝑗 +
1
2
∑

𝑗≠𝑗′
𝑎𝑗𝑎𝑗′(𝑗2 + (𝑗′)2)

=
∑

𝑎2𝑗 +
∑

𝑗<𝑗′
𝑎𝑗𝑎𝑗′(𝑗2 + (𝑗′)2).

𝑉(𝑓) = 𝑓′′(1) + 𝑓′(1) − (𝑓′(1))2

= 𝜇2(𝑓) −
(∑

𝑎𝑗𝑗
)2

= 𝜇2(𝑓) −
∑

𝑎2𝑗𝑗
2 − 2

∑

𝑗<𝑗′
𝑎𝑗𝑎𝑗′𝑗𝑗′.

Therefore,
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∑

𝑗<𝑗′
𝑎𝑗𝑎𝑗′(𝑗′ − 𝑗)2 =

∑

𝑗<𝑗′
𝑎𝑗𝑎𝑗′(𝑗2 + (𝑗′)2) − 2

∑

𝑗<𝑗′
𝑎𝑗𝑎𝑗′𝑗𝑗′

=
(
𝜇2(𝑓) −

∑
𝑎2𝑗𝑗

2
)
+ 𝑉(𝑓) −

(
𝜇2(𝑓) −

∑
𝑎2𝑗𝑗

2
)

= 𝑉(𝑓).

□

The following generalizes the fact that for 𝜃 > 0, we have sin 𝜃 < 𝜃. The
proof is by double induction, observing that the derivative transforms the par-
tial sums into shorter versions of their ilk.

Lemma 2.4. Suppose 𝜃 > 0. Then

(a) for all nonnegative integers 𝑠,

2𝑠+1∑

𝑡=0
(−1)𝑡 𝜃2𝑡+1

(2𝑡 + 1)!
< sin 𝜃 <

2𝑠∑

𝑡=0
(−1)𝑡 𝜃2𝑡+1

(2𝑡 + 1)!
;

(b) for all 𝑠 ≥ 1,

2𝑠+1∑

𝑡=0
(−1)𝑡 𝜃

2𝑡

(2𝑡)!
< cos 𝜃 <

2𝑠∑

𝑡=0
(−1)𝑡 𝜃

2𝑡

(2𝑡)!
.

In the following, 𝐾(ℎ) =∑
𝑗<𝑗′ 𝑎𝑗𝑎𝑗′(𝑗

′ − 𝑗)4∕12. I don’t know whether this
has any statistical significance.

Corollary 2.5. Let ℎ ∈ 𝑙1(ℤ) have only nonnegative coefficients, and ℎ(1) = 1;
assume the fourth moment exists. Let 𝜃 > 0 and set 𝑧 = 𝑒𝑖𝜃.

(a) −𝜇2(ℎ)
2
𝜃2 + 𝜇4(ℎ)

24
𝜃4 > Re(ℎ(𝑧) − 1) > −𝜇2(ℎ)

2
𝜃2

(b) 1 − 𝑉(ℎ)𝜃2 + 𝐾(ℎ)𝜃4 > |ℎ(𝑧)|2 > 1 − 𝑉(ℎ)𝜃2.

Proof. Write ℎ =∑ 𝑎𝑗𝑥𝑗 with 𝑎𝑗 ≥ 0,∑ 𝑎𝑗 = 1, and∑ 𝑎𝑗𝑗4 <∞. Then

Re(ℎ(𝑧) − 1) =
∑

𝑎𝑗 cos 𝑗𝜃 −
∑

𝑎𝑗
=
∑

𝑎𝑗(cos 𝑗𝜃 − 1); by Lemma 2.4,

−
∑

𝑎𝑗 (
(𝑗𝜃)2
2 − (𝑗𝜃)4

24 ) > Re(ℎ(𝑧) − 1) > −
∑

𝑎𝑗
(𝑗𝜃)2
2 ; so

−𝜃2𝜇2(ℎ)2 + 𝜃4𝜇4(ℎ)24 > Re(ℎ(𝑧) − 1) > −𝜃2𝜇2(ℎ)2 .
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We also have

|ℎ(𝑧)|2 = ||||
∑

𝑎𝑗(cos 𝑗𝜃 + 𝑖 sin 𝜃)||||
2

=
∑

𝑎2𝑗 + 2
∑

𝑗<𝑗′
𝑎𝑗𝑎𝑗′

(
(cos 𝑗𝜃) ⋅ (cos 𝑗′𝜃) + (sin 𝑗𝜃) ⋅ (sin 𝑗′𝜃)

)

=
∑

𝑎2𝑗 + 2
∑

𝑗<𝑗′
𝑎𝑗𝑎𝑗′(cos(𝑗′ − 𝑗)𝜃); since 1 =

∑
𝑎2𝑗 + 2

∑

𝑗<𝑗′
𝑎𝑗𝑎𝑗′ ,

= 1 − 2
∑

𝑗<𝑗′
𝑎𝑗𝑎𝑗′(1 − cos(𝑗′ − 𝑗)𝜃);

thus by Lemma 2.4,

1 −
∑

𝑗<𝑗′
𝑎𝑗𝑎𝑗′(𝑗′ − 𝑗)2𝜃2 + 2

∑

𝑗<𝑗′
𝑎𝑗𝑎𝑗′

((𝑗′ − 𝑗)𝜃)4
24

> |ℎ(𝑧)|2 > 1 −
∑

𝑗<𝑗′
𝑎𝑗𝑎𝑗′(𝑗′ − 𝑗)2𝜃2; so

1 − 𝑉(ℎ)𝜃2 + 𝐾(ℎ)𝜃4 > |ℎ(𝑧)|2 > 1 − 𝑉(ℎ)𝜃2.
□

If in this lemma, ℎ is a Laurent polynomial, say with𝑀 asmaximal exponent
and 𝑚 as minimal one, we can use the Bhatia-Davis inequality [BD], 𝑉(ℎ) ≤
(𝑀−ℎ′(1))(ℎ′(1)−𝑚), to bound𝑉(ℎ)without going to the trouble of calculating
it.
Let (𝑛(𝑚))𝑚=1,2,… be a sequence of positive integers, and form

𝑇(𝑚) =
𝑚∏

𝑙=1
𝑛(𝑙).

In the simplest case, 𝑛(𝑚) = 𝑛 for all 𝑚, and then 𝑇(𝑚) = 𝑛𝑚. Now let (ℎ𝑚)
be a sequence of elements of elements of 𝑙1(ℤ), each with no negative coeffi-
cients and zero constant term satisfying ℎ𝑚(1) = 1, and each of finite second
moment. Let 𝑟 be a positive real number, and set 𝑃𝑚,𝑟(𝑥) = Exp

(
𝑟ℎ𝑚(𝑥𝑇(𝑚)

)
;

this is exp
(
𝑟(ℎ𝑚(𝑥𝑇

𝑚) − 1)
)
, owing to the normalization of the ℎ𝑚. We form

the AT system,ℳ(𝑟), given by the sequence (𝑃𝑚,𝑟)𝑚, yielding a one-parameter
family, 𝑟 ↦ℳ(𝑟). The current aim is to determine sufficient conditions so that
ℳ(𝑟) ≅ℳ(𝑟′) implies 𝑟 = 𝑟′, and for this, it is sufficient to show 𝒮((𝑤𝑘),ℳ) ∉
{0, 1}, by Corollary 2.2.
For example, this property fails if for some 𝑟, we have thatℳ(𝑟) is an odome-

ter, for thenℳ(2𝑟) ≅ ℳ(𝑟)⊗ℳ(𝑟) ≅ ℳ(𝑟). The simplest example of this oc-
curs if 𝑛(𝑚) = 𝑛 > 1 for all𝑚 and ℎ𝑚(𝑥) = 𝑔(𝑚)𝑥 where 𝑔 is a positive-valued
function such that 𝑔(𝑚)∕ ln𝑚 → ∞. Then 𝑃𝑚,𝑟 = Exp(𝑟𝑔(𝑚)𝑥𝑛𝑚), and by [H,
Theorem 4.4],ℳ(𝑟) is the 𝑛-odometer for all choices of 𝑟 > 0; the correspond-
ing supernatural number is 𝑛∞, that is, infinite at the prime divisors of 𝑛 and
zero at other primes.
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Ifweweaken the hypothesis on the growth of 𝑔, it is known [H] that sufficient
for the system to be an odometer is that lim inf 𝑔(𝑚)∕ ln𝑚 be sufficiently large
(how large depending on 𝑛), but it is not known whetherℳ(𝑟) is an odometer
if 𝑔 grows more slowly, e.g., 𝑔(𝑚) ∼ ln ln𝑚. Unfortunately, our new invariant
doesn’t help with this. However, it will help if, for example, ℎ𝑚 = ℎ for all 𝑚,
and some variations on this, e.g., a bound on second moments of ℎ𝑚.
We can now deal with the relatively simple case of ℎ𝑘 = ℎ for all 𝑘. First, the

case of 𝑇(𝑘) = 𝑛𝑘, that is, 𝑛(𝑘) = 𝑛 is constant.

Proposition 2.6. Let 𝑛 ≥ 2 be an integer, and ℎ ∈ 𝑙1(ℤ) have only nonnega-
tive coefficients, finite second moment, and ℎ(1) = 1. Setℳ(𝑟) to be the system
associated to

(
𝑃𝑚 ∶= Exp(𝑟ℎ(𝑥𝑛𝑚))

)
. Let 𝑤𝑘 = exp(2𝜋𝑖∕𝑛𝑘). Then

𝑆 ∶= 𝒮((𝑤(𝑘)),ℳ(1)) = exp (−
∞∑

𝑡=1
Re(1 − ℎ(𝑒2𝜋𝑖∕𝑛𝑡 ))) ,

and this lies strictly between 0 and 1. In particular, {ℳ(𝑟)}𝑟>0 are mutually non-
isomorphic.

Remark. We can get fairly tight estimates for 𝑆 if the first few terms of the sum
are known.
Remark. So in our standard example,

(
Exp(𝑟𝑥𝑛𝑖 )

)
, we have ℎ(𝑥) = 𝑥 and the

𝒮-value (at 𝑟 = 1) is exp
(
−∑ 2 sin2(𝜋∕𝑛𝑖)

)
(which clearly converges).

