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The 𝑹𝑶(𝑪𝟑)-graded Bredon cohomology of
𝑪𝟑-surfaces in ℤ∕𝟑-coefficients

Kelly Pohland

Abstract. All closed surfaces with a 𝐶𝑝-action where 𝑝 is an odd prime
were classified in [10] using equivariant surgery methods. Using this classifi-
cation in the case 𝑝 = 3, we compute the 𝑅𝑂(𝐶3)-graded Bredon cohomology
of all 𝐶3-surfaces in constant ℤ∕3-coefficients as modules over the cohomol-
ogy of a fixed point. We show that the cohomology of a given 𝐶3-surface is
determined by a handful of topological invariants and is directly determined
by the construction of the surface via equivariant surgery.
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1. Introduction
For a space 𝑋 with an action of a finite group 𝐺, the 𝑅𝑂(𝐺)-graded Bredon

cohomology of 𝑋 is a collection of abelian groups, graded on the Grothendieck
group of real, finite-dimensional, orthogonal 𝐺-representations. Represented
by a genuine equivariant Eilenberg-MacLane spectrum, this ordinary coho-
mology theory provides a direct analogue for singular cohomology in the equi-
variant setting. Increased interest in equivariant homotopy theory has led to
greater efforts to understand the properties of 𝑅𝑂(𝐺)-graded Bredon cohomol-
ogy. In particular, it has inspired many recent Bredon cohomology computa-
tions [1, 2, 3, 4, 5, 6, 8, 11, 12].
Computations in Bredon cohomology often prove quite complicated despite

their fundamental role in equivariant homotopy theory. As a consequence,
most results focus on the case where the group action is by the cyclic group
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of order 2. Our goal for this paper is to present a complete family of compu-
tations in 𝑅𝑂(𝐶3)-graded Bredon cohomology, where 𝐶3 is the cyclic group of
order 3. In particular, we will be computing the cohomology of all closed, con-
nected 2-manifolds with a nontrivial action of𝐶3 inℤ∕3-coefficients. Thework
in this paper uses similar computational methods as those in [5] and serves as
an analogue to her result at the prime 3.
A key ingredient in our computation is a recent equivariant surgery classifi-

cation of 𝐶3-surfaces [10]. This classification provides blueprints for building
𝐶3-surfaces using a handful of surgery methods and informs the construction
of equivariant cofiber sequences. These tools allow us to present the cohomol-
ogy of all 𝐶3-surfaces in two ways. We first provide the answer in terms of their
construction as presented in [10]. We are then able to provide explicit formulas
for the cohomology which depend on a handful of numerical invariants for the
surface.
In order to state the main result, let us begin with some background on

𝑅𝑂(𝐶3)-graded Bredon cohomology. Up to isomorphism, there are two irre-
ducible real representations of 𝐶3, namely the trivial representation (ℝtriv) and
the two-dimensional representation given by rotation of 120◦ about the origin
(ℝ2

rot). So any element of 𝑅𝑂(𝐶3) can be represented asℝ
⊕𝑝−2𝑞
triv ⊕

(
ℝ2
rot
)⊕𝑞

and
is completely determined by the values 𝑝 and 𝑞. As a result, 𝑅𝑂(𝐶3)-graded
Bredon cohomology can be viewed as a bigraded theory, with the cohomology
of a 𝐶3-space𝑋 with coefficients in theMackey functor𝑀 denoted𝐻𝑝,𝑞(𝑋;𝑀).
Note that under this convention, our first grading 𝑝 represents the total topo-
logical dimension of our representation, and 𝑞 represents the number of copies
of ℝ2

rot.
Define 𝕄3 to be the 𝑅𝑂(𝐶3)-graded Bredon cohomology of a fixed point in

ℤ∕3 coefficients. In this paper, we compute the cohomology of all closed, con-
nected, non-trivial 𝐶3-surfaces as𝕄3-modules. It turns out there are only a few
𝕄3-modules which show up in the cohomology of 𝐶3-surfaces. These mod-
ules are𝕄3, the cohomology of the freely rotating circle (𝑆1free), the cohomology
of 𝐶3, and a module called 𝔼𝔹 which denotes the reduced cohomology of the
unreduced suspension of 𝐶3. Since our Bredon theory is bigraded, we can de-
pict each of these modules in the (𝑝, 𝑞)-plane, where the (𝑝, 𝑞)th cohomology
group is depicted above and to the right of the (𝑝, 𝑞)th spot on the grid. Figures
1 and 2 give depictions of these 𝕄3-modules in the (𝑝, 𝑞)-plane. Each dot in
these figures represents a copy of ℤ∕3.
The𝕄3-module structure of these important pieces are discussedmore thor-

oughly in Section 2. For now, we introduce some notation and preview the
main result on the cohomology of 𝐶3-surfaces. Let 𝐹(𝑋) denote the number of
fixed points of a given 𝐶3-surface 𝑋. It is useful to note that when the action
is non-trivial, 𝐹(𝑋) must be finite. We also let 𝛽(𝑋) denote the 𝛽-genus of 𝑋,
defined to be dimℤ∕2𝐻1

sing(𝑋;ℤ∕2). Note that this differs slightly from the stan-
dard notion of genus for orientable surfaces. In particular, if 𝑋 is an orientable



BREDON COHOMOLOGY OF 𝐶3-SURFACES 913

𝑝

𝑞

𝑝

𝑞

∙
∙
∙
∙
∙

∙
∙
∙

∙
∙
∙

∙
∙
∙

∙
∙
∙

∙
∙
∙
∙

∙
∙
∙
∙

∙
∙
∙

∙∙
∙
∙
∙
∙
∙

𝑝

𝑞

∙
∙
∙
∙
∙

∙
∙
∙
∙
∙

∙
∙
∙
∙
∙

∙
∙
∙
∙
∙

Figure 1. The𝕄3-modules𝕄3 (left) and𝐻∗,∗(𝑆1free) (right).
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Figure 2. The𝕄3-modules𝐻∗,∗(𝐶3) (left) and 𝔼𝔹 (right).

surface of genus 𝑔, then 𝛽(𝑋) = 2𝑔. The standard notion of genus and 𝛽-genus
are aligned when 𝑋 is a non-orientable surface.

Theorem 1.1. Let 𝑋 be a free 𝐶3-surface.
(1) If 𝑋 is orientable, then

𝐻∗,∗(𝑋) ≅ 𝐻∗,∗(𝑆1free)⊕ Σ1,0𝐻∗,∗(𝑆1free)⊕
(
Σ1,0𝐻∗,∗(𝐶3)

)⊕ 𝛽(𝑋)−2
3 .

(2) If 𝑋 is non-orientable, then

𝐻∗,∗(𝑋) ≅ 𝐻∗,∗(𝑆1free)⊕
(
Σ1,0𝐻∗,∗(𝐶3)

)⊕ 𝛽(𝑋)−2
3 .
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Theorem 1.2. Let 𝑋 be a 𝐶3-surface with 𝐹(𝑋) > 0.
(1) If 𝑋 is orientable, then

𝐻∗,∗(𝑋) ≅ 𝕄3 ⊕ Σ2,1𝕄3 ⊕ 𝔼𝔹⊕𝐹(𝑋)−2 ⊕
(
Σ1,0𝐻∗,∗(𝐶3)

)⊕ 𝛽(𝑋)−2𝐹(𝑋)+4
3 .

(2) If 𝑋 is non-orientable and 𝐹(𝑋) is even, then

𝐻∗,∗(𝑋) ≅ 𝕄3 ⊕ 𝔼𝔹⊕𝐹(𝑋)−2 ⊕
(
Σ1,0𝐻∗,∗(𝐶3)

)⊕ 𝛽(𝑋)−2𝐹(𝑋)+1
3 .

(3) If 𝑋 is non-orientable and 𝐹(𝑋) is odd, then

𝐻∗,∗(𝑋) ≅ 𝕄3 ⊕ 𝔼𝔹⊕𝐹(𝑋)−1 ⊕
(
Σ1,0𝐻∗,∗(𝐶3)

)⊕ 𝛽(𝑋)−2𝐹(𝑋)+1
3 .

We can quickly observe from these results that given any 𝐶3-surface 𝑋, the
Bredon cohomology of𝑋 is completely determined by 𝛽(𝑋), 𝐹(𝑋), andwhether
or not 𝑋 is orientable. It is important to note however that Bredon cohomol-
ogy does not provide a complete invariant for 𝐶3-surfaces. For example, there
exist spaces in the second and third groups of Theorem 1.2 whose cohomol-
ogy are the same. There are nonisomorphic orientable surfaces with the same
cohomology as well.
There is a potential concern that 𝛽(𝑋)−2𝐹(𝑋)+4

3
and 𝛽(𝑋)−2𝐹(𝑋)+1

3
may not be

integers. However, for any surface 𝑋 with a 𝐶3-action, it must be that 𝐹(𝑋) ≡
2−𝛽(𝑋) (mod 3), so this is not an issue. Consequently, when the action on𝑋 is
free, it must be that 𝛽(𝑋)−2

3
∈ ℤ. A proof of these facts can be found in Chapter

4 of [10].

Remark 1.3. This paper is focused on the computation of 𝑅𝑂(𝐺)-graded coho-
mology for nontrivial 𝐶3-surfaces. If 𝑋 is a trivial 𝐶3-surface, then

𝐻∗,∗(𝑋;ℤ∕3) ≅ 𝕄3 ⊗ℤ∕3 𝐻∗
sing(𝑋;ℤ∕3).

A proof of this fact in the 𝐶2 case can be found in [5], which is straightforward to
adapt for 𝐶3.

1.1. Organizationof thepaper. Westartwith a discussion of important prop-
erties and computational tools for Bredon cohomology in Section 2. Section 3
contains a summary of the classification result in [10]. Computations for the
Bredon cohomology of all surfaces with free 𝐶3-action appear in Section 4, fol-
lowed by cohomology computations for spaces with nonfree action in Section
5.

1.2. Acknowledgements. The work in this paper was a portion of the au-
thor’s thesis project at the University of Oregon. The author would first like to
thank her doctoral advisor Dan Dugger for his invaluable guidance and sup-
port. The author would also like to thank Christy Hazel and Clover May for
countless helpful conversations. This research was partially supported by NSF
grant DMS-2039316.
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2. Premilinaries on 𝑹𝑶(𝑪𝟑)-graded Bredon cohomology
In this section we discuss background knowledge and computational tools

for 𝑅𝑂(𝐺)-graded Bredon Cohomology in the case 𝐺 = 𝐶3. This theory takes
coefficients in aMackey functor, so we begin with a discussion of Mackey func-
tors and define the specific Mackey functor which will be used throughout the
paper. We next discuss notation and terminology related to this theory and in-
troduce several computational tools which will be used throughout this paper.
This section ends with a few small computations which utilize these tools and
introduce some of the key methods used in later computations. A reader who
wishes to learn more about 𝑅𝑂(𝐺)-graded Bredon Cohomology and Mackey
functors can reference [9].

Definition 2.1. AMackey Functor𝑀 for 𝐺 = 𝐶3 is the data of

𝑀(𝐶3) 𝑀(∗)

𝑝∗

𝑝∗

𝑡∗, 𝑡∗

where𝑀(𝐶3) and𝑀(∗) are abelian groups, and 𝑝∗, 𝑝∗, 𝑡∗, and 𝑡∗ are homomor-
phisms that satisfy
i. (𝑡∗)3 = 𝑖𝑑
ii. (𝑡∗)3 = 𝑖𝑑
iii. 𝑡∗𝑝∗ = 𝑝∗
iv. 𝑝∗𝑡∗ = 𝑝∗
v. 𝑡∗𝑡∗ = 𝑖𝑑
vi. 𝑝∗𝑝∗ = 1 + 𝑡∗ + (𝑡∗)2.

In this paper we will be primarily focused on the constant ℤ∕3 Mackey
functor, which is denoted ℤ∕3 and is defined by𝑀(𝐶3) = 𝑀(∗) = ℤ∕3, 𝑝∗ =
𝑡∗ = 𝑡∗ = 𝑖𝑑, and 𝑝∗ = 0.

2.1. Bigraded theory. For a group 𝐺, the 𝑅𝑂(𝐺)-graded Bredon cohomology
of a space with a 𝐺-action is graded on the Grothendieck group of real, orthog-
onal, finite-dimensional 𝐺-representations. In the case 𝐺 = 𝐶3, there are only
two such irreducible 𝐺-representations up to isomorphism. These are the 1-
dimensional trivial representation ℝtriv, and the 2-dimensional representation
given by rotation of the plane about the origin by 120◦. We denote this repre-
sentation by ℝ2

rot.
Given a𝐶3-representation𝑉, we canwrite𝑉 = (ℝtriv)

⊕𝑝−2𝑞⊕
(
ℝ2
rot
)⊕𝑞

where
𝑝 represents the total dimension of 𝑉 and 𝑞 represents the number of copies of
ℝ2
rot in 𝑉. Notice that 𝑉 is completely determined by the values of 𝑝 and 𝑞, so

𝑅𝑂(𝐶3) is a rank 2 free abelian group. In particular, we can write𝐻
𝑝,𝑞
𝐶3
(𝑋;𝑀) to

denote the 𝑉th cohomology group of 𝑋 in this theory. Note that the subscript
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of 𝐶3 will be omitted when the context of 𝐺 = 𝐶3 is understood. We also let
ℝ𝑝,𝑞 denote the𝐶3-representation (ℝtriv)

⊕𝑝−2𝑞⊕
(
ℝ2
rot
)⊕𝑞

and the element (𝑝−
2𝑞)[ℝtriv] + 𝑞[ℝ2

rot] of 𝑅𝑂(𝐶3).
Let 𝑉 be a real 𝐺-representation, and consider the space �̂� obtained by one-

point compactifying 𝑉 by adding a fixed point at infinity. The space �̂� is equiv-
alent to a sphere with a 𝐺-action. We call this a representation sphere and
denote it by 𝑆𝑉 .
We can then form the equivariant suspension

Σ𝑉 ∶= 𝑆𝑉 ∧ 𝑋
where 𝑋 is a 𝐺-space with a fixed base point. If 𝑋 is a free 𝐺-space, we can add
a fixed base point to form the space 𝑋+ ∶= 𝑋 ⊔ {∗}. In general, the notation
𝑋+ represents a 𝐺-space 𝑋 with a disjoint base point which is fixed under the
action of 𝐺.
For every finite-dimensional, real, orthogonal 𝐺-representation 𝑉, we get

natural isomorphisms

Σ𝑉 ∶ �̃�𝛼
𝐺(−;𝑀)→ �̃�𝛼+𝑉

𝐺
(
Σ𝑉(−);𝑀

)

where coefficients are taken in theMackey functor𝑀. Given a cofiber sequence
of based 𝐺-spaces

