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The Fermat cubic and monodromy of lines

Frank Gounelas and Alexis Kouvidakis

Abstract. In this paperwe study properties of the locus of second type lines
of a general cubic threefold and fourfold. By analysing the geometry of the
Fano scheme of lines of the Fermat cubic fourfold and in particular giving
an explicit description of the locus of second type lines, we deduce that the
Voisinmap is birational over the second type locus. For a general cubic three-
fold, by studying properties of the second type locus again, we compute that
various natural geometric monodromy groups are the full symmetric group.
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1. Introduction
For a smooth cubic hypersurface 𝑋 ⊂ ℙ𝑛+1, one defines the Fano scheme of

lines 𝐹(𝑋) ⊂ G(2, 𝑛 + 2) parametrising lines contained in 𝑋. This is a smooth
and irreducible variety with rich geometry and history, in particular in the low
dimensional cases where, e.g., for 𝑛 = 2 we famously have that 𝐹(𝑋) consists
of 27 smooth points, for 𝑛 = 3 we have that Alb(𝐹(𝑋)) is isomorphic to the
intermediate Jacobian 𝐽(𝑋) used by Clemens–Griffiths to conclude that 𝑋 is
not rational, and for 𝑛 = 4 we have that 𝐹(𝑋) is an irreducible holomorphic
symplectic variety deformation equivalent to 𝑆[2], the Hilbert scheme of two
points on a K3 surface. Conjectures abound relating the geometry of 𝐹(𝑋) and
rationality of 𝑋.
One may also consider the locus 𝐹2(𝑋) ⊂ 𝐹(𝑋) of lines of second type,

roughly consisting of lines with too many tangent 2-planes. The universal fam-
ilies 𝕃,𝕃2 over 𝐹(𝑋), 𝐹2(𝑋) provide useful correspondences, relating the Chow
and cohomology theories of𝑋 and𝐹(𝑋), 𝐹2(𝑋). The geometry and properties of
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the locus𝐹2(𝑋) (which is non-empty only if𝑛 ⩾ 3 and is smooth and irreducible
if 𝑋 is general), though intimately tied to the geometry of 𝑋, is rather compli-
cated and we refer to [Huy23] for basic results and motivation. When 𝑛 = 3,
Fano proved that 𝐹2(𝑋) is a bicanonical curve in the surface 𝐹(𝑋), which is
smooth and irreducible and of genus 91 if the cubic is general. In the casewhere
𝑛 = 4, only recently have its invariants become known (see [Huy23, GK23]).
The first aim of this paper is to obtain a description (see Proposition 3.5) of

the locus 𝐹2(𝑋) in the case where 𝑋 is the Fermat cubic fourfold.

Theorem A. Let 𝑋 = 𝑉(∑5
𝑖=0 𝑥

3
𝑖 ) ⊂ ℙ5 be the Fermat cubic. The locus of

second type lines 𝐹2 ⊂ 𝐹 is isomorphic to the union of 10 copies of the self-product
of the Fermat cubic curve and 45 copies of the Fermat cubic surface.

A salient feature of 𝐹2(𝑋) in the case 𝑛 = 4 is that it is contained in the locus
of indeterminacy of the Voisin map

𝜙 ∶ 𝐹(𝑋)⤏ 𝐹(𝑋)
𝓁↦ 𝓁′

where there exists a ℙ2 ≅ Π ⊂ ℙ5 such that 𝑋 ∩ Π = 2𝓁 + 𝓁′. In fact, the
indeterminacy locus is equal 𝐹2(𝑋) if 𝑋 contains no 2-planes, and in this case
𝜙 is resolved by a single blowup. We obtain the following (see Proposition 3.12)
as an application of the above analysis by degenerating to the Fermat cubic
fourfold.

Theorem B. Let 𝑋 ⊂ ℙ5 be a general cubic fourfold and 𝐸𝐹2 ⊂ Bl𝐹2𝐹 the
exceptional divisor. Then the Voisin map 𝜙 ∶ 𝐸𝐹2 → 𝐹 is birational onto its
image, a divisor 𝐷 ⊂ 𝐹.
The image of 𝐸𝐹2 in the second part of the above statement has received con-

siderable attention in recent years as it provides an explicit uniruled divisor in
the hyperkähler fourfold 𝐹 (see [OSY19, CMP24]).
In a similar vein, either by degenerating to the Fermat if 𝑛 = 3, 4, or more

generally for any 𝑛 ⩾ 3 using a different degeneration (cf. [GK24, Remark 3.8]),
we present a proof of the fact that the natural morphism 𝕃2 → 𝑋 is birational
onto its image, a divisor 𝑊 ⊂ 𝑋. As an application of this and some more
refined statements in the case 𝑛 = 3, we compute (see Section 5) that the
monodromy groups of various natural finite morphisms are the full symmet-
ric group, where in the following 𝐶𝓁 ⊂ 𝐹(𝑋) is the locus of lines which meet
𝓁.
Theorem C. Let 𝑋 ⊂ ℙ4 be a general smooth cubic threefold.

(1) The degree 6 morphism 𝕃→ 𝑋 has monodromy group 𝑆6.
(2) For 𝓁 ⊂ 𝑋 a general line, the monodromy of the natural degree 5 mor-

phism 𝜋𝓁 ∶ 𝐶𝓁 → 𝓁, [𝓁′]↦ 𝓁 ∩ 𝓁′ is 𝑆5.
(3) For 𝓁 ⊂ 𝑋 a general line of second type, the monodromy of the natural

degree 4 morphism 𝜋𝓁 ∶ 𝐶𝓁 → 𝓁, [𝓁′]↦ 𝓁 ∩ 𝓁′ is 𝑆4.



652 FRANK GOUNELAS AND ALEXIS KOUVIDAKIS

Acknowledgements We would like to thank Daniel Huybrechts for sug-
gesting studying the monodromy problems for cubic threefolds presented in
Section 5.

2. Preliminaries
Let 𝑛 ⩾ 3 and let 𝑋 ⊂ ℙ𝑛+1 be a smooth cubic 𝑛-fold, 𝐹 ⊂ G(2, 𝑛 + 2) its

Fano scheme of lines and 𝐹2 ⊂ 𝐹 the locus of lines of second type.
Consider the induced morphism from the family of lines over 𝐹 and 𝐹2 re-

spectively

𝕃2

��

� � // 𝕃 𝑝
//

𝑞
��

𝑋

𝐹2 �
�

// 𝐹.
for 𝕃 = ℙ(𝒰|𝐹) = Proj(Sym(𝒰∨|𝐹)) (i.e., one dimensional subspaces) where𝒰
the universal bundle on the Grassmannian G(2, 𝑛 + 2) and 𝕃2 its restriction to
𝐹2. We denote the scheme-theoretic image of themorphism 𝕃2 = 𝑞−1(𝐹2)→ 𝑋
by𝑊. In other words, the locus𝑊 is that spanned by second type lines. Recall
the following result, essentially going back to Clemens–Griffiths.

Proposition 2.1. ([Huy23, §2.2]) Let 𝑋 ⊂ ℙ𝑛+1 be a smooth cubic hypersur-
face with 𝑛 > 2 and 𝐹,𝕃,𝕃2,𝑊 as above. Then

(1) 𝐹2 is pure 𝑛 − 2-dimensional and reduced, and𝑊 is reduced.
(2) The morphism 𝕃2 → 𝑊 is generically finite and𝑊 is a divisor, in partic-

ular of pure codimension one.
(3) 𝕃2 is the non-smooth locus of the morphism 𝑝.
(4) If 𝑋 is general, 𝐹2 is smooth and irreducible and hence𝑊 is irreducible.

