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Joint projective spectrum of 𝑫𝒏
∞

Chen Li and Kai Wang

Abstract. In this paper, we compute the joint spectrum of 𝐷𝑛
∞ with re-

spect to the left regular representation and identify 𝑛 generators of the first de
Rham cohomology group of joint resolvent set, which is induced by several
central linear functionals. Through action of 𝐷𝑛

∞ on 2𝑛-ary trees, we obtain
a self-similar realization of the group 𝐶∗-algebra of 𝐷𝑛

∞.
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1. Introduction
In classical Banach algebra theory, the Gelfand theory gives a comprehen-

sive description of spectra of operators. However, in the case of several Banach
algebra elements, the (joint) spectral theory is more complicated. It is notewor-
thy that not only the commutativity of the tuple will influence the study, there
is also a distinction between algebraic and spatial joint spectra.
If the tuple 𝐴 = (𝐴1, 𝐴2,⋯ , 𝐴𝑛) is a commutative tuple, i.e. 𝐴𝑖𝐴𝑗 = 𝐴𝑗𝐴𝑖,

1 ≤ 𝑖, 𝑗 ≤ 𝑛, J. L. Taylor defines the Taylor spectrum of the tuple by Koszul
complex [19, 23]. We refer the reader to [8, 10] for its applications in operator
theory and sheaf theory.
The matter becomes difficult when the tuple is non-commuting. In [25], R.

Yang considered the invertibility of the linear pencil

𝐴(𝑧) = 𝑧1𝐴1 + 𝑧2𝐴2 +⋯ + 𝑧𝑛𝐴𝑛.
In fact, there has been increasing interest of the invertibility of 𝐴(𝑧) in fields
of algebraic geometry, group theory, mathematical physics, PDEs and operator
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theory. We refer the reader to [1, 2, 22, 24] for more information. This gives rise
to the following notion of projective joint spectrum.

Definition 1.1. For a tuple𝐴 = (𝐴1, 𝐴2,⋯ , 𝐴𝑛) of elements in a unital Banach
algebra ℬ, its projective joint spectrum 𝑃(𝐴) consists of 𝑧 ∈ ℂ𝑛 such that 𝐴(𝑧) =
𝑧1𝐴1 + 𝑧2𝐴2 +⋯ + 𝑧𝑛𝐴𝑛 is not invertible inℬ.
In contrast to other notions of joint spectrum, for example, Taylor spectrum,

the projective joint spectrum is novel in the sense that it is “base free". Instead
of considering the invertibility of

(𝐴1 − 𝑧1𝐼, 𝐴2 − 𝑧2𝐼,⋯ , 𝐴𝑛 − 𝑧𝑛𝐼),
it centers on the homogeneous multiparameter pencil 𝐴(𝑧). This simplifies
the study in many cases. Moreover, by the homogeneity of 𝐴(𝑧), we can con-
sider the projective joint spectrum 𝑝(𝐴) in the complex projective spaceℙ𝑛−1 =
ℂ𝑛∕ ∼ defined by 𝑝(𝐴) = 𝑃(𝐴)∕ ∼. In [25], it is proved by Hartogs extension
theorem that 𝑝(𝐴) is a non-trivial compact subset in ℙ𝑛−1.
If the Banach algebraℬ is finite dimensional, such as a matrix algebra, then

the projective joint spectrum is the hypersurface {det𝐴(𝑧) = 0}. If the tuple is
commutative, the projective joint spectrum is a union of hyperplanes, which is
closely related to the case of Taylor spectrum.
The projective resolvent set 𝑃𝑐(𝐴) = ℂ𝑛 ⧵ 𝑃(𝐴) and the spectrum itself have

many properties similar to those in the single-operator case. For example, it is
proved that every path-connected component of 𝑃𝑐(𝐴) is a domain of holomor-
phy [18]. We also refer the reader to [6, 11, 18, 20, 25] on its connections with
Hermitian metrics, hyperinvariant subspace problem and cyclic cohomology.
Now consider a finitely generated group 𝐺1 with the generating set 𝑆 =

{𝑔1, 𝑔2,⋯ , 𝑔𝑛}. Let 𝜌 be a unitary representation of 𝐺 on a Hilbert space 𝐻,
which will be denoted by (𝜌,𝐻). Let 𝐶∗𝜌(𝐺) denote the 𝐶∗-algebra generated
by 𝐴𝑖 = 𝜌(𝑔𝑖), for 𝑖 = 1, 2,… , 𝑛. The projective joint spectrum of 𝐺 with
respect to 𝜌, denoted by 𝑃(𝐴𝜌), is the projective joint spectrum of the tuple
𝐴𝜌 = (𝐼, 𝐴1, 𝐴2,⋯ , 𝐴𝑛).
Given two representations (𝜌1, 𝐻1) and (𝜌2, 𝐻2) of𝐺, they are said to be (uni-

tarily) equivalent if there exists a unitary map 𝑈 ∶ 𝐻1 → 𝐻2 such that

𝜌2(𝑔) = 𝑈𝜌1(𝑔)𝑈−1, ∀𝑔 ∈ 𝐺.
Apparently, the projective joint spectrum is invariant for equivalent repre-

sentations. Moreover, it is invariant under the weak equivalence of representa-
tions. Let (𝜋,𝐻) and (𝜌, 𝐾) be unitary representations of group 𝐺. We say that
𝜋 is weakly contained in 𝜌 if for every 𝜉 ∈ 𝐻, every compact subset 𝑄 of 𝐺 and
every 𝜀 > 0, there exists 𝜂1,⋯ , 𝜂𝑛 ∈ 𝐾 such that,

|⟨𝜋(𝑥)𝜉, 𝜉⟩ −
𝑛∑

𝑖=1
⟨𝜌(𝑥)𝜂𝑖, 𝜂𝑖⟩| < 𝜀, ∀𝑥 ∈ 𝑄.

1In this paper, all groups are discrete locally compact groups unless otherwise stated.
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We shall write 𝜋 ≺ 𝜌 for this relation. If 𝜋 ≺ 𝜌 and 𝜌 ≺ 𝜋, we say that 𝜋 and 𝜌
are weakly equivalent and denote this relation by 𝜋 ∼ 𝜌. Generally speaking,
it is difficult to determine whether two representations are weakly equivalent
from definition. However, in [9], it is proved that𝜋 ≺ 𝜌 if and only if the canon-
ical homomorphism 𝜌(𝑔)↦ 𝜋(𝑔), 𝑔 ∈ 𝐺, extends to a unital ∗-homomorphism
from 𝐶∗𝜌(𝐺) onto 𝐶∗𝜋(𝐺). It implies that if 𝜌(𝑔) is invertible in 𝐶∗𝜌(𝐺), then
𝜋(𝑔) is invertible in 𝐶∗𝜋(𝐺). Moreover, 𝜋 ≺ 𝜌 implies 𝑃(𝐴𝜋) ⊂ 𝑃(𝐴𝜌). So
𝑃(𝐴𝜋) = 𝑃(𝐴𝜌) if these two representations are weakly equivalent.
Conversely, it is a natural question whether the projective joint spectrum

determines the representation up to weak equivalence. It is often not the case.
We will give some examples later in this paper. The infinite dihedral group 𝐷∞
is defined as the group generated by rotations and reflections of the plane that
preserves the origin. Grigorchuk and Yang give a detailed description on the
joint projective spectrum of 𝐷∞ [16].
Throughout this article,𝐷𝑛

∞ will denote the groupℤ𝑛×𝐷∞, which is isomor-
phic to ℤ𝑛 × (ℤ2 ∗ ℤ2) and has the presentation

𝐷𝑛
∞ =

⟨
𝑎, 𝑡, 𝜏|𝑎2 = 𝑡2 = 𝜏𝑛 = 1, 𝑎𝜏 = 𝜏𝑎, 𝑡𝜏 = 𝜏𝑡

⟩
. (1)

In particular, 𝐷2
∞ can be realized as the group of rigid motions in 3-space con-

sisting of rotations and reflections of the plane that preserves the origin, to-
getherwith a reflection 𝜏 through the origin. For example, 𝑎(𝑥, 𝑦, 𝑧) = (𝑥,−𝑦, 𝑧),
𝜏(𝑥, 𝑦, 𝑧) = −(𝑥, 𝑦, 𝑧), and 𝑡 is chosen to be an involution that makes 𝑎𝑡 an ir-
rational rotation in the plane 𝑂𝑥𝑦. We refer the readers to [14] for more infor-
mation about this group and its application on the electronic wave functions of
molecules.
First, we will compute the projective joint spectrum of𝐷𝑛

∞ with respect to its
left regular representation.

Theorem 1.2. If we define 𝑃(𝑅𝜆) as the projective joint spectrum of

𝑅𝜆(𝑧) = 𝑧0𝜆(𝑒) + 𝑧1𝜆(𝑎) + 𝑧2𝜆(𝑡) + 𝑧3𝜆(𝜏),
then

𝑃(𝑅𝜆) =
𝑛⋃

𝑘=1

⋃

−1≤𝑥≤1
{𝑧 ∈ ℂ4 ∶ (𝑧0 + 𝜔𝑘𝑧3)2 − 𝑧21 − 𝑧22 − 2𝑧1𝑧2𝑥 = 0},

where 𝜆 is the left regular representation of𝐷𝑛
∞ and {𝜔0,⋯ , 𝜔𝑛−1} is the set of n-th

roots of unity.