Proof. That 𝑆 is as given in the display is an immediate consequence of the
definitions. To check that 𝑆 is neither zero nor one, we note that

Re(1 − ℎ(𝑒2𝜋𝑖∕𝑛𝑡 )) ≤ 2𝜇2(ℎ)
𝜋2
𝑛2𝑡 ,

hence the sum converges, and thus 𝑆 > 0; but 𝑆 < 𝑒−Re(1−ℎ(exp 2𝜋𝑖)∕𝑛) (the first
term), and so 𝑆 < 1. The rest follows from Corollary 2.2. □

The first remark follows from the inequality 1−𝜇2(ℎ)𝜃2∕2 < Re(1−ℎ(𝑒𝑖𝜃) <
1 − 𝜇2(ℎ)𝜃2∕2 + 𝜇4(ℎ)𝜃4∕24, which for 𝜃 = 2𝜋∕𝑛𝑡 gives a tiny error for suffi-
ciently large 𝑡.
If 𝑛(𝑘)→∞ (but ℎ𝑘 = ℎ for all 𝑘), then the invariant does nothing; the value

will be 1. This will follow from more general results, where ℎ𝑘 are allowed to
vary.
Returning to the broader situation (with 𝑛(𝑚), 𝑇(𝑚), ℎ𝑚 being more gen-

eral), let𝑤𝑘 = exp(2𝜋𝑖∕𝑇(𝑘)), a primitive 𝑇(𝑘)th root of unity. Wewill estimate
(under relatively modest conditions) the value of 𝑆 ∶= 𝒮((𝑤𝑘), (𝑃𝑚,1)), at least
well enough so that we can say it is not zero or one.
Abbreviate 𝑃𝑚,1 to 𝑃𝑚. First, we note that |𝑃𝑚,𝑟(𝑧)| = |𝑃𝑚(𝑧)|𝑟 for 𝑧 on the

unit circle. Next, we see that 𝑃𝑚(𝑤𝑘) = 1 if 𝑘 ≤ 𝑚. For 𝑘 > 𝑚, set 𝜃𝑚,𝑘 =
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exp(2𝜋𝑖∕(𝑇(𝑘)∕𝑇(𝑚))). We have

|𝑃𝑚(𝑤𝑘)| =
|||||||||
exp (ℎ (exp 2𝜋𝑖

𝑇(𝑘)∕𝑇(𝑚))
− 1)

|||||||||
= exp

(
−Re(1 − ℎ(exp(𝑖𝜃𝑚,𝑘))

)
.

Thus, for 𝑙, 𝑑 positive integers, we have
𝑙+𝑑∏

𝑗=𝑙

||||𝑃𝑗(𝑤𝑘)
|||| =

(𝑙+𝑑)∧(𝑘−1)∏

𝑗=𝑙

||||𝑃𝑗(𝑤𝑘)
|||| ; thus, as 𝑑 →∞,

= exp
⎛
⎜
⎝
−

𝑘−1∑

𝑗=𝑙
Re(1 − ℎ𝑗(𝑒𝑖𝜃𝑗,𝑘 ))

⎞
⎟
⎠
; substituting 𝑡 = 𝑘 − 𝑗,

= exp
⎛
⎜
⎝
−

𝑘−𝑙∑

𝑡=1
Re(1 − ℎ𝑘−𝑡(𝑒𝑖𝜃𝑗,𝑘 ))

⎞
⎟
⎠

= exp(−Re(1 − ℎ𝑘−1(exp(2𝜋𝑖∕𝑛(𝑘)))
− Re(1 − ℎ𝑘−2(exp(2𝜋𝑖∕𝑛(𝑘)𝑛(𝑘 − 1))) − … ))

(2)

The last line is purely expository.
The following yields conditions under which the value of the invariant is not

zero.

Lemma 2.7. Suppose that 𝜇2(ℎ𝑘) <∞ for all 𝑘, and in addition,
(a)

lim sup 𝜇2(ℎ𝑘−1)
𝜇2(ℎ𝑘))𝑛(𝑘)2

∶= 𝐶 < 1;

(b)

lim sup 𝜇2(ℎ𝑘−1)
𝑛(𝑘)2𝑛(𝑘 − 1)2

∶= 𝜌 <∞.

Then, withℳ given by
(
𝑃𝑚(𝑥) = Exp(ℎ𝑚(𝑥𝑇(𝑚)))

)
, we have

𝒮((𝑤𝑘),ℳ) ≥ exp (− lim sup
𝑘→∞

Re(1 − ℎ𝑘(𝑒2𝜋𝑖∕𝑛(𝑘+1)))) exp(−𝑀𝜌),

where𝑀 = 2𝜋2∕(1 − 𝐶), with equality if 𝜌 = 0.

Remark. In particular, the value of the invariant is not zero here.
Remark. Hypothesis (a) is quite weak. Hypothesis (b),

𝜇2(ℎ𝑘−1) = 𝑂𝑂𝑂
(
𝑛(𝑘)2𝑛(𝑘 − 1)2

)
,

is reasonable.
Remark. If 𝜌 = 0, that is, 𝜇2(ℎ𝑘−1) = 𝑜𝑜𝑜

(
𝑛(𝑘)2𝑛(𝑘 + 1)2

)
(which is fairly mod-

est), then we obtain right off the bat that the 𝒮-value is not 1 (hence neither
zero nor one) if lim supReℎ𝑘(𝑒2𝜋𝑖∕𝑛(𝑘+1)) < 1; unfortunately, there is a marked
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tendency for a reasonable sequence (ℎ𝑘) of such functions to have the lim sup
equalling 1 when lim sup𝑛(𝑘) = ∞.

Proof. Expression (2) yields a value for the product, and thus for 𝑆𝑘,𝑙. For
the purposes of simplicity of the terms, set 𝑛(0) = 1. In the penultimate line
thereof, take the sum beginning with 𝑡 = 2; define

𝐴𝑘 ∶= Re
(
1 − ℎ𝑘−2(𝑒2𝜋𝑖∕𝑛(𝑘)𝑛(𝑘−1))

)
+⋯ + Re

(
1 − ℎ𝑙(𝑒2𝜋𝑖∕𝑛(𝑘)⋯𝑛(𝑙+1))

)

≤
𝑘−𝑙∑

𝑡=2
( 2𝜋
𝑛(𝑘)𝑛(𝑘 − 1)⋯𝑛(𝑘 − 𝑡 + 1)

)
2
𝜇2(ℎ𝑘−𝑡)∕2.

= 2𝜋2
𝑛(𝑘)2𝑛(𝑘 − 1)2

∑

𝑡=2

𝜇2(ℎ𝑘−𝑡)
(𝑛(𝑘 − 2)⋯𝑛(𝑘 − 𝑡 + 1))2

Now let 𝐶 = lim sup𝜇2(ℎ𝑘−1)∕(𝜇2(ℎ𝑘) ⋅ 𝑛(𝑘)2), and pick 𝐶′ such that 1 >
𝐶′ > 𝐶. There exists 𝑘0 such that 𝑗 ≥ 𝑘0 entails 𝜇2(ℎ𝑗−1) ≤ 𝐶′𝜇2(ℎ𝑗)𝑛(𝑗)2.
Iterating this when 𝑙 > 𝑘0, we obtain

𝐴𝑘 ≤
2𝜋2

𝑛(𝑘)2𝑛(𝑘 − 1)2
∑

𝑡=2
𝜇2(ℎ𝑘−1)(𝐶′)𝑡−2

≤ 2𝜋2 𝜇2(ℎ𝑘−1)
𝑛(𝑘)2𝑛(𝑘 − 1)2

1
1 − 𝐶′ .

Now 𝑆𝑘,𝑙 = exp(−Re(1 − ℎ𝑘(𝑒2𝜋𝑖∕𝑛(𝑘+1))) − 𝐴𝑘), hence for sufficiently large
𝑙,

𝑆𝑘,𝑙 ≥ exp(−Re(1 − ℎ𝑘(𝑒2𝜋𝑖∕𝑛(𝑘+1))) ⋅ 𝑒−𝑀𝜌

where𝑀 = 2𝜋2∕(1 − 𝐶′).
If 𝜌 = 0, we obtain 𝑆𝑙 ≥ exp

(
− lim supRe(1 − ℎ𝑘(𝑒2𝜋𝑖∕𝑛(𝑘+1)))

)
(for suffi-

ciently large 𝑙), and the reverse inequality is trivial. □

Now we can (almost) finish the ℎ𝑚 = ℎ case.

Corollary 2.8. Let 𝑛(𝑘)→∞ and ℎ ∈ 𝑙1(ℤ) have only nonnegative coefficients,
finite second moment, and ℎ(1) = 1. Set ℳ(𝑟) to be the system associated to(
𝑃𝑚 ∶= Exp(𝑟ℎ(𝑥𝑇(𝑚))

)
. Let 𝑤𝑘 = exp(2𝜋𝑖∕𝑛(𝑘 + 1)). Then

𝒮
(
(𝑤𝑘),ℳ(𝑟)

)
= 1.

Proof. Without loss of generality, we can assume 𝑟 = 1. Conditions (a) and (b)
are satisfied with 𝐶 = 𝜌 = 0, yielding

𝒮((𝑤𝑘),ℳ(𝑟)) = exp
(
− lim supRe(1 − ℎ(𝑒2𝜋𝑖∕𝑛(𝑘+1))

)
,

but this is clearly 1. □

Now we obtain estimates for Re(1 − ℎ𝑘−1(𝑒2𝜋𝑖∕𝑛(𝑘)); it is equivalent, and
slightly more convenient, to work with Re(1 − ℎ𝑘(𝑒2𝜋𝑖∕𝑛(𝑘+1))).
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So let ℎ = ∑ 𝑎𝑗𝑥𝑗 with 𝑎𝑗 ≥ 0 for all 𝑗, and ∑ 𝑎𝑗 = 1. Let 𝑛 be a positive
integer exceeding 1, and let 𝑅 > 1 be a real number. Let suppℎ denote the set
of 𝑗 such that 𝑎𝑗 ≠ 0.
Define

𝑆(ℎ, 𝑛, 𝑅) = suppℎ ∩
⎛
⎜
⎝

⋃

𝑡∈ℤ

(
𝑡𝑛 +

[𝑛
𝑅 , 𝑛 ⋅ (1 − 1∕𝑅)

])⎞
⎟
⎠
,

𝑈(ℎ, 𝑛, 𝑅) =
∑

𝑗∈𝑆(ℎ,𝑛,𝑟)
𝑎𝑗.

For example, if 𝜃 = 𝜋∕𝑛, then 𝑗 ∈ 𝑡𝑛 + [𝑛∕𝑅, 𝑛(1 − 1∕𝑅) for some integer
𝑡 entails that 𝑗𝜃 ∈ 𝑡𝜋 + [𝜋∕𝑅, 𝜋(1 − 1∕𝑅)], and thus sin2 𝑗𝜃 ≥ sin2 𝜋∕𝑅. On
an interval of the form [0, 𝐾], the proportion of coefficients not in the union is
about 2𝑛∕𝑅, so for large 𝑅, 𝑆(ℎ, 𝑛, 𝑅) is typically most of suppℎ. If the distribu-
tion of ℎ is not concentrated off 𝑆(ℎ, 𝑛, 𝑅), then 𝑈(ℎ, 𝑛, 𝑅) will be close to 1, or
at any rate, more than one-half. If we can arrange that this occurs uniformly in
𝑘 for ℎ𝑘 and 𝑛(𝑘+1) (playing the roles of ℎ, 𝑛 respectively) for some 𝑅, then we
obtain a lower bound for values of the invariants.

Lemma 2.9. Suppose there exists 𝑅 > 1 such that lim inf𝑘 𝑈(ℎ𝑘, 𝑛(𝑘+1), 𝑅) ∶=
𝜂 > 0. Then for all sufficiently large 𝑘, Re(1 − ℎ𝑘(𝑒2𝜋𝑖∕𝑛(𝑘+1))) ≥ 2𝜂 sin2(𝜋∕𝑅).