Proof. These are a combination of [Huy23, 2.2.11-2.2.15], noting that the de-
scription of 𝐹2 as a degeneracy locus of the right codimension implies that it is
Cohen–Macaulay, hence has no embedded points. □
In low dimensions, we have the following. In the cubic threefold case, the

morphism 𝑝 is generically finite of degree six and is ramified at second type
lines, meaning they count withmultiplicity at least two out of the six. For cubic
fourfolds, the generic fibre 𝐶𝑥 = 𝑝−1(𝑥) is a (2, 3) curve in ℙ3 (many of whose
properties are known, see [GK24, §3] for a summary), and the locus 𝕃2 consists
of the locus of singularities of the 𝐶𝑥.
If 𝑛 = 4we use special notation for the above, in line with [GK24, §2]. From

now on, 𝑋 will be a cubic fourfold and we denote by 𝑆 ⊂ 𝐹 the locus of second
type lines in its Fano scheme. Denote by 𝜙 ∶ 𝐹 ⤏ 𝐹 the Voisin map, taking
a general line 𝓁 to its residual intersection on the unique tangent 2-plane to 𝓁.
This map is not defined on the locus of lines of 𝑋 contained inside a 2-plane
inside 𝑋 and on the second type locus 𝑆 ⊂ 𝐹. If 𝑋 is general then it contains
no 2-planes and 𝑆 is smooth and irreducible, and we can resolve this map by a
single blowup of 𝐹 at 𝑆 and we obtain a lift 𝜙 ∶ Bl𝑆(𝐹) → 𝐹. In this case, the
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fibre𝐸𝓁 ≅ ℙ1 of the exceptional divisor𝐸 ⊂ 𝐹 over a point [𝓁] ∈ 𝑆 parametrises
pairs (𝓁,Π) where Π is a 2-plane tangent along the second type line 𝓁 and in
fact [Huy23, Remark 2.2.18] gives that Bl𝑆𝐹 ≅ 𝐹 where

𝐹 = {(𝓁,Π) ∶ Π tangent along 𝓁} ⊂ G(2, 6) × G(3, 6).
We also constructed in [GK24, Proposition 4.2] a universal family

ℱ̃ ∶= {(𝑋, (𝓁,𝓁′,Π)) ∶ 𝑋 ∩ Π = 2𝓁 + 𝓁′ or 𝓁,𝓁′ ⊂ Π ⊂ 𝑋} ⊂ |𝒪ℙ5(3)| × 𝒢 (1)

where 𝒢 = {(𝓁,𝓁′,Π) ∶ 𝓁,𝓁′ ⊂ Π} ⊂ G(2, 6) × G(2, 6) × G(3, 6) (actually, the
case 𝓁,𝓁′ ⊂ Π ⊂ 𝑋 was omitted from [GK24] because the interest there was in
general cubics which do not contain any planes). From the discussion above,
if 𝑋 is general, then the fibre ℱ̃𝑋 of the projection pr1 ∶ ℱ̃ → |𝒪ℙ5(3)| over
𝑋 is just 𝐹 ≅ Bl𝑆(𝐹). On the other hand, over special smooth cubics 𝑋, for
example the Fermat, ℱ̃𝑋 is at least irreducible and birational to 𝐹 as seen from
the following lemma. Wewill mostly call the above locus ℱ̃𝑋 to avoid confusing
it with Bl𝑆𝐹.

Lemma 2.2. Let 𝑋 ⊂ ℙ5 be a smooth cubic fourfold. Then ℱ̃𝑋 is irreducible and
birational to 𝐹 the Fano variety of lines on 𝑋.

Proof. Note that ℱ̃ is smooth and irreducible from [GK24, Proposition 4.2]
and for a general cubic 𝑋 the fibre ℱ̃𝑋 is irreducible, smooth and birational to
𝐹 as discussed above. From semi-continuity of fibre dimension on the source
[Sta21, Lemma 02FZ], for any smooth cubic 𝑋, every irreducible component
of ℱ̃𝑋 has dimension at least 4. As 𝐹 is irreducible and 4-dimensional for any
smooth cubic and by definition the fibres of 𝜋 ∶ ℱ̃𝑋 → 𝐹 parametrise planes
tangent to a line, they are generically one point, whereas for second type lines
is 1-dimensional from [Huy23, Corollary 2.2.6]. Hence, if the locus in ℱ̃𝑋 over
𝑆 ⊂ 𝐹 were an irreducible component of ℱ̃𝑋 , it would be of dimension three,
contradicting the above mentioned semi-continuity. In other words, for every
smooth cubic 𝜋 is birational and ℱ̃𝑋 is irreducible. □

For𝑌 ⊂ 𝐹 a subvariety, we denote by𝐸𝑌 ⊆ ℱ̃𝑋 its inverse image in ℱ̃𝑋 . From
its very definition, theVoisinmap extends to amorphism𝜙 = pr1 ∶ ℱ̃𝑋 → 𝐹 for
any smooth cubic fourfold, by sending 𝓁↦ 𝓁′ in Equation (1). Note also that ℱ̃
admits a morphism to the universal Fano variety of linesℱ by projecting to the
first factor of 𝒢. In particular, we let ℰ𝒮 be the inverse image of the universal
family of second type loci, which as noted, for general 𝑋 ∈ |𝒪ℙ5(3)| is just a
ℙ1-bundle over 𝑆, namely ℰ𝒮|𝑋 ≅ 𝐸.

3. The Fermat cubic and applications
Before we specialise to the case of the Fermat cubic fourfold, we recall some

facts about the threefold case (see [CG72, Rou09, GK19]). Let 𝑌 ⊂ ℙ4 be any
smooth cubic threefold. Its Fano surface 𝐹(𝑌) ⊂ G(2, 5) is a smooth irreducible
projective general type surface canonically embedded and of degree𝐾2

𝐹(𝑌) = 45

https://stacks.math.columbia.edu/tag/02FZ
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in the Plücker ℙ9. The locus of second type lines 𝐹2(𝑌) ⊂ 𝐹(𝑌) is pure 1-
dimensional and of class 2𝐾𝐹(𝑌) = 𝒪ℙ9(2)|𝐹(𝑌).

Proposition 3.1. Let 𝑌 = 𝑉(∑4
𝑖=0 𝑥

3
𝑖 ) ⊂ ℙ4 be the Fermat threefold. Then the

locus of second type lines 𝐹2(𝑌) consists of the union of 30 smooth elliptic curves,
each isomorphic to the Fermat plane cubic. In particular, for

𝑊 = 𝑝(𝑞−1(𝐹2(𝑌))) ⊂ 𝑌,
we have 𝒪𝑌(𝑊) ≅ 𝒪𝑌(30) and that

𝑝 ∶ 𝑞−1(𝐹2(𝑌))→𝑊
is birationalwhen restricted to any of the 30 irreducible components of𝑞−1(𝐹2(𝑌)).

Proof. This basically follows from the work of Roulleau on the Fermat cubic
[Rou09, Proposition 10 and p.395]. First, note that from loc. cit. a smooth el-
liptic curve in 𝐹(𝑌) corresponds to a cone in 𝑋 over a plane cubic, with ver-
tex an Eckardt point of 𝑋. Letting 𝐻 = 𝒪ℙ9(1)|𝐹(𝑌) ≅ 𝐾𝐹(𝑌) ∈ Pic𝐹(𝑌) be
the Plücker polarisation, one proves that each such elliptic curve 𝐸 has degree
𝐻.𝐸 = 3. Now, loc. cit. constructs 30 distinct elliptic curves 𝐸𝑖 in 𝐹(𝑌), each
isomorphic to the Fermat plane cubic and their configuration is described in
[Rou09, p.395]. As every line through an Eckardt point is of second type (see
the beginning of Section 5), we obtain 𝐸𝑖 ⊂ 𝐹2(𝑌) for all 𝑖 = 1,… , 30. More-
over, as 𝐻.[𝐹2(𝑌)] = 𝐾𝐹(𝑌).(2𝐾𝐹(𝑌)) = 90, it must be that 𝐹2(𝑌) =

∑𝐸𝑖 and so
𝑊 is the union of these 30 cones over plane Fermat cubics, each of which is a
hyperplane section of 𝑌, giving 𝒪𝑌(𝑊) ≅ 𝒪𝑌(30). Finally,

[𝒪𝑌(1)]2𝑝∗𝑞∗[𝐹2(𝑌)] = (𝑞∗𝑝∗[𝒪𝑌(1)]2).[𝐹2(𝑌)]
= 𝐻.[𝐹2(𝑌)]
= 90,

which forces the restriction of 𝑝 to any irreducible component 𝑞−1(𝐸𝑖) of the
universal second type family to be birational onto its image. □

Consider now,𝑋 = 𝑉(∑5
𝑖=0 𝑥

3
𝑖 ) ⊂ ℙ5 the Fermat cubic fourfold. For {𝑖, 𝑗, 𝑘} ⊂

{0,… , 5}, consider the hypersurfaces
𝑉𝑖,𝑗,𝑘 = 𝑉(𝑥3𝑖 + 𝑥3𝑗 + 𝑥3𝑘) ⊂ 𝑋
𝑉𝑖,𝑗 = 𝑉(𝑥3𝑖 + 𝑥3𝑗 ) ⊂ 𝑋.