𝑋
𝑓
,→ 𝑌 → 𝐶(𝑓)

we get a Puppe sequence

𝑋 → 𝑌 → 𝐶(𝑓)→ Σ1𝑋 → Σ1𝑌 → Σ1𝐶(𝑓)→⋯
where 1 represents the 1-dimensional trivial representation of 𝐺. We can then
use the suspension isomorphism to get a long exact sequence

�̃�𝑉
𝐺 (𝑋;𝑀)← �̃�𝑉

𝐺 (𝑌;𝑀)← �̃�𝑉
𝐺 (𝐶(𝑓);𝑀)← �̃�𝑉−1

𝐺 (𝑋;𝑀)← �̃�𝑉−1
𝐺 (𝑌;𝑀)←⋯

for each 𝑉 ∈ 𝑅𝑂(𝐺).
In the case 𝐺 = 𝐶3, we know 𝑉 ≅ ℝ𝑝,𝑞 for some 𝑝 and 𝑞. For brevity, we

use 𝑆𝑝,𝑞 to denote the representation sphere 𝑆ℝ𝑝,𝑞 . Examples of representation
spheres in this case can be found in Figure 3. We use blue to denote points
which are fixed under the action. We additionally use Σ𝑝,𝑞𝑋 to denote the 𝑉th
suspension of a 𝐶3-space 𝑋. This means there are isomorphisms

Σ𝑝,𝑞 ∶ �̃�𝑎,𝑏(𝑋;𝑀)→ �̃�𝑎+𝑝,𝑏+𝑞(Σ𝑝,𝑞𝑋;𝑀)
for all 𝑝, 𝑞 ≥ 0. Moreover, given a cofiber sequence of based 𝐶3-spaces

𝑋
𝑓
,→ 𝑌 → 𝐶(𝑓)

we get a long exact sequence

⋯→ �̃�𝑝,𝑞(𝑌;𝑀)→ �̃�𝑝,𝑞(𝑋;𝑀)
𝑑𝑝,𝑞
,,,→ �̃�𝑝+1,𝑞(𝐶(𝑓);𝑀)→ �̃�𝑝+1,𝑞(𝑌;𝑀)→⋯

for each 𝑞 ∈ ℤ.
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Figure 3. The representation spheres 𝑆0,0, 𝑆2,0, and 𝑆2,1, respectively.
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Figure 4. The ring𝕄3 = 𝐻∗,∗(pt).

2.2. Cohomology of orbits. Here we give the cohomology of 𝐶3∕𝐶3 = pt and
the free orbit 𝐶3 in constant ℤ∕3 coefficients. These computations have been
done in [7], so we just give the ring structure below.
Let𝕄3 denote the ring𝐻∗,∗(pt;ℤ∕3)which is depicted in Figure 4. The (𝑝, 𝑞)

spot on the grid denotes the cohomology group 𝐻𝑝,𝑞(pt;ℤ∕3), and each dot
represents a copy ofℤ∕3. Solid lines indicate ring structure aswe explain below.
We use the convention that the (𝑝, 𝑞)th entry is plotted above and to the right
of the (𝑝, 𝑞)th coordinate.
Wewill refer to the portion above the𝑝-axis as the “top cone” and the portion

below as the “bottom cone”. The top cone is isomorphic to the polynomial ring
ℤ∕3[𝑥, 𝑦, 𝑧]∕(𝑦2)where 𝑥 is a generator ofℤ∕3 in degree (0, 1), 𝑦 is a generator
in degree (1, 1), and 𝑧 is a generator in degree (2, 1). Multiplication by 𝑥 is
denoted by vertical lines, multiplication by 𝑦 is denoted by lines of slope 1, and
multiplication by 𝑧 is denoted by lines of slope 1∕2.
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𝑝

𝑞

𝑝

𝑞

Figure 5. Abbreviated representations of𝕄3 and Σ2,1𝕄3, respectively.

The generator 𝑤 in degree (0,−1) is infinitely divisible by 𝑥 and 𝑧 and is
divisible by 𝑦. For example, there is an element denoted 𝑤

𝑥
in degree (0,−2)

with the property that 𝑥 ⋅ 𝑤
𝑥
= 𝑤. More generally, all nonzero elements of the

bottom cone are of the form ± 𝑤
𝑥𝑘𝑦𝑖𝑧𝓁

for some 𝑘,𝓁 ∈ ℕ and 𝑖 ∈ {0, 1}.
Going forward we will use an abbreviated picture for 𝕄3 which we can see

in Figure 5. Although this simpler version allows us to keep our diagrams from
getting too busy, we are leaving out a lot of information about the ring structure.
Given any 𝐶3-space 𝑋, there is an equivariant map 𝑋 → pt sending every-

thing to a fixed point. We then get an induced map𝕄3 → 𝐻∗,∗(𝑋;ℤ∕3) so that
𝐻∗,∗(𝑋;ℤ∕3) can be made into an 𝕄3-module for any 𝐶3-space 𝑋. In this pa-
per, wewill utilize this structure and compute the cohomology of all non-trivial,
closed 𝐶3-surfaces as modules over𝕄3.
We next consider the free orbit 𝐶3. As an𝕄3-module, the cohomology of 𝐶3

is isomorphic to 𝑥−1𝕄3∕(𝑦, 𝑧). The module𝐻∗,∗(𝐶3;ℤ∕3) is given on the left of
Figure 6 with an abbreviated picture on the right which we will use in future
computations.

2.3. Computational tools.We now introduce several properties relating
𝑅𝑂(𝐶3)-graded Bredon cohomology to singular cohomolgy which will become
extremely useful in later computations.

Lemma 2.2 (The quotient lemma). Let 𝑋 be a finite 𝐶3-CW complex. We have
the following isomorphism for all 𝑝:

𝐻𝑝,0(𝑋;ℤ∕3) ≅ 𝐻𝑝,0(𝑋∕𝐶3;ℤ∕3) ≅ 𝐻𝑝
sing(𝑋∕𝐶3;ℤ∕3).
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Figure 6. The module𝐻∗,∗(𝐶3) (left) and an abbreviated rep-
resentation (right).

A proof for the analogous statement in the 𝐺 = 𝐶2 case is nearly identical to
that of the 𝐶3 case and can be found in [4], but we will briefly summarize the
main idea. The map 𝑋 → 𝑋∕𝐶3 induces 𝐻𝑝,0(𝑋;ℤ∕3)← 𝐻𝑝,0(𝑋∕𝐶3ℤ∕3), and
it is quick to check that this induced map is an isomorphism of integer-graded
equivariant cohomology theories.

Lemma 2.3. Let 𝑌 be a non-equivariant space. The cohomology of the free 𝐶3-
space 𝐶3 × 𝑌 is given by

𝐻∗,∗(𝐶3 × 𝑌;ℤ∕3) ≅ ℤ∕3[𝑥, 𝑥−1]⊗ℤ∕3 𝐻∗
sing(𝑌;ℤ∕3)

as𝕄3-modules.

Proof. For this proof, all coefficients are understood to beℤ∕3, so we will sup-
press the notation.
The equivariant map 𝐶3 × 𝑌 → 𝐶3 sending each copy of 𝑌 to a single point

induces a map𝐻∗,∗(𝐶3)→ 𝐻∗,∗(𝐶3×𝑌). Since𝐻∗,∗(𝐶3) ≅ ℤ∕3[𝑥, 𝑥−1], we can
make 𝐻∗,∗(𝐶3 × 𝑌) a graded algebra over ℤ∕3[𝑥, 𝑥−1]. This means there exist
natural maps

ℤ∕3[𝑥, 𝑥−1]⊗ℤ∕3 𝐻𝑝,0(𝐶3 × 𝑌)→ 𝐻𝑝,𝑞(𝐶3 × 𝑌).
Restricting to the 𝑞th graded piece gives us a map

[
ℤ∕3[𝑥, 𝑥−1]⊗ℤ∕3 𝐻∗,0(𝐶3 × 𝑌)

]𝑞 → 𝐻∗,𝑞(𝐶3 × 𝑌)
which is natural in 𝑌. In particular, this is a map of cohomology theories. We
can quickly see that this map is an isomorphism on both 𝑌 = pt and 𝑌 = 𝐶3,
whichmeans it defines an isomorphism of equivariant cohomology theories for
each 𝑞.
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+ +

Figure 7. The cofiber sequence 𝐶3+ ↪ 𝑆1free+ → 𝑆1,0 ∧ 𝐶3+.

We know from the quotient lemma that 𝐻∗,0(𝐶3 × 𝑌) ≅ 𝐻∗
sing(𝑌) for all 𝑌,

so we have isomorphisms ℤ∕3[𝑥, 𝑥−1]⊗ℤ∕3 𝐻∗
sing(𝑌) → 𝐻∗,∗(𝐶3 × 𝑌) for each

𝑞th graded piece. Together, these give us an isomorphism of𝕄3-modules, and
the result follows. □

Another useful tool to aid us in computations is the forgetful map. Let 𝑋
be a pointed 𝐶3-space. For every integer 𝑞, we have map

�̃�𝑝,𝑞(𝑋;ℤ∕3)
𝜓
,→ �̃�𝑝

sing(𝑋;ℤ∕3).

To understand this map, for each 𝑉 ≅ ℝ𝑝,𝑞, we define 𝐻𝑝,𝑞(𝑋;ℤ∕3) as maps
from 𝑋 to the equivariant Eilenberg-MacLane space 𝐾(ℤ∕3, 𝑝, 𝑞). Forgetting
this equivariant structure leaves us with amap from the underlying topological
space 𝑋 to the Eilenberg-MacLane space 𝐾(ℤ∕3, 𝑝).

Example 2.4. We will now use these tools to compute the cohomology of the
freely rotating cirlce, 𝑆1free. All coefficients are understood to be ℤ∕3, so the
coefficient notation will be suppressed.We begin by constructing a cofiber se-
quence

𝐶3+ ↪ 𝑆1free+ → 𝑆1,0 ∧ 𝐶3+
which is illustrated in Figure 7. This cofiber sequence gives rise to a long exact
sequence on cohomology:

⋯→ �̃�𝑝,𝑞(𝑆1,0 ∧𝐶3+)→ 𝐻𝑝,𝑞(𝑆1free)→ 𝐻𝑝,𝑞(𝐶3)
𝑑𝑝,𝑞
,,,→ �̃�𝑝+1,𝑞(𝑆1,0 ∧𝐶3+)→⋯

for each value of 𝑞. The total differential of these long exact sequences 𝑑 =⨁
𝑝,𝑞 𝑑

𝑝,𝑞 is an𝕄3-modulemap, sowe canunderstand𝐻∗,∗(𝑆1free) by computing
the total differential and solving the extension problem

0→ coker(𝑑)→ 𝐻∗,∗(𝑆1free)→ ker(𝑑)→ 0.
Figure 8 shows all possible nonzero differential maps

𝑑𝑝,𝑞 ∶ 𝐻𝑝,𝑞(𝐶3)→ �̃�𝑝+1,𝑞(𝑆1,0 ∧ 𝐶3+).
Since 𝐻𝑝,𝑞(𝐶3) ≅ ℤ∕3[𝑥, 𝑥−1], we know that 𝐻0,𝑞(𝐶3) and �̃�1,𝑞(𝑆1,0 ∧ 𝐶3+)

must be ℤ∕3 for each 𝑞. By linearity of the differential, 𝑑0,𝑞 is either 0 or an
isomorphism for all 𝑞.
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Figure 8. The differential 𝑑∶ 𝐻∗,∗(𝐶3)→ �̃�∗+1,∗(𝑆1,0 ∧ 𝐶3+).

The quotient lemma tells us that𝐻1,𝑞(𝑆1free) ≅ ℤ∕3, so the map

�̃�1,𝑞(𝑆1,0 ∧ 𝐶3+)→ 𝐻1,𝑞(𝑆1free)

in the long exact sequence must be an isomorphism when 𝑞 = 0. This im-
plies that 𝑑0,0 = 0, and thus the total differential is 0 by linearity. We can then
conclude that𝐻𝑝,𝑞(𝑆1free) = ℤ∕3 when 𝑝 = 0 or 1.
There is still a question of whether or not the extension

coker(𝑑)→ 𝐻∗,∗(𝑆1free)→ ker(𝑑)

is trivial. In particular, we want to know if 𝑦𝑎 is nonzero for 𝑎 ∈ 𝐻0,𝑞(𝑆1free). To
do this, we will instead compute the𝕄3-module structure on

�̃�∗,∗(𝑆1,0 ∧ (𝑆1free+)) ≅ �̃�∗−1,∗(𝑆1free+) ≅ 𝐻∗−1,∗(𝑆1free)

using another cofiber sequence.
The space 𝑆1,0 ∧ (𝑆1free+) can be constructed as the cofiber of the map 𝑆

0,0 →
𝑆2,1. Suspending along the Puppe sequence yields

𝑆2,1 → 𝑆1,0 ∧ (𝑆1free+)→ 𝑆1,0 ∧ 𝑆0,0.

From here we can follow the same procedure of looking at the long exact se-
quence on cohomology and computing its differential

𝑑∶ 𝐻∗,∗(𝑆2,1)→ 𝐻∗+1,∗(𝑆1,0 ∧ 𝑆0,0)

which is shown in the left of Figure 9. We know the group structure of

�̃�∗,∗
(
𝑆1,0 ∧ (𝑆1free+)

)
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𝑝

𝑞

𝑝

𝑞

Figure 9. The map 𝑑∶ Σ2,1𝕄3 → Σ1,0𝕄3 (left) and its kernel
and cokernel (right).

+
+

Figure 10. The cofiber sequence 𝐶3+ → 𝑆0,0 → 𝐸𝐵.

from our previous computations, so it must be the case that 𝑑 maps the gener-
ator of Σ2,1𝕄3 to 𝑧 times the generator of Σ1,0𝕄3. The right of Figure 9 shows
ker(𝑑) and coker(𝑑) in this case. Comparing the information from Figures 8
and 9 (noting that the latter represents a shifted copy of𝐻∗,∗(𝑆1free)), we can see
that

𝐻∗,∗(𝑆1free) ≅ 𝑥−1𝕄3∕(𝑧).

Example 2.5. We next compute the reduced cohomology of the “eggbeater”
space. The eggbeater, denoted by 𝐸𝐵3 (or 𝐸𝐵 when the action of 𝐶3 is under-
stood), can be defined as the cofiber of the map 𝐶3+ → 𝑆0,0 which sends all of
𝐶3 to a fixed point which is not the base point. An illustration of this cofiber
sequence can be found in Figure 10.
To determine the cohomology of 𝐸𝐵, we will instead consider the cofiber

sequence
𝐸𝐵 ↪ 𝑆2,1 → 𝑆2,0 ∧ 𝐶3+

which is depicted in Figure 11. We can extend this via the Puppe sequence to
get another cofiber sequence

𝑆1,0 ∧ 𝐶3+ → 𝐸𝐵 → 𝑆2,1.
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Figure 11. The cofiber sequence 𝐸𝐵 ↪ 𝑆2,1 → 𝑆2,0 ∧ 𝐶3+.

