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Full intrinsic quadrics of dimension two

Jürgen Hausen and Katharina Király

Abstract. A full intrinsic quadric is a normal complete varietywith afinitely
generated Cox ring defined by a single quadratic relation of full rank. We
describe all surfaces of this type explicitly via local Gorenstein indices. As
applications, we present upper and lower bounds in terms of the Gorenstein
index for the degree, the log canonicity and the Picard index. Moreover, we
determine all full intrinsic quadric surfaces admitting a Kähler-Einsteinmet-
ric.
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1. Introduction
The purpose of this article is to structure and explore the (infinite) play-

ground of full intrinsic quadric (algebraic) surfaces 𝑋, defined over an alge-
braically closed field 𝕂 of characteristic zero. The name full intrinsic quadric
refers to the property that the Cox ring of 𝑋 is defined by a single homoge-
neous quadratic relation of full rank; see [5]. Intrinsic quadrics exist as well
in higher dimensions and form an explicit example class closely beneath the
toric varieties which are characterized by having a polynomial ring as Cox ring;
see [6, 11, 22] for sample work.
As we will see in Theorem 2.3, every full intrinsic quadric surface 𝑋 is pro-

jective, normal,ℚ-factorial, rational and allows a non-trivial action of the mul-
tiplicative group 𝕂∗. This allows us to realize 𝑋 as a surface in a specific toric
threefold 𝑍. More precisely, consider integral 3 × 𝑛matrices 𝑃 of the form
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⎡
⎢
⎣

−1 −1 2 0
−1 −1 0 2
𝑎 𝑏 1 1

⎤
⎥
⎦
,

⎡
⎢
⎣

−1 −1 1 1 0
−1 −1 0 0 2
𝑎 𝑏 0 𝑐 1

⎤
⎥
⎦
,

⎡
⎢
⎣

−1 −1 1 1 0 0
−1 −1 0 0 1 1
𝑎 𝑏 0 𝑐 0 𝑑

⎤
⎥
⎦
.

Given such 𝑃, fix a complete fanΣ inℤ3 having the columns of 𝑃 as its primitive
ray generators, let 𝑍 be the associated toric threefold and set

𝑋 ∶= {𝑡 ∈ 𝕋3; 1 + 𝑧1 + 𝑧2 = 0} ⊆ 𝑍,

where 𝕋3 ⊆ 𝑍 is the standard 3-torus with the coordinates 𝑧1, 𝑧2, 𝑧3. Then 𝑋 is
a full intrinsic quadric surface. The Picard number of 𝑋 is 𝜌(𝑋) = 𝑛 − 3 and 𝑋
comes with the effective 𝕂∗-action given on 𝑋 ∩ 𝕋3 by

𝑡 ⋅ 𝑧 = (𝑧1, 𝑧2, 𝑡𝑧3).

Our main results, Theorems 3.5, 4.5 and 5.5, provide an explicit and redun-
dance free presentation of all full intrinsic quadric surfaces via their definingma-
trices 𝑃 in terms of local Gorenstein indices and local class group orders of the
possibly singular points: for each of the possible Picard numbers 𝜌(𝑋) = 1, 2, 3,
we find four infinite series, each depending on two local Gorenstein indices, 𝜄+,
𝜄− and on 𝜌(𝑋) − 1 local class group orders, bounded by 𝜄+, 𝜄−.
All full intrinsic quadric surfaces 𝑋 turn out to be log del Pezzo surfaces; see

Proposition 6.1. We use our main results to study their geometry. For instance,
Corollaries 6.3, 6.6 and 6.8 deliver upper and lower bounds on the degree𝒦2

𝑋 ,
the log canonicity 𝜀𝑋 and the Picard index 𝔭𝑋 , all in terms of the Gorenstein
index 𝜄𝑋 ; in particular, we obtain

2
𝜄𝑋

≤ 𝒦2
𝑋 ≤

9
2 +

9
2𝜄𝑋

, 2
𝜄𝑋

≤ 𝜀𝑋 ≤
3
√
𝜄𝑋
,

and

𝜄𝑋 ≤ 𝔭𝑋 ≤
32
3 𝜄

3
𝑋(2𝜄𝑋 − 1)2 + 49

3 .

Another outcome of Theorems 3.5, 4.5 and 5.5 is the following explicit (infinite)
list of all full intrinsic quadric complex surfaces admitting a Kähler-Einstein
metric; see Corollary 6.9 for the precise formulation and more background.

Corollary 1.1. The full intrinsic quadric complex surfaces admitting a Kähler-
Einstein metric are precisely those constructed from a matrix 𝑃 of the shape
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𝜌 = 1, 2 ∤ 𝜄 ∶ 𝜌 = 3, 2 ∤ 𝜄, −𝜄 + 1 ≤ 𝑐 ≤ −2,
max(𝑐,−2𝜄 − 2𝑐) ≤ 𝑑 ≤ −𝜄 − 1 − 𝑐 ∶

⎡
⎢
⎣

−1 −1 2 0
−1 −1 0 2
𝜄 − 1 −𝜄 − 1 1 1

⎤
⎥
⎦
,

⎡
⎢
⎣

−1 −1 1 1 0 0
−1 −1 0 0 1 1
𝜄 −𝜄 − 𝑐 − 𝑑 0 𝑐 0 𝑑

⎤
⎥
⎦
,

𝜌 = 1, 4 ∣ 𝜄 ∶ 𝜌 = 3, −2𝜄 + 1 ≤ 𝑐 ≤ −2,
max(𝑐,−4𝜄 − 2𝑐) ≤ 𝑑 ≤ −2𝜄 − 1 − 𝑐 ∶

⎡
⎢
⎢
⎣

−1 −1 2 0
−1 −1 0 2
𝜄
2
− 1 − 𝜄

2
− 1 1 1

⎤
⎥
⎥
⎦

,
⎡
⎢
⎣

−1 −1 1 1 0 0
−1 −1 0 0 1 1
2𝜄 −2𝜄 − 𝑐 − 𝑑 0 𝑐 0 𝑑

⎤
⎥
⎦
.

Here, 𝜌 = 1, 3 is the Picard number and 𝜄 ∈ ℤ≥1 the Gorenstein index of the
resulting full intrinsic quadric complex surface 𝑋 arising from the matrix 𝑃.

Finally, our description yields a filtration of the whole infinite class of full
intrinsic quadric surfaces into finite subclasses by bounding the Gorenstein in-
dex. This allows, for instance, counting results as the following.

Corollary 1.2. Up to isomorphy, there are precisely 15 538 339 full intrinsic quadric
surfaces of Gorenstein index at most 200.

(1) In Picard number one, we find in total 883 full intrinsic quadric surfaces
of Gorenstein index at most 200, filtered as follows:
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Exactly 150 full intrinsic quadric complex surfaces of Picard number one
and Gorenstein index at most 200 admit a Kähler-Einstein metric.

(2) In Picard number two, we find in total 71 198 full intrinsic quadric sur-
faces of Gorenstein index at most 200, filtered as follows:
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In Picard number two, there are no full intrinsic quadric complex surfaces
at all admitting a Kähler-Einstein metric.

(3) In Picard number three, we find in total 15 466 258 full intrinsic quadric
surfaces of Gorenstein index at most 200, filtered as follows:
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Exactly 1 006 633 full intrinsic quadric complex surfaces of Picardnumber
three and Gorenstein index at most 200 admit a Kähler-Einstein metric.

We assume the reader to be familiar with the very basics of toric geome-
try, in particular the construction of a toric variety from its defining fan, the
orbit decomposition, toric divisors and homogeneous coordinates; see for in-
stance [10, 12, 9]. Theorems 3.5, 4.5 and 5.5 are formulated and proven in Sec-
tions 3, 4 and 5, respectively. The considerations follow a common pattern but
differ in the details; for convenience, we present the complete arguments in
each case. The geometric applications are given in Section 6. The defining
matrices for the full intrinsic quadrics are available under [14] for Gorenstein
index up to 200 in Picard numbers one, two and for Gorenstein index up to 40
in Picard number three.

We are grateful to the referee for carefully reading the manuscript and for
providing us with helpful comments and valuable suggestions.

2. Full intrinsic quadric surfaces allow a 𝕂∗-action
In this section, we show that every full intrinsic quadric surface is rational,

ℚ-factorial, projective and admits a non-trivial 𝕂∗-action. This will allow us
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to work with the approach to 𝕂∗-surfaces provided by [16, 21]; see also [3,
Sec. 5.4]. First, let us give a precise definition of a full intrinsic quadric; see
also [5, Sec. 9].

Definition 2.1. A full intrinsic quadric is a normal complete variety 𝑋 with
finitely generated divisor class group Cl(𝑋) and Cox ring of the form

ℛ(𝑋) =
⨁

Cl(𝑋)
Γ(𝑋,𝒪(𝐷)) = 𝕂[𝑇1,… , 𝑇𝑛]∕⟨𝑔⟩

with Cl(𝑋)-homogeneous generators 𝑇1,… , 𝑇𝑛 ∈ ℛ(𝑋) and a Cl(𝑋)-homo-
geneous quadric 𝑔 ∈ 𝕂[𝑇1,… , 𝑇𝑛] of full rank.

Remark2.2. In the setting ofDefinition 2.1, the divisor class group is generated
by any 𝑛 − 1 of the degrees 𝑤𝑖 = deg(𝑇𝑖) ∈ Cl(𝑋), see [3, Def. 3.2.1.1 and
Cor. 3.2.1.11]. Moreover, if𝑋 isℚ-factorial, then the Picard number 𝜌(𝑋) equals
the dimension of the rational vector space Clℚ(𝑋) = ℚ ⊗ℤ Cl(𝑋) and as well
the dimension of the convex coneMov(𝑋) ⊆ Clℚ(𝑋) generated by the movable
divisor classes, see for instance [3, Lemma 4.3.3.2].

Theorem 2.3. Let 𝑋 be a full intrinsic quadric surface. Then 𝑋 is ℚ-factorial,
rational, projective and admits an effective𝕂∗-action. Moreover, the Picard num-
ber of 𝑋 satisfies 𝜌(𝑋) ≤ 3 and its Cox ring allows a Cl(𝑋)-graded presentation
as

ℛ(𝑋) ≅
⎧

⎨
⎩

𝕂[𝑇1,… , 𝑇4]∕⟨𝑇1𝑇2 + 𝑇23 + 𝑇24⟩, 𝜌(𝑋) = 1,
𝕂[𝑇1,… , 𝑇5]∕⟨𝑇1𝑇2 + 𝑇3𝑇4 + 𝑇25⟩, 𝜌(𝑋) = 2,
𝕂[𝑇1,… , 𝑇6]∕⟨𝑇1𝑇2 + 𝑇3𝑇4 + 𝑇5𝑇6⟩, 𝜌(𝑋) = 3.

Proof. By definition, 𝑋 is a normal complete surface with finitely generated
Cox ring. From [3, Thm. 4.3.3.5] we infer that 𝑋 is ℚ-factorial and projective.
Moreover, by [11, Prop. 2.1], we have a Cl(𝑋)-graded presentation

ℛ(𝑋) ≅ 𝕂[𝑇1,… , 𝑇𝑛+𝑚]∕⟨𝑔⟩, 𝑔 = 𝑇1𝑇2 + … + 𝑇𝑛−1𝑇𝑛 + 𝑇2𝑛+1 + … + 𝑇2𝑛+𝑚.

Weuse this to show 𝜌(𝑋) ≤ 3. Recall from [3, Cor. 1.6.2.7 and Constr. 1.6.3.1]
that 𝑋 is the geometric quotient of an open subset of the total coordinate space

�̄� = Spec ℛ(𝑋) = 𝑉(𝑔) ⊆ 𝕂𝑛+𝑚

by the quasitorus 𝐻 = Spec 𝕂[Cl(𝑋)], which, due to ℚ-factoriality of 𝑋, is of
dimension 𝜌(𝑋). Consequently, we have

2 = dim(𝑋) = dim(�̄�) − dim(𝐻) = 𝑛 +𝑚 − 1 − 𝜌(𝑋).

The degrees 𝑤1,… , 𝑤𝑛+𝑚 of 𝑇1,… , 𝑇𝑛+𝑚 generate Cl(𝑋). Moreover, the de-
gree 𝜇 = deg(𝑔) ∈ Cl(𝑋) satisfies 𝜇 = 𝑤𝑖 + 𝑤𝑖+1 for 𝑖 = 1, 3,… , 𝑛 − 1 and
𝜇 = 2𝑤𝑛+𝑗 for 𝑗 = 1,… , 𝑚. Thus, the divis class group Cl(𝑋) is generated by
𝑤1, 𝑤2, 𝑤3, 𝑤5,… , 𝑤𝑛−1 and we see

𝑛 +𝑚 − 3 = 𝜌(𝑋) ≤ 2 + 𝑛 − 2
2 .
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We conclude 𝑛∕2 + 𝑚 ≤ 4 and thus 𝑛 ≤ 8. Assume 𝑛 = 8. Then 𝑚 = 0
and 𝜌(𝑋) = 5 hold. Consequently, (𝑤1, 𝑤2, 𝑤3, 𝑤5, 𝑤7) is a basis for the rational
vector space Clℚ(𝑋). Let 𝑢 be a linear form on Clℚ(𝑋) such that

⟨𝑢,𝑤1⟩ = ⟨𝑢,𝑤2⟩ = ⟨𝑢,𝑤3⟩ = ⟨𝑢,𝑤5⟩ = 0, ⟨𝑢,𝑤7⟩ < 0.

Then 𝑢 annihilates as well 𝜇 = 𝑤1+𝑤2 and thus also𝑤4 = 𝜇−𝑤3 and𝑤6 = 𝜇−
𝑤5. Moreover, 𝑢 evaluates positively on𝑤8 = 𝜇−𝑤7. Consequently, computing
the cone of movable divisor classes according to [3, Prop. 3.3.2.3], we obtain

Mov(𝑋) =
8⋂

𝑖=1
cone(𝑤𝑗; 𝑗 ≠ 𝑖) ⊆ ker(𝑢) ⊆ Clℚ(𝑋).

This contradicts to Remark 2.2, telling us thatMov(𝑋) is a cone of full dimen-
sion in Clℚ(𝑋). We conclude, 𝑛 ≤ 6. The case 𝑛 = 6, 𝑚 = 1 and 𝜌(𝑋) = 4 is
excluded by the same arguments as used for 𝑛 = 8 and 𝜌(𝑋) = 5.
Thus, we have 𝜌(𝑋) ≤ 3. If 𝜌(𝑋) = 3, then 𝑛 = 6 and𝑚 = 0, which leads to

third case in the assertion. For 𝜌(𝑋) = 2, we are left with the choices 𝑛 = 4with
𝑚 = 1 and 𝑛 = 0, 2. The first one gives the second case of the assertion and
the other two would produce, similarly as before, a cone of movable divisors of
dimension less than that of Clℚ(𝑋) and hence can’t occur.
For 𝜌(𝑋) = 1, we find the possibility 𝑛 = 𝑚 = 2, which is the first case of the

assertion. Also, 𝑛 = 0, 4might happen. We first exclude the case 𝑛 = 4. There,
the prospective total coordinate space �̄� = Spec 𝕂[ℛ(𝑋)] is explicitly given as

�̄� = 𝑉(𝑇1𝑇2 + 𝑇3𝑇4) ⊆ 𝕂4.