A linear functional 𝜙 on a unital Banach algebra ℬ is said to be central if
𝜙(𝑥𝑦) = 𝜙(𝑦𝑥) for all 𝑥, 𝑦 ∈ ℬ. In Section 3, we will concentrate on the 1-
forms generated by central functionals and the Maurer-Cartan form. Let 𝑇𝑟
and 𝑡𝑟 be the canonical traces on 𝐶∗(𝐷𝑛

∞) and 𝐶∗(𝐷∞), respectively, and 𝜙𝛼 be
the central linear functional on 𝐶∗(ℤ𝑛) defined by

𝜙𝛼(𝜆ℤ𝑛(𝜏𝛽)) = {1 if 𝛼 = 𝛽,
0 otherwise.
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Then we will get the following theorem.

Theorem 1.3. The set
{
𝜙𝛼⊗𝑡𝑟 ∶ 1 ≤ 𝛼 ≤ 𝑛−1

}
induces 𝑛−1 different elements

besides 𝑇𝑟(𝜔𝑅(𝑧)) in the cohomology group 𝐻1
𝑑𝑒(𝑃𝑐(𝑅𝜆),ℂ), where 𝜙𝛼 ≜ 𝜙𝛼 − 𝜙0

for 1 ≤ 𝛼 ≤ 𝑛 − 1, and 𝜙0 ≜ 𝜙0.

2. Projective joint spectrum of 𝑫𝒏
∞

In this section, we will compute the projective joint spectrum of 𝐷𝑛
∞ with

respect to the left regular representation.
For a discrete group 𝐺, the group algebraℂ[𝐺] is the complex algebra gener-

ated by elements in 𝐺, i.e.
ℂ[𝐺] = {𝑓|𝑓 =

∑

𝑔∈𝐺
𝑎𝑔𝑔, 𝑎𝑔 ∈ ℂ, only finitely many 𝑎𝑔 non zero}.

It is a ∗ -algebra under the conjugate operation defined by
𝑓∗ = (

∑

𝑔∈𝐺
𝑎𝑔𝑔)∗ =

∑

𝑔∈𝐺
𝑎𝑔𝑔−1,

where “-" represents complex conjugation. Let 𝑒 denote the unit of𝐺. Consider
a positive definite function 𝑡𝑟 onℂ[𝐺] defined by 𝑡𝑟(𝑓) = 𝑎𝑒. Through the GNS
construction for groups [4], a GNS triple (𝜋𝑡𝑟, 𝐻𝑡𝑟, 𝑒𝑡𝑟) can be obtained, where
𝑒𝑡𝑟 = 𝑒 and 𝜋𝑡𝑟 is defined by 𝜋𝑡𝑟(𝑔1)𝑔2 = 𝑔1𝑔2. Let 𝑈 ∶ 𝐻𝑡𝑟 → 𝑙2(𝐺) be the
unitary map defined by

𝑈(𝑔) = 𝛿𝑔, ∀𝑔 ∈ 𝐺,
where 𝛿𝑔 is the function that takes value 1 at 𝑔 and 0 otherwise. The left regular
representation of group 𝐺 on 𝑙2(𝐺), denoted by 𝜆𝐺 , is defined by

𝜆𝐺(𝑔)𝑓(𝑡) = 𝑓(𝑔−1𝑡), ∀𝑠 ∈ 𝐺, 𝑔 ∈ 𝑙2(𝐺).
It is well known that𝜋𝑡𝑟 is unitarily equivalent to the left regular representation
𝜆𝐺 of group 𝐺 via the map 𝑈.
According to the presentation (1),𝐷𝑛

∞ consists of elements that have the form
of 𝜏𝑘(𝑎𝑡)𝑗, 𝜏𝑘𝑡(𝑎𝑡)𝑗 for 0 ≤ 𝑘 ≤ 𝑛 − 1 and 𝑗 ∈ ℤ. From the GNS construction

mentioned above, theHilbert space𝐻𝑡𝑟 can be decomposed as𝐻𝑡𝑟 =
𝑛−1⨁
𝑘=0

𝜏𝑘(𝐻⊕
𝑡𝐻), where

𝐻 = {𝑓 =
∞∑

𝑗=−∞
𝛼𝑗(𝑎𝑡)𝑘 ∶

∞∑

𝑗=−∞

||||𝛼𝑗
||||
2 <∞}.

Multiplication by 𝑎𝑡 on the Hilbert space𝐻 will be denoted by 𝑇 in the sequel.
Through the unitary map 𝑉

(
(𝑎𝑡)𝑘

)
= 𝑒𝑖𝑘𝜃,𝐻 is isomorphic to 𝐿2(𝕋, 1

2𝜋
𝑑𝜃) and

𝑇 is unitarily equivalent to the bilateral shift operator defined bymultiplication
by 𝑒𝑖𝜃.
Since projective joint spectrum is invariant with respect to unitary equiva-

lence, we will omit writing the unitary operator 𝑉 in the sequel.
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Theorem 2.1. If we define 𝑃(𝑅𝜆) as the projective joint spectrum of

𝑅𝜆(𝑧) = 𝑧0𝜆(𝑒) + 𝑧1𝜆(𝑎) + 𝑧2𝜆(𝑡) + 𝑧3𝜆(𝜏),
then

𝑃(𝑅𝜆) =
𝑛⋃

𝑘=1

⋃

−1≤𝑥≤1
{𝑧 ∈ ℂ4 ∶ (𝑧0 + 𝜔𝑘𝑧3)2 − 𝑧21 − 𝑧22 − 2𝑧1𝑧2𝑥 = 0},

where 𝜆 is the left regular representation of𝐷𝑛
∞ and {𝜔0,⋯ , 𝜔𝑛−1} is the set of n-th

roots of unity.

Proof. Using the orthogonal direct sum𝐻𝑡𝑟 =
𝑛−1⨁
𝑘=0

𝜏𝑘(𝐻⊕ 𝑡𝐻) and the unitary

map𝑊 ∶
𝑛−1⨁
𝑘=0

𝜏𝑘(𝐻 ⊕ 𝑡𝐻)→
𝑛−1⨁
𝑘=0

(𝐻 ⊕𝐻) defined by

𝑊 = 𝑑𝑖𝑎𝑔[1, 𝑡, 𝜂, 𝑡𝜂, 𝜂2, 𝑡𝜂2,⋯ , 𝜂𝑛−1, 𝑡𝜂𝑛−1],
we can easily compute that

𝑅𝜆(𝑧)
𝑊⋍

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝐴(𝑧) 0 0 ⋯ 0 𝑧3𝐼2
𝑧3𝐼2 𝐴(𝑧) 0 ⋯ 0 0
0 𝑧3𝐼2 𝐴(𝑧) ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 𝐴(𝑧) 0
0 0 0 ⋯ 𝑧3𝐼2 𝐴(𝑧)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

. (2)

Here, 𝐴 𝑊⋍ 𝐵 means 𝐴 and 𝐵 is unitarily equivalent under 𝑊 and 𝐴(𝑧) =
( 𝑧0 𝑧1𝑇 + 𝑧2
𝑧1𝑇∗ + 𝑧2 𝑧0

) .We divide the argument into two cases.

Case I. If 𝑧3 = 0, it is trivial since 𝑅𝜆(𝑧) is invertible if and only if 𝐴(𝑧) is
invertible. In this case, the projective joint spectrum 𝑃(𝑅𝜆) equals

𝑃(𝑅𝜆) =
⋃

−1≤𝑥≤1
{𝑧 ∈ ℂ4 ∶ 𝑧20 − 𝑧21 − 𝑧22 − 2𝑧1𝑧2𝑥 = 0, 𝑧3 = 0}

by [16, Theorem 1.1].

Case II. If 𝑧3 ≠ 0, by multiplying (0 𝐼2𝑛−2
𝐼2 0 ) on the right, we turn 𝑅𝜆(𝑧) into

𝑅(𝑧) =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝑧3𝐼2 𝐴(𝑧) 0 ⋯ 0 0
0 𝑧3𝐼2 𝐴(𝑧) ⋯ 0 0
0 0 𝑧3𝐼2 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 𝑧3𝐼2 𝐴(𝑧)

𝐴(𝑧) 0 0 ⋯ 0 𝑧3𝐼2

⎞
⎟
⎟
⎟
⎟
⎟
⎠

. (3)
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By the Schur complement trick in [17], 𝑅𝜆(𝑧) is invertible if and only if 𝑧𝑛3 −
(−1)𝑛𝐴(𝑧)𝑛 is invertible.
Using the spectral theorem for normal operators in [7, Theorem 9.2.2], we

can write

𝑇 = ∫
𝕋
𝜆𝑑𝐸(𝜆), (4)

where 𝑑𝐸(𝜆) is the spectral measure of 𝑇. Noting that

𝑧𝑛3 − (−1)𝑛𝐴(𝑧)𝑛 = (−1)𝑛+1
𝑛∏

𝑘=1
(𝑧3𝜔𝑘 + 𝐴(𝑧))

and 𝑧3𝜔𝑘 + 𝐴(𝑧) mutually commutes for 1 ≤ 𝑘 ≤ 𝑛, it follows that 𝑧𝑛3 −
(−1)𝑛𝐴(𝑧) is invertible if and only if 𝑧3𝜔𝑘 + 𝐴(𝑧) is invertible for each 𝑘, or
more precisely, by (4)

(𝑧0 + 𝜔𝑘𝑧3)2 − 𝑧21 − 𝑧22 − 𝑧1𝑧2(𝜆 + �̄�) ≠ 0, ∀𝜆 ∈ 𝕋, 1 ≤ 𝑘 ≤ 𝑛.
Letting 𝜆 = 𝑒𝑖𝜃 for 𝜃 ∈ [0, 2𝜋), 𝑥 = cos 𝜃, we have

𝑃𝑐(𝑅𝜆) =
𝑛⋂

𝑘=1

⋂

−1≤𝑥≤1
{𝑧 ∈ ℂ4 ∶ (𝑧0 + 𝜔𝑘𝑧3)2 − 𝑧21 − 𝑧22 − 2𝑧1𝑧2𝑥 ≠ 0},

and the theorem is proved by taking its complement. □

In the sequel, we set

𝐺𝑘
𝜃 (𝑧) = (𝑧0 + 𝜔𝑘𝑧3)2 − 𝑧21 − 𝑧22 − 2𝑧1𝑧2 cos 𝜃. (5)

Remark. It is proved in [16] that the Koopman representation and the left
regular representation of 𝐷∞ are weakly equivalent. Without much effort, we
can obtain by Theorem [4, Proposition F.3.2] that the result also holds for 𝐷𝑛

∞.