Proof. Write ℎ𝑘 =
∑

𝑗 𝑎𝑗,𝑘, so that

Re(1 − ℎ𝑘(𝑒𝑖𝜃) =
∑

𝑗
𝑎𝑗,𝑘(1 − cos 𝑗𝜃) = 2

∑

𝑗
𝑎𝑗,𝑘 sin

2(𝑗𝜃∕2).

Set 𝜃 = 2𝜋∕𝑛(𝑘+1). We see that for 𝑗 ∈ 𝑆(ℎ𝑘, 𝑛(𝑘+1), 𝑅), we have sin
2(𝑗𝜃∕2) ≥

sin2 𝜋∕𝑅. Hence for all sufficiently large 𝑘,

Re(1 − ℎ𝑘(𝑒2𝜋𝑖∕𝑛(𝑘+1))) ≥ 2𝜂 sin2(𝜋∕𝑅).

□

There follows immediately:

Corollary 2.10. Suppose that there exists 𝑅 > 1 such that for all sufficiently
large 𝑘, there exists 𝜂 > 0 such that 𝑈(ℎ𝑘, 𝑛(𝑘 + 1), 𝑅) ≥ 𝜂. Then 𝒮((𝑤𝑘),ℳ) ≤
𝑒−2𝜂 sin

2(𝜋∕𝑅).

In particular, this yields a fairly weak sufficient condition (on the sequence
(ℎ𝑚)) so that the value of the invariant is strictly less than 1.
We also have a converse to this.

Proposition 2.11. Suppose that for all 𝑅 > 1, lim inf𝑘 𝑈(ℎ𝑘, 𝑛(𝑘 + 1), 𝑅) = 0.
Then 𝒮((𝑤𝑘),ℳ) = 1.
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Proof. Let ℎ =∑ 𝑎𝑗𝑥𝑗, and 𝜃 a small positive real number. For 𝑗 ∉ 𝑆(ℎ, 𝑛, 𝑅),
| sin 𝑗𝜃| < 𝜋∕𝑅. Thus

∑

𝑗∉𝑆(ℎ,𝑛,𝑅)
𝑎𝑗(1 − cos 2𝑗𝜃) = 2

∑

𝑗∉𝑆(ℎ,𝑛,𝑅)
𝑎𝑗 sin

2(𝑗𝜃);

<
(𝜋
𝑅
)2
.

Therefore

Re(1 − ℎ(𝑒2𝑖𝜃) = Re
∑

𝑎𝑗(1 − cos 2𝑗𝜃) < 𝑈(ℎ, 𝑛, 𝑅) +
(𝜋
𝑅
)2
,

and so sufficient for the left side to be small is that both summands be small.
Suppose we have 𝑈(ℎ𝑘, 𝑛(𝑘 + 1), 𝑅) < 𝜖 for infinitely many 𝑘, and let 𝜃 =

𝜋∕𝑛(𝑘 + 1). Since 𝜇2(ℎ) = 𝑜𝑜𝑜
(
𝑛(𝑘 + 1)2

)
, Re(1 − ℎ𝑘(𝑒2𝜋𝑖∕𝑛(𝑘+1)), for infinitely

many 𝑘, Re(1 − ℎ𝑘(𝑒2𝜋∕𝑛(𝑘+1))) < 𝜖 + (𝜋∕𝑅)2. Allowing 𝑅 → ∞ and 𝜖 → 0, we
deduce 𝑆𝑙 → 1 along infinitely many 𝑙, and thus 𝒮((𝑤𝑘),ℳ) = 1. □

Theorem 2.12. Letℳ(𝑟) be given by 𝑃𝑚,𝑟 = Exp
(
𝑟ℎ𝑚(𝑥𝑇(𝑚))

)
, subject to the

following conditions.
(a) 𝜇2(ℎ𝑘) <∞ for all but finitely many 𝑘;
(b) lim sup 𝜇2(ℎ𝑘−1)

𝜇2(ℎ𝑘))𝑛(𝑘)2
< 1;

(c) 𝜇2(ℎ𝑘−1) = 𝑂𝑂𝑂
(
𝑛(𝑘)2𝑛(𝑘 − 1)2

)
.

(d) There exists 𝑅 > 1 such that lim inf𝑘 𝑈(ℎ𝑘, 𝑛(𝑘 + 1), 𝑅) > 0.
Thenℳ(𝑟) ≅ℳ(𝑟′) implies 𝑟 = 𝑟′.

Proof. Letℳ denoteℳ(1) and set
𝑤𝑘 = exp(2𝜋𝑖∕𝑇(𝑘).

By Lemma 2.7, 𝒮((𝑤𝑘),ℳ) > 0, and by Corollary 2.10, 𝒮((𝑤𝑘),ℳ) < 1. Corol-
lary 2.2 allows us to conclude. □

Hypothesis (a) obviously holds if the ℎ𝑚 are Laurent polynomials; (b) is a
very weak condition; and (c) is somewhat restrictive (and implies (a)), but it is
difficult to see how it could be weakened. Hypothesis (d) is not very strong, but
is superficially complicated.

3. A different type of one-parameter family
In the cases discussed earlier, the mapping (for appropriate choices of (𝑤𝑘))

𝑟 ↦ 𝒮((𝑤𝑘),ℳ(𝑟)) is multiplicative, that is,
𝒮((𝑤𝑘),ℳ(𝑟)⊗ℳ(𝑟′))) = 𝒮((𝑤𝑘),ℳ(𝑟)) ⋅ 𝒮((𝑤𝑘),ℳ(𝑟′)).

There is another, fairly natural type of one-parameter family, for which similar
properties do not apply, but nonetheless, we can obtain similar isomorphism
results.
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Suppose ℎ𝑚 belong to 𝑙1(ℤ) and have only nonnegative coefficients. For each
positive real 𝑟, define 𝑃𝑚,𝑟(𝑥) = ℎ𝑚(𝑟𝑥𝑇(𝑚))∕ℎ𝑚(𝑟). The system now need not
be divisible (as it was in the earlier case, owing to the definition of Exp).
To distinguish this construction from the earlier ones, we use the notation

𝒩 (or𝒩(𝑟)) for the system arising from (ℎ𝑚(𝑟𝑥𝑇(𝑚))∕ℎ𝑚(𝑟)).
A more natural definition might seem to be that arising from

𝑃′𝑚,𝑟 = ℎ𝑚((𝑟𝑥)𝑇(𝑚))∕ℎ𝑚(𝑟),

but this often results in atoms, for example, if ℎ𝑚 = (1 + 𝑥)∕2 and 𝑟 ≠ 1, for
the resulting sequence (𝑃′𝑚,𝑟), the products actually converge, resulting in an
atomic dynamical system.

Lemma 3.1. Let ℎ ∈ 𝑙1(ℤ) have only nonnegative coefficients, finite second mo-
ment, and ℎ(1) = 1. Let 𝑛 ≥ 2 be a positive integer, and 𝑟 a positive real number.
Let 𝒩 be of the form (𝑃𝑚), where 𝑃𝑚 = ℎ(𝑟𝑥𝑛𝑚)∕ℎ(𝑟). Set 𝑤𝑘 = exp 2𝜋𝑖∕𝑛𝑘.
Then for all 𝑙, 𝒮((𝑤𝑘),𝒩) = lim𝑘→∞ 𝑆𝑘,𝑙, and this equals

∞∏

𝑡=1

||||ℎ(𝑟 exp(2𝜋𝑖∕𝑛
𝑡))||||

ℎ(𝑟)
.

Moreover, this is nonzero unless for some 𝑡, ℎ(𝑟 exp(2𝜋𝑖∕𝑛𝑡)) = 0.

Proof. Let ℎ𝑟(𝑥) = ℎ(𝑟𝑥)∕ℎ(𝑟). First, from Corollary 2.5(b), we have that
|ℎ(𝑟𝑒𝑖𝜃)|2 ≥ 1 − 𝑉(ℎ𝑟)𝜃2. With 𝜃 equalling successively 2𝜋∕𝑛𝑚, we see that
1 ≥ |ℎ(𝑟𝑒2𝜋𝑖∕𝑛(𝑘+1)⋯𝑛(𝑙+1))|2∕ℎ(𝑟)2 ≥ 1 −𝑉(ℎ𝑟)𝜋2∕(𝑛(𝑘 + 1)⋯𝑛(𝑙 + 1))2. Thus∏∞

𝑡=1
(
|ℎ(𝑟 exp(2𝜋𝑖∕𝑛𝑡))|∕ℎ(𝑟)

)
converges in the sense of infinite products, and

the only way the limit can be zero is if one of the factors is.
We have 𝑆𝑘,𝑙 =

∏𝑘−𝑙
𝑡=1

(
|ℎ(𝑟𝑒2𝜋𝑖∕𝑛𝑡 )|∕ℎ(𝑟)

)
; fixing 𝑙 and taking the infimum

over 𝑘, noting that 𝑘 − 𝑙 →∞, we simply obtain

𝑆𝑙 =
∞∏

𝑡=1

(
|ℎ(𝑟 exp(2𝜋𝑖∕𝑛𝑡))|∕ℎ(𝑟)

)
.

As this is independent of 𝑙, we obtain 𝒮((𝑤𝑘),𝒩) = 𝑆𝑙. □

It is not true that𝒩(𝑟+𝑟′) ≅𝒩(𝑟)⊗𝒩(𝑟′) (except under degenerate circum-
stances), so that multiplicativity is not as interesting as in the previous class of
examples.
Asking the same question, can the class of evaluation invariants distinguish

members of {𝒩(𝑟)}, the answer is somewhat different—it requires the aid of
another invariant. The following simple-looking example illustrates what can
happen.

Example 3.2. A one-parameter family 𝒩(𝑟) such that 𝒮((𝑤𝑘), ⋅) distinguishes
𝒩(𝑟) from𝒩(𝑟′) if 𝑟′ ≠ 𝑟, 𝑟−1. An additional invariant distinguishes𝒩(𝑟) from
𝒩(𝑟−1) if 𝑟 ≠ 1.
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Proof. Set ℎ𝑚 = 1 + 𝑥, so that 𝑃𝑚,𝑟 = (1 + 𝑟𝑥𝑇(𝑚))∕(1 + 𝑟). If 𝑛(𝑘) = 2 for
all 𝑘, when 𝑟 = 1, the corresponding system is the dyadic odometer—but for
all other values of 𝑟, it isn’t an odometer (the former statement is elementary,
the latter is not difficult, and will follow from the computation of the invariant
anyway).
Taking our usual 𝑤𝑘 = exp(2𝜋𝑖∕𝑇(𝑘)), we compute enough of the invari-

ant to obtain a slightly limited classification result, which will later be supple-
mented by another invariant.
An elementary computation reveals that for 𝑘 > 𝑚,

||||𝑃𝑚,𝑟(𝑤𝑘)
||||
2 = 1 − 4𝑟

(1 + 𝑟)2
sin2 𝜋

𝑇(𝑘)∕𝑇(𝑚)
.