In this setting, we find a diagonal action of a three-dimensional torus 𝕋 on
𝕂4 turning �̄� into a toric variety. Thus, 𝑋 as a GIT-quotient of �̄� by a one-
dimensional subgroup of𝕋 is as well a toric variety andmust have a polynomial
ring as its Cox ring; a contradiction to �̄� being singular.
Finally, we treat the case 𝜌(𝑋) = 1 and 𝑛 = 0. If any two of the degrees

𝑤𝑖 = deg(𝑇𝑖) coincide, say 𝑤1 = 𝑤2 then we may substitute 𝑇′1 = 𝑇1 + 𝐼𝑇2
and 𝑇′2 = 𝑇1 − 𝐼𝑇2 with 𝐼 =

√
−1, which brings us into the setting 𝑛 > 0 just

discussed. Thus, we are left with discussing the situation

ℛ(𝑋) = 𝕂[𝑇1, 𝑇2, 𝑇3, 𝑇4]∕⟨𝑇21 + 𝑇22 + 𝑇23 + 𝑇24⟩, 𝑤𝑖 ≠ 𝑤𝑗 for 𝑖 ≠ 𝑗.

Due toℚ-factoriality of𝑋, the divisor class groupCl(𝑋) is of rank one and hence
of the formℤ×Γwith a finite abelian group Γ. We claim that up to renumbering
the variables and an automorphism of Cl(𝑋), we have

Cl(𝑋) = ℤ ×ℤ∕2ℤ ×ℤ∕2ℤ, 𝑄 = [𝑤1,… , 𝑤4] =
⎡
⎢
⎣

1 1 1 1
0̄ 1̄ 1̄ 0̄
0̄ 1̄ 0̄ 1̄

⎤
⎥
⎦
.

Since 𝑤1,… , 𝑤4 are non-torsion elements generating a pointed cone in the ra-
tional divisor class group Clℚ(𝑋) = ℚ, we may assume 𝑤𝑖 = (𝑠𝑖, 𝜂𝑖) ∈ ℤ ⊕ Γ
with 𝑠𝑖 > 0. By Cl(𝑋)-homogeneity of the relation, all 𝑠𝑖 coincide. Hence, as
the 𝑠𝑖 generate ℤ, they are all equal to one. Write Γ as a direct product of finite



1774 JÜRGEN HAUSEN AND KATHARINA KIRÁLY

cyclic groups. Then, subtracting suitable multiples of the first row of 𝑄 from
the last ones, we can achieve

𝑄 = [𝑤1,… , 𝑤4] = [ 1 1 1 1
0 𝜂2 𝜂3 𝜂4

] , 𝜂2, 𝜂3, 𝜂4 ∈ Γ.

Note that this adjusting process is realized by an automorphism of Cl(𝑋). By
Remark 2.2, any two of 𝜂2, 𝜂3, 𝜂4 generate Γ as a group. Thus, Γ is in fact either
cyclic or a sum of two cyclic groups. Moreover, 2𝜂𝑖 = 0 by homogeneity of the
relation. Hence, any element of Γ is of order two and we are left with the cases

Γ = ℤ∕2ℤ, Γ = ℤ∕2 ×ℤ∕2ℤ.

The first case cannot occur as it will not allow a choice of pairwise different
𝑤1,… , 𝑤4. Thus, suitable renumbering of the variables and applying a suitable
automorphism of ℤ⊕ Γ to the 𝑤𝑖 leads to Cl(𝑋) and 𝑄 as claimed.
The task is to show that the above Cl(𝑋)-graded algebraℛ(𝑋) can’t be a Cox

ring. Assume that ℛ(𝑋) is a Cox ring. Then, since the variables 𝑇1,… , 𝑇4 de-
fine pairwisse non-associated primes inℛ(𝑋), we are in the setting of [20, Con-
str. 3.2.1.3] and can apply the theory developed thereafter. In particular, as �̄� is
smooth apart from the origin, 𝑋 would be quasismooth [11, Prop. 2.8], hence
log terminal. Moreover, we can apply [3, Cor. 3.3.3.3] to see that𝑋 is a del Pezzo
surface of Picard number one and Gorenstein index one; we used the software
package [19] for the computation. The Cox rings of all log del Pezzo surfaces of
Picard number one and Gorenstein index one without torus action have been
computed in [20, Thm. 4.1] and for those with torus action the Cox rings are
listed in [3, 5.4.4.2]; none of these Cox rings is isomorphic toℛ(𝑋) from above.
We verified, that the Cox ring of any full intrinsic quadric surface 𝑋 is as in

the assertion, in particular it is defined by trinomial relations. Consequently,
the associated total coordinate space �̄� allows a diagonal torus action of com-
plexity one. This action induces a non-trivial 𝕂∗-action on 𝑋. Since Cl(𝑋) is
finitely generated by assumption, this forces 𝑋 to be rational. □

3. Picard number one
The main result of this section, Theorem 3.5, provides the description of all

full intrinsic quadric surfaces of Picard number one in terms of the local Goren-
stein indices of two of their possibly singular points.

Construction 3.1 (Full intrinsic quadric surfaces 𝑋 of Picard number one as
𝕂∗-surfaces). Consider an integral matrix of the form

𝑃 ∶= [𝑣1, 𝑣2, 𝑣3, 𝑣4] ∶=
⎡
⎢
⎣

−1 −1 2 0
−1 −1 0 2
𝑎 𝑏 1 1

⎤
⎥
⎦
, 𝑏 ≤ −2, 0 ≤ 𝑎 ≤ −𝑏 − 2.

Let 𝑍 be the toric variety arising from the fan Σ in ℤ3 with generator matrix 𝑃,
i.e. 𝑣1,… , 𝑣4 are the primitive ray generators of Σ, and the maximal cones

𝜎+ ∶= cone(𝑣1, 𝑣3, 𝑣4), 𝜎− ∶= cone(𝑣2, 𝑣3, 𝑣4), 𝜏0 ∶= cone(𝑣1, 𝑣2).
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Denote by𝑈1, 𝑈2, 𝑈3 the coordinate functions on the standard 3-torus 𝕋3 ⊆ 𝑍.
Then we obtain a normal, non-toric, rational, projective surface

𝑋 ∶= 𝑋(𝑃) ∶= 𝑉(ℎ) ⊆ 𝑍, ℎ ∶= 1 +𝑈1 +𝑈2 ∈ 𝒪(𝕋3).

Moreover, the𝕂∗-action on 𝕋3 given by 𝑡 ⋅𝑥 = (𝑥1, 𝑥2, 𝑡𝑥3) extends to an action
on 𝑍, it leaves 𝑉(ℎ) ⊆ 𝕋3 invariant and hence induces a 𝕂∗-action on 𝑋.

Proposition 3.2. Consider 𝑃 and 𝑋 ⊆ 𝑍 as in Construction 3.1, let 𝑃∗ be the
transpose of 𝑃 and set𝐾 ∶= ℤ4∕ im(𝑃∗). For the divisor class group of𝑋, we have

Cl(𝑋) ≅ Cl(𝑍) ≅ 𝐾 ≅ ℤ ×ℤ ∕ 2 gcd(2𝑎 + 2, 𝑎 − 𝑏)ℤ.

Moreover, denoting by 𝑄∶ ℤ4 → 𝐾 the projection, we obtain the following de-
scription of the Cox ring of 𝑋 as a graded algebra:

ℛ(𝑋) ≅ 𝕂[𝑇1,… , 𝑇4]∕⟨𝑇1𝑇2 + 𝑇23 + 𝑇24⟩, deg(𝑇𝑖) = 𝑄(𝑒𝑖) = [𝐷𝑖],

where 𝐷𝑖 ⊆ 𝑋 is the prime divisor on 𝑋 obtained by intersecting 𝑋 with the toric
prime divisor of 𝑍 given by the ray through 𝑣𝑖 and [𝐷𝑖] ∈ Cl(𝑋) denotes its class.

Proof of Construction 3.1 and Proposition 3.2. Due to their definition, the
columns 𝑣1,… , 𝑣4 of 𝑃 are pairwise different primitive integral vectors. More-
over, they generate ℚ3 as a convex cone, as we have

2𝑣1 + 𝑣3 + 𝑣4 = [0, 0, 2𝑎+2], 𝑎 ≥ 0, 2𝑣2 + 𝑣3 + 𝑣4 = [0, 0, 2𝑏+2], 𝑏 ≤ −2.

Thus, 𝑃 is a defining matrix of a normal, rational, projective 𝕂∗-surface 𝑋′ in
the sense of [3, Constr. 5.4.1.3 and 5.4.1.6 (e-e)]. Both,𝑋′ and𝑋 fromConstruc-
tion 3.1 share the same ambient toric variety 𝑍 and are given in homogeneous
coordinates of 𝑍 by

𝑋′ = 𝑉(𝑇1𝑇2 + 𝑇23 + 𝑇24) = 𝑋.

Now [3, Thm. 3.4.3.7] tells us that the divisor class group of 𝑋 = 𝑋′ is given
as Cl(𝑋) = Cl(𝑍) = 𝐾, that the Cox ring ℛ(𝑋) of 𝑋 is as claimed and that the
generator degrees satisfy deg(𝑇𝑖) = [𝐷𝑖]. Note that𝑋 is non-toric as its Cox ring
is not a polynomial ring. □

The local class group Cl(𝑋, 𝑥) of a point 𝑥 ∈ 𝑋 is the group of Weil divisors
of 𝑋 modulo those being principal near 𝑥, and by cl(𝑋, 𝑥) the order of Cl(𝑋, 𝑥).

Proposition 3.3. Let 𝑋 = 𝑋(𝑃) arise from Construction 3.1. The fixed points of
the𝕂∗-action on 𝑋 are given in Cox coordinates by

𝑥+ ∶= [0, 1, 0, 0], 𝑥− ∶= [1, 0, 0, 0], 𝑥0 ∶= [0, 0, 1, 𝐼].

Moreover, for the orders of the local class groups of the fixed points of the𝕂∗-action
we obtain

cl(𝑋, 𝑥+) = 4𝑎 + 4, cl(𝑋, 𝑥−) = −4𝑏 − 4, cl(𝑋, 𝑥0) = 𝑎 − 𝑏.

Finally, the ordered pair (4𝑎+ 4, −4− 4𝑏) is an isomorphy invariant of the alge-
braic surface 𝑋.
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Proof. For the first statement, we refer to [13, Rem. 5.6]. For the second one,
we use the description [3, Prop. 3.3.1.5] of the local class groups and its Gale
dual representation provided by [3, Lemma 2.1.4.1]. Concretely, for the fixed
points 𝑥+ and 𝑥− this means

cl(𝑋, 𝑥+) = |𝐾∕𝑄(linℤ(𝑒2))| = |ℤ3∕ linℤ(𝑣1, 𝑣3, 𝑣4)| = det[𝑣1, 𝑣3, 𝑣4],

cl(𝑋, 𝑥−) = |𝐾∕𝑄(linℤ(𝑒1))| = |ℤ3∕ linℤ(𝑣2, 𝑣3, 𝑣4)| = det[𝑣2, 𝑣3, 𝑣4].

Similarly, we obtain that the local class group order cl(𝑥0) of the fixed point 𝑥0
is given by

|𝐾∕𝑄(linℤ(𝑒3, 𝑒4))| = | linℤ(−𝑒1 − 𝑒2, 𝑒3)∕ linℤ(𝑣1, 𝑣2)| = det [ −1 −1
𝑎 𝑏 ] .

For the last statement, recall from [3, Prop. 5.4.1.9] that 𝑥+, 𝑥− are the only
𝕂∗-fixed points lying in the closure of infinitely many orbits. Thus,

{cl(𝑋, 𝑥+), cl(𝑋, 𝑥−)}

and cl(𝑋, 𝑥0) are invariants of the 𝕂∗-surface 𝑋. Since on a non-toric, ratio-
nal, projective surface any two 𝕂∗-actions are conjugate in the automorphism
group, the assertion follows. □

Proposition 3.4. Every full intrinsic quadric surface 𝑋 of Picard number one is
isomorphic to an 𝑋(𝑃) for precisely one matrix 𝑃 from Construction 3.1.

Proof. According to Theorem 2.3 and [18, Ex. 7.1], the defining matrix 𝑃 is of
the format 3 × 4 and the first two rows are as in the assertion:

𝑃 =
⎡
⎢
⎣

−1 −1 2 0
−1 −1 0 2
𝑑1 𝑑2 𝑑3 𝑑4

⎤
⎥
⎦
.

Note that 𝑑3 and 𝑑4 are odd by primitivity of the columns. Thus, subtracting
the (𝑑3 − 1)∕2-fold of the first and the (𝑑4 − 1)∕2-fold of the second row from
the last one turns our matrix into a defining matrix

𝑃 =
⎡
⎢
⎣

−1 −1 2 0
−1 −1 0 2
𝑎 𝑏 1 1

⎤
⎥
⎦
.

These are admissible operations in the sense of [13, Def. 6.3] which do not affect
the resulting𝕂∗-surface due to [13, Prop. 6.7]. Moreover, swapping the first two
columns if necessary, we achieve that 𝑃 is slope-ordered, meaning

𝑎 > 𝑏.

Again, this is an admissible operation. As for any defining matrix of a rational
𝕂∗-surface with two elliptic fixed points, slope orderedness implies

𝑎 + 1
2 +

1
2 =∶ 𝑚

+ > 0, 𝑏 + 1
2 +

1
2 =∶ 𝑚

− < 0,
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see [13, Rem. 7.5]. Multiplying the last row by −1 is another admissible opera-
tion and turns𝑚± into𝑚∓. Doing so, if necessary, and re-arranging via the first
two admissible operation steps yields

𝑎 + 1 ≤ −𝑏 − 1.

If 𝑋(𝑃) ≅ 𝑋(𝑃′) holds with 𝑃, 𝑃′ as in Construction 3.1, then we have 𝑃 = 𝑃′,
as due to Proposition 3.3, the entries 𝑎, 𝑏 of 𝑃 and 𝑎′, 𝑏′ of 𝑃′ satisfy

(4𝑎 + 4, −4𝑏 − 4) = (4𝑎′ + 4, −4𝑏′ − 4).

□

Recall that theGorenstein index of aℚ-factorial variety𝑋 is the smallest pos-
itive integer 𝜄𝑋 such that the 𝜄𝑋-fold of a canonical divisor of 𝑋 is Cartier. The
local Gorenstein index 𝜄𝑥 of a point 𝑥 ∈ 𝑋 is the smallest positive integer such
that the 𝜄𝑥-fold of a canonical divisor of 𝑋 is Cartier near 𝑥.

Theorem 3.5. For 𝜄 ∈ ℤ≥1, consider the set𝑀𝜄 of pairs 𝜂 = (𝜄+, 𝜄−) ∈ ℤ2
≥1 with

lcm(𝜄+, 𝜄−) = 𝜄. Define subsets

𝑆11(1, 𝜄) ∶= {𝜂 ∈ 𝑀𝜄; 𝜄+ odd, 𝜄− odd, 𝜄+ ≤ 𝜄−},

𝑆12(1, 𝜄) ∶= {𝜂 ∈ 𝑀𝜄; 𝜄+ odd, 𝜄− even, 4 ∣ 𝜄−, 2𝜄+ ≤ 𝜄−},

𝑆21(1, 𝜄) ∶= {𝜂 ∈ 𝑀𝜄; 𝜄+ even, 𝜄− odd, 4 ∣ 𝜄+, 𝜄+ ≤ 2𝜄−},

𝑆22(1, 𝜄) ∶= {𝜂 ∈ 𝑀𝜄; 𝜄+ even, 𝜄− even, 4 ∣ 𝜄+, 4 ∣ 𝜄−, 𝜄+ ≤ 𝜄−}.