3. Trace ofMaurer-Cartan form and de Rham cohomology group
In [25], for a tuple 𝐴 = (𝐴1, 𝐴2,… , 𝐴𝑛), the Maurer-Cartan form 𝜔𝐴 is an

operator-valued 1-form defined by

𝜔𝐴(𝑧) = 𝐴(𝑧)−1𝑑𝐴(𝑧) =
𝑛∑

𝑖=1
𝐴(𝑧)−1𝐴𝑖𝑑𝑧𝑖, ∀𝑧 ∈ 𝑃𝑐(𝐴).

A linear functional𝜙 on aunital Banach algebraℬ is said to be central if𝜙(𝑥𝑦) =
𝜙(𝑦𝑥) for any 𝑥, 𝑦 ∈ ℬ. In [25, Theorem 3.2], it is proved that if 𝜙 is central and
𝜙(𝐼) ≠ 0, then 𝜙(𝜔𝐴) is a non-trivial element in the de Rham cohomology group
𝐻1
𝑑𝑒(𝑃𝑐(𝐴),ℂ). This section is devoted to studying 1-forms induced by different

central linear functionals.
For a discrete group 𝐺, it is well known that its reduced group 𝐶∗-algebra

𝐶∗𝑟 (𝐺) admits a canonical tracial state
𝑡𝑟(𝑎) = ⟨𝑎𝛿𝑒, 𝛿𝑒⟩ , ∀𝑎 ∈ 𝐶∗𝑟 (𝐺). (6)
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In [5, Corollary 4.3], it is proved that the reduced group 𝐶∗-algebra 𝐶∗𝑟 (𝐺) has
only one tracial state if and only if𝐺 is amenable or none of its normal subgroup
are amenable. Since𝐷𝑛

∞ itself is amenable, the canonical trace 𝑇𝑟 is the unique
tracial state on 𝐶∗𝑟 (𝐷𝑛

∞).
Since 𝐷∞ = ℤ⋊ℤ2 and 𝐷𝑛

∞ = ℤ𝑛 × 𝐷∞, the inclusion maps
ℤ↪ 𝐷∞ ↪ 𝐷𝑛

∞
induce the inclusion maps of group 𝐶∗-algebras. Based on this observation, we
have the following proposition.

Proposition 3.1. The canonical traces on 𝐶∗𝑟 (ℤ), 𝐶∗𝑟 (𝐷∞) and 𝐶∗𝑟 (𝐷𝑛
∞) coincide

by restriction.

Proof. We first denote the canonical traces on these 𝐶∗-algebras by 𝑡𝑟ℤ, 𝑡𝑟 and
𝑇𝑟.
By the form of elements in 𝐷∞, 𝑙2(𝐷∞) ≅ 𝑙2(ℤ)⊕ 𝑙2(𝑡ℤ). This implies that

any 𝑎 ∈ 𝐶∗𝑟 (ℤ) can be treated as 𝑎 ⊕ 0 ∈ 𝐶∗𝑟 (𝐷∞). Thus
𝑡𝑟ℤ(𝑎) =

⟨
𝑎𝛿𝑒ℤ , 𝛿𝑒ℤ

⟩
=
⟨
(𝑎 ⊕ 0)𝛿𝑒𝐷∞ , 𝛿𝑒𝐷∞

⟩
= 𝑡𝑟(𝑎 ⊕ 0),

which leads to 𝑡𝑟|ℤ = 𝑡𝑟ℤ.
Since

𝐶∗𝑟 (𝐷𝑛
∞) = 𝐶∗𝑟 (ℤ𝑛)⊗𝐶∗𝑟 (𝐷∞)

𝐵(𝑙2(𝐷𝑛
∞))

and 𝛿𝑒𝐷𝑛∞ = 𝛿𝑒ℤ𝑛 ⊗ 𝛿𝑒𝐷∞ , for any 𝑎 ∈ 𝐶∗𝑟 (𝐷∞),

𝑡𝑟(𝑎) =
⟨
𝑎𝛿𝑒𝐷∞ , 𝛿𝑒𝐷∞

⟩
=
⟨
𝑎𝛿𝑒𝐷∞ , 𝛿𝑒𝐷∞

⟩ ⟨
𝛿𝑒ℤ𝑛 , 𝛿𝑒ℤ𝑛

⟩

=
⟨
(𝑎 ⊗ 1)𝛿𝑒𝐷𝑛∞ , 𝛿𝑒𝐷𝑛∞

⟩

= 𝑇𝑟(𝑎 ⊗ 1)
Therefore, 𝑇𝑟|𝐷∞ = 𝑡𝑟. □

Due to this proposition, we will not distinguish the canonical traces on these
groups and denote them all by 𝑡𝑟.
The group Von Neumann algebra 𝐿(𝐺) is the closure of 𝜆𝐺(ℂ[𝐺]) with re-

spect to the weak operator topology in the Hilbert space. Thus, formula (6) can
be naturally extended to 𝐿(𝐺). In the previous section, we obtained the matrix
representation of 𝑅𝜆(𝑧) by (2). In order to compute the trace of the Maurer-
Cartan form, we can canonically define the extended trace 𝑡𝑟 on 2𝑛×2𝑛matri-
ces with 𝐿(ℤ) entries by

𝑡𝑟((𝑎𝑖𝑗)2𝑛𝑖,𝑗=1) ∶=
1
2𝑛𝑡𝑟(

2𝑛∑

𝑖=1
𝑎𝑖𝑖). (7)

The sign "∼" will be omitted if there is no confusion.
By the observation in [16], we have

𝑡𝑟(𝑑𝐸(𝜆)) = 𝑡𝑟(𝑑𝐸(𝑒𝑖𝜃)) = 𝑑𝑡𝑟(𝐸(𝑒𝑖𝜃)) = 1
2𝜋𝑑𝜃, (8)
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where 𝐸(𝜆) is the spectral measure in (4).
For 𝐷𝑛

∞, the Maurer-Cartan form is

𝜔𝑅(𝑧) = 𝑅−1(𝑧)𝑑𝑅(𝑧) = 𝑅−1(𝑧)(𝑑𝑧0 + 𝑎𝑑𝑧1 + 𝑡𝑑𝑧2 + 𝜏𝑑𝑧3), (9)

where 𝑅(𝑧) is defined in (2).
Lemma 3.2. Suppose 𝑧 = (𝑧0, 𝑧1, 𝑧2, 𝑧3) ∈ ℂ4, and let 𝑓 and 𝑔 denote 𝑧1𝑒𝑖𝜃 + 𝑧2
and 𝑧1𝑒−𝑖𝜃 + 𝑧2, respectively. If

𝑎(𝑛)11 =
[ 𝑛
2
]∑

𝑘=0
𝑧𝑛−2𝑘0

( 𝑛
𝑛 − 2𝑘

)
𝑓𝑘𝑔𝑘

and

𝑎(𝑛)12 =
[ 𝑛−1

2
]∑

𝑘=0
𝑧𝑛−2𝑘−10

( 𝑛
𝑛 − 2𝑘 − 1

)
𝑓𝑘𝑔𝑘,

where
(𝑛
𝑚
)
= 𝑛!

(𝑛−𝑚)!𝑚!
, then we have the following factorization:

(𝑧𝑛3 − (−1)𝑛𝑎(𝑛)11 )2 − (𝑎(𝑛)12 )2𝑓𝑔 =
𝑛∏

𝑘=1
𝐺𝑘
𝜃 (𝑧).