𝑝

𝑞

𝑝

𝑞

Figure 12. The differential 𝑑0,0 (left), and ker(𝑑) and coker(𝑑) (right).

Thus we get a long exact sequence on cohomology

⋯→ �̃�𝑝,𝑞(𝑆1,0 ∧ 𝐶3+)→ �̃�𝑝,𝑞(𝐸𝐵)→ �̃�𝑝,𝑞(𝑆2,1)
𝑑
,→ �̃�𝑝+1,𝑞(𝑆1,0 ∧ 𝐶3+)⋯

which can be understood by analyzing its total differential

𝑑𝑝,𝑞 ∶ �̃�𝑝,𝑞(𝑆1,0 ∧ 𝐶3+)→ �̃�𝑝+1,𝑞(𝑆2,1)
for all (𝑝, 𝑞). The differential 𝑑1,0 is depicted in Figure 12. Since the total dif-
ferential

⨁
𝑝,𝑞 𝑑

𝑝,𝑞 is an𝕄3-module map and �̃�𝑝,𝑞(𝑆1,0∧𝐶3+) = 0when 𝑝 ≠ 1,
we only need to compute 𝑑1,0.
Observe that 𝐸𝐵∕𝐶3 ≃ 𝑝𝑡, so using the quotient lemma we know that

�̃�𝑝,0(𝐸𝐵) ≅ �̃�𝑝
sing(𝐸𝐵∕𝐶3) ≅ �̃�𝑝

sing(pt).

So �̃�𝑝,0(𝐸𝐵) = 0 for all 𝑝. It then must be the case that 𝑑1,0 is an isomorphism.
By linearity, we have that 𝑑1,𝑞 is an isomorphism for all 𝑞 ≤ 0. We next want to
understand the extension problem

0→ coker(𝑑)→ �̃�𝑝,𝑞(𝐸𝐵)→ ker(𝑑)→ 0.
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Figure 13. The𝕄3-module 𝔼𝔹 (left) with abbreviated repre-
sentation (right).

Since coker(𝑑) ⊆ �̃�𝑝,𝑞(𝐸𝐵), the module structure of coker(𝑑) is preserved. The
extension here is nontrivial which we can see by going through a similar com-
putation with the cofiber sequence 𝑆0,0 → 𝐸𝐵 → 𝑆1,0 ∧ (𝐶3+). In the end, we
can think of the𝕄3-module structure on �̃�∗,∗(𝐸𝐵) as generated by elements 𝛼
in degree (2, 1) and 𝛽 in degree (1, 1)with the relations 𝑦𝛽 = 0 and 𝑧𝛽 = 𝑦𝛼. A
more complete picture of this module structure is depicted on the left of Figure
13. For brevity, we will use the representation of �̃�∗,∗(𝐸𝐵;ℤ∕3) shown to the
right of Figure 13.

Going forward, we will let 𝔼𝔹 represent the𝕄3-module �̃�∗,∗(𝐸𝐵;ℤ∕3).

Example 2.6. Let𝑁1[1] denote the 𝐶3-surface depicted in Figure 14. Note that
the underlying topological space isℝ𝑃2, sometimes denoted by𝑁1. To compute
the cohomology of this surface, let us consider the cofiber sequence

𝑆1free+ ↪ 𝑁1[1]→ 𝑆2,1

which is illustrated in Figure 15. Thus we have the following long exact se-
quence on cohomology

⋯→ �̃�𝑝,𝑞(𝑆2,1)→ 𝐻𝑝,𝑞(𝑁1[1])→ 𝐻𝑝,𝑞(𝑆1free)
𝑑𝑝,𝑞
,,,→ �̃�𝑝+1,𝑞(𝑆2,1)→⋯

As in the previous examples, in order to compute 𝐻𝑝,𝑞(𝑁1[1]) we need to un-
derstand the differential maps

𝑑𝑝,𝑞 ∶ 𝐻𝑝,𝑞(𝑆1free)→ �̃�𝑝+1,𝑞(𝑆2,1)
for each (𝑝, 𝑞). We can use the quotient lemma to compute 𝑑1,0 which will
then determine the value of all other possible nonzero differential maps. The
differential 𝑑1,0 is depicted in Figure 16.
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Figure 14. The space 𝑁1[1] whose underlying non-
equivariant surface is ℝ𝑃2.

+ +

Figure 15. The cofiber sequence 𝑆1free+ ↪ 𝑁1[1]+ → 𝑆2,1.

𝑝

𝑞

𝑝

𝑞

Figure 16. The differential 𝑑1,0 (left), and ker(𝑑) and coker(𝑑) (right).

We can observe that 𝑁1[1]∕𝐶3 ≅ ℝ𝑃2. Recall 𝐻𝑝
sing(ℝ𝑃

2;ℤ∕3) ≅ ℤ∕3 when
𝑝 = 0, and it is 0 for all other values of 𝑝. This implies the differential 𝑑1,0must
be an isomorphism. The 𝕄3-module structure of 𝐻∗,∗(𝑆1free) then guarantees
that 𝑑1,𝑞 is an isomorphism for all 𝑞 ≤ 0. We similarly find that 𝑑0,𝑞 must be an
isomorphism for 𝑞 < 0.
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Now we are left to solve the extension problem of𝕄3-modules
0→ coker(𝑑)→ 𝐻∗,∗(𝑁1[1])→ ker(𝑑)→ 0.

However since 𝕄3 must be a submodule of 𝐻∗,∗(𝑁1[1]), we conclude that
𝐻∗,∗(𝑁1[1]) ≅ 𝕄3 and the extension is nontrivial.

Remark 2.7. In general, given a 𝐶3-space 𝑋 with at least one fixed point, 𝕄3 is
a summand of 𝐻∗,∗(𝑋;ℤ∕3). This is because the inclusion pt ↪ 𝑋 induces a
surjective𝕄3-module map𝐻∗,∗(𝑋)↠ 𝐻∗,∗(pt) = 𝕄3.

3. Classification of 𝑪𝟑-surfaces
Up to isomorphism, all non-trivial, closed, connected surfaces with a 𝐶3-

action were classified in [10]. A method of constructing 𝐶3-surfaces through a
series of operations was developed, and it was proved that all 𝐶3-surfaces can
be constructed using the prescribed operations. The main result of [10] shows
that there are six distinct families of isomorphism classes of 𝐶3-surfaces which
can be constructed using these equivariant surgery methods.
Weuse this section to introduce the language of equivariant surgery and state

the main classification theorem. All proofs will be omitted from this paper but
can be found in [10].

Notation 3.1. The following convention will always be used to discuss non-
equivariant surfaces: 𝑀𝑔 denotes the genus 𝑔 orientable surface, and 𝑁𝑟 rep-
resents the genus 𝑟 non-orientable surface. More specifically,𝑀𝑔 is homotopy
equivalent to a connected sum of 𝑔 copies of the torus, while 𝑁𝑟 is homotopy
equivalent to a connected sum of 𝑟 copies of ℝ𝑃2.
3.1. Building blocks. So far we have discussed a few important 𝐶3-surfaces
such as the representation sphere 𝑆2,1 and the space 𝑁1[1] whose underlying
surface is ℝ𝑃2. Our next goal is to introduce several other 𝐶3-surfaces (infor-
mally referred to as “building blocks”) from which we will construct all other
closed surfaces with 𝐶3-action. This section contains brief descriptions of these
building block surfaces; the curious reader is directed to [10] for a more precise
treatment of their definitions.
There is a free 𝐶3-action on the torus𝑀1 given by rotation of 120◦ about its

center. Denote this equivariant space by𝑀free
1 . The Klein bottle also has a free

action. Start with two copies of𝑁1[1] andwith each remove a copy of𝐷2,1 about
the lone fixed point. The result is two Möbius bands with a free action. Then
use an equivariant map to identify the boundary of these Möbius bands. The
resulting space is non-equivariantly equivalent to a Klein bottle and inherits a
free 𝐶3-action.
Thefinal family of building block surfacesmust be defined inductively. Much

like the construction of 𝑁1[1], we start with a hexagon which has a natural ro-
tation action of𝐶3. After identifying opposite edges of the hexagon as shown on
the left in Figure 17, the resulting space (denoted Poly1) is non-equivariantly
equivalent to a torus, and its action has 3 fixed points.
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Figure 17. From left to right: the spaces Poly1, Poly2, and Poly3

To define Poly2, start with two copies of Poly1, and from each remove a set
of conjugate disks. Glue the boundary of these spaces together along an equi-
variant map of degree −1. The result is the space Poly2, depicted in the center
of Figure 17.
In general, Poly𝑛 can be constructed from Poly𝑛−1 by attaching a copy of

Poly1 in the sameway. From each of Poly1 and Poly𝑛−1, remove three conjugate
disks. Then identify their boundaries using an equivariant map of degree −1
to obtain Poly𝑛. For 𝑛 ≥ 1, the resulting space Poly𝑛 is an orientable surface of
genus 3𝑛 − 2.

3.2. Equivariant surgery constructions. Given any known 𝐶3-surface 𝑋,
we next define two ways of constructing a new equivariant surface from 𝑋.
Though these are the only operations needed for the statement of the classifica-
tion theorem, other equivariant surgery constructions are required for its proof.
The reader is again directed to [10] for a complete treatment of this story.

Definition 3.2. Let𝑌 be a non-equivariant surface and𝑋 a surface with a non-
trivial order 3 homeomorphism 𝜎∶ 𝑋 → 𝑋. Define �̃� ∶= 𝑌 ⧵𝐷2, and let𝐷 be a
disk in 𝑋 so that 𝐷 is disjoint from each of its conjugates 𝜎𝑖𝐷 for 𝑖 = 1, 2. Sim-
ilarly let �̃� denote 𝑋 with each of the 𝜎𝑖𝐷 removed. Choose an isomorphism
𝑓∶ 𝜕�̃� → 𝜕𝐷. We define the equivariant connected sum 𝑋#3𝑌, by

⎡
⎢
⎣
�̃� ⊔

2∐

𝑖=0
(�̃� × {𝑖})

⎤
⎥
⎦
∕ ∼

where (𝑦, 𝑖) ∼ 𝜎𝑖(𝑓(𝑦)) for 𝑦 ∈ 𝜕�̃� and 0 ≤ 𝑖 ≤ 2. We can see an example of
this surgery in Figure 18.

Before defining the next surgery operation, let us introduce notation for a
particularly important equivariant surface. Let𝐷 be a disk in 𝑆2,1 that is disjoint
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Figure 18. We can see above the result of the surgery 𝑆2,1#3𝑀1.

Figure 19. We can see above the result of the surgery 𝑆2,1 + [𝑅3].

from each of its conjugate disks. We define a 𝐶3-equivariant ribbon as

𝑆2,1 ⧵
⎛
⎜
⎝

2∐

𝑗=0
𝜎𝑗𝐷

⎞
⎟
⎠
,

and we denote this space 𝑅3. We can see 𝑅3 depicted in the center of Figure
19. Its action can be described as rotation about the orange axis. There are two
fixed points in 𝑅3, given by the points 𝑎 and 𝑏 in blue where the axis of rotation
intersects the surface.

Definition 3.3. Let 𝑋 be a surface with a nontrivial order 3 homeomorphism
𝜎∶ 𝑋 → 𝑋. Choose a disk𝐷1 in𝑋 so that 𝜎𝑗𝐷1 are disjoint for 𝑗 = 0, 1, 2. Then
remove each of the 𝜎𝑗𝐷1 to form the space �̃�. Let 𝐷 be the disk in 𝑆2,1 which
was removed (along with its conjugates) to form 𝑅3. Choose an isomorphism
𝑓∶ 𝜕𝐷1 → 𝜕𝐷 and extend this equivariantly to an isomorphism 𝑓∶ 𝜕�̃� → 𝜕𝑅3.
We then define 𝐶3-ribbon surgery on 𝑋 to be the space

(�̃� ⊔ 𝑅3) ∕ ∼

where 𝑥 ∼ 𝑓(𝑥) for 𝑥 ∈ 𝜕�̃�. This is a new 𝐶3-surface which we will denote
𝑋 + [𝑅3].
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3.3. Results. Before stating the main result, let us establish some more con-
cise notation for our free equivariant surfaces. Let 𝑀free

1+3𝑔 denote the surface
constructed via the following set of equivariant surgeries: 𝑀free

1 #3𝑀𝑔. In par-
ticular, 𝑀free

1+3𝑔 is an orientable surface with free 𝐶3-action, whose underlying
non-equivariant surface has genus 1 + 3𝑔. Similarly, let 𝑁free

2+3𝑟 denote the free
non-orientable surface constructed in the following way: 𝑁free

2 #3𝑁𝑟. The un-
derlying non-equivariant surface has genus 2+3𝑟. This leads us to the following
theorem.

Theorem 3.4. Let𝑋 be a connected, closed surface with a free action of 𝐶3. Then
𝑋 can be constructed via one of the following surgery procedures.

(1) 𝑀free
1+3𝑔 ∶= 𝑀free

1 #3𝑀𝑔, 𝑔 ≥ 0
(2) 𝑁free

2+3𝑟 ≅ 𝑁free
2 #3𝑁𝑟, 𝑟 ≥ 0

In preparation for our classification statement of the non-free surfaces, let us
define some new notation. For 𝑘, 𝑔 ≥ 0, let Sph2𝑘+3𝑔[2𝑘+2] denote the surface
constructed via the following set of equivariant surgery operations:

(
𝑆2,1 + 𝑘[𝑅3]

)
#3𝑀𝑔.

For a space 𝑋 constructed in this way, our new notation allows for quick iden-
tification of 𝐹(𝑋) (the number of isolated fixed points of 𝑋) and genus. The
value in brackets gives 𝐹(𝑋), and the subscript indicates the genus of the un-
derlying surface. For example, Sph4[6] describes an orientable surface of genus
4 constructed from a sphere whose action has 6 fixed points.
We similarly define 𝑁4𝑘+3𝑟[2𝑘 + 2] ∶=

(
𝑆2,1 + 𝑘[𝑅3]

)
#3𝑁𝑟 for 𝑟 ≥ 1 and

𝑁1+4𝑘+3𝑟[1 + 2𝑘] ∶= (𝑁1[1] + 𝑘[𝑅3]) #3𝑁𝑟 for 𝑘, 𝑟 ≥ 0. With this notation, we
can again identify the value in brackets as the number of isolated fixed points
and the subscript as the genus of the underlying surface.
Finally, define Poly𝑛,(3𝑛−2)+2𝑘+3𝑔[3𝑛 + 2𝑘] to be the following:

(
Poly𝑛 +𝑘[𝑅3]

)
#3𝑀𝑔.