Then each set 𝑆𝑖𝑗(1, 𝜄) provides us with a series of defining matrices 𝑃𝜂 of full in-
trinsic quadric surfaces:

𝜂 = (𝜄+, 𝜄−) ∈ 𝑆11(1, 𝜄)∶ 𝜂 = (𝜄+, 𝜄−) ∈ 𝑆12(1, 𝜄)∶

𝑃𝜂 =
⎡
⎢
⎣

−1 −1 2 0
−1 −1 0 2

𝜄+ − 1 −𝜄− − 1 1 1

⎤
⎥
⎦
, 𝑃𝜂 =

⎡
⎢
⎢
⎣

−1 −1 2 0
−1 −1 0 2

𝜄+ − 1 − 𝜄−

2
− 1 1 1

⎤
⎥
⎥
⎦

,

𝜂 = (𝜄+, 𝜄−) ∈ 𝑆21(1, 𝜄)∶ 𝜂 = (𝜄+, 𝜄−) ∈ 𝑆22(1, 𝜄)∶

𝑃𝜂 =
⎡
⎢
⎢
⎣

−1 −1 2 0
−1 −1 0 2

𝜄+

2
− 1 −𝜄− − 1 1 1

⎤
⎥
⎥
⎦

, 𝑃𝜂 =
⎡
⎢
⎢
⎣

−1 −1 2 0
−1 −1 0 2

𝜄+

2
− 1 − 𝜄−

2
− 1 1 1

⎤
⎥
⎥
⎦

.

Each of the surfaces𝑋(𝑃𝜂) is of Picard number 1, Gorenstein index 𝜄 = lcm(𝜄+, 𝜄−)
and 𝜄± are the local Gorenstein indices of the points

𝑥+ = [0, 1, 0, 0], 𝑥− = [1, 0, 0, 0].

Every full intrinsic quadric surface of Picard number 1 and Gorenstein index 𝜄 is
isomorphic to 𝑋(𝑃𝜂) for precisely one 𝑃𝜂 from the above list.
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Proof. Let 𝑋 be a full intrinsic quadric surface of Picard number one. We first
show 𝑋 ≅ 𝑋(𝑃𝜂) with 𝑃𝜂 from the above list and check the local Gorenstein
indices. Proposition 3.4 allows us to assume 𝑋 = 𝑋(𝑃) with a unique 𝑃 of the
form

𝑃 =
⎡
⎢
⎣

−1 −1 2 0
−1 −1 0 2
𝑎 𝑏 1 1

⎤
⎥
⎦
, 𝑏 ≤ −2, 0 ≤ 𝑎 ≤ −𝑏 − 2.

According to [3, Prop. 3.3.3.2], we have the anticanonical divisor−𝒦 = 𝐷3+𝐷4
on𝑋 and [13, Prop. 8.9] tells us that the linear forms 𝑢± representing the 𝜄±-fold
of −𝒦 near 𝑥± are given by

𝑢+ = [ 𝑎𝜄+

2𝑎 + 2 ,
𝑎𝜄+

2𝑎 + 2 ,
𝜄+

𝑎 + 1 , ] , 𝑢− = [ 𝑏𝜄−

2𝑏 + 2
, 𝑏𝜄−

2𝑏 + 2
, 𝜄−

𝑏 + 1
] .

By the definition of the local Gorenstein index, these are primitive integral vec-
tors. Consequently, the local Gorenstein indices 𝜄± of 𝑥± are

𝜄+ = {
𝑎 + 1, 𝑎 even,
2𝑎 + 2, 𝑎 odd,

𝜄− = {
−𝑏 − 1, 𝑏 even,
−2𝑏 − 2, 𝑏 odd.

In particular, 𝜄+, 𝜄− is even (odd) if and only if 𝑎, 𝑏 is odd (even), respectively.
Moreover, if 𝜄± is even, then it is divisible by four. Thus, 𝑃 is one of the ma-
trices 𝑃𝜂 with 𝜂 = (𝜄+, 𝜄−) listed in the assertion and 𝜄± is the local Gorenstein
index of 𝑥±.
Conversely, all the matrices 𝑃𝜂 listed in the assertion fit into the shape of

Construction 3.1 and thus deliver full intrinsic quadric surfaces 𝑋 = 𝑋(𝑃𝜂).
By [13, Prop. 8.8], the point 𝑥0 = [0, 0, 1, 𝐼] ∈ 𝑋 has local Gorenstein index one,
hence the resulting 𝑋 is of Gorenstein index 𝜄 = lcm(𝜄+, 𝜄−).
Finally, we ensure that the matrices 𝑃𝜂 listed in the assertion define pairwise

non-isomorphic 𝑋(𝑃𝜂). By Proposition 3.4, this means to show that any two
matrices arising from different 𝑆𝑖𝑗(1, 𝜄) differ from each other. This is done by
comparing the parity vectors (�̄�, �̄�) inℤ∕2ℤ×ℤ∕2ℤ of the first two entries 𝑎, 𝑏
of the third row of 𝑃𝜂 for the 𝜂 ∈ 𝑆𝑖𝑗(1, 𝜄):

𝑆11(1, 𝜄) 𝑆12(1, 𝜄) 𝑆21(1, 𝜄) 𝑆22(1, 𝜄)

(�̄�, �̄�) (0̄, 0̄) (0̄, 1̄) (1̄, 0̄) (1̄, 1̄)

□

Example 3.6. Consider the full intrinsic quadric surface 𝑋 = 𝑋(𝑃) of Picard
number one given by the defining matrix

𝑃 =
⎡
⎢
⎣

−1 −1 2 0
−1 −1 0 2
0 −2 1 1

⎤
⎥
⎦
.

Then𝑋 stems from the series 𝑆11(1, 𝜄) andwehave 𝜄 = 𝜄+ = 𝜄− = 1. Theorem3.5
also says that𝑋 is the only Gorenstein full intrinsic quadric surfacewith 𝜌(𝑋) =
1.
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4. Picard number two
The main result of this section, Theorem 4.5, provides the description of all

full intrinsic quadric surfaces of Picard number two in terms of the local Goren-
stein indices of two of their possibly singular points and the local class group
order of another possibly singular point.

Construction 4.1 (Full intrinsic quadric surfaces 𝑋 of Picard number two as
𝕂∗-surfaces). Consider an integral matrix of the form

𝑃 ∶= [𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5] ∶=
⎡
⎢
⎣

−1 −1 1 1 0
−1 −1 0 0 2
𝑎 𝑏 0 𝑐 1

⎤
⎥
⎦
,

𝑏<𝑎, 𝑐<0, 𝑎≥0,

𝑏+𝑐≤−1, 𝑎−𝑏≤−𝑐,

𝑎≤−𝑏−𝑐−1.

Let 𝑍 be the toric variety arising from the fan Σ in ℤ3 with generator matrix 𝑃
and the maximal cones

𝜎+ ∶= cone(𝑣1, 𝑣3, 𝑣5), 𝜎− ∶= cone(𝑣2, 𝑣4, 𝑣5),

𝜏0 ∶= cone(𝑣1, 𝑣2), 𝜏1 ∶= cone(𝑣3, 𝑣4).
Denote by𝑈1, 𝑈2, 𝑈3 the coordinate functions on the standard 3-torus 𝕋3 ⊆ 𝑍.
Then we obtain a normal, non-toric, rational, projective surface

𝑋 ∶= 𝑋(𝑃) ∶= 𝑉(ℎ) ⊆ 𝑍, ℎ ∶= 1 +𝑈1 +𝑈2 ∈ 𝒪(𝕋3).

Moreover, the𝕂∗-action on 𝕋3 given by 𝑡 ⋅𝑥 = (𝑥1, 𝑥2, 𝑡𝑥3) extends to an action
on 𝑍, it leaves 𝑉(ℎ) ⊆ 𝕋3 invariant and hence induces a 𝕂∗-action on 𝑋.

Proposition 4.2. Consider 𝑃 and 𝑋 ⊆ 𝑍 as in Construction 4.1, let 𝑃∗ be the
transpose of 𝑃 and set𝐾 ∶= ℤ5∕ im(𝑃∗). For the divisor class group of𝑋, we have

Cl(𝑋) ≅ 𝐾 ≅ Cl(𝑍) ≅ ℤ2 ×ℤ ∕ gcd(2𝑎 + 1, 𝑎 − 𝑏,−𝑐)ℤ.

Moreover, denoting by 𝑄∶ ℤ5 → 𝐾 the projection, we obtain the following de-
scription of Cox ring of 𝑋 as graded algebra:

ℛ(𝑋) ≅ 𝕂[𝑇1,… , 𝑇5]∕⟨𝑇1𝑇2 + 𝑇3𝑇4 + 𝑇25⟩, deg(𝑇𝑖) = 𝑄(𝑒𝑖) = [𝐷𝑖],

where 𝐷𝑖 ⊆ 𝑋 is the prime divisor on 𝑋 obtained by intersecting 𝑋 with the toric
prime divisor of 𝑍 given by the ray through 𝑣𝑖 and [𝐷𝑖] ∈ Cl(𝑋) denotes its class.

Proof of Construction 4.1 and Proposition 4.2. Due to their definition, the
columns 𝑣1,… , 𝑣5 of 𝑃 are pairwise different primitive integral vectors. More-
over, they generate ℚ3 as a convex cone, as we have

2𝑣1 + 2𝑣3 + 𝑣5 = [0, 0, 2𝑎 + 1], 𝑎 ≥ 0,

2𝑣2 + 2𝑣4 + 𝑣5 = [0, 0, 2𝑏 + 2𝑐 + 1], 𝑏 + 𝑐 ≤ −1.
Consequently, 𝑃 is a defining matrix of a rational projective 𝕂∗-surface 𝑋′ in
the sense of [3, Constr. 5.4.1.3 and 5.4.1.6 (e-e)]. One shows 𝑋′ = 𝑋 exactly
as for Picard number one and infers the desired statements on the divisor class
group and the Cox ring from the same reference. □
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Proposition 4.3. Let 𝑋 = 𝑋(𝑃) arise from Construction 4.1. The fixed points of
the𝕂∗-action on 𝑋 are given in Cox coordinates by

𝑥+ ∶= [0, 1, 0, 1, 0], 𝑥− ∶= [1, 0, 1, 0, 0],

𝑥0 ∶= [0, 0, 1, 1, 𝐼], 𝑥1 ∶= [1, 1, 0, 0, 𝐼].
Moreover, the orders of the local class groups of the fixed points of the 𝕂∗-action
on 𝑋 are given by

cl(𝑋, 𝑥+) = 1 + 2𝑎, cl(𝑋, 𝑥−) = −1 − 2𝑏 − 2𝑐,

cl(𝑋, 𝑥0) = 𝑎 − 𝑏, cl(𝑋, 𝑥1) = −𝑐.
Finally, the ordered pairs (1 + 2𝑎, −1 − 2𝑏 − 2𝑐) and (𝑎 − 𝑏, −𝑐) are isomorphy
invariants of the algebraic surface 𝑋.

Proof. The same references and arguing as in the proof of Proposition 3.3, give
us the fixed points and show that the local class group orders of 𝑥+, 𝑥−, 𝑥0 and
𝑥1 compute as

det[𝑣1, 𝑣3, 𝑣5], det[𝑣2, 𝑣4, 𝑣5], det [ −1 −1
𝑎 𝑏 ] , −det

[ 1 1
0 𝑐

]
.

As mentioned in the proof of Proposition 3.3, the fixed points 𝑥+, 𝑥− are the
only ones lying in the closure of infinitely many orbits. Moreover, each of the
remaining two fixed points 𝑥0, 𝑥1 lies in the closure of precisely two non-trivial
orbits. Thus, {cl(𝑋, 𝑥+), cl(𝑋, 𝑥−)} as well as {cl(𝑋, 𝑥0), cl(𝑋, 𝑥1)} are invariants
of the 𝕂∗-surface 𝑋. As before, the assertion follows from the fact that on a
non-toric, rational, projective surface any two 𝕂∗-actions are conjugate in the
automorphism group. □

Proposition 4.4. Every full intrinsic quadric surface 𝑋 of Picard number two is
isomorphic to an 𝑋(𝑃) for precisely one matrix 𝑃 from Construction 4.1.

Proof. Using again Theorem 2.3 and [18, Ex. 7.1], we see that the defining
matrix 𝑃 is of the format 3 × 5 and the first two rows look as in the assertion:

𝑃 =
⎡
⎢
⎣

−1 −1 1 1 0
−1 −1 0 0 2
𝑑1 𝑑2 𝑑3 𝑑4 𝑑5

⎤
⎥
⎦
.

As in the proof of Proposition 3.4, we achieve the desired shape of 𝑃 via admis-
sible operations [13, Def. 6.3]. First, adding suitable multiples of the first two
rows to the last one yields

𝑃 =
⎡
⎢
⎣

−1 −1 1 1 0
−1 −1 0 0 2
𝑎 𝑏 0 𝑐 1

⎤
⎥
⎦
.

Second, swapping the columns 𝑣1 and 𝑣2 as well as 𝑣3 and 𝑣4 if neccesary and
re-arranging via the first step, we achieve that 𝑃 is slope-ordered, meaning

𝑎 > 𝑏, 0 > 𝑐.
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Third, swapping the first two columns blocks, that means [𝑣1, 𝑣2] and [𝑣3, 𝑣4],
if neccesary and re-adjusting the entries, we can ensure

𝑎 − 𝑏 ≤ −𝑐.

As for any definingmatrix of a rational𝕂∗-surfacewith two elliptic fixed points,
slope orderedness implies

𝑎 + 1
2 =∶ 𝑚

+ > 0, 𝑏 + 𝑐 + 1
2 =∶ 𝑚

− < 0.

Multiplying the last row by −1 turns 𝑚± into 𝑚∓. Doing so, if necessary, and
re-arranging via the first two steps yields

𝑎 ≤ −𝑏 − 𝑐 − 1.

We show that 𝑋(𝑃) ≅ 𝑋(𝑃′) with matrices 𝑃 and 𝑃′ as in Construction 4.1
implies 𝑃 = 𝑃′. Proposition 4.3 yields equality of the ordered tuples

(1+2𝑎, −1−2𝑏−2𝑐) = (1+2𝑎′, −1−2𝑏′−2𝑐′), (𝑎−𝑏, −𝑐) = (𝑎′−𝑏′,−𝑐′)

built from the entries of the third row of 𝑃 and 𝑃′ respectively. From this we
directly derive 𝑃 = 𝑃′. □

Theorem 4.5. For 𝜄 ∈ ℤ≥1, consider the set 𝑀𝜄 of triples 𝜂 = (𝜄+, 𝜄−, 𝑐), where
𝜄+, 𝜄− ∈ ℤ≥1 with lcm(𝜄+, 𝜄−) = 𝜄 and 𝑐 ∈ ℤ≤−1. Define subsets

𝑆11(2, 𝜄) ∶=
⎧

⎨
⎩

𝜂 ∈ 𝑀𝜄;
2 ∤ 𝜄+, 𝜄−, 3 ∤ 𝜄+, 𝜄−, 𝜄+ ≤ 𝜄−,

1 − 𝜄++𝜄−

2
≤ 𝑐 ≤ − 𝜄++𝜄−

4

⎫

⎬
⎭

,

𝑆12(2, 𝜄) ∶=
⎧

⎨
⎩

𝜂 ∈ 𝑀𝜄;
2 ∤ 𝜄+, 𝜄−, 3 ∤ 𝜄+, 𝜄+ ≤ 3𝜄−,

1 − 𝜄++3𝜄−

2
≤ 𝑐 ≤ − 𝜄++3𝜄−

4

⎫

⎬
⎭

,

𝑆21(2, 𝜄) ∶=
⎧

⎨
⎩

𝜂 ∈ 𝑀𝜄;
2 ∤ 𝜄+, 𝜄−, 3 ∤ 𝜄−, 3𝜄+ ≤ 𝜄−,

1 − 3𝜄++𝜄−

2
≤ 𝑐 ≤ − 3𝜄++𝜄−

4

⎫

⎬
⎭

,

𝑆22(2, 𝜄) ∶=
⎧

⎨
⎩

𝜂 ∈ 𝑀𝜄;
2 ∤ 𝜄+, 𝜄−, 𝜄+ ≤ 𝜄−,

1 − 3𝜄++3𝜄−

2
≤ 𝑐 ≤ − 3𝜄++3𝜄−

4

⎫

⎬
⎭

.

