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Operator 𝑲-theoretic analysis of random
adjacency matrices

Bhishan Jacelon and Igor Khavkine

Abstract. We appeal to results from combinatorial random matrix theory
to deduce that various random graph C∗-algebras are asymptotically almost
surely Kirchberg algebras with trivial 𝐾1. This in particular implies that,
with high probability, the stable isomorphism classes of such algebras are ex-
hausted by variations of Cuntz algebras that we term ‘Cuntz polygons’. These
probabilistically generic algebras can be assembled into a Fraïssé class whose
limit structure𝔾 is consequently relevant to any𝐾-theoretic analysis of finite
graph C∗-algebras. We also use computer simulations to experimentally ver-
ify the behaviour predicted by theory and to estimate the asymptotic proba-
bilities of obtaining stable isomorphism classes represented by actual Cuntz
algebras. These probabilities depend on the frequencies with which the Sy-
low 𝑝-subgroups of 𝐾0 are cyclic and in some cases can be computed from
existing theory. For random symmetric 𝑟-regular multigraphs, current the-
ory can describe these frequencies for finite sets of odd primes 𝑝 not dividing
𝑟−1. A novel aspect of the collected data is the observation of new heuristics
outside of this case, leading to a conjecture for the asymptotic probability of
these graphs yielding C∗-algebras stably isomorphic to Cuntz algebras. For
othermodels of randommultigraphs including Bernoulli (di)graphs, the data
also allow us to estimate and heuristically explain the (surprisingly high) as-
ymptotic probabilities of exact isomorphism to a Cuntz algebra. Recognising
the role played by Cuntz–Krieger algebras in the theory of symbolic dynam-
ics, we also collect supplemental data to estimate (and in some cases, actually
compute) the asymptotic probability of a random subshift of finite type being
flow equivalent to a full shift.
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1. Introduction
In this paper, we investigate properties of the asymptotic distributions of cer-

tain families of random integer-valued matrices. The matrices in question en-
code adjacency in graphs (or rather, directedmultigraphs) created by randomly
adding edges to a large number of vertices (see Section 3), and thus offer a
means of generating random graph C∗-algebras (see Section 2). The present
work is therefore a continuation of [21], which initiated the study of random
constructions of several classes of C∗-algebras of interest to the Elliott classifi-
cation programme.
The graphs that we consider are with high probability strongly connected.

The associated C∗-algebras are therefore purely infinite and simple, so they fall
under the remit of the Kirchberg–Phillips classification theorem [34, Theorem
4.2.1] and indeed Rørdam’s earlier classification [37, Theorem 6.5] of simple
Cuntz–Krieger algebras (see Section 2). In other words, their (stable) isomor-
phism classes are determined by operator 𝐾-theory. Here, stable isomorphism
means isomorphism up to tensoring with the C∗-algebra of compact operators
on a separable, infinite-dimensional Hilbert space. Developed from algebraic
topology, 𝐾-theory (𝐾0(⋅), 𝐾1(⋅)) is a powerful tool for analysis in the category
of C∗-algebras. Its role as a classifying functor is what allows us to provide C∗-
algebraic interpretations of the various random events examined in the sequel.
With this in mind, we adopt the language of graph C∗-algebras throughout the
article.
In [21, §6], it was explained how some of the powerful machinery developed

by Wood [43] could be adapted to 𝐾-theoretic analysis of graph algebras. We
consideredmultigraphs𝐸 built fromunions of perfectmatchings, and observed
that the distributions of Sylow subgroups of random cokernels established in
[30]were also present for𝐾0(C∗(𝐸)), which is given by the cokernel of the trans-
pose of the multigraph’s adjacency matrix shifted by the identity. The original
motivation for the current work was to experimentally verify the 𝐾0-behaviour
predicted by this theory. We were indeed able to do this (see Section 4), but
what immediately became apparent from the data was something overlooked
in [21], namely, asymptotically almost-sure triviality of the 𝐾1-group, which is
given by the kernel of the shifted, transposed adjacency matrix.
The singularity problem for random matrices has a storied history in com-

binatorics (see the discussion and references in [30]). It posits that sufficiently
random square matrices are nonsingular with probability approaching 1 as the
matrix size grows to infinity. Our working hypothesis is that this should be ap-
plicable not just to the adjacency matrices𝐴𝐸 of appropriate random graphs 𝐸,
but equally well to𝑀𝐸 = 𝐴𝑡

𝐸 − 𝐼. As alluded to earlier, this matrix determines
𝐾0(C∗(𝐸)) = coker𝑀𝐸 and 𝐾1(C∗(𝐸)) = ker𝑀𝐸 (see the discussion surround-
ing (2.3)), and its nonsingularity exactly means triviality of 𝐾1. We will see in
Section 3 that this applies to Bernoulli digraphs 𝔻𝑛,𝑞 in which each possible
edge (allowing loops but not multiple edges) occurs independently with fixed
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probability 𝑞, and also to random 𝑟-regular multigraphs �̂�𝑛,𝑟 built from perfect
matchings.
Because of this𝐾1-triviality, and in light of𝐾-theoretic classification, the sta-

ble isomorphism classes of our random graph algebras (and, given the scope of
the singularity problem, likely more generally) can with high probability be de-
scribed by rather simple directed multigraphs. These representatives, which
we call Cuntz polygons (see Figure 1), are generalisations of Cuntz algebras in
the sense that 𝐾0 need not be cyclic but can be any finite abelian group. Sta-
ble isomorphism to an actual Cuntz algebra is detected by cyclicity of 𝐾0. As
it turns out, for large Bernoulli digraphs this happens about 85% of the time,
a probability which can be computed asymptotically from existing theory (see
Theorem 3.2) and which is supported by the data (Table 1). For random 𝑟-
regularmultigraphs, there are currently two obstacles to computing the asymp-
totic probability of the graph algebra being stably isomorphic to a Cuntz alge-
bra. They both stem from the fact that cyclicity of 𝐾0 is equivalent to cyclicity
of the Sylow 𝑝-subgroups of 𝐾0 for all primes 𝑝. First, although the probability
of cyclicity of Sylow 𝑝-subgroups is known for odd primes 𝑝 that do not divide
𝑟−1, it is unknown for 𝑝 ∣ 2(𝑟−1) (that is, for 𝑝 = 2 or 𝑝 an odd prime dividing
𝑟 − 1). Second, the known theory covers the case of only finitely many primes,
not all primes simultaneously. See the discussion around Theorem 3.4, which
is adapted from [30, Theorem 1.6].
However, we conjecture from the data that the asymptotic probability of the

graph algebra being stably isomorphic to a Cuntz algebra still converges to the
product over all primes 𝑝 of the asymptotic probability of cyclicity of the Sylow
𝑝-subgroup of 𝐾0 (see Table 8). When the regularity degree is one more than a
power of two, we estimate this product to be about 40% (see Table 10). As for
cyclicity of the Sylow 𝑝-subgroup of 𝐾0(�̂�𝑛,𝑟) for large 𝑛 when 𝑝 ∣ 2(𝑟 − 1), the
data reveal new heuristics (see Table 8, Table 9 and Conjecture 4.1).
On the other hand, the symmetric versions 𝔼𝑛,𝑞 of 𝔻𝑛,𝑞 (that is, the Erdős–

Rényi graphs allowing loops) lead toC∗-algebrasC∗(𝔼𝑛,𝑞) for which all Sylow 𝑝-
subgroups of𝐾0(C∗(𝔼𝑛,𝑞)), including𝑝 = 2, follow the limiting behaviour (3.7),
(3.8) and (3.10). This is proved in Theorem 3.12 of Wood’s article [45], where
it is also stated that forthcoming work will extend this result to infinitely many
primes. Moreover, asymptotic triviality of 𝐾1 also holds for these algebras, for
the same reason as for the algebras C∗(�̂�𝑛,𝑟) (namely, [30, Corollary 4.2]). One
would therefore expect about 79% of the algebrasC∗(𝔼𝑛,𝑞) for large𝑛 to be stably
isomorphic to Cuntz algebras.
Cuntz–Krieger algebras are intimately connected to the theory of symbolic

dynamics. If the (directed multi-) graph 𝐸 is strongly connected and does not
consist of a single cycle (equivalently, if the adjacency matrix is irreducible and
is not a permutation matrix), then the stable isomorphism class of the graph
algebra C∗(𝐸) (which is a Cuntz–Krieger algebra) is an invariant for the flow
equivalence class of the associated edge shift 𝜎∶ Σ𝐸 → Σ𝐸 . Here, Σ𝐸 is the
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two-sided infinite path space

Σ𝐸 =
{
(𝑒𝑖)𝑖∈ℤ ∈ (𝐸1)ℤ ∣ 𝑠(𝑒𝑖+1) = 𝑟(𝑒𝑖) for every 𝑖 ∈ ℤ

}
(1.1)

(see Section 2 for notation) and 𝜎 is the shift map that sends (𝑒𝑖)𝑖∈ℤ to (𝑒𝑖+1)𝑖∈ℤ.
Flow equivalence between topological dynamical systems (Σ𝐸 , 𝜎𝐸) and (Σ𝐹 , 𝜎𝐹)
is a weakening of conjugacy that refers to equivalence of their suspension flows
(see, for example, [26, §13.6]). In our setting, flow equivalence can be char-
acterised by certain graph moves (see [40, 6]) and implies the existence of a
diagonal-preserving stable isomorphism between the graph algebras (see [10,
§4] and [6]). Mere stable isomorphism of the associated graph algebras (or in
otherwords, isomorphismof their𝐾0 groups) is strictlyweaker thanflowequiv-
alence. By [18], the necessary and sufficient additional data is the sign of the
determinant of 𝐼 − 𝐴𝐸 , which when combined with the 𝐾0 group yields the
signed Bowen–Franks group

BF+(𝐸) = sgn(det(𝐼 − 𝐴𝐸))coker(𝐼 − 𝐴𝐸), (1.2)

where we notationally attach the sign label ‘+’ to the group coker(𝐼 − 𝐴𝐸) if
det(𝐼 − 𝐴𝐸) > 0, or ‘−’ if det(𝐼 − 𝐴𝐸) < 0. For the graph 𝐸 with one vertex and
𝑛 loops (whose shift space Σ𝐸 is the full shift on an alphabet of 𝑛 symbols and
whose graph algebra is the Cuntz algebra𝒪𝑛), BF+(𝐸) = −ℤ∕(𝑛−1)ℤ. Collect-
ing this sign data in conjunction with a tally of cyclicity therefore allows us to
estimate the asymptotic probabilities of a random subshift of finite type (that is,
the edge shift associated to a random graph) being flow equivalent to a full shift.
For Bernoulli digraphs 𝔻𝑛,𝑞, the percentage probability appears to be about 42
(see Conjecture 3.9 and Table 2). In certain special cases (Theorem 3.8), we can
prove that this is indeed the right number (thus providing a question to an an-
swer of D. Adams [1]). The asymptotic behaviour of the determinant for 𝔼𝑛,𝑞
and �̂�𝑛,𝑟, about which we have formulated and left open Question 3.10, is less
clear. However, the full-shift probability for large graphs is still nontrivial (see
Tables 6, 11).
As for the property of being exactly (rather than stably) isomorphic to aCuntz

algebra, the asymptotic probability of this event does not appear to be readily
deducible from existing random matrix theory. (There is also no available dy-
namical interpretation of the corresponding equivalence relation for the asso-
ciated edge shifts, although there is a geometric description via graph moves;
see [2].) Nonetheless, by keeping track of the class of the unit we are able to
provide estimates (together with heuristic explanations; see Conjecture 3.11,
Table 2 and Table 6). The surprising conclusions are that, if 𝑛 is large, then
C∗(𝔻𝑛,𝑞) is about 51% likely to be isomorphic to a Cuntz polygon and is about
44% likely to be isomorphic to an actual Cuntz algebra. For C∗(𝔼𝑛,𝑞), these
numbers are 61% and 48%, respectively. In short, it’s about a coin toss whether
a chance encounter with a large graph C∗-algebra is in fact a meeting with a
Cuntz algebra.



OPERATOR 𝐾-THEORETIC ANALYSIS OF RANDOM ADJACENCY MATRICES 753

How should this (and our other probabilistic observations) be interpreted?
Thefirst thingwe can say is that theorems aboutCuntz polygons becomeasymp-
totically almost-sure theorems about the stable isomorphism classes of random
graph C∗-algebras. For example, in Section 2.5 we make the observation that
Cuntz polygons𝒫�̄� form a Fraïssé class. The Fraïssé limit𝔾 of this class (which
by [41] is the graph algebra of an infinite, strongly connected graph) is then
a structure that is asymptotically almost surely universal and homogeneous
for sufficiently random unital graph algebras. See Theorem 2.6 and also Sec-
tion 3.6, in which we emphasise the point that, while we have opted to work
with distributions amenable to calculations of probability, similar conclusions
should hold for any distribution that shares the same asymptotically almost-
sure events (so-called contiguous distributions). When applied to Bernoulli di-
graphs as in Theorem 3.15, this general slogan materialises into the concrete
observation that most of the C∗-algebras associated to finite digraphs on large
vertex sets with suitably many edges are stably isomorphic to Cuntz polygons.
The other message is that complex structures are rare, or put another way, the
objects that we tend to encounter are the ones with minimal symmetry. On the
flip side, when there is imposed extra structure (such as graph regularity), it
seems that we tend to seemore complicated automorphism groupswith greater
frequency. (It is also interesting thatC∗(�̂�𝑛,𝑟) being isomorphic to a Cuntz poly-
gon is a very rare event (see Table 11). Question 3.13, whether this probability
asymptotes to zero, is left open.) The central point of the presentwork is that for
graph C∗-algebras these various statements can be made quantifiably precise.
We have gathered the data reported in Section 4 by running computer sim-

ulations. Our code generates samples of random graphs �̂�𝑛,𝑟, 𝔻𝑛,𝑞 or 𝔼𝑛,𝑞 (our
typical sample size being𝑚 = 105) and collects 𝐾-theoretic data. The primary
tool for computing cokernels of integer matrices, and hence the 𝐾-theory of
graph algebras, is the Smith normal form (SNF) algorithm. It has been used ex-
tensively in the literature (see, for example, [37, 7, 16]) and is an integral piece
of our analysis of the graphs. The SNF algorithm provides, for a given 𝑀𝐸 ∈
𝑀𝑛(ℤ), a diagonalisation𝑈𝑀𝐸𝑉 = 𝐷 = diag(𝑑1,… , 𝑑𝑛), where𝑈,𝑉 ∈ GL𝑛(ℤ)
and the 𝑑𝑖 are integers with 𝑑𝑖|𝑑𝑖+1 for 1 ≤ 𝑖 ≤ 𝑛 − 1. Then,

coker𝑀𝐸 ≅ coker𝐷 ≅ ℤ∕𝑑1ℤ⊕⋯⊕ℤ∕𝑑𝑛ℤ. (1.3)