Proof. Using direct computation,

𝐿𝐻𝑆 =
(
𝑧𝑛3 − (−1)𝑛(𝑎(𝑛)11 + 𝑎(𝑛)12

√
𝑓𝑔)

) (
𝑧𝑛3 − (−1)𝑛(𝑎(𝑛)11 − 𝑎(𝑛)12

√
𝑓𝑔)

)

=
(
(𝑎(𝑛)11 + 𝑎(𝑛)12

√
𝑓𝑔) − (−𝑧3)𝑛

) (
(𝑎(𝑛)11 − 𝑎(𝑛)12

√
𝑓𝑔) − (−𝑧3)𝑛

)

=
(
(𝑧0 +

√
𝑓𝑔)𝑛 − (−𝑧3)𝑛

) (
(𝑧0 −

√
𝑓𝑔)𝑛 − (−𝑧3)𝑛

)

=
𝑛−1∏

𝑘=0
(𝑧0 +

√
𝑓𝑔 + 𝑧3𝜔𝑘)(𝑧0 −

√
𝑓𝑔 + 𝑧3𝜔𝑘)

=
𝑛−1∏

𝑘=0

(
(𝑧0 + 𝑧3𝜔𝑘)2 − 𝑧21 − 𝑧22 − 2𝑧1𝑧2 cos 𝜃

)

=𝑅𝐻𝑆
□

Proposition 3.3. The trace of Maurer-Cartan form 𝜔𝑅(𝑧) is

𝑡𝑟(𝜔𝑅(𝑧)) = 𝑑( 1
4𝑛𝜋 ∫

2𝜋

0
log(

𝑛∏

𝑘=1
𝐺𝑘
𝜃 (𝑧))𝑑𝜃), 𝑧 ∈ 𝑃𝑐(𝑅𝜆),

where 𝐺𝑘
𝜃 (𝑧) is defined in (5), and 𝑑 stands for

𝜕
𝜕𝑧0

𝑑𝑧0 +
𝜕
𝜕𝑧1

𝑑𝑧1 +
𝜕
𝜕𝑧2

𝑑𝑧2 +
𝜕
𝜕𝑧3

𝑑𝑧3.
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Proof. As in the proof of Theorem 2.1, the argument will be divided into two
parts.
Case I. If 𝑧3 = 0 , then 𝜔𝑅(𝑧) = (𝑧0+𝑧1𝑎+𝑧2𝑡)−1(𝑑𝑧0+𝑎𝑑𝑧1+ 𝑡𝑑𝑧2). In this

case, we can directly use [16, Proposition 3.2] to get

𝑡𝑟(𝜔𝑅(𝑧)) = 𝑑 ( 1
4𝜋 ∫

2𝜋

0
log(𝑧20 − 𝑧21 − 𝑧22 − 2𝑧1𝑧2 cos 𝜃)𝑑𝜃) .

Case II. For 𝑧3 ≠ 0, we will first compute the inverse of 𝑅(𝑧) defined in (3).
Using the Schur complement as in the proof of Theorem 2.1, we define a

2(𝑛 − 𝑘) × 2(𝑛 − 𝑘)matrix 𝑆𝑛−𝑘(𝑧) by

𝑆𝑛−𝑘(𝑧) =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝑧3𝐼2 𝐴(𝑧) 0 ⋯ 0 0
0 𝑧3𝐼2 𝐴(𝑧) ⋯ 0 0
0 0 𝑧3𝐼2 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 𝑧3𝐼2 𝐴(𝑧)

(−1)𝑘

𝑧𝑘3
𝐴(𝑧)𝑘+1 0 0 ⋯ 0 𝑧3𝐼2

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

Thus, 𝑆𝑛−1(𝑧) is the Schur complement of𝑅(𝑧), and 𝑆𝑛−𝑘(𝑧) is that of 𝑆𝑛−𝑘+1(𝑧).
To perform the computation, we should first focus on 𝑆1(𝑧)−1 and 𝐴(𝑧)𝑛.

We obtain by induction that 𝐴(𝑧)𝑛 = ( 𝑎
(𝑛)
11 𝑎(𝑛)12 𝑓

𝑎(𝑛)12 𝑔 𝑎(𝑛)11
), where 𝑎(𝑛)11 and 𝑎(𝑛)12 are

defined in Lemma 3.2.
Using Lemma 3.2, for 𝑆1(𝑧) =

1
𝑧𝑛−23

(𝑧𝑛3 − (−1)𝑛𝐴(𝑧)𝑛), we have

𝑆1(𝑧)−1 =
𝑧𝑛−23

(𝑧𝑛3 − (−1)𝑛𝑎(𝑛)11 )2 − (𝑎(𝑛)12 )2𝑓𝑔
(𝑧

𝑛
3 − (−1)𝑛𝑎(𝑛)11 (−1)𝑛𝑎(𝑛)12 𝑓
(−1)𝑛𝑎(𝑛)12 𝑔 𝑧𝑛3 − (−1)𝑛𝑎(𝑛)11

)

=
𝑧𝑛−23

𝑛∏
𝑘=1

𝐺𝑘
𝜃 (𝑧)

(𝑧
𝑛
3 − (−1)𝑛𝑎(𝑛)11 (−1)𝑛𝑎(𝑛)12 𝑓
(−1)𝑛𝑎(𝑛)12 𝑔 𝑧𝑛3 − (−1)𝑛𝑎(𝑛)11

) .

By induction, we have 𝑆𝑘(𝑧)−1 = (𝑠𝑖𝑗)𝑘𝑖,𝑗=1 with

𝑠11 = 𝑧−13 + (−1)𝑛
𝑧𝑛3

𝑆1(𝑧)−1𝐴(𝑧)𝑛,

𝑠1𝑘 =
(−1)𝑘−1
𝑧𝑘−13

𝑆1(𝑧)−1𝐴(𝑧)𝑘−1,

𝑠1𝑗 =
(−1)𝑗−1

𝑧𝑗3
𝐴(𝑧)𝑗−1 + (−1)𝑛+𝑗−1

𝑧𝑛+𝑗−13
𝑆1(𝑧)−1𝐴(𝑧)𝑛+𝑗−1, 2 ≤ 𝑗 ≤ 𝑘 − 1

𝑠𝑖1 =
(−1)𝑛−𝑖+1
𝑧𝑛−𝑖+13

𝑆1(𝑧)−1𝐴(𝑧)𝑛−𝑖+1, 𝑖 > 1
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and (𝑠𝑖𝑗)𝑘𝑖,𝑗=2 = 𝑆𝑘−1(𝑧)−1.

Thus 𝑅(𝑧)
−1

= (𝑟𝑖𝑗)𝑛𝑖,𝑗=1 with

𝑟11 = 𝑧−13 + (−1)𝑛
𝑧𝑛3

𝑆1(𝑧)−1𝐴(𝑧)𝑛,

𝑟1𝑛 =
(−1)𝑛−1
𝑧𝑛−13

𝑆1(𝑧)−1𝐴(𝑧)𝑛−1,

𝑟1𝑗 =
(−1)𝑗−1

𝑧𝑗3
𝐴(𝑧)𝑗−1 + (−1)𝑛+𝑗−1

𝑧𝑛+𝑗−13
𝑆1(𝑧)−1𝐴(𝑧)𝑛+𝑗−1, 2 ≤ 𝑗 ≤ 𝑛 − 1

𝑟𝑖1 =
(−1)𝑛−𝑖+1
𝑧𝑛−𝑖+13

𝑆1(𝑧)−1𝐴(𝑧)𝑛−𝑖+1, 𝑖 > 1

and (𝑟𝑖𝑗)𝑛𝑖,𝑗=2 = 𝑆𝑛−1(𝑧)−1.
Therefore, by (7), (8) and the matrices of 𝐴(𝑧)𝑛−1 and 𝑆1(𝑧)−1,

𝑡𝑟(𝑅(𝑧)−1) = 1
2𝑛𝑡𝑟 (

𝑛(−1)𝑛−1𝐴(𝑧)𝑛−1𝑆1(𝑧)−1
𝑧𝑛−13

)

= 1
2𝜋 ∫

2𝜋

0

(−1)𝑛−1((𝑧𝑛3 − (−1)𝑛𝑎(𝑛)11 )𝑎
(𝑛−1)
11 + (−1)𝑛𝑎(𝑛)12 𝑎

(𝑛−1)
12 𝑓𝑔)

𝑛∏
𝑘=1

𝐺𝑘
𝜃 (𝑧)

𝑑𝜃

= 1
4𝑛𝜋 ∫

2𝜋

0

𝑛∑

𝑘=1

2(𝑧0 + 𝜔𝑘𝑧3)
𝐺𝑘
𝜃 (𝑧)

𝑑𝜃.

Similarly, we have that

𝑡𝑟(𝑅−1(𝑧)𝑎) = − 1
4𝑛𝜋 ∫

2𝜋

0

𝑛∑

𝑘=1

2(𝑧1 + 𝑧2𝑐𝑜𝑠𝜃)
𝐺𝑘
𝜃 (𝑧)

𝑑𝜃,

𝑡𝑟(𝑅−1(𝑧)𝑡) = − 1
4𝑛𝜋 ∫

2𝜋

0

𝑛∑

𝑘=1

2(𝑧2 + 𝑧1𝑐𝑜𝑠𝜃)
𝐺𝑘
𝜃 (𝑧)

𝑑𝜃,

and

𝑡𝑟(𝑅−1(𝑧)𝜏) = 1
4𝑛𝜋 ∫

2𝜋

0

𝑛∑

𝑘=1

2𝜔𝑘(𝑧0 + 𝜔𝑘𝑧3)
𝐺𝑘
𝜃 (𝑧)

𝑑𝜃.

By (9), summing all the results above, we obtain

𝑡𝑟(𝜔𝑅(𝑧)) = 𝑑( 1
4𝑛𝜋 ∫

2𝜋

0
log(

𝑛∏

𝑘=1
𝐺𝑘
𝜃 (𝑧))𝑑𝜃).