Then each set 𝑆𝑖𝑗(2, 𝜄) provides us with a series of defining matrices 𝑃𝜂 of full in-
trinsic quadric surfaces:
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𝜂 = (𝜄+, 𝜄−, 𝑐) ∈ 𝑆11(2, 𝜄)∶ 𝜂 = (𝜄+, 𝜄−, 𝑐) ∈ 𝑆12(2, 𝜄)∶

𝑃𝜂 =
⎡
⎢
⎢
⎣

−1 −1 1 1 0
−1 −1 0 0 2
𝜄+−1
2

− 𝜄−+1
2

− 𝑐 0 𝑐 1

⎤
⎥
⎥
⎦

, 𝑃𝜂 =
⎡
⎢
⎢
⎣

−1 −1 1 1 0
−1 −1 0 0 2
𝜄+−1
2

− 3𝜄−+1
2

− 𝑐 0 𝑐 1

⎤
⎥
⎥
⎦

,

𝜂 = (𝜄+, 𝜄−, 𝑐) ∈ 𝑆21(2, 𝜄)∶ 𝜂 = (𝜄+, 𝜄−, 𝑐) ∈ 𝑆22(2, 𝜄)∶

𝑃𝜂 =
⎡
⎢
⎢
⎣

−1 −1 1 1 0
−1 −1 0 0 2
3𝜄+−1
2

− 𝜄−+1
2

− 𝑐 0 𝑐 1

⎤
⎥
⎥
⎦

, 𝑃𝜂 =
⎡
⎢
⎢
⎣

−1 −1 1 1 0
−1 −1 0 0 2
3𝜄+−1
2

− 3𝜄−+1
2

− 𝑐 0 𝑐 1

⎤
⎥
⎥
⎦

.

Each𝑋(𝑃𝜂) is of Picard number 2, Gorenstein index 𝜄 = lcm(𝜄+, 𝜄−), and 𝜄+, 𝜄− are
the local Gorenstein indices and −𝑐 local class group order of

𝑥+ = [0, 1, 0, 1, 0], 𝑥− = [1, 0, 1, 0, 0], 𝑥1 = [1, 1, 0, 0, 𝐼].

Every full intrinsic quadric surface of Picard number 2 and Gorenstein index 𝜄 is
isomorphic to 𝑋(𝑃𝜂) for precisely one 𝑃𝜂 from the above list.

Proof. Let 𝑋 be a full intrinsic quadric surface of Picard number two. Then
Proposition 4.4 allows us to assume 𝑋 = 𝑋(𝑃) with

𝑃 =
⎡
⎢
⎣

−1 −1 1 1 0
−1 −1 0 0 2
𝑎 𝑏 0 𝑐 1

⎤
⎥
⎦
,

𝑏<𝑎, 𝑐<0, 𝑎≥0,

𝑏+𝑐≤−1, 𝑎−𝑏≤−𝑐,

𝑎≤−𝑏−𝑐−1.

Consider the anticanonical divisor −𝒦 = 𝐷3 + 𝐷4 + 𝐷5 on 𝑋(𝑃). The linear
forms 𝑢± representing the 𝜄±-fold of −𝒦 near 𝑥± are given by

𝑢+ = [𝜄+,
(𝑎 − 1)𝜄+

1 + 2𝑎 , 3𝜄+

1 + 2𝑎 ] ,

and

𝑢− = [
(2𝑏 − 𝑐 + 1)𝜄−

2𝑏 + 2𝑐 + 1
,
(𝑏 + 𝑐 − 1)𝜄−

2𝑏 + 2𝑐 + 1
, − 3𝜄−

2𝑏 + 2𝑐 + 1
] .

By the definition of the local Gorenstein index, these are primitive integral vec-
tors. Together with the fact that 𝜄± divides cl(𝑋, 𝑥±), we obtain

3𝜄+ = 𝑦+(1 + 2𝑎), 1 + 2𝑎 = 𝑧+𝜄+,

3𝜄− = −𝑦−(2𝑏 + 2𝑐 + 1), −(2𝑏 + 2𝑐 + 1) = 𝑧−𝜄−

with positive integers 𝑦± and 𝑧±. We conclude 𝑦+𝑧+ = 3 and 𝑦−𝑧− = 3. This
leaves us with the following four cases:

Case 1.1: 𝑦+ = 3, 𝑦− = 3. Then we have 𝜄+ = 1 + 2𝑎 and 𝜄− = −2𝑏 − 2𝑐 − 1.
Solving for 𝑎 in the first equation, for 𝑏 in the second one and substituting gives

𝑢+ = [𝜄+, 𝜄
+ − 3
2 , 3] , 𝑢− = [𝜄− + 3𝑐, 𝜄

− + 3
2 , −3] .
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We conclude that 𝜄+ as well as 𝜄− is odd and none of them is divisible by three.
Substituting also in 𝑃 and the conditions on its entries leads to setting 𝑆11(2, 𝜄).

Case 1.2: 𝑦+ = 3, 𝑦− = 1. Then we have 𝜄+ = 1 + 2𝑎 and 3𝜄− = −2𝑏 − 2𝑐 − 1.
Solving for 𝑎 in the first equation, for 𝑏 in the second one and substituting gives

𝑢+ = [𝜄+, 𝜄
+ − 3
2 , 3] , 𝑢− = [𝜄− + 𝑐, 𝜄

− + 1
2 , −1] .

We conclude that 𝜄+ as well as 𝜄− is odd and 𝜄+ is not divisible by three. Substi-
tuting also in 𝑃 and the conditions on its entries leads to setting 𝑆12(2, 𝜄).

Case 2.1: 𝑦+ = 1, 𝑦− = 3. Then we have 3𝜄+ = 1 + 2𝑎 and 𝜄− = −2𝑏 − 2𝑐 − 1.
Solving for 𝑎 in the first equation, for 𝑏 in the second one and substituting gives

𝑢+ = [𝜄+, 𝜄
+ − 1
2 1, ] , 𝑢− = [𝜄− + 3𝑐, 𝜄

− + 3
2 , −3] .

We conclude that 𝜄+ as well as 𝜄− is odd and 𝜄− is not divisible by three. Substi-
tuting also in 𝑃 and the conditions on its entries leads to setting 𝑆21(2, 𝜄).

Case 2.2: 𝑦+ = 1, 𝑦− = 1. Then we have 3𝜄+ = 1 + 2𝑎 and 3𝜄− = −2𝑏 − 2𝑐 − 1.
Solving for 𝑎 in the first equation, for 𝑏 in the second one and substituting gives

𝑢+ = [𝜄+, 𝜄
+ − 1
2 , 1] , 𝑢− = [𝜄− + 𝑐, 𝜄

− + 1
2 , −1] .

We conclude that 𝜄+ as well as 𝜄− is odd. Substituting also in 𝑃 and the condi-
tions on its entries leads to setting 𝑆22(2, 𝜄).

We showed that every full intrinsic quadric surface of Picard number two is
isomorphic to some 𝑋(𝑃𝜂) with 𝑃𝜂 as in the assertion. Moreover, 𝑥0 and 𝑥1 are
of local Gorenstein index one, see [13, Prop. 8.8 (iii)], we obtain that 𝑋(𝑃𝜂) has
Gorenstein index 𝜄 = lcm(𝜄+, 𝜄−). Conversely, one directly checks that every
matrix 𝑃 from the assertion defines a full intrinsic quadric surface of Picard
number two and Gorenstein index 𝜄 = lcm(𝜄+, 𝜄−).
Finally, wewant to see that thematrices 𝑃𝜂 listed in the assertion define pair-

wise non-isomorphic𝑋(𝑃𝜂). Due to Proposition 4.4, thismeans to show that the
sets 𝑆𝑖𝑗(2, 𝜄) are pairwise disjoint. With the aid of Proposition 4.3, we compare
the local Gorenstein indices 𝜄± and the local class group orders cl(𝑋, 𝑥±):

𝑆11(2, 𝜄) 𝑆12(2, 𝜄) 𝑆21(2, 𝜄) 𝑆22(2, 𝜄)

(𝜄+, cl(𝑋, 𝑥+)) (𝜄+, 𝜄+) (𝜄+, 𝜄+) (𝜄+, 3𝜄+) (𝜄+, 3𝜄+)

(𝜄−, cl(𝑋, 𝑥−)) (𝜄−, 𝜄−) (𝜄−, 3𝜄−) (𝜄−, 𝜄−) (𝜄−, 3𝜄−)

The listed pairs are invariants of the surface 𝑋(𝑃𝜂) up to switching 𝑥+ and 𝑥−.
Thus, we see that 𝑆11(2, 𝜄) as well as 𝑆22(2, 𝜄) has trivial intersection with any
other 𝑆𝑖𝑗(2, 𝜄). For 𝑆12(2, 𝜄), observe 𝜄+ < 3𝜄−, as we have 3 ∤ 𝜄+. Similarly,
3𝜄+ < 𝜄− holds for 𝑆21(3, 𝜄). Thus, in both cases, cl(𝑋, 𝑥+) is the strictly smallest
of cl(𝑋, 𝑥±). Consequently, 𝑆12(2, 𝜄) and 𝑆21(2, 𝜄) intersect trivially. □
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Example 4.6. Consider the full intrinsic quadric surfaces 𝑋 and 𝑋′ of Picard
number two given by the defining matrices

𝑃 =
⎡
⎢
⎣

−1 −1 1 1 0
−1 −1 0 0 2
0 −1 0 −1 1

⎤
⎥
⎦
, 𝑃′ =

⎡
⎢
⎣

−1 −1 1 1 0
−1 −1 0 0 2
1 0 0 −2 1

⎤
⎥
⎦
.

Then 𝑋 stems from the series 𝑆12(2, 𝜄) and 𝑋′ from 𝑆22(2, 𝜄). Theorem 4.5 yields
that𝑋 and𝑋′ are the onlyGorenstein full intrinsic quadric surfaceswith𝜌(𝑋) =
2.

We conclude the section by taking a look at the possible contractions of the
two-dimensional full intrinsic quadrics. Recall that a contraction of a prime
divisor 𝐷 on a normal variety 𝑋 is a proper birational morphism 𝜋∶ 𝑋 → 𝑋′

such that the image 𝜋(𝐷) is of codimension at least two in 𝑋′ and 𝑋 ⧵ 𝐷 maps
isomorphically onto 𝑋′ ⧵ 𝜋(𝐷).

Proposition 4.7. Let 𝑋 = 𝑋(𝑃) arise from Construction 4.1. At most the prime
divisors𝐷1,… , 𝐷4 ⊆ 𝑋 are contractible and all possible contractions are projective
toric surfaces of Picard number one. More precisely,

𝐷1 ∶ 𝑏 ≥ 0

[ −1 −1 2
𝑏 𝑏+𝑐 1 ]

𝐷2 ∶ 𝑎+𝑐 ≤ −1

[ −1 −1 2
𝑎 𝑎+𝑐 1 ]

𝐷3 ∶ 𝑎+𝑐 ≥ 0

[ −1 −1 2
𝑎+𝑐 𝑏+𝑐 1 ]

𝐷4 ∶ 𝑏 ≤ −1

[ −1 −1 2
𝑎 𝑏 1 ]

gives us for each 𝐷𝑖 the characterizing property of contractibility in terms of the
entries𝑎, 𝑏, 𝑐 of𝑃 and, for the case that𝐷𝑖 is contractible, also the generatormatrix
of the contracted surface.

Proof. By [13, Rem. 10.4 (i) and Prop. 10.8], the contractible prime divisors are
among the 𝐷𝑖 = 𝑉(𝑇𝑖) ⊆ 𝑋, where 𝑖 = 1,… , 5. The same references show that
the divisor 𝐷5 is not contractible. Recall that the matrix 𝑃 is given as

𝑃 = [𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5] =
⎡
⎢
⎣

−1 −1 1 1 0
−1 −1 0 0 2
𝑎 𝑏 0 𝑐 1

⎤
⎥
⎦
,

𝑏<𝑎, 𝑐<0, 𝑎≥0,

𝑏+𝑐≤−1, 𝑎−𝑏≤−𝑐,

𝑎≤−𝑏−𝑐−1.

The task is to characterize contractibility for each of𝐷1,… , 𝐷4 and to determine
the possible contraction in terms of the entries of 𝑃. We exemplarily perform
this for the divisor 𝐷1. Consider the matrix

𝑃1 ∶= [𝑣2, 𝑣3, 𝑣4, 𝑣5] =
⎡
⎢
⎣

−1 1 1 0
−1 0 0 2
𝑏 0 𝑐 1

⎤
⎥
⎦
,

obtained from 𝑃 by removing the colmun 𝑣1, which corresponds the prime di-
visor 𝐷1 ⊆ 𝑋. Then 𝐷1 is contractible if and only if 𝑃1 is a defining matrix of a
𝕂∗-surface. The latter in turn holds if and only if

𝑚+ = 𝑏 + 1
2 > 0,
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as 𝑃1 inherits all the other properties from 𝑃. Thus, 𝐷1 is contractible if and
only if 𝑏 ≥ 0 holds. If so, then contracing 𝐷1 gives the 𝕂∗-surface 𝑋1 defined
by 𝑃1. Via admissible operations, we can turn 𝑃1 into the shape

𝑃1 =
⎡
⎢
⎣

−1 −1 1 0
−1 −1 0 2
𝑏 𝑏 + 𝑐 0 1

⎤
⎥
⎦
.

Indeed, we swap the first two column blocks, re-arrange the shape and then
subtract the 𝑏-fold of the first row from the last one. The makes the third col-
umn erasable [13, Def. 6.2] and we obtain a defining matrix

𝑃′1 = [ −1 −1 2
𝑏 𝑏 + 𝑐 1 ]

by erasing the third column [13, Def. 6.3, Prop. 6.7]. This process reflects remov-
ing the redundant Cox ring generator 𝑇3 = 𝑇1𝑇2 − 𝑇24 in the first presentation
of 𝑋1. We conclude that 𝑋1 is the toric surface defined by the generator matrix
𝑃′1. □

Remark 4.8. Consider the two Gorenstein full intrinsic quadric surfaces 𝑋
and 𝑋′ of Picard number two from Example 4.6.

(1) In the surface 𝑋, the contractible divisors are 𝐷2 and 𝐷4. In each case,
the contracted surface is the projective plane ℙ2.

(2) In the surface 𝑋′, the contractible divisors are 𝐷1 and 𝐷2. In each case,
the contracted surface is the weighted projective plane ℙ(1, 2, 3).

5. Picard number three
The main result of this section, Theorem 5.5, provides the description of

all full intrinsic quadric surfaces of Picard number three in terms of the local
Gorenstein indices of two of their possibly singular points and the local class
group orders of two further possibly singular points.