From this, we can also determine the structure of the 𝑝-Sylow subgroup of
coker𝑀𝐸 ≅ 𝐾0(C∗(𝐸)) for any prime 𝑝. We also record:

∙ whether or not each graph is strongly connected;
∙ whether or not 𝐾0 is cyclic, by removing any 0 entries from the list
𝐿 = [𝑑1,… , 𝑑𝑛] (storing these as 𝐾1), and also any 1s (as these do not
contribute to the cokernel), then checking whether there remains at
most one entry in 𝐿;

∙ the rank of 𝐾1 (in other words, the number of 0 entries removed from
𝐿);
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∙ tallies of cyclicity of Sylow𝑝-subgroups for specified primes𝑝, aswell as
instances where these subgroups are of the formℤ∕(𝑝𝑁ℤ) or (ℤ∕𝑝ℤ)𝑁 ,
for integers 𝑁 that are small enough for these events to be statistically
observable (see (3.7) and (3.8));

∙ whether or not the class of the unit in 𝐾0 is in the same automorphism
orbit as the ‘canonical’ class, which in instances of trivial𝐾1means that
we have exact rather than stable isomorphism between C∗(𝐸) and the
corresponding Cuntz polygon (see Section 2.4);

∙ the sign of the determinant of 𝐼 − 𝐴𝐸 = −𝑀𝑡
𝐸 (and hence, if 𝐾0 is also

cyclic, whether or not the corresponding edge shift is flow equivalent
to a full shift);

∙ 99% confidence intervals for the various proportions above, using the
normal approximation to the binomial distribution.

The simulation and analysis code is written in Python. For efficiency reasons,
the SNF is computed by calling the PARI library [33], which iswritten inC. Both
the code and experimental data are available on GitHub.1 There are three rea-
sons for our decision to include a substantial offering of empirical data. First,
we are demonstrating the reliability of our experimental process by comparing
with behaviour predicted by theory, whenever the appropriate theory is avail-
able. Next, in situations where there is as yet no theoretical prediction, the esti-
mates that we extract from the data can then be expected to carry some weight.
Last, but not least, we wish to document the present mathematical endeavour
as the conversation between theory, practice and scientific discovery that it truly
was.
We have organised the article as follows. Section 2 provides some back-

groundon theC∗-algebras associated tofinite graphs, aswell as their𝐾-theoretic
classification, and introduces Cuntz polygons. Section 3 describes the relevant
random graph models and some asymptotic behaviour guaranteed by random
matrix theory. Finally, Section 4 contains empirical data that either experimen-
tally verify the theory or provide estimates for probabilities that are not yet the-
oretically computable.

Acknowledgements. BJ was supported by the GAČR project 22-07833K and
partially supported by the Simons Foundation Award No 663281 granted to the
Institute of Mathematics of the Polish Academy of Sciences for the years 2021–
2023. He is grateful to the organisers of the stimulating ‘Graph Algebras’ and
‘Generic Structures’ conferences held at the Bedlewo Centre in 2023. IK is par-
tially supported by the PraemiumAcademiae ofM.Markl and by Czech science
foundation (GAČR) under the grant GA22-00091S. This collaboration would
not have been possible without the excellent working environment at the Insti-
tute of Mathematics of the Czech Academy of Sciences (RVO: 67985840). The

1https://github.com/bjacelon/random-graph-k-theory

https://github.com/bjacelon/random-graph-k-theory


OPERATOR 𝐾-THEORETIC ANALYSIS OF RANDOM ADJACENCY MATRICES 755
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2. Graph 𝐂∗-algebras
2.1. Graph algebras. The ‘graph’ in ‘graph C∗-algebra’ might in other con-
texts be called a directed (multi)graph. For clarity, we begin by specifying the
kinds of graphs that are amenable to our analysis and then we explain how
C∗-algebras are attached to them.
A directed graph 𝐸 consists of a vertex set 𝐸0, an edge set 𝐸1, and range and

source maps 𝑟, 𝑠∶ 𝐸1 → 𝐸0. A path in 𝐸 is a (possibly finite) sequence of edges
(𝛼𝑖)𝑖≥1 such that 𝑟(𝛼𝑖) = 𝑠(𝛼𝑖+1) for every 𝑖, and a cycle is a finite path (𝛼𝑖)𝑛𝑖=1
whose initial and final vertices coincide and with no other repeated vertices. A
vertex 𝑣 ∈ 𝐸0 is called a sink if 𝑠−1(𝑣) = ∅. Every graph considered in this article
will be finite and (except for some of the graphs mentioned in Remark 3.3 and
Table 4) will with high probability have no sinks.
We recall the definition of the graph algebra associated to 𝐸. (Note that a

different convention is used in [35]. What follows is the definition that appears,
for example, in [4].) A Cuntz–Krieger 𝐸-family associated to a directed graph
𝐸 = (𝐸0, 𝐸1, 𝑠, 𝑟) is a set

{𝑝𝑣 ∣ 𝑣 ∈ 𝐸0} ∪ {𝑠𝑒 ∣ 𝑒 ∈ 𝐸1}, (2.1)

where the 𝑝𝑣 are mutually orthogonal projections and the 𝑠𝑒 are partial isome-
tries satisfying:

𝑠∗𝑒 𝑠𝑓 = 0 ∀ 𝑒, 𝑓 ∈ 𝐸1 with 𝑒 ≠ 𝑓
𝑠∗𝑒 𝑠𝑒 = 𝑝𝑟(𝑒) ∀ 𝑒 ∈ 𝐸1

𝑠𝑒𝑠∗𝑒 ≤ 𝑝𝑠(𝑒) ∀ 𝑒 ∈ 𝐸1

𝑝𝑣 =
∑

𝑒∈𝑠−1(𝑣)
𝑠𝑒𝑠∗𝑒 ∀ 𝑣 ∈ 𝐸0 that is not a sink. (2.2)

The graph algebra C∗(𝐸) is the universal C∗-algebra with generators (2.1)
satisfying the relations (2.2). Every graph algebra C∗(𝐸) is separable, nuclear
and satisfies the universal coefficient theorem (UCT) (see, for example, [35,
Remark 4.3] and [36, Lemma 3.1]), andC∗(𝐸) is unital if and only if 𝐸0 is finite,
in which case 1C∗(𝐸) =

∑
𝑣∈𝐸0 𝑝𝑣.

2.2. Cuntz–Krieger algebras. By aCuntz–Krieger algebrawemean the graph
C∗-algebra of a finite graph without sinks. This is not the original definition
that appears in [10], but is equivalent to it (even in the absence of Cuntz and
Krieger’s condition (I); see [3, Definition 2.3] and the ensuing discussion, and
also [3, Theorem 3.12]).
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If 𝐸 is such a graph, and 𝐴𝐸 is its adjacency matrix

𝐴𝐸(𝑣, 𝑤) = |{𝑒 ∈ 𝐸1 ∣ 𝑠(𝑒) = 𝑣, 𝑟(𝑒) = 𝑤}|,

then the 𝐾-theory of C∗(𝐸) can be computed as follows. From the proof of [36,
Theorem 3.2], the map ℤ𝐸0 → 𝐾0(C∗(𝐸)) that sends the standard basis vector
𝑒𝑣 to [𝑝𝑣] is surjective with kernel isomorphic to (𝐴𝑡

𝐸 − 𝐼)ℤ𝐸0 . In particular,

(𝐾0(C∗(𝐸)), [1C∗(𝐸)]0, 𝐾1(C∗(𝐸))) ≅ (coker(𝐴𝑡
𝐸 − 𝐼), [(1,… , 1)], ker(𝐴𝑡

𝐸 − 𝐼)).
(2.3)

A UCT Kirchberg algebra is by definition a purely infinite, simple, nuclear,
separable C∗-algebra that satisfies the universal coefficient theorem. By the
Kirchberg–Phillips theorem (see [34, Theorem 4.2.1], and also [24] and [38,
Chapter 8]), these algebras are classified up to stable isomorphism by𝐾-theory.
Further, specifying the class [1]0 of the unit determines the isomorphism class
of the algebra (see [34, Theorem 4.2.4]).
The following is a consequence of [4, Propositions 5.1 and 5.3].

Proposition 2.1. If 𝐸 is strongly connected and does not consist of a single cycle
(so in particular, every cycle has an exit), then the Cuntz–Krieger algebra C∗(𝐸) is
purely infinite and simple, so is a UCT Kirchberg algebra.

Remark 2.2. 1. We do not actually need the full strength of the Kirchberg–
Phillips theorem in this article, and could instead appeal to Rørdam’s earlier
classification [37, Theorem 6.5] of simple Cuntz–Krieger algebras.

2. While the graph algebras of primary interest to us will be covered by Propo-
sition 2.1, it should be noted that the full class of unital graph algebras is
classifiable by an invariant called ordered reduced filtered 𝐾-theory that ac-
counts for the ideal structure of the algebras (see [16]).

2.3. Cuntz polygons.

Definition 2.3. For 𝑛 ∈ ℕ and �̄� = (𝑚1,… , 𝑚𝑛) ∈ ℕ𝑛, let 𝐸�̄� be the graph
with vertices

𝐸0�̄� = {𝑣1,… , 𝑣𝑛}
and edges

𝐸1�̄� = {𝑒𝑖,𝑗 ∣ 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚𝑖} ∪ {𝑙1,… , 𝑙𝑛}
where, for 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑚𝑖,

𝑟(𝑙𝑖) = 𝑠(𝑙𝑖) = 𝑣𝑖, 𝑟(𝑒𝑖,𝑗) = 𝑣𝑖, 𝑠(𝑒𝑖,𝑗) = 𝑣𝑖−1 (mod 𝑛).

We call the graph algebra 𝒫�̄� ∶= C∗(𝐸�̄�) a Cuntz 𝑛-gon. A Cuntz polygon is a
Cuntz 𝑛-gon for some 𝑛.

The reason for the terminology, apart from the shapes of their associated
graphs (see Figure 1), is that Cuntz polygons are generalisations of Cuntz alge-
bras. Note indeed that a Cuntz 1-gon 𝒫(𝑚) is isomorphic to 𝒪𝑚+1. Moreover,
we have the following.
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𝑚2𝑚3

𝑚4

𝑚5

𝑚1

Figure 1. The graph 𝐸(𝑚1,𝑚2,𝑚3,𝑚4,𝑚5) of the Cuntz pentagon 𝒫(𝑚1,𝑚2,𝑚3,𝑚4,𝑚5).

Proposition 2.4.
1. If 𝐴 is a Cuntz polygon C∗(𝐸�̄�), then 𝐴 is a UCT Kirchberg algebra with

(𝐾0(𝐴), [1𝐴]0, 𝐾1(𝐴)) ≅ (
𝑛⨁

𝑖=1
ℤ∕𝑚𝑖ℤ, (1,… , 1), 0) . (2.4)

2. A Cuntz polygon 𝒫�̄� is stably isomorphic to a Cuntz algebra if and only if
𝐾0(𝒫�̄�) is cyclic, which happens if and only if the components 𝑚1,… , 𝑚𝑛 of
�̄� are pairwise coprime.

3. If 𝐸 is a strongly connected finite graph whose adjacency matrix 𝐴𝐸 is not a
permutationmatrix and is such that𝐴𝑡

𝐸−𝐼 is nonsingular, thenC
∗(𝐸) is stably

isomorphic to 𝒫�̄� for some �̄�.

Proof. 1. Since 𝐸�̄� is strongly connected and does not consist of a single cycle,
𝐴 is a UCT Kirchberg algebra by Proposition 2.1. The adjacency matrix of
𝐸�̄� is𝐴𝐸�̄� = 𝐼+𝑃𝐷, where𝐷 is the diagonal matrix diag(𝑚1,… , 𝑚𝑛) and 𝑃 is
the permutationmatrix whose action on the standard basis ofℤ𝐸0 is given by
𝑃𝑒𝑣𝑖 = 𝑒𝑣𝑖−1 (mod 𝑛). So,𝐴

𝑡
𝐸�̄�
−𝐼 = 𝐷𝑃𝑡, which implies that ker(𝐴𝑡

𝐸�̄�
−𝐼) = 0

and coker(𝐴𝑡
𝐸�̄�
−𝐼) = coker𝐷 ≅

⨁𝑛
𝑖=1ℤ∕𝑚𝑖ℤ. Therefore, (2.4) follows from

(2.3).
2. The second assertion follows from the Kirchberg–Phillips (or Rørdam) clas-
sification theorem together with the fact that the Cuntz algebra𝒪𝑛 is a UCT
Kirchberg algebra with 𝐾-theory

(𝐾0(𝒪𝑛), [1𝒪𝑛
]0, 𝐾1(𝒪𝑛)] ≅ (ℤ∕(𝑛 − 1)ℤ, 1, 0)
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(see [8] and [9]). Note also that
⨁𝑛

𝑖=1ℤ∕𝑚𝑖ℤ is cyclic if and only if the𝑚𝑖 are
pairwise coprime, and in this case, 𝒫�̄� is in fact isomorphic to 𝒪1+

∏𝑛
𝑖=1𝑚𝑖

.
3. Finally, if 𝐴𝐸 is not a permutation matrix, then 𝐸 does not consist of a sin-
gle cycle. By Proposition 2.1, C∗(𝐸) is therefore a UCT Kirchberg algebra.
By (2.3) and (2.4), there exists some Cuntz polygon that has the same 𝐾-
theory as C∗(𝐸), which is then in the same stable isomorphism class by the
Kirchberg–Phillips (or Rørdam) classification theorem. □

2.4. Exact vs stable isomorphism. WhileCuntz polygons cover all stable iso-
morphism classes of purely infinite simple Cuntz–Krieger algebras with trivial
𝐾1, they are far from being able to capture all isomorphism classes. The reason
of course is the position of the unit in 𝐾0, information which is encoded by the
potentially complicated structure of the graph. In fact, the class of the unit can
be arbitrary: by [15, Proposition 3.9], for any finitely generated abelian group
𝐺, distinguished element 𝑔 ∈ 𝐺 and free abelian group 𝐹 with rank𝐹 = rank𝐺
(for example, 𝐹 = 0 and 𝐺 any finite abelian group), there exists a finite graph
𝐸 such that C∗(𝐸) is a Kirchberg algebra with

(
𝐾0(C∗(𝐸)), [1C∗(𝐸)]0, 𝐾1(C∗(𝐸))

)
≅ (𝐺, 𝑔, 𝐹).

