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Amenable actions of discrete quantum
groups on von Neumann algebras

Mohammad S. M. Moakhar

Abstract. We introduce the notion of Zimmer amenability for actions of
discrete quantumgroups on vonNeumannalgebras. Weprovenon-commuta-
tive generalizations of several fundamental results from the classical setting.
In particular, we characterize Zimmer amenability of such an action in terms
of injectivity of the associated von Neumann algebra crossed product as a
module over the dual quantum group. As an application, we show that ac-
tions of any discrete quantum group on its Poisson boundaries are always
Zimmer amenable.
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1. Introduction
There are many different equivalent conditions that characterize the amen-

ability of a locally compact group 𝐺. One such characterization is in terms of
a fixed-point property of affine actions of 𝐺. In [24], Zimmer introduced the
notion of amenable actions as a natural generalization of this property of fixed
points. He also gave a criterion in terms of the associated cross-product. In sub-
sequentwork, Adams, Elliott, andGiordano characterizedZimmer amenability
in terms of the existence of an equivariant conditional expectation [1]. In [2],
Delaroche extended Zimmer’s definition to the setting of group actions on von

Received December 5, 2019.
2010Mathematics Subject Classification. 46L10, 46L65, 22D10.
Key words and phrases. amenable actions, discrete quantum groups, injective von Neumann

algebras, braided tensor products.

ISSN 1076-9803/2025

1140

http://nyjm.albany.edu/nyjm.html
http://nyjm.albany.edu/j/2025/Vol31.htm


AMENABLE ACTIONS OF DISCRETE QUANTUM GROUPS 1141

Neumannalgebras. In this paper, we introduce the notion of Zimmer amenabil-
ity for actions of discrete quantum groups on von Neumann algebras.

Definition 4.1. Let 𝛼 ∶ 𝔾↷ 𝑁 be an action of a discrete quantum group𝔾 on a
von Neumann algebra 𝑁. Then 𝛼 is called amenable if there exists a conditional
expectation 𝐸𝛼 ∶ 𝓁∞(𝔾)⊗𝑁 → 𝛼(𝑁) such that

(id⊗𝐸𝛼)(∆⊗ id) = (∆⊗ id)𝐸𝛼.

This definition coincideswithDelaroche’s definition [2, Définition. 3.4]when
𝐺 is a discrete group. Also observe that a discrete quantum group is amenable
if and only if its action on the trivial space is amenable in the above sense. We
prove, similarly to the classical result, the action of every discrete quantum
group on itself by its co-multiplication is amenable (Proposition 5.1). More-
over, we show a connection between amenability of discrete quantum groups
and amenability of their actions on von Neumann algebras which is in fact a
non-commutative version of [2, Proposition 3.6]:

Theorem 4.7. Let 𝛼 ∶ 𝔾 ↷ 𝑁 be an action of a discrete quantum group 𝔾 on a
von Neumann algebra𝑁. The following are equivalent:

1. The quantum group 𝔾 is amenable.
2. The action 𝛼 is amenable and there exists an invariant state on𝑁.

In the case of Kac algebras, this theorem provides a new characterization for
amenability of𝔾 in terms of amenability of the canonical action of𝔾 on its dual
Kac algebra.

Theorem 5.2. Let𝔾 be a discrete Kac algebra. Then𝔾 is amenable if and only if
the canonical action of 𝔾 on 𝐿∞(�̂�) is amenable.

One of Zimmer’s main motivations to introduce and study the notion of
amenable actions was the applications in the theory of randomwalks on 𝐺 and
their associated Poisson boundaries of 𝐺. He proved that for any second count-
able locally compact group𝐺, the action of𝐺 on its Poisson boundaries is always
amenable [24, Theorem 5.2]. We establish the non-commutative analogue of
this result in the case of discrete quantum group actions.

Theorem 5.3. Let 𝔾 be a discrete quantum group and let 𝜇 ∈ 𝓁1(𝔾) be a state.
The canonical action of 𝔾 on the Poisson boundaryℋ𝜇 is amenable.

In [25], Zimmer studiedmore properties of the amenable action and he char-
acterized amenability of the action in terms of injectivity of the corresponding
crossed product [25, Theorem 2.1]. In [2], Delaroche generalized this result to
the case of actions on an arbitrary von Neumann algebra. In fact she proved
that an action 𝛼 ∶ 𝐺 ↷ 𝑁 is amenable if and only if there exists a conditional
expectation from 𝐵(𝐿2(𝐺))⊗𝑁 onto 𝑁 ⋉𝛼 𝐺 [2, Proposition 4.1]. She used
this result to show that amenability of the action on an injective von Neumann
algebra is equivalent to injectivity of the corresponding crossed product. For
discrete quantum group actions, we will characterize Zimmer amenability in
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terms of the existence of a conditional expectation that satisfies an equivariant
condition coming from the natural �̂� action. More precisely, we have

Theorem 7.5. Let 𝛼 ∶ 𝔾 ↷ 𝑁 be an action of a discrete quantum group 𝔾 on a
von Neumann algebra𝑁. The following are equivalent:

1. The action 𝛼 is amenable.
2. There is an equivariant conditional expectation

𝐸 ∶
(
𝐵(𝓁2(𝔾))⊗𝑁, ∆̂op ⊗ id)→

(
𝑁 ⋉𝛼 𝔾, �̂�

)
.

As a direct consequence, we will prove a non-commutative analogue of [2,
Corollaire 4.2] for the general discrete quantum group actions.

Corollary 7.7. Let 𝛼 ∶ 𝔾 ↷ 𝑁 be an action of a discrete quantum group 𝔾 on a
von Neumann algebra𝑁. The following are equivalent:

1. The von Neumann algebra𝑁 is injective and the action 𝛼 is amenable.
2. The crossed product𝑁 ⋉𝛼 𝔾 is �̂�-injective.

In the case of the trivial action of𝔾 on the trivial space, Theorem 7.5 provides
a duality between amenability of 𝔾 and injectivity of the dual von Neumann
algebra 𝐿∞(�̂�) in the category of𝒯(𝓁2(𝔾))-modules where𝒯(𝐿2(𝔾)) is the pre-
dual of 𝐵(𝐿2(𝔾)). This perfect duality was initially investigated by Crann and
Neufang in [8], (see also [5, 6]).
Moreover, in the case of discrete Kac algebra actions, we will show that the
equivariant condition in Theorem 7.5 can be eliminated. In fact we have

Theorem 6.3. Let 𝛼 ∶ 𝔾 ↷ 𝑁 be an action of a discrete Kac algebra 𝔾 on a von
Neumann algebra𝑁. The following are equivalent:

1. The action 𝛼 is amenable.
2. There is a conditional expectation from 𝐵(𝓁2(𝔾))⊗𝑁 onto𝑁 ⋉𝛼 𝔾.

Beside this introduction, this paper includes six other sections. In section
2, we recall some notions about discrete quantum groups and their actions on
von Neumann algebras. In section 3, we construct the von Neumann algebra
braided tensor product and we use this notion to obtain a version of diagonal
action in the setting of quantum groups. In section 4, we introduce the notion
of amenable actions and we study some of its properties. In section 5, we give
some examples of amenable actions. In particular, we prove that the action of
any discrete quantum group on any of its Poisson boundaries is amenable. In
section 6, we study actions of discrete Kac algebras. The main result of this
section generalize the well-known fact about the equivalence of amenability of
discrete Kac algebra 𝔾 and injectivity of 𝐿∞(�̂�). In section 7, we consider the
latter result in the case of discrete quantum group actions.

Acknowledgement. We are grateful to Massoud Amini for his continuous
encouragement throughout this project. We would also like to thank Mehrdad
Kalantar and Jason Crann for their helpful comments.
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2. Preliminaires
In this section, we review some basic notions about discrete quantum groups

and their actions on vonNeumann algebras. Formore details on discrete quan-
tum groups we refer the reader to [9], [22] and [23]. A discrete quantum group
𝔾 is a quadruple (𝓁∞(𝔾),∆, 𝜑, 𝜓), where 𝓁∞(𝔾) =

⨁
𝑖∈𝐼𝑀𝑛𝑖 (ℂ) is a von Neu-

mann algebra direct sum of matrix algebras, ∆ ∶ 𝓁∞(𝔾) → 𝓁∞(𝔾)⊗𝓁∞(𝔾) is
a co-associative co-multiplication, and 𝜑 and 𝜓 are normal faithful semi-finite
left, respectively right, invariant weights on 𝓁∞(𝔾), that is,

𝜑((𝜔 ⊗ id)∆(𝑥)) = 𝜔(1)𝜑(𝑥), 𝑥 ∈ℳ𝜑, 𝜔 ∈ 𝓁1(𝔾),
𝜓((id⊗𝜔)∆(𝑥)) = 𝜔(1)𝜓(𝑥), 𝑥 ∈ℳ𝜓, 𝜔 ∈ 𝓁1(𝔾).

A discrete quantum group 𝔾 = (𝓁∞(𝔾),∆, 𝜑, 𝜓) is a Kac algebra, if 𝜑 equals 𝜓
and is a trace.
The pre-adjoint of ∆ induces an associative completely contractive multipli-

cation

∗ ∶ 𝑓 ⊗ 𝑔 ∈ 𝓁1(𝔾) ⊗̂𝓁1(𝔾) → 𝑓 ∗ 𝑔 = (𝑓 ⊗ 𝑔) ∆ ∈ 𝓁1(𝔾)

on 𝓁1(𝔾). Moreover, this map induces left and right actions of 𝓁1(𝔾) on 𝓁∞(𝔾)
given by:

𝜇 ∗ 𝑥 ∶= (id⊗ 𝜇)∆(𝑥), 𝑥 ∗ 𝜇 ∶= (𝜇 ⊗ id)∆(𝑥). (1)

For a fixed 𝜇 ∈ 𝓁1(𝔾), the map 𝑥 ↦ 𝑥 ∗ 𝜇 is normal, completely bounded
on 𝓁∞(𝔾). This map is called the Markov operator, if 𝜇 is, moreover, a state.
A discrete quantum group 𝔾 is said to be amenable if there exists a state 𝑚 ∈
𝓁∞(𝔾)∗ satisfying

⟨𝑚, 𝑥 ∗ 𝑓 ⟩ = ⟨𝑓, 1 ⟩⟨𝑚, 𝑥 ⟩, 𝑥 ∈ 𝓁∞(𝔾), 𝑓 ∈ 𝓁1(𝔾).

The corresponding GNSHilbert spaces 𝓁2(𝔾, 𝜑) and 𝓁2(𝔾, 𝜓) are isomorphic
and are denoted by the same notation 𝓁2(𝔾). The (left) fundamental unitary𝑊
of 𝔾 is a unitary operator on 𝓁2(𝔾)⊗ 𝓁2(𝔾), satisfying the pentagonal relation
𝑊12𝑊13𝑊23 =𝑊23𝑊12, inwhichweused the leg notation𝑊12 =𝑊⊗1,𝑊23 =
1 ⊗ 𝑊 and 𝑊13 = (1 ⊗ 𝜎)𝑊12, where 𝜎(𝑥 ⊗ 𝑦) = 𝑦 ⊗ 𝑥 is the flip map on
𝐵(𝐻⊗𝐾). The right fundamental unitary𝑉 with the same properties is defined
in a similar way on 𝓁2(𝔾)⊗ 𝓁2(𝔾).
Let 𝒯(𝓁2(𝔾)) be the predual of 𝐵(𝓁2(𝔾)). Define the von Neumann algebra

𝐿∞(�̂�) to be the weak*-closure of {(𝜌 ⊗ id)𝑊 ∶ 𝜌 ∈ 𝒯(𝓁2(𝔾))}. Consider the
map ∆̂ ∶ 𝐿∞(�̂�) → 𝐿∞(�̂�)⊗𝐿∞(�̂�) given by ∆̂(�̂�) = �̂�∗(1 ⊗ �̂�)�̂�, where
�̂� = 𝜎𝑊∗𝜎. There exists a normal state �̂� on 𝐿∞(�̂�) which is both invariant
of left and right such that the triple �̂� = (𝐿∞(�̂�), ∆̂, �̂�) is a compact quantum
group called the dual quantum group of 𝔾.
The opposite co-multiplication ∆̂op is given by ∆̂op = 𝜎◦∆̂. The fundamental

unitary �̂�op associated to ∆̂op is defined by �̂�op = 𝜎�̂�𝜎, and therefore �̂�op ∈
𝐿∞(�̂�)⊗𝓁∞(𝔾)′.