□
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At the beginning of this section, we mentioned that a central linear func-
tional 𝜙 will induce a non-trivial closed 1-form in the de Rham cohomology
group of the projective resolvent set if 𝜙(𝐼) ≠ 0. In [16, Corollary 4.4], it is
shown by the de Rham duality theorem that the𝐻1

𝑑𝑒(𝑃𝑐(𝑅𝜆𝐷∞ ),ℂ) is generated
by 1

2𝜋
𝑡𝑟(𝜔𝑅𝜆𝐷∞ ). So it is a natural question what the case is for 𝐷𝑛

∞. In fact,
there are other central linear functionals that yield nontrivial elements in the
cohomology group.
It is well known that for any discrete groups 𝐺 and𝐻

𝐶∗(𝐺 ×𝐻) = 𝐶∗(𝐺)⊗𝑚𝑎𝑥 𝐶∗(𝐻),
𝐶∗𝑟 (𝐺 ×𝐻) = 𝐶∗𝑟 (𝐺)⊗𝑚𝑖𝑛 𝐶∗𝑟 (𝐻).

Moreover, if one of the groups, for example 𝐺, is amenable, then the group
𝐶∗-algebra 𝐶∗(𝐺) is nuclear and is isomorphic to 𝐶∗𝑟 (𝐺). Back to our question,
since both 𝐷∞ and ℤ𝑛 are amenable, 𝐶∗(ℤ𝑛 × 𝐷∞) is the closure of algebraic
tensor product of𝐶∗(𝐷∞) and𝐶∗(ℤ𝑛) in𝐵(𝑙2(𝐷𝑛

∞)). Therefore, a tensor product
of two linear functionals, on the two respective 𝐶∗-algebras, extends to a linear
functional on 𝐶∗(𝐷𝑛

∞).
Apparently, dim𝐶∗(ℤ𝑛) = 𝑛. For every element 𝑥 ∈ 𝐶∗(ℤ𝑛), it takes the

form

𝑥 =
𝑛−1∑

𝛽=0
𝑏𝛽𝜆ℤ𝑛(𝜏𝛽), 𝑏𝛽 ∈ ℂ.

Since 𝜆ℤ𝑛(𝜏) has the matrix representation

𝜆ℤ𝑛(𝜏) =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 ⋯ 0 0
0 0 1 ⋯ 0 0
0 0 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 0 1
1 0 0 ⋯ 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

,

𝐶∗(ℤ𝑛) can be identified as a subalgebra of 𝑀𝑛(ℂ) by the map 𝜑 defined by

𝜑(𝜆ℤ𝑛(𝜏𝛽)) =
𝑛−1∑
𝑖=𝑛−𝛽

𝐸(𝑛)𝑖(𝑖−𝑛+𝛽) +
𝑛−1−𝛽∑
𝑖=0

𝐸(𝑛)𝑖(𝑖+𝛽). Here {𝐸
(𝑛)
𝑖𝑗 ∶ 0 ≤ 𝑖 ≤ 𝑛 − 1, 0 ≤ 𝑗 ≤

𝑛 − 1} is the generating set for𝑀𝑛(ℂ), where 𝐸(𝑛)𝑖𝑗 denotes the matrix with a 1
at the 𝑖-th row and 𝑗-th column and 0 elsewhere.
We first define 𝑛 linear functionals 𝜙𝛼, 0 ≤ 𝛼 ≤ 𝑛 − 1 , on𝑀𝑛(ℂ) by

𝜙𝛼(𝐸(𝑛)𝑖𝑗 ) =

⎧
⎪
⎨
⎪
⎩

1
𝑛

if 𝑗 − 𝑖 = 𝛼,
1
𝑛

if 𝑖 − 𝑗 = 𝑛 − 𝛼,
0 otherwise.
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It follows that every linear functional on 𝐶∗(ℤ𝑛) is a complex linear combina-
tion of {𝜙𝛼}𝑛−1𝛼=0 by restriction.
In fact, 𝜙0⊗ 𝑡𝑟 is just the trace on 𝐶∗(𝐷𝑛

∞). Now define 𝜙𝛼 ≜ 𝜙𝛼 − 𝜙0 for 1 ≤
𝛼 ≤ 𝑛−1, and 𝜙0 ≜ 𝜙0. One can check that 𝜙𝛼 is not a trace for 1 ≤ 𝛼 ≤ 𝑛−1, as
it takes the value -1 at the identity. We first present the following observation.

Lemma 3.4. The formula of (𝜙𝛼 ⊗ 𝑡𝑟)((𝑎𝑖𝑗)2𝑛−1𝑖,𝑗=0) is

(𝜙𝛼 ⊗ 𝑡𝑟)((𝑎𝑖𝑗)2𝑛−1𝑖,𝑗=0) =
1
2𝑛𝑡𝑟(

2𝑛−1∑

𝑖=2𝑛−2𝛼
𝑎𝑖(𝑖−2𝑛+2𝛼) +

2𝑛−2𝛼−1∑

𝑖=0
𝑎𝑖(2𝛼+𝑖)),

∀1 ≤ 𝛼 ≤ 𝑛 − 1, (𝑎𝑖𝑗)2𝑛−1𝑖,𝑗=0 ∈ 𝐶∗(𝐷𝑛
∞).

Proof. Let {𝐸𝑖𝑗 ∶ 0 ≤ 𝑖 ≤ 2𝑛 − 1, 0 ≤ 𝑗 ≤ 2𝑛 − 1} be the generating set for
𝑀2𝑛(𝐿(ℤ)), and {𝐸𝑖𝑗 ∶ 0 ≤ 𝑖 ≤ 1, 0 ≤ 𝑗 ≤ 1} for𝑀2(𝐿(ℤ)). Here
The following equation can be easily verified:

𝐸𝑖𝑗 = 𝐸(𝑛)
[ 𝑖
2
][ 𝑗
2
]
⊗𝐸(2{ 𝑖

2
})(2{ 𝑗

2
}),

where the brackets [𝑥] denote the floor operation and {𝑥} denote the fractional
part operation.
Thus,

(𝜙𝛼 ⊗ 𝑡𝑟)(𝐸𝑖𝑗) = 𝜙𝛼(𝐸(𝑛)[ 𝑖
2
][ 𝑗
2
]
)𝑡𝑟(𝐸(2{ 𝑖

2
})(2{ 𝑗

2
}))

= 1
𝑛 (𝛿𝛼([ 𝑗2 ]−[

𝑖
2
]) + 𝛿(𝑛−𝛼)([ 𝑖

2
]−[ 𝑗

2
]))

1
2 𝑡𝑟(∆(2{ 𝑖2 })(2{

𝑗
2
}))

=

⎧
⎪
⎨
⎪
⎩

1
2𝑛

if 𝑗 − 𝑖 = 2𝛼,
1
2𝑛

if 𝑖 − 𝑗 = 2𝑛 − 2𝛼,
0 otherwise,

where 𝛿𝑥𝑦 is the kronecker symbol and

∆𝑥𝑦 = {𝐼(𝐿
2(ℤ)) if 𝑥 = 𝑦,

0 otherwise.
Therefore,

(𝜙𝛼 ⊗ 𝑡𝑟)((𝑎𝑖𝑗)2𝑛−1𝑖,𝑗=0) =
𝑛−1∑

𝑖,𝑗=0
𝜙𝛼(𝐸(𝑛)𝑖𝑗 )𝑡𝑟 ((

𝑎(2𝑖)(2𝑗) 𝑎(2𝑖)(2𝑗+1)
𝑎(2𝑖+1)(2𝑗) 𝑎(2𝑖+1)(2𝑗+1)))

=
𝑛−1−𝛼∑

𝑖=0

1
2𝑛𝑡𝑟(𝑎(2𝑖)(2𝑖+2𝛼) + 𝑎(2𝑖+1)(2𝑖+2𝛼+1))+

𝑛−1∑

𝑖=𝑛−𝛼

1
2𝑛𝑡𝑟(𝑎(2𝑖)(2𝑖+2𝛼−2𝑛) + 𝑎(2𝑖+1)(2𝑖+2𝛼−2𝑛+1))
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= 1
2𝑛𝑡𝑟(

2𝑛−1∑

𝑖=2𝑛−2𝛼
𝑎𝑖(𝑖−2𝑛+2𝛼) +

2𝑛−2𝛼−1∑

𝑖=0
𝑎𝑖(2𝛼+𝑖)).

□

Theorem3.5. {𝜙𝛼⊗𝑡𝑟}𝑛−1𝛼=1 induces n-1 different 1-forms besides𝑇𝑟(𝜔𝑅(𝑧)) in the
cohomology group𝐻1

𝑑𝑒(𝑃𝑐(𝑅𝜆𝐷𝑛∞ ),ℂ), where 𝑇𝑟 is the canonical trace on 𝐶
∗(𝐷𝑛

∞).