Thus

||||||||||

𝑘+𝑙−1∏

𝑡=0
𝑃𝑙+𝑡,𝑟(𝑤𝑘)

||||||||||

2

=
𝑘+𝑙−1∏

𝑡=0
(1 − 4𝑟

(1 + 𝑟)2
sin2 𝜋

𝑇(𝑘)∕𝑇(𝑙 + 𝑡))
.

The smallest term in this product is 1 − sin2(𝜋∕𝑛(𝑙 + 1))4𝑟∕(1 + 𝑟)2, and it is
easy to check that the product converges (as we let 𝑘 →∞) in the usual sense of
infinite products—however, some of the initial terms might turn out to be zero
(this occurs with the odometer example), so that the product could be zero. The
product is invariant under 𝑟 ↦ 𝑟−1 and here,𝒩(𝑟−1) corresponds to the inverse
transformation to𝒩(𝑟). Thus 𝒮((𝑤𝑘),𝒩(𝑟)) = 𝒮((𝑤𝑘),𝒩(𝑟−1)). In particular,
the invariant does not distinguish some pairs of members of the family. We will
deal with this shortly.
We will show that 𝑟 ↦ 𝒮((𝑤𝑘),𝒩(𝑟)) is monotone decreasing on (0, 1], and

strictly decreasing under mild assumptions. The latter entails members of this
part of the family aremutually nonisomorphic. Thenwewill show that if 𝑟 ≠ 1,
𝒩(𝑟) ̸≅𝒩(𝑟−1) by an easy application of the invariants introduced in [GH].
A minor problem arises when a few factors in the product,

𝛼(𝑘, 𝑟) ∶=
∞∏

𝑡=1
(1 − 4𝑟

(1 + 𝑟)2
sin2 ( 𝜋

𝑛(𝑘 + 1)𝑛(𝑘)⋯𝑛(𝑙 − +2 − 𝑡)
)) ,

might be zero. First, we observe that each term is nonnegative (since 4𝑟∕(1 +
𝑟)2 ≤ 1). Thus the value zero can only occur if 𝑟 = 1 and 𝑛(𝑘 + 1) = 2. Since
𝑛(𝑘) = 2 for all 𝑘 and 𝑟 = 1 entails the system corresponds to the dyadic
odometer, we can set this case aside. In particular, 𝑟 ≠ 1 entails each term
is positive. Moreover, since 𝑟 ↦ 4𝑟∕(1 + 𝑟)2 is strictly increasing, we see that
for 𝑟 < 𝑟′ < 1, we have 𝑆𝑘,𝑙(𝑟) > 𝑆𝑘.𝑙(𝑟′). A consequence is that 𝒮((𝑤𝑘),𝒩(𝑟)) ≥
𝒮((𝑤𝑘),𝒩(𝑟′)), but we want strict inequality.
This does not always hold (as we will see, when we discuss the condition

𝑛(𝑘) → ∞). However, if 𝑛(𝑘) = 𝑛 (for all but finitely many 𝑘), then we easily
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see that

𝒮((𝑤𝑘),𝒩(𝑟)) =
∞∏

𝑗=1
(1 − 4𝑟

(1 + 𝑟)2
sin2

(
𝜋∕𝑛𝑗

)
) .

The infinite product converges to a nonzero positive number, and it is strictly
increasing as 𝑟 → 1 from below, as the function 𝑟 ↦ 4𝑟∕(1 + 𝑟)2 is strictly
increasing on (0, 1] with maximum at 𝑟 = 1.
Hence if 𝑛(𝑘) = 𝑛, and for 𝑟, 𝑟′ ∈ ℝ++ with 𝑟, 𝑟−1 ≠ 𝑟′, then𝒩(𝑟) ̸≅𝒩(𝑟′).
Now we show that𝒩(𝑟) ̸≅𝒩(𝑟−1) if 𝑟 ≠ 1. We use the other class of invari-

ants, 𝑠((𝑝𝑘), (𝑃𝑛)), defined (in [GH]) as follows. The 𝑝𝑘 are elements of 𝑙1(ℤ) of
norm one, and we define for each 𝑘 ≥ 𝑙, 𝑠𝑙,𝑘 = lim𝑑→∞ ‖𝑝𝑘𝑃𝑙 ⋅𝑃𝑙+1⋯𝑃𝑙+𝑑‖ (the
limit exists since the sequence is monotone decreasing; all the 𝑃𝑘 have norm
1). Then define 𝑠𝑙 = inf𝑘 𝑠𝑙.𝑘, and as with the evaluation invariant, note that
the sequence (𝑠𝑙) is increasing, and we define 𝑠((𝑝𝑘), (𝑃𝑛)) = lim𝑙 𝑠𝑙 (the latter
limit exists, as 𝑠𝑙 is increasing). This is the invariant associated to the sequence
(𝑝𝑘), and to distinguish this type from the other one, we refer to the former as
mass-loss invariants.
We sometimes abbreviate 𝑃𝑘,𝑟 = (1+ 𝑟𝑥𝑇(𝑘))∕(1+ 𝑟) to 𝑃𝑘, if 𝑟 is understood.

□

Example 3.3. Let 𝒩(𝑟) be given by (𝑃𝑘,𝑟). If either of the following hold, then
𝒩(𝑟) ̸≅𝒩(𝑟−1) when 𝑟 ≠ 1.

(a) 𝑛(𝑘) > 2 for all but finitely many 𝑘
(b) 𝑛(𝑘) = 2 for all but finitely many 𝑘.

Remark. The mixed case, that {𝑘 ∈ ℕ ∣ 𝑛(𝑘) = 2} is both infinite and co-
infinite in ℕ, is difficult to deal with.
Remark. In this example, 𝒩(𝑟−1) corresponds the AT action that is the in-

verse of the original one (corresponding to𝒩(𝑟)). So we obtain a continuum of
AT systems that are not conjugate to their inverse.

Proof. Ifℎ is in 𝑙1(ℤ), we denote byℎop the element of 𝑙1 given by 𝑥 ↦ 𝑥−1, that
is, all exponents are replaced by their negatives. When ℎ is a polynomial (that
is, has support in ℤ+ and this is finite), we can replace ℎop by 𝑥𝑑ℎop, where
𝑑 is the degree of ℎ, and so continue to work with polynomials (rather than
Laurent polynomials). Since ℎ ↦ ℎop is an isometry of 𝑙1(ℤ) preserving all the
coefficients (just reflecting them), we see immediately that

𝑠((𝑝𝑘)), (𝑃𝑚op)) = 𝑠((𝑝𝑘op)), (𝑃𝑚)).

Hence to show that 𝑠((𝑝𝑘)), (𝑃𝑚op)) ≠ 𝑠((𝑝𝑘)), (𝑃𝑚)) for suitable (𝑝𝑘), it is
sufficient to show that 𝑠((𝑝𝑘)), (𝑃𝑚)) ≠ 𝑠((𝑝𝑘op)), (𝑃𝑚)).
(a) 𝑛(𝑘) ≥ 3 for all but finitely many 𝑘. Set 𝑝𝑘 = (1 − 𝑟𝑥𝑇(𝑘))∕(1 + 𝑟). We

notice that 𝑝𝑘 ⋅𝑃𝑘 = (1− 𝑟2𝑥2𝑇(𝑘))∕(1+ 𝑟)2, which has norm (1− 𝑟2)∕(1+ 𝑟)2 =
(1 − 𝑟)∕(1 + 𝑟). Assuming 𝑘 > 𝑙, multiply this by 𝑃𝑙⋯𝑃𝑘−1. This has total
degree 𝑇(𝑙)+𝑇(𝑙+1)+…𝑇(𝑘−1) < 𝑇(𝑘), so that the largest difference between
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exponents is less that 𝑇(𝑘). It follows that there is no further mass cancellation
in the product 𝑃𝑙 ⋅ 𝑃𝑘−1(𝑝𝑘 ⋅ 𝑃𝑘), that is, ‖𝑝𝑘𝑃𝑙⋯𝑃𝑘‖ = (1 − 𝑟)∕(1 + 𝑟).
Moreover, the product polynomial 𝑝𝑘𝑃𝑙⋯𝑃𝑘 has degree 𝑇(𝑙) + 𝑇(𝑙 + 1) +

⋯+𝑇(𝑘−1)+ 2𝑇(𝑘) < 𝑇(𝑘+1) (this uses 𝑛(𝑘) ≥ 3). Any product of the form
𝑃𝑘+1 ⋅ ⋯ ⋅ 𝑃𝑙+𝑑 (with 𝑑 > 𝑘 − 𝑙) is supported on 𝑇(𝑘 + 1)ℤ, so that

𝑠𝑘.𝑙 = lim
𝑑→∞

‖𝑝𝑘𝑃𝑙 ⋅ 𝑃𝑙+1⋯𝑃𝑙+𝑑‖

= lim
𝑑→∞

‖(𝑝𝑘𝑃𝑙 ⋅ 𝑃𝑙+1⋯𝑃𝑘)(𝑃𝑘+1⋯𝑃𝑙+𝑑)‖

= lim
𝑑→∞

‖(𝑝𝑘𝑃𝑙 ⋅ 𝑃𝑙+1⋯𝑃𝑘‖

= 1 − 𝑟
1 + 𝑟

Thus 𝑠((𝑝𝑘), (𝑃𝑚)) = (1 − 𝑟)∕(1 + 𝑟).
We are therefore reduced to showing 𝑠((𝑞𝑘), (𝑃𝑚)) ≠ 𝑠((𝑝𝑘), (𝑃𝑚)where 𝑞𝑘 =

(𝑥𝑇(𝑘) − 𝑟)∕(1 + 𝑟). Now 𝑞𝑘𝑃𝑘 = (𝑥2𝑇(𝑘) + (1 − 𝑟)𝑥𝑇(𝑘) − 𝑟)∕(1 + 𝑟)2. This has
norm 2(1 − 𝑟)∕(1 + 𝑟)2. Now let 𝑄 be any polynomial with only nonnegative
coefficients. In order for ‖𝑞𝑘𝑃𝑘𝑄‖ < ‖𝑄‖ ⋅ ‖𝑞𝑘𝑃𝑘‖, there must exist two points
in the support of 𝑄 whose difference is either 𝑇(𝑘) or 2𝑇(𝑘). But no such exists
in a polynomial 𝑄 = 𝑃𝑙⋯𝑃𝑘+1 ⋅ 𝑃𝑘+1 ⋅ 𝑃𝑙+𝑑. Hence, as in the previous case,
𝑠((𝑞𝑘), (𝑃𝑚)) = 2(1 − 𝑟)∕(1 + 𝑟)2. This is not equal to (1 − 𝑟)∕(1 + 𝑟), unless
𝑟 = 1.
(b) 𝑛(𝑘) = 2 for all but finitely many 𝑘. Special techniques are needed to deal

with non-noninteractivity. We require some preliminary results.
For a nonnegative integer 𝑗, let 𝛿(𝑗) denote the number of 1s in its binary

expansion, and if 𝑗 ≠ 0, let 𝑒(𝑗) be the maximum power of 2 that divides 𝑗.
Thus 𝑒(𝑗) = 0 iff 𝑗 is odd, 𝑒(𝑗) = 1 iff 𝑗 ≡ 2 (mod 4), and so on.
Let 𝑟 be a positive real number, and form the product of polynomials in the

variable 𝑋,

𝑄(𝑋) ∶=
𝑑−1∏

𝑖=0
(1 + 𝑟𝑋2𝑖 ) =

2𝑑−1∑

𝑗=0
𝑟𝛿(𝑗)𝑋𝑗.