1144 MOHAMMAD S. M. MOAKHAR

The fundamental unitary𝑊 of 𝔾 induces a co-associative co-multiplication
on 𝐵(𝓁2(𝔾)) defined by

∆𝓁 ∶ 𝑇 ∈ 𝐵(𝓁2(𝔾))↦𝑊∗(1⊗ 𝑇)𝑊 ∈ 𝐵(𝓁2(𝔾))⊗𝐵(𝓁2(𝔾)).

It is clear that the restriction of ∆𝓁 to 𝓁∞(𝔾) is the original co-multiplication
∆ on 𝓁∞(𝔾). The pre-adjoint of ∆𝓁 induces associative completely contractive
multiplication on the predual 𝒯(𝓁2(𝔾)).

∗∶ 𝜔 ⊗ 𝜏 ∈ 𝒯(𝓁2(𝔾))⊗̂𝒯(𝓁2(𝔾))↦ 𝜔 ∗ 𝜏 = ∆𝓁∗(𝜔 ⊗ 𝜏) ∈ 𝒯(𝓁2(𝔾)).

If ⟨𝒯(𝓁2(𝔾)) ∗ 𝒯(𝓁2(𝔾))⟩ denotes the linear span of𝜔 ∗ 𝜏with𝜔, 𝜏 ∈ 𝒯(𝓁2(𝔾))
we have

⟨𝒯(𝓁2(𝔾)) ∗ 𝒯(𝓁2(𝔾))⟩ = 𝒯(𝓁2(𝔾)). (2)

Similarly to the equations (1), there are left and right actions of 𝒯(𝓁2(𝔾)) on
𝐵(𝓁2(𝔾)).
There is also a co-associative co-multiplication on 𝐵(𝓁2(𝔾)) induced by the

right fundamental unitary 𝑉 which is defined by

∆𝑟 ∶ 𝑇 ∈ 𝐵(𝓁2(𝔾))↦ 𝑉(𝑇 ⊗ 1)𝑉∗ ∈ 𝐵(𝓁2(𝔾))⊗𝐵(𝓁2(𝔾)).

In a similar way, the pre-adjoint of ∆𝑟 induces associative completely contrac-
tive multiplication on the predual 𝒯(𝓁2(𝔾)) with the property (2).
Let 𝔾 be a discrete quantum group. By [5, Proposition 4.2.18], there is a

normal conditional expectation 𝐸0 from 𝐵(𝓁2(𝔾)) onto 𝓁∞(𝔾) such that for any
𝑥 ∈ 𝐵(𝓁2(𝔾)) and 𝑓 ∈ 𝒯(𝓁2(𝔾)), we have

𝐸0
(
(𝑓 ⊗ id)∆𝓁(𝑥)

)
= (𝑓 ⊗ id)∆𝓁(𝐸0(𝑥)). (3)

In particular, for any �̂� ∈ 𝐿∞(�̂�),𝐸0(�̂�) = �̂�(�̂�)𝟏where �̂� is the normal invariant
state of the compact quantum group �̂�.
A (left) action 𝛼 ∶ 𝔾↷ 𝑁 of a discrete quantum group𝔾 on a von Neumann

algebra 𝑁 is an injective ∗-homomorphism 𝛼 ∶ 𝑁 → 𝓁∞(𝔾)⊗𝑁 satisfying

(∆⊗ id)𝛼 = (id⊗ 𝛼)𝛼 .

The action of dual quantum group �̂� is defined similarly.
Let 𝛼 ∶ 𝔾 ↷ 𝑁 be an action of the discrete quantum group 𝔾 on the von

Neumann algebra𝑁. A state 𝜔 on𝑁 is said to be invariant if for any 𝑓 ∈ 𝓁1(𝔾),

(𝑓 ⊗ 𝜔)𝛼 = ⟨𝑓, 1 ⟩𝜔.

We denote by 𝑁𝛼 = {𝑥 ∈ 𝑁 ∶ 𝛼(𝑥) = 1 ⊗ 𝑥} the fixed point algebra of the
action 𝛼 ∶ 𝔾 ↷ 𝑁. Let 𝜃 be a normal semi-finite faithful weight on 𝑁, and let
𝐻𝜃 be the 𝐺𝑁𝑆 Hilbert space of 𝜃. It is proved in [19, Theorem 4.4] that 𝛼 is
implemented by a unitary 𝑈𝛼 ∈ 𝓁∞(𝔾)⊗𝐵(𝐻𝜃), that is,

𝛼(𝑥) = 𝑈𝛼 (1⊗ 𝑥)𝑈∗
𝛼 (𝑥 ∈ 𝑁) . (4)
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Definition 2.1. Let 𝛼 ∶ 𝔾 ↷ 𝑁 and 𝛽 ∶ 𝔾 ↷ 𝑀 be two actions of the discrete
quantum group𝔾 on von Neumann algebras𝑁 and𝑀. Then amapΦ ∶ 𝑁 → 𝑀
is equivariant if

(id⊗ Φ)𝛼 = 𝛽◦Φ.
To indicate the actions, we say that the map Φ ∶ (𝑁, 𝛼) → (𝑀,𝛽) is equivariant,
or that Φ is (𝛼, 𝛽)-equivariant. In the case 𝛼 = 𝛽, we say that Φ is 𝛼-equivariant.

The (von Neumann algebra) crossed product of the action 𝛼 ∶ 𝔾 ↷ 𝑁 is
defined by

𝔾⋉𝛼 𝑁 ∶= {𝛼(𝑁) ∪ (𝐿∞(�̂�)⊗ 𝟏)}′′ ⊆ 𝐵(𝓁2(𝔾))⊗𝑁.

Analogously to the classical setting, there is a characterization of the crossed
product𝔾⋉𝛼𝑁 as thefixedpoint algebra of a certain action of𝔾 on𝐵(𝓁2(𝔾))⊗𝑁
as follows:

Theorem 2.2 ([10], Theorem 11.6). Let 𝛼 ∶ 𝔾 ↷ 𝑁 be an action of a discrete
quantum group𝔾 on a von Neumann algebra𝑁 and let 𝜎 be the flip map defined
by 𝜎(𝑎 ⊗ 𝑏) = 𝑏 ⊗ 𝑎. Then there is a left action 𝛽 on the von Neumann algebra
𝐵(𝓁2(𝔾))⊗𝑁 defined by

𝛽 ∶ 𝑥 ∈ 𝐵(𝓁2(𝔾))⊗𝑁 ↦ (𝜎𝑉∗𝜎 ⊗ 1)
(
(𝜎 ⊗ id)(id⊗ 𝛼)(𝑥)

)
(𝜎𝑉𝜎 ⊗ 1),

such that
𝔾⋉𝛼 𝑁 = (𝐵(𝓁2(𝔾))⊗𝑁)𝛽 .

If 𝛼 ∶ 𝔾↷ 𝑁 is an action of a discrete quantum group𝔾 on a von Neumann
algebra 𝑁, there is is also a natural action �̂� of (�̂�, ∆̂op) on 𝔾 ⋉𝛼 𝑁 which is
called the dual action of 𝛼 and is defined by

�̂�(𝛼(𝑥)) = 1⊗ 𝛼(𝑥), for all 𝑥 ∈ 𝑁
�̂�(�̂� ⊗ 1) = ∆̂op(�̂�)⊗ 1, for all �̂� ∈ 𝐿∞(�̂�).

In fact, we have 𝛼(𝑁) = (𝑁 ⋉𝛼 𝔾)�̂� [19, Theorem 2.7].

3. von Neumann algebra braided tensor products
In order to overcome some technical obstacles, we need to use a version of

diagonal action for discrete quantum group actions. This section is devoted to
a brief introduction to Yetter–Drinfeld actions and braided tensor products in
von Neumann algebra setting. For an overview of these notions, we refer to [3]
and [16].
Let 𝔾 = (𝓁∞(𝔾),∆, 𝜑, 𝜓) be a discrete quantum group and𝑀 be a von Neu-

mann algebra. Consider actions 𝛽 ∶ 𝔾 ↷ 𝑀 and 𝛾 ∶ �̂� ↷ 𝑀 of the discrete
quantum group 𝔾 and its dual �̂� on 𝑀, respectively. We say 𝑀 is the 𝔾-YD-
algebra if the actions 𝛽 and 𝛾 satisfy the following Yetter–Drinfeld condition:

(ad(𝑊)⊗ id)(id⊗ 𝛾)𝛽 = (𝜎 ⊗ id)(id⊗ 𝛽)𝛾, (5)

where ad(𝑊) =𝑊 ⋅𝑊∗.
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In this case, if 𝛼 is any action of 𝔾 on a von Neumann algebra 𝑁, then simi-
larly to [20, Proposition 8.3], we have

span{𝛾(𝑀)12𝛼(𝑁)13}
weak*

= span{𝛼(𝑁)13𝛾(𝑀)12}
weak*

.

Hence, the weak*-closed linear span of {𝛾(𝑎)12𝛼(𝑏)13 ∶ 𝑎 ∈ 𝑀, 𝑏 ∈ 𝑁} is a von
Neumann subalgebra of 𝐵(𝓁2(𝔾))⊗𝑀⊗𝑁, which is called the braided tensor
product of von Neumann algebras𝑀 and 𝑁, and is denoted by𝑀⊠𝑁. There
is a ∗-homomorphism 𝛽 ⊠ 𝛼 ∶ 𝑀⊠𝑁 → 𝓁∞(𝔾)⊗ (𝑀⊠𝑁) given by

𝛽 ⊠ 𝛼(𝑋) =𝑊∗
12𝑈𝛽13

(1⊗𝑋)𝑈𝛽
∗
13
𝑊12,

where the unitary operator 𝑈𝛽 implements the action 𝛽 by (4).
In particular, on the set of generators {𝛾(𝑀)12𝛼(𝑁)13} we have

(𝛽 ⊠ 𝛼)(𝛾(𝑎)12𝛼(𝑏)13) = 𝑊∗
12𝑈𝛽13

𝛾(𝑎)23𝛼(𝑏)24𝑈∗
𝛽13

𝑊12

= 𝑊∗
12𝑈𝛽13

𝛾(𝑎)23𝑈∗
𝛽13

𝛼(𝑏)24𝑊12

= 𝑊∗
12(𝜎 ⊗ id)(𝑈𝛽23

𝛾(𝑎)13𝑈∗
𝛽23

)𝛼(𝑏)24𝑊12

= 𝑊∗
12
(
(𝜎 ⊗ id)(id⊗ 𝛽)𝛾(𝑎)

)
123
𝛼(𝑏)24𝑊12

= 𝑊∗
12
(
(𝜎 ⊗ id)(id⊗ 𝛽)𝛾(𝑎)

)
123
𝑊12𝑊∗

12𝛼(𝑏)24𝑊12

= 𝑊∗
12
(
(𝜎 ⊗ id)(id⊗ 𝛽)𝛾(𝑎)

)
123
𝑊12

(
(∆⊗ id)𝛼(𝑏)

)
124

= 𝑊∗
12𝑊12

(
(id⊗ 𝛾)𝛽(𝑎)

)
123
𝑊∗

12𝑊12
(
(∆⊗ id)𝛼(𝑏)

)
124

=
(
(id⊗ 𝛾)𝛽(𝑎)

)
123

(
(∆⊗ id)𝛼(𝑏)

)
124

=
(
(id⊗ 𝛾)𝛽(𝑎)

)
123

(
(id⊗ 𝛼)𝛼(𝑏)

)
124
.

Therefore,

(𝛽 ⊠ 𝛼)(𝛾(𝑎)12𝛼(𝑏)13) =
(
(id⊗ 𝛾)𝛽(𝑎)

)
123

(
(id⊗ 𝛼)𝛼(𝑏)

)
124
.

