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On the applicability of logarithmic tensor
category theory

Yi-Zhi Huang

Abstract. We give results and observations which allow the application of
the logarithmic tensor category theory of Lepowsky, Zhang and the author
([HLZ1]–[HLZ9]) to more general vertex (operator) algebras and their mod-
ule categories than those studied in a paper by the author ([H3]).
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1. Introduction
The logarithmic tensor category theory of Lepowsky, Zhang and the author

([HLZ1]–[HLZ9]) gave a construction of a braided tensor category structure (in-
cluding a ribbon structure) on amodule category𝒞 for a suitable vertex operator
algebra or more general vertex algebra 𝑉. In this paper we broaden the appli-
cability of this theory. After referring to the assumptions needed for invoking
the theory in [HLZ1]–[HLZ9], we shall show that these assumptions can be
verified in more general settings than before, and in addition, we can relax an
assumption, thus yielding new families of logarithmic tensor categories.
Before we discuss the precise mathematics, we would like to mention that

the present paper is essentially an addendum to [HLZ1]–[HLZ9] and is read-
able only if the reader consults these papers. The reader will need to consult
the specific definitions, results and, especially, assumptions in [HLZ1]–[HLZ9]
discussed in this paper.
The construction in [HLZ1]–[HLZ9] uses certain assumptions on 𝑉 and 𝒞:

Assumptions 10.1 in [HLZ7] and Assumptions 12.1 and 12.2 in [HLZ9]. Parts
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1 to 5 and most assumptions in Part 7 of Assumption 10.1 in [HLZ7], and As-
sumption 12.1 in [HLZ9] hold for most of the interesting examples and are rel-
atively easy to verify. But there are examples of 𝑉 and 𝒞 for which the first
half of Part 6 of Assumption 10.1 in [HLZ7] does not hold, that is, the weights
of elements of generalized 𝑉-modules in 𝒞 are not all real and we still would
like to apply the theory of [HLZ1]–[HLZ9] to these examples. More impor-
tantly, the last part (the statement that 𝒞 be closed under 𝑃(𝑧)-tensor products
for some 𝑧 ∈ ℂ×) of Part 7 of Assumption 10.1 in [HLZ7], and Assumption 12.2
in [HLZ9], are related to some of the most important and deep properties of 𝑉
and 𝒞. When𝑉 and the objects of the category 𝒞 have trivial𝐴-gradings (for𝑉)
and �̃�-grading (for the objects of 𝒞), in other words, when the abelian groups
𝐴 and �̃� are trivial, it was also proved in [HLZ8] that Assumption 12.2 follows
from the condition that every finitely-generated lower bounded doubly-graded
generalized 𝑉-module be an object of 𝒞 together with the 𝐶1-cofiniteness con-
dition for objects of 𝒞 in the sense of [H2].
In [H3], the author proved that 𝑉 and the category 𝒞 of grading-restricted

generalized 𝑉-modules (that is, strongly graded generalized 𝑉-modules with
trivial grading abelian group �̃� in the terminology used in [HLZ1]–[HLZ9]) sat-
isfy all the assumptions in [HLZ7] and [HLZ9] if 𝑉 is a vertex operator algebra
(in particular, with trivial 𝐴) satisfying the following three conditions:

(1) 𝑉 is 𝐶𝑎1 -cofinite in the sense that 𝑉∕𝐶
𝑎
1 (𝑉) is finite dimensional, where

𝐶𝑎1 (𝑉) is the subspace of𝑉 spanned by the elements of the form 𝑢𝑛𝑣 for
𝑢, 𝑣 ∈ 𝑉+ = ∐

𝑛∈ℤ+
𝑉(𝑛) and 𝐿(−1)𝑣 for 𝑣 ∈ 𝑉. (Here 𝑎 in the super-

script of 𝐶𝑎1 means “algebra" since this is the 𝐶1-cofiniteness condition
for 𝑉 as a vertex operator algebra, not as a 𝑉-module.)

(2) There exists a positive integer𝑁 such that |ℜ(𝑛1) −ℜ(𝑛2)| ≤ 𝑁 for the
lowest weights 𝑛1 and 𝑛2 of any two irreducible 𝑉-modules and such
that 𝐴𝑁(𝑉) is finite dimensional.