The last line follows easily from uniqueness of binary expansions. Evaluating
at 𝑋 = 1, we obtain ∑ 𝑟𝛿(𝑗) = (1 + 𝑟)𝑑. Let 𝑎 be a positive real number, and
consider the product,

(1 − 𝑎𝑋) ⋅ 𝑄 = 1 +
2𝑑−1∑

𝑗=1

(
𝑟𝛿(𝑗) − 𝑎𝑟𝛿(𝑗−1)

)
𝑋𝑗 − 𝑎𝑟𝑑𝑋2𝑑 .

In order the compute the 𝑙1-norm of this, we observe that for 1 ≤ 𝑗 < 2𝑑, we
have 𝛿(𝑗 − 1) = 𝛿(𝑗) − 1 + 𝑒(𝑗). □

Lemma 3.4. For 𝑢 = 0, 1,… , 𝑑, the following holds:
∑

{1≤𝑗≤2𝑑−1∣𝑒(𝑗)=𝑢}
𝑟𝛿(𝑗) = 𝑟(1 + 𝑟)𝑑−1−𝑢.
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Remark. Of course, this is consistentwith the earlier expansion, since 𝑟∑𝑑−1
𝑢=0(1+

𝑟)𝑢 = (1 + 𝑟)𝑑 − 1.
Proof. Fix 𝑢; then 𝑒(𝑗) = 𝑢means 𝑗 ≡ 2𝑢 (mod 2𝑢+1) (even when 𝑢 = 0). For
𝑢 = 0, we have 𝛿(𝑗) = 𝛿(𝑗 − 1) + 1, so the sum on the left becomes 𝑟∑ 𝑟𝛿(𝑗)
where now 𝑗 varies over all the even integers less than or equal to 2𝑑 − 1. But
the latter sum is the same as the sum over all terms up to 2𝑑−1, hence is just
(1 + 𝑟)𝑑−1.
For 𝑢 ≥ 1, all 𝑗 are divisible by 2𝑢, and the quotient is odd. Thus applying the

result of the previous paragraph (to odd integers less than 2𝑑−1−𝑢), we obtain
the result. □

Resumption of the proof for Example 3.3(b). We have

(1 − 𝑎𝑋) ⋅ 𝑄 = 1 +
2𝑑−1∑

𝑗=1

(
𝑟𝛿(𝑗) − 𝑎𝑟𝛿(𝑗−1)

)
𝑋𝑗 − 𝑎𝑟𝑑𝑋2𝑑

= 1 − 𝑎𝑟𝑑𝑋2𝑑 +
2𝑑−1∑

𝑗=1
𝑟𝛿(𝑗)𝑋𝑗(1 − 𝑎𝑟𝑒(𝑗)−1)

= 1 − 𝑎𝑟𝑑𝑋2𝑑 +
𝑑−1∑

𝑢=0

∑

{1≤𝑗≥2𝑑−1∣𝑒(𝑗)=𝑢}
𝑋𝑗𝑟𝛿(𝑗)(1 − 𝑎𝑟𝑒(𝑗)−1);

so

‖(1 − 𝑎𝑋) ⋅ 𝑄‖ = 1 + 𝑎𝑟𝑑 +
𝑑−1∑

𝑢=0

∑

{1≤𝑗≥2𝑑−1∣𝑒(𝑗)=𝑢}
𝑟𝛿(𝑗)|1 − 𝑎𝑟𝑒(𝑗)−1|

= 1 + 𝑎𝑟𝑑 +
𝑑−1∑

𝑢=0
𝑟(1 + 𝑟)𝑑−𝑢−1|1 − 𝑎𝑟𝑒(𝑗)−1|.

In the special case that 𝑟 < 1 and 𝑎 = 𝑟, then 1 − 𝑎𝑟𝑢−1 = 1 − 𝑟𝑢; this is
nonnegative, so that

‖(1 − 𝑟𝑋) ⋅ 𝑄‖ = 1 + 𝑟
𝑑−1∑

𝑢=0
(1 + 𝑟)𝑑−𝑢−1(1 − 𝑟𝑢) + 𝑟𝑑+1

= 1 + 𝑟
𝑑−1∑

𝑢=0
(1 + 𝑟)𝑑−𝑢−1 − 𝑟

𝑑−1∑

𝑢=0
(1 + 𝑟)𝑑−𝑢−1𝑟𝑢 + 𝑟𝑑+1

= (1 + 𝑟)𝑑 − 𝑟(1 + 𝑟)𝑑−1
𝑑−1∑

𝑢=0
( 𝑟
1 + 𝑟)

𝑢
+ 𝑟𝑑+1

= (1 + 𝑟)𝑑 − 𝑟(1 + 𝑟)𝑑−1
1 −

( 𝑟
𝑟+1

)𝑑

1 − 𝑟
𝑟+1

+ 𝑟𝑑+1
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= (1 + 𝑟)𝑑(1 − 𝑟) (1 − ( 𝑟
𝑟 + 1)

𝑑
) + 𝑟𝑑+1.

Normalizing,

‖‖‖‖‖‖‖
1 − 𝑟𝑋
1 + 𝑟 ⋅ 𝑄

(1 + 𝑟)𝑑
‖‖‖‖‖‖‖
= 1 − 𝑟
1 + 𝑟 +𝑂𝑂𝑂 ((

𝑟
1 + 𝑟)

𝑑
)

Now let 𝑎 = 1∕𝑟, so that 1−𝑎𝑟𝑢−1 = 1−𝑟𝑢−2. This is negative for for 𝑢 = 0, 1,
zero for 𝑢 = 2, and positive for 𝑢 ≥ 3. In that case, we obtain
‖‖‖‖(1 − 𝑟−1𝑋) ⋅ 𝑄‖‖‖‖ = 1 + 𝑟(1 + 𝑟)𝑑−1(𝑟−2 − 1) + 𝑟(1 + 𝑟)𝑑−2(𝑟−1 − 1)

+ 𝑟
∑

𝑢≥3
(1 + 𝑟)𝑑−𝑢−1(1 − 𝑟𝑢−2) + 𝑟𝑑−1

= 1 + 𝑟𝑑−1 + 𝑟(1 + 𝑟)𝑑⋅

×
⎛
⎜
⎝
𝑟−2(1 − 𝑟) + 𝑟−1 1 − 𝑟

(1 + 𝑟)2
+ 1
1 + 𝑟

∑

𝑢≥3

1
(1 + 𝑟)𝑢

− 1
(1 + 𝑟)𝑟2

∑

𝑢≥3
( 𝑟
1 + 𝑟)

𝑢⎞
⎟
⎠

= 1 + 𝑟𝑑−1 + 𝑟(1 + 𝑟)𝑑⋅

× (𝑟−2(1 − 𝑟) + 𝑟−1 1 − 𝑟
(1 + 𝑟)2

+ 1
(1 + 𝑟)4

1 −
( 1
1+𝑟

)𝑑−3

1 − 1
1+𝑟

− 𝑟
(1 + 𝑟)3

(1 − ( 𝑟
1 + 𝑟 )

𝑑−3))
⎞
⎟
⎟
⎠

.

Normalizing,
‖‖‖‖‖‖‖‖
1 − 𝑟−1𝑋
1 + 𝑟−1 ⋅ 𝑄

(1 + 𝑟)𝑑
‖‖‖‖‖‖‖‖
= 𝑟2
1 + 𝑟 (𝑟

−2(1 − 𝑟) + 𝑟−1 1 − 𝑟
(1 + 𝑟)2

+ 1
𝑟(1 + 𝑟)3

− 𝑟
(1 + 𝑟)4

) +𝑂𝑂𝑂 (( 𝑟
1 + 𝑟)

𝑑
)

= 1 − 𝑟
1 + 𝑟 +

𝑟(1 − 𝑟)
(1 + 𝑟)3

+ 𝑟
(1 + 𝑟)4

− 𝑟3
(1 + 𝑟)5

+𝑂𝑂𝑂 (( 𝑟
1 + 𝑟)

𝑑
)

= 1 − 𝑟
1 + 𝑟 (1 +

1
1 + 𝑟 −

1
(1 + 𝑟)3

) +𝑂𝑂𝑂 (( 𝑟
1 + 𝑟)

𝑑
)



1186 DAVID HANDELMAN

Now we note that if 𝑃 is a polynomial with degree𝑚, and 𝑄 is a polynomial
of the form 𝑞(𝑥𝑀)where𝑀 > 𝑚, then ‖𝑃𝑄‖ = ‖𝑃‖ ⋅‖𝑄‖ (no mass cancellation
can take place; in fact, if 𝑥𝑎 appears 𝑃𝑄 with nonzero coefficient, then there
exists a unique pair (𝑐, 𝑑) such that 𝑎 = 𝑐 + 𝑐′, 𝑐 ∈ Log𝑃, and 𝑐′ ∈ Log𝑄.
We apply this with 𝑃 = ∏

𝑗<𝑘 𝑃𝑗 and 𝑄 = 𝑝∏𝑘≤𝑗≤𝑑, where 𝑝 = (1 +
𝑟𝑥2𝑘 )∕(1+𝑟) or (1+𝑟−1𝑥2𝑘 )∕(1+𝑟)−1. Therefore 𝑠𝑘,𝑙 = (1−𝑟)∕(1+𝑟) in the for-
mer case, and thus §((𝑝𝑘),𝒩(𝑟)) = (1 − 𝑟)∕(1 + 𝑟), whereas §((𝑝𝑘op),𝒩(𝑟))) =
((1 − 𝑟)∕(1 + 𝑟) ⋅ (1 + 1∕(1 + 𝑟) − 1∕(1 + 𝑟)3) ≠ §((𝑝𝑘),𝒩(𝑟)). □

This, together with the earlier results, yields 𝒩(𝑟) ≅ 𝒩(𝑟′) implies 𝑟 = 𝑟′
provided that 𝑛(𝑘) = 𝑛 for all 𝑘. The case that 𝑛(𝑘) = 2 yields a continuum (𝑟 >
1) of mutually non-isomorphic AT systems not isomorphic to their inverses.
If 𝑛(𝑘) → ∞ (the condition that merely sup𝑛(𝑘) = ∞ appears to be much

more complicated, andwedonot dealwith it), we run into a difficulty (although
the mass-cancellation invariants can probably be used).

Proposition 3.5. If 𝑛(𝑘)→∞, then 𝒮((𝑤𝑘),𝒩(𝑟)) = 1 for all 𝑟 > 0.