Now it is straightforward to check that the normal ∗-homomorphism 𝛽 ⊠ 𝛼 is
in fact an action of the discrete quantum group𝔾 on the von Neumann algebra
𝑀⊠𝑁.
For any discrete quantum group 𝔾, there is an action 𝛾 ∶ �̂� ↷ 𝓁∞(𝔾) given

by
𝛾(𝑥) = �̂�∗(1⊗ 𝑥)�̂�.

Observe that

(ad(𝑊)⊗ id)(id⊗ 𝛾)∆(𝑥) = (𝜎 ⊗ id)(id⊗ ∆)𝛾(𝑥).

It implies that the pair (∆, 𝛾) satisfies the compatibility condition (5) and there-
fore 𝓁∞(𝔾) is a 𝔾-YD-algebra. In this paper, we always consider braided tensor
products whose first legs are 𝓁∞(𝔾).
The following is the von Neumann algebraic version of [3, Lemma 1.24]. We

included the proof for the convenience of the reader.
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Lemma 3.1. Let 𝛼 ∶ 𝔾 ↷ 𝑁 be an action of a discrete quantum group 𝔾 on a
von Neumann algebra𝑁. There exists an equivarinat ∗-isomorphism

𝑇𝛼 ∶ (𝓁∞(𝔾)⊠𝑁,∆⊠𝛼)→ (𝓁∞(𝔾)⊗𝑁,∆⊗ id)
such that𝑇𝛼(1⊠𝑎) = 𝛼(𝑎) for all𝑎 ∈ 𝑁 and𝑇𝛼(𝑥⊠1) = 𝑥⊗1 for all𝑥 ∈ 𝓁∞(𝔾).

Proof. Given 𝑥 ∈ 𝐵(𝓁2(𝔾))⊗𝓁∞(𝔾)⊗𝑁, the map 𝑇𝛼 is defined spatially by

𝑇𝛼(𝑥) ∶= (id⊗ 𝛼−1)
(
(𝜎 ⊗ id)

(
(𝜎𝑊∗𝜎 ⊗ 1)𝑥(𝜎𝑊𝜎 ⊗ 1)

))
.

The restriction of 𝑇𝛼 to 𝓁∞(𝔾)⊠𝑁 is a map from 𝓁∞(𝔾)⊠𝑁 onto 𝓁∞(𝔾)⊗𝑁.
Indeed, for all 𝑎 ∈ 𝓁∞(𝔾) and 𝑏 ∈ 𝑁 we have
(𝜎𝑊∗𝜎 ⊗ 1)(𝛾(𝑎)12𝛼(𝑏)13)(𝜎𝑊𝜎 ⊗ 1)

= (𝜎𝑊∗𝜎 ⊗ 1)
(
(�̂�∗ ⊗ 1)(1⊗ 𝑎 ⊗ 1)(�̂� ⊗ 1)𝛼(𝑏)13

)
(𝜎𝑊𝜎 ⊗ 1)

= (�̂� ⊗ 1)
(
(�̂�∗ ⊗ 1)(1⊗ 𝑎 ⊗ 1)(𝜎𝑊∗𝜎 ⊗ 1)𝛼(𝑏)13

)
(𝜎𝑊𝜎 ⊗ 1)

= (1⊗ 𝑎 ⊗ 1)(𝜎𝑊∗𝜎 ⊗ 1)𝛼(𝑏)13(𝜎𝑊𝜎 ⊗ 1)

= (1⊗ 𝑎 ⊗ 1)(𝜎 ⊗ id)
(
𝑊∗

12𝛼(𝑏)23𝑊12
)

= (𝜎 ⊗ id)
(
(𝑎 ⊗ 1⊗ 1)𝑊∗

12𝛼(𝑏)23𝑊12
)

= (𝜎 ⊗ id)
(
(𝑎 ⊗ 1⊗ 1)(∆⊗ id)(𝛼(𝑏))

)
.

Therefore, by definition of 𝑇𝛼, we have

𝑇𝛼(𝛾(𝑎)12𝛼(𝑏)13) = (id⊗ 𝛼−1)
(
(𝑎 ⊗ 1⊗ 1)(id⊗ 𝛼)(𝛼(𝑏))

)
= (𝑎 ⊗ 1)𝛼(𝑏).

Since the linear span of {(𝓁∞(𝔾) ⊗ 1)𝛼(𝑁)} is weak* dense in 𝓁∞(𝔾)⊗𝑁, 𝑇𝛼
is a ∗-isomorphism from 𝓁∞(𝔾)⊠𝑁 onto 𝓁∞(𝔾)⊗𝑁 and it is clear that for all
𝑎 ∈ 𝑁 and 𝑥 ∈ 𝓁∞(𝔾), 𝑇𝛼(1⊠𝑎) = 𝛼(𝑎) and 𝑇𝛼(𝑥 ⊠ 1) = 𝑥 ⊗ 1. □

4. Amenable actions
In this section, we introduce the notion of amenable action of discrete quan-

tum groups on vonNeumann algebras. This definition is a generalization of the
amenable action of discrete groups on von Neumann algebras introduced in [2,
Définition 3.4]. If 𝜏 denotes the left translation action of 𝐺 on 𝓁∞(𝐺), then the
action 𝛼 ∶ 𝐺 ↷ 𝑀 is called amenable if there exists an equivariant conditional
expectation 𝑃 ∶ (𝓁∞(𝐺)⊗𝑀, 𝜏 ⊗ 𝛼)→ (𝟏⊗𝑀,𝛼), i.e.,

𝑃(𝜏𝑔 ⊗ 𝛼𝑔) = 𝛼𝑔◦𝑃, 𝑔 ∈ 𝐺.

There exists an automorphism 𝑇𝛼 on 𝓁∞(𝐺)⊗𝑀 defined by

𝑇𝛼
( ∑

𝑔∈𝐺
(𝛿𝑔 ⊗ 𝑥)

)
=
∑

𝑔∈𝐺
(𝛿𝑔 ⊗ 𝛼−1𝑔 (𝑥)).

If 𝛼(𝑥) =
∑

𝑔∈𝐺 𝛿𝑔 ⊗ 𝛼−1𝑔 (𝑥) for all 𝑥 ∈ 𝑀, we have 𝑇𝛼(𝟏⊗𝑀) = 𝛼(𝑀). It is
straightforward to check that for all 𝑔 ∈ 𝐺,

(𝜏𝑔 ⊗ id)◦𝑇𝛼 = 𝑇𝛼◦(𝜏𝑔 ⊗ 𝛼𝑔).
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Therefore, themap 𝑇𝛼 is an equivariant isomorphism from (𝓁∞(𝐺)⊗𝑀, 𝜏⊗𝛼)
onto (𝓁∞(𝐺)⊗𝑀, 𝜏 ⊗ id).
In summary, we have the following commutative diagram for the amenable

action 𝛼 of a discrete group 𝐺 on a von Neumann algebra 𝑁:

(𝓁∞(𝐺)⊗𝑀, 𝜏 ⊗ 𝛼)
𝑇𝛼,,,,,,,→ (𝓁∞(𝐺)⊗𝑀, 𝜏 ⊗ id)

𝑃
⏐⏐⏐⏐⏐⏐⏐
↓

⏐⏐⏐⏐⏐⏐⏐
↓𝑃

(𝟏⊗𝑀, 𝜏 ⊗ 𝛼)
𝑇𝛼,,,,,,,→ (𝛼(𝑀), 𝜏 ⊗ id)

(6)

This diagram allows us to define an equivalent definition for the amenable
action of discrete groups on von Neumann algebras. Let 𝛼 ∶ 𝐺 → Aut(𝑀) be
an action of a discrete group 𝐺 on a von Neumann algebra𝑀 and let 𝜏 be the
left translation action on 𝓁∞(𝐺). Then the action 𝛼 is called amenable if there
exists an equivariant conditional expectation

𝑃 ∶ (𝓁∞(𝐺)⊗𝑀, 𝜏 ⊗ id)→ (𝛼(𝑀), 𝜏 ⊗ id).

Motivated by this definition, we introduce the notion of the amenable action of
discrete quantum groups on von Neumann algebras.

Definition 4.1. Let 𝛼 ∶ 𝔾↷ 𝑁 be an action of a discrete quantum group𝔾 on a
von Neumann algebra 𝑁. Then 𝛼 is called amenable if there exists a conditional
expectation 𝐸𝛼 ∶ 𝓁∞(𝔾)⊗𝑁 → 𝛼(𝑁) such that

(id⊗𝐸𝛼)(∆⊗ id) = (∆⊗ id)𝐸𝛼. (7)

Remark 4.2. The diagram (6) shows that the Definition 4.1 coincides with the
classical definition of amenable actions introduced in [2].

Remark 4.3. The trivial action tr ∶ 𝔾 ↷ ℂ of a discrete quantum group 𝔾 on
the trivial space is amenable if and only if 𝔾 is amenable. Indeed, if the trivial
action tr is amenable, then there is an equivariant conditional expectation 𝐸tr ∶
(𝓁∞(𝔾)⊗ℂ,∆⊗id)→ (ℂ⊗1,∆⊗id). Define a state𝑚 on𝓁∞(𝔾) by𝐸tr(𝑥⊗1) =
𝑚(𝑥)1⊗ 1. Then

𝑚(𝑥 ∗ 𝑓)1⊗ 1 = 𝐸tr
(
(𝑥 ∗ 𝑓)⊗ 1

)

= 𝐸tr
(
(𝑓 ⊗ id⊗ id)(∆⊗ id)(𝑥 ⊗ 1)

)

= (𝑓 ⊗ id⊗ id)(id⊗𝐸tr)(∆⊗ id)(𝑥 ⊗ 1)
= (𝑓 ⊗ id⊗ id)(∆⊗ id)𝐸tr(𝑥 ⊗ 1)
= 𝑚(𝑥)(𝑓 ⊗ id⊗ id)(∆⊗ id)(1⊗ 1)
= 𝑚(𝑥)𝑓(1)1⊗ 1.

Therefore𝑚 is an invariant mean on 𝓁∞(𝔾). For the converse, if 𝔾 is amenable,
there exists an invariant state 𝑚 on 𝓁∞(𝔾). Define the conditional expectation
𝑃 ∶ 𝓁∞(𝔾)⊗ℂ → ℂ⊗ℂ by 𝑃 = 𝑚 ⊗ id. It is easy to check that 𝑃 is (∆⊗ id)-
equivariant. (See also Theorem 4.7.)
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Definition 4.4. Let 𝛼 ∶ 𝔾 ↷ 𝑀 and 𝛽 ∶ 𝔾 ↷ 𝑁 be actions of a discrete
quantum group 𝔾 on von Neumann algebras𝑀 and 𝑁, respectively, where𝑀 is
a von Neumann subalgebra of𝑁. Then

1. The triple (𝑁,𝔾, 𝛽) is an extension of (𝑀,𝔾, 𝛼) if 𝛼 is the restriction of 𝛽
to𝑀 and there is a conditional expectation from𝑀 onto𝑁.

2. For the extension (𝑁,𝔾, 𝛽) of (𝑀,𝔾, 𝛼), the pair (𝑁,𝑀) is called amenable,
if there is an equivariant conditional expectation𝑃 from (𝑁, 𝛽) onto (𝑀,𝛼).

Proposition 4.5. Let (𝑁,𝔾, 𝛽) be an extension of (𝑀,𝔾, 𝛼).
1. If the action 𝛼 is amenable, then the pair (𝑁,𝑀) is amenable.
2. If the action 𝛽 is amenable and the pair (𝑁,𝑀) is amenable, then the
action 𝛼 is amenable.