Proof. Firstly, using the formula in Lemma 3.4, we get for 1 ≤ 𝛼 ≤ 𝑛 − 1

(𝜙𝛼 ⊗ 𝑡𝑟)(𝑅(𝑧)−1) = 1
2𝜋 ∫

2𝜋

0

(−1)𝑛−𝛼−1𝑎(𝑛−𝛼−1)11 𝑧𝑛+𝛼3 𝑑𝜃
𝑛∏
𝑘=1

𝐺𝑘
𝜃 (𝑧)

+ 1
2𝜋 ∫

2𝜋

0

(−1)𝛼(𝑎(𝑛)11 𝑎
(𝑛−𝛼−1)
11 − 𝑎(𝑛)12 𝑎

(𝑛−𝛼−1)
12 𝑓𝑔)𝑧𝛼3𝑑𝜃

𝑛∏
𝑘=1

𝐺𝑘
𝜃 (𝑧)

,

(𝜙𝛼 ⊗ 𝑡𝑟)(𝑅(𝑧)−1𝑎) = 1
2𝜋 ∫

2𝜋

0

(−1)𝑛−𝛼−1(𝑧1 + 𝑧2𝑐𝑜𝑠𝜃)𝑎(𝑛−𝛼−1)12 𝑧𝑛+𝛼3 𝑑𝜃
𝑛∏
𝑘=1

𝐺𝑘
𝜃 (𝑧)

+ 1
2𝜋 ∫

2𝜋

0

(−1)𝛼(𝑧1 + 𝑧2𝑐𝑜𝑠𝜃)(𝑎(𝑛)11 𝑎
(𝑛−𝛼−1)
12 − 𝑎(𝑛)12 𝑎

(𝑛−𝛼−1)
11 )𝑧𝛼3𝑑𝜃

𝑛∏
𝑘=1

𝐺𝑘
𝜃 (𝑧)

,

(𝜙𝛼 ⊗ 𝑡𝑟)(𝑅(𝑧)−1𝑡) = 1
2𝜋 ∫

2𝜋

0

(−1)𝑛−𝛼−1(𝑧2 + 𝑧1𝑐𝑜𝑠𝜃)𝑎(𝑛−𝛼−1)12 𝑧𝑛+𝛼3 𝑑𝜃
𝑛∏
𝑘=1

𝐺𝑘
𝜃 (𝑧)

+ 1
2𝜋 ∫

2𝜋

0

(−1)𝛼(𝑧2 + 𝑧1𝑐𝑜𝑠𝜃)(𝑎(𝑛)11 𝑎
(𝑛−𝛼−1)
12 − 𝑎(𝑛)12 𝑎

(𝑛−𝛼−1)
11 )𝑧𝛼3𝑑𝜃

𝑛∏
𝑘=1

𝐺𝑘
𝜃 (𝑧)

,

and

(𝜙𝛼 ⊗ 𝑡𝑟)(𝑅(𝑧)−1𝜏) = 1
2𝜋 ∫

2𝜋

0

(−1)𝑛−𝛼𝑎(𝑛−𝛼)11 𝑧𝑛+𝛼−13 𝑑𝜃
𝑛∏
𝑘=1

𝐺𝑘
𝜃 (𝑧)

+ 1
2𝜋 ∫

2𝜋

0

(−1)𝛼+1(𝑎(𝑛)11 𝑎
(𝑛−𝛼)
11 − 𝑎(𝑛)12 𝑎

(𝑛−𝛼)
12 𝑓𝑔)𝑧𝛼−13 𝑑𝜃

𝑛∏
𝑘=1

𝐺𝑘
𝜃 (𝑧)

.
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Fix 𝑘 ∈ {0, 1,⋯ , 𝑛 − 1} and choose a closed path
𝛾𝑘 = {((𝑏 + 1)𝜔𝑘, 𝜔𝑘𝑐𝑛𝑘𝑒𝑖𝑡 + 𝜔𝑘, 0, 𝑏) ∶ 0 ≤ 𝑡 ≤ 2𝜋},

where 𝑐𝑛𝑘 = 1
2
min{min

𝑗≠𝑘
𝑏|𝜔𝑘 − 𝜔𝑗|,min𝑗 |(𝑏 + 2)𝜔𝑘 − 𝑏𝜔𝑗|}, and 𝑏 is a non-

negative constant. For every −1 ≤ 𝑥 ≤ 1 and 𝑗 ∈ {0, 1,⋯ , 𝑛 − 1}, we have
that

(𝑧0 + 𝜔𝑗𝑧3)2 − 𝑧21 − 𝑧22 − 2𝑧1𝑧2𝑥
= (𝑏𝜔𝑘 − 𝑏𝜔𝑗 − 𝜔𝑘𝑐𝑛𝑘𝑒𝑖𝑡)((𝑏 + 2)𝜔𝑘 − 𝑏𝜔𝑗 + 𝜔𝑘𝑐𝑛𝑘𝑒𝑖𝑡) ≠ 0,

This means 𝛾𝑘 ∈ 𝑃𝑐(𝑅𝜆𝐷𝑛∞ ) by Theorem 2.1.
On 𝛾𝑘, for 0 ≤ 𝛼 ≤ 𝑛 − 1, the path integral
1
2𝜋𝑖 ∫𝛾𝑘

(𝜙𝛼 ⊗ 𝑡𝑟)(𝜔𝑅(𝑧))

= 1
2𝜋𝑖 ∫𝛾𝑘

𝑧𝛼3
2𝜋 ∫

2𝜋

0

(−1)𝑛−𝛼−1(𝑓 + 𝑔)𝑎𝑛−𝛼−112 𝑧𝑛3
𝑛∏
𝑗=1

𝐺𝑘
𝜃 (𝑧)

𝑑𝜃𝑑𝑧1

− 1
2𝜋𝑖 ∫𝛾𝑘

𝑧𝛼3
2𝜋 ∫

2𝜋

0

(−1)𝛼+1(𝑓 + 𝑔)(𝑧20 − 𝑧21)𝑛−𝛼−1𝑎
𝛼+1
12

𝑛∏
𝑗=1

𝐺𝑘
𝜃 (𝑧)

𝑑𝜃𝑑𝑧1

= 1
4𝜋 ∫

2𝜋

0

𝑏𝑛+𝛼𝜔−𝛼−1𝑘 ((𝑏 + 2 + 𝑐𝑛𝑘𝑒𝑖𝑡)𝑛−𝛼−1 − (𝑏 − 𝑐𝑛𝑘𝑒𝑖𝑡)𝑛−𝛼−1)
𝑛∏
𝑗=1

((𝑏 + 2)𝜔𝑘 − 𝑏𝜔𝑗 + 𝜔𝑘𝑐𝑛𝑘𝑒𝑖𝑡)
∏
𝑗≠𝑘

(𝑏𝜔𝑘 − 𝑏𝜔𝑗 − 𝜔𝑘𝑐𝑛𝑘𝑒𝑖𝑡)
𝑑𝑡

+ 1
4𝜋 ∫

𝛾𝑘

𝑏𝛼𝜔−𝛼−1𝑘 (𝑏 + 2 + 𝑐𝑛𝑘𝑒𝑖𝑡)𝛼+1((𝑏 + 1)2 − (𝑐𝑛𝑘𝑒𝑖𝑡 + 1)2)
𝑛∏
𝑗=1

((𝑏 + 2)𝜔𝑘 − 𝑏𝜔𝑗 + 𝜔𝑘𝑐𝑛𝑘𝑒𝑖𝑡)
∏
𝑗≠𝑘

(𝑏𝜔𝑘 − 𝑏𝜔𝑗 − 𝜔𝑘𝑐𝑛𝑘𝑒𝑖𝑡)
𝑑𝑡

− 1
4𝜋 ∫

𝛾𝑘

𝑏𝛼𝜔−𝛼−1𝑘 (𝑏 − 𝑐𝑛𝑘𝑒𝑖𝑡)𝛼+1((𝑏 + 1)2 − (𝑐𝑛𝑘𝑒𝑖𝑡 + 1)2)
𝑛∏
𝑗=1

((𝑏 + 2)𝜔𝑘 − 𝑏𝜔𝑗 + 𝜔𝑘𝑐𝑛𝑘𝑒𝑖𝑡)
∏
𝑗≠𝑘

(𝑏𝜔𝑘 − 𝑏𝜔𝑗 − 𝜔𝑘𝑐𝑛𝑘𝑒𝑖𝑡)
𝑑𝑡

= 1
4𝜋𝑖 ∫𝕋

𝑏𝑛+𝛼𝜔−𝛼−1𝑘 ((𝑏 + 2 + 𝑐𝑛𝑘𝜔)𝑛−𝛼−1 − (𝑏 − 𝑐𝑛𝑘𝜔)𝑛−𝛼−1)

𝜔
𝑛∏
𝑗=1

((𝑏 + 2)𝜔𝑘 − 𝑏𝜔𝑗 + 𝜔𝑘𝑐𝑛𝑘𝜔)
∏
𝑗≠𝑘

(𝑏𝜔𝑘 − 𝑏𝜔𝑗 − 𝜔𝑘𝑐𝑛𝑘𝜔)
𝑑𝜔

+ 1
4𝜋𝑖 ∫𝕋

𝑏𝛼𝜔−𝛼−1𝑘 ((𝑏 + 2 + 𝑐𝑛𝑘𝜔)𝛼+1)((𝑏 + 1)2 − (𝑐𝑛𝑘𝜔 + 1)2)

𝜔
𝑛∏
𝑗=1

((𝑏 + 2)𝜔𝑘 − 𝑏𝜔𝑗 + 𝜔𝑘𝑐𝑛𝑘𝜔)
∏
𝑗≠𝑘

(𝑏𝜔𝑘 − 𝑏𝜔𝑗 − 𝜔𝑘𝑐𝑛𝑘𝜔)
𝑑𝜔
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− 1
4𝜋𝑖 ∫𝕋

𝑏𝛼𝜔−𝛼−1𝑘 (𝑏 − 𝑐𝑛𝑘𝜔)𝛼+1)((𝑏 + 1)2 − (𝑐𝑛𝑘𝜔 + 1)2)