If {𝑖, 𝑗, 𝑘, 𝑖′, 𝑗′, 𝑘′} = {0,… , 5} then 𝑉𝑖,𝑗,𝑘 = 𝑉𝑖′,𝑗′,𝑘′ , so in this way we obtain 10
distinct hypersurfaces 𝑉𝑖,𝑗,𝑘 in 𝑋. Denote by

𝐶𝑖,𝑗,𝑘 = 𝑉𝑖,𝑗,𝑘 ∩ 𝑉(𝑥𝑖′ , 𝑥𝑗′ , 𝑥𝑘′)
𝐶′𝑖,𝑗,𝑘 = 𝑉𝑖′,𝑗′,𝑘′ ∩ 𝑉(𝑥𝑖, 𝑥𝑗, 𝑥𝑘).

(2)

Then,
𝑉𝑖,𝑗,𝑘 = Join(𝐶𝑖,𝑗,𝑘, 𝐶′𝑖,𝑗,𝑘),
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the join variety of 𝐶𝑖,𝑗,𝑘, 𝐶′𝑖,𝑗,𝑘.
For the 𝑉𝑖,𝑗, note that there are 15 distinct hypersurfaces 𝑉𝑖,𝑗 in 𝑋. Suppose

that 0 ⩽ 𝑖′ < 𝑖′′ < 𝑗′ < 𝑗′′ ⩽ 5, with {𝑖′, 𝑖′′, 𝑗′, 𝑗′′, 𝑖, 𝑗} = {0,… , 5} and let
𝐺𝑖,𝑗 = 𝑉(𝑥3𝑖′ + 𝑥3𝑖′′ + 𝑥3𝑗′ + 𝑥3𝑗′′ , 𝑥𝑖, 𝑥𝑗) (3)

a Fermat cubic surface. We have 𝑉(𝑥3𝑖 + 𝑥3𝑗 , 𝑥𝑖′ , 𝑥𝑖′′ , 𝑥𝑗′ , 𝑥𝑗′′) = {𝑝(1)𝑖,𝑗 , 𝑝
(2)
𝑖,𝑗 , 𝑝

(3)
𝑖,𝑗 }

corresponding to the three cube roots of −1. Then

𝑉𝑖,𝑗 = Join(𝐺𝑖,𝑗, {𝑝
(1)
𝑖,𝑗 , 𝑝

(2)
𝑖,𝑗 , 𝑝

(3)
𝑖,𝑗 })

the join variety of 𝐺𝑖,𝑗 with the set of points {𝑝
(1)
𝑖,𝑗 , 𝑝

(2)
𝑖,𝑗 , 𝑝

(3)
𝑖,𝑗 }.

Remark 3.2. Actually, the 45 points 𝑝(𝜇)𝑖,𝑗 are all the Eckardt points of the Fer-
mat cubic fourfold. They are Eckardt since there is a 2-dimensional family of
lines in𝑋 through them, namely the lines joining the point 𝑝(𝜇)𝑖,𝑗 with the points
of the surface 𝐺𝑖,𝑗. Finally, the maximal number of Eckardt points for a cubic
fourfold is given as 45 by [CCS97, 3.12].

3.1. The second type locus for the Fermat cubic fourfold. Recall first the
following Lemma.

Lemma 3.3. ([CG72, Definition 6.6]) A line 𝓁 ⊂ 𝑋 = 𝑉(𝑓) in a smooth cubic
fourfold is of second type if and only if the Gauss map Φ ∶ 𝑋 → (ℙ5)∨, Φ(𝑥) =
∇(𝑓)(𝑥) restricted to 𝓁 is a two-to-one covering of ℙ1. In other words, for every
point 𝑥 ∈ 𝓁, there is an antipodal point 𝑥′ ∈ 𝓁 at which Φ(𝑥) = Φ(𝑥′).

In the case of the Fermat 𝑋 ⊂ ℙ5, ∇(𝑓) = ⟨𝑥20 ,… , 𝑥
2
5⟩ which we denote by

∇𝑋. The locus𝑊 ⊂ 𝑋 spanned by second type lines is divisorial from Proposi-
tion 2.1 for any smooth cubic.
Let 𝐹 ⊂ G(2, 6) be the Fano scheme of lines of the Fermat cubic and 𝑆 ⊂ 𝐹

the second type locus. We denote by 𝑆𝑖,𝑗,𝑘 ⊂ 𝐹 the locus of ruling lines of the
variety Join(𝐶𝑖,𝑗,𝑘, 𝐶′𝑖,𝑗,𝑘) and by 𝑆

(𝜇)
𝑖,𝑗 ⊂ 𝐹 the locus of ruling lines of the variety

Join(𝐺𝑖,𝑗, {𝑝
(𝜇)
𝑖,𝑗 }), 𝜇 = 1, 2, 3. Note that 𝑆(𝜇)𝑖,𝑗 is isomorphic to 𝐺𝑖,𝑗 of Equation (3),

i.e., to the Fermat cubic surface. On the other hand, each 𝑆𝑖,𝑗,𝑘 is isomorphic to
𝐶𝑖,𝑗,𝑘 × 𝐶′𝑖,𝑗,𝑘 for two Fermat cubic curves, since these two curves are disjoint.

Lemma 3.4. We have that 𝑉𝑖,𝑗,𝑘, 𝑉𝑖,𝑗 ⊂ 𝑊 and 𝑆(𝜇)𝑖,𝑗 , 𝑆𝑖,𝑗,𝑘 ⊂ 𝑆 for all {𝑖, 𝑗, 𝑘} ⊂
{0,… , 5} and 𝜇 ∈ {1, 2, 3}.

Proof. For 𝑉𝑖,𝑗,𝑘, by symmetry we may assume without loss of generality that
𝑖 = 0, 𝑗 = 1, 𝑘 = 2. Consider a general point

𝑝 = [𝑎0 ∶⋯ ∶ 𝑎5] ∈ 𝑉0,1,2 = 𝑉(𝑥30 + 𝑥31 + 𝑥32 , 𝑥
3
3 + 𝑥34 + 𝑥35) ⊂ ℙ5,

in the sense that it satisfies 𝑎30 + 𝑎31 + 𝑎32 = 𝑎33 + 𝑎34 + 𝑎35 = 0 so that not
all 𝑎𝑖 for 𝑖 ∈ {0, 1, 2} are zero nor 𝑎𝑖 = 0 for all 𝑖 ∈ {3, 4, 5}. To prove that
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𝑝 ∈ 𝑊, we need to find a second type line 𝓁𝑝 containing 𝑝. For this, take
𝑝′ = [−𝑎0 ∶ −𝑎1 ∶ −𝑎2 ∶ 𝑎3 ∶ 𝑎4 ∶ 𝑎5] (necessarily ≠ 𝑝) and let 𝓁𝑝 be given
parametrically by

[(𝜆 − 𝑡)𝑎0 ∶ (𝜆 − 𝑡)𝑎1 ∶ (𝜆 − 𝑡)𝑎2 ∶ (𝜆 + 𝑡)𝑎3 ∶ (𝜆 + 𝑡)𝑎4 ∶ (𝜆 + 𝑡)𝑎5] ⊂ 𝑉𝑖,𝑗,𝑘,

i.e., the line 𝜆𝑝+ 𝑡𝑝′. Indeed 𝓁𝑝 is a line of second type as the antipodal (under
the Gauss map) to the point 𝜆𝑝+ 𝑡𝑝′ is 𝑡𝑝+ 𝜆𝑝′, i.e., they have the same image
under Φ. The two ramification points of the Gauss map restricted to 𝓁𝑝 are
[𝑎0 ∶ 𝑎1 ∶ 𝑎2 ∶ 0 ∶ 0 ∶ 0] and [0 ∶ 0 ∶ 0 ∶ 𝑎3 ∶ 𝑎4 ∶ 𝑎5].
For 𝑉𝑖,𝑗, again by symmetry we may consider only the case 𝑖 = 0, 𝑗 = 1.