(3) Every irreducible𝑉-module𝑊 isℝ-graded and 𝐶1-cofinite in the sense
that 𝑊∕𝐶1(𝑊) is finite dimensional, where 𝐶1(𝑊) is the subspace of
𝑊 spanned by the elements of the form 𝑢𝑛𝑤 for 𝑢 ∈ 𝑉+ =

∐
𝑛∈ℤ+

𝑉(𝑛)
and 𝑤 ∈𝑊.

In [H3], the actions of𝐿(0) on objects of the category are in general not semisim-
ple and thus intertwining operators among these objects in general are indeed
logarithmic. If𝑉 is of positive energy (that is,𝑉(𝑛) = 0 for 𝑛 < 0 and𝑉(0) = ℂ𝟏)
and 𝐶2-cofinite (that is, 𝑉∕𝐶2(𝑉) is finite dimensional where 𝐶2(𝑉) is the sub-
space of 𝑉 spanned by elements of the form 𝑢−2𝑣 for 𝑢 ∈ 𝑉+ and 𝑣 ∈ 𝑉), then
these three conditions hold. Since these three conditions, or the positive energy
condition and 𝐶2-cofiniteness condition, are relatively easy to verify and have
indeed been verified for many interesting examples of vertex operator algebras
and their module categories, the results in [H3] provide a practical method to
apply the logarithmic tensor category theory in [HLZ1]–[HLZ9].
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An initial motivation for our embarking on the creation of the logarithmic
tensor category [HLZ1]–[HLZ9] was to show that the braided tensor categories
constructed by Kazhdan and Lusztig in [KL1]–[KL5] for suitable module cate-
gories for affine Lie algebras could be recast and understood as a special case
of a new “logarithmic” generalization of the vertex tensor category theory con-
structed in [HL1]–[HL5] and [H1] for suitable module categories for a vertex
operator algebra. In the new theory, the module categories would no longer be
completely reducible and the actions of 𝐿(0) on the modules would no longer
be semisimple; in the Kazhdan-Lusztig work, themodule categories have these
properties. The theory, namely, [HLZ1]–[HLZ9], would be—and in fact is—
very general and not limited to affine Lie algebras. In [Z], Zhang indeed placed
the Kazhdan-Lusztig construction of braided tensor categories into the setting
of vertex operator algebra theory, in order to apply an earlier version of [HLZ1]–
[HLZ9] to construct these braided tensor categories. But Proposition 5.8 in [Z]
is wrong. Fortunately, the mistake is minor and we correct it in the present
paper. Proposition 5.8 in [Z] is an attempt to verify the condition that every
finitely-generated lower bounded doubly-graded generalized 𝑉-module is an
object of the category considered (see the comments above about [HLZ8] and
Assumption 12.2 in [HLZ9]). Also, in [Z], the objects in the category are not all
graded by ℝ.
It is known that vertex operator algebras associated to, andmodule categories

corresponding to, the braided tensor categories constructed by Kazhdan and
Lusztig [KL1]–[KL5] do not satisfy the three conditions listed above (mainly
the second one, but in some cases also the part of the third condition requiring
that irreducible modules be ℝ-graded). Also, in recent years, new examples
of interesting vertex (operator) algebras and their module categories have been
constructed and studied. Some of these examples also do not satisfy all the
three conditions listed above. It is therefore important to generalize the results
in [H3], and even in [HLZ1]–[HLZ9], so that the logarithmic tensor category
theory can be applied to these cases.
In this short paper, we give results and observations which can be used to

apply the logarithmic tensor category theory in [HLZ1]–[HLZ9] tomore general
vertex (operator) algebras andmodule categories than those studied in [H3]. In
particular, we correct the mistake in [Z] and make sure that the results in [Z]
indeed hold even when the objects of 𝒞 are not all graded by ℝ. This serves
to complete the proof that the braided tensor categories of Kazhdan-Lusztig
are indeed special cases of the logarithmic tensor category theory of [HLZ1]–
[HLZ9].
Acknowledgments. These remarks are based on the authors’ answers to ques-
tions asked by Antun Milas. I am very grateful for him for the questions and
discussions. I would also like to thank James Lepowsky for helpful comments.
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2. A unique expansion set result
Compared with the study of vertex (operator) algebras, modules and single