But actually, we can keep track of the class of the unit via the matrix 𝑈 that
appears in the SNF decomposition𝑈𝑀𝐸𝑉 = 𝐷 of𝑀𝐸 = 𝐴𝑡

𝐸−𝐼. More precisely,
and elaborating on (1.3), the map ℤ𝑛 → ℤ𝑛∕𝐷ℤ𝑛 = coker(𝐷), 𝑥 ↦ [𝑈𝑥] is
surjective with kernel𝑀𝐸ℤ𝑛, so gives an isomorphism between coker(𝑀𝐸) and
coker(𝐷) ≅ ℤ∕𝑑1ℤ⊕⋯⊕ℤ∕𝑑𝑛ℤ. In light of (2.3), the class of the unit under

this isomorphism is [𝑈 (
1
⋮

1
)].

Suppose now that 𝐸 satisfies the hypotheses of Proposition 2.4.3, so that
C∗(𝐸) is stably isomorphic to the correspondingCuntz polygon𝒫𝑑 ∶= 𝒫(𝑑1,…,𝑑𝑛).

By Proposition 2.4.1, the class of the unit for 𝒫𝑑 is [(
1
⋮

1
)]. Comparing the au-

tomorphism orbits of these two vectors (by incorporating the description pre-
sented in [13, 39] into our computer code), we can therefore decide whether or
not there exists an isomorphism between (𝐾0(C∗(𝐸)), [1C∗(𝐸)]) and
(𝐾0(𝒫𝑑), [1𝒫𝑑 ]), giving an isomorphism between C∗(𝐸) and 𝒫𝑑. In Section 3.5,
we present a heuristic analysis of the asymptotic probability of this event for
Bernoulli digraphs 𝔻𝑛,𝑞 and their symmetric cousins 𝔼𝑛,𝑞. Section 4 contains
experimental confirmation of the formulas displayed in Conjecture 3.11.

2.5. The Fraïssé theory of Cuntz polygons. Note that the category whose
objects are finite abelian groups and whose morphisms are injective group ho-
momorphisms forms a Fraïssé class (see, for example, the discussion and ref-
erences in [25, §2]). The content of this assertion, given the more immediately
obvious properties of separability (that is, countablymany isomorphism classes
of objects), heredity (closure under substructures) and joint embedding (any
two objects can both be embedded into a third), is the ability to amalgamate,
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that is, to complete commutative diagrams of the form

𝐻1

𝐺1 𝐺2

𝐻2

Attached to any Fraïssé classℒ is its Fraïssé limit 𝔽, the unique structure whose
age (the collection of its finite substructures) is ℒ, and which is homogeneous,
meaning that any two embeddings of an object ofℒ into 𝔽must lie in the same
automorphism orbit (where Aut(𝔽) acts on embeddings by post-composition).
For the class of finite abelian groups, this limit is the group𝔸 =

⨁∞
𝑖=1ℚ∕ℤ (see

[25, Proposition 6]).

Definition 2.5. Let 𝔾 be the stable UCT Kirchberg algebra with
(𝐾0(𝔾), 𝐾1(𝔾)) = (𝔸, 0).

Now let us consider the category 𝒫 whose objects are stabilised Cuntz poly-
gons (that is, C∗-algebras of the form 𝒫�̄� ⊗ 𝕂 for some �̄�, where 𝕂 is the
C∗-algebra of compact operators on a separable, infinite-dimensional Hilbert
space) and whose morphisms are asymptotic unitary equivalence classes of 𝐾-
embeddings, by which we mean nonzero ∗-homomorphisms that are embed-
dings at the level of 𝐾-theory. Note that, since the objects in 𝒫 are simple, 𝐾-
embeddings are embeddings. By Kirchberg’s classification theorem (see [38,
Theorem 8.3.3]), this is also a Fraïssé class in the suitable C∗-algebraic sense
(see [14, 28, 22]). The C∗-algebra 𝔾 defined above is the C∗-algebraic Fraïssé
limit of this class. 𝔾 is:

∙ (by [41]) the graph C∗-algebra of an infinite (but row-finite) strongly
connected graph;

∙ universal, by which wemean that it can be built as an inductive limit of
objects in 𝒫 in such a way that every object in 𝒫 can be embedded into
some finite stage of the inductive sequence (a fact which follows from
Kirchberg’s classification theorem since the corresponding statement is
true of 𝔸);

∙ homogeneous, meaning that for every object 𝐵 in 𝒫, Aut(𝔾) acts transi-
tively on the space of embeddings of 𝐵 into 𝔾.

In summary, we have the following.

Theorem 2.6. Let 𝐵 be a UCT Kirchberg algebra with 𝐾1(𝐵) = 0 and 𝐾0(𝐵)
finite (in other words, 𝐵 is stably isomorphic to a Cuntz polygon). Then, there is
an embedding 𝜑∶ 𝐵 → 𝔾 such that 𝐾0(𝜑) is injective. Moreover, if 𝜓∶ 𝐵 → 𝔾 is
another such embedding then there exists an automorphism 𝛼 of𝔾 such that 𝜓 is
asymptotically unitarily equivalent to 𝛼◦𝜑.

Remark 2.7. In contrast to the Fraïssé limits described in [14, 28, 22], the
C∗-algebra 𝔾 is purely infinite rather than stably finite. In the stably finite
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setting, it is an open problem to decide whether the automorphism group of
the C∗-algebraic limit structure is extremely amenable (under the topology of
pointwise convergence), meaning that every continuous action of the group on
a nonempty compact space should admit a fixed point. This property is in-
deed a feature of Aut(𝐴) when 𝐴 is a uniformly hyperfinite (UHF) C∗-algebra
(see [14, §5]), but it is unclear whether it holds when 𝐴 is the Jiang–Su al-
gebra 𝒵 or any of the stably projectionless algebras considered in [22]. For
𝐴 = 𝔾, the following argument shows that Aut(𝔾) is not extremely amenable.
By [11] (a reference for which we thank Vadim Alekseev), the class of finite
abelian groups does not have the Ramsey property, so by the KPT correspon-
dence [23], Aut(𝐾0(𝔾)) ≅ Aut(𝔸) is not extremely amenable when equipped
with the pointwise-convergence topology. By [38, Corollary 8.4.10], there is
an isomorphism Aut(𝔾)∕Aut0(𝔾) → Aut(𝐾0(𝔾)) (where Aut0(𝔾) denotes the
closed subgroup of asymptotically inner automorphisms of𝔾) which canmore-
over be checked to be continuous and open (so is an isomorphism of topolog-
ical groups). Since extreme amenability passes to quotients, we conclude that
Aut(𝔾) is not extremely amenable.

Remark 2.8. Let𝒫𝔾 denote the set of asymptotic unitary equivalence classes of
theC∗-subalgebras of𝔾 that are stably isomorphic to𝒫�̄� for some �̄�. More pre-
cisely, we consider subalgebras 𝐶,𝐷 ⊆ 𝔾 to be equivalent if there exists an iso-
morphism 𝛼∶ 𝐶 → 𝐷 (which, by homogeneity, can be extended to �̃� ∈ Aut(𝔾))
such that �̃�|𝐶 is asymptotically unitarily equivalent to the inclusion 𝐶 ↪ 𝔾 .
Note that every C∗-algebra representing an equivalence class in 𝒫𝔾 is a UCT
Kirchberg algebra, so is either stable or unital. Let us correspondingly sepa-
rate 𝒫𝔾 = 𝒫0

𝔾 ⊔ 𝒫
1
𝔾 into the classes of stable algebras and the classes of unital

ones. Fix a set 𝒞𝔾 ⊆ 𝒫1
𝔾 of representatives of isomorphism classes, one for

each Cuntz polygon, so that their stabilisations 𝒞𝔾 ⊗ 𝕂 ⊆ 𝔾 ⊗ 𝕂 ≅ 𝔾 are
representatives of isomorphism classes in𝒫0

𝔾. By homogeneity, that is, because
partial automorphisms can be extended to full automorphisms, we can com-
pletely describe the Aut(𝔾)-orbit of 𝒞𝔾 ⊗ 𝕂: the orbit of [𝐶] ∈ 𝒞𝔾 ⊗ 𝕂 is
{[𝐷] ∈ 𝒫0

𝔾 ∣ 𝐾0(𝐷) ≅ 𝐾0(𝐶)}, and the orbit of the whole set is all of𝒫0
𝔾. Nowwe

ask about the unital component of 𝒫𝔾: what is the Aut(𝔾)-orbit Aut(𝔾)𝒫𝔾(𝒞𝔾)
of 𝒞𝔾 in 𝒫1

𝔾 ⊆ 𝒫𝔾? Again by homogeneity, this is really the same question that
was addressed in Section 2.4, and the description ofAut(𝔾)𝒫𝔾(𝒞𝔾) supported by
the present article is probabilistic. For an idea of the probability that a suitably
large randomly chosen element of𝒫1

𝔾 lies inAut(𝔾)𝒫𝔾(𝒞𝔾), seeConjecture 3.11.

3. Random graph models
We will consider three methods of constructing directed multigraphs on 𝑛

labelled vertices by randomly adding edges. Equivalently, we create adjacency
matrices𝐴(𝑛)whose entries are random variables taking values in the nonneg-
ative integers.
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1. First, we insist that these entries be independent, leading in particular to
Bernoulli digraphs 𝔻𝑛,𝑞 in which each possible edge (allowing loops but not
multiple edges) occurs independently with fixed probability 𝑞. That is, each
entry of 𝐴(𝑛) is either 1 (with probability 𝑞) or 0 (with probability 1 − 𝑞).

2. By contrast, there are two sources of dependence among the entries of our
secondmodel of random adjacencymatrix, which is now required to be sym-
metricwith each row summing to a fixed integer 𝑟 ≥ 3. That is, we build ran-
dom 𝑟-regular undirectedmultigraphs and convert them into directed ones by
replacing each edge (between given vertices 𝑖, 𝑗) by two (one from 𝑖 to 𝑗 and
one from 𝑗 to 𝑖). Specifically, we use the perfect matchings model

�̂�𝑛,𝑟 = �̂�𝑛,1 +⋯ + �̂�𝑛,1
⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟

𝑟

,

that is, the union of 𝑟 independent, uniformly random perfect matchings on
the 𝑛 ∈ 2ℕ vertices.

3. The third model 𝔼𝑛,𝑞 is in a sense intermediate between the first two. These
Erdős–Rényi graphs are constructed in the same manner as 𝔻𝑛,𝑞, but sym-
metrically. They exhibit a pattern of asymptotic connectivity similar to𝔻𝑛,𝑞,
and asymptotic 𝐾-theoretic behaviour similar to �̂�𝑛,𝑟.
In each case, we make statements about the asymptotic probabilities of:

∙ strong connectedness of the graph (entailing simplicity and pure in-
finiteness of the graph algebra);

∙ nonsingularity of 𝑀(𝑛) = 𝐴(𝑛)𝑡 − 𝐼 (leading to 𝐾1 = 0 for the graph
algebra);

∙ occurrences of specific Sylow 𝑝-subgroups of the𝐾0-group of the graph
algebra, for fixed primes 𝑝;

∙ cyclicity of (Sylow subgroups of) the 𝐾0-group (allowing us to compute
or estimate the probability that the graph algebra is stably isomorphic
to a Cuntz algebra).

We also discuss situations in which we can compute or estimate the asymp-
totic probabilities of the associated edge shift being flow equivalent to a full
shift (Section 3.4) or the graph C∗-algebra being exactly isomorphic to a Cuntz
polygon or Cuntz algebra (Section 3.5), and investigate the scope for analysing
related distributions (Section 3.6).

Notation and terminology 3.1. If 𝐺 is a finite group and 𝑝 a prime, then 𝐺𝑝
denotes the Sylow 𝑝-subgroup of 𝐺. If 𝑃 is a finite set of primes, then a 𝑃-group
is a group whose order is a product of powers of primes in 𝑃, and we write 𝐺𝑃
for

⨁
𝑝∈𝑃 𝐺𝑝. We use the symbol ℙ for probabilities. A sequence of events E𝑛,

𝑛 ∈ ℕ, is said to occur asymptotically almost surely, or with high probability, if
lim𝑛→∞ ℙ(E𝑛) = 1.

3.1. Bernoulli digraphs. The following in particular applies to Bernoulli di-
graphs 𝔻𝑛,𝑞. Note that, since the entries of the adjacency matrices of these



762 BHISHAN JACELON AND IGOR KHAVKINE

graphs are all either 0 or 1, if 𝑞 ∈ (0, 1) then the condition (3.1) holds for all
primes 𝑝.

Theorem 3.2. Fix a constant 𝜀 ∈ (0, 1) and a finite set 𝑆 of nonnegative integers.
For each 𝑛 ∈ ℕ, let 𝐴(𝑛) be an 𝑛 × 𝑛 matrix with independent random entries
taking values in 𝑆 such that, for every 𝑖, 𝑗 ∈ {1,… , 𝑛} and every prime 𝑝,

max
𝑠∈𝑆

ℙ
(
𝐴(𝑛)𝑖𝑗 ≡ 𝑠 mod 𝑝

)
≤ 1 − 𝜀. (3.1)

Then:
1. the graphℍ𝑛 associatedwith𝐴(𝑛) is asymptotically almost surely strongly con-
nected;

2. 𝑀(𝑛) = 𝐴(𝑛)𝑡 − 𝐼 is asymptotically almost surely nonsingular (and so is𝐴(𝑛)
itself);

3. C∗(ℍ𝑛) is asymptotically almost surely stably isomorphic to a Cuntz polygon;
4. for any finite set 𝑃 of primes and any finite abelian 𝑃-group 𝐺,

lim
𝑛→∞

ℙ (𝐾0(C∗(ℍ𝑛))𝑃 ≅ 𝐺) =
1

|Aut(𝐺)|
∏

𝑝∈𝑃

∞∏

𝑘=1

(
1 − 𝑝−𝑘

)
; (3.2)

5. assuming that the entries of𝐴(𝑛) are identically distributed, the probability 𝑐𝑛
that C∗(ℍ𝑛) is stably isomorphic to a Cuntz algebra satisfies

lim
𝑛→∞

𝑐𝑛 =
∏

𝑝 prime
(1 + 1

𝑝2 − 𝑝
)

∞∏

𝑘=2
𝜁(𝑘)−1 ≈ 0.84694, (3.3)

where 𝜁 is the Riemann zeta function.