Here, the first subscript describes the space Poly𝑛 used in construction of the
surface, while the second subscript indicates genus. For example, Poly2,4[6]
was built from Poly2 in the equivariant surgery construction. Its underlying
non-equivariant surface has genus 4, and its 𝐶3-action has 6 fixed points.

Theorem 3.5. Let 𝑋 be a connected, closed, surface with a nonfree action of 𝐶3.
Then 𝑋 can be constructed via one of the following surgery procedures.

(1) Sph2𝑘+3𝑔[2𝑘 + 2] ∶=
(
𝑆2,1 + 𝑘[𝑅3]

)
#3𝑀𝑔, 𝑘, 𝑔 ≥ 0

(2) Poly𝑛,(3𝑛−2)+2𝑘+3𝑔[3𝑛+2𝑘] ∶=
(
Poly𝑛 +𝑘[𝑅3]

)
#3𝑀𝑔, 𝑘, 𝑔 ≥ 0, 𝑛 ≥

1
(3) 𝑁4𝑘+3𝑟[2𝑘 + 2] ∶=

(
𝑆2,1 + 𝑘[𝑅3]

)
#3𝑁𝑟, 𝑟 ≥ 1

(4) 𝑁1+4𝑘+3𝑟[1 + 2𝑘] ∶= (𝑁1[1] + 𝑘[𝑅3]) #3𝑁𝑟, 𝑘, 𝑟 ≥ 0
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Remark 3.6. It is important to note that for orientable surfaces, genus and the
size of the fixed set do not provide enough information to distinguish between these
classes. For example, Poly2,4[6] and Sph4[6] are non-isomorphic orientable sur-
faces with the same genus and number of fixed points. Nonetheless, we will see
in Section 5 that the cohomology depends only on the genus and number of fixed
points, so these spaces also have the same cohomology.
In the case of non-orientable surfaces, fixed set size and genus do distinguish

between isomorphism classes. In other words, given a non-orientable surface 𝑋
with specific values for 𝐹(𝑋) and 𝛽(𝑋), one can explicitly determine how 𝑋 was
constructed via equivariant surgeries.

4. Cohomology computations of Free 𝑪𝟑-surfaces
In this section, we prove the main cohomology result for free actions by di-

rectly computing the cohomology of all free𝐶3-surfaces inℤ∕3-coefficients. We
assume going forward that coefficients are always the constant Mackey functor
ℤ∕3, so this will be left out of the notation in favor of brevity.

Theorem 4.1. The following are true for all 𝑔, 𝑟 ≥ 0.
(1) 𝐻∗,∗(𝑀free

1+3𝑔) ≅ 𝐻∗,∗(𝑆1free)⊕ Σ1,0𝐻∗,∗(𝑆1free)⊕
(
Σ1,0𝐻∗,∗(𝐶3)

)⊕2𝑔
.

(2) 𝐻∗,∗(𝑁free
2+3𝑟) ≅ 𝐻∗,∗(𝑆1free)⊕

(
Σ1,0𝐻∗,∗(𝐶3)

)⊕𝑟−1
.

The theoremaswritten depends on the equivariant surgery construction pre-
sented in Section 3, but a quick translation allows you to state the result com-
pletely in terms of its genus and whether or not the surface is orientable.

Corollary 4.2. Let 𝑋 be a closed and connected surface with a free action of 𝐶3.
(1) If 𝑋 is orientable, then

𝐻∗,∗(𝑋) ≅ 𝐻∗,∗(𝑆1free)⊕ Σ1,0𝐻∗,∗(𝑆1free)⊕
(
Σ1,0𝐻∗,∗(𝐶3)

)⊕ 𝛽(𝑋)−2
3 .

(2) If 𝑋 is non-orientable, then

𝐻∗,∗(𝑋) ≅ 𝐻∗,∗(𝑆1free)⊕
(
Σ1,0𝐻∗,∗(𝐶3)

)⊕ 𝛽(𝑋)−2
3 .

Our proof will proceed as a direct computation of𝐻∗,∗(𝑋) in each of the two
cases presented in the theorem statement. For each case, we start by computing
the cohomology of the corresponding building block surface (labeled as a base
case in the proof). We then perform a separate computation of themore general
case when we have a nontrivial equivariant connected sum.

Notation 4.3. Going forward, we will find ourselves making frequent use of
spaces of the form 𝑌 ⧵ 𝐷2 where 𝑌 is some (closed) non-equivariant surface.
For convenience we establish the notation

�̃� ∶= 𝑌 ⧵ 𝐷2

which will be used throughout the remainder of the paper.
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+ +
∙

Figure 20. The cofiber sequence 𝑆1free+ ↪ 𝑀free
1 + → 𝑆1,0 ∧

(
𝑆1free+

)
.

𝑝

𝑞

Figure 21. The differential 𝑑∶ 𝐻∗,∗
(
𝑆1free

)
→ �̃�∗+1,∗

(
𝑆1,0 ∧

(
𝑆1free+

))
.

Proof of Theorem 4.1, Case (1) base,𝑀free
1 . The rotating torus 𝑀free

1 is iso-
morphic to 𝑆1free × 𝑆

1,0. Thus there exists a cofiber sequence

𝑆1free+ ↪
(
𝑀free

1
)
+ → 𝑆1,0 ∧

(
𝑆1free+

)

(see Figure 20). For each 𝑞 this gives rise to a long exact sequence on cohomol-
ogy

→ �̃�𝑝,𝑞(𝑆1,0∧(𝑆1free+))→ 𝐻𝑝,𝑞(𝑀free
1 )→ 𝐻𝑝,𝑞(𝑆1free)

𝑑𝑝,𝑞
,,,→ �̃�𝑝+1,𝑞(𝑆1,0∧(𝑆1free+))→ .

Together these long exact sequences have total differential

𝑑 ∶=
⨁

𝑝,𝑞
𝑑𝑝,𝑞 ∶ 𝐻∗,∗

(
𝑆1free

)
→ �̃�∗+1,∗

(
𝑆1,0 ∧

(
𝑆1free+

))

which is shown in Figure 21. To compute𝐻∗,∗(𝑀free
1 ), we will analyze the total

differential and solve the corresponding extension problem

0→ coker(𝑑)→ 𝐻∗,∗(𝑀free
1 )→ ker(𝑑)→ 0.



932 KELLY POHLAND

We can see from Figure 21 that the only possible nonzero differentials are
𝑑0,𝑞 and 𝑑1,𝑞. Since 𝑑 is an𝕄3-module map, it suffices to compute 𝑑0,0 and 𝑑1,0.
The quotient Lemma tells us that

𝐻𝑝,0 (𝑀free
1

)
≅ 𝐻𝑝

sing

(
𝑀free

1 ∕𝐶3
)
≅ 𝐻𝑝

sing(𝑀1)

which isℤ∕3when 𝑝 = 0, 2 andℤ∕3⊕ℤ∕3when 𝑝 = 1. So 𝑑0,0 and 𝑑1,0 must
be the zero map, and thus all differentials are zero by linearity. This leaves us
to determine if the following extension is trivial:

0→ Σ1,0𝐻∗,∗(𝑆1free)→ 𝐻∗,∗(𝑀free
1 )→ 𝐻∗,∗(𝑆1free)→ 0.

The only other possibility is a non-trivial 𝑧-extension from ker(𝑑) to coker(𝑑).
This begs the question: does there exist 𝛼 ∈ 𝐻0,𝑞(𝑀free

1 ) so that 𝑧𝛼 ≠ 0?
The following composition is the identity map, implying 𝜋∗2 is injective on

cohomology:

𝑆1free
≅
,→ pt × 𝑆1free ↪ 𝑀free

1
𝜋2,,→ 𝑆1free.

Since 𝐻0,𝑞(𝑀free
1 ) and 𝐻0,𝑞(𝑆1free) are both ℤ∕3, it must be that 𝜋∗2 is an iso-

morphism in degrees (0, 𝑞). Now let 𝛼 ∈ 𝐻0,𝑞(𝑀free
1 ). Then there exists 𝛽 ∈

𝐻0,𝑞(𝑆1free) such that 𝛼 = 𝜋∗2(𝛽). Then 𝑧𝛼 = 𝜋∗2(𝑧𝛽) = 0 since 𝛽 ∈ 𝐻∗,∗(𝑆1free) =
𝑥−1𝕄3∕(𝑧). Thus the extension is trivial, and

𝐻∗,∗(𝑀free
1 ) ≅ 𝐻∗,∗(𝑆1free)⊕ Σ1,0𝐻∗,∗(𝑆1free).

□

We now turn our attention to the general case.

Proof of Theorem 4.1, Case (1) general,𝑀free
3𝑔+1. We recall that𝑀

free
3𝑔+1 is con-

structed via the equivariant connected sum: 𝑀free
1 #3𝑀𝑔. This construction sug-

gests a map (
�̃�𝑔 × 𝐶3

)
+ ↪ 𝑀free

3𝑔+1+
whose cofiber is the 𝐶3-space depicted in Figure 22. We denote this space by
�̂�1. The three blue points shown in the figure are all identified, making it a
single fixed point under the 𝐶3-action. In order to utilize the corresponding
long exact sequence on cohomology, we first need to compute �̃�∗,∗(�̂�1).
To do this, we use another cofiber sequence

𝐶3+ ↪ 𝑀free
1 + → �̂�1

which we can extend to the cofiber sequence

𝑀free
1 + ↪ �̂�1 → 𝑆1,0 ∧

(
𝐶3+

)
.

We next consider the long exact sequence on cohomology which has total dif-
ferential 𝑑 ∶=⨁

𝑝,𝑞 𝑑
𝑝,𝑞, where

𝑑𝑝,𝑞 ∶ 𝐻𝑝,𝑞(𝑀free
1 )→ �̃�𝑝+1,𝑞(𝑆1,0 ∧ 𝐶3+).
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Figure 22. The space �̂�1 where the blue points are identified
to a single point.

𝑝

𝑞

Figure 23. The differential 𝑑∶ 𝐻∗,∗(𝑀free
1 )→ �̃�∗+1,∗(𝑆1,0 ∧ 𝐶3+).

We can see from Figure 23 that it suffices to compute 𝑑0,0. The quotient
lemma tells us �̃�0,0(�̂�1) ≅ �̃�0

sing(�̂�1∕𝐶3) ≅ �̃�0
sing(𝑀1) = 0. This means 𝑑0,0

must be an isomorphism. Thus we conclude 𝑑0,𝑞 is an isomorphism for all 𝑞.
So coker(𝑑) = 0 and we have

�̃�∗,∗(�̂�1) ≅ Σ1,0𝐻∗,∗(𝐶3)⊕ Σ1,0𝐻∗,∗(𝑆1free).

Now that we know the cohomology of �̂�1, we can return to the cofiber se-
quence (

�̃�𝑔 × 𝐶3
)
+ ↪ 𝑀free

3𝑔+1+
→ �̂�1

and its corresponding long exact sequence on cohomology. For each 𝑞, we get
an exact sequence with differential

𝑑𝑝,𝑞 ∶ 𝐻𝑝,𝑞(�̃�𝑔 × 𝐶3)→ �̃�𝑝+1,𝑞(�̂�1).
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𝑝

𝑞 2g

Figure 24. The differential 𝑑∶ 𝐻∗,∗(�̃�𝑔 × 𝐶3)→ �̃�∗+1,∗(�̂�1).

By Lemma 2.3, we know𝐻∗,∗(�̃�𝑔 ×𝐶3) ≅ ℤ∕3[𝑥, 𝑥−1]⊗ℤ∕3𝐻∗
sing(�̃�𝑔). We can

see in Figure 24 that we only need to compute the differential when 𝑝 is 0 or 1.
Again, we know from the quotient lemma that

𝐻𝑝,0(𝑀free
3𝑔+1) ≅ 𝐻𝑝

sing(𝑀
free
3𝑔+1∕𝐶3)

≅ 𝐻𝑝
sing(𝑀𝑔+1).

In particular,

𝐻0,0(𝑀free
3𝑔+1) = ℤ∕3

𝐻1,0(𝑀free
3𝑔+1) = ℤ∕3⊕2𝑔+2

𝐻2,0(𝑀free
3𝑔+1) = ℤ∕3.

So all differentialsmust be zero. Thuswe are left to solve the extension problem

0→ �̃�∗,∗(�̂�1)→ 𝐻∗,∗(𝑀free
3𝑔+1)→ 𝐻∗+1,∗(�̃�𝑔 × 𝐶3)→ 0.

All elements of the lower cone of𝕄3 must act trivially on elements which are
infinitely divisible by 𝑥. So we only need to determine if 𝑦𝛼 or 𝑧𝛼 are nonzero
for 𝛼 ∈ 𝐻0,𝑞(𝑀free

3𝑔+1). Consider the following map of cofiber sequences:

(�̃�𝑔 × 𝐶3)+ 𝑀free
3𝑔+1+

�̂�1

𝐶3+ 𝑀free
1 + �̂�1

𝜑
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Recall that the differential for the long exact sequence corresponding to the
top cofiber sequence was shown to be zero. Moreover, in a previous computa-
tion we showed that the differential in the long exact sequence corresponding
to𝑀free

1 + → �̂�1 → 𝑆1,0 ∧ 𝐶3+ was always surjective. This implies the differen-
tial in the long exact sequence for the bottom cofiber sequence must be 0. So
we have the following commutative diagram where the rows are exact:

0 �̃�𝑝,𝑞(�̂�1) 𝐻𝑝,𝑞(𝑀free
3𝑔+1) 𝐻𝑝,𝑞(�̃�𝑔 × 𝐶3) 0

0 �̃�𝑝,𝑞(�̂�1) 𝐻𝑝,𝑞(𝑀free
1 ) 𝐻𝑝,𝑞(𝐶3) 0

id 𝜑∗

Row exactness implies 𝜑∗ is injective. In fact, 𝜑∗must be an isomorphism in
dimension (0, 𝑞) for all 𝑞 since both the domain and the codomain areℤ∕3. Let
𝛼 ∈ 𝐻0,𝑞(𝑀free

1 ). Then 𝜑∗(𝑦𝛼) = 𝑦𝜑∗(𝛼). We know 𝑦𝛼 ≠ 0 in 𝐻1,𝑞+1(𝑀free
1 ),

so injectivity implies 𝑦𝜑∗(𝛼) ≠ 0. Surjectivity in degrees (0, 𝑞) implies 𝑦𝛽 ≠ 0
for all nonzero 𝛽 ∈ 𝐻0,𝑞(𝑀free

3𝑔+1). Also note that 𝜑
∗ must be an isomorphism

in degrees (2, 𝑞) for all 𝑞. We know 𝑧𝜑∗(𝛼) = 𝜑∗(𝑧𝛼) = 0 since 𝑧𝛼 = 0 in
𝐻2,𝑞+1(𝑀free

1 ). So the action of 𝑧 on 𝐻0,𝑞(𝑀free
3𝑔+1) must be 0. Putting this to-

gether, we conclude

𝐻∗,∗(𝑀free
3𝑔+1) ≅ 𝐻∗,∗(𝑆1free)⊕ Σ1,0𝐻∗,∗(𝑆1free)⊕

(
Σ1,0𝐻∗,∗(𝐶3)

)⊕2𝑔 .