Consider a general point

𝑝 = [𝑎 ∶ 𝜔𝑎 ∶ 𝑎2 ∶⋯ ∶ 𝑎5] ∈ 𝑉0,1 = 𝑉(𝑥30 + 𝑥31 , 𝑥
3
2 + … + 𝑥35)

for 𝜔 a cube root of −1 satisfying that neither 𝑎 = 0 nor 𝑎2 = … = 𝑎5 = 0. To
find a second type line 𝓁𝑝 through 𝑝, we take 𝑝′ = [−𝑎 ∶ −𝜔𝑎 ∶ 𝑎2 ∶ … ∶ 𝑎5]
and define 𝓁𝑝 parametrically by 𝜆𝑝 + 𝑡𝑝′. One checks that 𝓁𝑝 ⊂ 𝑉0,1 and that
the antipodal point of 𝜆𝑝 + 𝑡𝑝′ is 𝑡𝑝 + 𝜆𝑝′ and that the ramification points of
the Gauss map are [0 ∶ 0 ∶ 𝑎2 ∶ … ∶ 𝑎5] and [𝑎 ∶ 𝜔𝑎 ∶ 0 ∶ … ∶ 0]. In this case,
we end up with three irreducible components as 𝑉0,1 is reducible. □

Proposition 3.5. We have

𝑊 = ∪𝑖,𝑗,𝑘𝑉𝑖,𝑗,𝑘
⋃

∪𝑖,𝑗𝑉𝑖,𝑗,

𝑆 = ∪𝑖,𝑗,𝑘𝑆𝑖,𝑗,𝑘
⋃

∪𝑖,𝑗,𝜇𝑆
(𝜇)
𝑖,𝑗 .

Moreover, the morphism 𝑝𝑞−1(𝑆) ∶ 𝑞−1(𝑆) → 𝑊 is generically of degree one when
restricted to any one of the 55 = 3 ⋅ 15 + 10 irreducible components of 𝑆 as above.

Proof. By definition, 𝑊 = 𝑝(𝑞−1(𝑆)) and one computes (𝑝∗𝑞∗[𝑆]).𝐻3
𝑋 = 225

from [GK24, Lemma 2.6], so that𝒪𝑋(𝑊) = 𝒪𝑋(75). At this point, it is not clear
that the degree of 𝑝 ∶ 𝑞−1(𝑆) → 𝑊 is generically one. On the other hand,
we have constructed 10 + 15 = 25 divisors 𝑉𝑖,𝑗, 𝑉𝑖,𝑗,𝑘 above, all of which are
contained in𝑊. As their total degree is 3 ⋅ 3 ⋅ 25 = 225, this forces their union
to be 𝑊. Since 𝑆 is pure 2-dimensional and the universal family over every
irreducible component of it maps generically finitely to𝑋 (see [Huy23, Lemma
2.2.12]), the above also concludes that

𝑆 = ∪𝑖,𝑗,𝜇𝑆
(𝜇)
𝑖,𝑗

⋃
∪𝑖,𝑗,𝑘𝑆𝑖,𝑗,𝑘.

The degree of the map 𝑝 on any irreducible component of 𝑞−1(𝑆)must also be
generically one by degree considerations. □

3.2. The Voisinmap for the Fermat cubic fourfold. In this section, we de-
note by 𝐹 ∶= ℱ̃𝑋 for 𝑋 the Fermat cubic (see Section 2), which is irreducible
and birational to 𝐹 from Lemma 2.2. Note that as 𝑆 is singular (non-normal
even), 𝐹 is not isomorphic to the blowup of 𝐹 at 𝑆, but is rather defined in
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terms of tangent 2-planes. We recall also that for 𝑌 ⊂ 𝐹 a subvariety, we de-
note by 𝐸𝑌 ⊆ ℱ̃ its inverse image in ℱ̃, so that for example for 𝑆(𝜇)𝑖,𝑗 , 𝑆𝑖,𝑗,𝑘 the
irreducible components of 𝑆 for the Fermat, defined in the previous section,
denote by 𝐸𝑆(𝜇)𝑖,𝑗

, 𝐸𝑆𝑖,𝑗,𝑘 ⊂ 𝐸 ∶= 𝐸𝑆 their inverse images in ℱ̃.

𝑞
𝑅𝑝
𝑝

𝓁
𝓁′

𝐺𝑖,𝑗

𝑝0

Figure 1

Lemma 3.6. The morphism 𝜙 contracts the threefold 𝐸𝑆(𝜇)𝑖,𝑗
onto the surface 𝑆(𝜇)𝑖,𝑗

in 𝐹.
Proof. We refer to Figure 1. Let [𝓁] ∈ 𝑆(𝜇)𝑖,𝑗 be a general point with 𝓁 = 𝑝0𝑝,
𝑝0 = 𝑝(𝜇)𝑖,𝑗 , 𝑝 ∈ 𝐺𝑖,𝑗. Then 𝑅𝑝 = 𝑇𝑝𝑋 ∩ 𝐺𝑖,𝑗 is a cubic curve with a nodal
singularity at 𝑝. As Join(𝑝0, 𝐺𝑖,𝑗) ⊂ 𝑇𝑝0𝑋 and 𝓁 ⊂ 𝑇𝑝𝑋, we obtain

Join(𝑝0, 𝑅𝑝) ⊂ 𝑇𝑝𝑋 ∩ 𝑇𝑝0𝑋 = 𝐻 ≅ ℙ3.
Then 𝑅𝑝 parametrises 2-planes in𝐻 which contain 𝓁. Indeed, each such plane
Π intersects 𝑅𝑝 at a unique point 𝑞 (other that 𝑝) and then 𝜙(𝓁,Π) = 𝑝0𝑞.
Therefore

𝜙(𝐸𝑆(𝜇)𝑖,𝑗
) ⊂ 𝑆(𝜇)𝑖,𝑗 .

In fact, it is easy to see that equality holds, since the smooth points of the curves
𝑅𝑝 for 𝑝 ∈ 𝐺𝑖,𝑗 cover the whole 𝐺𝑖,𝑗. □

Wenow discuss the restriction of themap 𝜙 to 𝑆𝑖,𝑗,𝑘, where we refer to Figure
2. Without loss of generality, we may assume that 𝑖 = 0, 𝑗 = 1, 𝑘 = 2. Let

Π1 = 𝑉(𝑥3, 𝑥4, 𝑥5) ≅ ℙ2(𝑥0,𝑥1,𝑥2)
Π2 = 𝑉(𝑥0, 𝑥1, 𝑥2) ≅ ℙ2(𝑥3,𝑥4,𝑥5).