Proof. The condition 𝑛(𝑘)→∞ implies that for each 𝑗, the set

{𝑙 ∈ ℕ ∣ 𝑛(𝑙) = 𝑗}

is finite. It follows immediately that there exist infinitely many 𝑙 with the prop-
erty that for all 𝑘′ > 𝑙, we have 𝑛(𝑙 + 1) < 𝑛(𝑘′ + 1).
It suffices, from the definition of 𝑆𝑙 to show that for every 𝑘′ > 𝑙 (where

𝑛(𝑙 + 1) < 𝑛(𝑘′ + 1) for all 𝑘′ > 𝑙), that 𝑆𝑙+1,𝑙 < 𝑆𝑘′,𝑙; sufficient for this is,

1−
4𝑟 sin2 𝜋∕(𝑛(𝑙 + 1))

(1 + 𝑟)2
≤

𝑘′−𝑙∏

𝑡=0
(1 − 4𝑟

(1 + 𝑟)2
sin2 𝜋

𝑛(𝑘′ + 1)𝑛(𝑘′)⋯𝑛(𝑙 + 1 + 𝑡)
) .

To this end, wemay assume that 𝑙 is so large that for all 𝑘 > 𝑙, we have 𝑛(𝑘+1) ≥
10, and we observe that the left side is bounded below by

𝑘′+𝑙−1∏

𝑡=0
(1 − 4𝑟

(1 + 𝑟)2
( 𝜋
𝑛(𝑘′ + 1)𝑛(𝑘′)⋯𝑛(𝑙 + 1 + 𝑡)

)
2
)

≥ (1 − 4𝑟𝜋2
𝑛(𝑘′ + 1)2(1 + 𝑟)2)

⎛
⎜
⎝
1 +

𝑘′−𝑙−1∑

𝑡=0

1
(𝑛(𝑘′) ⋅ 𝑛(𝑘′ − 𝑡))2

⎞
⎟
⎠

≥ (1 − 4𝑟𝜋2
𝑛(𝑘′ + 1)2(1 + 𝑟)2)

(1 + 1
(𝑛(𝑙 + 1) + 1)2 − 1

) .

(The last line comes from 𝑛(𝑘′ + 1) > 𝑛(𝑙 + 1).)
Finally 1− 4𝑟 sin2(𝜋∕𝑛(𝑙+1))∕(1 + 𝑟)2 ≤ 1− 4𝑟𝜋2(1 + 𝜂)∕𝑛(𝑘′ +1)2(1 + 𝑟)2

is equivalent to sin2(𝜋∕𝑛(𝑙+1)) ≥ (1+ 𝜂)𝜋2∕𝑛(𝑘′+1)2. The latter is at least as
large as 𝜋2∕((𝑛(𝑙 + 1) + 1)2 − 1). For 𝑛(𝑙 + 1) ≥ 4, we have sin2 𝜋∕𝑛(𝑙 + 1) =
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(1 − cos 2𝜋∕𝑛(𝑙 + 1))∕2 ≥ 𝜋2∕𝑛(𝑙 + 1)2 − 1𝜋4∕3𝑛(𝑙 + 1)4. So sufficient is that

𝜋2
𝑛(𝑙 + 1)2

− 𝜋4
3𝑛(𝑙 + 1)4

≥ 𝜋2
(𝑛(𝑙 + 1) + 1)2 − 1

.

But this is a straightforward consequence of 6𝑛(𝑙 + 1) ≥ 10 > 𝜋2.
This finishes Examples 3.2 and 3.3. □

Difficulties arise when we try to extend this to more general ℎ. Suppose that
ℎ is a polynomial of degree 𝑑 > 1, and as usual, 𝑛(𝑘) = 𝑛 (constant). The
behaviour of the product 𝑆𝑙 =

∏∞
𝑡=1 |ℎ(𝑟 exp(2𝜋𝑖∕𝑛

𝑡))∕ℎ(𝑟)| is more compli-
cated, when viewed as a function of 𝑟. Instead of having just one minimum
value (as 𝑟 varies), it can have several critical points (up to 𝑑 of them). This can
be somewhat compensated for.
To give an example, suppose that ℎ = (1 + 𝑥 + 2𝑥2)∕4 and 𝑛 = 3 (so we still

have a non-interactive situation). Instead of taking 𝑤𝑘 = exp(2𝜋𝑖∕3𝑘), we may
make another choice, 𝑤𝑘,2 = exp(2𝜋𝑖∕2 ⋅ 3𝑘). This yields another invariant,
and the value will be not zero.
For a general polynomial ℎ and 𝑛(𝑘) = 𝑛 (easier to deal with if 𝑛 > degℎ),

for 𝑗 = 1, 2,…𝑑, we can use each of the sequences (𝑤𝑘,𝑗 = exp(2𝜋𝑖∕𝑗 ⋅ 𝑛𝑘))𝑘.
This yields 𝑑 invariants, and a corresponding map ℝ++ → [0, 1]𝑑, given by
𝑟 ↦ (𝒮((𝑤𝑘,𝑗),𝒩(𝑟)))𝑑𝑗=1. It is plausible that when 𝑑 > 1 and ℎ is suitably
nondegenerate, this is one to one—which would yield the non-isomorphism
result.
However, we develop a different approach.

Proposition 3.6. Let 𝑎 be a real number, and let ℎ = 𝑥2 + 𝑎𝑥 + 1 be a real
irreducible polynomial. Let 0 < 𝜃 ≤ 𝜋∕4 be a positive real number such that
ℎ(𝑟𝑒𝑖𝜃) ≠ 0 for all real 𝑟 > 0. Set

𝐺(𝑟) ≡ 𝐺(𝑟, 𝜃) = |ℎ(𝑟𝑒𝑖𝜃|2
ℎ(𝑟)2

.

If either 𝑎 ≥ 0 or −2 < 𝑎 < 1 −
√
3, then 𝐺 has a unique minimum at 𝑟0 = 1, 𝐺

is decreasing on (0, 1), increasing on (1,∞), and lim𝑡↓0 𝐺(𝑡) = lim𝑡→∞ 𝐺(𝑡) = 1.

Proof. Irreducibility and the nonzero hypothesis ensures that ℎ(𝑟) > 0 for all
positive real 𝑟. Irreducibility is equivalent to𝑎2 < 4, that is, |𝑎| < 2. Elementary
calculus yields

𝑑𝐺
𝑑𝑟 =

2(1 − cos 𝜃)
(
𝑎(𝑟4 − 1) + (𝑟3 − 𝑟)(2 − 𝑎2)

)

ℎ(𝑟)3

= 2(1 − cos 𝜃)(𝑟2 − 1)(𝑎(𝑟
2 + 1) + 𝑟(2 − 𝑎2))

ℎ(𝑟)3

Hence the zeros of 𝐺′ occur at ±1 and the roots of the quadratic (in 𝑟) factor. If
𝑎 = 0, the additional root is just zero. Suppose 𝑎 ≠ 0. The quadratic is (up to a
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scalar multiple)

𝑟2 + 2 − 𝑎2
𝑎 𝑟 + 1,

and we only have to give conditions under which this has no positive real roots
(so that the only positive real zero of 𝐺′ is at 𝑟0 = 1).
If (2 − 𝑎2)∕𝑎 ≥ 0, then there are clearly no positive roots, so we obtain suffi-

cient conditions:
(i) 𝑎 ≤

√
2 and 𝑎 > 0, so this yields sufficiency of 𝑎 ∈ (0,

√
2].

(ii) −2 < 𝑎 < −
√
2, yielding 𝑎 ∈ (−2,−

√
2).

If (2 − 𝑎2)∕𝑎 < 0, then irreducibility of the quadratic is equivalent to
|(2 − 𝑎2)|∕|𝑎| < 2.

(iii) 𝑎 > 0, 𝑎2 > 2 and |(2 − 𝑎2)|∕|𝑎| < 2 boils down to 𝑎2 − 2 < 2𝑎, that is
𝑎2 − 2𝑎 − 2 < 0; this occurs precisely when 0 < 𝑎 <

√
3 + 1; since the

latter exceeds 2, we obtain a sufficient condition, 𝑎 ∈ (
√
2, 2).

(iv) 𝑎 < 0, 𝑎2 < 2, and |(2 − 𝑎2)|∕|𝑎| < 2: set 𝑏 = −𝑎 > 0, and we obtain
𝑏2 + 2𝑏 − 2 > 0, which yields

√
3 − 1 < 𝑏 <

√
2, which amounts to

−
√
2 < 𝑎 < 1 −

√
3.

The union of the four sets described in (i–iv) is (0, 2) ∪ (−2, 1 −
√
3).

Clearly lim𝑡→∞ 𝐺(𝑡) = 1 = lim𝑡↓0 𝐺(𝑡), 𝐺′(0) < 0 (from the formula above),
and 𝐺(𝑟) ≤ 1 for all 𝑟 ≥ 0. It follows easily that whenever 𝐺′(𝑟) = 0 has only
one positive solution, then 𝐺 has unique local minimum and no maxima on
(0,∞). □

Irreducibility is essential in Proposition 3.6.

Example 3.7. Let𝑎 >
√
3+1 anddefineℎ = 𝑥2+𝑎𝑥+1. Thenℎ has only positive

coefficients, is self-reciprocal, factors as (𝑥 + 𝛼)(𝑥 + 𝛼−1) for some 𝛼 > 0, and the
function 𝑟 ↦ |ℎ(𝑟𝑒𝜃)|2∕ℎ(𝑟)2 has two local minima and one local maximum (at
𝑟 = 1) on (0,∞).

Proof. The calculation in Proposition 2.6 shows that the positive zeros of 𝐺′

appear at 1, and at the positive roots of 𝑟2 + (2 − 𝑎2)𝑟∕𝑎 + 1. But the latter has
positive roots when 𝑎 >

√
3+1, so that 𝐺′ has three positive real roots, one less

than 1, one at 1, and one exceeding 1. It is easy to check that 𝐺 is decreasing at
0 (and asymptotic to 1 as 𝑟 →∞), so the three roots correspond respectively to
minimum, maximum, and minimum.
Since 𝑎 > 2 and the constant term is 1, ℎ is a product of two linear real

polynomials of the form indicated. □

Proposition 3.8. Suppose ℎ is a monic real polynomial with no negative co-
efficients and nonzero constant term, and all roots of ℎ lie in the union of two
cones (one closed, one open), Re 𝑧 ≤ 0 and 0 < | arg 𝑧| < arctan(3 +

√
3). Let

ℎ =∏ 𝑔𝑖
∏ℎ𝑗 be the factorization of ℎ into monic irreducibles overℝ[𝑥] where

𝑔𝑖 are linear and ℎ𝑗 are quadratic. Let 0 < 𝜃 < 𝜋∕2 be such that ℎ(𝑟𝑒𝑖𝜃) ≠ 0 for
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all 𝑟 > 0. Then the functionℝ++ → (0, 1] given by

𝐺ℎ ∶ 𝑟 ↦ |ℎ(𝑟𝑒𝑖𝜃|
|ℎ(𝑟)|

is strictly increasing on the interval (max{
√
ℎ𝑗(0), 𝑔𝑖(0)},∞) and is strictly de-

creasing on the interval (0,min{
√
ℎ𝑗(0), 𝑔𝑖(0)}).