□

Proof of Theorem 4.1, Case (2) base, 𝑁free
2 . We compute the cohomology of

all free non-orientable 𝐶3-surfaces, starting with the free Klein bottle defined
in Section 3.
To compute the cohomology of this space, we start with the cofiber sequence

𝑆1free+ ↪ 𝑁free
2 + → 𝑁1[1]

which we can see illustrated in Figure 25. Note that the cofiber of the map 𝑓 is
isomorphic to𝑁1[1], whose cohomology we have already seen in Example 2.6.
In particular, �̃�∗,∗(𝑁1[1]) = 0, so we can immediately conclude

𝐻∗,∗(𝑁free
2 ) ≅ 𝐻∗,∗(𝑆1free).

□

Proof of Theorem 4.1, Case (2) general, 𝑁free
2+3𝑟. We next turn to the general

case of 𝑁free
2+3𝑟 = 𝑁free

2 #3𝑁𝑟 for 𝑟 ≥ 1. For this we consider the cofiber sequence

(�̃�𝑟 × 𝐶3)+ ↪ 𝑁free
2+3𝑟+ → �̂�2 (1)

where �̂�2 is the mapping cone of this inclusion. To make use of this cofiber
sequence, we first must compute the reduced cohomology of the space �̂�2.



936 KELLY POHLAND

+ +

Figure 25. The cofiber sequence 𝑆1free+
𝑓
,→ 𝑁free

2 + →
cof ib(𝑓) ≃ 𝑁1[1].

𝑝

𝑞

Figure 26. The differential 𝑑∶ 𝐻∗,∗(𝑁free
2 )→ �̃�∗+1,∗(Σ1,0𝐶3+).

The space �̂�2 can be realized as the cofiber of the map 𝐶3+ ↪ 𝑁free
2 +. Using

the Puppe sequence, we can instead consider the cofiber sequence

𝑁free
2 + → �̂�2 → Σ1,0𝐶3+

and its corresponding long exact sequence on cohomology

⋯→ �̃�𝑝,𝑞(Σ1,0𝐶3+)→ �̃�𝑝,𝑞(�̂�2)→ 𝐻𝑝,𝑞(𝑁free
2 )

𝑑
,→ �̃�𝑝+1,𝑞(Σ1,0𝐶3+)→⋯ .

Our goal is to compute the differential of this sequence, which can be seen
in Figure 26. First notice that �̂�2∕𝐶3 ≃ 𝑁2, so by the quotient lemma we have
�̃�𝑝,0(�̂�2) ≅ �̃�𝑝

sing(𝑁2) which is ℤ∕3 for 𝑝 = 1 and 0 otherwise. In particular,
�̃�0,0(�̂�2) = 0 which implies the differential

𝑑0,𝑞 ∶ 𝐻0,𝑞(𝑁free
2 )→ �̃�1,𝑞(Σ1,0𝐶3+)
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𝑝

𝑞 r

Figure 27. The differential to (1), 𝑑∶ 𝐻∗,∗(�̃�𝑟 × 𝐶3)→ �̃�∗+1,∗(�̂�2).

is an isomorphism for 𝑞 = 0. By linearity, we can conclude that this differential
is in fact an isomorphism for all 𝑞. So coker(𝑑) = 0 and �̃�∗,∗(�̂�2) ≅ ker(𝑑). In
particular,

�̃�∗,∗(�̂�2) ≅ Σ1,0𝐻∗,∗(𝐶3).
We can now turn back to our original cofiber sequence (1) and examine its

corresponding long exact sequence on cohomology

⋯→ �̃�𝑝,𝑞(�̂�2)→ 𝐻𝑝,𝑞(𝑁free
2+3𝑟)→ 𝐻𝑝,𝑞(�̃�𝑟 × 𝐶3)

𝑑
,→ �̃�𝑝+1,𝑞(�̂�2)→⋯ .

As in previous examples, our strategy is to compute the total differential

𝑑∶ 𝐻∗,∗(�̃�𝑟 × 𝐶3)→ �̃�∗+1,∗(�̂�2)
as seen in Figure 27.
Since𝑁free

2+3𝑟∕𝐶3 ≃ 𝑁2+𝑟, we know by the quotient lemma that𝐻𝑝,0(𝑁free
2+3𝑟) ≅

𝐻𝑝
sing(𝑁2+𝑟) which is ℤ∕3 for 𝑝 = 0, (ℤ∕3)𝑟+1 when 𝑝 = 1, and 0 otherwise.

Linearity of the differential guarantees that this map is zero in all degrees.
All that remains is to solve the extension problem

0→ �̃�∗,∗(�̂�2)→ 𝐻∗,∗(𝑁free
2+3𝑟)→ 𝐻∗,∗(�̃�𝑟 × 𝐶3)→ 0.

In particular, we need to determine if 𝑦𝛼 is nonzero for 𝛼 ∈ 𝐻0,𝑞(𝑁free
2+3𝑟). Con-

sider the following map of cofiber sequences:

(�̃� × 𝐶3)+ 𝑁free
2+3𝑟 �̂�2

𝐶3+ 𝑁free
2 �̂�2

𝑞
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The differential for each of the corresponding long exact sequences was found
in the above computations to be zero. Thus we have the following commutative
diagram where the rows are exact:

0 �̃�∗,∗(�̂�2) 𝐻∗,∗(𝑁free
2+3𝑟) 𝐻∗,∗(�̃�𝑟 × 𝐶3) 0

0 �̃�∗,∗(�̂�2) 𝐻∗,∗(𝑁free
2 ) 𝐻∗,∗(𝐶3) 0

𝑖𝑑 𝑞∗

Rowexactness implies that 𝑞∗ is injective. Moreover, for nonzero𝛽 ∈ 𝐻0,𝑞(𝑁free
2 )

we know that 𝑦𝛽 ≠ 0 in 𝐻1,𝑞+1(𝑁free
2 ). Thus for any nonzero 𝛼 ∈ 𝐻0,𝑞(𝑁free

2+3𝑟),
we know 𝛼 = 𝑞∗(𝛽) for some nonzero 𝛽 ∈ 𝐻0,𝑞(𝑁free

2 ). By the above remarks,
it follows that 𝑦𝛼 = 𝑦𝑞∗(𝛽) = 𝑞∗(𝑦𝛽) ≠ 0. So we can conclude

𝐻∗,∗(𝑁free
2+3𝑟) ≅ 𝐻∗,∗(𝑆1free)⊕

(
Σ1,0𝐻∗,∗(𝐶3)

)⊕𝑟 .
□

5. Cohomology computations of non-free 𝑪𝟑-surfaces
We next prove Theorem 1.2 from the introduction. We obtain this as a corol-

lary of the following theorem which is stated in the language of equivariant
surgery.

Theorem 5.1. The following are true for all 𝑔, 𝑟, 𝑘 ≥ 0.
(1) 𝐻∗,∗(Sph2𝑘+3𝑔[2𝑘 + 2]) ≅ 𝕄3 ⊕ Σ2,1𝕄3 ⊕ 𝔼𝔹⊕2𝑘 ⊕

(
Σ1,0𝐻∗,∗(𝐶3)

)⊕2𝑔
.

(2) 𝐻∗,∗(Poly𝑛,(3𝑛−2)+2𝑘+3𝑔[3𝑛 + 2𝑘])

≅ 𝕄3 ⊕ Σ2,1𝕄3 ⊕ 𝔼𝔹⊕(3𝑛−2+2𝑘) ⊕
(
Σ1,0𝐻∗,∗(𝐶3)

)⊕2𝑔.

(3) 𝐻∗,∗(𝑁4𝑘+3𝑟[2𝑘 + 2]) ≅ 𝕄3 ⊕ 𝔼𝔹⊕2𝑘 ⊕
(
Σ1,0𝐻∗,∗(𝐶3)

)⊕𝑟−1
, (𝑟 ≥ 1).

(4) 𝐻∗,∗(𝑁1+4𝑘+3𝑟[2𝑘 + 1]) ≅ 𝕄3 ⊕ 𝔼𝔹⊕2𝑘 ⊕
(
Σ1,0𝐻∗,∗(𝐶3)

)⊕𝑟
.

Presented in this way, it is immediate that the cohomology of a 𝐶3-space is
determined by its construction via equivariant surgeries as stated in Theorem
3.5. In reality, the cohomology of a given 𝑋 only depends on 𝐹(𝑋), 𝛽(𝑋), and
whether or not 𝑋 is orientable. It can be quickly verified that the following is a
consequence of Theorem 5.1:

Corollary 5.2. Let 𝑋 be a 𝐶3-surface.
(1) If 𝑋 is orientable, then

𝐻∗,∗(𝑋) ≅ 𝕄3 ⊕ Σ2,1𝕄3 ⊕ 𝔼𝔹⊕𝐹(𝑋)−2 ⊕
(
Σ1,0𝐻∗,∗(𝐶3)

)⊕ 𝛽(𝑋)−2𝐹(𝑋)+4
3 .

(2) If 𝑋 is non-orientable and 𝐹(𝑋) is even, then

𝐻∗,∗(𝑋) ≅ 𝕄3 ⊕ 𝔼𝔹⊕𝐹(𝑋)−2 ⊕
(
Σ1,0𝐻∗,∗(𝐶3)

)⊕ 𝛽(𝑋)−2𝐹(𝑋)+1
3 .
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(3) If 𝑋 is non-orientable and 𝐹(𝑋) is odd, then

𝐻∗,∗(𝑋) ≅ 𝕄3 ⊕ 𝔼𝔹⊕𝐹(𝑋)−1 ⊕
(
Σ1,0𝐻∗,∗(𝐶3)

)⊕ 𝛽(𝑋)−2𝐹(𝑋)+1
3 .

Remark 5.3. Since𝐻∗,∗(𝑋) is determined by 𝛽(𝑋), 𝐹(𝑋), and whether or not 𝑋
is orientable, it follows from the observations in Remark 3.6 that 𝑅𝑂(𝐶3)-graded
Bredon cohomology in ℤ∕3 coefficients is not a complete invariant.
This is true in the case of both orientable and non-orientable surfaces. We refer-

ence the comments of Remark 3.6 and observe for instance that𝐻∗,∗(Poly2,4[6]) ≅
𝐻∗,∗(Sph4[6]). An example of this canalso be found in thenon-orientable surfaces
𝑁3[2] and𝑁1[1].

We will prove this result by directly computing the cohomology of all non-
free 𝐶3-surfaces. These computations will be broken up into four classes of
non-free surfaces according to our classification in Theorem 3.5.
The techniques used in this section to determine the additive cohomology

structure are similar to those used previously. However the extension problems
required to understand the 𝕄3-module structure in these cases require a bit
more work. We begin by considering several lemmas which will eventually aid
in solving these extension problems.

Lemma 5.4. The group Ext1,(0,0)𝕄3
(𝔼𝔹,𝔼𝔹) is trivial. In particular, given a short

exact sequence of𝕄3-modules

0→ 𝔼𝔹↪ 𝑋 ↠ 𝔼𝔹→ 0
it must be that 𝑋 ≅ 𝔼𝔹⊕ 𝔼𝔹.

Proof. We begin by constructing the first few terms of a free resolution

⋯→ 𝐹2
𝑑2,,→ 𝐹1

𝑑1,,→ 𝐹0
𝜂
,→ 𝔼𝔹

of 𝔼𝔹 over 𝕄3. Recall from Example 2.5 that 𝔼𝔹 is generated by 𝛼 in degree
(2, 1) and 𝛽 in degree (1, 1) with 𝑦𝛽 = 0 and 𝑧𝛽 = 𝑦𝛼.
Define 𝐹0 = 𝕄3⟨𝑎0⟩⊕𝕄3⟨𝑏0⟩where 𝑎0 and 𝑏0 are generators of each copy of

𝕄3 in degrees (2, 1) and (1, 1), respectively. There is a surjection 𝜂∶ 𝐹0 → 𝔼𝔹
given by 𝑎0 ↦ 𝛼, 𝑏0 ↦ 𝛽. Its kernel is generated by 𝑦𝑏0 and 𝑧𝑏0 − 𝑦𝑎0, so we
can construct another map 𝑑1∶ 𝕄3⟨𝑎1⟩ ⊕ 𝕄3⟨𝑏1⟩ → 𝐹0 (where |𝑎1| = (2, 2)
and |𝑏1| = (3, 2)) such that 𝑑1(𝑎1) = 𝑦𝑏0 and 𝑑1(𝑏1) = 𝑧𝑏0−𝑦𝑎0. Let 𝐹1 denote
the module𝕄3⟨𝑎1⟩⊕𝕄3⟨𝑏1⟩.
Notice that ker(𝑑1) is generated by 𝑦𝑎1 and 𝑧𝑎1 − 𝑦𝑏1. For 𝐹2 ∶= 𝕄3⟨𝑎2⟩⊕

𝕄3⟨𝑏2⟩ (with |𝑎2| = (3, 3) and |𝑏2| = (4, 3)), we define the map 𝑑2∶ 𝐹2 → 𝐹1
given by 𝑑2(𝑎2) = 𝑦𝑎1 and 𝑑2(𝑏2) = 𝑧𝑎1 − 𝑦𝑏1. We can stop here as this is the
only part of the free resolution necessary to understand the first Ext group.
Next apply the functorHom𝕄3(−,𝔼𝔹) of degree preserving maps to our free

resolution:

Hom(𝐹0,𝔼𝔹)
𝑑∗1,,→ Hom(𝐹1,𝔼𝔹)

𝑑∗2,,→ Hom(𝐹2,𝔼𝔹)→⋯
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and compute ker(𝑑∗2)∕ im(𝑑
∗
1).

Let’s start by computing 𝑑∗2 . Let 𝑓 be an element of
Hom(𝐹1,𝔼𝔹) = Hom(𝕄3⟨𝑎1⟩⊕𝕄3⟨𝑏1⟩,𝔼𝔹).