A 𝑝 ∈ ℙ5∖Π1 ∪ Π2 can be written as 𝑝 = [𝑥 ∶ 𝑦] with [𝑥] ∈ Π1 and [𝑦] ∈ Π2.
Geometrically, this means that 𝑝 is in the unique line joining [𝑥] ∈ Π1 with
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𝑝′

𝑝

𝑇𝑝𝐶1
𝐶1

Π1

Π2

𝓁′𝐴
𝐵

𝐴

𝓁

𝓁 𝑞

𝑞′
𝑇𝑞𝐶2 𝐶2

Figure 2

[𝑦] ∈ Π2 and also that the ruling lines of Join(Π1,Π2) do not intersect at points
outside Π1,Π2. To simplify notation, let

𝐶1 = 𝐶0,1,2 = 𝑋 ∩ Π1 = 𝑉(𝑥30 + 𝑥31 + 𝑥32) ⊂ Π1

𝐶2 = 𝐶3,4,5 = 𝑋 ∩ Π2 = 𝑉(𝑥33 + 𝑥34 + 𝑥35) ⊂ Π2.
(4)

Note that 𝑝 = [𝑥 ∶ 𝑦] ∈ Join(𝐶1, 𝐶2) (outside 𝐶1 and 𝐶2) if and only if [𝑥] ∈ 𝐶1
and [𝑦] ∈ 𝐶2.
Let 𝑝 = [𝑥0 ∶ 𝑥1 ∶ 𝑥2] ∈ 𝐶1. We have

∇𝑝𝑋 = 3⟨𝑥20 , 𝑥
2
1 , 𝑥

2
2 , 0, 0, 0⟩

∇𝑝𝐶1 = 3⟨𝑥20 , 𝑥
2
1 , 𝑥

2
2⟩

giving 𝑇𝑝𝑋|Π1 = 𝑇𝑝𝐶1. Similarly, for 𝑞 ∈ 𝐶2 we have 𝑇𝑞𝑋|Π2 = 𝑇𝑞𝐶2.
Let now 𝓁 = 𝑝𝑞, with 𝑝, 𝑞 general points of 𝐶1, resp. 𝐶2, a ruling line of

Join(𝐶1, 𝐶2) as in Figure 2. The tangent line 𝑇𝑝𝐶1 intersects 𝐶1 at an additional
point 𝑝′ and, similarly 𝑇𝑞𝐶2 intersects 𝐶2 at an additional point 𝑞′. Since 𝑝, 𝑞
are general, 𝑝′ ≠ 𝑝 and 𝑞′ ≠ 𝑞. We call the line 𝓁 = 𝑝′𝑞′ the adjoint line
to 𝓁. We now have that 𝓁, 𝑝𝑞′, 𝑇𝑝𝐶1 ⊂ 𝑇𝑝𝑋 and 𝓁, 𝑞𝑝′, 𝑇𝑞𝐶2 ⊂ 𝑇𝑞𝑋. Then
𝑝, 𝑞, 𝑝′, 𝑞′ ∈ 𝑇𝑝𝑋 ∩ 𝑇𝑞𝑋 = 𝐻 and since 𝓁,𝓁 are skew lines we have that 𝐻 ≅
ℙ3 is spanned by the above points (note that 𝑇𝑝𝑋 ≠ 𝑇𝑞𝑋 because the vectors
∇𝑝𝑋,∇𝑞𝑋 at these two points are different). Then the points of the adjoint line
𝓁 parametrise 2-planes in𝐻 which contain 𝓁. For any 𝐴 ∈ 𝓁, we denote byΠ𝐴
the plane spanned by (𝑝, 𝑞, 𝐴) and we have

𝜙(𝓁,Π𝐴) = 𝓁′𝐴, (5)
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with 𝓁′𝐴 a line in 𝑋 which passes through 𝐴 and intersects 𝓁 at a point 𝐵.
Remark 3.7. The point

𝑝(𝜇)𝑖,𝑗 ∈ 𝐶𝑖,𝑗,𝑘
is a flex point and a ruling line 𝓁 of Join(𝐶1, 𝐶2) which passes through it is
necessarily contained in 𝑆(𝜇)𝑖,𝑗 . Its image under 𝜙 is given as in Lemma 3.6.

Lemma 3.8. For 0 ⩽ 𝑖, 𝑗, 𝑖′, 𝑗′, 𝑘′ ⩽ 5 distinct and 1 ⩽ 𝜇 ⩽ 3 we have
𝜙(𝐸𝑆(𝜇)𝑖,𝑗

) ⊂ 𝜙(𝐸𝑆𝑖′ ,𝑗′ ,𝑘′ ).

Proof. Without loss of generality, we assume that (𝑖′, 𝑗′, 𝑘′) = (0, 1, 2) and that
(𝑖, 𝑗) = (4, 5), 𝜇 = 1. Then 𝑝0 ∶= 𝑝(1)4,5 = [0 ∶ ⋯ ∶ 0 ∶ 1 ∶ −1]. We will show
that

𝜙(𝐸𝑆(0)4,5) ⊂ 𝜙(𝐸𝑆0,1,2).
Let 𝐺 = 𝐺4,5 and 𝐶1 = 𝐶0,1,2 = Π1 ∩ 𝐺. As we have seen in Lemma 3.6,

𝜙(𝐸𝑆(0)4,5) ⊂ 𝑆(0)4,5

so it remains to show that 𝑆(0)4,5 ⊂ 𝜙(𝐸𝑆0,1,2). For [𝓁
′ = 𝑝0𝑞] ∈ 𝑆(0)4,5 we have

𝑞 = [𝑏0 ∶ ⋯ ∶ 𝑏3 ∶ 0 ∶ 0] ∈ 𝐺, and let 𝑞′ = [𝑏0 ∶ 𝑏1 ∶ 𝑏2 ∶ 0 ∶ 0 ∶ 0] ∈ Π1
be the point of intersection of 𝓁′ with Π1. Let 𝑝 ∈ 𝐶1 with 𝑞′𝑝 = 𝑇𝑝𝐶1 ⊂ Π1.
Note that if 𝑞 = [𝑥 ∶ 𝑦] ∈ 𝐺 with [𝑥] ∈ 𝑇𝑝𝐶1 then 𝑞 ∈ 𝐺 ∩ 𝑇𝑝𝑋 = 𝑅𝑝:
indeed, if 𝑝 = [𝑎0 ∶ 𝑎1 ∶ 𝑎2 ∶ 0 ∶ 0 ∶ 0] then ∇𝑝𝑋 = 3⟨𝑎20, 𝑎

2
1, 𝑎

2
2, 0, 0, 0⟩

and therefore a point 𝑞 = [𝑏0 ∶ ⋯ ∶ 𝑏3 ∶ 0 ∶ 0] ∈ 𝐺 lies in 𝑅𝑝 if and only if
𝑎20𝑏0 + 𝑎21𝑏1 + 𝑎22𝑏2 = 0, i.e., the point [𝑏0 ∶ 𝑏1 ∶ 𝑏2 ∶ 0 ∶ 0 ∶ 0] lies in 𝑇𝑝𝐶1,
therefore 𝑞′ ∈ 𝑇𝑝𝐶1. Note here that 𝐶1 is contained in the Hessian of 𝐺 ⊂ ℙ3
(given by 𝑥0𝑥1𝑥2𝑥3 = 0) and so 𝑅𝑝 has a cuspidal singularity at 𝑝. By what we
have described in Remark 3.7, if 𝓁 = 𝑝0𝑝 then 𝜙(𝓁,Π𝑞) = 𝓁′ withΠ𝑞 = ⟨𝑝0𝑝𝑞⟩,
which proves the claim. Finally, note that [𝓁] ∈ 𝑆0,1,2 ∩ 𝑆

(0)
4,5. □

Lemma 3.9. The morphism 𝜙 is generically one-to-one when restricted to 𝐸𝑆𝑖,𝑗,𝑘 .
Moreover, the images𝜙(𝐸𝑆𝑖,𝑗,𝑘 ) are all different from one another for different 𝑆𝑖,𝑗,𝑘.