Proof. 1. For the first assertion, see [19, Theorem13.9]. While this theorem
is specifically about loopless Bernoulli digraphs, adding loops or multiple
edges does not affect connectivity.

2. The second assertion is a consequence of [5, Corollary 3.3]; there, 𝑆 can be
any finite set of complex numbers, with (3.1) replaced by

max
𝑠∈𝑆

ℙ
(
𝐴(𝑛)𝑖𝑗 = 𝑠

)
≤ 1 − 𝜀,

so in particular, the entries of 𝑀(𝑛) also satisfy the necessary hypotheses.
(In fact, it is shown there that the asymptotic probability of singularity is
(
√
1 − 𝜀 + 𝑜(1))𝑛.)

3. Since 𝐴(𝑛) with high probability is not a permutation matrix, and we have
just established strong connectivity of ℍ𝑛 and nonsingularity of 𝑀(𝑛), the
third claim follows from Proposition 2.4.3.

4. For the computation of the distribution of Sylow𝑝-subgroups, see [44, Corol-
lary 3.4].

5. For the final equation, note that by definition andTheorem2.4.2, and in light
of Theorem3.2.3, 𝑐𝑛 is asymptotically equal to the probability that coker𝑀(𝑛)
≅ 𝐾0(C∗(ℍ𝑛)) is cyclic. Lest the appearance of the zeta function in the lim-
iting value of 𝑐𝑛 seem overly mysterious, consider the following derivation,
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which is heuristic only in skipping the justification of exchanging the limits
𝑛 →∞ and |𝑃|→∞. Let us define the related quantity

𝑐𝑃𝑛 = ℙ (𝐾0(C∗(ℍ𝑛))𝑃 is cyclic) ,

so that lim𝑛→∞ 𝑐𝑛 = lim𝑛→∞ lim|𝑃|→∞ 𝑐𝑃𝑛 . If we could exchange the two lim-
its, then we could compute this by taking the |𝑃| → ∞ limit of (3.2). First,
recall that for any prime 𝑝 and any integer 𝑁 ≥ 1

|Aut(ℤ∕𝑝𝑁ℤ)| = 𝑝𝑁(1 − 𝑝−1),

as well as |Aut(𝐺1 ⊕ 𝐺2)| = |Aut(𝐺1)| ⋅ |Aut(𝐺2)| when |𝐺1| and |𝐺2| are
coprime. Let𝑁𝑃 = (𝑁𝑝)𝑝∈𝑃 denote a sequence of non-negative integers, and
recall also that a cyclic group of order divisible only by some power of 𝑝 ∈ 𝑃
must be of the form

⨁
𝑝∈𝑃 ℤ∕𝑝

𝑁𝑝ℤ, so that

lim
𝑛→∞

𝑐𝑃𝑛 = lim
𝑛→∞

ℙ (𝐾0(C∗(ℍ𝑛))𝑃 is cyclic)

= lim
𝑛→∞

∑

𝑁𝑃

ℙ
⎛
⎜
⎝
𝐾0(C∗(ℍ𝑛))𝑃 ≅

⨁

𝑝∈𝑃
ℤ∕𝑝𝑁𝑝ℤ

⎞
⎟
⎠

“=”
∑

𝑁𝑃

lim
𝑛→∞

ℙ
⎛
⎜
⎝
𝐾0(C∗(ℍ𝑛))𝑃 ≅

⨁

𝑝∈𝑃
ℤ∕𝑝𝑁𝑝ℤ

⎞
⎟
⎠

=
∑

𝑁𝑃

1

|Aut
(⨁

𝑝∈𝑃 ℤ∕𝑝
𝑁𝑝ℤ

)
|

∏

𝑝∈𝑃

∞∏

𝑘=1

(
1 − 𝑝−𝑘

)

=
∑

𝑁𝑃

∏

𝑝∈𝑃

1
|Aut

(
ℤ∕𝑝𝑁𝑝ℤ

)
|

∞∏

𝑘=1

(
1 − 𝑝−𝑘

)

=
∏

𝑝∈𝑃
(1 +

∞∑

𝑁=1

𝑝−𝑁

(1 − 𝑝−1)
)

∞∏

𝑘=1

(
1 − 𝑝−𝑘

)

=
∏

𝑝∈𝑃
(1 − 1

𝑝 + 1
𝑝 − 1)

∞∏

𝑘=2

(
1 − 𝑝−𝑘

)

=
⎡
⎢
⎣

∏

𝑝∈𝑃
(1 + 1

𝑝2 − 𝑝
)
⎤
⎥
⎦

⎡
⎢
⎣

∞∏

𝑘=2

∏

𝑝∈𝑃

(
1 − 𝑝−𝑘

)⎤
⎥
⎦
.

By taking the limit |𝑃|→∞ and using Euler’s product formula

𝜁(𝑘)−1 =
∏

𝑝 prime

(
1 − 𝑝−𝑘

)
,

we recover (3.3). Of course, in this heuristic derivation we have not justified
the exchanges of the sum over𝑁𝑃 and the 𝑛 →∞, |𝑃|→∞ limits and that is
part of what is accomplished in [31, Theorem 1.2] (with 𝑢 = 0 and 𝛼𝑛 = 𝜀).
On the other hand, while this theorem essentially does establish (3.3), we
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cannot apply it automatically because the entries of𝑀(𝑛) = 𝐴(𝑛)𝑡−𝐼 are not
identically distributed (the probability distribution for the diagonal entries
has been shifted by 1). However, a close inspection of its proof reveals that
the conclusion remains valid. We now offer a brief justification of this claim.
One must show that, for every prime 𝑝, rank(𝑀(𝑛)mod 𝑝) ≥ 𝑛 − 1.

‘Small’, ‘medium’ and ‘large’ primes are considered separately. The case of
small primes [31, Proposition 2.1] is already observed for random matrices
whose entries are not necessarily identical. The medium primes case [31,
Proposition 2.2] depends onOdlyzko’s lemma [31, Lemma3.1] and its ‘union
bound’ corollary [31, Corollary 3.2] (whose proofs are easily seen to cover
random vectors with non-identical entries that share the same bound, which
is certainly the case for us), [31, Theorem5.3] (which does not assume identi-
cal distributions), and [31, Theorem 5.2] (the 𝑢 = 0 case of which is [29, The-
oremA.1], discussed below). The large primes case [31, Proposition 2.3], our
use of which falls under [31, §6.1], depends on the Erdős–Littlewood–Offord
result [31, Theorem 6.3] (which by convexity, that is, conditioning over the
possible values taken by the first entry of the random vector𝑋 and using the
triangle inequality, implies the version in which this entry is not identical
to the others), [31, Lemma 6.4] (which follows from Odlyzko’s lemma), [31,
Lemma 6.5] (which is deterministic) and [31, Lemma 6.2] (which follows
from the previous three results).
It remains to carefully inspect the proof of [29, Theorem A.1], which is

split into many lemmas, propositions and theorems. The key ones for us
to examine are [29, Theorem A.15] (which is the aforementioned Erdős–
Littlewood–Offord result), [29, Lemma A.9], [29, Proposition A.18] and [29,
Lemma A.11]. The other results are either deterministic or are proved from
these key ones (together with Odlyzko’s lemma) without further appeal to
the assumption of identically distributed entries.
For each of these key results, the only change is that instead of one mea-

sure 𝜇 specifying the distribution of the entries of the random vector𝑋, there
are two, 𝜇 and 𝜇1 say (to account for the shifted first entry), and products of
the form

∏𝑛
𝑙=1 𝜇(𝑡𝑙) should be replaced by 𝜇1(𝑡1)

∏𝑛
𝑙=2 𝜇(𝑡𝑙). Here, 𝜇 denotes

the Fourier transform defined on [29, p. 287], the absolute value of which
is not affected by the shift 𝜇1(𝑡) = 𝜇(𝑡 + 1). So, the proof of [29, Lemma
A.9] carries over unchanged. For [29, Proposition A.18] (which is used to
prove [29, Lemma A.11]), the measure 𝜈1 associated to 𝜇1 (obtained from
[27, Proposition 3.6]) has the same Fourier transform as 𝜈 associated to 𝜇
(since by construction, 𝜈(𝜉) = 1 − 𝛾 + 𝛾|𝜇(𝜉)|2 for a suitable 𝛾 ∈ (0, 1)), so
again the same proof works (in fact with 𝜈1 = 𝜈). The rest of the proof of [29,
Lemma A.11] also needs no change. □

Remark 3.3. Apart from expanding the analysis from finitely many primes to
all primes simultaneously, a substantial portion of Nguyen andWood’s work in
[31] goes towards proving that, for randommatriceswith identically distributed
entries, the probability bound 1− 𝜀 can be weakened to 1−𝛼𝑛 with 𝛼𝑛 ≥ 𝑛−1+𝜀.
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The argument we have described in the proof of Theorem 3.2 works for 𝛼𝑛 ≥
𝑛−1∕6+𝜀 (which is the case considered in [31, §6.1]), but a great deal more care
is needed to extend to the general case. On the other hand, as pointed out in
[31], the bound 𝛼𝑛 ≥ 𝑛−1+𝜀 is asymptotically best possible: if the matrix entries
can take the value 0 with probability at least 1 − log𝑛∕𝑛, then with nonzero
probability the matrix has a row of zeros, so is singular and in particular has
infinite cokernel. The statistics of these sparser graphs are thus rather different,
a fact that is supported by the data (see Table 4).

3.2. Random regular multigraphs. For a finite abelian group 𝐺, a symmet-
ric, ℤ-bilinear map 𝜑∶ 𝐺 × 𝐺 → ℂ∗ is a perfect pairing if the only 𝑔 ∈ 𝐺 with
𝜑(𝑔, 𝐺) = 1 is 𝑔 = 0. (Equivalently, 𝜑 induces an isomorphism 𝐺 → 𝐺 =
Hom(𝐺,ℂ∗) via 𝑔 ↦ 𝜑(𝑔, ⋅).) We define

𝑁(𝐺) =
|{symmetric, bilinear, perfect 𝜑∶ 𝐺 × 𝐺 → ℂ∗}|

|𝐺| ⋅ |Aut(𝐺)|
. (3.4)

If 𝐺 is a finite abelian 𝑝-group

𝐺 =
𝑀⨁

𝑖=1
ℤ∕𝑝𝜆𝑖ℤ

with 𝜆1 ≥ 𝜆2 ≥⋯ ≥ 𝜆𝑀 , then

𝑁(𝐺) = 𝑝−
∑

𝑖
𝜇𝑖 (𝜇𝑖+1)

2

𝜆1∏

𝑖=1

⌊ 𝜇𝑖−𝜇𝑖+1
2

⌋∏

𝑗=1
(1 − 𝑝−2𝑗)−1, (3.5)

where 𝜇𝑖 = |{𝑗 ∣ 𝜆𝑗 ≥ 𝑖}| (see [43, §1]). It is worth noticing that, if the 𝜆𝑖 are
interpreted as the lengths of the rows of a Young diagram, the 𝜇𝑗 are the lengths
of its columns.
The expression (3.6) makes use of the following observation. If 𝐺1 is a finite

abelian 𝑝1-group and𝐺2 is a finite abelian 𝑝2-group with 𝑝2 ≠ 𝑝1, then𝑁(𝐺) =
𝑁(𝐺1) ⋅ 𝑁(𝐺2) for 𝐺 = 𝐺1 ⊕ 𝐺2. After all, if we count the perfect pairings
in the definition (3.4) of 𝑁(𝐺) as group homomorphisms 𝐺 → 𝐺, any such
homomorphism comes from an independent pair of homomorphisms𝐺1 → 𝐺1
and 𝐺2 → 𝐺2, which are themselves perfect pairings. The factorisation of𝑁(𝐺)
then follows by noting also the obvious factorisations |𝐺| = |𝐺1| ⋅ |𝐺2| and
|Aut(𝐺)| = |Aut(𝐺1)| ⋅ |Aut(𝐺2)|.
The following adaptation of [30] was mostly observed in [21].