Construction 5.1 (Full intrinsic quadric surfaces 𝑋 of Picard number three as
𝕂∗-surfaces). Consider an integral matrix of the form

𝑃 ∶= [𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6] ∶=
⎡
⎢
⎣

−1 −1 1 1 0 0
−1 −1 0 0 1 1
𝑎 𝑏 0 𝑐 0 𝑑

⎤
⎥
⎦
,

𝑎>𝑏, 0>𝑐, 0>𝑑,

𝑎−𝑏≥−𝑐≥−𝑑,

𝑏+𝑐+𝑑<0<𝑎,

𝑎≤−𝑏−𝑐−𝑑.

Let 𝑍 be the toric variety arising from the fan Σ in ℤ3 with generator matrix 𝑃
and the maximal cones

𝜎+ ∶= cone(𝑣1, 𝑣3, 𝑣5), 𝜎− ∶= cone(𝑣2, 𝑣4, 𝑣6),
𝜏0 ∶= cone(𝑣1, 𝑣2), 𝜏1 ∶= cone(𝑣3, 𝑣4), 𝜏2 ∶= cone(𝑣5, 𝑣6).

Denote by𝑈1, 𝑈2, 𝑈3 the coordinate functions on the standard 3-torus 𝕋3 ⊆ 𝑍.
Then we obtain a normal, non-toric, rational, projective surface

𝑋 ∶= 𝑋(𝑃) ∶= 𝑉(ℎ) ⊆ 𝑍, ℎ ∶= 1 +𝑈1 +𝑈2 ∈ 𝒪(𝕋3).
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Moreover, the𝕂∗-action on 𝕋3 given by 𝑡 ⋅𝑥 = (𝑥1, 𝑥2, 𝑡𝑥3) extends to an action
on 𝑍, it leaves 𝑉(ℎ) ⊆ 𝕋3 invariant and hence induces a 𝕂∗-action on 𝑋.

Proposition 5.2. Consider 𝑃 and 𝑋 ⊆ 𝑍 as in Construction 5.1, let 𝑃∗ be the
transpose of 𝑃 and set𝐾 ∶= ℤ6∕ im(𝑃∗). For the divisor class group of𝑋, we have
Then the divisor class group of 𝑋 equals that of 𝑍 and is given by

Cl(𝑋) ≅ Cl(𝑍) ≅ 𝐾 ≅ ℤ3 ×ℤ ∕ gcd(𝑎, 𝑏, 𝑐, 𝑑)ℤ.

Moreover, denoting by 𝑄∶ ℤ6 → 𝐾 the projection, we obtain the following de-
scription of the Cox ring of 𝑋 as a graded algebra:

ℛ(𝑋) ≅ 𝕂[𝑇1,… , 𝑇6]∕⟨𝑇1𝑇2 + 𝑇3𝑇4 + 𝑇5𝑇6⟩, deg(𝑇𝑖) = 𝑄(𝑒𝑖) = [𝐷𝑖],

where 𝐷𝑖 ⊆ 𝑋 is the prime divisor on 𝑋 obtained by intersecting 𝑋 with the toric
prime divisor of 𝑍 given by the ray through 𝑣𝑖 and [𝐷𝑖] ∈ Cl(𝑋) denotes its class.

Proof of Construction 3.1 and Proposition 3.2. Due to their definition, the
columns 𝑣1,… , 𝑣6 of 𝑃 are pairwise different primitive integral vectors. More-
over, they generate ℚ3 as a convex cone, as we have

𝑣1+𝑣3+𝑣5 = [0, 0, 𝑎], 𝑎 > 0, 𝑣2+𝑣4+𝑣6 = [0, 0, 𝑏+ 𝑐+𝑑], 𝑏+ 𝑐+𝑑 < 0.

Consequently, 𝑃 is a definingmatrix of a rational projective𝕂∗-surface𝑋′ in the
sense of [3, Constr. 5.4.1.3 and 5.4.1.6 (e-e)]. Again, one shows 𝑋′ = 𝑋 exactly
as in the case of Picard number one, and the same reference gives the desired
statements on the divisor class group and the Cox ring. □

Proposition 5.3. Let 𝑋 = 𝑋(𝑃) arise from Construction 5.1. The fixed points of
the𝕂∗-action on 𝑋 are given in Cox coordinates by

𝑥+ ∶= [0, 1, 0, 1, 0, 1], 𝑥− ∶= [1, 0, 1, 0, 1, 0],

𝑥0 ∶= [0, 0, 1, 1, 1,−1], 𝑥1 ∶= [1, 1, 0, 0, 1,−1], 𝑥2 ∶= [1, 1, 1,−1, 0, 0].
Moreover, the orders of the local class groups of the fixed points of the 𝕂∗-action
are given by

cl(𝑋, 𝑥+) = 𝑎, cl(𝑋, 𝑥−) = −𝑏 − 𝑐 − 𝑑,
cl(𝑋, 𝑥0) = 𝑎 − 𝑏, cl(𝑋, 𝑥1) = −𝑐, cl(𝑋, 𝑥2) = −𝑑.

Finally, the ordered tuples (𝑎, −𝑏 − 𝑐 − 𝑑) and (𝑎 − 𝑏, −𝑐, −𝑑) are isomorphy
invariants of the algebraic surface 𝑋.

Proof. As in the previous section, the references from the proof of Proposi-
tion 3.3 deliver the description of the fixed points and show that the local class
group orders of 𝑥+, 𝑥−, 𝑥0, 𝑥1 and 𝑥2 are

det[𝑣1, 𝑣3, 𝑣5], det[𝑣2, 𝑣4, 𝑣6],

det [ −1 −1
𝑎 𝑏 ] , −det

[ 1 1
0 𝑐

]
, −det [ 1 1

0 𝑑 ] .

Similarly as in the corresponding earlier proofs, 𝑥+, 𝑥− are the only fixed points
lying in the closure of infinitely many orbits and each of 𝑥0, 𝑥1, 𝑥2 lies in the
closure of precisely two non-trivial orbits. Thus, the sets {cl(𝑋, 𝑥+), cl(𝑋, 𝑥−)}
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and {cl(𝑋, 𝑥0), cl(𝑋, 𝑥1), cl(𝑋, 𝑥2)} are invariants of the𝕂∗-surface𝑋. Again, the
assertion follows from the fact that on a non-toric, rational, projective, surface
any two 𝕂∗-actions are conjugate in the automorphism group. □

Proposition 5.4. Every full intrinsic quadric surface 𝑋 of Picard number three
is isomorphic to an 𝑋(𝑃) for precisely one matrix 𝑃 from Construction 5.1.

Proof. Applying oncemore Theorem2.3 and [18, Ex. 7.1], yields that the defin-
ing matrix 𝑃 is of the format 3 × 6 and the first two rows look as wanted:

𝑃 =
⎡
⎢
⎣

−1 −1 1 1 0 0
−1 −1 0 0 1 1
𝑑1 𝑑2 𝑑3 𝑑4 𝑑5 𝑑6

⎤
⎥
⎦
.

Again, suitable admissible operations [13, Def. 6.3] bring us to the setting of
Construction 5.1. First, adding suitable multiples of the first two rows to the
last one, we achieve

𝑃 =
⎡
⎢
⎣

−1 −1 1 1 0 0
−1 −1 0 0 1 1
𝑎 𝑏 0 𝑐 0 𝑑

⎤
⎥
⎦
.

Second, swapping columns inside the pairs (𝑣1, 𝑣2), (𝑣3, 𝑣4) and (𝑣5, 𝑣6) and re-
arranging via the first step, we achieve that 𝑃 is slope-ordered, meaning

𝑎 > 𝑏, 0 > 𝑐, 0 > 𝑑.

Third, suitable swapping the columns blocks [𝑣1, 𝑣2], [𝑣3, 𝑣4] and [𝑣5, 𝑣6] and
re-adjusting the entries, we can ensure

𝑎 − 𝑏 ≥ −𝑐 ≥ −𝑑.

As for any definingmatrix of a rational𝕂∗-surfacewith two elliptic fixed points,
slope orderedness implies

𝑎 =∶ 𝑚+ > 0, 𝑏 + 𝑐 + 𝑑 =∶ 𝑚− < 0.

Multiplying the last row by −1 turns 𝑚± into 𝑚∓. Doing so, if necessary, and
re-arranging via the first two steps yields

𝑎 ≤ −𝑏 − 𝑐 − 𝑑.

We show that 𝑋(𝑃) ≅ 𝑋(𝑃′) with matrices 𝑃 and 𝑃′ as in Construction 5.1
implies 𝑃 = 𝑃′. Proposition 5.3 yields equality of the ordered tuples

(𝑎, −𝑏−𝑐−𝑑) = (𝑎′, −𝑏′−𝑐′−𝑑′), (𝑎−𝑏, −𝑐, −𝑑) = (𝑎′−𝑏′, −𝑐′, −𝑑′)

built from the entries of the third row of 𝑃 and 𝑃′ respectively. From this, we
directly derive 𝑃 = 𝑃′. □
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Theorem5.5. For 𝜄 ∈ ℤ≥1, consider the set𝑀𝜄 of 4-tuples 𝜂 = (𝜄+, 𝜄−, 𝑐, 𝑑), where
𝜄+, 𝜄− ∈ ℤ≥1 with lcm(𝜄+, 𝜄−) = 𝜄 and 𝑐, 𝑑 ∈ ℤ≤−1. Define subsets

𝑆11(3, 𝜄) ∶= {𝜂 ∈ 𝑀𝜄;
2 ∤ 𝜄+, 𝜄−, 𝜄+ ≤ 𝜄−, 𝑐 ≤ 𝑑 ≤ −1,
−𝜄+ − 𝜄− ≤ 2𝑐 + 𝑑

} ,

𝑆12(3, 𝜄) ∶= {𝜂 ∈ 𝑀𝜄;
2 ∤ 𝜄+, 𝜄+ ≤ 2𝜄−, 𝑐 ≤ 𝑑 ≤ −1,
−𝜄+ − 2𝜄− ≤ 2𝑐 + 𝑑

} ,

𝑆21(3, 𝜄) ∶= {𝜂 ∈ 𝑀𝜄;
2 ∤ 𝜄−, 2𝜄+ ≤ 𝜄−, 𝑐 ≤ 𝑑 ≤ −1,
−2𝜄+ − 𝜄− ≤ 2𝑐 + 𝑑

} ,

𝑆22(3, 𝜄) ∶= {𝜂 ∈ 𝑀𝜄;
𝜄+ ≤ 𝜄−, 𝑐 ≤ 𝑑 ≤ −1,
−2𝜄+ − 2𝜄− ≤ 2𝑐 + 𝑑

} .

Then each set 𝑆𝑖𝑗(3, 𝜄) provides us with a series of defining matrices 𝑃𝜂 of full in-
trinsic quadric surfaces:

𝜂 = (𝜄+, 𝜄−, 𝑐, 𝑑) ∈ 𝑆11(3, 𝜄)∶ 𝜂 = (𝜄+, 𝜄−, 𝑐, 𝑑) ∈ 𝑆12(3, 𝜄)∶

𝑃𝜂 =
⎡
⎢
⎣

−1 −1 1 1 0 0
−1 −1 0 0 1 1
𝜄+ −𝜄− − 𝑐 − 𝑑 0 𝑐 0 𝑑

⎤
⎥
⎦
, 𝑃𝜂 =

⎡
⎢
⎣

−1 −1 1 1 0 0
−1 −1 0 0 1 1
𝜄+ −2𝜄− − 𝑐 − 𝑑 0 𝑐 0 𝑑

⎤
⎥
⎦
,

𝜂 = (𝜄+, 𝜄−, 𝑐, 𝑑) ∈ 𝑆21(3, 𝜄)∶ 𝜂 = (𝜄+, 𝜄−, 𝑐, 𝑑) ∈ 𝑆22(3, 𝜄)∶

𝑃𝜂 =
⎡
⎢
⎣

−1 −1 1 1 0 0
−1 −1 0 0 0 0
2𝜄+ −𝜄− − 𝑐 − 𝑑 0 𝑐 0 𝑑

⎤
⎥
⎦
, 𝑃𝜂 =

⎡
⎢
⎣

−1 −1 1 1 0 0
−1 −1 0 0 1 1
2𝜄+ −2𝜄− − 𝑐 − 𝑑 0 𝑐 0 𝑑

⎤
⎥
⎦
.

Each𝑋(𝑃𝜂) is of Picard number 3, Gorenstein index 𝜄 = lcm(𝜄+, 𝜄−), and 𝜄+, 𝜄− are
the local Gorenstein indices, −𝑐,−𝑑 the local class group orders of

𝑥+ = [0, 1, 0, 1, 0, 1], 𝑥− = [1, 0, 1, 0, 1, 0],

𝑥1 = [1, 1, 0, 0, 1,−1], 𝑥2 = [1, 1, 1,−1, 0, 0].

Every full intrinsic quadric surface of Picard number 3 and Gorenstein index 𝜄 is
isomorphic to 𝑋(𝑃𝜂) for precisely one 𝑃𝜂 from the above list.

Proof. Let 𝑋 be a full intrinsic quadric surface of Picard number three. Then
Construction 5.1 and Proposition 5.4 allow us to assume 𝑋 = 𝑋(𝑃) with

𝑃 =
⎡
⎢
⎣

−1 −1 1 1 0 0
−1 −1 0 0 1 1
𝑎 𝑏 0 𝑐 0 𝑑

⎤
⎥
⎦
,

𝑎>𝑏, 0>𝑐, 0>𝑑,

𝑎−𝑏≥−𝑐≥−𝑑,

𝑏+𝑐+𝑑<0<𝑎,

𝑎≤−𝑏−𝑐−𝑑.

Consider anticanonical divisor −𝒦 = 𝐷3 + 𝐷4 + 𝐷5 + 𝐷6 on 𝑋(𝑃). The linear
forms 𝑢± representing the 𝜄±-fold of −𝒦 near 𝑥± are given as
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𝑢+ = [𝜄+, 𝜄+, 2𝜄
+

𝑎 ] , 𝑢− = [
(𝑏 − 𝑐 + 𝑑)𝜄−

𝑏 + 𝑐 + 𝑑
,
(𝑏 + 𝑐 − 𝑑)𝜄−

𝑏 + 𝑐 + 𝑑
, − 2𝜄−

𝑏 + 𝑐 + 𝑑
] .

By the definition of the local Gorenstein index, these are primitive integral vec-
tors. Together with the fact that 𝜄± divides cl(𝑋, 𝑥±), we obtain

2𝜄+ = 𝑦+𝑎, 𝑎 = 𝑧+𝜄+,

2𝜄− = −𝑦−(𝑏 + 𝑐 + 𝑑), −(𝑏 + 𝑐 + 𝑑) = 𝑧−𝜄−

with positive integers 𝑦± and 𝑧±. We conclude 𝑦+𝑧+ = 2 and 𝑦−𝑧− = 2. The
possible constellations of (𝑦+, 𝑦−) yield the following four cases:

Case 1.1: 𝑎 = 𝜄+, 𝑏 = −𝜄− − 𝑐 − 𝑑. Inserting this, we see that 𝑃 arises from
𝑆11(3, 𝜄) and its entries satisfy the required estimates. Moreover, 𝑢± become

𝑢+ =
[
𝜄+, 𝜄+, 2

]
, 𝑢− = [2𝑐 + 𝜄−, 2𝑑 + 𝜄−, −2] .

As these are integral primitive vectors, we see that 𝜄+ as well as 𝜄− are odd and
that 𝜄± are indeed the local Gorenstein indices of 𝑥±.