(logarithmic) intertwining operators, the study of products and iterates of two
or more (logarithmic) intertwining operators is much more difficult but is cer-
tainly also much richer and deeper. One needs to prove the convergence of the
series obtained from these products and iterates and then to use analytic ex-
tension and expansion in different regions to obtain the desired results. The
analytic extensions of these products and iterates are in general multivalued
analytic functions for which many of the usual techniques, which work per-
fectly for the rational functions used in the study of vertex operator algebras
andmodules, do not work anymore. Among those techniques that do not work
for intertwining operators is the Laurent expansion of a single-valued analytic
function defined on an annulus. But we still need to prove that themultivalued
analytic functions obtained from analytic extensions of the products and iter-
ates of (logarithmic) intertwining operators can be expanded uniquely as series
in powers of the variables and in nonnegative integral powers of the logarithms
of the variables. In general, such expansions, even if they exist, might not be
unique. The uniqueness is important for us to construct the (logarithmic) in-
tertwining operators needed in our results. For this reason, a notion of unique
expansion set was introduced in [HLZ6]:
We call a subset 𝒮 ofℂ×ℂ a unique expansion set if the absolute convergence

to 0 on some nonempty open subset of ℂ× of any series
∑

(𝛼,𝛽)∈𝒮
𝑎𝛼,𝛽𝑧𝛼(log 𝑧)𝛽, 𝑎𝛼,𝛽 ∈ ℂ,

where log 𝑧 = log |𝑧| + 𝑖 arg 𝑧 and 0 ≤ arg 𝑧 < 2𝜋, implies that 𝑎𝛼,𝛽 = 0 for
all (𝛼, 𝛽) ∈ 𝒮. Lemma 14.5 in [H1] can be restated as saying that the Cartesian
product of a strictly increasing sequence of real numbers and {0} is a unique
expansion set. Proposition 7.8 in [HLZ6] states that for any𝑁 ∈ ℕ,ℝ×{0,… , 𝑁}
is a unique expansion set. These results involve only real powers of the variable.
It is known that ℂ × {0} is not a unique expansion set.
In this section, we give a generalization of Lemma 14.5 in [H1] to the case

that the powers of the variable can be complex, with finitely many different
imaginary parts. This generalizationwill allowus to apply the theory in [HLZ1]–
[HLZ9] to suitable module categories for vertex (operator) algebras whose ob-
jects might have complex weights. In particular, this generalization justifies
those statements in [Z] that also cover the case that the weights of elements
of modules might be complex. It is still not known whether Proposition 7.8 in
[HLZ6] (where the powers of the variables are real) can be generalized to the
case that the powers of the variable contain finitely many different imaginary
parts. But for existing examples, the result below, which generalizes Lemma
14.5 in [H1], is enough.

Proposition 2.1. Let {𝑛𝑖}𝑖∈ℤ+ be a sequence of strictly increasing real numbers
(that is, 𝑛𝑖 ∈ ℝ for 𝑖 ∈ ℤ+ and 𝑛1 < 𝑛2 < 𝑛3 <⋯) and let𝑚1,… , 𝑚𝑙 be distinct
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real numbers. Let

ℝ{𝑛𝑖}𝑖∈ℤ+
𝑚1,…,𝑚𝑙

= {𝑛𝑖 +𝑚𝑗
√
−1 | 𝑖 ∈ ℤ+, 𝑗 = 1,… , 𝑙}.

Then for any𝑁 ∈ ℕ,ℝ{𝑛𝑖}𝑖∈ℤ+
𝑚1,…,𝑚𝑙

× {0,… , 𝑁} is a unique expansion set.