Theorem 3.4. Let 𝑛 ∈ 2ℕ and 3 ≤ 𝑟 ∈ ℕ, and recall that �̂�𝑛,𝑟 denotes a random
𝑟-regular multigraph on 𝑛 vertices. Then:

1. �̂�𝑛,𝑟 is asymptotically almost surely strongly connected;
2. 𝑀(𝑛) = 𝐴(𝑛)𝑡−𝐼 is asymptotically almost surely nonsingular (and so is𝐴(𝑛));
3. C∗(�̂�𝑛,𝑟) is asymptotically almost surely stably isomorphic to a Cuntz polygon;
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4. for any finite set 𝑃 of odd primes not dividing 𝑟 − 1, and any finite abelian
𝑃-group 𝐺,

lim
𝑛∈2ℕ

ℙ
(
𝐾0(C∗(�̂�𝑛,𝑟))𝑃 ≅ 𝐺

)
=
∏

𝑝∈𝑃
𝑁(𝐺𝑝)

∞∏

𝑘=1

(
1 − 𝑝−2𝑘+1

)
. (3.6)

Proof. The first and last assertions appear in [21, Theorem 6.3]. The second
then follows from [30, Corollary 4.2] (see also the rest of the proof of [30, The-
orem 1.6]), and the third then follows from Proposition 2.4.3, since 𝐴(𝑛) is not
a permutation matrix (because each of its rows sums to 𝑟) and we have already
established asymptotic strong connectivity of 𝐸 as well as asymptotic nonsin-
gularity of 𝐴(𝑛)𝑡 − 𝐼. □

In particular, for any odd prime 𝑝 coprime to 𝑟 − 1 and any integer 𝑁 ≥ 0,

lim
𝑛∈2ℕ

ℙ
(
𝐾0(C∗(�̂�𝑛,𝑟))𝑝 ≅ ℤ∕𝑝𝑁ℤ

)
= 𝑝−𝑁

∞∏

𝑘=1

(
1 − 𝑝−2𝑘+1

)
(3.7)

≈ 𝑝−𝑁 ,

while

lim
𝑛∈2ℕ

ℙ (𝐾0( C∗(�̂�𝑛,𝑟))𝑝 ≅ (ℤ∕𝑝ℤ)𝑁
)

(3.8)

= 𝑝−
𝑁(𝑁+1)

2

⌊𝑁∕2⌋∏

𝑗=1
(1 − 𝑝−2𝑗)−1

∞∏

𝑘=1

(
1 − 𝑝−2𝑘+1

)

≈ 𝑝−
𝑁(𝑁+1)

2 ,

the approximations holding for sufficiently large primes 𝑝.
Using (3.6) and (3.7), we can compute the asymptotic probability that

(𝐾0(C∗(�̂�𝑛,𝑟))𝑃 is cyclic, for any finite set 𝑃 of odd primes not dividing 𝑟 − 1.
The following also applies to Erdős–Rényi graphs 𝔼𝑛,𝑞 for 𝑃 = {𝑝}, where 𝑝 can
be any prime (see Theorem 3.7).

Proposition 3.5. Let (𝔼𝑛)𝑛∈ℕ be a family of random graphs and 𝑃 a finite set of
primes such that

lim
𝑛∈ℕ

ℙ (𝐾0(C∗(𝔼𝑛))𝑃 ≅ 𝐺) =
∏

𝑝∈𝑃
𝑁(𝐺𝑝)

∞∏

𝑘=1

(
1 − 𝑝−2𝑘+1

)
(3.9)

for every finite abelian 𝑃-group 𝐺. Then,

lim
𝑛∈ℕ

ℙ (𝐾0(C∗(𝔼𝑛))𝑃 is cyclic) =
∏

𝑝∈𝑃

∞∏

𝑘=2

(
1 − 𝑝−2𝑘+1

)
. (3.10)

Proof. As in the proof of Theorem 3.2, let us write

𝑐𝑃𝑛 ∶= ℙ (𝐾0(C∗(𝔼𝑛))𝑃 is cyclic) ,
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and for 𝑁𝑃 = (𝑁𝑝)𝑝∈𝑃 let

𝑐𝑁𝑃
𝑛 = ℙ

⎛
⎜
⎝
𝐾0(C∗(𝔼𝑛))𝑃 ≅

⨁

𝑝∈𝑃
ℤ∕𝑝𝑁𝑝ℤ

⎞
⎟
⎠
,

so that 𝑐𝑃𝑛 =
∑

𝑁𝑃
𝑐𝑁𝑃
𝑛 . To show the equality (3.10) we essentially want to inter-

change the limit with the summation to get

lim
𝑛∈ℕ

𝑐𝑃𝑛 = lim
𝑛∈ℕ

∑

𝑁𝑝

𝑐𝑁𝑃
𝑛 =

∑

𝑁𝑃

lim
𝑛∈ℕ

𝑐𝑁𝑃
𝑛 (3.11)

and sum the right-hand side, where by hypothesis (3.9) and (3.7) we have

∑

𝑁𝑃

lim
𝑛∈ℕ

𝑐𝑁𝑃
𝑛 =

∑

𝑁𝑃

∏

𝑝∈𝑃
𝑝−𝑁𝑝

∞∏

𝑘=1

(
1 − 𝑝−2𝑘+1

)

=
∏

𝑝∈𝑃

∞∑

𝑁𝑝=0
𝑝−𝑁𝑝

∞∏

𝑘=1

(
1 − 𝑝−2𝑘+1

)

=
∏

𝑝∈𝑃

∞∏

𝑘=2

(
1 − 𝑝−2𝑘+1

)
.

The interchange in (3.11) is justified by the Vitali convergence theorem [12,
Theorem III.6.15], which in general applies to the interchange of a limit with
integration of absolutely summable functions over a measure space. In our
case, with the pointwise convergence of 𝑐𝑁𝑃

𝑛 over the discrete measure space
of all 𝑁𝑃’s, the remaining hypothesis to check is equismallness at infinity (a.k.a
equisummability at infinity; for series this is spelled out in [42, Theorem 44.2]).
Namely, for every 𝜀 > 0 we need to find a finite set 𝑋𝜀 such that for all 𝑛

∑

𝑁𝑃∉𝑋𝜀

𝑐𝑁𝑃
𝑛 < 𝜀.

By virtue of being probability distributions (hence absolutely summable, with
no need to take absolute values because of pointwise positivity) there exist finite
sets 𝑍𝜀 and 𝑍𝑛,𝜀 of abelian 𝑃-groups such that

∑

𝐺∉𝑍𝜀

lim
𝑚∈ℕ

ℙ (𝐾0(C∗(𝔼𝑚))𝑃 ≅ 𝐺) <
𝜀
2 and

∑

𝐺∉𝑍𝑛,𝜀

ℙ (𝐾0(C∗(𝔼𝑛))𝑃 ≅ 𝐺) < 𝜀.

By pointwise convergence of the probability distributions in (3.9), there also
exists an𝑀 ∈ ℕ such that for all 𝑛 ≥ 𝑀 and 𝐺 ∈ 𝑍𝜀

|||||||
ℙ (𝐾0(C∗(𝔼𝑛))𝑃 ≅ 𝐺) − lim

𝑚∈ℕ
ℙ (𝐾0(C∗(𝔼𝑚))𝑃 ≅ 𝐺)

|||||||
< 𝜀
2|𝑍𝜀|

.

Hence, we can set 𝑍𝑛,𝜀 = 𝑍𝜀 for all 𝑛 ≥ 𝑀. Noting that 𝑐𝑁𝑃 and 𝑐𝑁𝑃
𝑛 are re-

strictions of the above probability distributions to cyclic groups and setting 𝑋𝜀
to be the intersection of the set 𝑍𝜀 ∪

⋃
𝑛<𝑀 𝑍𝑛,𝜀 with cyclic groups shows that
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𝑐𝑁𝑃
𝑛 is equismall at infinity, allowing us to apply Vitali’s convergence theorem
in (3.11). □

Remark 3.6. If 𝑟 = 2𝑗 + 1 for some 𝑗, then (3.7), (3.8) and (3.10) hold for �̂�𝑛,𝑟
for any finite set 𝑃 of odd primes (as all odd primes are coprime to 𝑟 − 1 = 2𝑗).
This is why we we pay special attention to these values of 𝑟 in Section 4. But we
do not have any theoretical distribution for 𝑝 = 2. In addition, because of the
subtleties arising from the two limits, 𝑛 → ∞ and enlarging 𝑃 to the set of all
primes, one cannot immediately extend (3.10) to infinitely many primes. For
Bernoulli digraphs, this more delicate analysis is carried out in [31], but there is
as yet no such result for 𝑟-regular multigraphs. These are exactly the obstacles
to computing the asymptotic probability that C∗(�̂�𝑛,𝑟) is stably isomorphic to a
Cuntz algebra, which we mentioned in the Introduction.

3.3. Erdős–Rényi graphs. The following in particular applies to Erdős–Rényi
graphs 𝔼𝑛,𝑞, the symmetric versions of 𝔻𝑛,𝑞, provided that 𝑞 ∈ (0, 1).

Theorem 3.7. Fix a constant 𝜀 ∈ (0, 1) and a finite set 𝑆 of nonnegative integers.
For each 𝑛 ∈ ℕ, let𝐴(𝑛) be a symmetric 𝑛 × 𝑛matrix such that, for every 𝑖 ≤ 𝑗 ∈
{1,… , 𝑛}, the entries 𝐴(𝑛)𝑖𝑗 are independent random variables taking values in 𝑆
that satisfy

max
𝑠∈𝑆

ℙ
(
𝐴(𝑛)𝑖𝑗 ≡ 𝑠 mod 𝑝

)
≤ 1 − 𝜀 (3.12)

for every prime 𝑝. Then:
1. the graph𝔼𝑛 associated with𝐴(𝑛) is asymptotically almost surely strongly con-
nected;

2. 𝑀(𝑛) = 𝐴(𝑛)𝑡 − 𝐼 is asymptotically almost surely nonsingular (and so is𝐴(𝑛)
itself);

3. C∗(𝔼𝑛) is asymptotically almost surely stably isomorphic to a Cuntz polygon;
4. for any prime 𝑝 and any finite abelian 𝑝-group 𝐺,

lim
𝑛∈ℕ

ℙ
(
𝐾0(C∗(𝔼𝑛))𝑝 ≅ 𝐺

)
= 𝑁(𝐺)

∞∏

𝑘=1

(
1 − 𝑝−2𝑘+1

)
, (3.13)

where𝑁(𝐺) is as in (3.4), (3.5).

Proof. The first assertion follows from [17] (see [19, Theorem 4.1]) and the
last from [45, Theorem 3.12]. The second then follows from [30, Corollary 4.2],
and the third then follows from Proposition 2.4, exactly as in the proof of The-
orem 3.2.3. □

By Theorem 3.7.4, all Sylow 𝑝-subgroups of 𝐾0(C∗(𝔼𝑛,𝑞)), including 𝑝 = 2,
follow the limiting behaviour (3.7), (3.8) and (3.10) with 𝑃 = {𝑝}. The data
we have collected for these graphs are consistent with this (see Figure 5 and
Table 5).
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3.4. The signed Bowen–Franks group. As discussed in the Introduction,
every (directed multi-) graph 𝐸 has an associated edge shift 𝜎∶ Σ𝐸 → Σ𝐸 ,
whose flow equivalence class is determined by the signed Bowen–Franks group
BF+(𝐸) = sgn(det(𝐼−𝐴𝐸))coker(𝐼−𝐴𝐸) (assuming that𝐸 is strongly connected
and does not consist of a single cycle). For the random graph models discussed
above, we are interested in the asymptotic probability of flow equivalence to a
full shift (whose Bowen–Frank invariant is−ℤ∕𝑘ℤ for some 𝑘). If wemake the
heuristic assumption that positivity of the determinant is asymptotically inde-
pendent of cyclicity of the cokernel (a not unreasonable notion given the data;
see Tables 2, 3, 6, 11), then we are left with the question: what is the shape of
the distribution of det(𝐼 − 𝐴(𝑛))?
There is one situation in which symmetry is immediately apparent, namely,

when the entries of 𝐴(𝑛) − 𝐼 are identically distributed, simply because in this
case swapping rows preserves the distribution. Moreover, our careful adapta-
tion of [31, Theorem 1.2] in the proof of Theorem 3.2.5 is now no longer neces-
sary. A direct application this theorem tells us that the asymptotic probability
of cyclicity is once again given by (3.3).
In summary of the above discussion, we have the following. Recall that 𝜁

denotes the Riemann zeta function.

Theorem 3.8. Fix a constant 𝜀 ∈ (0, 1) and a finite set 𝑆 of nonnegative integers.
For each 𝑛 ∈ ℕ, let 𝐵(𝑛) be an 𝑛 × 𝑛 matrix with independent, identically dis-
tributed random entries taking values in 𝑆 such that, for every 𝑖, 𝑗 ∈ {1,… , 𝑛} and
every prime 𝑝,

max
𝑠∈𝑆

ℙ
(
𝐵(𝑛)𝑖𝑗 ≡ 𝑠 mod 𝑝

)
≤ 1 − 𝜀.

Let ℍ𝑛 be the graph whose adjacency matrix is 𝐴(𝑛) = 𝐵(𝑛) + 𝐼. Then, the as-
ymptotic probability that the edge shift 𝜎∶ Σℍ𝑛

→ Σℍ𝑛
is flow equivalent to a full

shift is

1
2

∏

𝑝 prime
(1 + 1

𝑝2 − 𝑝
)

∞∏

𝑘=2
𝜁(𝑘)−1 (3.14)

which, as a percentage, is about 42.

Just as Theorem 3.2 in particular applies to Bernoulli digraphs 𝔻𝑛,𝑞, Theo-
rem 3.8 applies to shiftedBernoulli digraphs𝔻𝑛,𝑞+𝐼 (see Table 3). These graphs
have either one loop (with probability 1−𝑞) or two (with probability 𝑞) at every
vertex, with other edges distributed in the same way as for𝔻𝑛,𝑞. With random-
ness specified in this manner, the pithy interpretation of (3.14) is that this is the
asymptotic probability that a random subshift of finite type is flow equivalent
to a full shift. Of course, it might be reasonable to expect that, asymptotically,
shifting by the identity matrix should not have any effect on the distribution
of the determinant. The data do support this expectation (see Table 2), and we
conjecture it to be true.
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Conjecture 3.9. For 𝑞 ∈ (0, 1),

lim
𝑛→∞

ℙ
(
𝜎∶ Σ𝔻𝑛,𝑞

→ Σ𝔻𝑛,𝑞
is flow equivalent to a full shift

)

= 1
2

∏

𝑝 prime
(1 + 1

𝑝2 − 𝑝
)

∞∏

𝑘=2
𝜁(𝑘)−1 ≈ 0.42347.

For the symmetric graphs 𝔼𝑛,𝑞, it is expected but not yet proved (though sup-
ported by the data; see Table 5), that Proposition 3.5 should hold when 𝑃 is
enlarged to the set of all primes. In other words, we expect that

lim
𝑛→∞

ℙ
(
𝐾0(C∗(𝔼𝑛,𝑞)) is cyclic

)
=

∏

𝑝 prime

∞∏

𝑘=2

(
1 − 𝑝−2𝑘+1

)
≈ 0.79352. (3.15)

It seems however that for 𝔼𝑛,𝑞 (and also �̂�𝑛,𝑟), the determinant may not be sym-
metrically distributed about the origin and its asymptotic behaviour is a little
harder to predict (see Tables 6, 11). This means that we cannot simply bisect
(3.15) (or for �̂�𝑛,𝑟, (4.2)) and conjecture that value as the asymptotic full-shift
probability.