Remark. arctan(3 +
√
3) is approximately 78.0675373 degrees or 1.36253556

radians.
Remark. The qualitative statement is independent of 𝜃 (subject to the con-
straints given therein).

Proof. First, we observe that for each 𝑖, 𝑗, ℎ𝑖(0) (the constant term of ℎ𝑖), 𝑔𝑖(0)
must be positive (else being monic, ℎ𝑖 would have a positive root, and thus so
would ℎ). If 𝑔𝑖 is linear, that is 𝑔𝑖 = 𝑥 + 𝑠 where 𝑠 > 0, we reparameterize it,
that is, 𝐻𝑖(𝑥) = 𝑔𝑖(𝜆𝑥) = 𝜆𝑥 + 𝑠 = 𝜆(𝑥 + 𝑠∕𝜆) (for 𝜆 > 0), and setting 𝜆 = 𝑠,
so 𝐺(𝐻) ∶= |𝐻(𝑟𝑒𝑖𝜃|∕𝐻(𝑟) has unique minimum at 𝑟 = 1, and is increasing for
𝑟 > 1. Undoing the parameterization, we see that |𝑔𝑖(𝑟𝑒𝑖𝜃)|∕𝑔𝑖(𝑟) is increasing
for 𝑟 ≥ 𝑠 = 𝑔𝑖(0).
For ℎ𝑗 an irreducible quadratic, ℎ = 𝑥2 + 𝐴𝑥 + 𝐵 (with 𝐴2 < 4𝐵), reparam-

eterize to obtain 𝐻𝑗(𝑥) = ℎ𝑗(𝜆𝑥) = 𝜆2(𝑥2 + 𝐴∕𝜆𝑥 + 𝐵∕𝜆2). Setting 𝜆 =
√
𝐵,

we have 𝐻𝑗(𝑥) = 𝜆2(𝑥2 + 𝐴∕𝜆𝑥 + 1); reparameterizing does not change the
arguments of roots, so we have that 𝐺𝐻𝑗 (𝑟) is increasing when 𝑟 > 1. Undoing
the reparameterization, we see that 𝐺(ℎ𝑗) is increasing on (

√
𝐵,∞).

Hence for each of the factors, the corresponding functions 𝐺ℎ𝑗 , 𝐺(𝑔𝑖) are
increasing on the ray given in the statement. Next, we observe that if 𝑅𝑖 are
positive differentiable functions, and 𝑅′𝑖 are positive on an interval of the form
(𝑀,∞), then so is∏𝑅𝑖: set 𝐺 = ln∏𝑅 and differentiate, and observe that 𝐺
increasing entails that

∏𝑅𝑖 increasing. So the product of all the 𝐺’s is increas-
ing on the interval, and this is simply𝐺(ℎ). A similar analysis yields the strictly
decreasing part of the result. □

In particular, if ℎ is a product of self-reciprocal irreducible polynomials (that
is, 1 + 𝑥 and 𝑥2 + 𝑎𝑥 + 1 with |𝑎| < 2) , then 𝐺(ℎ) is strictly decreasing on
(0, 1) and strictly increasing on (1,∞). Unfortunately, not every self-reciprocal
polynomial is a product of self-reciprocal irreducibles, as in Example 3.7, and
moreover, the corresponding 𝐺 need not have unique local minimum.
For a monic polynomial ℎ with only nonnegative coefficients, let ℎ =∏ 𝑔𝑖 ⋅∏ℎ𝑗 be the irreducible factorization (over ℝ[𝑥]) into monic linear factors (𝑔𝑖)
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and monic quadratic factors (ℎ𝑗). Define

𝑀 ≡ 𝑀(ℎ) = max
{√

ℎ𝑗(0), 𝑔𝑖(0)
}

𝑚 ≡ 𝑚(ℎ) = min
{√

ℎ𝑗(0), 𝑔𝑖(0)
}
.

Theorem 3.9. Let 𝑛 > 1 be an integer, and let ℎ be a (monic) polynomial with
no negative coefficients, and such that all roots lie in {𝜋∕2 ≤ | arg 𝑧| < 𝜋} ∪ {0 <
| arg 𝑧| < arctan(

√
3 + 3)}, and moreover that ℎ has no roots with argument

{2𝜋∕𝑛, 2𝜋∕𝑛2, 2𝜋∕𝑛3,… }. For 𝑟 a positive real number, define the AT system,
𝒩(𝑟) = (ℎ(𝑟𝑥𝑛𝑘 )∕ℎ(𝑟)), and define 𝑤𝑘 = exp 2𝜋𝑖∕𝑛𝑘. If 𝑟1 > 𝑟2 > 𝑀, then
𝒮((𝑤𝑘),𝒩(𝑟1)) > 𝒮((𝑤𝑘),𝒩(𝑟2)), and in particular,𝒩(𝑟1) ̸≅ 𝒩(𝑟2). Similarly,
𝒩(𝑟1) ̸≅𝒩(𝑟2) if 𝑟1 < 𝑟2 < 𝑚.

Proof. Each of the factors in the infinite product appearing in Lemma 3.1 for 𝑟1
is strictly greater than that for 𝑟2 by Proposition 3.6, and the result follows. □

If for ℎ,𝑀(ℎ) = 𝑚(ℎ) (as occurs if all the roots of the irreducible quadratics
factoringℎ have the same absolute value,𝑚, and the only linear factor is 𝑥+

√
𝑚

with arbitrary multiplicity), then we have a result that is about as far as we can
go. The case that 𝑀 = 𝑚 = 1 means that ℎ is a product of self-reciprocal
quadratics with a power of 1+𝑥. In particular, ℎ would then be self-reciprocal,
but not all self-reciprocal polynomials are products of irreducible self-reciprocal
ones (for example, (𝑥2+𝑎𝑥+𝑏)(𝑥2+𝑎𝑥∕𝑏+1∕𝑏) if 𝑏 ≠ 1, 𝑎, 𝑏 > 0, and 𝑎2 < 4𝑏).
Becausewe used only products of quadratics and linear terms, the qualitative

result in Proposition 3.8 was independent of 𝜃 (which is obviously important
for our application to the inequalities in the infinite factor appearing as the
value of the invariant). If we tried to prove the analogous result directly for
ℎ (not irreducible), then Example 3.7 shows there can be more than one local
minimum on the positive reals, and moreover, it is likely true that even when
there is a unique minimum, the location of the unique minimum depends on
𝜃. Then we would not be able to obtain the corresponding inequalities in all
the terms of the infinite products. So it is difficult to see how to substantially
improve Theorem 3.9.

4. Nonisomorphism of powers
In this section, weuse our invariants to distinguish systems of the form𝒦(𝑎, 𝑘) ∶=

((1+ 𝑥𝑎𝑖 )∕2)𝑘) and𝒦(𝑎′, 𝑘′) ∶= ((1+ 𝑥(𝑎′)𝑖 )∕2)𝑘′)where 𝑎, 𝑎′ > 2; specifically,
if {ln 𝑎, ln 𝑎′} is rationally linearly independent, then isomorphism of 𝒦(𝑎, 𝑘)
with𝒦(𝑎′, 𝑘′) entails both 𝑎 = 𝑎′ and 𝑘 = 𝑘′.
The following is elementary. Let𝑎, 𝑏 be integers exceeding 1. Then {ln 𝑎, ln 𝑏}

is linearly independent (over the rationals) is just another way of saying there
exist no positive integers 𝑢, 𝑣 such that 𝑎𝑢 = 𝑏𝑣. If we write 𝑎 = ∏𝑝𝑚(𝑝) and
𝑏 =∏𝑝𝑚′(𝑝) are their prime decompositions, failure of linear independence is
equivalent to the ratios𝑚(𝑝)∕𝑚′(𝑝) being independent of 𝑝.
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Lemma 4.1. Let 𝑐, 𝑁 be positive integers such that {ln 𝑐, ln𝑁} is linearly inde-
pendent over the rationals. Then there exist strictly increasing sequences (𝑠(𝑖))
and (𝑢(𝑖)) of positive integers such that

lim
𝑖→∞

𝑐𝑢(𝑖)
𝑁𝑠(𝑖) exists and equals

1
2 .

Remark. Of course we could replace 1
2
by any positive real number.

Proof. Since {ln 𝑐, ln𝑁} is rationally linearly independent, it follows that
(ln 𝑐)ℤ + (ln𝑁)ℤ is a dense subgroup of ℝ. Hence given 𝜂 > 0, there exist
integers 𝑎, 𝑏 such that |𝑎 ln 𝑐 + 𝑏 ln𝑁 + ln 2| < 𝜂. We now show that we can
arrange this so that the integer coefficient of ln 𝑐 is positive.
Assume 𝑎 < 0. Given 𝜂′ > 0, there exist nonzero integers 𝑒, 𝑓 such that

|𝑒 ln 𝑐+𝑓 ln𝑁| < 𝜂′. By shrinking 𝜂′, we can arrange that |𝑒| > |𝑎|. Replacing,
if necessary, 𝑒, 𝑓 by their negatives, we can assume that 𝑒 > 0, so that 𝑒+𝑎 > 0.
Adding the two inequalities, we have |(𝑒+𝑎) ln 𝑐+(𝑏+𝑓) ln𝑁+ln 2| < 𝜂+𝜂′.
Obviously if 𝜂 + 𝜂′ is sufficiently small, then 𝑏 + 𝑓 < 0.
Thus given 𝜖 > 0 small enough that 𝑒𝜖 < 1 + 2𝜖 and 𝑒−𝜖 > 1 − 2𝜖, we can

find positive integers 𝑢, 𝑠 such that |𝑢 ln 𝑐 − 𝑠 ln𝑁 + ln 2| < 𝜖. Exponentiating,
we deduce

𝑒−𝜖 < 2𝑐𝑢
𝑁𝑠 < 𝑒−𝜖.

From 𝑒𝜖 < 1+2𝜖 and 𝑒−𝜖 > 1−2𝜖, we obtain after subtracting 1 from each term
and dividing by 2,

−𝜖 < 𝑐𝑢
𝑁𝑠 −

1
2 < 𝜖.

□

Proposition 4.2. Let 𝑎, 𝑎′ be positive integers such that {ln 𝑎, ln 𝑎′} is linearly
independent over the rationals. Let 𝑘, 𝑘′ be positive integers, and define the two

AT systems𝒦(𝑎, 𝑘) = (
(
(1 + 𝑥𝑎𝑛)∕2

)𝑘)
𝑛
and𝒦(𝑎′, 𝑘′) = (

(
(1 + 𝑥(𝑎′)𝑛)∕2

)𝑘′
)
𝑛
.

Then for all 𝑘, 𝑘′,𝒦(𝑎, 𝑘) is not isomorphic to𝒦(𝑎′, 𝑘′).

Remark. The conclusion of is probably true if merely 𝑎 ≠ 𝑎′, and this can be
proved if a number-theoretic conjecture holds. Unfortunately, this conjecture
appears to be far more difficult than the original problem.