Proof. Given a general 𝓁′ ∶= 𝓁′𝐴 as in Equation (5) (see also Figure 2), we first
observe that in case𝓁′ is not one of the lines which pass through𝑝, 𝑝′, 𝑞, 𝑞′ then
the only lines in 𝑆𝑖,𝑗,𝑘 which intersect𝓁′ are the lines𝓁 and its adjoint𝓁: Indeed,
if [𝑥 ∶ 𝑦] ∈ 𝓁′ then [𝑥] ∈ 𝑇𝑝𝐶1 and [𝑦] ∈ 𝑇𝑞𝐶2, so since 𝑇𝑝𝐶1 intersects 𝐶1
only at the points 𝑝, 𝑝′ and 𝑇𝑞𝐶2 intersects 𝐶2 only at the points 𝑞, 𝑞′, the only
other possible candidate line with image 𝓁′ under the map 𝜙 is the line 𝓁, in
which case 𝑇𝑝𝐶1 would also be tangent to 𝐶1 at 𝑝′, a contradiction since 𝐶1 is
a cubic curve.
For the second claim, without loss of generality we show that 𝜙(𝐸𝑆0,1,2) ≠

𝜙(𝐸𝑆0,2,3). We have seen in Lemma 3.8 that 𝑆
(0)
4,5 ⊂ 𝜙(𝐸𝑆0,1,2). For a general [𝓁

′] ∈
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𝑆(0)4,5 we will show that [𝓁′] ∉ 𝜙(𝐸𝑆0,2,3). Indeed, 𝓁
′ = [𝑠,−𝑠, 𝑡𝑎2,⋯ , 𝑡𝑎5], with

𝑎32 + … + 𝑎35 = 0. Then 𝓁′ intersects 𝑉0,2,3 at the points [𝑠, 𝑡] satisfying the
system 𝑠3 + (𝑡𝑎2)3 + (𝑡𝑎3)3 = 0 and (−𝑠)3 + (𝑡𝑎4)3 + (𝑡𝑎5)3 = 0. By the above
relation, these two equations are equivalent and hence the intersection points
correspond to [𝑠, 𝑡] with (𝑠∕𝑡)3 = 𝑎34 + 𝑎35. This has, generically, three distinct
solutions. But, from what we have seen for the first claim above, in order for
[𝓁′] to be in 𝜙(𝐸𝑆0,1,2) it has to intersect 𝑉0,2,3 at two points only, or infinitely
many. Hence, the general such [𝓁′] ∉ 𝜙(𝐸𝑆0,2,3), which proves the claim. □

In other words, the 𝐸𝑆𝑖,𝑗,𝑘 map generically one-to-one onto their images in 𝐹,
whereas the 𝐸𝑆(𝜇)𝑖,𝑗

are contracted onto 𝑆(𝜇)𝑖,𝑗 ⊂ 𝜙(𝐸𝑆𝑖,𝑗,𝑘 ). Hence, overall, we have
a union of divisors

𝜙(𝐸𝑆) =
⋃

𝑖,𝑗,𝑘
𝜙(𝐸𝑆𝑖,𝑗,𝑘 ).

Proposition 3.10. Let 𝑝 ∈ 𝑋 be a general point on the Fermat cubic fourfold.
Then, out of the 1-dimensional family of lines through 𝑝, there are precisely 360
distinct lines with the property that each of them is residual to some line of second
type under the Voisin map.

Proof. Let 𝑝 = [𝑥 ∶ 𝑦] for [𝑥] ∈ Π1 and [𝑦] ∈ Π2 (with notation as in Equa-
tion (4)). Then to each pair of a tangent line from [𝑥] to 𝐶1 (there are 6 such
choices) and a tangent line from [𝑦] to 𝐶2 (also 6 choices) we have that [𝑥 ∶ 𝑦]
is contained in a line of 𝜙(𝐸𝑆0,1,2), giving 36 such choices of lines overall. Since
we have 10 components 𝜙(𝐸𝑆𝑖,𝑗,𝑘 ) the total number of lines in 𝜙(𝐸𝑆) which pass
through 𝑝 are 360, noting that since 𝑆(𝜇)𝑖,𝑗 is 2-dimensional, the span of such
lines in 𝑋 is 3-dimensional so there are no lines in these loci passing through a
general point 𝑝. □
In the following,𝐻 ∈ Pic𝐹 will denote the Plücker polarisation as usual.

Corollary 3.11. For 𝜙 ∶ 𝐹 = ℱ̃𝑋 → 𝐹 and 𝐸𝑆 ⊂ 𝐹 on the Fermat 𝑋, we have
that [𝜙(𝐸𝑆)] = 60𝐻 in Pic𝐹.
Proof. Proposition 3.10 implies that for 𝑥 ∈ 𝑋 a general point and𝐶𝑥 = 𝑝−1(𝑥)
the curve of lines through 𝑥, we have [𝐶𝑥].[𝑞−1(𝜙(𝐸𝑆))] = 360. Since 𝜙∗[𝐸𝑆] =
60𝐻 ∈ Pic𝐹 from [Huy23, Remark 6.4.19] and [𝐶𝑥].𝑞∗[60𝐻] = 360 too from
[GK24, Lemma 2.6]. Note this also gives that the degree of themorphism 𝜙|𝐸𝑆 ∶
𝐸𝑆 → 𝜙(𝐸𝑆) is one on the components 𝐸𝑆𝑖,𝑗,𝑘 which do not get contracted. □

To end this section, we address a question raised in [Huy23, Remark 6.4.19].

Proposition 3.12. Let 𝑋 ⊂ ℙ5 be a general cubic fourfold. The Voisin map
𝜙 ∶ ℱ̃𝑋 → 𝐹 is generically one-to-one when restricted to 𝐸𝑆 ⊂ ℱ̃𝑋 .

In plain words, a general line which is residual to a second type line is resid-
ual to exactly one second type line.
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Proof. Let ℰ𝒮 be the inverse image in ℱ̃ (recall its definition in (1)) of the uni-
versal second type locus 𝒮. Denote by 𝒟 = 𝜙(ℰ𝒮) ⊂ ℱ its scheme-theoretic
image under the Voisinmap, which comes with amorphism to 𝐵 = |𝒪ℙ5(3)|sm.
There is an open 𝑈 ⊆ 𝐵, so that for 𝑡 ∈ 𝑈,𝒟𝑡 is a divisor in ℱ𝑡, and is reduced
as𝒟 is so, and irreducible from Proposition 2.1.(4). Over points in𝑈,𝒟𝑡 agrees
with 𝜙(𝐸𝑆𝑡 ). From the principle of conservation of numbers [Ful98, Proposi-
tion 10.2], since from Corollary 3.11 we know that [𝐶𝑥].𝑞∗[𝜙(𝐸𝑆)] = 360 on the
general point 𝑥 of the Fermat, the same must be true of [𝐶𝑥,𝑡].𝑞∗[𝒟𝑡] for every
point 𝑡 ∈ 𝐵. As for 𝑡 general the class of 𝜙(𝐸𝑆𝑡 ) in Pic𝐹𝑡 is 60𝐻 (see Corollary
3.11) and [𝐶𝑥].𝑞∗(60𝐻) = 360, we obtain that for 𝑡 ∈ 𝑈, [𝜙(𝐸𝑆𝑡 )] = 𝜙∗[𝐸𝑆𝑡 ]
which implies that the degree of 𝜙 restricted to 𝐸𝑆𝑡 is one as required. □

Remark 3.13. (1) As 𝐾𝐹 = 0 we obtain that for a general cubic fourfold,
𝐾𝐹 = 𝐸𝑆. In particular the morphism 𝜙 ∶ 𝐹 → 𝐹 is ramified along
𝐸𝑆. The above, along with the Riemann–Hurwitz formula, shows that
above a general branch point of 𝐹, there is precisely one ramification
point of simple ramification. In fact a very recent preprint [GG24] uses
this and techniques similar to those in Section 5 to conclude that the
Voisin map has full monodromy group 𝑆16.

(2) Presumably the [𝐶𝑥].[𝑞−1(𝜙(𝐸𝑆))] = 360 points of 𝐶𝑥 for 𝑥 ∈ 𝑋 general
are related to the 360 intersection points of the 120 tritangent 2-planes
a space (2, 3)-curve has.