Proof. (1): Assume that (𝑁,𝔾, 𝛽) is an extension of (𝑀,𝔾, 𝛼) and therefore
there is a conditional expectation 𝑄 from 𝑁 onto 𝑀. Since 𝛼 is amenable we
have an equivariant conditional expectation 𝐸𝛼 from (𝓁∞(𝔾)⊗𝑀,∆⊗ id) onto
(𝛼(𝑀),∆⊗ id). Define the conditional expectation 𝑃 ∶ 𝑁 → 𝑀 by

𝑃 = 𝛼−1◦𝐸𝛼◦(id⊗𝑄)◦𝛽.
Then we have

(id⊗ 𝑃)𝛽 = (id⊗ 𝛼−1◦𝐸𝛼)(id⊗𝑄)(id⊗ 𝛽)𝛽
= (id⊗ 𝛼−1)(id⊗𝐸𝛼)(id⊗𝑄)(∆⊗ id)𝛽
= (id⊗ 𝛼−1)(id⊗𝐸𝛼)(∆⊗ id)(id⊗𝑄)𝛽
= (id⊗ 𝛼−1)(∆⊗ id)𝐸𝛼(id⊗𝑄)𝛽
= (id⊗ 𝛼−1)(id⊗ 𝛼)𝐸𝛼(id⊗𝑄)𝛽
= 𝛼◦𝑃.

It shows that 𝑃 ∶ (𝑁, 𝛽)→ (𝑀,𝛼) is equivariant.
(2): Now suppose that 𝛽 is amenable, then there is an equivariant conditional
expectation 𝐸𝛽 from (𝓁∞(𝔾)⊗𝑁,∆ ⊗ id) onto (𝛽(𝑁),∆ ⊗ id). Since the pair
(𝑁,𝑀) is amenable, there is also a conditional expectation 𝑃 from 𝑁 onto 𝑀
such that (id⊗𝑃)𝛽 = 𝛼◦𝑃. Hence the composition (id⊗𝑃)𝐸 ∶ 𝓁∞(𝔾)⊗𝑁 →
𝛼(𝑀) is a conditional expectation such that

(id⊗ id⊗ 𝑃)(id⊗𝐸)(∆⊗ id) = (id⊗ id⊗ 𝑃)(∆⊗ id)𝐸
= (∆⊗ id)(id⊗ 𝑃)𝐸.

Since 𝛼(𝑀) ⊆ 𝓁∞(𝔾)⊗𝑀, by restricting of (id ⊗ 𝑃)𝐸 to 𝓁∞(𝔾)⊗𝑀 we ob-
tain an equivariant conditional expectation from (𝓁∞(𝔾)⊗𝑀,∆ ⊗ id) onto
(𝛼(𝑀),∆⊗ id), and therefore the action 𝛼 is amenable. □

Let 𝛼 ∶ 𝔾 ↷ 𝑁 be an action of a discrete quantum group 𝔾 on a von Neu-
mann algebra 𝑁. Consider the normal conditional expectation 𝐸0 as the equa-
tion (3) and fix an arbitrary state 𝑓 ∈ 𝓁1(𝔾). Then 𝐸0 ⊗ 𝑓 ⊗ id is a normal
conditional expectation from 𝐵(𝓁2(𝔾))⊗𝓁∞(𝔾)⊗𝑁 onto 𝓁∞(𝔾)⊗ 𝟏⊗𝑁. By
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restricting we obtain a conditional expectation from 𝓁∞(𝔾)⊠𝑁 onto 𝟏⊠𝑁.
So the triple (𝓁∞(𝔾)⊠𝑁,∆⊠𝛼,𝔾) is an extension of (𝟏⊠𝑁,∆⊠𝛼,𝔾).

Proposition 4.6. Let 𝛼 ∶ 𝔾↷ 𝑁 be an action of a discrete quantum group𝔾 on
a vonNeumann algebra𝑁. Then the action 𝛼 is amenable if and only if for the ex-
tension (𝓁∞(𝔾)⊠𝑁,∆⊠𝛼,𝔾) of (𝟏⊠𝑁,∆⊠𝛼,𝔾), the pair (𝓁∞(𝔾)⊠𝑁, 𝟏⊠𝑁)
is amenable.

Proof. By Lemma 3.1, there exists a ∗-isomorphism between (𝓁∞(𝔾)⊠𝑁,∆⊠
𝛼) and (𝓁∞(𝔾)⊗𝑁,∆⊗ id)which is equivariant. Since (𝓁∞(𝔾)⊠𝑁,∆⊠𝛼,𝔾)
is an extension of (𝟏⊠𝑁,∆⊠𝛼,𝔾), the action 𝛼 is amenable if and only if the
pair (𝓁∞(𝔾)⊠𝑁, 𝟏⊠𝑁) is amenable. □

The following result is a non-commutative version of [2, Proposition 3.6].

Theorem 4.7. Let 𝛼 ∶ 𝔾 ↷ 𝑁 be an action of a discrete quantum group 𝔾 on a
von Neumann algebra𝑁. The following are equivalent:

1. The quantum group 𝔾 is amenable.
2. The action 𝛼 is amenable and there exists an invariant state on𝑁.

Proof. (2)⇒ (1): suppose that𝜔 is an invariant state on𝑁 and𝐸𝛼 is an equivari-
ant conditional expectation from𝓁∞(𝔾)⊗𝑁 onto𝛼(𝑁) coming fromamenabil-
ity of the action 𝛼. Define a state𝑚 on 𝓁∞(𝔾) by

⟨𝑚, 𝑥 ⟩ = ⟨𝜔, 𝛼−1◦𝐸𝛼(𝑥 ⊗ 1) ⟩.
Then 𝑚 is a left invariant state on 𝓁∞(𝔾). Indeed, for any 𝑥 ∈ 𝓁∞(𝔾) and
𝑓 ∈ 𝓁1(𝔾) we have

⟨𝑚, 𝑥 ∗ 𝑓 ⟩ = ⟨𝑚, (𝑓 ⊗ id)∆(𝑥) ⟩

= ⟨𝜔, 𝛼−1◦𝐸𝛼
(
((𝑓 ⊗ id)∆(𝑥))⊗ 1

)
⟩

= ⟨𝜔, 𝛼−1
(
(𝑓 ⊗ id⊗ id)(id⊗𝐸𝛼)(∆⊗ id)(𝑥 ⊗ 1)

)
⟩

= ⟨𝜔, 𝛼−1
(
(𝑓 ⊗ id⊗ id)(∆⊗ id)𝐸𝛼(𝑥 ⊗ 1)

)
⟩

= ⟨𝜔, 𝛼−1
(
(𝑓 ⊗ id⊗ id)(id⊗ 𝛼)𝐸𝛼(𝑥 ⊗ 1)

)
⟩

= ⟨𝜔, (𝑓 ⊗ id)𝐸𝛼(𝑥 ⊗ 1) ⟩
= 𝑓(1)⟨𝜔, 𝛼−1◦𝐸𝛼(𝑥 ⊗ 1) ⟩
= 𝑓(1)⟨𝑚, 𝑥 ⟩,

where we use the fact that 𝜔 is invariant in the penultimate step.
(1) ⇒ (2): suppose that 𝑚 is a left invariant mean on 𝓁∞(𝔾). Fix 𝜂 ∈ 𝑁∗ and
define 𝜔 ∶= (𝑚⊗ 𝜂)𝛼. Then for any 𝑓 ∈ 𝓁1(𝔾) and 𝑥 ∈ 𝑁, we have

⟨𝑓 ⊗ 𝜔, 𝛼(𝑥) ⟩ = ⟨𝜔, (𝑓 ⊗ id)𝛼(𝑥) ⟩
= ⟨𝑚⊗ 𝜂, (𝑓 ⊗ id⊗ id)(id⊗ 𝛼)𝛼(𝑥) ⟩
= ⟨𝑚⊗ 𝜂, (𝑓 ⊗ id⊗ id)(∆⊗ id)𝛼(𝑥) ⟩

= ⟨𝑚, (𝑓 ⊗ id)∆
(
(id⊗ 𝜂)𝛼(𝑥)

)
⟩
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= 𝑓(1)⟨𝑚, (id⊗ 𝜂)𝛼(𝑥) ⟩
= 𝑓(1)⟨𝑚⊗ 𝜂, 𝛼(𝑥) ⟩
= 𝑓(1)⟨𝜔, 𝑥 ⟩,

it shows 𝜔 is an invariant state on 𝑁.
Now we prove that the action 𝛼 is amenable. First, we claim that for any 𝑥 ∈
𝓁∞(𝔾)⊠𝑁, we have

(∆⊠𝛼)(𝑥) = (ad(𝑊∗)⊗ id⊗ id)(𝜎 ⊗ id⊗ id)(id⊗ ∆⊗ id)(𝑥). (8)

Since the linear span of {𝛾(𝑎𝑖)12𝛼(𝑏𝑖)13} is weak* dense in 𝓁∞(𝔾)⊠𝑁, we need
to show (8) for the set of generators. For any 𝑎 ∈ 𝓁∞(𝔾) and 𝑏 ∈ 𝑁, we have

(∆⊠𝛼)
(
𝛾(𝑎)12𝛼(𝑏)13

)
=
(
(id⊗ 𝛾)∆(𝑎)

)
123

(
(id⊗ 𝛼)𝛼(𝑏)

)
124

=
(
(ad(𝑊∗)⊗ id)(𝜎 ⊗ id)(id⊗ ∆)𝛾(𝑎)

)
123

(
(id⊗ 𝛼)𝛼(𝑏)

)
124

=
(
𝑊∗

12(𝜎 ⊗ id)
(
(id⊗ ∆)𝛾(𝑎)

)
𝑊12

)
123

(
(id⊗ 𝛼)𝛼(𝑏)

)
124

=
(
𝑊∗

12(𝜎 ⊗ id)
(
(id⊗ ∆)𝛾(𝑎)

)
𝑊12

)
123

(
(∆⊗ id)𝛼(𝑏)

)
124

=
(
𝑊∗

12(𝜎 ⊗ id)
(
(id⊗ ∆)𝛾(𝑎)

)
𝑊12

)
123
𝑊∗

12𝛼(𝑏)24𝑊12

= 𝑊∗
12
(
(𝜎 ⊗ id)(id⊗ ∆)𝛾(𝑎)

)
123
𝛼(𝑏)24𝑊12

= (ad(𝑊∗)⊗ id⊗ id)(𝜎 ⊗ id⊗ id)
[(
(id⊗ ∆)𝛾(𝑎)

)
123

𝛼(𝑏)14
]

= (ad(𝑊∗)⊗ id⊗ id)(𝜎 ⊗ id⊗ id)(id⊗ ∆⊗ id)(𝛾(𝑎)12 𝛼(𝑏)13).

Hence, we conclude the equality (8). Let 𝐸0 ∶ 𝐵(𝓁2(𝔾)) → 𝓁∞(𝔾) be the nor-
mal conditional expectation given by (3). Therefore, for any �̂� ∈ 𝐿∞(�̂�) and
𝑓, 𝜔 ∈ 𝓁1(𝔾), we have

⟨𝜔 ⊗ 𝑓, (id⊗𝐸0)∆𝓁(�̂�)⟩ = ⟨𝑓, 𝐸0
(
(𝜔 ⊗ id)∆𝓁(�̂�)

)
⟩

= ⟨𝑓, (𝜔 ⊗ id)∆𝓁(𝐸0(�̂�))⟩
= ⟨𝜔 ⊗ 𝑓, �̂�(�̂�)1⊗ 1⟩.

Hence,
(id⊗𝐸0)∆𝓁(�̂�) = �̂�(�̂�)1⊗ 1, (9)

for all �̂� ∈ 𝐿∞(�̂�). Consider the conditional expectation 𝐸0 ⊗𝑚⊗ id from the
von Neumann algebra 𝐵(𝓁2(𝔾))⊗𝓁∞(𝔾)⊗𝑁 onto 𝓁∞(𝔾)⊗ 𝟏⊗𝑁. Then by
restricting, there is a conditional expectation 𝐸 from 𝓁∞(𝔾)⊠𝑁 onto 𝟏⊠𝑁.
We show that the conditional expectation 𝐸 is (∆ ⊠ 𝛼)-equivariant. For any
𝑎 ∈ 𝓁∞(𝔾) and 𝑏 ∈ 𝑁, by the equality (9) we have

(id⊗𝐸0 ⊗ id⊗ id)
[
𝑊∗

12𝛾(𝑎)23 𝛼(𝑏)24𝑊12

]

= (id⊗𝐸0 ⊗ id⊗ id)
[
𝑊∗

12𝛾(𝑎)23𝑊12𝑊∗
12𝛼(𝑏)24𝑊12

]

= (id⊗𝐸0 ⊗ id⊗ id)
[(
(∆𝓁 ⊗ id)𝛾(𝑎)

)
123

(
(id⊗ 𝛼)𝛼(𝑏)

)
124

]
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=
(
(id⊗𝐸0 ⊗ id)(∆𝓁 ⊗ id)𝛾(𝑎)

)
123

(
(id⊗ 𝛼)𝛼(𝑏)

)
124

= (id⊗ �̂� ⊗ id⊗ id)
(
𝛾(𝑎)23

)(
(id⊗ 𝛼)𝛼(𝑏)

)
124
.