Case 1.2: 𝑎 = 𝜄+, 𝑏 = −2𝜄− − 𝑐− 𝑑. As in the previous subcase, inserting shows
that 𝑃 stems from 𝑆12(3, 𝜄). Note that this time we have

𝑢+ =
[
𝜄+, 𝜄+, 2

]
, 𝑢− = [𝑐 + 𝜄−, 𝑑 + 𝜄−, −1] .

Thus, 𝜄+ is odd andwe have no divisibility condition on 𝜄−. As before, we obtain
that 𝜄± are indeed the local Gorenstein indices of 𝑥±.

Case 2.1: 𝑎 = 2𝜄+, 𝑏 = −𝜄− − 𝑐 − 𝑑. Inserting shows that 𝑃 is given by 𝑆21(3, 𝜄)
and its entries satisfy the required estimates. Moreover, we have

𝑢+ =
[
𝜄+, 𝜄+, 1

]
, 𝑢− =

[
2𝑐 + 𝜄−, 2𝑑 + 2𝜄+ + 𝜄−, −2

]
.

Thesemust be integral primitive vectors. Consequently, 𝜄− is odd andwe obtain
that 𝜄± are indeed the local Gorenstein indices of 𝑥±.

Case 2.2: 𝑎 = 2𝜄+, 𝑏 = −2𝜄− − 𝑐 − 𝑑. Inserting shows that the matrix 𝑃 arises
from 𝑆22(3, 𝜄). Moreover, the linear forms 𝑢± are given by

𝑢+ =
[
𝜄+, 𝜄+, 1

]
, 𝑢− =

[
𝑐 + 𝜄−, 𝑑 + 𝜄+ + 𝜄−, −1

]
.

Thus, there are no divisibility conditions on 𝜄± and we see that 𝜄± are indeed the
local Gorenstein indices of 𝑥±.

We showed that every full intrinsic quadric surface of Picard number three
is isomorphic to some 𝑋(𝑃) with 𝑃 as in the assertion. Moreover, as the points
𝑥0, 𝑥1, 𝑥2 ∈ 𝑋(𝑃) are all of localGorenstein index one, see [13, Prop. 8.9 (iii)], we
obtain that 𝑋(𝑃) has Gorenstein index 𝜄 = lcm(𝜄+, 𝜄−). Conversely, one directly
checks that every matrix 𝑃 from the assertion defines a full intrinsic quadric
surface of Picard number three and Gorenstein index 𝜄 = lcm(𝜄+, 𝜄−).
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Finally, we want to see that the matrices 𝑃 listed in the assertion define pair-
wise non-isomorphic𝑋(𝑃). According to Proposition 5.4, this amounts to show-
ing that the sets 𝑆𝑖𝑗(3, 𝜄) are pairwise disjoint. Weuse Proposition 5.3 to compare
the local Gorenstein indices 𝜄± and the local class group orders cl(𝑋, 𝑥±):

𝑆11(3, 𝜄) 𝑆12(3, 𝜄) 𝑆21(3, 𝜄) 𝑆22(3, 𝜄)

(𝜄+, cl(𝑋, 𝑥+)) (𝜄+, 𝜄+) (𝜄+, 𝜄+) (𝜄+, 2𝜄+) (𝜄+, 2𝜄+)

(𝜄−, cl(𝑋, 𝑥−)) (𝜄−, 𝜄−) (𝜄−, 2𝜄−) (𝜄−, 𝜄−) (𝜄−, 2𝜄−)

The listed pairs are invariants of the surface up to switching 𝑥+ and 𝑥−. Thus,
we see that 𝑆11(3, 𝜄) as well as 𝑆22(3, 𝜄) has trivial intersection with any other
𝑆𝑖𝑗(3, 𝜄). For 𝑆12(3, 𝜄), observe 𝜄+ < 2𝜄− as 𝜄+ is odd. Similarly, for 𝑆21(3, 𝜄), we
have 2𝜄+ < 𝜄−. Thus, in both cases, cl(𝑋, 𝑥+) is the strictly smallest of cl(𝑋, 𝑥±).
It follows that 𝑆12(3, 𝜄) and 𝑆21(3, 𝜄) intersect trivially. □

Example 5.6. Consider the full intrinsic quadric surfaces 𝑋 and 𝑋′ of Picard
number three given by the defining matrices

𝑃 =
⎡
⎢
⎣

−1 −1 1 1 0 0
−1 −1 0 0 1 1
1 0 0 −1 0 −1

⎤
⎥
⎦
, 𝑃′ =

⎡
⎢
⎣

−1 −1 1 1 0 0
−1 −1 0 0 1 1
2 0 0 −1 0 −1

⎤
⎥
⎦
.

Then 𝑋 stems from the series 𝑆12(3, 𝜄) and 𝑋′ from 𝑆22(3, 𝜄). Theorem 5.5 yields
that𝑋 and𝑋′ are the onlyGorenstein full intrinsic quadric surfaceswith𝜌(𝑋) =
3.

Proposition 5.7. Let 𝑋 = 𝑋(𝑃) arise from Construction 5.1. At most the prime
divisors𝐷1,… , 𝐷6 ⊆ 𝑋 are contractible and all possible contractions are projective
toric surfaces of Picard number two. More precisely,

𝐷1 ∶ 𝑏 ≥ 1

[ −1 −1 1 1
𝑏 𝑏+𝑐 0 𝑑 ]

𝐷2 ∶ 𝑎+𝑐+𝑑 ≤ −1

[ −1 −1 1 1
𝑎 𝑎+𝑐 0 𝑑 ]

𝐷3 ∶ 𝑎+𝑐 ≥ 1

[ −1 −1 1 1
𝑎+𝑐 𝑏+𝑐 0 𝑑 ]

𝐷4 ∶ 𝑏+𝑑 ≤ −1

[ −1 −1 1 1
𝑎 𝑏 0 𝑑 ]

𝐷5 ∶ 𝑎+𝑑 ≥ 1

[ −1 −1 1 1
𝑎+𝑑 𝑏+𝑑 0 𝑐 ]

𝐷6 ∶ 𝑏+𝑐 ≤ −1

[ −1 −1 1 1
𝑎 𝑏 0 𝑐 ]

gives us for each 𝐷𝑖 the characterizing property of contractibility in terms of the
entries 𝑎, 𝑏, 𝑐, 𝑑 of 𝑃 and, for the case that 𝐷𝑖 is contractible, also the generator
matrix of the contracted surface.

Proof. One succeeds by the same arguments as in the proof of Proposition 4.7.
□

Anormal surface singularity is of type𝐴𝑛 if the exceptional divisor of its min-
imal resolution is a string of 𝑛 smooth rational curves, each of self intersection
−2.
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Remark 5.8. Consider the two Gorenstein full intrinsic quadric surfaces 𝑋
and 𝑋′ of Picard number three from Example 5.6.

(1) On 𝑋, the contractible divisors are 𝐷2, 𝐷4 and 𝐷6. In each case, the
contracted surface is ℙ1 × ℙ1.

(2) On𝑋′, the contractible divisors are𝐷3, 𝐷4, 𝐷5 and𝐷6. In each case, the
contraction is the toric del Pezzo surface of Picard number 2 with two
singularities, both of type 𝐴1.

6. Geometry of full intrinsic quadric surfaces
We present direct applications of Theorems 3.5, 4.5 and 5.5, exploring the

geometry of full intrinsic quadric surfaces. In Corollary 6.4, we determine the
weighted resolution graphs for the canonical resolution of singularities. More-
over, Corollaries 6.3, 6.6 and 6.8 give explicit upper and lower bounds on the de-
gree, the log canonicity and the Picard index in terms of the Gorenstein index.
Finally, Corollary 6.9 characterizes the existence of Kähler-Einstein metrics in
terms of the Gorenstein index.
First, recall that a del Pezzo surface is a normal projective surface𝑋 admitting

an ample anticanonical divisor −𝒦𝑋 . Moreover, a del Pezzo surface 𝑋 is log
terminal if all the exceptional divisors of its minimal resolution of singularities
have discrepancies strictly bigger than −1; if so then one refers to 𝑋 also as a
log Pezzo surface.

Proposition 6.1. Every full intrinsic quadric surface𝑋 is a log del Pezzo surface.

Proof. Wemay assume𝑋 = 𝑋(𝑃). Then log terminality is a direct consequence
of [13, Cor. 8.12]. According to the possible values of the Picard number 𝜌 =
𝜌(𝑋), the degree 𝜇 ∈ Cl(𝑋) of the defining quadric of 𝑋 is given as

𝜇 =
⎧

⎨
⎩

𝑤1 + 𝑤2 = 2𝑤3 = 2𝑤4, 𝜌 = 1,
𝑤1 + 𝑤2 = 𝑤3 + 𝑤4 = 2𝑤5, 𝜌 = 2,
𝑤1 + 𝑤2 = 𝑤3 + 𝑤4 = 𝑤5 + 𝑤6, 𝜌 = 3,

where 𝑤𝑖 = deg(𝑇𝑖) ∈ Cl(𝑋). Due to [3, Prop. 3.3.3.2], the anticanonical class
of 𝑋 equals 𝑤1 + … + 𝑤𝜌+3 − 𝜇 and thus is a positive multiple of 𝜇. From [3,
Prop. 3.3.2.9] we infer that the cone of movable divisor classes of 𝑋 is given by

Mov(𝑋) =
𝜚+3⋂

𝑖=1
𝜏𝑖, 𝜏𝑖 ∶= cone(𝑤𝑗; 𝑗 ≠ 𝑖) ⊆ Clℚ(𝑋).

Observe that 𝜇 is an interior point of each 𝜏𝑖. As all involved cones are of full di-
mension, we obtain that𝜇 is an interior point ofMov(𝑋). Thus, [3, Prop. 3.3.2.9,
Thm. 4.3.3.5] show that 𝜇, and hence the anticanonical class of𝑋, is ample. □

Remark 6.2. The surfaces from Examples 3.6, 4.6, 5.6 are the only Gorenstein
two-dimensional full intrinsic quadrics. By Proposition 6.1 they are all log del
Pezzo and thus we recover them as well as the only full intrinsic quadrics in
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the classification of all rational Gorenstein log del Pezzo 𝕂∗-surfaces given in
[3, Thms. 5.4.4.2 to 5.4.4.5].

The (anticanonical) degree of a del Pezzo surface is the self intersection num-
ber𝒦2

𝑋 of an anticanonical divisor of 𝑋. For the full intrinsic quadric surfaces,
we obtain the following relations between the degree and the local Gorenstein
indices.

Corollary 6.3. Consider a full intrinsic quadric surface𝑋 = 𝑋(𝑃𝜂)with 𝑃𝜂 as in
Theorem 3.5, 4.5 or 5.5. Then the degree𝒦2

𝑋 of 𝑋 is given as

𝜌 = 1 ∶ 𝒦2
𝑋 =

1
𝜄+
+ 1

𝜄−
, 𝜂 ∈ 𝑆11(1, 𝜄), 𝒦2

𝑋 =
1
𝜄+
+ 2

𝜄−
, 𝜂 ∈ 𝑆12(1, 𝜄),

𝒦2
𝑋 =

2
𝜄+
+ 1

𝜄−
, 𝜂 ∈ 𝑆21(1, 𝜄), 𝒦2

𝑋 =
2
𝜄+
+ 2

𝜄−
, 𝜂 ∈ 𝑆22(1, 𝜄),

𝜌 = 2 ∶ 𝒦2
𝑋 =

9
2𝜄+

+ 9
2𝜄−
, 𝜂 ∈ 𝑆11(2, 𝜄), 𝒦2

𝑋 =
9
2𝜄+

+ 3
2𝜄−
, 𝜂 ∈ 𝑆12(2, 𝜄),

𝒦2
𝑋 =

3
2𝜄+

+ 9
2𝜄−
, 𝜂 ∈ 𝑆21(2, 𝜄), 𝒦2

𝑋 =
3
2𝜄+

+ 3
2𝜄−
, 𝜂 ∈ 𝑆22(2, 𝜄),

𝜌 = 3 ∶ 𝒦2
𝑋 =

4
𝜄+
+ 4

𝜄−
, 𝜂 ∈ 𝑆11(3, 𝜄), 𝒦2

𝑋 =
4
𝜄+
+ 2

𝜄−
, 𝜂 ∈ 𝑆12(3, 𝜄),

𝒦2
𝑋 =

2
𝜄+
+ 4

𝜄−
, 𝜂 ∈ 𝑆21(3, 𝜄), 𝒦2

𝑋 =
2
𝜄+
+ 2

𝜄−
, 𝜂 ∈ 𝑆22(3, 𝜄).

Here, 𝜌 is the Picard number, 𝜄 the Gorenstein index of 𝑋 and 𝜄± the local Goren-
stein index of 𝑥± ∈ 𝑋. Moreover, we obtain the following upper and lower bounds:

𝜌 = 1 ∶ 2
𝜄
≤ 𝒦2

𝑋 ≤ 1 + 4
𝜄
,

𝜌 = 2 ∶ 3
𝜄
≤ 𝒦2

𝑋 ≤
9
2
+ 9

2𝜄
,

𝜌 = 3 ∶ 4
𝜄
≤ 𝒦2

𝑋 ≤ 4 + 4
𝜄
.

Proof. First, assume 𝑋 = 𝑋(𝑃) with 𝑃 from Construction 3.1, 4.1 or 5.1. Tak-
ing any representative of the anticanonical class as listed in the proof of the
preceding proposition, we use the intersection numbers provided by [13, Sum-
mary 7.7], and compute according to the cases 𝜌 = 1, 2, 3:

𝒦2
𝑋 =

1
𝑎+1

− 1
𝑏+1

, 𝒦2
𝑋 =

9
4𝑎+2

− 9
2+4𝑏+4𝑐

, 𝒦2
𝑋 =

4
𝑎
− 4

𝑏+𝑐+𝑑
.

Inserting the values for 𝑎, 𝑏, 𝑐, 𝑑 from Theorems 3.5, 4.5 and 5.5 accordingly, we
obtain the desired presentations of the anticanonical self intersection number.
The estimates are then directly verified. □

We turn to the singularities of full intrinsic quadrics and consider the canon-
ical resolution of singularities in the sense of [25]; see also [3, Sec. 5.4.3].