Proof. Let 𝑎𝑖,𝑗,𝑘 ∈ ℂ for 𝑖 ∈ ℤ+, 𝑗 = 1,… , 𝑙 and 𝑘 = 0,… , 𝑁, and suppose that

∑

𝑖∈ℤ+

𝑙∑

𝑗=1

𝑁∑

𝑘=0
𝑎𝑖,𝑗,𝑘𝑧𝑛𝑖+𝑚𝑗

√
−1(log 𝑧)𝑘 =

∑

𝑖∈ℤ+

𝑙∑

𝑗=1

𝑁∑

𝑘=0
𝑎𝑖,𝑗,𝑘𝑒(𝑛𝑖+𝑚𝑗

√
−1) log 𝑧(log 𝑧)𝑘

is absolutely convergent to 0 for 𝑧 = 𝑧1 ∈ ℂ×. (See Remark 2.2 below.) We
want to prove that 𝑎𝑖,𝑗,𝑘 = 0 for 𝑖 ∈ ℤ+, 𝑗 = 1,… , 𝑙 and 𝑘 = 0,… , 𝑁.
We may assume that 𝑚1 > ⋯ > 𝑚𝑙. It is sufficient to prove that 𝑎1,𝑗,𝑘 = 0

for 𝑗 = 1,… , 𝑙 and 𝑘 = 0,… , 𝑁, which we proceed to do.
For 𝑧 ∈ ℂ satisfying |𝑧| ≤ |𝑧1|,

∑

𝑖∈ℤ+

|𝑎𝑖,𝑗,𝑘𝑧𝑛𝑖−𝑛1| =
∑

𝑖∈ℤ+

|𝑎𝑖,𝑗,𝑘||𝑧|𝑛𝑖−𝑛1 ≤
∑

𝑖∈ℤ+

|𝑎𝑖,𝑗,𝑘||𝑧|
𝑛𝑖−𝑛1
1 =

∑

𝑖∈ℤ+

|𝑎𝑖,𝑗,𝑘𝑧
𝑛𝑖−𝑛1
1 |

is absolutely and uniformly convergent. Thus for 𝑧 ∈ ℂ satisfying |𝑧| < |𝑧1|,

∑

𝑖∈ℤ+

𝑙∑

𝑗=1

𝑁∑

𝑘=0
𝑎𝑖,𝑗,𝑘𝑧(𝑛𝑖−𝑛1)+(𝑚𝑗−𝑚𝑙)

√
−1(log 𝑧)𝑘−𝑁

=
∑

𝑖∈ℤ+

𝑙∑

𝑗=1

𝑁∑

𝑘=0
𝑎𝑖,𝑗,𝑘𝑒((𝑛𝑖−𝑛1)+(𝑚𝑗−𝑚𝑙)

√
−1) log 𝑧(log 𝑧)𝑘−𝑁 (2.1)

is absolutely and uniformly convergent to 0.
Take log 𝑧 = 𝑥 + 𝑦

√
−1 where 𝑥 ∈ ℝ and 𝑦 ∈ ℝ such that 𝑒𝑥 < |𝑧1| or

equivalently 𝑥 < log |𝑧1|. Then |𝑧| < |𝑧1|. Thus from (2.1), for such 𝑥 and 𝑦,
we have

∑

𝑖∈ℤ+

𝑙∑

𝑗=1

𝑁∑

𝑘=0
𝑎𝑖,𝑗,𝑘𝑒(𝑛𝑖−𝑛1)𝑥𝑒(𝑛𝑖−𝑛1)𝑦

√
−1𝑒(𝑚𝑗−𝑚𝑙)

√
−1𝑥𝑒−(𝑚𝑗−𝑚𝑙)𝑦(𝑥 + 𝑦

√
−1)𝑘−𝑁 = 0.

(2.2)
Let 𝑥 and 𝑦 go to−∞ and∞, respectively, on both sides of (2.2). Since the series
in the left-hand side of (2.2) is uniformly convergent, we can take the limit term
by term. Thus we obtain 𝑎1,𝑙,𝑁 = 0.
Now assume that 𝑎1,𝑗,𝑁 = 0 for 𝑗 = 𝑝 + 1,… , 𝑙. Then

𝑝∑

𝑗=1

𝑁∑

𝑘=0
𝑎1,𝑗,𝑘𝑒(𝑚𝑗−𝑚𝑝)