Consider 𝑥 ∈ 𝓁∞(𝔾)⊠𝑁 as
∑

𝑖∈𝐼
𝛾(𝑎𝑖)12𝛼(𝑏𝑖)13. Since 𝑚 is an invariant mean,

the equality (8) and the above calculation yield that

(id⊗𝐸)(∆⊠𝛼)(𝑥)

= (id⊗𝐸)
[
(ad(𝑊∗)⊗ id⊗ id)(𝜎 ⊗ id⊗ id)(id⊗ ∆⊗ id)(𝑥)

]

= (id⊗𝐸)
[
𝑊∗

12
(
(𝜎 ⊗ id⊗ id)(id⊗ ∆⊗ id)(𝑥)

)
𝑊12

]

= (id⊗𝐸0 ⊗𝑚⊗ id)
[
𝑊∗

12
(
(𝜎 ⊗ id⊗ id)(id⊗ ∆⊗ id)(𝑥)

)
𝑊12

]

= (id⊗𝐸0 ⊗ id)
[
𝑊∗

12
(
(𝜎 ⊗ id)(id⊗ id⊗𝑚⊗ id)(id⊗ ∆⊗ id)(𝑥)

)
𝑊12

]

= (id⊗𝐸0 ⊗ id)
[
𝑊∗

12
(
(𝜎 ⊗ id)(id⊗ id⊗𝑚⊗ id)(𝑥134)

)
𝑊12

]

= (id⊗𝐸0 ⊗𝑚⊗ id)
[
𝑊∗

12(1⊗ 𝑥)𝑊12

]

= (id⊗𝐸0 ⊗𝑚⊗ id)
[
𝑊∗

12

∑

𝑖∈𝐼
𝛾(𝑎𝑖)23𝛼(𝑏𝑖)24𝑊12

]

= (id⊗ id⊗𝑚⊗ id)
[∑

𝑖∈𝐼
(id⊗ �̂� ⊗ id⊗ id)

(
𝛾(𝑎𝑖)23

)(
(id⊗ 𝛼)𝛼(𝑏𝑖)

)
124

]
,

where we use the normality of the conditional expectation 𝐸0 in the last equal-
ity. On the other hand, repeating the calculation show that

(∆⊠𝛼)𝐸(𝑥) = (∆⊠𝛼)(𝐸0 ⊗𝑚⊗ id)(𝑥)

= (∆⊠𝛼)(𝐸0 ⊗𝑚⊗ id)
[∑

𝑖∈𝐼
𝛾(𝑎𝑖)12 𝛼(𝑏𝑖)13

]

= (∆⊠𝛼)(id⊗𝑚⊗ id)
[∑

𝑖∈𝐼
(𝐸0 ⊗ id⊗ id)

[
𝛾(𝑎𝑖)12 𝛼(𝑏𝑖)13

]]

= (∆⊠𝛼)(id⊗𝑚⊗ id)
[∑

𝑖∈𝐼
(𝐸0 ⊗ id⊗ id)

[
𝛾(𝑎𝑖)12

]
𝛼(𝑏𝑖)13

]

= (∆⊠𝛼)(id⊗𝑚⊗ id)
[∑

𝑖∈𝐼
(�̂� ⊗ id⊗ id)

[
𝛾(𝑎𝑖)12

]
𝛼(𝑏𝑖)13

]

= (id⊗ id⊗𝑚⊗ id)
[∑

𝑖∈𝐼
(id⊗ �̂� ⊗ id⊗ id)

(
𝛾(𝑎𝑖)23

)
(id⊗ 𝛼)𝛼(𝑏𝑖)

)
124

]

From these two calculations, it follows that the pair (𝓁∞(𝔾)⊠𝑁, 𝟏⊠𝑁) is
amenable and by Proposition 4.6 the action 𝛼 is amenable. □

Theorem 4.8. Let 𝛼 ∶ 𝔾 ↷ 𝑁 be an action of a discrete quantum group 𝔾 on a
von Neumann algebra 𝑁. Then there exists an equivariant isomorphism Φ from
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(
(𝓁∞(𝔾)⊠𝑁) ⋉∆⊠𝛼 𝔾, ∆̂⊠𝛼

)
onto

(
𝐵(𝓁2(𝔾))⊗𝑁, ∆̂⊠𝛼

)
such that Φ maps

(𝟏⊠𝑁)⋉∆⊠𝛼 𝔾 onto𝑁 ⋉𝛼 𝔾.

Proof. Consider the equivariant ∗-isomorphism 𝑇𝛼, given by Lemma 3.1, from
(𝓁∞(𝔾)⊠𝑁,∆ ⊠ 𝛼) onto (𝓁∞(𝔾)⊗𝑁,∆ ⊗ id). Then the isomorphism Φ is
obtained from the identification:

(𝓁∞(𝔾)⊠𝑁)⋉∆⊠𝛼 𝔾 = [ (∆⊠𝛼)(𝓁∞(𝔾)⊠𝑁) ∪ (𝐿∞(�̂�)⊗ 𝟏𝓁∞(𝔾)⊠𝑁) ]
′′

≅ [ (id⊗ 𝑇𝛼)(∆⊠𝛼)(𝓁∞(𝔾)⊠𝑁) ∪ (𝐿∞(�̂�)⊗ 𝟏𝓁∞(𝔾)⊗𝑁) ]
′′

= [ (∆⊗ id)𝑇𝛼(𝓁∞(𝔾)⊠𝑁) ∪ (𝐿∞(�̂�)⊗ 𝟏⊗ 𝟏)𝑉12𝑉∗
12 ]

′′

= [ (∆⊗ id)𝑇𝛼(𝓁∞(𝔾)⊠𝑁) ∪ 𝑉12(𝐿∞(�̂�)⊗ 𝟏⊗ 𝟏)𝑉∗
12 ]

′′

= [ (∆⊗ id)𝑇𝛼(𝓁∞(𝔾)⊠𝑁) ∪ (∆⊗ id)(𝐿∞(�̂�)⊗ 𝟏) ]′′

≅ [𝑇𝛼(𝓁∞(𝔾)⊠𝑁) ∪ (𝐿∞(�̂�)⊗ 𝟏) ]′′

≅ [(𝓁∞(𝔾)⊗𝑁) ∪ (𝐿∞(�̂�)⊗ 𝟏) ]′′

= 𝐵(𝓁2(𝔾))⊗𝑁

where in the fourth equality, we used the fact that 𝑉 ∈ 𝐿∞(�̂�)
′
⊗𝓁∞(𝔾). In

particular, for any 𝑥 ∈ 𝓁∞(𝔾)⊠𝑁 and any �̂� ∈ 𝐿∞(�̂�) we have

Φ
(
(∆⊠𝛼)(𝑥)

)
= 𝑇𝛼(𝑥), Φ(�̂� ⊗ 1𝓁∞(𝔾)⊠𝑁) = �̂� ⊗ 1𝓁∞(𝔾)⊗𝑁 . (10)

From Lemma 3.1, we know that 𝑇𝛼(𝟏⊠𝑁) = 𝛼(𝑁), and therefore by the same
calculations we have

(𝟏⊠𝑁)⋉∆⊠𝛼 𝔾 ≅ 𝑁 ⋉𝛼 𝔾.

In order to show the equivariant condition, it is sufficient to check the equality
on the set of generators of (𝓁∞(𝔾)⊠𝑁)⋉∆⊠𝛼𝔾. Suppose that 𝑥 ∈ 𝓁∞(𝔾)⊠𝑁,
then since �̂�op ∈ 𝐿∞(�̂�)⊗𝓁∞(𝔾)′, by (10) we have

(
(∆̂op ⊗ id)◦Φ

)
(∆⊠𝛼)(𝑥) = (∆̂op ⊗ id)(Φ(∆⊠𝛼)(𝑥))

= (∆̂op ⊗ id)𝑇𝛼(𝑥)

= �̂�op∗
12 (1⊗ 𝑇𝛼(𝑥)) �̂�

op
12

= 1⊗ 𝑇𝛼(𝑥)
= 1⊗ Φ((∆⊠𝛼)(𝑥))

= (id⊗ Φ)
(
1⊗ (∆⊠𝛼)(𝑥)

)

= (id⊗ Φ)
(
(∆̂⊠𝛼)(∆⊠𝛼)(𝑥)

)
.

On the other hand, by (10), for any �̂� ∈ 𝐿∞(�̂�) we have
(
(∆̂op ⊗ id)◦Φ

)
(�̂� ⊗ 1𝓁∞(𝔾)⊠𝑁) = ∆̂op(�̂�)⊗ 1𝓁∞(𝔾)⊗𝑁

= (id⊗ Φ)(∆̂⊠𝛼)(�̂� ⊗ 1𝓁∞(𝔾)⊠𝑁). □
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5. Examples
In this section, we give some examples of amenable actions of discrete quan-

tum groups on von Neumann algebras. In Theorem 4.7, we showed that the
amenable quantum group 𝔾 acts amenably on any von Neumann algebras.
Also, Proposition 4.5 shows that it is possible to get new amenable actions by
appropriate restrictions. Below, we give more concrete examples of amenable
actions. As an example of amenable actions, the action of any discrete group
𝐺 on 𝓁∞(𝐺) is always amenable [2, Remarques 3.7.(b)]. The next result is the
non-commutative analogue of that.
Proposition 5.1. Every discrete quantum group acts amenably on itself.

Proof. Define the map Φ ∶ 𝓁∞(𝔾)⊗𝓁∞(𝔾) → 𝓁∞(𝔾) by Φ(𝐴) = (id⊗ 𝜀)(𝐴),
in which 𝜀 is the unit in 𝓁1(𝔾). Then

Φ◦∆ = (id⊗ 𝜀)∆ = id.
So, the map Φ is a left inverse of the co-multiplication ∆ and therefore the map
𝐸∆ ∶= ∆◦Φ is a conditional expectation from 𝓁∞(𝔾)⊗𝓁∞(𝔾) onto ∆(𝓁∞(𝔾)).
Moreover, for any 𝐴 ∈ 𝓁∞(𝔾)⊗𝓁∞(𝔾) we have

(id⊗𝐸∆)(∆⊗ id)(𝐴) = (id⊗ ∆◦Φ)(∆⊗ id)(𝐴)
= (id⊗ ∆)(id⊗ id⊗ 𝜀)(∆⊗ id)(𝐴)

= (id⊗ ∆)∆
(
(id⊗ 𝜀)(𝐴)

)

= (∆⊗ id)
(
(∆◦Φ)(𝐴)

)

= (∆⊗ id)𝐸∆(𝐴).

Hence, 𝐸∆ ∶ (𝓁∞(𝔾)⊗𝓁∞(𝔾),∆⊗ id)→ (∆(𝓁∞(𝔾)),∆⊗ id) is an equivariant
conditional expectation. □

For a discrete quantum group𝔾, the restriction of the extended comultiplica-
tion ∆𝓁 to 𝐿∞(�̂�) provides an action of 𝔾 on the von Neumann algebra 𝐿∞(�̂�).
We next prove that in the case of Kac algebras, amenability of the latter action
is equivalent to amenability of the Kac algebra 𝔾.
Theorem 5.2. Let 𝔾 be a discrete Kac algebra. Then 𝔾 is amenable if and only
if the canonical action ∆𝓁|𝐿∞(�̂�)

∶ 𝔾↷ 𝐿∞(�̂�) is amenable.