Question 3.10. What is the asymptotic distribution of the signs of of det(𝐼 −
𝐴(𝑛)) when 𝐴(𝑛) is the adjacency matrix of 𝔼𝑛,𝑞 or �̂�𝑛,𝑟? Is it still the case
that negativity of the determinant and cyclicity are asymptotically independent
events? Namely, do the probabilities

𝛿𝑛,𝑞 ∶= ℙ (det(𝐼 − 𝐴(𝑛)) < 0)
𝜎𝑛,𝑞 ∶= ℙ (det(𝐼 − 𝐴(𝑛)) < 0 ∧ coker(𝐼 − 𝐴(𝑛)) cyclic)

(3.16)

for 𝔼𝑛,𝑞 (𝑞 ∈ (0, 1)) and the probabilities

𝜀𝑛,𝑟 ∶= ℙ (det(𝐼 − 𝐴(𝑛)) < 0)
𝜏𝑛,𝑟 ∶= ℙ (det(𝐼 − 𝐴(𝑛)) < 0 ∧ coker(𝐼 − 𝐴(𝑛)) cyclic)

(3.17)

for �̂�𝑛,𝑟 (𝑟 ≥ 3) converge, and if so, what are their limits 𝛿𝑞, 𝜎𝑞, 𝜀𝑟, 𝜏𝑟?

3.5. Exact isomorphism. We described in Section 3.5 how, practically speak-
ing, we can check whether a graph algebra is exactly (rather than stably) iso-
morphic to a Cuntz polygon (or Cuntz algebra). In Section 4, we provide es-
timates of the asymptotic probabilities of these events for 𝔻𝑛,𝑞 and 𝔼𝑛,𝑞 (see
Tables 2, 6). Here, we offer an explanation of the numbers that we see there.
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Conjecture 3.11. For 𝑞 ∈ (0, 1),

lim
𝑛→∞

ℙ
(
C∗(𝔻𝑛,𝑞) is isomorphic to a Cuntz algebra) (3.18)

=
∞∏

𝑘=2
𝜁(𝑘)−1

≈ 0.43576,

lim
𝑛→∞

ℙ
(
C∗(𝔼𝑛,𝑞) is isomorphic to a Cuntz algebra) (3.19)

=
∏

𝑝 prime
(1 − 1

𝑝2
)

∞∏

𝑘=2

(
1 − 𝑝−2𝑘+1

)

≈ 0.51451,

lim
𝑛→∞

ℙ
(
C∗(𝔻𝑛,𝑞) is isomorphic to a Cuntz polygon) (3.20)

=
∏

𝑝 prime
(1 + 1

𝑝2 − 𝑝
)
−1

≈ 0.48240,

lim
𝑛→∞

ℙ
(
C∗(𝔼𝑛,𝑞) is isomorphic to a Cuntz polygon) (3.21)

=
∏

𝑝 prime
(1 − 1

𝑝2
)

≈ 0.60793.

Heuristic ‘proof’. The derivation is easy if we are willing to freely and reck-
lessly use the heuristic principles of independence (I) and uniformity (U). More
precisely, let us assume that if ℍ𝑛 is a suitably random family of graphs, then
the following hold asymptotically.

(I) The events C𝑛: ‘𝐾0(C∗(ℍ𝑛)) is cyclic’ and U𝑛: ‘[1C∗(ℍ𝑛)] is in the same
automorphism orbit in 𝐾0(C∗(ℍ𝑛)) as the unit of the corresponding
Cuntz polygon’ are independent.

(U) Conditioned on C𝑛, [1C∗(ℍ𝑛)] is uniformly distributed in 𝐾0(C
∗(ℍ𝑛)).

Suppose that 𝐾0(C∗(ℍ𝑛)) ≅
⨁

𝑝∈𝑃 ℤ∕𝑝
𝑁𝑝ℤ =∶ 𝐺𝑁𝑃

for some finite set 𝑃 of
primes. The class of the unit of the corresponding Cuntz algebra is a generator
of the cyclic group 𝐺𝑁𝑃

. Its automorphism orbit is the set of elements of full
order, of which there are

∏
𝑝∈𝑃 𝑝

𝑁𝑝(1−𝑝−1) = |Aut(𝐺𝑁𝑃
)|many. Applying (U)

in this case, the conditional probability that C∗(ℍ𝑛) is isomorphic to𝒪1+|𝐺𝑁𝑃 |
is

|Aut(𝐺𝑁𝑃
)|

|𝐺𝑁𝑃
|

=
∏

𝑝∈𝑃
(1 − 𝑝−1).
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Then, proceeding as in the heuristic argument presented in the proof Theo-
rem 3.2.5 and making no attempt to justify any rearrangement of limits,

lim
𝑛→∞

ℙ (C∗(ℍ𝑛) ≅ 𝒪𝑘 for some 𝑘)

= lim
𝑛→∞

ℙ(C𝑛 ∩U𝑛)

= lim
𝑛→∞

∑

𝑁

|Aut(𝐺𝑁𝑃
)|

|𝐺𝑁𝑃
|

ℙ(𝐾0(C∗(ℍ𝑛)) ≅ 𝐺𝑁𝑃
)

=
∏

𝑝 prime

∑

𝑁

|Aut(ℤ∕𝑝𝑁ℤ)|
|ℤ∕𝑝𝑁ℤ|

lim
𝑛→∞

ℙ
(
𝐾0(C∗(ℍ𝑛))𝑝 ≅ ℤ∕𝑝𝑁ℤ

)
.

Applying (3.2) in the case ℍ𝑛 = 𝔻𝑛,𝑞, we get

lim
𝑛→∞

ℙ
(
C∗(𝔻𝑛,𝑞) ≅ 𝒪𝑘 for some 𝑘)

=
∏

𝑝 prime

∑

𝑁

|Aut(ℤ∕𝑝𝑁ℤ)|
|ℤ∕𝑝𝑁ℤ|

⋅ 1
|Aut(ℤ∕𝑝𝑁ℤ)|

∞∏

𝑘=1

(
1 − 𝑝−𝑘

)

=
∏

𝑝 prime

∑

𝑁
𝑝−𝑁

∞∏

𝑘=1

(
1 − 𝑝−𝑘

)

=
∏

𝑝 prime

∞∏

𝑘=2

(
1 − 𝑝−𝑘

)

=
∞∏

𝑘=2
𝜁(𝑘)−1.

From this we deduce that

lim
𝑛→∞

ℙ
(
C∗(𝔻𝑛,𝑞) ≅ 𝒫�̄� for some �̄�)

= lim
𝑛→∞

ℙ(U𝑛)

= lim
𝑛→∞

ℙ(C𝑛 ∩U𝑛)
ℙ(C𝑛)

(appealing to (I))

=
∏

𝑝 prime
(1 + 1

𝑝2 − 𝑝
)
−1

(by (3.18) and (3.3)).

For ℍ𝑛 = 𝔼𝑛,𝑞, recall that the normalisation factor 𝑁(𝐺𝑃) defined in (3.5) and
appearing in (3.13) simplifies to 𝑁(ℤ∕𝑝𝑁ℤ) =

∏
𝑝 prime 𝑝

−𝑁 = |𝐺𝑃|−1 for the
cyclic group 𝐺𝑃 (as in (3.7)). Assuming that (3.13) behaves well when passing
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to the set of all primes, we have

lim
𝑛→∞

ℙ
(
C∗(𝔼𝑛,𝑞) ≅ 𝒪𝑘 for some 𝑘)

=
∏

𝑝 prime

∑

𝑁

|Aut(ℤ∕𝑝𝑁ℤ)|
|ℤ∕𝑝𝑁ℤ|2

∞∏

𝑘=1

(
1 − 𝑝−2𝑘+1

)

=
∏

𝑝 prime
(1 +

∞∑

𝑁=1

𝑝𝑁(1 − 𝑝−1)
𝑝2𝑁

)
∞∏

𝑘=1

(
1 − 𝑝−2𝑘+1

)

=
∏

𝑝 prime
(1 + 1

𝑝)
∞∏

𝑘=1

(
1 − 𝑝−2𝑘+1

)

=
∏

𝑝 prime
(1 − 1

𝑝2
)

∞∏

𝑘=2

(
1 − 𝑝−2𝑘+1

)
.

By the same token, assuming (3.15) as in the discussion followingConjecture 3.9,
we have

lim
𝑛→∞

ℙ(C𝑛) =
∏

𝑝 prime

∞∏

𝑘=2

(
1 − 𝑝−2𝑘+1

)
(3.22)

and then

lim
𝑛→∞

ℙ
(
C∗(𝔼𝑛,𝑞) ≅ 𝒫�̄� for some �̄�)

= lim
𝑛→∞

ℙ(C𝑛 ∩U𝑛)
ℙ(C𝑛)

(by (I))

=
∏

𝑝 prime
(1 − 1

𝑝2
) (by (3.19) and (3.22)). □

By contrast, it appears to be very rare forC∗(�̂�𝑛,𝑟) to be isomorphic to a Cuntz
polygon. Indeed, for the values of𝑛 and 𝑟 forwhichwe collected data, this event
essentially never happened (see Table 11). But it is not an impossibility. The
following example was generated by our computer code.

Example 3.12. Let 𝐸 be the 8-regular graph on 6 vertices whose adjacency
matrix is

𝐴 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 3 3 1 0 1
3 0 0 2 3 0
3 0 0 2 1 2
1 2 2 0 1 2
0 3 1 1 0 3
1 0 2 2 3 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

Since𝐴−𝐼 is not a permuted diagonal matrix, its underlying graph is obviously
not that of a Cuntz polygon itself. The SNF factorisation 𝑈𝑀𝑉 = 𝐷 of 𝑀 =
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𝐴 − 𝐼 is

⎛
⎜
⎝

1 -6 -6 -6 -6 -6
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟
⎠

⎛
⎜
⎝

-1 3 3 1 0 1
3 -1 0 2 3 0
3 0 -1 2 1 2
1 2 2 -1 1 2
0 3 1 1 -1 3
1 0 2 2 3 -1

⎞
⎟
⎠

⎛
⎜
⎝

13 13 11 11 10 9
13 19 6 10 13 6
-1 -6 3 0 -3 2
-1 -2 0 -1 -1 0
-8 -5 -9 -7 -5 -7
-15 -18 -10 -12 -13 -9

⎞
⎟
⎠
=
⎛
⎜
⎝

7 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟
⎠
,

from which we can deduce that

(𝐾0(C∗(𝐸), [1C∗(𝐸)], 𝐾1(C∗(𝐸))) ≅ (ℤ∕7ℤ,−29, 0) ≅ (ℤ∕7ℤ, 1, 0),

since 29 and 7 are coprime. The conclusion is that C∗(𝐸) is isomorphic to 𝒪8.

Question 3.13. Is it true that, for 𝑟 ≥ 3,

lim
𝑛→∞

ℙ
(
C∗(�̂�𝑛,𝑟) ≅ 𝒫�̄� for some �̄�

)
= 0?

3.6. Contiguity. By definition, events that occur asymptotically almost surely
according to one random graph model also occur asymptotically almost surely
for any contiguousmodel. For example, the perfect matchings model �̂�𝑛,𝑟 anal-
ysed in Section 3.2 is contiguous to the uniformmodel𝔾′

𝑛,𝑟, that is, a random el-
ement of the set of 𝑟-regular multigraphs with the uniform distribution, condi-
tioned on there being no loops (see the discussion and references in [19, Chap-
ter 21]). Hadwe adopted thismodel instead, the resultant graph algebraswould
therefore still be stably isomorphic to Cuntz polygonswith high probability (see
Theorem 3.4). As for the ‘Erdős–Rényi’ graphs𝔼𝑛,𝑞 of Section 3.3, a better name
for themmight have been ‘Gilbert’ after his analysis of thismodel in [20]. More-
over, the model 𝔼𝑛,𝑚 actually employed in [17] is a different one, specifically
the uniform distribution on the set of undirected graphs with𝑚 edges on 𝑛 la-
belled vertices (where 𝑛 ∈ ℕ and 0 ≤ 𝑚 ≤

(𝑛
2

)
). To borrow a phrase from [19],

these two models 𝔼𝑛,𝑞 and 𝔼𝑛,𝑚 are ‘almost contiguous’ in a quantifiably pre-
cise sense. This principle, when adapted for digraphs and combined with the
asymptotic probabilities of singularity and strong connectedness in this setting,
leads to the observation (Theorem 3.15) thatmost of the C∗-algebras associated
to digraphs on large vertex sets with suitably many edges are stably isomorphic
to Cuntz polygons.

Definition 3.14. For integers 𝑚1, 𝑚2, 𝑛 with 𝑛 ≥ 1 and 0 ≤ 𝑚1, 𝑚2 ≤
(𝑛
2

)
, let

𝒢𝑛,𝑚1,𝑚2
denote the set of directed graphs on 𝑛 labelled vertices with 𝑚1 ‘for-

ward’ edges (that is, edges 𝑒 with 𝑠(𝑒) < 𝑟(𝑒), corresponding to above-diagonal
entries of the adjacency matrix) and 𝑚2 ‘backward’ ones (edges 𝑒 with 𝑠(𝑒) >
𝑟(𝑒), or below-diagonal entries of the adjacencymatrix). Loops (𝑠(𝑒) = 𝑟(𝑒)) are
allowed, but not multiple edges. We let 𝕌𝑛,𝑚1,𝑚2

denote an element of 𝒢𝑛,𝑚1,𝑚2
chosen randomly according to the uniform distribution, that is,

ℙ(𝕌𝑛,𝑚1,𝑚2
= 𝐸) = 1

2𝑛
( 𝑛
𝑚1

)( 𝑛
𝑚2

) (3.23)

for every 𝐸 ∈ 𝒢𝑛,𝑚1,𝑚2
(the factor of 2𝑛 accounting for loops).
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It is sometimes useful to think of a directed graph 𝐸 on vertices {1,… , 𝑛} as
being obtained by overlaying three undirected ones (𝐸0 described by the diago-
nal entries of the adjacencymatrix,𝐸1 the above-diagonal entries the and𝐸2 the
below-diagonal ones). For example, if 𝐸1 and 𝐸2 are both connected, then 𝐸 is
strongly connected. We take up this point of view in the proof of the following.