√
−1𝑥𝑒−(𝑚𝑗−𝑚𝑝)𝑦(𝑥 + 𝑦

√
−1)𝑘−𝑁

+
∑

𝑖∈ℤ++1

𝑙∑

𝑗=1

𝑁∑

𝑘=0
𝑎𝑖,𝑗,𝑘𝑒(𝑛𝑖−𝑛1)𝑥𝑒(𝑛𝑖−𝑛1)𝑦

√
−1𝑒(𝑚𝑗−𝑚𝑝)

√
−1𝑥𝑒−(𝑚𝑗−𝑚𝑝)𝑦(𝑥 + 𝑦

√
−1)𝑘−𝑁

= 0. (2.3)
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Let 𝑦 = log |𝑥| in (2.3) and then let 𝑥 go to −∞ on both sides of (2.3). Again by
taking the limit on the left-hand side term by term, we obtain 𝑎1,𝑝,𝑁 = 0. Thus
we have 𝑎1,𝑗,𝑁 = 0 for 𝑗 = 1,… , 𝑙.
It follows that 𝑎1,𝑗,𝑘 = 0 for 𝑗 = 1,… , 𝑙 and 𝑘 = 0,… , 𝑁 − 1 as well. □

Remark2.2. From the proof of Proposition 2.1, we see thatweproved a stronger
result. In fact, in the proof, we have assumed that the series is absolutely con-
vergent only for a particular number 𝑧 = 𝑧1 ∈ ℂ×, not for 𝑧 in a nonempty open
subset of ℂ×. This assumption is weaker than the set to be a unique expansion
set. Thuswehave proved a result stronger than the statement of Proposition 2.1.

3. A sufficient condition for the expansion condition
In the proof of Theorem 4.12 in [H3], the author used the three conditions

(in fact only the first two conditions) listed in the introduction to prove that
every finitely-generated lower-truncated generalized 𝑉-module is in the cate-
gory of grading-restricted generalized 𝑉-modules (where the grading abelian
groups 𝐴 and �̃� are trivial). The convergence and extension property for prod-
ucts and iterates of logarithmic intertwining operators also holds by Theorem
11.8 in [HLZ8]. These verify the two conditions needed in Theorem 11.4 in
[HLZ8]. Then by Theorem 11.4 and Theorem 11.8 in [HLZ8], Assumption 12.2
in [HLZ9] holds.
When the first two conditions listed in the introduction do not hold, espe-

cially when the second condition does not hold, Condition 1 in Theorem 11.4
in [HLZ8] might not hold and thus we cannot use this theorem. But when As-
sumption 10.1 in [HLZ7] holds, Theorem 11.4 in [HLZ8] can be easily general-
ized by observing that the proof of Theorem 11.4 in [HLZ8] in fact proves the
following stronger result (stronger in the sense that one assumption is weaker):

Theorem 3.1. Suppose that Assumption 10.1 in [HLZ7] holds and the following
two conditions are satisfied:

(1) For any objects𝑊1 and𝑊2 of 𝒞 and any 𝑧 ∈ ℂ×, if the doubly-graded
generalized 𝑉-module 𝑊𝜆 (or a doubly-graded 𝑉-module when 𝒞 is in
ℳ𝑠𝑔) generated by a generalized eigenvector 𝜆 ∈ (𝑊1⊗𝑊2)∗ for 𝐿𝑃(𝑧)(0)
satisfying the 𝑃(𝑧)-compatibility condition is lower bounded, then𝑊𝜆 is
an object of 𝒞.

(2) The convergence and extension property for either products or iterates
holds in 𝒞 (or the convergence and extension property without logarithms
for either products or iterates holds in 𝒞, when 𝒞 is inℳ𝑠𝑔).

Then the convergence and expansion conditions for intertwining maps in 𝒞 both
hold.

Proof. Note that the only place in the proof of Theorem 11.4 in [HLZ8] where
the condition that every finitely-generated lower bounded generalized
𝑉-module is in 𝒞 (Condition 1 in that theorem) is used is in the last paragraph
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showing that𝑊𝜆(2)𝑛 (𝑤′
(4),𝑤(3))

is in 𝒞. But to show that𝑊𝜆(2)𝑛 (𝑤′
(4),𝑤(3))

is in 𝒞, Con-
dition 1 in the statement of the present theorem is enough. Thus the theorem
is proved. □

Remark 3.2. In Theorem 3.1, we assume in particular that the (generalized)
weights are real numbers for any object in 𝒞 (the first half of Part 6 of Assump-
tion 10.1 in [HLZ7]). If we replace this part of the assumption by the assump-
tion that every object in 𝒞 is of finite length, that is, has a finite composition
series in 𝒞, then because of Proposition 2.1, the conclusion of Theorem 3.1 still
holds.