Proof. Since𝔾 is aKac algebra, by [11, Corollary 3.9], the tracialHaar state �̂� of
the dual quantum group �̂� is invariant with respect to the action ∆𝓁|𝐿∞(�̂�)

. Hence

by Theorem 4.7, amenability of the action ∆𝓁|𝐿∞(�̂�)
is equivalent to amenability

of 𝔾. □

Remark 5.3. In [7], Crann defined a notion of inner amenability for quantum
groups as the existence of an invariant state for the canonical action∆𝓁|𝐿∞(�̂�)

∶ 𝔾↷

𝐿∞(�̂�). The same proof shows that Theorem 5.2 holds for the inner amenable
quantum group 𝔾 in the sense of Crann.
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In the next result, we state the non-commutative version of Zimmer’s classi-
cal result [24, Theorem 5.2] that all Poisson boundaries are amenable 𝐺-space.
Let us first recall the definition of non-commutative Poisson boundaries in the
sense of Izumi [12]. Let 𝜇 ∈ 𝓁1(𝔾) be a state. Recall in this case Φ𝜇(𝑥) =
(𝜇⊗id)∆(𝑥) is a unital, normal completely positivemap on𝓁∞(𝔾). The space of
fixed pointℋ𝜇 = {𝑥 ∈ 𝓁∞(𝔾) ∶ Φ𝜇(𝑥) = 𝑥} is a weak*-closed operator system
in 𝓁∞(𝔾). There is a conditional expectation ℰ𝜇 from 𝓁∞(𝔾) ontoℋ𝜇. Then the
corresponding Choi–Effros product induces the von Neumann algebraic struc-
ture on ℋ𝜇 [4]. This von Neumann algebra is called non-commutative Pois-
son boundary with respect to 𝜇. For more details on non-commutative Poisson
boundaries, we refer the reader to [14] and [15]. By [15, Proposition 2.1], the
restriction of∆ toℋ𝜇 induces a left action∆𝜇 of𝔾 on the vonNeumann algebra
ℋ𝜇. We prove this action is amenable.

Theorem 5.4. Let 𝔾 be a discrete quantum group and let 𝜇 ∈ 𝓁1(𝔾) be a state.
The left action ∆𝜇 of 𝔾 on the Poisson boundaryℋ𝜇 is amenable.

Proof. By Proposition 5.1, the action of 𝔾 on itself is amenable. Since the con-
ditional expectation ℰ𝜇 ∶ 𝓁∞(𝔾)→ℋ𝜇 is equivariant (see e.g. the proof of [15,
Proposition 2.1]), a similar argument to Proposition 4.5 (2) shows that the left
action ∆𝜇 is amenable. □

6. Amenable actions and crossed products: Kac algebra case
In this section, we characterize amenability of actions in term of von Neu-

mann algebra crossed products. Classically, the action 𝛼 ∶ 𝐺 ↷ 𝑋 of a dis-
crete group 𝐺 on a standard probability space (𝑋, 𝜈) is amenable if and only if
the crossed product 𝐿∞(𝑋, 𝜈) ⋉𝛼 𝐺 is injective [25, Theorem 2.1]. Delaroche
extended this result to the action of locally compact groups on arbitrary von
Neumann algebras [2, Proposition 4.1]. We prove a non-commutative version
of this result in the case of discrete Kac algebra actions on von Neumann al-
gebras. This, in particular, generalizes a part of Theorem 4.5 in [17] and also
[18, Corollary 3.17] which establish the equivalence between amenability of a
discrete Kac algebra 𝔾 and injectivity of 𝐿∞(�̂�). The case of actions of general
discrete quantumgroups on vonNeumann algebras is discussed in next section.

Lemma 6.1. Let 𝛼 ∶ 𝔾 ↷ 𝑁 be an action of a discrete Kac algbera 𝔾 on a
von Neumann algebra 𝑁 and let𝑀 be a von Neumann subalgebra of 𝑁 which is
invariant under 𝛼. The following are equivalent:

1. There is an equivariant conditional expectation 𝑃 ∶ (𝑁, 𝛼)→ (𝑀,𝛼).
2. There is a conditional expectation 𝐸 ∶ 𝑁 ⋉𝛼 𝔾→ 𝑀 ⋉𝛼 𝔾.

Proof. (1) ⇒ (2): since 𝑃 ∶ (𝑁, 𝛼) → (𝑀,𝛼) is an equivariant conditional ex-
pectation, it follows 𝐸 = id⊗𝑃 is a conditional expectation from 𝐵(𝓁2(𝔾))⊗𝑁
onto 𝐵(𝓁2(𝔾))⊗𝑀 such that

(𝜎 ⊗ id)(id⊗ 𝛼)𝐸 = (id⊗𝐸)(𝜎 ⊗ id)(id⊗ 𝛼),
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where 𝜎 is the flip map. therefore the map id ⊗ 𝐸 is a conditional expecta-
tion from 𝓁∞(𝔾)⊗𝐵(𝓁2(𝔾))⊗𝑁 onto 𝓁∞(𝔾)⊗𝐵(𝓁2(𝔾))⊗𝑀. Recall the left
action 𝛽 of 𝔾 on 𝐵(𝓁2(𝔾))⊗𝑁, defined in Theorem 2.2. One can see that
for any 𝑦 ∈ 𝐵(𝓁2(𝔾))⊗𝑁 we have 𝛽◦𝐸(𝑦) = (id ⊗ 𝐸)𝛽(𝑦). In particular, if
𝑦 ∈ (𝐵(𝓁2(𝔾))⊗𝑁)𝛽 we have

𝛽◦𝐸(𝑦) = (id⊗𝐸)𝛽(𝑦) = (id⊗𝐸)(1⊗ 𝑦) = 1⊗𝐸(𝑦),

which implies 𝐸(𝑦) ∈ (𝐵(𝓁2(𝔾))⊗𝑀)𝛽 . Thus in view of Theorem 2.2, the re-
striction of 𝐸 is a conditional expectation from 𝑁 ⋉𝛼 𝔾 onto𝑀 ⋉𝛼 𝔾.
(2) ⇒ (1): suppose 𝐸 ∶ 𝑁 ⋉𝛼 𝔾 → 𝑀 ⋉𝛼 𝔾 is the conditional expectation
and �̂� is the tracial Haar state of the dual Kac algebra �̂�. There is a canonical
conditional expectation 𝐸�̂� from𝑀 ⋉𝛼 𝔾 onto 𝛼(𝑀) defined by

𝐸�̂�(𝑥) = (�̂� ⊗ id)�̂�(𝑥), for all𝑥 ∈ 𝑀 ⋉𝛼 𝔾. (11)

We claim that𝐸�̂�◦𝐸 ∶ (𝑁⋉𝛼𝔾,∆⊗id)→ (𝛼(𝑀),∆⊗id) is an equivariant condi-
tional expectation. Since the left fundamental unitary𝑊 lies in𝓁∞(𝔾)⊗𝐿∞(�̂�),
for all 𝑧 ∈ 𝑁 ⋉𝛼 𝔾 we have

(id⊗𝐸)(∆⊗ id)(𝑧) = (id⊗𝐸)(𝑊∗
12𝑧23𝑊12)

= 𝑊∗
12(1⊗𝐸(𝑧))𝑊12

= (∆⊗ id)(𝐸(𝑧)).

Therefore, in order to conclude the claim, it is sufficient to show that the canon-
ical conditional expectation 𝐸�̂� ∶ (𝑀 ⋉𝛼 𝔾,∆⊗ id) → (𝛼(𝑀),∆⊗ id) is equi-
variant. First, consider �̂� ∈ 𝐿∞(�̂�). Then

(id⊗𝐸�̂�)(∆⊗ id)(�̂� ⊗ 1) = (id⊗𝐸�̂�)(𝑊∗
12(1⊗ �̂� ⊗ 1)𝑊12)

= (id⊗ �̂� ⊗ id)(id⊗ �̂�)(𝑊∗
12(1⊗ �̂� ⊗ 1)𝑊12)

= (id⊗ �̂� ⊗ id⊗ id)(id⊗ ∆̂op ⊗ id)(𝑊∗
12(1⊗ �̂� ⊗ 1)𝑊12)

= (id⊗ id⊗ �̂� ⊗ id)(id⊗ ∆̂⊗ id)(𝑊∗
12(1⊗ �̂� ⊗ 1)𝑊12)

= (id⊗ id⊗ �̂� ⊗ id)(𝑊∗
13(1⊗ 1⊗ �̂� ⊗ 1)𝑊13).

Now, consider a complete orthonormal system {𝑒𝑗}𝑗∈𝐽 . Then similarly to the
proof of [18, Corollary 3.17], for any normal states 𝑓 ∈ 𝓁1(𝔾) and 𝜔 ∈ 𝑀∗, and
any vector state 𝜔𝜉 ∈ 𝒯(𝓁2(𝔾)) we get:

⟨𝜔𝜉 ⊗ 𝑓 ⊗ 𝜔, (id⊗𝐸�̂�)(∆⊗ id)(�̂� ⊗ 1)⟩ = 𝑓(1)𝜔(1)⟨𝜔𝜉 ⊗ �̂�,𝑊∗(1⊗ �̂�)𝑊⟩
= ⟨ �̂�, (𝜔𝜉 ⊗ id)(𝑊∗(1⊗ �̂�)𝑊)⟩

= ⟨ �̂�,
∑

𝑗∈𝐽
(𝜔𝜉,𝑒𝑗 ⊗ id)(𝑊)∗�̂�(𝜔𝜉,𝑒𝑗 ⊗ id)(𝑊)⟩

=
∑

𝑗∈𝐽
⟨ �̂�, (𝜔𝜉,𝑒𝑗 ⊗ id)(𝑊)∗�̂�(𝜔𝜉,𝑒𝑗 ⊗ id)(𝑊)⟩

=
∑

𝑗∈𝐽
⟨ �̂�, (𝜔𝜉,𝑒𝑗 ⊗ id)(𝑊)(𝜔𝜉,𝑒𝑗 ⊗ id)(𝑊)∗�̂�⟩
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=
∑

𝑗∈𝐽
⟨ �̂�, (𝜔𝐽𝜉,𝐽𝑒𝑗 ⊗ id)(𝑊)∗(𝜔𝐽𝜉,𝐽𝑒𝑝 ⊗ id)(𝑊)�̂�⟩

= 𝜔𝐽𝜉(1)�̂�(�̂�)
= 𝜔𝜉(1)�̂�(�̂�),

where 𝐽 is the modular conjugation for the tracial Haar state �̂�. So, for any
�̂� ∈ 𝐿∞(�̂�) we have:

(id⊗𝐸�̂�)(∆⊗ id)(�̂� ⊗ 1) = �̂�(�̂�)1⊗ 1⊗ 1

= (∆⊗ id)(�̂� ⊗ id⊗ id)(∆̂op(�̂�)⊗ 1)

= (∆⊗ id)(�̂� ⊗ id)
(
�̂�(�̂� ⊗ 1)

)

= (∆⊗ id)𝐸�̂�(�̂� ⊗ 1).

Hence, for any �̂� ∈ 𝐿∞(�̂�) and 𝑥 ∈ 𝑀 we get

(id⊗𝐸�̂�)(∆⊗ id)
(
(�̂� ⊗ 1)𝛼(𝑥)

)
= (id⊗𝐸�̂�)

(
(∆⊗ id)(�̂� ⊗ 1)(∆⊗ id)𝛼(𝑥)

)

= (id⊗𝐸�̂�)
(
(∆⊗ id)(�̂� ⊗ 1)(id⊗ 𝛼)𝛼(𝑥)

)

= (id⊗𝐸�̂�)
(
(∆⊗ id)(�̂� ⊗ 1)

)
(id⊗ 𝛼)𝛼(𝑥)

= (∆⊗ id)
(
𝐸�̂�(�̂� ⊗ 1)

)
(∆⊗ id)𝛼(𝑥)

= (∆⊗ id)𝐸�̂�
(
(�̂� ⊗ 1)𝛼(𝑥)

)
.