𝜔
𝑛∏
𝑗=1

((𝑏 + 2)𝜔𝑘 − 𝑏𝜔𝑗 + 𝜔𝑘𝑐𝑛𝑘𝜔)
∏
𝑗≠𝑘

(𝑏𝜔𝑘 − 𝑏𝜔𝑗 − 𝜔𝑘𝑐𝑛𝑘𝜔)
𝑑𝜔

(10)

Since 𝑐𝑛𝑘 =
1
2
min{min

𝑗≠𝑘
𝑏|𝜔𝑘 − 𝜔𝑗|,min𝑗 |(𝑏 + 2)𝜔𝑘 − 𝑏𝜔𝑗|}, the only residue

of the integral is the residue at 𝜔 = 0.
Thus,

(10) =
𝑏𝑛+𝛼𝜔𝑛−𝛼−1𝑘 ((𝑏 + 2)𝑛−𝛼−1 − 𝑏𝑛−𝛼−1)

2
𝑛∏
𝑗=1

((𝑏 + 2)𝜔𝑘 − 𝑏𝜔𝑗)
∏
𝑗≠𝑘

(𝑏𝜔𝑘 − 𝑏𝜔𝑗)

+
𝑏𝛼𝜔2𝑛−𝛼−1𝑘 (𝑏2 + 2𝑏)𝑛−𝛼−1((𝑏 + 2)𝛼+1 − 𝑏𝛼+1)

2
𝑛∏
𝑗=1

((𝑏 + 2)𝜔𝑘 − 𝑏𝜔𝑗)
∏
𝑗≠𝑘

(𝑏𝜔𝑘 − 𝑏𝜔𝑗)

= 𝜔−𝛼−1
2

𝑏𝑛−1[𝑏𝛼+1(𝑏 + 2)𝑛−𝛼−1 − 𝑏𝑛 + (𝑏 + 2)𝑛 − (𝑏 + 2)𝑛−𝛼−1𝑏𝛼+1]
𝑛𝜔𝑛−1𝑘 𝑏𝑛−1((𝑏 + 2)𝑛 − 𝑏𝑛)

=
𝜔−𝛼𝑘
2𝑛 =∶ 𝑎𝑘𝛼

Suppose that (𝜙𝛼⊗𝑡𝑟)(𝜔𝑅(𝑧)), 0 ≤ 𝛼 ≤ 𝑛−1, are linearly dependent. Then,
(𝜙𝛼⊗𝑡𝑟)(𝜔𝑅(𝑧)) are linearly dependent in𝐻1

𝑑𝑒(𝑃𝑐(𝑅𝜆),ℂ). Thus, ∃ 𝑏𝛼 ∈ ℂ, 0 ≤
𝛼 ≤ 𝑛 − 1, 𝑠.𝑡.

𝑛−1∑

𝛼=0
𝑏𝛼(𝜙𝛼 ⊗ 𝑡𝑟)(𝜔𝑅(𝑧)) = [0]. (11)

Integrating (11) on 𝛾𝑘, we have
𝑛−1∑

𝛼=0
𝑏𝛼𝑎𝑘𝛼 = 0.

Choosing 𝑘 = 0, 1,⋯ , 𝑛−1 in turn, we obtain a homogeneous linear system of
equations with a coefficient matrix (𝑎𝑘𝛼)𝑛−1𝑘,𝛼=0. Since

det((𝑎𝑘𝛼)𝑛−1𝑘,𝛼=0) = ( 12𝑛 )
𝑛 ∏

0≤𝑗<𝑘≤𝑛−1
( 1𝜔𝑘

− 1
𝜔𝑗
),

the only solution to the homogeneous linear system of equations is the zero
solution, i.e. ∀0 ≤ 𝛼 ≤ 𝑛 − 1, 𝑏𝛼 = 0. Thus (𝜙𝛼 ⊗ 𝑡𝑟)(𝑅−1(𝑧)) are 𝑛 different
elements in the cohomology group. □

Remark 1. Let 𝛾 = {𝑧(𝑡) ∶ 0 ≤ 𝑡 ≤ 2𝜋} be a closed path in the resolvent set.
By Theorem 2.1, 𝐺𝑘

𝜃 (𝑧) ≠ 0 on 𝑃(𝑅𝜆)𝑐. If we define the winding number𝑊(𝛾)
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of 𝛾 around the projective joint spectrum as the winding number of
𝑛∏
𝑘=1

𝐺𝑘
𝜃 (𝛾)

around 0, then

𝑊(𝛾) =
𝑛∑

𝑘=1

1
2𝜋𝑖 ∫𝐺𝑘

𝜃 (𝛾)

𝑑𝜔
𝜔 =

𝑛∑

𝑘=1

1
2𝜋𝑖 ∫

2𝜋

0

𝑑
𝑑𝑡 log(𝐺

𝑘
𝜃 (𝑧(𝑡)))𝑑𝑡.

Thus, the integral

1
2𝜋𝑖 ∫𝛾

(𝜙0 ⊗ 𝑡𝑟)(𝜔𝑅(𝑧)) =
1
2𝜋𝑖 ∫𝛾

𝑑( 1
4𝑛𝜋 ∫

2𝜋

0
log(

𝑛∏

𝑘=1
𝐺𝑘
𝜃 (𝑧))𝑑𝜃)

= 1
4𝑛𝜋 ∫

2𝜋

0
(

𝑛∑

𝑘=1

1
2𝜋𝑖 ∫

2𝜋

0

𝑑
𝑑𝑡 log(𝐺

𝑘
𝜃 (𝑧(𝑡)))𝑑𝑡)𝑑𝜃

= 𝑊(𝛾)
2𝑛 .

This provides the explanation for why 𝑎𝑘0 is not an integer.

Remark 2. In the above theorem, we only provide 𝑛 linear independent ele-
ments in the cohomology group. However, it still remains a question whether
the cohomology group is 𝑛 generated.

Acknowledgements
The authors thank the referee for helpful comments which make this paper

more readable.

References
[1] Andersson, Mats; Sjöstrand, Johannes. Functional calculus for non-commuting op-

erators with real spectra via an iterated Cauchy formula. J. Funct. Anal. 210 (2004), no. 2,
341–375. MR2053491, Zbl 1070.47009, doi: 10.1016/S0022-1236(03)00141-1 1751

[2] Atkinson, Frederick V. Multiparameter eigenvalue problems. Mathematics in Science
and Engineering, 82. Academic Press, New York-London, 1972. xii+209 pp. MR2760763, Zbl
0555.47001 1751

[3] Bartholdi, Laurent; Sidki, Said N. Self-similar products of groups. Groups Geom. Dyn.
14 (2020), no. 1, 107–115. MR4077656, Zbl 1481.20145, doi: 10.4171/ggd/536

[4] Bekka, Bachir; de la Harpe, Pierre; Valette, Alain. Kazhdan’s property (T). New
Mathematical Monographs, 11. Cambridge University Press, Cambridge, 2008. xiv+472 pp.
ISBN:978-0-521-88720-5. MR2415834, Zbl 1146.22009, doi: 10.1017/CBO9780511542749
1753, 1755

[5] Breuillard, Emmanuel; Kalantar, Mehrdad; Kennedy, Matthew; Ozawa,
Narutaka. C*-simplicity and the unique trace property for discrete groups. Publ.
Math. Inst. Hautes Études Sci. 126 (2017), 35–71. MR3735864, Zbl 1391.46071,
doi: 10.1007/s10240-017-0091-2 1756

[6] Cade, Patrick; Yang, Rongwei. Projective spectrum and cyclic cohomol-
ogy. J. Funct. Anal. 265 (2013), no. 9, 1916–1933. MR3084492, Zbl 1297.46051,
doi: 10.1016/j.jfa.2013.07.010 1751

http://www.ams.org/mathscinet-getitem?mr=2053491
http://www.emis.de/cgi-bin/MATH-item?1070.47009
http://dx.doi.org/10.1016/S0022-1236(03)00141-1
http://www.ams.org/mathscinet-getitem?mr=2760763
http://www.emis.de/cgi-bin/MATH-item?0555.47001
http://www.emis.de/cgi-bin/MATH-item?0555.47001
http://www.ams.org/mathscinet-getitem?mr=4077656
http://www.emis.de/cgi-bin/MATH-item?1481.20145
http://dx.doi.org/10.4171/ggd/536
http://www.ams.org/mathscinet-getitem?mr=2415834
http://www.emis.de/cgi-bin/MATH-item?1146.22009
http://dx.doi.org/10.1017/CBO9780511542749
http://www.ams.org/mathscinet-getitem?mr=3735864
http://www.emis.de/cgi-bin/MATH-item?1391.46071
http://dx.doi.org/10.1007/s10240-017-0091-2
http://www.ams.org/mathscinet-getitem?mr=3084492
http://www.emis.de/cgi-bin/MATH-item?1297.46051
http://dx.doi.org/10.1016/j.jfa.2013.07.010


1766 CHEN LI AND KAI WANG

[7] Conway, JohnB.A course in functional analysis. Graduate Texts inMathematics, 96, (2nd
ed.). Springer-Verlag, New York, 1990. xvi+399 pp. ISBN: 0-387-97245-5. MR1070713, Zbl
0706.46003 1755