Theorem 3.1 and Remark 3.2 can be used to construct the associativity iso-
morphism when Condition 1 in Theorem 11.4 in [HLZ8] is not satisfied (in
particular, when 𝑉 is a vertex operator algebra but Conditions 1 and 2 in the
introduction are not satisfied or, as a special case, when 𝑉 is a vertex operator
algebra that is not 𝐶2-cofinite), but Assumption 10.1 in [HLZ7] or the assump-
tions discussed in Remark 3.2 hold and the two conditions in Theorem 3.1 are
satisfied.

4. A correction of a mistake in a paper of Lin Zhang
The tensor categories constructed by Kazhdan and Lusztig in [KL2] corre-

spond to examples of vertex operator algebras and module categories that do
not satisfy the second condition listed in the introduction (in particular, do not
satisfy the 𝐶2-cofiniteness condition). A construction of these tensor categories
of Kazhdan-Lusztig using the logarithmic tensor category theory developed in
[HLZ1]–[HLZ9] was given in [Z].
But it was noticed by Milas that one of the propositions in [Z] that is needed

in applying Theorem 11.4 in [HLZ8] is wrong. Since this proposition in [Z] is
wrong, we cannot use Theorem 11.4 in [HLZ8]. Instead, we use Theorem 3.1
and a result in [KL2] to give an almost trivial correction of the minor mistake
in [Z].
To bemore precise, themistake is that Proposition 5.8 in [Z] is wrong. Propo-

sition 5.8 in [Z], if correct, would verify Condition 1 in Theorem 11.4 in [HLZ8].
To correct this mistake, we need only verify Condition 1 in Theorem 3.1 above.
We do this by using Theorem 7.9 in [KL2].

Proposition 4.1. For any two objects 𝑊1 and 𝑊2 of 𝒪𝜅, if the generalized
𝑉�̂�(𝓁, 0)–module 𝑊𝜆 generated by a generalized eigenvector 𝜆 ∈ (𝑊1 ⊗ 𝑊2)∗
for 𝐿𝑃(𝑧)(0) satisfying the 𝑃(𝑧)-compatibility condition is lower bounded, then𝑊𝜆
is an object of 𝒪𝜅.

Proof. Since𝑊𝜆 is lower bounded, by definition, the elements of𝑊𝜆 must be
in𝑊1◦𝑃(𝑧)𝑊2 (see [KL2] and [Z]). By Theorem 7.9 in [KL2],𝑊1◦𝑃(𝑧)𝑊2 is in
𝒪𝜅. From [KL2] (also Theorem 5.1 in [Z]),𝒪𝜅 consists of the �̂�-modules of level
𝓁 having a finite composition series all of whose irreducible subquotients are
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of the form 𝐿(𝓁, 𝜇) for various highest weights 𝜇 for the finite-dimensional Lie
algebra 𝔤. Thus𝑊𝜆 as a submodule of𝑊1◦𝑃(𝑧)𝑊2 is also in 𝒪𝜅. □

Remark 4.2. In general, the objects in𝒪𝜅might have homogeneous subspaces
of complex weights. In [Z], it was not justified that the results in [HLZ1]–
[HLZ9] can indeed be applied in this case. Whatwasmissing is exactly a unique
expansion set result that can be used in this case. Since any object in 𝒪𝜅 is of
finite length, for a given object in 𝒪𝜅, there can only be finitely many different
imaginary parts of the complex weights of the homogeneous subspaces of the
object. Proposition 2.1 is exactly the unique expansion set result that we need
in this case. Thus Proposition 2.1 fills this minor gap in [Z].

Together with [Z], Proposition 4.1 and Remark 4.2 serve to complete the
proof that the braided tensor categories of Kazhdan-Lusztig are indeed special
cases of the logarithmic tensor category theory of [HLZ1]–[HLZ9].
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