Since the crossed product𝑀 ⋉𝛼 𝔾 is generated by {𝓁∞(�̂�)⊗ 𝟏, 𝛼(𝑀)}, it fol-
lows that the conditional expectation 𝐸�̂� is (∆ ⊗ id)-equivariant which com-
pletes the proof of claim. Define the conditional expectation𝑃 ∶= 𝛼−1◦𝐸�̂�◦𝐸◦𝛼
from 𝑁 onto 𝑀. We show that (id ⊗ 𝑃)𝛼 = 𝛼◦𝑃. Since 𝐸�̂�◦𝐸 is equivariant
with respect to the action ∆⊗ id, for all 𝑎 ∈ 𝑁 we have

(id⊗𝐸�̂�◦𝐸)(id⊗ 𝛼)𝛼(𝑎) = (id⊗𝐸�̂�◦𝐸)(∆⊗ id)𝛼(𝑎)
= (∆⊗ id)(𝐸�̂�◦𝐸)𝛼(𝑎)
= (id⊗ 𝛼)◦(𝐸�̂�◦𝐸)(𝛼(𝑎)),

where in the last equality we use that (𝐸�̂�◦𝐸)𝛼(𝑎) ∈ 𝛼(𝑀). Now it follows

(id⊗ 𝑃)𝛼 = (id⊗ 𝛼−1)(id⊗𝐸�̂�◦𝐸)(id⊗ 𝛼)𝛼 = 𝐸�̂�◦𝐸◦𝛼 = 𝛼◦𝑃. □

The following is the non-commutative analogue of the main result of [2] for
discrete Kac algebra actions: (See [2, Theorem 4.2].)

Theorem 6.2. Let 𝛼 ∶ 𝔾↷ 𝑁 be an action of a discrete Kac algebra 𝔾 on a von
Neumann algebra𝑁. The following are equivalent:

1. The action 𝛼 is amenable.
2. There exists a conditional expectation from (𝓁∞(𝔾)⊠𝑁) ⋉∆⊠𝛼 𝔾 onto
(𝟏⊠𝑁)⋉∆⊠𝛼 𝔾.

3. For any extension (𝑀,𝔾, 𝛽) of (𝟏⊠𝑁,𝔾,∆⊠ 𝛼), the pair (𝑀, 𝟏⊠𝑁) is
amenable.
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Proof. (1) ⇒ (2): Suppose that 𝛼 is amenable, then by Proposition 4.6 the pair
(𝓁∞(𝔾)⊠𝑁, 𝟏⊠𝑁) is amenable which means there is an equivariant condi-
tional expectation from (𝓁∞(𝔾)⊠𝑁,∆⊠ 𝛼) onto (𝟏⊠𝑁,∆⊠ 𝛼). Hence, (2)
follows by Lemma 6.1.
(2) ⇒ (3): Suppose that (𝑀,𝔾, 𝛽) is an extension of (𝟏⊠𝑁,𝔾,∆ ⊠ 𝛼), let 𝑞
be a conditional expectation from𝑀 onto 𝟏⊠𝑁. Then id⊗ 𝑞 is a conditional
expectation from 𝐵(𝓁2(𝔾))⊗𝑀 onto 𝐵(𝓁2(𝔾))⊗ (𝟏⊠𝑁), and thus, Theorem
4.8 yields a conditional expectation

𝐸 ∶ (𝓁∞(𝔾)⊠𝑀)⋉∆⊠𝛽 𝔾→ (𝓁∞(𝔾)⊠ (𝟏⊠𝑁))⋉∆⊠𝛽 𝔾.

Moreover, by the assumption there exists a conditional expectation from the
crossed product (𝓁∞(𝔾)⊠𝑁)⋉∆⊠𝛼𝔾 onto (𝟏⊠𝑁)⋉∆⊠𝛼𝔾. Nowby identifying
𝑁 ≅ 𝛼(𝑁) = 1⊠𝑁, it is equivalent to the existence of a conditional expectation
𝐸0 from

(
𝓁∞(𝔾)⊠ (𝟏⊠𝑁)

)
⋉∆⊠𝛽𝔾 onto

(
𝟏⊠ (𝟏⊠𝑁)

)
⋉∆⊠𝛽𝔾. By composing,

we obtain the conditional expectation

𝐸0◦𝐸 ∶ (𝓁∞(𝔾)⊠𝑀)⋉∆⊠𝛽 𝔾→
(
𝟏⊠ (𝟏⊠𝑁)

)
⋉∆⊠𝛽 𝔾.

Hence, from Lemma 6.1, we have an equivariant conditional expectation 𝑄
from (𝓁∞(𝔾)⊠𝑀,∆ ⊠ 𝛽) onto

(
𝟏⊠ (𝟏⊠𝑁),∆ ⊠ 𝛽

)
. Since (𝑀,𝔾, 𝛽) is an

extension of (𝟏⊠𝑁,𝔾,∆ ⊠ 𝛼), the restriction of 𝑄 to 1⊠𝑀 is also a condi-
tional expectation 𝑄0 ∶ 𝛽(𝑀) ≅ 𝟏⊠𝑀 → 𝟏⊠ (𝟏⊠𝑁) ≅ 𝛽(𝟏⊠𝑁) such that
(id⊗𝑄0)(∆⊠𝛽) = (∆⊠𝛽)◦𝑄0. Hence, for any 𝑎 ∈ 𝑀, we have

(id⊗𝑄0)(id⊗ 𝛽)𝛽(𝑎) = (id⊗ 𝛽)𝑄0
(
𝛽(𝑎)

)
.

Now define a conditional expectation 𝑃 ∶= 𝛽−1◦𝑄0◦𝛽 from 𝑀 onto 𝟏⊠𝑁.
Then for all 𝑎 ∈ 𝑀 we have

(id⊗ 𝑃)𝛽(𝑎) = (id⊗ 𝛽−1)(id⊗𝑄0)(id⊗ 𝛽)𝛽(𝑎)

= (id⊗ 𝛽−1)(id⊗ 𝛽)𝑄0
(
𝛽(𝑎)

)

= 𝛽◦𝑃(𝑎),

which implies 𝑃 ∶ (𝑀,𝛽) → (𝟏⊠𝑁,∆⊠ 𝛼) is an equivariant conditional ex-
pectation. Hence, the pair (𝑀, 𝟏⊠𝑁) is amenable.
(3) ⇒ (1): consider the canonical extension (𝓁∞(𝔾)⊠𝑁,𝔾,∆⊠𝛼) of the triple
(𝟏⊠𝑁,𝔾,∆⊠𝛼). Then by the assumption the pair (𝓁∞(𝔾)⊠𝑁, 𝟏⊠𝑁)must
be amenable. Hence, the action 𝛼 is amenable by Proposition 4.6. □

Theorem 6.3. Let 𝛼 ∶ 𝔾↷ 𝑁 be an action of a discrete Kac algebra 𝔾 on a von
Neuamnn algebra𝑁. Then the following are equivalent:

1. The action 𝛼 is amenable.
2. There is a conditional expectation from 𝐵(𝓁2(𝔾))⊗𝑁 onto𝑁 ⋉𝛼 𝔾.



AMENABLE ACTIONS OF DISCRETE QUANTUM GROUPS 1159

Proof. By Theorem 4.8, there is an isomorphism from (𝓁∞(𝔾)⊠𝑁) ⋉∆⊠𝛼 𝔾
onto 𝐵(𝓁2(𝔾))⊗𝑁 which maps (𝟏⊠𝑁)⋉∆⊠𝛼𝔾 onto𝑁⋉𝛼𝔾. So, the theorem
follows by the equivalence of (1) and (2) in Theorem 6.2. □

Corollary 6.4. Let 𝛼 ∶ 𝔾↷ 𝑁 be an action of a discrete Kac algebra 𝔾 on a von
Neuamnn algebra𝑁. Then the following are equivalent:

1. The von Neumann algebra𝑁 is injective and the action 𝛼 is amenable.
2. The crossed product𝑁 ⋉𝛼 𝔾 is injective.

Proof. (1) ⇒ (2): if 𝑁 is injective then so is 𝐵(𝓁2(𝔾))⊗𝑁. If 𝛼 is amenable,
Theorem 6.3 yields a conditional expectation from 𝐵(𝓁2(𝔾))⊗𝑁 onto the
crossed product 𝑁 ⋉𝛼 𝔾. Since 𝐵(𝓁2(𝔾))⊗𝑁 is injective, 𝑁 ⋉𝛼 𝔾 is also in-
jective.
(2) ⇒ (1): since the crossed product 𝑁 ⋉𝛼 𝔾 is injective, there is a conditional
expectation from 𝐵(𝓁2(𝔾))⊗𝑁 onto 𝑁 ⋉𝛼 𝔾. Therefore, by Theorem 6.3, the
action 𝛼 is amenable. Moreover, since there is always the canonical conditional
expectation from 𝑁 ⋉𝛼 𝔾 on 𝛼(𝑁), it follows that 𝛼(𝑁) and equivalently 𝑁, is
injective. □

7. Amenable actions and crossed products: general case
In this section, we generalize the duality of Corollary 6.3 to the setting of

general discrete quantum group actions. To this end, we basically need to show
Lemma 6.1 for general discrete quantum groups. Recall that in the proof of the
implication (2) to (1) of Lemma 6.1, we construct an equivariant conditional
expectation from (𝛼(𝑁),∆⊗ id) onto (𝛼(𝑀),∆⊗ id) by composing the restric-
tion 𝐸|𝛼(𝑁) with the canonical conditional expectation 𝐸�̂�. In the case of discrete
Kac algebras, 𝐸�̂� is automatically equivariant with respect to the action ∆⊗ id.
But this is no longer the case in the general setting of discrete quantum group
actions, since the Haar state �̂� is not a trace. To overcome this issue, we impose
an extra assumption on the conditional expectation 𝐸 ∶ 𝑁 ⋉𝛼 𝔾 → 𝑀 ⋉𝛼 𝔾
to be equivariant with respect to the dual action �̂�. This would imply that 𝐸
maps 𝛼(𝑁) onto 𝛼(𝑀), hence use of the canonical conditional expectation 𝐸�̂�
is no longer necessary. This is inspired by the work of Crann and Neufang in
[8], where they proved a characterization of amenability of the general locally
compact quantum group𝔾 in terms of covariant injectivity of the dual vonNeu-
mann algebra 𝐿∞(�̂�).

Lemma 7.1. Let 𝔾 be a discrete quantum group. Then for any 𝑦 ∈ 𝐵(𝓁2(𝔾)) we
have

(id⊗ ∆𝑟)∆̂op(𝑦) = (∆̂op ⊗ id)∆𝑟(𝑦).

Proof. Let 𝑥 ∈ 𝓁∞(𝔾) and �̂� ∈ 𝐿∞(�̂�). Since the fundamental unitaries �̂�op

and 𝑉 lie in 𝐿∞(�̂�)⊗𝓁∞(𝔾)′ and 𝐿∞(�̂�)
′
⊗𝓁∞(𝔾), respectively, we have

∆̂op(𝑥) = 1⊗ 𝑥 and ∆𝑟(�̂�) = �̂� ⊗ 1.
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Therefore,

(id⊗ ∆𝑟)∆̂op(𝑥) = (id⊗ ∆𝑟)(1⊗ 𝑥) = 1⊗ ∆𝑟(𝑥) = (∆̂op ⊗ id)∆𝑟(𝑥),

and

(id⊗ ∆𝑟)∆̂op(�̂�) = ∆̂op(�̂�)⊗ 1 = (∆̂op ⊗ id)(�̂� ⊗ 1) = (∆̂op ⊗ id)∆𝑟(�̂�).

Since the co-multiplications ∆𝑟 and ∆̂op are homomorphisms, and the linear
span of {𝑥�̂� ∶ 𝑥 ∈ 𝓁∞(𝔾), �̂� ∈ 𝐿∞(�̂�)} is weak* dense in 𝐵(𝓁2(𝔾)) [21, Proposi-
tion 2.5], we obtain the desired equality on 𝐵(𝓁2(𝔾)). □

In the following, we use the same idea as [6, Proposition 4.2] to show an
automatic equivariant property with respect to the dual action.