Since𝑓 is determined by its values on 𝑎1 and 𝑏1, let us say𝑓(𝑎1) = 𝑟 and𝑓(𝑏1) =
𝑠 for some 𝑟, 𝑠 ∈ 𝔼𝔹 in degrees (2, 2) and (3, 2), respectively. Then 𝑑∗2(𝑓) ∈
Hom(𝐹2,𝔼𝔹) = Hom(𝕄3⟨𝑎2⟩⊕𝕄3⟨𝑏2⟩,𝔼𝔹) is determined by its values on 𝑎2
and 𝑏2. We have

𝑑∗2(𝑓)(𝑎2) = 𝑓(𝑑2(𝑎2)) = 𝑓(𝑦𝑎1) = 𝑦𝑓(𝑎1) = 𝑦𝑟,
𝑑∗2(𝑓)(𝑏2) = 𝑓(𝑑2(𝑏2)) = 𝑓(𝑧𝑎1 − 𝑦𝑏1) = 𝑧𝑓(𝑎1) − 𝑦𝑓(𝑏1) = 𝑧𝑟 − 𝑦𝑠.

So 𝑓 ∈ ker(𝑑∗2) exactly when 𝑦𝑟 = 0 and 𝑧𝑟 − 𝑦𝑠 = 0 in 𝔼𝔹.
Recall that 𝑟 must be some element of �̃�2,2(𝐸𝐵), so 𝑦𝑟 ≠ 0 unless 𝑟 = 0.

So 𝑓 ∈ ker(𝑑∗2) if and only if 𝑓(𝑎1) = 0. Next observe that 𝑦𝑠 = 0 for any
𝑠 ∈ �̃�3,2(𝐸𝐵). In particular, there are two nonzero elements of ker(𝑑∗2); namely,
the maps such that 𝑎1 ↦ 0 and 𝑏1 ↦ ±𝑦𝛼. Call these maps 𝑓+ and 𝑓−. We will
see that both of these maps are in im(𝑑∗1), proving that Ext

1,(0,0)
𝕄3

(𝔼𝔹,𝔼𝔹) = 0.
To show this, we compute 𝑑∗1 . Given a map

𝑔 ∈ Hom(𝐹0,𝔼𝔹) = Hom(𝕄3⟨𝑎0⟩⊕𝕄3⟨𝑏0⟩,𝔼𝔹),
we know 𝑔 is determined by its values on 𝑎0 and 𝑏0, so let’s suppose 𝑔(𝑎0) = 𝑡
and 𝑔(𝑏0) = 𝑢 for some 𝑡 ∈ �̃�2,1(𝐸𝐵) and 𝑢 ∈ �̃�1,1(𝐸𝐵). Then 𝑑∗1(𝑔) ∈
Hom(𝐹1,𝔼𝔹) = Hom(𝕄3⟨𝑎1⟩⊕𝕄3⟨𝑏1⟩,𝔼𝔹) and can be determined by its val-
ues on 𝑎1 and 𝑏1. In particular,

𝑑∗1(𝑔)(𝑎1) = 𝑔(𝑑1(𝑎1)) = 𝑔(𝑦𝑏0) = 𝑦𝑔(𝑏0) = 𝑦𝑢
𝑑∗1(𝑔)(𝑏1) = 𝑔(𝑑1(𝑏1)) = 𝑔(𝑧𝑏0 − 𝑦𝑎0) = 𝑧𝑔(𝑏0) − 𝑦𝑔(𝑎0) = 𝑧𝑢 − 𝑦𝑡.

Then we can see that 𝑢 = −𝛽, 𝑡 = 𝛼 defines an element ofHom(𝐹0,𝔼𝔹)whose
image under 𝑑∗1 is equal to 𝑓+. Similarly, 𝑢 = 𝛽, 𝑡 = −𝛼 defines an element of
Hom(𝐹0,𝔼𝔹) whose image under 𝑑∗1 is 𝑓−. □

Lemma 5.5. The group Ext1,(2,1)𝕄3
(𝔼𝔹,𝕄3) ≅ Ext1,(0,0)𝕄3

(𝔼𝔹,Σ2,1𝕄3) is trivial.

Proof. We begin by considering the same free resolution for 𝔼𝔹 over𝕄3 as in
the proof of Lemma 5.4:

⋯→ 𝐹2
𝑑2,,→ 𝐹1

𝑑1,,→ 𝐹0
𝜂
,→ 𝔼𝔹.

To computeExt1,(0,0)𝕄3
(𝔼𝔹,Σ2,1𝕄3), we next apply the functorHom(−,Σ2,1𝕄3) of

degree preserving maps to this free resolution. We claim that ker(𝑑∗2)∕ im(𝑑
∗
1)

is trivial.
Let 𝑓 ∈ ker(𝑑∗2). So 𝑓 is some map 𝑓∶ 𝕄3⟨𝑎1⟩⊕𝕄3⟨𝑏1⟩→ Σ2,1𝕄3. Suppose

𝑓(𝑎1) = 𝑠 and 𝑓(𝑏1) = 𝑡 for some 𝑠, 𝑡 ∈ Σ2,1𝕄3. Recall from the previous lemma
that |𝑎1| = (2, 2) and |𝑏1| = (3, 2). Since 𝑓 is degree preserving, we have that
|𝑠| = (2, 2) and |𝑡| = (3, 2).
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Now, 𝑑∗2(𝑓) is amap 𝑑
∗
2(𝑓)∶ 𝕄3⟨𝑎2⟩⊕𝕄3⟨𝑏2⟩→ Σ2,1𝕄3 given by 𝑑∗2(𝑓)(𝑎2) =

𝑦𝑠 and 𝑑∗2(𝑓)(𝑏2) = 𝑧𝑠−𝑦𝑡. Since 𝑓 ∈ ker(𝑑∗2), we know 𝑦𝑠 = 0 and 𝑧𝑠−𝑦𝑡 = 0.
We can see from Figure 28 that 𝑦𝑠 = 0 only when 𝑠 = 0. Since 𝑠 = 0, the second
relation simplifies to the requirement that−𝑦𝑡 = 0. This is true for any element
of Σ2,1𝕄3 in degree (3, 2). This tells us that any function 𝑓 in ker𝑑∗2 must be of
the form 𝑎1 ↦ 0, 𝑏1 ↦ 𝑡 for any 𝑡 in degree (3, 2).

𝑝

𝑞

∙ ∙𝑠 𝑡

Figure 28. The top cone module structure of Σ2,1𝕄3. Note
𝑦𝑠 ≠ 0 when 𝑠 ≠ 0.

It turns out that any map of this form is also in im(𝑑∗1). Let 𝑎 denote the
generator of Σ2,1𝕄3. We want to show the maps 𝑎1 ↦ 0 and 𝑏1 ↦ ±𝑦𝑎 are in
the image of 𝑑∗1 . Define themap 𝑔+∶ 𝐹0 → Σ2,1𝕄3 given by 𝑎0 ↦ 𝑎 and 𝑏0 ↦ 0.
Then 𝑑∗1(𝑔+)∶ 𝐹1 → Σ2,1𝕄3 is given by:

𝑑∗1(𝑔+)(𝑎1) = 𝑔+(𝑑1(𝑎1)) = 𝑔+(𝑦𝑏0) = 𝑦𝑔+(𝑏0) = 0,
𝑑∗1(𝑔+)(𝑏1) = 𝑔+(𝑑1(𝑏1)) = 𝑔+(𝑧𝑏0 − 𝑦𝑎0) = −𝑦𝑎.

A similar computation shows the image of the map 𝑔−∶ 𝐹0 → Σ2,1𝕄3 given by
𝑎0 ↦ −𝑎 and 𝑏0 ↦ 0 under 𝑑∗1 sends 𝑎1 to 0 and 𝑏1 to 𝑦𝑎.
So ker(𝑑∗2) = im(𝑑∗1) and Ext

1,(2,1)(𝔼𝔹,𝕄3) is trivial. □

Together, Lemmas 5.4 and 5.5 tell us that given a short exact sequence of the
form

0→ Σ2,1𝕄3 ⊕ 𝔼𝔹⊕𝑘 → 𝑋 → 𝔼𝔹⊕𝓁 → 0,
the𝕄3-module 𝑋 must be isomorphic to Σ2,1𝕄3 ⊕ 𝔼𝔹⊕𝑘+𝓁. We can even take
things one step further to conclude any extension

0→ Σ2,1𝕄3 ⊕ 𝔼𝔹⊕𝑘 → 𝑋 → 𝕄3 ⊕ 𝔼𝔹⊕𝓁 → 0
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must be trivial by the projectivity of𝕄3 as an𝕄3-module.

Lemma 5.6. There are no nontrivial extensions

0→ Σ2,1𝕄3 ⊕
(
Σ1,0𝐻∗,∗(𝐶3)

)⊕2𝑔 → 𝑋 → 𝕄3 ⊕ 𝔼𝔹→ 0.

Proof. Using Lemma 5.4 and Lemma 5.5 as well as the fact that𝕄3 is free, we
only need to show that Ext1,(0,0)

(
𝔼𝔹,Σ1,0𝐻∗,∗(𝐶3)

)
= 0. Using the free resolu-

tion
⋯→ 𝐹2 → 𝐹1 → 𝐹0 → 𝔼𝔹

defined in the proof of Lemma 5.4, we can see thatHom
(
𝐹1,Σ1,0𝐻∗,∗(𝐶3)

)
must

be 0. Recall 𝐹1 is isomorphic to two copies of𝕄3 generated in degrees (3, 2) and
(2, 2). Since Σ1,0𝐻∗,∗(𝐶3) is concentrated in degrees (1, 𝑞), there are no degree
preserving maps 𝐹1 → Σ1,0𝐻∗,∗(𝐶3). Thus Ext1,(0,0)

(
𝔼𝔹,Σ1,0𝐻∗,∗(𝐶3)

)
must be

zero. □

With these lemmas, we are now ready to prove Theorem 5.1. For each of
the four cases listed in the theorem, we will break up the computations into
subcases based on the corresponding equivariant surgery decomposition of the
isomorphism class. Each case is split up slightly differently, but most computa-
tions will consist of a base case (where we look at the cohomology of a surface
with no ribbon surgeries or equivariant connected sum) and a separate induc-
tive step.
We begin with Case (1) as defined in Theorem 5.1. Recall that the space

Sph2𝑘+3𝑔[2𝑘+2] ≅
(
𝑆2,1 + 𝑘[𝑅3]

)
#3𝑀𝑔 is orientablewith𝛽(Sph2𝑘+3𝑔[2𝑘+2]) =

2(2𝑘 + 3𝑔) and 𝐹 = 2𝑘 + 2. In particular, 𝐹 − 2 = 2𝑘 and 𝛽−2𝐹+4
3

= 2𝑔. We will
show that

𝐻∗,∗(Sph2𝑘+3𝑔[2𝑘 + 2]) ≅ 𝕄3 ⊕ Σ2,1𝕄3 ⊕
(
Σ1,0𝐻∗,∗(𝐶3)

)⊕2𝑔 ⊕ 𝔼𝔹⊕2𝑘

by induction on 𝑘.

Proof of Theorem 5.1, Case (1) base, Sph3𝑔[2]. Recall that

Sph3𝑔[2] ∶= 𝑆2,1#3𝑀𝑔.

To begin the computation, we will construct a cofiber sequence

𝑌+ ↪ Sph3𝑔[2]+ → 𝑆2,1

where 𝑌 is the space in red depicted in Figure 29. The space 𝑌 consists of three
tori with boundary connected to a fixed point via line segments, and it is homo-
topy equivalent to �̃�𝑔 ∧𝐶3+ which deformation retracts onto

(⋁
2𝑔 𝑆

1,0
)
∧𝐶3+.

This gives us a long exact sequence on cohomology:

⋯→ �̃�𝑝,𝑞(𝑆2,1)→ 𝐻𝑝,𝑞(Sph3𝑔[2])→ 𝐻𝑝,𝑞(𝑌)
𝑑
,→ �̃�𝑝+1,𝑞(𝑆2,1)→⋯
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Figure 29. The space 𝑌 ⊂ Sph3𝑔[2] in red with 𝑔 = 2. Note
𝑌 ≃

⋁

2𝑔
𝑆1,0 ∧ 𝐶3+.

which can be understood by analyzing its total differential
⨁

𝑝,𝑞
𝑑𝑝,𝑞 ∶ 𝐻𝑝,𝑞(𝑌)→ �̃�𝑝+1,𝑞(𝑆2,1).

We plot the domain and target space of the differential below:

𝑝

𝑞 2g

𝑑1,0

Since the total differential is an𝕄3-modulemap, it is completely determined
by its values in degrees (0, 0) and (1, 0) by linearity. It is immediate that 𝑑0,0 = 0
since �̃�1,0(𝑆2,1) = 0, and we can use the quotient lemma to determine 𝑑1,0.
In particular, Sph3𝑔[2]∕𝐶3 ≃ 𝑀𝑔, and so 𝐻2,0(Sph3𝑔[2]) ≅ ℤ∕3. Therefore
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something in degree (2, 0)must be in the cokernel of 𝑑. This can only happen
if 𝑑1,0 = 0.
We are able to determine by linearity that the total differential

⨁
𝑎,𝑏 𝑑

𝑎,𝑏must
be zero everywhere. This leaves us to solve the extension problem

Σ2,1𝕄3 ↪ 𝐻∗,∗(Sph3𝑔[2])↠ 𝕄3 ⊕
(
Σ1,0𝐻∗,∗(𝐶3)

)⊕2𝑔 .
By the observations in Remark 2.7, we know 𝕄3 splits off as a summand of
𝐻∗,∗(Sph3𝑔[2]). Moreover, the submodule

(
Σ1,0(ℤ∕3[𝑥, 𝑥−1])

)⊕2𝑔 ⊆ ker(𝑑) also
splits off. To see this, let 𝑎 be a nonzero element of 𝐻1,0(Sph3𝑔[2]). We know
𝐻3,1(Sph3𝑔[2]) = 0, so 𝑧 ⋅ 𝑎 = 0. Since 𝑦2 = 0 and for all nonzero 𝑏 in degree
(2, 1), 𝑦 ⋅ 𝑏 ≠ 0, it must be the case that 𝑦 ⋅ 𝑎 = 0. Finally, any lower cone
element must act trivially on 𝑎 since it is infinitely divisible by 𝑥. By linearity,
we conclude that there cannot be any nonzero 𝑦, 𝑧, or lower cone extensions
coming from 𝑥𝓁𝑎 for any 𝓁 ∈ ℤ.
Thus we can conclude the extension is trivial, and

𝐻∗,∗(Sph3𝑔[2]) ≅ 𝕄3 ⊕ Σ2,1𝕄3 ⊕
(
Σ1,0𝐻∗,∗(𝐶3)

)⊕2𝑔 .
□

We next proceed to the inductive step, assuming that

𝐻∗,∗(Sph2𝑘+3𝑔[2𝑘 + 2]) ≅ 𝕄3 ⊕ Σ2,1𝕄3 ⊕
(
Σ1,0𝐻∗,∗(𝐶3)

)⊕2𝑔 ⊕ 𝔼𝔹⊕2𝑘

for some 𝑘 ≥ 0. Let’s use this assumption to compute the cohomology of
Sph2(𝑘+1)+3𝑔[2(𝑘 + 1) + 2].