Corollary 6.4. Consider a full intrinsic quadric surface 𝑋 = 𝑋(𝑃𝜂) with 𝑃𝜂 as
in Theorem 3.5, 4.5 or 5.5 and its canonical resolution of singularities. Then the
possible singularities 𝑥+, 𝑥−, 𝑥0, 𝑥1, 𝑥2 ∈ 𝑋 have the following resolution graphs:
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𝜌 = 1 ∶ 𝑥+, 3 𝑥−, 3 𝑥0, 𝜀−1

𝑆11(1,𝜄) −1−𝜄+−2 −2 −1−𝜄−−2 −2 −2 −2 −2
𝜀=𝜄++𝜄−

𝑆12(1,𝜄) −1−𝜄+−2 −2 −1− 𝜄−
2−2 −2 −2 −2 −2

𝜀=𝜄++ 𝜄−
2

𝑆21(1,𝜄) −1− 𝜄+
2

−2 −2 −1−𝜄−−2 −2 −2 −2 −2
𝜀= 𝜄+

2 +𝜄−

𝑆22(1,𝜄) −1− 𝜄+
2

−2 −2 −1− 𝜄−
2−2 −2 −2 −2 −2

𝜀= 𝜄+
2 + 𝜄−

2

𝜌 = 2 ∶ 𝑥+, 2 𝑥−, 2 𝑥0,
𝜄++𝜄−

2
+𝑐−1+𝜀 𝑥1, −1−𝑐

𝑆11(2,𝜄) − 1
2 −

𝜄+
2

−2 − 1
2 −

𝜄−
2−2 −2 −2 −2

𝜀=0
−2 −2 −2

𝑆12(2,𝜄) − 1
2 −

𝜄+
2

−2 − 1
2 −

3𝜄−
2−2 −2 −2 −2

𝜀=𝜄−
−2 −2 −2

𝑆21(2,𝜄) − 1
2 −

3𝜄+
2

−2 − 1
2 −

𝜄−
2−2 −2 −2 −2

𝜀=𝜄+
−2 −2 −2

𝑆22(2,𝜄) − 1
2 −

3𝜄+
2

−2 − 1
2 −

3𝜄−
2−2 −2 −2 −2

𝜀=𝜄++𝜄−
−2 −2 −2

𝜌 = 3 ∶ 𝑥+, 1 𝑥−, 1 𝑥0, 𝜄++𝜄−+𝑐+𝑑−1+𝜀 𝑥1, −1−𝑐 𝑥2, −1−𝑑

𝑆11(3,𝜄) −𝜄+ −𝜄− −2 −2 −2
𝜀=0

−2 −2 −2 −2 −2 −2

𝑆12(3,𝜄) −𝜄+ −2𝜄− −2 −2 −2
𝜀=𝜄−

−2 −2 −2 −2 −2 −2

𝑆21(3,𝜄) −2𝜄+ −𝜄− −2 −2 −2
𝜀=𝜄+

−2 −2 −2 −2 −2 −2

𝑆22(3,𝜄) −2𝜄+ −2𝜄− −2 −2 −2
𝜀=𝜄++𝜄−

−2 −2 −2 −2 −2 −2

Thenumbers after𝑥+, 𝑥−, 𝑥0, 𝑥1, 𝑥2 count their exceptional curves and theweights
of the vertices are the corresponding self intersection numbers. The canonical res-
olution is minimal unless 𝑥+ ∈ 𝑋 is smooth; the latter happens if and only if

𝜄+ = 1, 𝜂 ∈ 𝑆11(2, 𝜄) ∪ 𝑆12(2, 𝜄) ∪ 𝑆11(3, 𝜄) ∪ 𝑆12(3, 𝜄).

Proof. For 𝑋 = 𝑋(𝑃) with 𝑃 as in Construction 3.1, 4.1 or 5.1, we use
[3, Sec. 5.4.3] to determine the canonical resolution of singularities of 𝑋; see
also [13, Summary 8.2]. Then we compute the self intersection numbers of the
exceptional divisors according to [3, Sec. 5.4.2]; see also [13, Summary 7.7] and
insert the values of 𝑎, 𝑏, 𝑐, 𝑑 from Theorems 3.5, 4.5 and 5.5. □
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Remark 6.5. Corollary 6.4 tells us in particular the following about the singu-
larities of the Gorenstein full intrinsic quadric surfaces from Example 3.6, 4.6,
and 5.6.

(1) On 𝑋 from Example 3.6, the points 𝑥+, 𝑥− are singularities of type 𝐴3
and 𝑥0 is a singularity of type 𝐴1.

(2) On 𝑋 from Example 4.6, the points 𝑥+, 𝑥0, 𝑥1 are smooth and 𝑥− is a
singularity of type 𝐴2.

(3) On 𝑋′ from Example 4.6, the points 𝑥+, 𝑥− are singularities of type 𝐴2,
the point 𝑥1 is a singularity of type 𝐴1 and 𝑥0 is smooth.

(4) On 𝑋 from Example 5.6, the points 𝑥− is a singularity of type 𝐴1 and
𝑥+, 𝑥0, 𝑥1, 𝑥2 are smooth.

(5) On𝑋′ fromExample 5.6, the points𝑥+, 𝑥−, 𝑥0 are singularities of type𝐴1
and 𝑥1, 𝑥2 are smooth.

The singularity types of the Gorenstein log del Pezzo surfaces are well known
and we find those of our examples just discussed also in classification results,
as for instance [3, Thms. 5.4.4.2 to 5.4.4.5].

By the log canonicity of a log terminal projective surface 𝑋, we mean the
number 𝜀𝑋 ∶= 𝑎𝐸 +1, where 𝑎𝐸 is the minimal possible discrepancy appearing
among the exceptional divisors 𝐸 ⊆ �̃� of its minimal resolution of singularities.
Note that 1∕𝜄𝑋 is bounded by the log canonicity. Alexeev’s results [1] show in
particular that bounding the log canonicity gives finiteness for log del Pezzo
surfaces.

Corollary 6.6. Consider a full intrinsic quadric surface𝑋 = 𝑋(𝑃𝜂)with 𝑃𝜂 as in
Theorem 3.5, 4.5 or 5.5. Then the log canonicity 𝜀𝑋 of 𝑋 is given by

𝜌 = 1 ∶ 𝜀𝑋 = 1
𝜄−
, 𝜂 ∈ 𝑆11(1, 𝜄) ∪ 𝑆21(1, 𝜄), 𝜀𝑋 = 2

𝜄−
, 𝜂 ∈ 𝑆12(1, 𝜄) ∪ 𝑆22(1, 𝜄),

𝜌 = 2 ∶ 𝜀𝑋 = 3
𝜄−
, 𝜂 ∈ 𝑆11(2, 𝜄) ∪ 𝑆21(2, 𝜄), 𝜀𝑋 = 1

𝜄−
, 𝜂 ∈ 𝑆12(2, 𝜄) ∪ 𝑆22(2, 𝜄),

𝜌 = 3 ∶ 𝜀𝑋 = 2
𝜄−
, 𝜂 ∈ 𝑆11(3, 𝜄) ∪ 𝑆21(3, 𝜄), 𝜀𝑋 = 1

𝜄−
, 𝜂 ∈ 𝑆12(3, 𝜄) ∪ 𝑆22(3, 𝜄).

In particular, we obtain the following upper and lower bounds for the log canon-
icity 𝜀𝑋 of 𝑋:

𝜌 = 1 ∶ 1
𝜄 ≤ 𝜀𝑋 ≤

2
√
𝜄
, 𝜌 = 2 ∶ 1

𝜄 ≤ 𝜀𝑋 ≤
3
√
𝜄
, 𝜌 = 3 ∶ 1

𝜄 ≤ 𝜀𝑋 ≤
2
√
𝜄
.

In the proof, we make use of the anticanonical complex 𝒜𝑋 introduced in [4]
for varieties 𝑋 with a torus action of complexity one. This is a polyhedral com-
plex supported on the tropical variety, which in the case of full intrinsic quadric
surface 𝑋 = 𝑋(𝑃) ⊆ 𝑍 is given by

trop(𝑋) = 𝜏0 ∪ 𝜏1 ∪ 𝜏2, 𝜏𝑖 ∶= ℚ≥0 ⋅ 𝑒𝑖 +ℚ ⋅ 𝑒3,

where 𝑒1, 𝑒2, 𝑒3 ∈ ℚ3 are the canonical basis vectors and 𝑒0 = −𝑒1 − 𝑒2. The
anticanonical complex 𝒜𝑋 is bounded if and only if 𝑋 is log terminal and in
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this case, the discrepancy of a divisor 𝐸 on the minimal resolution of 𝑋 is given
as

𝑎𝐸 =
‖𝑣𝜚‖

‖𝑣′𝜚‖
− 1,

where 𝜚 ⊆ ℚ3 is the ray corresponding to 𝐸 the vector 𝑣𝜚 is the primitive lattice
vector in 𝜚 and 𝑣′𝜚 is the intersection point of 𝜚 and the boundary of 𝒜𝑋 . We
refer to [13, Sec. 9] for more background.

Proof. For 𝑋 = 𝑋(𝑃) with 𝑃 as in Construction 3.1, 4.1 or 5.1, we use the
anticanonical complex𝒜𝑋 to determine the minimal discrepancies. According
to [13, Thm. 9.17 (i) and (ii)], the maximal cells of𝒜𝑋 are given in terms of the
columns 𝑣𝑖 of the matrix 𝑃 as

𝜌 = 1 ∶ 𝑣+ = (𝑎 + 1)𝑒3, 𝑣− = (𝑏 + 1)𝑒3,
conv(0, 𝑣+, 𝑣1), conv(0, 𝑣1, 𝑣2), conv(0, 𝑣2, 𝑣−),
conv(0, 𝑣+, 𝑣3), conv(0, 𝑣3, 𝑣−),
conv(0, 𝑣+, 𝑣4), conv(0, 𝑣4, 𝑣−),

𝜌 = 2 ∶ 𝑣+ = 2𝑎+1
3
𝑒3, 𝑣− =

2𝑏+2𝑐+1
3

𝑒3,
conv(0, 𝑣+, 𝑣1), conv(0, 𝑣1, 𝑣2), conv(0, 𝑣2, 𝑣−),
conv(0, 𝑣+, 𝑣3), conv(0, 𝑣3, 𝑣4), conv(0, 𝑣4, 𝑣−),
conv(0, 𝑣+, 𝑣5), conv(0, 𝑣5, 𝑣−),

𝜌 = 3 ∶ 𝑣+ = 𝑎
2
𝑒3, 𝑣− =

𝑏+𝑐+𝑑
2

𝑒3,
conv(0, 𝑣+, 𝑣1), conv(0, 𝑣1, 𝑣2), conv(0, 𝑣2, 𝑣−),
conv(0, 𝑣+, 𝑣3), conv(0, 𝑣3, 𝑣4), conv(0, 𝑣4, 𝑣−),
conv(0, 𝑣+, 𝑣5), conv(0, 𝑣5, 𝑣6), conv(0, 𝑣6, 𝑣−).

Now [13, Thm. 9.17 (iii)] tells us that the discrepancies of the exceptional divi-
sors 𝐸+, 𝐸− corresponding to the rays through 𝑒3, −𝑒3 are given for 𝜌 = 1, 2, 3
by

1
𝑎+1

− 1, 1
−𝑏−1

− 1, 3
2𝑎+1

− 1, − 3
2𝑏+2𝑐+1

− 1, 2
𝑎
− 1, − 2

𝑏+𝑐+𝑑
− 1.

Moreover, these are obviously the minimal discrepancies of the canonical res-
olution. Inserting the values of 𝑎, 𝑏, 𝑐, 𝑑 from Theorems 3.5, 4.5 and 5.5, we
arrive at the assertion. □

Remark6.7. ByCorollary 6.6, the surfaces𝑋 fromExamples 3.6, 4.6 and 5.6 are
all of log canonicity 𝜀𝑋 = 1 in accordancewith the fact that they are Gorenstein.

The Picard index 𝔭𝑋 of a normal variety 𝑋 is the index [Cl(𝑋) ∶ Pic(𝑋)] of its
Picard group in its divisor class group. Note that the Gorenstein index always
divides the Picard index. Bounding the Picard index yields finiteness for del
Pezzo surfaces of Picard number one with torus action [26]; see also [17] for a
higher dimensional analogue in the special case of divisor class group ℤ.
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Corollary 6.8. Consider a full intrinsic quadric surface 𝑋 = 𝑋(𝑃𝜂) with 𝑃𝜂 as
in Theorem 3.5, 4.5 or 5.5. Then, according to the Picard number 𝜌 = 𝜌(𝑋), the
Picard index 𝔭 = 𝔭𝑋 of 𝑋 is given by

𝜌 = 1 ∶

𝔭 = 8𝜄+𝜄−(𝜄++𝜄−)
gcd(2𝜄+, 𝜄++𝜄−)

, 𝜂 ∈ 𝑆11(1,𝜄), 𝔭 = 4𝜄+𝜄−(2𝜄++𝜄−)
gcd(4𝜄+, 2𝜄++𝜄−)

, 𝜂 ∈ 𝑆12(1,𝜄),

𝔭 = 4𝜄+𝜄−(𝜄++2𝜄−)
gcd(2𝜄+, 𝜄++2𝜄−)

, 𝜂 ∈ 𝑆21(1,𝜄), 𝔭 = 2𝜄+𝜄−(𝜄++𝜄−)
gcd(2𝜄+, 𝜄++𝜄−)

, 𝜂 ∈ 𝑆22(1,𝜄),

𝜌 = 2 ∶

𝔭 = − 𝑐𝜄+𝜄−(𝜄++𝜄−+2𝑐)
gcd(2𝜄+, 𝜄++𝜄−, 2𝑐)

, 𝜂 ∈ 𝑆11(2,𝜄), 𝔭 = − 3𝑐𝜄+𝜄−(𝜄++3𝜄−+2𝑐)
gcd(2𝜄+, 𝜄++3𝜄−, 2𝑐)

, 𝜂 ∈ 𝑆12(2,𝜄),

𝔭 = − 3𝑐𝜄+𝜄−(3𝜄++𝜄−+2𝑐)
gcd(6𝜄+, 3𝜄++𝜄−, 2𝑐)

, 𝜂 ∈ 𝑆21(2,𝜄), 𝔭 = − 9𝑐𝜄+𝜄−(3𝜄++3𝜄−+2𝑐)
gcd(6𝜄+, 3𝜄++3𝜄−, 2𝑐)

, 𝜂 ∈ 𝑆22(2,𝜄),

𝜌 = 3 ∶

𝔭 = 𝑐𝑑𝜄+𝜄−(𝜄++𝜄−+𝑐+𝑑)
gcd(𝜄+, 𝜄−, 𝑐, 𝑑)

, 𝜂 ∈ 𝑆11(3,𝜄), 𝔭 = 2𝑐𝑑𝜄+𝜄−(𝜄++2𝜄−+𝑐+𝑑)
gcd(𝜄+, 2𝜄−, 𝑐, 𝑑)

, 𝜂 ∈ 𝑆12(3,𝜄),

𝔭 = 2𝑐𝑑𝜄+𝜄−(2𝜄++𝜄−+𝑐+𝑑)
gcd(2𝜄+, 𝜄−, 𝑐, 𝑑)

, 𝜂 ∈ 𝑆21(3,𝜄), 𝔭 = 4𝑐𝑑𝜄+𝜄−(2𝜄++2𝜄−+𝑐+𝑑)
gcd(2𝜄+, 2𝜄−, 𝑐, 𝑑)

, 𝜂 ∈ 𝑆22(3,𝜄),

where 𝜄 is the Gorenstein index of 𝑋 and 𝜄± the local Gorenstein index of 𝑥± ∈ 𝑋
and−𝑐 the local class group order of𝑥1 ∈ 𝑋. In particular, we obtain the following
upper and lower bounds:

𝜌 = 1 ∶ 𝜄 ≤ 𝔭 ≤ 8𝜄2,

𝜌 = 2 ∶ 𝜄 ≤ 𝔭 ≤ 27
2
𝜄3(3𝜄 − 1),

𝜌 = 3 ∶ 𝜄 ≤ 𝔭 ≤ 32
3
𝜄3(2𝜄 − 1)2.