Proposition 7.2. Let𝔾 be a discrete quantumgroup and let𝑁 be a vonNeumann
algebra. Then any (∆𝑟 ⊗ id)-equivariant map on 𝐵(𝓁2(𝔾))⊗𝑁 is automatically
(∆̂op ⊗ id)-equivariant.

Proof. Let Φ be an equivariant map on (𝐵(𝓁2(𝔾))⊗𝑁,∆𝑟 ⊗ id). Consider
normal states 𝜏, 𝜔 ∈ 𝒯(𝓁2(𝔾)), 𝑓 ∈ 𝓁1(𝔾) and 𝑔 ∈ 𝑁∗. Then for any 𝑥 ∈
𝐵(𝓁2(𝔾))⊗𝑁 we have

⟨𝑓 ⊗ 𝜏⊗𝜔 ⊗ 𝑔, (id⊗ ∆𝑟 ⊗ id)(id⊗ Φ)(∆̂op ⊗ id)(𝑥)⟩

= ⟨ 𝜏 ⊗ 𝜔 ⊗ 𝑔, (∆𝑟 ⊗ id)Φ
(
(𝑓 ⊗ id⊗ id)(∆̂op ⊗ id)(𝑥)

)
⟩

= ⟨ 𝜏 ⊗ 𝜔 ⊗ 𝑔, (id⊗ Φ)
[
(∆𝑟 ⊗ id)

(
(𝑓 ⊗ id⊗ id)(∆̂op ⊗ id)(𝑥)

)]
⟩

= ⟨𝜔 ⊗ 𝑔,Φ
[
(𝜏 ⊗ id⊗ id)(∆𝑟 ⊗ id)

(
(𝑓 ⊗ id⊗ id)(∆̂op ⊗ id)(𝑥)

)]
⟩

= ⟨𝜔 ⊗ 𝑔,Φ
[
(𝑓 ⊗ 𝜏 ⊗ id⊗ id)(id⊗ ∆𝑟 ⊗ id)

(
(∆̂op ⊗ id)(𝑥)

)]
⟩

= ⟨𝜔 ⊗ 𝑔,Φ
[
(𝑓 ⊗ 𝜏 ⊗ id⊗ id)(∆̂op ⊗ id⊗ id)

(
(∆𝑟 ⊗ id)(𝑥)

)]
⟩

= ⟨𝜔 ⊗ 𝑔, (𝑓 ⊗ 𝜏 ⊗ id⊗ id)(∆̂op ⊗ id⊗ id)Φ
(
(∆𝑟 ⊗ id)(𝑥)

)
⟩

= ⟨𝑓 ⊗ 𝜏 ⊗ 𝜔 ⊗ 𝑔, (∆̂op ⊗ id⊗ id)(∆𝑟 ⊗ id)
(
Φ(𝑥)

)
⟩

= ⟨𝑓 ⊗ 𝜏 ⊗ 𝜔 ⊗ 𝑔, (id⊗ ∆𝑟 ⊗ id)(∆̂op ⊗ id)
(
Φ(𝑥)

)
⟩.

Since {(𝜏 ⊗ 𝜔)∆𝑟 ∶ 𝜏, 𝜔 ∈ 𝒯(𝓁2(𝔾))} spans a dense subset of 𝒯(𝓁2(𝔾)), see (2),
it follows that

(id⊗ Φ)
(
(∆̂op ⊗ id)(𝑥)

)
= (∆̂op ⊗ id)Φ(𝑥). □

Corollary 7.3. Let 𝛼 ∶ 𝔾↷ 𝑁 be an action of a discrete quantum group 𝔾 on a
von Neumann algebra 𝑁 and let𝑀 be a von Neumann subalgebra of 𝑁 which is
invariant under𝛼. If𝐸 ∶ (𝑁⋉𝛼𝔾,∆𝑟⊗id)→ (𝑀⋉𝛼𝔾,∆𝑟⊗id) is an equivariant
conditional expectation, then 𝐸 is equivariant with respect to the dual action �̂�.

Proof. Note that the dual action �̂� is the restriction of ∆̂op ⊗ id to the crossed
product𝑁 ⋉𝛼 𝔾 ⊆ 𝐵(𝓁2(𝔾))⊗𝑁. Hence, Proposition 7.2 implies that the con-
ditional expectation 𝐸 is equivariant with respect to �̂�. □
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Lemma 7.4. Let 𝛼 ∶ 𝔾 ↷ 𝑁 be an action of a discrete quantum group 𝔾 on a
von Neumann algebra 𝑁 and let𝑀 be a von Neumann subalgebra of 𝑁 which is
invariant under 𝛼. The following are equivalent:

1. There is an equivariant conditional expectation 𝑃 ∶ (𝑁, 𝛼)→ (𝑀,𝛼).
2. There is an equivariant conditional expectation

𝐸 ∶ (𝑁 ⋉𝛼 𝔾, �̂�)→ (𝑀 ⋉𝛼 𝔾, �̂�).

Proof. (1) ⇒ (2): Similarly as in the proof of Lemma 6.1, we see that the re-
striction of id ⊗ 𝑃 ∶ 𝐵(𝓁2(𝔾))⊗𝑁 → 𝐵(𝓁2(𝔾))⊗𝑀 to the crossed product
𝑁⋉𝛼 𝔾 yields a conditional expectation 𝐸 from𝑁⋉𝛼 𝔾 onto𝑀⋉𝛼 𝔾. It is easy
to see that 𝐸 is (∆𝑟 ⊗ id)-equivariant. Thanks to Corollary 7.3, the conditional
expectation 𝐸 is equivariant with respect to the dual action �̂�.
(2) ⇒ (1): Suppose that 𝐸 ∶ (𝑁 ⋉𝛼 𝔾, �̂�) → (𝑀 ⋉𝛼 𝔾, �̂�) is an equivairant
conditional expectation. Then for all 𝑥 ∈ 𝑁, we have

1𝐿∞(�̂�) ⊗𝐸(𝛼(𝑥)) = (id⊗𝐸)
(
1𝐿∞(�̂�) ⊗ 𝛼(𝑥)

)

= (id⊗𝐸)◦�̂�(𝛼(𝑥))
= �̂�◦𝐸(𝛼(𝑥)).

It follows that 𝐸(𝛼(𝑥)) is in the fixed point algebra of the dual action �̂� on𝑀⋉𝛼
𝔾. Hence, 𝐸(𝛼(𝑁)) ⊆ 𝛼(𝑀). Now define the conditional expectation 𝑃 ∶=
𝛼−1◦𝐸◦𝛼 from 𝑁 onto 𝑀. Similarly to the proof of Lemma 6.1, we show that
(id⊗𝑃)𝛼 = 𝛼◦𝑃. Since the fundamental unitary𝑊 lies in 𝓁∞(𝔾)⊗𝐿∞(�̂�), it
follows that the condtional expectation 𝐸 is (∆⊗ id)-equivariant. Now for any
𝑥 ∈ 𝑁 we have

(id⊗𝐸)(id⊗ 𝛼)𝛼(𝑥) = (id⊗𝐸)(∆⊗ id)𝛼(𝑥)
= (∆⊗ id)𝐸(𝛼(𝑥))
= (id⊗ 𝛼)𝐸(𝛼(𝑥)),

where in the last equality we use that 𝐸(𝛼(𝑥)) ∈ 𝛼(𝑀). Now it follows

(id⊗ 𝑃)𝛼 = (id⊗ 𝛼−1)(id⊗𝐸)(id⊗ 𝛼)𝛼 = 𝐸◦𝛼 = 𝛼◦𝑃. □

The equivalence of (1) and (3) in the following result is a non-commutative
analogue of Zimmer’s classical result [25, Theorem. 2.1].

Theorem 7.5. Let 𝛼 ∶ 𝔾 ↷ 𝑁 be an action of a discrete quantum group 𝔾 on a
von Neumann algebra𝑁. The following are equivalent:

1. The action 𝛼 is amenable.
2. There is an equivariant conditional expectation

𝐸 ∶
(
(𝓁∞(𝔾)⊠𝑁)⋉∆⊠𝛼 𝔾, ∆̂⊠𝛼

)
→

(
(𝟏⊠𝑁)⋉∆⊠𝛼 𝔾, ∆̂⊠𝛼

)
.

3. There is an equivariant conditional expectation

𝐸 ∶
(
𝐵(𝓁2(𝔾))⊗𝑁, ∆̂op ⊗ id)→

(
𝑁 ⋉𝛼 𝔾, �̂�

)
.
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Proof. By Theorem 4.8, the statements (2) and (3) are equivalent. To con-
clude (1) and (2), thanks to Proposition 4.6 amenability of 𝛼 is equivalent to
amenability of the pair (𝓁∞(𝔾)⊠𝑁, 𝟏⊠𝑁) which by Lemma 7.4 is equiva-
lent to the existence of a ∆̂⊠𝛼-equivariant conditional expectation 𝐸 from
(𝓁∞(𝔾)⊠𝑁)⋉∆⊠𝛼 𝔾 onto (𝟏⊠𝑁)⋉∆⊠𝛼 𝔾 □

Remark 7.6. Since the trivial action tr ∶ 𝔾 ↷ ℂ is amenable if and only if 𝔾 is
amenable, and ℂ⋉tr 𝔾 = 𝐿∞(�̂�), the equivalence of (1) and (3) in Theorem 7.5
in fact gives a generalization of the main result of [8].

Suppose that 𝛽 ∶ 𝔾↷ 𝐾 is an action of a discrete quantum group𝔾 on a von
Neumann algebra 𝐾. We say that 𝐾 is 𝔾-injective if for every unital completely
isometric equivariant map 𝜄 ∶ (𝑀,𝛼1) → (𝑁, 𝛼2) and every unital completely
positive equivariant map Ψ ∶ (𝑀,𝛼1) → (𝐾, 𝛽) there is a unital completely
positive equivariant map Ψ ∶ (𝑁, 𝛼2)→ (𝐾, 𝛽) such that Ψ◦𝜄 = Ψ.

Corollary 7.7. Let 𝛼 ∶ 𝔾↷ 𝑁 be an action of a discrete quantum group 𝔾 on a
von Neumann algebra𝑁. The following are equivalent:

1. The von Neumann algebra𝑁 is injective and the action 𝛼 is amenable.
2. The crossed product𝑁 ⋉𝛼 𝔾 is �̂�-injective.

Proof. (1)⇒(2): The proof is similar to the proof of Corollary 6.4, only that we
use Theorem 7.5 instead of Theorem 6.3.
(2)⇒(1): Since the crossed product 𝑁 ⋉𝛼 𝔾 is �̂�-injective, the identity map on
the crossed product 𝑁 ⋉𝛼 𝔾 can be extended to an equivariant conditional ex-
pectation from (𝐵(𝓁2(𝔾))⊗𝑁, ∆̂op⊗ id) onto (𝑁⋉𝛼 𝔾, �̂�). Hence, by Theorem
7.5, the action 𝛼 is amenable. Moreover, there is always the canonical condi-
tional expectation from 𝑁 ⋉𝛼 𝔾 onto 𝛼(𝑁), it follows that 𝑁 is injective. □

Corollary 7.8 ([15], Corollary 2.5). Let 𝔾 be a discrete quantum group and let
𝜇 ∈ 𝓁1(𝔾) be a state. The von Neumann algebra crossed productℋ𝜇 ⋉∆𝜇 𝔾 is
injective.

Proof. By Theorem 5.4, the action of 𝔾 on its Poisson boundaries is always
amenable, and therefore the result follows by Corollary 7.7. □

Remark 7.9. Crann and Kalantar informed us in a recent unpublished man-
uscript that they have independently defined a notion of Zimmer amenability in
the setting of actions of locally compact quantum groups on von Neumann alge-
bras, where they used a homological approach. But, their definition is equivalent
to Definition 4.1 in the case of discrete quantum groups. They have obtained a
similar result as Corollary 7.7 in that general context.
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