4. Some properties of the second type locus
In previous work of ours ([GK24, Remark 3.8]), we sketched how to ob-

tain the following result using the correspondence betweenhyperplane sections
with two nodes and (2, 3)-complete intersections (cf. [CG72, Lemma 6.5]). At
the time, we had given a proof in the case of cubic fourfolds but as this is an im-
portant property of the second type locus and we will be using it for threefolds
too, we include its proof for any 𝑛 ⩾ 3 here.

Theorem 4.1. Let 𝑛 ⩾ 3 and let 𝑋 ⊂ ℙ𝑛+1 be a general cubic 𝑛-fold, 𝐹 its
Fano scheme of lines and 𝐹2 ⊂ 𝐹 ⊂ G(2, 𝑛 + 2) the locus of lines of second type.
Consider the induced morphism from the family of lines

𝕃2
𝑝
//

𝑞
��

𝑊 ⊂ 𝑋.

𝐹2

Then 𝑝 is birational onto its image𝑊.

In other words, on a general cubic, a general point through which passes a
second type line has exactly one second type line through it.
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Proof. First one notes that there is a bijection between pairs (𝑌, 𝑥) where 𝑌 ⊂
ℙ𝑛 is a cubic (𝑛−1)-fold with two𝐴1 singularities, one of which is 𝑥, and (2, 3)-
complete intersections in ℙ𝑛−1 with one 𝐴1 singularity and no other singular
points (see [GK24, Remark 3.8]).
Starting from such a (2, 3)-complete intersection in ℙ𝑛−1

𝐶0 ∩ 𝑄0 = 𝑉(𝑓2) ∩ 𝑉(𝑓3)
and taking its corresponding (𝑌0, 𝑝0) in ℙ𝑛, with equation

𝑓 = 𝑓2 ⋅ 𝑥𝑛 + 𝑓3, 𝑝0 = [0 ∶⋯ ∶ 0 ∶ 1],
one constructs a smooth cubic 𝑛-fold𝑋0 ⊂ ℙ𝑛+1 (cf. the proof of [GK24, Propo-
sition 3.5]) with equation

𝑔 = 𝑓 + 𝑥2𝑛𝑥𝑛+1
containing the point 𝑥0 = [0 ∶⋯ ∶ 0 ∶ 1 ∶ 0]whose tangent hyperplanemeets
𝑋0 at the pair (𝑌0, 𝑝0). The span of lines through 𝑥0 is a cone over 𝐶0 ∩ 𝑄0. As
for any smooth cubic 𝑋 the singular locus of 𝑝 ∶ 𝕃 → 𝑋 is precisely 𝕃2 (see
Proposition 2.1), the above constructs one point in 𝑋0 with a second type line
through it corresponding to the unique singularity of 𝑝−1(𝑥0) = 𝐶0 ∩ 𝑄0. As
having a unique𝐴1 singularity is an open condition, this must hold generically
for (the necessarily singular) fibres over points of 𝑝(𝕃2) = 𝑊0 ⊂ 𝑋0. This
implies that for 𝑋0, the map 𝕃2 →𝑊0 is birational.
To conclude for the general cubic 𝑛-fold, we argue as follows. Consider the

universal smooth family 𝒳 → |𝒪ℙ𝑛+1(3)|sm and the universal locus 𝒲 ∶=
𝑝(𝑞−1(ℱ2)) over |𝒪ℙ𝑛+1(3)|sm, whereℱ2 is the universal second type locus, known
to be irreducible from [Huy23, Proof of Proposition 2.2.13]. From Proposi-
tion 2.1, as the locus of second type lines 𝐹2,𝑡 of any smooth cubic 𝒳𝑡 is pure
(𝑛 − 2)-dimensional, we obtain that the ℙ1-bundle 𝑞−1(𝐹2,𝑡) is pure (𝑛 − 1)-
dimensional, and the same proposition gives that𝒲𝑡 is a divisor in 𝒳𝑡 for any
𝑡 ∈ |𝒪ℙ𝑛+1(3)|sm. Hence, the morphism 𝑞−1(𝐹2,𝑡) → 𝒲𝑡 is generically finite.
If 𝑡 is general then 𝐹2,𝑡,𝒲𝑡 are irreducible and reduced. As over some points,
namely the generic point of𝑊0 in the special cubic 𝑋0 above we know that the
fibre in 𝕃 has a single 𝐴1 singularity, we obtain the same for the generic cubic.
In particular, the morphism 𝑝 ∶ 𝑞−1(𝐹2,𝑡) →𝒲𝑡 is birational for a general 𝑡 as
required. □

Remark 4.2. In [GK19, Fact 3.2.(2)] we erroneously stated that in the case
of a cubic threefold 𝑋 ⊂ ℙ4, [CG72, 10.18] claims that 𝕃 → 𝑋 has one single
ramification point of ramification index two over a generic point of the branch
locus. What they do claim (and prove) is that for a generic point 𝑥 ∈ 𝑋 through
which there passes a line of second type, this line will count with multiplicity
two as one of the six lines through 𝑥. In particular, there could, a priori, still
be multiple ramification points, i.e., other second types lines through 𝑥. The
above proposition indeed confirms the stronger claim. Either way, this does not
affect any results in [GK19] as in the proof we only required what the weaker
statement about multiplicities pertains to.
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One can derive another proof of Theorem 4.1 for a general cubic threefold or
fourfold by degenerating to the Fermat (instead of 𝑋0 used in the above proof)
and using Propositions 3.1, 3.5 respectively. In these cases the class of𝑊 in the
Picard group of the cubic is 𝒪(30) and 𝒪(75) respectively.
We now extend the proof of Theorem 4.1 to obtain the following refinement

which will be used in the next section.

Lemma 4.3. Let 𝑋 ⊂ ℙ4 be a general cubic 3-fold and 𝓁 ∈ 𝐹2 a general second
type line. Then there is a point on 𝓁 through which there pass precisely one further
second type line and two more of first type.

Proof. The same correspondence as in the proof of Theorem 4.1 can be ex-
tended to

(1) (𝑌, 𝑥) where 𝑌 ⊂ ℙ𝑛 is a cubic (𝑛 − 1)-fold with three non-collinear
ordinary double points, one of which is 𝑥,

(2) (2, 3)-complete intersections in ℙ𝑛−1 with two ordinary double points.
We recall the construction (see also [AV08, Lemma 1.2] for the fourfold case).
The (2, 3)-complete intersection 𝐶 ∩ 𝑄 ⊂ ℙ𝑛−1 can be blown up to obtain a
variety𝑌 → ℙ𝑛−1which has two singularities above the singular points of𝐶∩𝑄.
One now contracts the strict transform𝑄 of𝑄 to obtain𝑌, which is also singular
at the image of 𝑄, the marked point.
The samemethod as we sketched in the proof of Theorem 4.1 gives that start-

ing with a (2, 3)-intersection as above, we obtain a smooth cubic𝑋 ⊂ ℙ𝑛+1 with
a point 𝑥0 whose tangent hyperplane meets 𝑋 at a (𝑌, 𝑥0) as in the correspon-
dence. In particular, the two other singular points of 𝑌 will correspond to two
distinct second type lines through 𝑥0, while every other line through 𝑥0 will be
of first type.
Applying the above in the 𝑛 = 3 case, we obtain a special smooth cubic, call

it 𝑋0 ⊂ ℙ4 which has a second type line 𝓁0 and a point 𝑝0 ∈ 𝓁0 so that there
are precisely four lines in 𝑋0 passing through 𝑝0, two of second type, and two
of first.
Let 𝑋 ⊂ ℙ4 be a smooth cubic threefold. For a line 𝓁 ∈ 𝐹2, consider 𝐶𝓁 ⊂ 𝐹

the locus of lines meeting 𝓁. We have a degree four morphism 𝐶𝓁 → 𝓁 taking
a line 𝓁′ meeting 𝓁 to the point 𝓁 ∩ 𝓁′. Consider the universal family