Proof of Theorem 5.1, Case (1) inductive step on 𝑘, Sph2𝑘+3𝑔[2𝑘 + 2]. We
proceed by considering the cofiber of a map

𝐸𝐵+ → Sph2(𝑘+1)+3𝑔[2(𝑘 + 1) + 2]+ (2)

which we define below. The cofiber will be homotopy equivalent to

Sph2𝑘+3𝑔[2𝑘 + 2] ∨ 𝐸𝐵.
To see this, first notice that Sph2𝑘+3𝑔[2𝑘 + 2] has at least 2 fixed points for any
𝑘 ≥ 0. Construct Sph2(𝑘+1)+3𝑔[2(𝑘+1)+2] by performing 𝐶3-ribbon surgery on
Sph2𝑘+3𝑔[2𝑘+2] in a neighborhood of one of these fixed points. Then construct
the map 𝐸𝐵 → Sph2(𝑘+1)+3𝑔[2(𝑘 + 1) + 2] by sending 𝐸𝐵 into this copy of 𝑅3
used to construct Sph2(𝑘+1)+3𝑔[2(𝑘 + 1) + 2] from Sph2𝑘+3𝑔[2𝑘 + 2]. Figure 30
shows the cofiber of such a map.
Next notice that this cofiber is homotopy equivalent to the space shown in

Figure 31 which is homotopy equivalent to Sph2𝑘+3𝑔[2𝑘 + 2] ∨ 𝐸𝐵.
This cofiber sequence gives us a long exact sequence on cohomology given

by

→ 𝐻𝑝,𝑞(Sph2(𝑘+1)+3𝑔[2(𝑘 + 1) + 2])→ 𝐻𝑝,𝑞(𝐸𝐵)
𝑑
,→ �̃�𝑝+1,𝑞(Sph2𝑘+3𝑔[2𝑘 + 2] ∨ 𝐸𝐵)→
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Figure 30. The cofiber sequence corresponding to (2).

Figure 31. Up to homotopy, the cofiber of (2) is
Sph2(𝑘+1)+3𝑔[2(𝑘 + 1) + 2] ∨ 𝐸𝐵.

As in previous examples, we can understand �̃�∗,∗(Sph2(𝑘+1)+3𝑔[2(𝑘 + 1) + 2])
by computing the total differential

𝑑∶ 𝐻∗,∗(𝐸𝐵)→ �̃�∗+1,∗(Sph2𝑘+3𝑔[2𝑘 + 2] ∨ 𝐸𝐵).

The domain and target space of this differential is shown on the (𝑝, 𝑞)-axis in
Figure 32.
To compute this differential, it suffices to determine its value in degrees (0, 0),

(1, 1), and (2, 2).
First observe that Sph2(𝑘+1)+3𝑔[2(𝑘+1)+2]∕𝐶3 ≃ 𝑀𝑔. This follows from the

fact that for any𝐶3-space𝑋 andnon-equivariant space𝑌, (𝑋 + 𝑘[𝑅3]#3𝑌) ∕𝐶3 ≅
(𝑋∕𝐶3) #𝑌. In this case, we have Sph2(𝑘+1)+3𝑔[2(𝑘+1)+2] ≅ 𝑆2,1+𝑘[𝑅3]#3𝑀𝑔,
so Sph2(𝑘+1)+3𝑔[2(𝑘 + 1) + 2]∕𝐶3 ≃ 𝑀𝑔. The quotient lemma then tells us that

𝐻1,0(Sph2(𝑘+1)+3𝑔[2(𝑘 + 1) + 2]) ≅ (ℤ∕3)⊕2𝑔. In particular, 𝑑0,0 must be 0.
We saw inExample 2.5 that𝔼𝔹 ≅ 𝕄3⟨𝛼, 𝛽⟩∕(𝑦𝛽, 𝑦𝛼−𝑧𝛽)where𝛼 is in degree

(2, 1) and 𝛽 is in degree (1, 1). There is nothing for 𝑑2,11 to hit, so 𝑑(𝛼) = 0.
Moreover, 0 = 𝑦𝑑(𝛼) = 𝑑(𝑦𝛼) = 𝑑(𝑧𝛽). If 𝑑(𝛽) ≠ 0, then linearity of 𝑑 would
imply 𝑑(𝑧𝛽) ≠ 0. This tells us the total differential must be 0.
This leaves us to solve the extension problem

(
Σ1,0𝐻∗,∗(𝐶3)

)⊕2𝑔⊕𝔼𝔹⊕2𝑘+1⊕Σ2,1𝕄3 ↪ 𝐻∗,∗(Sph2(𝑘+1)+3𝑔[2(𝑘+1)+2])↠ 𝕄3⊕𝔼𝔹.
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𝑝

𝑞 2k+1 2g

Figure 32. The differential for the long exact sequence corre-
sponding to (2).

We can then use Lemmas 5.4, 5.5, and 5.6 to determine that there can be no
non-trivial extensions. Thus finally we have that

𝐻∗,∗(Sph2(𝑘+1)+3𝑔[2(𝑘 + 1) + 2]) ≅ 𝕄3 ⊕ Σ2,1𝕄3 ⊕ (𝐻∗,∗(𝐶3))
⊕2𝑔 ⊕ 𝔼𝔹⊕2(𝑘+1),

and the result holds by induction. □

This ends the computation for Case (1). Our next goal will be to compute the
cohomology of the space Poly𝑛,3𝑛−2+2𝑘+3𝑔[3𝑛 + 2𝑘] for all 𝑛 ≥ 1 and 𝑘, 𝑔 ≥ 0.
First recall that Poly𝑛,3𝑛−2+2𝑘+3𝑔[3𝑛 + 2𝑘] ∶=

(
Poly𝑛 +𝑘[𝑅3]

)
#3𝑀𝑔 with 𝛽-

genus 2(3𝑛−2+2𝑘+3𝑔) and 𝐹 = 3𝑛+2𝑘. Therefore 𝐹−2 = 3𝑛+2𝑘−2 and
(𝛽 − 2𝐹 + 4)∕3 = 2𝑔. So we will work towards proving the following:

𝐻∗,∗(Poly𝑛,3𝑛−2+2𝑘+3𝑔[3𝑛+2𝑘]) ≅ 𝕄3⊕Σ2,1𝕄3⊕𝔼𝔹⊕(3𝑛−2+2𝑘)⊕
(
Σ1,0𝐻∗,∗(𝐶3)

)⊕2𝑔 .

This will be done in several steps. First we consider the base case with 𝑔 =
𝑘 = 0 and 𝑛 = 1. Then we confirm that the result holds for 𝑛 = 1, 𝑔 = 0, and
𝑘 ≥ 0. The next step will be to induct on 𝑛 and compute cohomology in the
case 𝑛 ≥ 1, 𝑔 = 0, and 𝑘 ≥ 0. The final step will be to consider the 𝑔 ≥ 0 case.

Proof of Theorem 5.1, Case (2) base, Poly1. There is a cofiber sequence

𝐸𝐵 ↪ Poly1 → 𝑆2,1 (3)
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Figure 33. The cofiber sequence 𝐸𝐵 ↪ Poly1 → 𝑆2,1.

𝑝

𝑞

Figure 34. The differential for the long exact sequence corre-
sponding to (3).

which we can see depicted in Figure 33. This gives a long exact sequence on
cohomology

⋯→ �̃�𝑝,𝑞(𝑆2,1)→ �̃�𝑝,𝑞(Poly1)→ �̃�𝑝,𝑞(𝐸𝐵)
𝑑𝑝,𝑞
,,,→ �̃�𝑝+1,𝑞(𝑆2,1)→⋯

which can be understood by computing its total differential
⨁

𝑝,𝑞
𝑑𝑝,𝑞 ∶ �̃�∗+1,∗(𝐸𝐵)→ �̃�∗,∗(𝑆2,1)

shown in Figure 34.
Similar reasoning to that of the last example tells us that the total differen-

tial to this cofiber sequence must be zero. In particular, we can use the module
structure 𝔼𝔹 ≅ 𝕄3⟨𝛼, 𝛽⟩∕(𝑦𝛽, 𝑦𝛼 − 𝑧𝛽) and the fact that 𝑑2,1(𝛼) = 0 to deter-
mine that 𝑑𝑝,𝑞 must be zero for all (𝑝, 𝑞).
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Since the differential is identically zero, weknowker(𝑑) = 𝔼𝔹 and coker(𝑑) =
Σ2,1𝕄3. We now have to solve the extension problem

0→ Σ2,1𝕄3 → �̃�∗,∗(Poly1)→ 𝔼𝔹→ 0.
The above sequence is split as a consequence of Lemmas 5.4 and 5.5, and we
have

�̃�∗,∗(Poly1) ≅ Σ2,1𝕄3 ⊕ 𝔼𝔹.
As per the observations in Remark 2.7, it follows that

𝐻∗,∗(Poly1) ≅ 𝕄3 ⊕ Σ2,1𝕄3 ⊕ 𝔼𝔹.
□

Proof of Theorem 5.1, Case (2) induction on 𝑘, Poly1,1+2𝑘[2𝑘 + 3]. Assume
that for some 𝑘 ≥ 0 and 𝑔 = 0, the cohomology of Poly1,1+2𝑘[2𝑘+3] is as stated
in Theorem 5.1, and we will show that it holds true for Poly1,1+2(𝑘+1)[2(𝑘+1)+
3].
Consider the cofiber sequence

𝐸𝐵 ↪ Poly1,1+2(𝑘+1)[2(𝑘 + 1) + 3]→ Poly1,1+2𝑘[2𝑘 + 3] ∨ 𝐸𝐵
whose corresponding long exact sequence on cohomology has differential

𝑑∶ 𝔼𝔹→ �̃�∗+1,∗(Poly1,1+2𝑘[3 + 2𝑘] ∨ 𝐸𝐵).
To compute this differential, we consult Figure 35 and observe that 𝛼 ∈ 𝔼𝔹 in
degree (2, 1)must map to 0 as there is nothing in degree (3, 1). However using
a similar argument to that in the base case, it must be that 𝑑(𝛽) = 0 by linearity.
In particular, the total differential is zero.
Moreover, all extensions are trivial as a consequence of Lemmas 5.4 and 5.5.

From this, we can easily see what �̃�∗,∗(Poly1,1+2(𝑘+1)[2(𝑘 + 1) + 3]) must be.
Thus we have

𝐻∗,∗(Poly1,1+2(𝑘+1)[2(𝑘 + 1) + 3]) ≅ 𝕄3 ⊕ Σ2,1𝕄3 ⊕ 𝔼𝔹⊕2𝑘+3

as desired. □

Proof of Theorem 5.1, Case (2) induction on 𝑛, Poly𝑛,3𝑛−2+2𝑘[3𝑛 + 2𝑘]. For
𝑛 ≥ 1, we next compute the groups 𝐻∗,∗(Poly𝑛,3𝑛−2+2𝑘[3𝑛 + 2𝑘]). The 𝑛 = 1
case has been completed with the computation of 𝐻∗,∗(Poly1,1+2𝑘[3 + 2𝑘]) in
the previous step.
Assume for some 𝑛 ≥ 1 that

𝐻∗,∗(Poly𝑛,3𝑛−2+2𝑘[3𝑛 + 2𝑘]) ≅ 𝕄3 ⊕ Σ2,1𝕄3 ⊕ 𝔼𝔹⊕(3𝑛−2+2𝑘).
There is a cofiber sequence

𝑌+ ↪ Poly𝑛+1,3(𝑛+1)−2+2𝑘[3(𝑛 + 1) + 2𝑘]+ → Poly𝑛,3𝑛−2+2𝑘[3𝑛 + 2𝑘]
where 𝑌 is the space depicted in Figure 36. This space is homotopy equivalent
to 𝐸𝐵 ∨ 𝐸𝐵 ∨ 𝐸𝐵. To see this homotopy equivalence, first note that the space
𝑌 is equivalent to a wedge of 𝐸𝐵 with a copy of Poly1 with three conjugate



BREDON COHOMOLOGY OF 𝐶3-SURFACES 949

𝑝

𝑞 2k+2

Figure 35. The differential 𝑑𝑝,𝑞 ∶ 𝔼𝔹𝑝,𝑞 →
�̃�𝑝+1,𝑞(Poly1,1+2𝑘[2𝑘 + 3] ∨ 𝐸𝐵).

Figure 36. The space 𝑌 ≃ 𝐸𝐵 ∨ 𝐸𝐵 ∨ 𝐸𝐵 is shown in red in
the case 𝑛 = 2, 𝑘 = 0.

disks removed. The space Poly1 ⧵
(
𝐷 ∪ 𝜎𝐷 ∪ 𝜎2𝐷

)
retracts onto𝐸𝐵∨𝐸𝐵, giving

us 𝑌 ≃ 𝐸𝐵 ∨ 𝐸𝐵 ∨ 𝐸𝐵. As usual, we want to consider the differential in the
corresponding long exact sequence on cohomology:

𝑑∶ 𝐻∗,∗(𝑌)→ �̃�∗,∗(Poly𝑛,3𝑛−2+2𝑘[3𝑛 + 2𝑘]).

Themodules𝐻∗,∗(𝑌) and �̃�∗,∗(Poly𝑛,3𝑛−2+2𝑘[3𝑛+2𝑘]) are shown in Figure 37.
Since 𝑑 is an 𝕄3-module map, we only need to consider the value of 𝑑 in

degrees (0, 0), (1, 1), and (2, 1). The quotient lemma guarantees that 𝑑0,0 =
0. Since there is nothing in degree (3, 1), it also must be the case that 𝑑2,1 =
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𝑝

𝑞 3

3𝑛 − 2 + 2𝑘

Figure 37. The modules𝐻∗,∗(𝑌) and �̃�∗,∗(Poly𝑛,3𝑛−2+2𝑘[3𝑛 + 2𝑘]).