Proof. First, assume 𝑋 = 𝑋(𝑃) with 𝑃 from Construction 3.1, 4.1 or 5.1. Then
Springer’s formula [26, Thm. 1.1] gives us the Picard indices

−
8(𝑎 + 1)(𝑏 + 1)(𝑎 − 𝑏)
gcd(2𝑎 + 2, 𝑎 − 𝑏)

,
𝑐(1 + 2𝑎)(1 + 2𝑏 + 2𝑐)(𝑎 − 𝑏)

gcd(1 + 2𝑎, 𝑎 − 𝑏, 𝑐)
, −

𝑎𝑐𝑑(𝑏 + 𝑐 + 𝑑)(𝑎 − 𝑏)
gcd(𝑎, 𝑏, 𝑐, 𝑑)

,

according to the possible Picard numbers 𝜌 = 1, 2, 3. The assertion is obtained
by inserting the values of 𝑎, 𝑏, 𝑐, 𝑑 from Theorems 3.5, 4.5 and 5.5. □

A Kähler-Einstein metric on a rational projective del Pezzo surface is a Käh-
ler orbifold metric 𝑔 such that the associated Kähler form 𝜔𝑔 equals its Ricci
form Ric(𝜔𝑔). The smooth del Pezzo surfaces with a Kähler-Einstein metric
are ℙ2, its blowing up in 𝑘 = 3,… , 8 points in general position and ℙ1 × ℙ1;
see [28, 27]. The case of quasismooth del Pezzo surfaces coming anticanonically
embedded into a three-dimensional weighted projective space is understood as
well; see [24, 2, 7, 8]. We settle the case of full intrinsic quadric surfaces.
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Corollary 6.9. Let 𝑋 be a complex full intrinsic quadric surface admitting a
Kähler-Einstein metric. Then 𝑋 ≅ 𝑋(𝑃) for precisely one 𝑃 from the following:

𝜌 = 1, 2 ∤ 𝜄 ∶ 𝜌 = 3, 2 ∤ 𝜄, −2𝜄 ≤ 2𝑐 + 𝑑,
𝑐 ≤ 𝑑 ≤ −1, 𝑐 + 𝑑 ≤ −𝜄 − 1 ∶

⎡
⎢
⎣

−1 −1 2 0
−1 −1 0 2
𝜄 − 1 −𝜄 − 1 1 1

⎤
⎥
⎦
,

⎡
⎢
⎣

−1 −1 1 1 0 0
−1 −1 0 0 1 1
𝜄 −𝜄 − 𝑐 − 𝑑 0 𝑐 0 𝑑

⎤
⎥
⎦
,

𝜌 = 1, 4 ∣ 𝜄 ∶ 𝜌 = 3, −4𝜄 ≤ 2𝑐 + 𝑑, 𝑐 ≤ 𝑑 ≤ −1,
𝑐 + 𝑑 ≤ −2𝜄 − 1 ∶

⎡
⎢
⎢
⎣

−1 −1 2 0
−1 −1 0 2
𝜄
2
− 1 − 𝜄

2
− 1 1 1

⎤
⎥
⎥
⎦

,
⎡
⎢
⎣

−1 −1 1 1 0 0
−1 −1 0 0 1 1
2𝜄 −2𝜄 − 𝑐 − 𝑑 0 𝑐 0 𝑑

⎤
⎥
⎦
,

where 𝜌 denotes the Picard number and 𝜄 the Gorenstein index of 𝑋(𝑃). Con-
versely, each 𝑋(𝑃) with 𝑃 from the above list admits a Kähler-Einstein metric.

We will verify existence or non-existence of Kähler-Einstein metrics via 𝐾-
stability. Let us give an idea of the approach; we refer to [15] for the complete
background. For a full intrinsic quadric 𝑋 = 𝑋(𝑃) ⊆ 𝑍 arising from Construc-
tion 3.1, 4.1 or 5.1, consider the varieties 𝒳𝜅 ⊆ 𝑍 × ℂ, 𝜅 = 0, 1, 2, given by the
equations

𝜅 = 0 𝜅 = 1 𝜅 = 2
𝜌 = 1 ∶ 𝑆𝑇1𝑇2+𝑇23+𝑇

2
4 𝑇1𝑇2+𝑆𝑇23+𝑇

2
4 𝑇1𝑇2+𝑇23+𝑆𝑇

2
4

𝜌 = 2 ∶ 𝑆𝑇1𝑇2+𝑇3𝑇4+𝑇25 𝑇1𝑇2+𝑆𝑇3𝑇4+𝑇25 𝑇1𝑇2+𝑇3𝑇4+𝑆𝑇25

𝜌 = 3 ∶ 𝑆𝑇1𝑇2+𝑇3𝑇4+𝑇5𝑇6 𝑇1𝑇2+𝑆𝑇3𝑇4+𝑇5𝑇6 𝑇1𝑇2+𝑇3𝑇4+𝑆𝑇5𝑇6

where 𝑇1,… , 𝑇4 are the homogeneous coordinates on 𝑍 and 𝑆 is the standard
coordinate on ℂ. The projection 𝑍 ×ℂ→ ℂ induces a flat family𝒳𝜅 → ℂ. The
fiber𝒳𝜅,1 over 1 ∈ ℂ is our full intrinsic quadric surface and the fiber𝒳𝜅,0 over
0 ∈ ℂ, given by a binomial equation, is a toric surface. Consider the sublattices

𝑁𝜅 ∶= ℤ ⋅ 𝑒𝜅 +ℤ ⋅ 𝑒3, 𝜅 = 0, 1, 2, 𝑒0 ∶= −𝑒1 − 𝑒2.

The fan ∆𝜅 associated with the toric degeneration 𝒳𝜅,0 of 𝑋 is obtained by re-
stricting the fan of𝑍×ℂ to𝑁𝜅. It turns out that𝒳𝜅,0 is normal in all cases except
(𝜌, 𝜅) = (1, 0), where ∆0 describes the normalization. The families𝒳𝜅 → ℂ are
so-called equivariant test configurations and [15] provides a combinatorial 𝐾-
stability criterion, characterizing existence of Kähler-Einstein metrics in terms
of the barycenters 𝑏𝜅 of the moment polytopes ℬ𝜅 associated with the toric de-
generations 𝒳𝜅,0.

Proof of Corollary 6.9. We may assume 𝑋 = 𝑋(𝑃) with 𝑃 as in Construc-
tion 3.1, 4.1 or 5.1. This allows us to use the combinatorial 𝐾-stability criterion
for existence of Kähler-Einstein metrics on𝑋(𝑃) provided by [15]; see also [23].
We consider the test configurations𝒳𝜅 → ℂ of𝑋(𝑃), where 𝜅 = 0, 1, 2, provided
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by [15, Constr. 4.1, Prop. 5.3] and use [15, Prop. 5.3] to figure out the special
ones, i.e. those with normal central fiber 𝒳𝜅,0. With the aid of [15, Prop. 5.6],
we compute the associated moment polytope ℬ𝜅, which in case of special test
configuration is just the dual of the Fano polytope 𝒜𝜅 of 𝒳𝜅,0. Then we deter-
mine the barycenter 𝑏𝜅 ∈ ℬ𝜅. Finally, [15, Thm. 6.2] tells us that 𝑋(𝑃) admits
a Kähler-Einstein metric if and only if the coordinates 𝑏𝜅,𝑗 of the barycenter 𝑏𝜅
satisfy 𝑏𝜅,1 = 0 for all 𝜅 and 𝑏𝜅,2 > 0 for all special 𝜅.
For Picard number 𝜌 = 1, consider 𝑋 = 𝑋(𝑃) with 𝑃 as in Construction 3.1.

In this setting, we obtain a non-special toric degeneration for 𝜅 = 0, where we
compute

ℬ0 = conv ((0, 0), (− 1
1 + 𝑏

,− 𝑏
1 + 𝑏

), (− 1
1 + 𝑎 ,−

𝑎
1 + 𝑎 )) ,

𝑏0 = (− 2 + 𝑎 + 𝑏
3(1 + 𝑎)(1 + 𝑏)

, − 𝑎 + 𝑏 + 2𝑎𝑏
3(1 + 𝑎)(1 + 𝑏)

) .

Thus, 𝑏0,1 vanishes if and only if 𝑏 = −2− 𝑎. Moreover, we obtain special toric
degenerations for 𝜅 = 1, 2. There we compute for both cases

𝒜𝜅 = conv ((1,−2), (1 + 2𝑎, 2), (1 + 2𝑏, 2)) ,

ℬ𝜅 = conv
(
(0,− 1

2
), (− 1

1+𝑏
, 𝑏
2+2𝑏

), (− 1
1+𝑎

, 𝑎
2+2𝑎

)
)
,

𝑏𝜅 = (− 2+𝑎+𝑏
3(1+𝑎)(1+𝑏)

, 𝑎𝑏−1
6(1+𝑎)(1+𝑏)

) .

Also here, 𝑏𝜅,1 = 0 if and only if 𝑏 = −2−𝑎. In this case, we have 𝑏𝜅,2 = 1∕6 > 0.
Comparing with Theorem 3.5, we arrive at the shapes given by 𝑆11(1, 𝜄) and
𝑆22(1, 𝜄) with 𝜄+ = 𝜄−, where 𝑆12(1, 𝜄), 𝑆21(1, 𝜄) are ruled out by 𝜄+, 𝜄− being odd.
For Picard number 𝜌 = 2, take 𝑃 as in Construction 4.1. Then 𝜅 = 2 yields

a special degeneration and we end up with barycenter 𝑏2 = (0, 0), as soon as
𝑏2,1 = 0. Thus, none of the 𝑋(𝑃) admits a Kähler-Einstein metric. For com-
pleteness, we list the intermediate steps:

𝒜2 = conv ((1,−2), (𝑎, 1), (𝑏 + 𝑐, 1)) ,

ℬ2 = conv
(
(− 3

2𝑎+1
, 𝑎−1
2𝑎+1

), (0,−1), (− 3
2𝑏+2𝑐+1

, 𝑏+𝑐−1
2𝑏+2𝑐+1

)
)
,

𝑏2 = (−2 𝑎+𝑏+𝑐+1
(2𝑎+1)(2𝑏+2𝑐+1)

, − 𝑎+𝑏+𝑐+1
(2𝑎+1)(2𝑏+2𝑐+1)

) .
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We turn to Picard number 𝜌 = 3. Let𝑋(𝑃) arise fromConstruction 5.1. Then
we have special toric degenerations for 𝜅 = 0, 1, 2. The computation results are

𝒜0 = conv ((0, 1), (𝑐 + 𝑑, 1), (𝑏,−1), (𝑎,−1)) ,

ℬ0 = conv
(
(0,−1),

(
− 2
𝑏+𝑐+𝑑

, 𝑐+𝑑−𝑏
𝑏+𝑐+𝑑

)
, (0, 1),

(
− 2
𝑎
,−1

))
,

𝑏0 = (− 2(𝑎+𝑏+𝑐+𝑑)
3𝑎(𝑏+𝑐+𝑑)

, (𝑏+2𝑐+2𝑑−𝑎)𝑏+(𝑐+𝑎+𝑑)(𝑐+𝑑))
3(𝑎−𝑏−𝑐−𝑑)(𝑏+𝑐+𝑑)

) ,

𝒜1 = conv ((𝑎, 1), (𝑏 + 𝑑, 1), (𝑐,−1), (0,−1)) ,

ℬ1 = conv
(
(0,−1),

(
− 2
𝑏+𝑐+𝑑

, 𝑏+𝑑−𝑐
𝑏+𝑐+𝑑

)
, (0, 1),

(
− 2
𝑎
, 1
))
,

𝑏1 = (− 2(𝑎+𝑏+𝑐+𝑑)
3𝑎(𝑏+𝑐+𝑑)

, (𝑎−𝑏−2𝑐−2𝑑)𝑏−(𝑎+𝑐+2𝑑)𝑐+(𝑎−𝑑)𝑑)
3(𝑎−𝑏−𝑐−𝑑)(𝑏+𝑐+𝑑)

) ,

𝒜2 = conv ((𝑎, 1), (𝑏 + 𝑐, 1), (𝑑,−1), (0,−1)) ,

ℬ2 = conv
(
(0,−1),

(
− 2
𝑏+𝑐+𝑑

, 𝑏+𝑐−𝑑
𝑏+𝑐+𝑑

)
, (0, 1),

(
− 2
𝑎
, 1
))
,

𝑏2 = (− 2(𝑎+𝑏+𝑐+𝑑)
3𝑎(𝑏+𝑐+𝑑)

, (𝑎−𝑏−2𝑐−2𝑑)𝑏+(𝑎−𝑐−2𝑑)𝑐−(𝑎+𝑑)𝑑
3(𝑎−𝑏−𝑐−𝑑)(𝑏+𝑐+𝑑)

) .

We conclude that 𝑋(𝑃) admits a Kähler-Einstein metric if and only if we have
𝑑 = −𝑎 − 𝑏 − 𝑐, reflecting 𝑏𝜅,1 = 0, and

𝑏 > 0, 𝑏 + 𝑑 < 0, 𝑎 + 𝑑 > 0,

reflecting 𝑏𝜅,2 > 0. Substituting 𝑎, 𝑏 with the corresponding entries from The-
orem 5.5, we arrive at

𝜄+ = 𝜄−, 𝜄+ = 2𝜄−, 2𝜄+ = 𝜄−, 𝜄+ = 𝜄−,

according to the shapes defined by 𝑆11(3, 𝜄), 𝑆12(3, 𝜄), 𝑆21(3, 𝜄) and 𝑆22(3, 𝜄). Note
that 𝑆12(3, 𝜄), 𝑆21(3, 𝜄) are ruled out by 𝜄+, 𝜄− being odd, respectively. □

Remark 6.10. Let 𝑋 = 𝑋(𝑃) arise from Construction 3.1, 4.1 or 5.1. Set 𝜌 =
𝜌(𝑋). Then, for (𝜌, 𝜅) ≠ (1, 0), the toric degeneration𝒳𝜅,0 is a normal projective
toric del Pezzo surface and, according to the constellations (𝜌, 𝜅), the generator
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matrix of its defining complete fan ∆𝜅 is given by

(1,1)

[ 1 1+2𝑎 1+2𝑏

−2 2 2
]

(1,2)

[ 1 1+2𝑎 1+2𝑏

−2 2 2
]

(2,0)

[ 𝑎 𝑏 1 2𝑐+1

−1 −1 2 2
]

(2,1)

[ 0 𝑐 2𝑎+1 2𝑏+1

−1 −1 2 2
]

(2,2)

[ 1 𝑎 𝑏+𝑐

−2 1 1
]

(3,0)

[ 0 𝑐+𝑑 𝑏 𝑎

1 1 −1 −1
]

(3,1)

[ 𝑎 𝑏+𝑑 𝑐 0

1 1 −1 −1
]

(3,2)

[ 𝑎 𝑏+𝑐 𝑑 0

1 1 −1 −1
]

The above presentation of the primitive ray generators of ∆𝜅 inℤ2 is done with
respect to the antitropical coordinates introduced in [15, Constr. 4.5]. Note that
the columns of the above matrices are precisely the vertices of the associated
Fano polytopes 𝒜𝜅, as listed in the preceding proof.

Remark 6.11. Among the surfaces discussed in Examples 3.6, 4.6, 5.6 only
the surface 𝑋 from Example 3.6 admits a Kähler-Einstein metric, due to Corol-
lary 6.9. Let 𝑤𝑋 ∈ Cl(𝑋) be the anticanonical class. Then the anticanoncial
ring of 𝑋 is a Veronese subalgebra of its Cox ring:

𝑆𝑋 ∶=
⨁

𝑘∈ℤ
Γ(𝑋,−𝒦𝑋) ≅

⨁

𝑘∈ℤ
ℛ𝑘𝑤𝑋

(𝑋).

Using, for instance, the software package [19], we can explicitly compute amin-
imal homogeneous generator system that has the generator degrees
1, 1, 1, 2 and a single defining relation in degree 4. This identifies 𝑋 from Ex-
ample 3.6 as the second sporadic case in the list of [24, Thm. 8].
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