Theorem 3.15. If𝑚1 = 𝑚1(𝑛) and𝑚2 = 𝑚2(𝑛) satisfy 0 ≤ 𝑚1, 𝑚2 ≤
(𝑛
2

)
and

lim
𝑛→∞

𝑚𝑖(𝑛
2

) =∶ 𝑞𝑖 ∈ (0, 1), 𝑖 = 1, 2, (3.24)

then C∗(𝕌𝑛,𝑚1,𝑚2
) is asymptotically almost surely stably isomorphic to a Cuntz

polygon.

Proof. We adapt the proof of [19, Lemma 1.2], which addresses undirected
graphs. Let P = P𝑛,𝑚1,𝑚2

⊆ 𝒢𝑛,𝑚1,𝑚2
be a graph property. Write 𝑁 =

(𝑛
2

)
=

𝑛(𝑛 − 1)
2 and 𝑞𝑖 =

𝑚𝑖

𝑁
≈ 2𝑚𝑖

𝑛2
, 𝑖 = 1, 2. Let𝐴(𝑛) be the 𝑛×𝑛matrix whose entries

are independent Bernoulli random variables with success probability either 𝑞1
(above the diagonal) or 𝑞2 (below the diagonal) or 1

2
(on the diagonal), and let

us writeℍ𝑛 for the corresponding random graph. We adopt the notational con-
vention suggested after Definition 3.14 and writeℍ𝑛,𝑖, 𝑖 = 0, 1, 2, for the graphs
corresponding to entries on, above or below the diagonal of 𝐴(𝑛).
For integers 𝑘𝑖 ≥ 0, 𝑖 = 0, 1, 2, with 𝑘0 ≤ 𝑛 and 𝑘1, 𝑘2 ≤ 𝑁, the conditional

probability that ℍ𝑛 has the graph property P , given that ℍ𝑛,𝑖 has 𝑘𝑖 edges for
𝑖 = 0, 1, 2, is

ℙ(ℍ𝑛 ∈ P ∣ |ℍ1
𝑛,𝑖| = 𝑘𝑖, 𝑖 = 0, 1, 2)

=
ℙ(ℍ𝑛 ∈ P ∧ |ℍ1

𝑛,𝑖| = 𝑘𝑖, 𝑖 = 0, 1, 2)
∏2

𝑖=0 ℙ(|ℍ
1
𝑛,𝑖| = 𝑘𝑖)

=
∑

𝐸∈P
|𝐸1𝑖 |=𝑘𝑖 ∀𝑖

( 1
2

)𝑘0 ( 1
2

)𝑛−𝑘0

( 𝑛
𝑘0

)
(12)

𝑘0
(12)

𝑛−𝑘0
⋅

𝑞𝑘11 (1 − 𝑞1)𝑁−𝑘1
(𝑁
𝑘1

)
𝑞𝑘11 (1 − 𝑞1)𝑁−𝑘1

⋅
𝑞𝑘22 (1 − 𝑞2)𝑁−𝑘2

(𝑁
𝑘2

)
𝑞𝑘22 (1 − 𝑞2)𝑁−𝑘2

=
∑

𝐸∈P
|𝐸1𝑖 |=𝑘𝑖 ∀𝑖

1
( 𝑛
𝑘0

)(𝑁
𝑘1

)(𝑁
𝑘2

)

= 2𝑛
( 𝑛
𝑘0

) ⋅ ℙ(𝕌𝑛,𝑘1,𝑘2 ∈ P) (by definition (3.23)).
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Therefore, by the law of total probability,

ℙ(ℍ𝑛 ∈ P)

=
𝑛∑

𝑘0=0

𝑁∑

𝑘1,𝑘2=0
ℙ(ℍ𝑛 ∈ P ∣ |ℍ1

𝑛,𝑖| = 𝑘𝑖, 𝑖 = 0, 1, 2) ⋅ ℙ(|ℍ1
𝑛,𝑖| = 𝑘𝑖, 𝑖 = 0, 1, 2)

=
𝑛∑

𝑘0=0

𝑁∑

𝑘1,𝑘2=0

2𝑛
( 𝑛
𝑘0

) ⋅ ℙ(𝕌𝑛,𝑘1,𝑘2 ∈ P) ⋅ ℙ(|ℍ1
𝑛,𝑖| = 𝑘𝑖, 𝑖 = 0, 1, 2)

=
𝑛∑

𝑘0=0

𝑁∑

𝑘1,𝑘2=0
ℙ(𝕌𝑛,𝑘1,𝑘2 ∈ P) ⋅ ℙ(|ℍ1

𝑛,1| = 𝑘1) ⋅ ℙ(|ℍ1
𝑛,2| = 𝑘2)

≥ ℙ(𝕌𝑛,𝑚1,𝑚2
∈ P) ⋅ ℙ(|ℍ1

𝑛,1| = 𝑚1) ⋅ ℙ(|ℍ1
𝑛,2| = 𝑚2)

≥ 1
100

√
𝑚1𝑚2

ℙ(𝕌𝑛,𝑚1,𝑚2
∈ P) for sufficiently large 𝑛,

the latter estimate obtained from Stirling’s formula applied to the binomial
probabilities

ℙ(|ℍ1
𝑛,𝑖| = 𝑚𝑖) =

(𝑁
𝑚𝑖

)
𝑞𝑚𝑖
𝑖 (1 − 𝑞𝑖)𝑁−𝑚𝑖 = 𝑁!

𝑚𝑖!(𝑁 −𝑚𝑖)!
𝑞𝑚𝑖
𝑖 (1 − 𝑞𝑖)𝑁−𝑚𝑖 ,

𝑖 = 1, 2, as in the proof of [19, Lemma 1.2]. Note that (3.24) justifies this use of
Stirling’s formula, as it ensures that the numbers𝑚1,𝑚2, 𝑁 −𝑚1 and 𝑁 −𝑚2
are all large when 𝑛 is. What we have now shown is that

ℙ(𝕌𝑛,𝑚1,𝑚2
∈ P) ≤ 100

√
𝑚1𝑚2 ⋅ ℙ(ℍ𝑛,𝑚1,𝑚2

∈ P) for all large 𝑛. (3.25)

By assumption (3.24),𝑀(𝑛) = 𝐴(𝑛)𝑡−𝐼 (for thatmatter,𝐴(𝑛) itself) satisfies the
requirement (3.1) of Theorem 3.2 for a suitable 𝜀 < min {𝑞1, 𝑞2, 1 − 𝑞1, 1 − 𝑞2}.
Asmentioned in the proof of Theorem3.2, the asymptotic probability that𝑀(𝑛)
is singular (which is the relevant graph property P) is (

√
1 − 𝜀 + 𝑜(1))𝑛. By

(3.25), the corresponding asymptotic probability for 𝕌𝑛,𝑚1,𝑚2
is at most

100
√
𝑚1𝑚2(

√
1 − 𝜀 + 𝑜(1))𝑛,

which converges to 0 as 𝑛 → ∞. We also know that, with high probability, the
undirected graphs (𝕌𝑛,𝑚1,𝑚2

)1 and (𝕌𝑛,𝑚1,𝑚2
)2 are connected (see [19, Theorem

4.1]), so 𝕌𝑛,𝑚1,𝑚2
is strongly connected (and does not consist of a single cycle).

The theorem now follows from Proposition 2.4.3. □

4. Empirical 𝑲-data
In this section, we present some of the data produced by our computer code.

We generated samples of size 𝑚 = 105 for various random Bernoulli digraphs
𝔻𝑛,𝑞, Erdős–Rényi graphs 𝔼𝑛,𝑞 and regular multigraphs �̂�𝑛,𝑟, and collected the
𝐾-theoretic data outlined in Section 1 for several small primes (up to 𝑝 = 37)
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and a couple larger ones (𝑝 = 137 and 𝑝 = 277). We also collected the supple-
mental data outlined in Sections 2.4, 3.4, 3.5 needed to tally flow equivalence to
a full shift or exact isomorphism to a Cuntz algebra or Cuntz polygon. Typical
sampled graphs are illustrated in Figure 2 and Figure 3.
All collected data were consistent with available theory, as long as the num-

ber of vertices was sufficiently large. In practice, 𝑛 = 50 vertices seemed to
be large enough to produce expected results (see Table 7), though most of the
time we opted for 𝑛 = 100. Note that, since our sample sizes are very large, the
margin of error for the data is small. Using the normal approximation to the
binomial distribution, at the 99% level of confidence this margin is at most

𝑧0.005

√
𝑥(1 − 𝑥)

𝑛

|||||||||𝑥=1∕2
≈ 2.576

2
√
105

≈ 0.004

for any of our proportions of interest. This means that if our sampling proce-
dure were to be repeated many times, and 𝛾 denotes our empirical estimate of
some true probability 𝛾, then the interval [𝛾 − 0.004, 𝛾 + 0.004] should contain
𝛾 approximately 99% of the time. In practice, the margin of error depends on
the variability of the data characteristic being measured, possibly resulting in
a narrower confidence interval. See, for example, Table 7, and notice also that
the error bars in graphs such as Figure 4 vary from bar to bar.

4.1. Bernoulli graphs𝔻𝒏,𝒒. Here, our emphasis was on (3.3) for small primes
𝑝 and (3.2) for small 𝑝-groups 𝐺 = ℤ∕(𝑝𝑁ℤ) and 𝐺 = (ℤ∕𝑝ℤ)𝑁 . See Figure 4
and Table 1, respectively. Conjecture 3.9 and Conjecture 3.11 are supported by
the data in Table 2 (see also Table 3).
As discussed in Remark 3.3, sparser Bernoulli digraphs (those for which 𝑞 =

log𝑛∕𝑛) exhibit rather different statistics. This expectation was consistent with
the data, some of which is presented in Table 4. As for connectivity, note that
if 𝑞 = (log𝑛 + 𝜔)∕𝑛 for some function 𝜔 = 𝜔(𝑛), then

lim
𝑛→∞

ℙ
(
𝔻𝑛,𝑞 is strongly connected

)
=
⎧

⎨
⎩

0 if 𝜔 → −∞
𝑒−2𝑒−𝑐 if 𝜔 → 𝑐 constant
1 if 𝜔 →∞

(see [19, Theorem 13.9], which is derived from the similar behaviour [19, The-
orem 4.1] exhibited by the symmetric versions 𝔼𝑛,𝑞). If 𝑛 is large enough and
𝑞 = log𝑛∕𝑛 (that is, 𝜔 = 0), we would expect strong connectivity about 𝑒−2 ≈
13.5% of the time. Our observation of 15.6% for 𝑛 = 100 (see Table 4) is not
inconsistent with this.

4.2. Erdős–Rényi graphs𝔼𝒏,𝒒. From (3.7) and (3.10), we can compute the as-
ymptotic cyclicity probabilities for𝐾0(C∗(𝔼𝑛,𝑞))𝑝, for any prime𝑝. The recorded
data closely agree with these probabilities (see Figure 5). As mentioned in Sec-
tion 3.5, it is expected, though not yet proved, that the asymptotic probability
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that 𝐾0(C∗(𝔼𝑛,𝑞)) is cyclic is equal to the product of the respective probabilities
over all primes 𝑝, that is, to

∏

𝑝 prime

∞∏

𝑘=2

(
1 − 𝑝−2𝑘+1

)
≈ 0.79352.

The data in Table 5 and Table 6 are in accordance with this expectation. Table 6
also contains data for the open Question 3.10 and data in support of Conjec-
ture 3.11.

4.3. Regularmultigraphs �̂�𝒏,𝒓. The graph algebrasC∗(�̂�𝑛,𝑟) are almost never
exactly isomorphic to Cuntz polygons (see Question 3.13 and Table 11). The as-
ymptotic behaviour of the determinant is also somewhat opaque (see Table 11
again), sowe refrain fromconjecturing the asymptotic probability of flowequiv-
alence to a full shift for these graphs, leaving open Question 3.10.
On the other hand, the purely 𝐾-theoretic data are easier to understand.

With 𝑛 = 100, the data collected for 𝐾0(C∗(�̂�𝑛,𝑟))𝑝 for all primes 𝑝 between
3 and 37 (and also 𝑝 = 137 and 𝑝 = 277) were remarkably in line with the
limiting distributions (3.7) and (3.8) provided that 𝑝 ∤ 𝑟 − 1. See, for example,
Table 7, Figure 6 and Figure 7.
For 𝑝 = 2, the event “𝐾0(C∗(�̂�𝑛,𝑟))2 is cyclic” tended to be concentrated on a

single outcome 𝐾0(C∗(�̂�𝑛,𝑟))2 = ℤ∕2𝑁ℤ, with𝑁 = 0 if 2 ∤ 𝑟 − 1. (On the other
hand, note that, in general, 𝐾0(C∗(�̂�𝑛,𝑟))𝑝 cannot be trivial if 𝑝 ∣ 𝑟 − 1.) We did
however observe some interesting deviations from this pattern (see Figure 8
and Figure 9), including variable behaviour for a fixed value of 𝑟 and different
𝑛 (compare Figure 10 with Figure 11).
In Table 8, 𝛾𝑛,𝑟 and 𝜋𝑝,𝑟 denote our estimators of the probabilities

𝛾𝑛,𝑟 ∶= ℙ
(
𝐾0(C∗(�̂�𝑛,𝑟)) is cyclic

)

and
𝜋𝑝,𝑟 ∶= lim

𝑛∈2ℕ
ℙ
(
𝐾0(C∗(�̂�𝑛,𝑟))𝑝 is cyclic

)
.

Whilewe are somewhat begging the question here, as the definition of𝜋𝑝,𝑟 does
assume that the limit exists, note that, from Proposition 3.5,

𝜋𝑝,𝑟 =
∞∏

𝑘=2

(
1 − 𝑝−2𝑘+1

)
(4.1)

if 𝑝 ∤ 2(𝑟 − 1). Convergence outside of this setting, that is, for 𝑝 = 2 or 𝑝 ∣
𝑟 − 1, does seem to be supported by the data. In fact, if we rely on the heuristic
principle that 𝑛 = 100 is large enough to indicate asymptotic behaviour, then
from Table 8 we see that 𝜋2,𝑟 is consistently about 0.42, independently of 𝑟. As
for the provenance of this number, we suspect it to be (4.1) adjusted to also
include the 𝑘 = 1 term. Fascinatingly, this adjustment also appears to govern
the asymptotic probability of cyclicity of 𝐾0(C∗(�̂�𝑛,𝑟))𝑝 for primes 𝑝 dividing
𝑟 − 1 (see Table 9). Arguing heuristically as in the proof of Theorem 3.2.5, we
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would also expect 𝛾𝑛,𝑟 to converge as 𝑛 → ∞ to
∏

𝑝 prime 𝜋𝑝,𝑟 =∶ 𝛾𝑟. This
expectation is indeed supported by the data (see Table 8 and Table 10). Putting
this together, we are led to make the following.