[8] Curto, Raúl E. Applications of several complex variables to multiparameter spectral
theory. Surveys of some recent results in operator theory, Vol. II, 25–90. Pitman Res. Notes
Math. Ser., 192. Longman Sci. Tech., Harlow, 1988. ISBN: 0-582-00518-3. MR976843, Zbl
0827.47005 1750

[9] Dixmier, Jacques. 𝐶∗-algebras. North-Holland Mathematical Library, 15. North-Holland
Publishing Co., Amsterdam-New York-Oxford, 1977. xiii+492 pp. ISBN: 0-7204-0762-1.
MR0458185, Zbl 0372.46058 1752

[10] Dosi, Anar. Frechet sheaves and Taylor spectrum for supernilpotent Lie algebra of
operators. Mediterr. J. Math. 6 (2009), no. 2, 181–201. MR2516249, Zbl 1183.46049,
doi: 10.1007/s00009-009-0004-9 1750

[11] Douglas, Ronald G.; Yang, Rongwei. Hermitian geometry on resolvent set. Op-
erator theory, operator algebras, and matrix theory, 167–183. Oper. Theory Adv. Appl.,
267. Birkhäuser/Springer, Cham, 2018. ISBN: 978-3-319-72448-5; 978-3-319-72449-2.
MR3837636, Zbl 1454.47009 1751

[12] Dudko, Artem; Grigorchuk, Rostislav. On spectra of Koopman, groupoid and quasi-
regular representations. J. Mod. Dyn. 11 (2017), 99–123. MR3627119, Zbl 1502.22003,
doi: 10.3934/jmd.2017005

[13] Dudko, Artem; Grigorchuk, Rostislav. On irreducibility and disjointness of Koop-
man and quasi-regular representations of weakly branch groups.Modern theory of dynam-
ical systems, 51–66. Contemp. Math., 692. Amer. Math. Soc., Providence, RI, 2017. ISBN:
978-1-4704-2560-9. MR3666066, Zbl 1388.20017, doi: 10.1090/conm/692

[14] Samuel Glasstone. Quantum Chemistry. J. Chem. Educ. 21 (1944), no. 8, 415.
doi: 10.1021/ed021p415.3 1752

[15] Grigorchuk, Rostislav; Nekrashevych, Volodymyr. Self-similar groups, operator
algebras and Schur complement J. Mod. Dyn. 1 (2007), no. 3, 323–370. MR2318495, Zbl
1133.46029, doi: 10.3934/jmd.2007.1.323

[16] Grigorchuk, Rostislav; Yang, Rongwei. Joint spectrum and the infinite dihe-
dral group. Proc. Steklov Inst. Math. 297 (2017), 165–200. MR3695412, Zbl 1462.47003,
doi: 10.1134/S0371968517020091 1752, 1754, 1755, 1756, 1758, 1760

[17] Haynsworth, Emilie V. Determination of the inertia of a partitioned Hermitian matrix.
Linear Algebra Appl. 1 (1968), no. 1, 73–81. MR0223392, Zbl 0155.06304, doi: 10.1016/0024-
3795(68)90050-5 1755

[18] He, Wei; Yang, Rongwei. Projective spectrum and kernel bundle. Sci. China Math. 58
(2015), no. 11, 2363–2372. MR3426136, Zbl 1334.47008, doi: 10.1007/s11425-015-5043-z
1751

[19] Hörmander, Lars. An introduction to complex analysis in several variables. North-
HollandMathematical Library, 7.North-Holland Publishing Co., Amsterdam, 1990. xii+254
pp. ISBN: 0-444-88446-7. MR1045639, Zbl 0685.32001 1750

[20] Liang, Yu-Xia; Yang, Rongwei. Quasinilpotent operators and non-Euclidean met-
rics. J. Math. Anal. Appl. 468 (2018), no. 2, 939–958. MR3852559, Zbl 1471.47012,
doi: 10.1016/j.jmaa.2018.08.037 1751

[21] Murphy, Gerard J. C*-algebras and operator theory. Academic Press, Inc., Boston, MA,
1990. x+286 pp. ISBN: 0-12-511360-9. MR1074574, Zbl 0714.46041

[22] Sleeman, Brian D.Multiparameter spectral theory in Hilbert space. J. Math. Anal. Appl.
65 (1978), no. 3, 511–530. MR0510467, Zbl 0396.47006, doi: 10.1016/0022-247X(78)90160-9
1751

[23] Taylor, Joseph L. A joint spectrum for several commuting operators. J. Funct. Anal. 6
(1970), 172–191. MR0268706, Zbl 0233.47024, doi: 10.1016/0022-1236(70)90055-8 1750

http://www.ams.org/mathscinet-getitem?mr=1070713
http://www.emis.de/cgi-bin/MATH-item?0706.46003
http://www.emis.de/cgi-bin/MATH-item?0706.46003
http://www.ams.org/mathscinet-getitem?mr=976843
http://www.emis.de/cgi-bin/MATH-item?0827.47005
http://www.emis.de/cgi-bin/MATH-item?0827.47005
http://www.ams.org/mathscinet-getitem?mr=0458185
http://www.emis.de/cgi-bin/MATH-item?0372.46058
http://www.ams.org/mathscinet-getitem?mr=2516249
http://www.emis.de/cgi-bin/MATH-item?1183.46049
http://dx.doi.org/10.1007/s00009-009-0004-9
http://www.ams.org/mathscinet-getitem?mr=3837636
http://www.emis.de/cgi-bin/MATH-item?1454.47009
http://www.ams.org/mathscinet-getitem?mr=3627119
http://www.emis.de/cgi-bin/MATH-item?1502.22003
http://dx.doi.org/10.3934/jmd.2017005
http://www.ams.org/mathscinet-getitem?mr=3666066
http://www.emis.de/cgi-bin/MATH-item?1388.20017
http://dx.doi.org/10.1090/conm/692
http://dx.doi.org/10.1021/ed021p415.3
http://www.ams.org/mathscinet-getitem?mr=2318495
http://www.emis.de/cgi-bin/MATH-item?1133.46029
http://www.emis.de/cgi-bin/MATH-item?1133.46029
http://dx.doi.org/10.3934/jmd.2007.1.323
http://www.ams.org/mathscinet-getitem?mr=3695412
http://www.emis.de/cgi-bin/MATH-item?1462.47003
http://dx.doi.org/10.1134/S0371968517020091
http://www.ams.org/mathscinet-getitem?mr=0223392
http://www.emis.de/cgi-bin/MATH-item?0155.06304
http://dx.doi.org/10.1016/0024-3795(68)90050-5
http://dx.doi.org/10.1016/0024-3795(68)90050-5
http://www.ams.org/mathscinet-getitem?mr=3426136
http://www.emis.de/cgi-bin/MATH-item?1334.47008
http://dx.doi.org/10.1007/s11425-015-5043-z
http://www.ams.org/mathscinet-getitem?mr=1045639
http://www.emis.de/cgi-bin/MATH-item?0685.32001
http://www.ams.org/mathscinet-getitem?mr=3852559
http://www.emis.de/cgi-bin/MATH-item?1471.47012
http://dx.doi.org/10.1016/j.jmaa.2018.08.037
http://www.ams.org/mathscinet-getitem?mr=1074574
http://www.emis.de/cgi-bin/MATH-item?0714.46041
http://www.ams.org/mathscinet-getitem?mr=0510467
http://www.emis.de/cgi-bin/MATH-item?0396.47006
http://dx.doi.org/10.1016/0022-247X(78)90160-9
http://www.ams.org/mathscinet-getitem?mr=0268706
http://www.emis.de/cgi-bin/MATH-item?0233.47024
http://dx.doi.org/10.1016/0022-1236(70)90055-8


JOINT PROJECTIVE SPECTRUM OF 𝐷𝑛
∞ 1767

[24] Yang, Rongwei. Functional spectrum of contractions. J. Funct. Anal. 250 (2007), no. 1,
68–85. MR2345906, Zbl 1138.47003, doi: 10.1016/j.jfa.2007.05.015 1751

[25] Yang, Rongwei. Projective spectrum in Banach algebras. J. Topo. Anal. 1 (2009), no. 3,
289–306. MR2574027, Zbl 1197.47015, doi: 10.1142/S1793525309000126 1750, 1751, 1755

[26] Yang, Rongwei. Joint spectrum in amenability and self-similarity. arXiv preprint.
arXiv:2301.01634v2

(Chen Li) School of Mathematical Sciences, Fudan University, Shanghai, China
22110180024@m.fudan.edu.cn

(Kai Wang) School of Mathematical Sciences, Fudan University, Shanghai, China
kwang@fudan.edu.cn

This paper is available via http://nyjm.albany.edu/j/2024/30-74.html.

http://www.ams.org/mathscinet-getitem?mr=2345906
http://www.emis.de/cgi-bin/MATH-item?1138.47003
http://dx.doi.org/10.1016/j.jfa.2007.05.015
http://www.ams.org/mathscinet-getitem?mr=2574027
http://www.emis.de/cgi-bin/MATH-item?1197.47015
http://dx.doi.org/10.1142/S1793525309000126
http://arXiv.org/abs/2301.01634v2
mailto:22110180024@m.fudan.edu.cn
mailto:kwang@fudan.edu.cn
http://nyjm.albany.edu/j/2024/30-74.html

	1. Introduction
	2. Projective joint spectrum of 
	3. Trace of Maurer-Cartan form and de Rham cohomology group
	Acknowledgements
	References