Proof. Assume that 𝒦(𝑎, 𝑘) is isomorphic to 𝒦(𝑎′, 𝑘′). The 𝑇-sets of the re-
spective systems (as subsets of the unit circle) are the roots of unity of order
dividing, respectively, some power of 𝑎, some power of 𝑎′; equality of these
(resulting from isomorphism) entails that 𝑎 and 𝑎′ have the same set of prime
divisors (an easy argument can also be obtained from the evaluation type in-
variant). We denote the set of prime divisors of 𝑎, and of 𝑎′, 𝐷.
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Let 𝑎 = ∏
𝑝∈𝐷 𝑝

𝑚(𝑝) and 𝑎′ = ∏
𝑝∈𝐷 𝑝

𝑚′(𝑝) be their prime factorizations.

Define 𝑀(𝑎) = max { 𝑚(𝑝)
𝑚′(𝑝)

∣ 𝑝 ∈ 𝐷}. If 𝑀(𝑎) ≤ 1, then we can interchange
𝑎 with 𝑎′, and so assume that 𝑀(𝑎) ≡ 𝑀 > 1. The constraints ensure that
𝐷0 ∶=

{
𝑝 ∈ 𝐷 ∣ 𝑀(𝑎) = 𝑚(𝑝)∕𝑚(𝑝′)

}
is not all of 𝐷.

Now we will apply the evaluation invariant. Define 𝑤𝑗 = exp(2𝜋𝑖∕𝑎𝑗). We

have already seen that 𝒮((𝑤𝑗),𝒦(𝑎, 𝑘)) =
(∏∞

𝑛=1 cos(𝜋∕𝑎
𝑛)
)𝑘
, and this is in

the open unit interval. We will show that 𝒮((𝑤𝑗), (𝐾(𝑎′, 1)) = 0, and since this
implies (by Lemma 1.2(c)) that 𝒮((𝑤𝑗), (𝐾(𝑎′, 𝑘′)) = 0 for all 𝑘′, the result will
follow. Specifically, we will show that {𝑆𝑙} (computed for 𝒦(𝑎′, 1)) contains a
null sequence.
For a prime 𝑝, let 𝑣𝑝 denote the usual (additive) valuation, so that 𝑣𝑝(𝑎) =

𝑚(𝑝). We see that for 𝑗, 𝑙 positive integers,

𝑣𝑝 (
(𝑎′)𝑗
𝑎𝑙

) = 𝑗𝑚′(𝑝) − 𝑙𝑚(𝑝)

We observe that if 𝑗 ≥ 𝑀𝑙 (the latter need not be an integer), then for all 𝑝, we
have the valuation at 𝑝 of (𝑎′)𝑗𝑎−𝑙 is nonnegative, hence the latter is an integer:

𝑗𝑚′(𝑝) − 𝑙𝑚(𝑝) ≥ 𝑀𝑙𝑚′(𝑝) − 𝑙𝑚(𝑝)
≥ 𝑙𝑚(𝑝) − 𝑙𝑚(𝑝) = 0.

Let 𝑡 denote the the least common multiple of {𝑚′(𝑝)}𝑝∈𝐷 and restrict our
attention to 𝑙 = 𝑡𝑙0, that is, those choices of 𝑙 that are divisible by 𝑡. Then for
any 𝑝 ∈ 𝐷, we have that 𝑡𝑚(𝑝)∕𝑚′(𝑝) is an integer, and in particular, 𝑡𝑀 is
integer; we have restricted the choice of 𝑙 to those such that 𝑙𝑚(𝑝)∕𝑚′(𝑝) are
all integers. Now let 𝑠 be a positive integer less than 𝑀𝑙 = (𝑀𝑡)𝑙0 (we will
specify 𝑠 in more detail soon). Define (with 𝑗 = 𝑀𝑙 − 𝑠)

𝑓(𝑠, 𝑙) = (𝑎′)𝑀𝑙−𝑠

𝑎𝑙
.

For 𝑝 ∈ 𝐷0,𝑚(𝑝) = 𝑀𝑚′(𝑝) and so
𝑣𝑝(𝑓(𝑠, 𝑙)) = 𝑚′(𝑝)(𝑀𝑙 − 𝑠) − 𝑙𝑚(𝑝)

= 𝑚′(𝑝)(𝑀𝐿 − 𝑠 −𝑀𝑙)
= −𝑠𝑚′(𝑝).

For 𝑞 ∈ 𝐷 ⧵ 𝐷0 (not empty, as observed above), let 𝑀𝑞 = 𝑚(𝑞)∕𝑚′(𝑞) < 𝑀.
Then

𝑣𝑝(𝑓(𝑠, 𝑙)) = 𝑚′(𝑝)(𝑀𝑙 − 𝑠 − 𝑙𝑀𝑞)
= 𝑙(𝑀 −𝑀𝑞) − 𝑠

If we write 𝑙 = 𝑙0𝑡, and observe that 𝑡𝑀 and 𝑡𝑀𝑞 are both integers, then 𝑙(𝑀 −
𝑀𝑞) = 𝑙0(𝑡𝑀 − 𝑡𝑀𝑞) and the factor 𝑡𝑀 − 𝑡𝑀𝑞 is thus a positive integer. Hence
if 𝑠 < 𝑙0 (as we hypothesized above), the evaluation of 𝑓(𝑠, 𝑙) at all primes in
𝐷 ⧵ 𝐷0 is positive.
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Thus we have

𝑓(𝑗, 𝑙) =
∏

𝑞∈𝐷⧵𝐷0
𝑞𝑙0(𝑡𝑀−𝑡𝑀𝑞)−𝑠

∏
𝑝∈𝐷0

𝑝𝑠𝑚(𝑝)

=

(∏
𝑞∈𝐷⧵𝐷0

𝑞(𝑡𝑀−𝑡𝑀𝑞)
)𝑙0

(∏
𝑝∈𝐷0

𝑝𝑚(𝑝) ⋅∏𝑞∈𝐷⧵𝐷0
𝑞
)𝑠

Set 𝑐 = ∏
𝑞∈𝐷⧵𝐷0

𝑞(𝑡𝑀−𝑡𝑀𝑞) and 𝑁 = ∏
𝑝∈𝐷0

𝑝𝑚(𝑝) ⋅∏𝑞∈𝐷⧵𝐷0
𝑞. Since 𝑁 has

a prime divisor that does not divide 𝑐, it follows that {ln 𝑐, ln𝑁} is rationally
linearly independent.
Hence given 𝜖 > 0, there exist positive integers 𝑢, 𝑠 such that |𝑐𝑢∕𝑁𝑠−1∕2| <

𝜖, and thus 0 < cos(𝜋𝑐𝑢∕𝑁𝑠) < 2𝜖 (assuming 𝜖 is sufficiently small).
Next we show that with this choice of 𝑢, 𝑠, we have that 𝑠 < 𝑢𝑡𝑀 (so we can

take 𝑙0 = 𝑢). We observe that for 𝜖 sufficiently small, 𝑢∕𝑠 is close to ln𝑁∕ ln 𝑐−
ln 2∕𝑠 ln 𝑐. As we can make 𝑠 as large as we like (even shrinking the 𝜖s along
the way), we can arrange that 𝑢∕𝑠 ≥ ln𝑁∕ ln 𝑐 − 𝜖. Hence it suffices to show
that ln𝑁∕ ln 𝑐 > 1∕𝑡𝑀.
We have

ln𝑁 =
∑

𝐷0
𝑚(𝑝) ln𝑝 +

∑

𝐷⧵𝐷0
ln 𝑞

ln 𝑐 =
∑

𝐷⧵𝐷0
(𝑡𝑀 − 𝑡𝑀𝑞) ln 𝑞; thus

𝑡𝑀 ln𝑁 >
∑

𝐷⧵𝐷0
(𝑡𝑀 − 𝑡𝑀𝑞) ln 𝑞.

Hence given 𝜖, for infinitelymany choices of 𝑙 at least one term in the infinite
product of cosines is within 2𝜖 of 0. It follows that for those 𝑙, 𝑆𝑙 < 𝜖, and thus
𝒮((𝑤𝑘),𝒦(𝑎′, 1)) = 0, and thus for all 𝑘′, 𝒮((𝑤𝑘),𝒦(𝑎′, 𝑘′)) = 0. □

For a positive integer 𝑎 > 2, define 𝑓(𝑎) = ∏∞
𝑗=1 cos(𝜋∕𝑎

𝑗). The infinite
product clearly converges to a real number in the open unit interval.
If {ln 𝑎, ln 𝑎′} is rationally dependent, that is, 𝑎𝑒 = (𝑎′)𝑓 for some positive

integers 𝑒, 𝑓, it might still be possible to prove the same conclusion, although
this currently depends on a (reasonable) number-theoretic conjecture. In this
case, we have that𝑚(𝑝)∕𝑚′(𝑝) = 𝑓∕𝑒 for all primes 𝑝 dividing 𝑎. If 𝑒 = 1, that
is, 𝑎 = (𝑎′)𝑓, we set 𝑤𝑙 = exp(2𝜋𝑖∕𝑎𝑙). Then

𝒮((𝑤𝑙),𝒦(𝑎, 1)) =
∞∏

𝑗=1
cos ( 𝜋

𝑎𝑗
) = 𝑓(𝑎),

as we have seen before. On the other hand,

𝒮((𝑤𝑙),𝒦(𝑎′, 1)) =
∞∏

𝑗=1
cos ( 𝜋

(𝑎′)𝑗
) = 𝑓(𝑎′).



1194 DAVID HANDELMAN

A similar computation applies formore general pairs (𝑎, 𝑎′)with (ln 𝑎, ln 𝑎′) ra-
tionally dependent. We see quickly that for all 𝑘,𝒦(𝑎, 𝑘) ̸≅ 𝒦(𝑎′, 𝑘) by Lemma
1.2(c). However, we want𝒦(𝑎, 𝑘) ̸≅ 𝒦(𝑎′, 𝑘′) regardless of the choice of 𝑘, 𝑘′.
Sufficient for this is that {ln𝑓(𝑎), ln𝑓(𝑎′)} be rationally linearly independent.

This is likely true, and an even stronger condition probably holds, that the field
ℚ(𝑓(𝑎), 𝑓(𝑎′)) have transcendence degree two. But this looks difficult to prove.
Another interesting class of systems are those of the form ℳ ∶= (((1 +

𝑥𝑎𝑖 )∕2)𝑘(𝑖)), that is, with variable powers appearing. The computation of each
of the 𝑆𝑙 with 𝑤𝑗 = exp(2𝜋

√
−1∕𝑎𝑗) includes a term of the form (cos𝜋∕𝑎))𝑘(𝑖).

Hence if sup 𝑘(𝑖) = ∞, we deduce 𝒮((𝑤𝑗),ℳ) = 0, which is not especially
helpful. In fact, if

∑ 𝑒−𝑘(𝑖)𝜋2∕𝑎2 < ∞ (sufficient for this is lim inf (𝑘(𝑖)∕ ln 𝑖) >
𝑎2∕𝜋2), then ℳ is isomorphic to an 𝑎-odometer (this follows from results in
[H]). It is not knownwhat happens for slower growth of 𝑘(𝑖), e.g., 𝑘(𝑖) ∼ ln ln 𝑖.
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