Conjecture 4.1. For an integer 𝑟 and prime 𝑝, let

𝜋𝑝,𝑟 ∶= lim
𝑛∈2ℕ

ℙ
(
(𝐾0(C∗(�̂�𝑛,𝑟))𝑝 is cyclic

)
.

Then, for any 𝑟 ≥ 3:
1. 𝜋𝑝,𝑟 =

∏∞
𝑘=1

(
1 − 𝑝−2𝑘+1

)
if 𝑝 = 2 (in which case, 𝜋𝑝,𝑟 ≈ 0.419) or if 𝑝 is odd

and 𝑝 ∣ 𝑟 − 1;
2. the asymptotic probability thatC∗(�̂�𝑛,𝑟) is stably isomorphic to aCuntz algebra
is

𝛾𝑟 ∶=
∏

𝑝 prime
𝜋𝑝,𝑟 =

∏

𝑝 prime
𝑝∣2(𝑟−1)

(
1 − 𝑝−1

) ∏

𝑝 prime

∞∏

𝑘=2

(
1 − 𝑝−2𝑘+1

)
(4.2)

≈ 0.397 if 𝑟 = 2𝑗 + 1.
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Figure 2. Sample generated graph �̂�20,3
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Bernoulli digraph (n=11, w=-1.0)

Figure 3. Sample generated graph 𝔻11,1∕2
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Figure 4. Frequency distribution for 105 observations of 𝐾0(C∗(𝔻100,1∕4))2
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Figure 5. Frequency distribution for 105 observations of 𝐾0(C∗(𝔼100,1∕2))2
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Figure 7. Frequency distribution for 105 observations of 𝐾0(C∗(�̂�100,11))11
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𝐾0(C∗(�̂�100,5))2 in support of Conjecture 4.1
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Figure 9. Frequency distribution for 105 observations of
𝐾0(C∗(�̂�100,13))2 in support of Conjecture 4.1
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(𝑛, 𝑞) 𝔻𝑛,𝑞 connected 𝐾1 ≠ 0 (Tor(𝐾0))𝑝 cyclic
all 𝑝 𝑝 = 2 𝑝 = 3 𝑝 = 5 𝑝 = 7

(50, 1∕2) 100000 0 84881 86769 98104 99788 99954
(100, 1∕2) 100000 0 85098 86928 98086 99819 99961
(50, 1∕3) 100000 0 84597 86598 97975 99784 99950
(100, 1∕3) 100000 0 84727 86676 98003 99801 99952
(50, 1∕4) 99994 0 84756 86679 98057 99793 99955
(100, 1∕4) 100000 0 84586 86570 97982 99805 99958
𝑛 →∞ 105 − 𝑂( 1

𝑛
) 105( 1

√
2
+ 𝑜(1))𝑛 84694 86636 98022 99794 99951

Table 1. Selected totals for 105 observations ofC∗(𝔻𝑛,1∕𝑘), 𝑛 =
50, 100, 𝑘 = 2, 3, 4

(𝑛, 𝑞) Connected 𝐾1 ≠ 0 𝐾0 cyclic Det < 0 Full shift 𝒫�̄� 𝒪𝑚
(50, 1∕2) 100000 0 84377 49887 42186 50880 43518
(100, 1∕2) 100000 0 84525 49963 42190 50640 43481
(50, 1∕3) 100000 0 84825 50036 42381 50695 43503
(100, 1∕3) 100000 0 84736 50044 42410 50736 43635
(50, 1∕4) 99989 1 84610 49966 42225 50739 43581
(100, 1∕4) 100000 0 84636 49831 42260 50764 43582
𝑛 →∞ 105 − 𝑂( 1

𝑛
) 105( 1

√
2
+ 𝑜(1))𝑛 84694 50000 42347 51451 43576

Table 2. Selected totals for 105 observations ofC∗(𝔻𝑛,1∕𝑘), 𝑛 =
50, 100, 𝑘 = 2, 3, 4. Numbers marked in purple support Conjec-
ture 3.11 and those marked in teal support Conjecture 3.9.

(𝑛, 𝑞) Connected 𝐾1 ≠ 0 𝐾0 cyclic Det < 0 Full shift 𝒫�̄� 𝒪𝑚
(50, 1∕2) 100000 0 84794 50112 42478 50588 43616
(100, 1∕2) 100000 0 84524 49976 42302 50429 43337
(50, 1∕3) 100000 0 84726 49632 42065 50709 43535
(100, 1∕3) 100000 0 84669 49989 42394 50498 43421
(50, 1∕4) 99992 5 84631 49833 42205 50742 43553
(100, 1∕4) 100000 0 84706 50051 42377 50437 43309
𝑛 →∞ 105 − 𝑂( 1

𝑛
) 105( 1

√
2
+ 𝑜(1))𝑛 84694 50000 42347 51451 43576

Table 3. Selected totals for 105 observations of shifted
Bernoulli digraph algebras C∗(𝔻𝑛,1∕𝑘 + 𝐼), 𝑛 = 50, 100, 𝑘 =
2, 3, 4. Numbers marked in purple are relevant to Conjec-
ture 3.11 and those marked in teal support Theorem 3.8.
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𝑞 (𝑛 = 100) 𝔻100,𝑞 connected 𝐾1 ≠ 0 (Tor(coker(𝐴𝑡 − 𝐼)))𝑝 cyclic∗
all 𝑝 𝑝 = 2 𝑝 = 3 𝑝 = 5 𝑝 = 7

3 log𝑛∕𝑛 99993 3 84617 86586 97990 99781 99958
2 log𝑛∕𝑛 98606 114 84880 86786 98062 99805 99952
log𝑛∕𝑛 15623 8829 85713 87481 98183 99801 99941
log𝑛∕2𝑛 0 51702 87968 89172 98776 99866 99978

Table 4. 105 observations of C∗(𝔻𝑛,𝑘 log𝑛∕𝑛), 𝑛 = 100,
𝑘 = 3, 2, 1, 0.5.

∗We may no longer have 𝐾0 ≅ coker(𝐴𝑡 − 𝐼) as sinks now occur with
nonzero probability so would have to be taken into account as in [36,
Theorem 3.2].

(𝑛, 𝑞) 𝔼𝑛,𝑞 connected 𝐾1 ≠ 0 (Tor(𝐾0))𝑝 cyclic
all 𝑝 𝑝 = 2 𝑝 = 3 𝑝 = 5 𝑝 = 7

(50, 1∕2) 100000 0 79239 83805 95846 99169 99696
(100, 1∕2) 100000 0 79325 83786 95889 99125 99707
(50, 1∕3) 100000 0 79235 83784 95854 99157 99703
(100, 1∕3) 100000 0 79206 83797 95883 99139 99694
(50, 1∕4) 99997 3 79306 83833 95898 99150 99687
(100, 1∕4) 100000 0 79331 83822 95839 99169 99697
𝑛 →∞ 105 − 𝑂( 1

𝑛
) 𝑜(1) 79352 83884 95851 99167 99702

Table 5. Selected totals for 105 observations of C∗(𝔼𝑛,1∕𝑘), 𝑛 =
50, 100, 𝑘 = 2, 3, 4
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(𝑛, 𝑞) Connected 𝐾1 ≠ 0 𝐾0 cyclic Det < 0 Full shift 𝒫�̄� 𝒪𝑚
(50, 1∕2) 100000 0 79379 56708 45005 59431 48330
(75, 1∕2) 100000 0 79325 50912 40336 59051 48073
(100, 1∕2) 100000 0 79416 45762 36274 59317 48281
(50, 1∕3) 100000 0 79286 55144 43670 59335 48317
(75, 1∕3) 100000 0 79400 45625 36269 59195 48253
(100, 1∕3) 100000 0 79371 46400 36794 59121 48224
(50, 1∕4) 99999 1 79526 46138 36771 59643 48634
(75, 1∕4) 100000 0 79296 47678 37797 59246 48315
(100, 1∕4) 100000 0 79322 54237 42983 59275 48218
𝑛 →∞ 105 − 𝑂( 1

𝑛
) 𝑜(1) 79352 105𝛿𝑛,𝑞 105𝜎𝑛,𝑞 60793 48240

Table 6. Selected totals for 105 observations of C∗(𝔼𝑛,1∕𝑘), 𝑛 =
50, 100, 𝑘 = 2, 3, 4. Numbers marked in purple support Con-
jecture 3.11. Numbers marked in teal provide empirical data
for the open Question 3.10. In particular, using the definitions
(3.16), the values 𝛿𝑛,𝑞 and 𝜎𝑛,𝑞 in the data table obey the rela-
tionship 𝜎𝑛,𝑞 ≈ 0.79352 ⋅ 𝛿𝑛,𝑞, supporting statistical indepen-
dence of determinant negativity and cyclicity (cf. (3.15)).

𝑛 𝐾0(C∗(�̂�𝑛,3))13
0 ℤ∕13ℤ ℤ∕132ℤ (ℤ∕13ℤ)2 ℤ∕133ℤ

𝑛 →∞ 0.92265 0.07097 0.00546 0.00042 0.00042
200 [0.9223, 0.9266] [0.0672, 0.0713] [0.0048, 0.0060] [0.0002, 0.0006] [0.0002, 0.0006]
100 [0.9192, 0.9236] [0.0700, 0.0742] [0.0049, 0.0061] [0.0004, 0.0007] [0.0002, 0.0005]
60 [0.9215, 0.9258] [0.0677, 0.0718] [0.0053, 0.0066] [0.0002, 0.0005] [0.0002, 0.0005]
50 [0.9225, 0.9268] [0.0672, 0.0713] [0.0048, 0.0060] [0.0003, 0.0006] [0.0001, 0.0004]
20 [0.9583, 0.9615] [0.0360, 0.0391] [0.0021, 0.0029] [0.0000, 0.0002] [0.0000, 0.0000]
10 [1.0000, 1.0000] [0.0000, 0.0000] [0.0000, 0.0000] [0.0000, 0.0000] [0.0000, 0.0000]

Table 7. 99% CIs for Sylow 13-subgroups of 𝐾0(C∗(�̂�𝑛,3)), var-
ious 𝑛

𝑟 4 5 6 7 8 9 10 11 12 17
𝜋2,𝑟 0.416 0.418 0.419 0.415 0.416 0.420 0.420 0.420 0.418 0.419∏

𝑝 prime
𝑝≤37

𝜋𝑝,𝑟 0.264 0.395 0.317 0.262 0.338 0.396 0.265 0.318 0.359 0.397

𝛾100,𝑟 0.265 0.395 0.316 0.261 0.338 0.396 0.264 0.317 0.360 0.397

Table 8. Cyclicity frequencies for 105 observations of
𝐾0(C∗(�̂�100,𝑟)), various 𝑟. Marked in bold are empirical es-
timates supporting Conjecture 4.1.
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Figure 11. Frequency distribution for 105 observations of 𝐾0(C∗(�̂�200,9))2

𝑟 6 7 8 10 11 12 13 14 20
𝑝 ∣ 𝑟 − 1 5 3 7 3 5 11 3 13 19
𝜋𝑝,𝑟 0.794 0.639 0.856 0.639 0.794 0.908 0.638 0.922 0.947∏∞

𝑘=1

(
1 − 𝑝−2𝑘+1

)
0.793 0.639 0.855 0.639 0.793 0.908 0.639 0.923 0.947

Table 9. Cyclicity frequencies for 105 observations of
𝐾0(C∗(�̂�100,𝑟))𝑝, 𝑝 ∣ 𝑟 − 1. Marked in bold are empirical
estimates supporting Conjecture 4.1.

𝑟 = 2𝑗 + 1 �̂�100,𝑟 connected 𝐾1 ≠ 0 (Tor(𝐾0))𝑝 cyclic
all 𝑝 𝑝 = 2 𝑝 = 3 𝑝 = 5 𝑝 = 7

3 99519 57 38494 40599 95942 99198 99686
5 100000 0 39460 41781 95779 99152 99713
9 100000 0 39600 41978 95679 99221 99655
17 100000 0 39655 41903 95910 99212 99676
33 100000 0 39879 42133 95934 99121 99724

𝑛 →∞ 105 − 𝑂( 1
𝑛
) 𝑜(1) 105𝛾2𝑗+1 105𝜋2,2𝑗+1 95851 99167 99702

Table 10. Selected totals for 105 observations of C∗(�̂�100,2𝑗+1),
1 ≤ 𝑗 ≤ 5. Marked in bold are empirical estimates supporting
Conjecture 4.1.
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𝑟 Connected 𝐾1 ≠ 0 𝐾0 cyclic Det < 0 Full shift 𝒫�̄� 𝒪𝑚
3 99495 65 38335 55987 21448 0 0
4 99989 0 26361 41056 10832 0 0
5 100000 0 39611 58341 23108 0 0
6 100000 0 31373 41669 13153 0 0
7 100000 0 26325 52379 13864 0 0
8 100000 0 34067 57153 19529 0 0
9 100000 0 39401 47150 18616 0 0

𝑛 →∞ 105 − 𝑂( 1
𝑛
) 𝑜(1) 105 ⋅ 𝛾𝑟 105𝜀𝑛,𝑟 105𝜏𝑛,𝑟 0 0

Table 11. Selected totals for 105 observations ofC∗(�̂�100,𝑟), var-
ious 𝑟. Numbers in purple provide empirical data for the open
Question 3.13. Numbers marked in teal provide empirical data
for the open Question 3.10. In particular, using the definitions
(3.17), the values 𝜀𝑛,𝑟 and 𝜏𝑛,𝑟 in the data table obey the rela-
tionship 𝜏𝑛,𝑟 ≈ 𝛾𝑟 ⋅ 𝜀𝑛,𝑟, supporting statistical independence of
determinant negativity and cyclicity (cf. (4.2)).
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