0. A similar strategy from previous examples utilizing the module structure of
𝔼𝔹 guarantees that in fact all differentials must be 0. This leaves us with the
extension problem

Σ2,1𝕄3⊕𝔼𝔹
⊕(3𝑛−2+2𝑘) ↪ 𝐻∗,∗(Poly𝑛+1,3(𝑛+1)−2+2𝑘[3(𝑛+1)+2𝑘])↠ 𝕄3⊕𝔼𝔹

⊕3.
We know from Lemmas 5.4 and 5.5 that this extension is trivial. Thus we have

𝐻∗,∗(Poly𝑛,3𝑛−2+2𝑘[3𝑛 + 2𝑘]) ≅ 𝕄3 ⊕ Σ2,1𝕄3 ⊕ 𝔼𝔹⊕3𝑛−2+2𝑘.
□

Proof of Theorem 5.1, Case (2) induction on 𝑔, Poly𝑛,3𝑛−2+2𝑘+3𝑔[3𝑛 + 2𝑘].
The last case to be considered is Poly𝑛,3𝑛−2+2𝑘+3𝑔[3𝑛+2𝑘]when 𝑔 > 0. For this
we construct the cofiber sequence

𝑌+ ↪ Poly𝑛,3𝑛−2+2𝑘+3𝑔[3𝑛 + 2𝑘]+ → Poly𝑛,3𝑛−2+2𝑘[3𝑛 + 2𝑘]
where 𝑌 is the space in red in Figure 38. This space consists of three tori
with boundary connected to a fixed point via line segments. Recall that 𝑌 ≃(⋁

2𝑔 𝑆
1,0
)
∧ 𝐶3+. So the long exact sequence corresponding to this cofiber se-

quence has differential

𝑑𝑝,𝑞 ∶ 𝐻𝑝,𝑞(𝑌)→ �̃�∗,∗(Poly𝑛,3𝑛−2+2𝑘[3𝑛 + 2𝑘]).
This differential can be see in Figure 39.
Since there is nothing for it to hit, we can easily observe that 𝑑0,0 = 0. The

quotient lemma additionally allows us to conclude 𝑑1,0 = 0, and thus 𝑑1,𝑞 = 0
by linearity. In particular, the total differential is zero.
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Figure 38. The space 𝑌 ≃ ⋁
2𝑔 𝑆

1,0 ∧ 𝐶3+, shown in red for
𝑛 = 1,𝑘 = 0,𝑔 = 3.

𝑝

𝑞 2g

3𝑛 − 2 + 2𝑘

Figure 39. The differential 𝑑∶ 𝐻∗,∗(𝑌) →
�̃�∗,∗(Poly𝑛,3𝑛−2+2𝑘[3𝑛 + 2𝑘]).

We then turn to solve the extension problem

0→ coker(𝑑)→ 𝐻∗,∗(Poly𝑛,3𝑛−2+2𝑘+3𝑔[3𝑛 + 2𝑘])→ ker(𝑑)→ 0

where coker(𝑑) = 𝔼𝔹⊕3𝑛−2+2𝑘⊕Σ2,1𝕄3 and ker(𝑑) = 𝕄3⊕
(
Σ1,0𝐻∗,∗(𝐶3)

)⊕2𝑔
.

We again recall Remark 2.7 and observe that 𝕄3 ⊆ ker(𝑑) must split off of
𝐻∗,∗(Poly𝑛,3𝑛−2+2𝑘+3𝑔[3𝑛 + 2𝑘]) as a summand. A similar argument to that of
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the base case in isomorphism class (1) of Theorem 5.1 guarantees that(
Σ1,0𝐻∗,∗(𝐶3)

)⊕2𝑔
in ker(𝑑)must split off as well.

Thus we can conclude the extension is trivial, and

𝐻∗,∗(Poly𝑛,3𝑛−2+2𝑘+3𝑔[3𝑛+2𝑘]) ≅ 𝕄3⊕Σ2,1𝕄3⊕𝔼𝔹
⊕3𝑛−2+2𝑘⊕

(
Σ1,0𝐻∗,∗(𝐶3)

)⊕2𝑔 .

□

The third isomorphism class of surface presented in Theorem 5.1 is

𝑁4𝑘+3𝑟[2𝑘 + 2] ≅ 𝑆2,1 + 𝑘[𝑅3]#3𝑁𝑟.

To compute the cohomology of this family of isomorphism classes, we need
only induct on 𝑟 since𝐻∗,∗(𝑆2,1 + 𝑘[𝑅3]) is determined by Case (1).

Proof of Theorem 5.1, Case (3) induction on 𝑟, 𝑁4𝑘+3𝑟[2𝑘 + 2]. For 𝑟 ≥ 1,
the space𝑁4𝑘+3𝑟[2𝑘+2] is non-orientable with 𝛽-genus 4𝑘+3𝑟 and 𝐹 = 2𝑘+2.
Then 𝐹 − 2 = 2𝑘 and (𝛽 − 2𝐹 + 1)∕3 = 𝑟 − 1. So our goal is to show

𝐻∗,∗(𝑁4𝑘+3𝑟[2𝑘 + 2]) ≅ 𝕄3 ⊕ 𝔼𝔹⊕2𝑘 ⊕
(
Σ1,0𝐻∗,∗(𝐶3)

)⊕𝑟−1 .

We begin with the cofiber sequence

(�̃�𝑟 × 𝐶3)+ ↪ 𝑁4𝑘+3𝑟[2𝑘 + 2]+ → Sph2𝑘[2𝑘 + 2] ∨ 𝐸𝐵.

This gives us the following long exact sequence on cohomology

⋯→ 𝐻𝑝,𝑞(𝑁4𝑘+3𝑟[2𝑘+2])→ 𝐻𝑝,𝑞(�̃�𝑟×𝐶3)
𝑑
,→ �̃�𝑝+1,𝑞(Sph2𝑘[2𝑘+2]∨𝐸𝐵)→⋯

with differential

𝑑𝑝,𝑞 ∶ 𝐻𝑝,𝑞(�̃�𝑟 × 𝐶3)→ �̃�𝑝+1,𝑞(Sph2𝑘[2𝑘 + 2] ∨ 𝐸𝐵)

as shown below:

𝑝

𝑞 r 2k
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𝑝

𝑞 2k

𝑟 − 1

Figure 40. The modules ker(𝑑) and coker(𝑑).

To determine if this differential is nonzero, we start with the quotient lemma.
Observe that 𝑁4𝑘+3𝑟[2𝑘 + 2]∕𝐶3 ≃ 𝑁𝑟, and we have

�̃�𝑝
sing(𝑁𝑟;ℤ∕3) =

⎧

⎨
⎩

ℤ∕3 for 𝑝 = 0
(ℤ∕3)𝑟−1 for 𝑝 = 1
0 else

Thus itmust be the case that𝑑1,0 is nonzero. Otherwise𝐻2,0(𝑁4𝑘+3𝑟[2𝑘+2]) ≠ 0
and we would contradict the results of the quotient lemma. By linearity, we get
that 𝑑1,𝑞 is nonzero for all 𝑞 ≤ 0 and is zero when 𝑞 > 0.
We next turn to 𝑑0,𝑞. Using a similar argument from the base case of isomor-

phism class (1) in Theorem 5.1, we can observe that since𝕄3 and coker(𝑑) are
submodules of𝐻∗,∗(𝑁4𝑘+3𝑟[2𝑘 + 2]), 𝑑0,𝑞 cannot be zero.
We are left to determine if the extension

coker(𝑑)↪ 𝐻∗,∗(𝑁4𝑘+3𝑟[2𝑘 + 2])↠ ker𝑑
is nontrivial, where coker(𝑑) and ker(𝑑) are depicted in Figure 40. We already
know that this extension is nontrivial since𝕄3 ⊆ 𝐻∗,∗(𝑁4𝑘+3𝑟[2𝑘 + 2]). As in
the computation for Case (1) in Theorem 5.1, we get that

(
Σ1,0𝐻∗,∗(𝐶3)

)⊕𝑟−1 ⊆
ker𝑑 must split off as a summand of 𝐻∗,∗(𝑁4𝑘+3𝑟[2𝑘 + 2]) since no possible
nontrivial extensions from this module can exist in this case.
Finally, we conclude that

𝐻∗,∗(𝑁4𝑘+3𝑟[2𝑘 + 2]) ≅ 𝕄3 ⊕
(
Σ1,0𝐻∗,∗(𝐶3)

)⊕𝑟−1 ⊕ 𝔼𝔹⊕2𝑘.
□
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𝑝

𝑞 2k

𝑝

𝑞 2k

Figure 41. The differential 𝑑 (left) and its kernel and cokernel (right).

We next explore Case (4) of Theorem 5.1. The cohomology of 𝑁1[1] was de-
termined in Example 2.6, sowe only have left to consider𝑁1+4𝑘+3𝑟[2𝑘+1]when
𝑘 ≥ 0 and 𝑟 ≥ 0. Our final computationswill proceed as induction on the values
of 𝑘 and 𝑟 respectively.

Proof of Theorem 5.1, Case (4) induction on 𝑘, 𝑁1+4𝑘[2𝑘 + 1]. We can see
that the space 𝑁1+4𝑘+3𝑟[2𝑘 + 1] is non-orientable with 𝛽 = 1 + 4𝑘 + 3𝑟 and
𝐹 = 2𝑘 + 1, so 𝐹 − 1 = 2𝑘 and (𝛽 − 2𝐹 + 1)∕3 = 𝑟. Our goal is to show

𝑁1+4𝑘+3𝑟[2𝑘 + 1] ≅ 𝕄3 ⊕ 𝔼𝔹⊕2𝑘 ⊕
(
Σ1,0𝐻∗,∗(𝐶3)

)⊕𝑟 .

Recall that if 𝑟 = 0, then 𝑁1+4𝑘+3𝑟[2𝑘 + 1] ≅ 𝑁1[1] + 𝑘[𝑅3]. We start with a
cofiber sequence

𝑆1free+ ↪ 𝑁1[1] + 𝑘[𝑅3]+ → Sph2𝑘[2𝑘 + 2]

with long exact sequence

→ �̃�𝑝,𝑞(Sph2𝑘[2𝑘+2])→ 𝐻𝑝,𝑞(𝑁1+4𝑘[2𝑘+1])→ 𝐻𝑝,𝑞(𝑆1free)
𝑑
,→ �̃�𝑝+1,𝑞(Sph2𝑘[2𝑘+2])→

on cohomology. We once again try to determine the total differential
⨁

𝑝,𝑞 𝑑
𝑝,𝑞

which is highlighted on the left of Figure 41.
As usual we start with the quotient lemma. Observe that

(𝑁1[1] + 𝑘[𝑅3]) ∕𝐶3 ≃ ℝ𝑃2,

so it must be that𝐻𝑝,0(𝑁1+4𝑘[2𝑘+1]) = 0 for 𝑝 ≠ 0. In particular, 𝑑1,0 must be
an isomorphism, and by linearity we can determine the behavior of the differ-
ential in all other degrees. In particular, 𝑑𝑝,𝑞 is 0 when (𝑝, 𝑞) = (0, 0) or 𝑞 ≥ 1.
Otherwise 𝑑𝑝,𝑞 ≠ 0 with image in Σ2,1𝕄3 ⊆ �̃�∗,∗(Sph2𝑘[2𝑘 + 2]).
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Figure 42. The space 𝑌 in 𝑁1+2𝑘+3𝑟[2𝑘 + 1] is shown in red
in the case 𝑟 = 𝑘 = 2.

Now that we know the value of the differential, we can find ker(𝑑) and
coker(𝑑). These modules are depicted on the right of Figure 41. We are left
to solve the extension problem

0→ coker(𝑑)→ 𝐻∗,∗(𝑁1+4𝑘[2𝑘 + 1])→ ker(𝑑)→ 0.
Since𝕄3 ⊆ 𝐻∗,∗(𝑁1+4𝑘[2𝑘 + 1]), we can immediately see that there must be

a nontrivial extension. Knowing that𝕄3 is a summand of𝐻∗,∗(𝑁1+4𝑘[2𝑘+1]),
there is only one possible solution:

𝐻∗,∗(𝑁1+4𝑘[2𝑘 + 1]) ≅ 𝕄3 ⊕ 𝔼𝔹⊕2𝑘.
□

Proof of Theorem 5.1, Case (4) induction on 𝑟, 𝑁1+4𝑘+3𝑟[2𝑘 + 1]. Wefinally
turn to the general case with 𝑟 ≥ 0 and start by constructing the cofiber se-
quence

𝑌+ ↪ 𝑁1+4𝑘+3𝑟[2𝑘 + 1]+ → 𝑁1+4𝑘[2𝑘 + 1]
where 𝑌 is the space shown in red in Figure 42. Notice that 𝑌 is homotopy
equivalent to

(⋁
𝑟 𝑆

1,0) ∧ 𝐶3+.
Fromherewe can examine the differential 𝑑∶ 𝐻∗,∗(𝑌)→ �̃�∗+1,∗(𝑁1+4𝑘[2𝑘+

1]) of the corresponding long exact sequence on cohomology. The left diagram
of Figure 43 shows the 𝕄3-modules 𝐻∗,∗(𝑌) and �̃�∗,∗(𝑁1+4𝑘[2𝑘 + 1]). Since
�̃�𝑝+1,0(𝑁1+4𝑘[2𝑘 + 1]) = 0 for all 𝑝, we immediately see that 𝑑𝑝,0 must be 0.
By linearity, this guarantees the differential 𝑑𝑝,𝑞 must be the zero map for all
(𝑝, 𝑞).
Since the total differential is 0, ker(𝑑) = 𝐻∗,∗(𝑌) ≅ 𝕄3 ⊕

(
Σ1,0𝐻∗,∗(𝐶3)

)⊕𝑟

and coker(𝑑) = �̃�∗,∗(𝑁1+4𝑘[2𝑘 + 1]) ≅ 𝔼𝔹⊕2𝑘. We now must solve the final
extension problem

0→ 𝔼𝔹⊕2𝑘 → 𝐻∗,∗(𝑁1+4𝑘+3𝑟[2𝑘 + 1])→ 𝕄3 ⊕
(
Σ1,0𝐻∗,∗(𝐶3)

)⊕𝑟 → 0.
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𝑝

𝑞 r 2k

Figure 43. The spaces𝐻∗,∗(𝑌) = ker(𝑑) and �̃�∗,∗(𝑁1+4𝑘[2𝑘+
1]) = coker(𝑑).

We know that𝕄3 must split off as a summand of 𝐻∗,∗(𝑁1+4𝑘+3𝑟[2𝑘 + 1]), and
we have seen in previous arguments that there can be no nontrivial extensions
from

(
Σ1,0𝐻∗,∗(𝐶3)

)⊕𝑟
to 𝔼𝔹. This gives the desired result of

𝐻∗,∗(𝑁1+4𝑘+3𝑟[2𝑘 + 1]) ≅ 𝕄3 ⊕
(
Σ1,0(𝐻∗,∗(𝐶3)

)⊕𝑟 ⊕ 𝔼𝔹⊕2𝑘.

□
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