𝒞

��

𝜋 // 𝕃2 = 𝑞−1(ℱ2)

pr2
yy

ℱ2

where for 𝓁 ∈ ℱ2, the fibre in 𝒞 over 𝓁 is 𝐶𝓁, and 𝜋𝓁 ∶ 𝒞 → ℙ1𝓁 is the one
described above. For any 𝓁, 𝜋𝓁 is ramified at the points of intersection of 𝐶𝓁
with 𝐹2 in 𝐹, in particular at a non-empty locus. Furthermore, there exist
𝑝0 ∈ 𝓁0,𝓁′0 ⊂ 𝑋0 both second type lines constructed in our special 𝑋0 above
where the ramification of 𝜋𝓁0 ∶ 𝐶𝓁0 → 𝓁0 at the point [𝓁′0] ∈ 𝐶𝓁 is simple. This
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ramification type must hold generically over ℱ2, for example since the ramifi-
cation index 𝑒𝓁𝑡 = length

(
(Ω𝜋)[𝓁𝑡]

)
+ 1 is upper semicontinuous (see [Liu02,

Exercise 7.1.6] and the upper semicontinuity of the rank) over the branch locus
of 𝜋, which is a divisor from purity and smoothness of ℱ2. □

5. Monodromy for cubic 3-folds
In this section, let 𝑋 ⊂ ℙ4 be a smooth cubic hypersurface, and denote by

𝐹, 𝐹2,𝕃,𝕃2 as in Section 2. We refer to [CG72] (cf. [Huy23, Remark 5.1.6] for
the following properties. In the threefold case, the morphism 𝑝 ∶ 𝕃 → 𝑋 is
generically finite of degree six, i.e., there are six lines through a general point
of 𝑋. There are more than 6 lines through a point if and only if the point is an
Eckardt point, in which case there are infinitely many lines through that point,
all of second type. A cubic threefold can contain at most 30 Eckardt points (in
fact this is the case for the Fermat, see Proposition 3.1), but the generic one
contains none, so in this case 𝕃 → 𝑋 is finite. For a line 𝓁 ∈ 𝐹, we denote by
𝐶𝓁 ⊂ 𝐹 the locus of lines meeting 𝓁 - more precisely, 𝐶𝓁 is the image in 𝐹 under
𝑞 of the closure of 𝑝−1(𝓁) ⧵ 𝑞−1([𝓁]).
Given a generically finite dominant morphism 𝑓 ∶ 𝑋 → 𝑌 of degree 𝑑 be-

tween irreducible varieties (necessarily of the same dimension), we obtain a
degree 𝑑 extension of function fields 𝑘(𝑋)∕𝑘(𝑌), and taking the Galois closure
𝐾∕𝑘(𝑌) of this extension, we denote by Gal𝑓 = Gal(𝐾∕𝑘(𝑌)). This agrees with
the usual monodromy group (see [Har79, SY21])Mon𝑓, which is defined as the
image in 𝑆𝑑 of the group of deck transformations of the unramified (i.e., topo-
logical) cover 𝑋 ⧵ ram(𝑓) → 𝑈, where 𝑈 = 𝑌 ⧵ branch(𝑓) is the largest dense
open in 𝑌 over which 𝑓 is étale.
Recall the following classical results for 𝑓 ∶ 𝑋 → 𝑌 and 𝑈 as above and

assume furthermore that 𝑋 is locally analytically irreducible (e.g., smooth).

Lemma 5.1. ([Har79, p698]) If there exists a fibre of 𝑓 with a unique point of
ramification index two and all other points unramified, thenMon𝑓 ⊆ 𝑆𝑑 contains
a transposition.

Let 𝑋(𝑠)
𝑈 be the complement of the big diagonal in the fibre product of 𝑋 𝑠-

times with itself over 𝑈. In other words, over a point of 𝑈, 𝑋(𝑠)
𝑈 consists of 𝑠

distinct points in the fibre.

Lemma 5.2. ([SY21, Proposition 2])𝑋(𝑠)
𝑈 is irreducible if and only ifMon𝑓 is an

𝑠-transitive subgroup of 𝑆𝑑.
We note the well-known fact that a subgroup of 𝑆𝑑 which contains a trans-

position and that is 2-transitive must be the whole 𝑆𝑑.
Proposition 5.3. If𝑋 is a general cubic threefold, the Galois group𝐺 of 𝕃→ 𝑋
is 𝑆6.
Proof. Since 𝕃 = ℙ(𝒰|𝐹) is the projectivised universal bundle, it is irreducible
and hence 𝐺 is a transitive subgroup of 𝑆6 from Lemma 5.2. If 𝐺 is 2-transitive
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and contains a transposition, it must be the whole 𝑆6, so we now show each of
these facts.
First, we show that 𝐺 contains a transposition. From Theorem 4.1, a general

second type line 𝓁 ⊂ 𝑋 counts with multiplicity two (out of the six) at a general
point on it, and there are four other distinct type one lines through that point,
i.e., there is a simply ramified fibre of 𝕃 → 𝑋, since from 2.1 the ramification
locus of 𝕃 → 𝑋 is precisely the universal second type locus. Now, Lemma 5.1
implies that 𝐺 contains a transposition.
Finally, we prove that 𝐺 is 2-transitive. Note that over a point [𝓁], the mor-

phism 𝕃 ×𝑋 𝕃 → 𝐹 has fibre 𝐶𝓁 the curve of lines meeting 𝓁. For any 𝑋, the
general𝐶𝓁 is a curve, and is irreducible as the class of𝐶𝓁 is ample. Restricting to
the open𝑈 ⊂ 𝑋 over which 𝕃→ 𝑋 is étale (note this also removes any Eckardt
points, abovewhich the fibre is infinite), we obtain a flatmorphism𝕃(2)𝑈 → 𝐹|𝑈 ,
since it a composition of the finite (hence flat) morphism 𝕃(2)𝑈 → 𝕃𝑈 and the
flat morphism 𝕃|𝑈 → 𝐹|𝑈 . As the base and the general fibre are irreducible
and the morphism is open, so too is the total space 𝕃(2)𝑈 irreducible, from an
elementary lemma [Sta21, Tag 004Z]. We conclude from Lemma 5.2. □

Consider next the natural morphism

𝜋𝓁 ∶ 𝐶𝓁 → 𝓁 ≅ ℙ1

[𝓁′]↦ 𝓁 ∩ 𝓁′.

As for any smooth cubic and general line 𝓁 ⊂ 𝑋 the variety 𝐶𝓁 is a curve, and
there are six lines through a point, the degree of this morphism is five. Anal-
ogously, if 𝓁 is a second type line, as it counts with multiplicity at least two as
one of the six, we obtain an induced degree 4 morphism 𝜋𝓁 ∶ 𝐶𝓁 → 𝓁.

Proposition 5.4. Let 𝑋 be a general cubic threefold. If 𝓁 is a general line in 𝑋,
thenMon𝜋𝓁 ≅ 𝑆5. If 𝓁 a general line of second type, thenMon𝜋𝓁 ≅ 𝑆4.

Proof. A general 𝓁 of first type will meet a general line of second type 𝓁′ at
a general point 𝑝 of 𝓁′ (more specifically, outside the finite locus of points
through which there pass more second type lines). This means from Theorem
4.1 that 𝐶𝓁 → 𝓁 is simply ramified at [𝓁′] over 𝑝 and there are no further ram-
ification points, hence the Galois group has a transposition from Lemma 5.1.
Transitivity in 𝑆5 follows since 𝐶𝓁 is irreducible for general 𝓁 on any 𝑋. Since
𝑆5 is the only subgroup of 𝑆5 which has a transposition and is transitive, we
conclude the result.
To prove the second claim, note that Lemma 4.3 gives that there is always a

transposition in themonodromy group. Again, as𝐶𝓁 is irreducible from [GK19,
Lemma 3.3] and 𝑆4 is the only transitive subgroup of 𝑆4 which contains a trans-
position, we obtain the result. □

https://stacks.math.columbia.edu/tag/004Z
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