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Induced isometric representations

Piyasa Sarkar and S. Sundar

Abstract. Let 𝜎 be an isometric representation ofℕ𝑑 on a Hilbert spaceℋ.
We induce 𝜎 to an isometric representation𝑉 ofℝ𝑑

+ on another Hilbert space
𝒦. We show that the map 𝜎 → 𝑉, restricted to strongly pure isometric rep-
resentations, preserves index and irreducibility. As an application, we show
that, for every 𝑘 ∈ {0, 1, 2,⋯} ∪ {∞}, there is a continuum of prime multipa-
rameter CCR flows with index 𝑘.
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1. Introduction
Inducing representations and actions from subgroups is a standard method

([9], [10]) to construct new representations and actions and its importance is
well established in representation theory, ergodic theory and in many other
branches of mathematics. In this paper, we consider the process of inducing
isometric representations from subsemigroups. We only examine a toy model
where the semigroup involved is ℝ𝑑

+ and the subsemigroup involved is ℕ𝑑.
More precisely, let 𝜎 ∶ ℕ𝑑 → 𝐵(ℋ) be an isometric representation. With 𝜎,

imitating the group case, we associate an isometric representation 𝑉 of ℝ𝑑
+ on

another Hilbert space𝒦 as follows: Let

𝒦 ∶={𝜉 ∶ [0,∞)𝑑 →ℋ|𝜉 is measurable, square-integrable over compact sets
and 𝜉(�̃� + �̃�) = 𝜎(�̃�)𝜉(�̃�),∀�̃� ∈ [0,∞)𝑑, �̃� ∈ ℕ𝑑}.

Define an inner product ⟨ | ⟩ on𝒦 by

⟨𝜉|𝜂⟩ ∶= ∫
1

0
∫

1

0
... ∫

1

0
⟨𝜉(�̃�)|𝜂(�̃�)⟩𝑑(�̃�)
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for all 𝜉, 𝜂 ∈ 𝒦. As usual, we identify two elements of 𝒦 if they agree almost
everywhere. Then, 𝒦 is a Hilbert space under this inner product. For each
𝑡 ∈ [0,∞)𝑑, define 𝑉𝑡 ∶ 𝒦 → 𝒦 by

𝑉𝑡𝜉(�̃�) ∶= 𝜉(�̃� + 𝑡).
Then, 𝑉 ∶= {𝑉𝑡}𝑡∈ℝ𝑑

+
is a strongly continuous semigroup of isometries which

we call the isometric representation induced by 𝜎.
The above construction, in a slightly disguised form, has already appeared in

the literature. Under the obvious identification of𝒦 with 𝐿2([0, 1)𝑑)⊗ℋ, the
semigroup 𝑉 ∶= {𝑉𝑡}𝑡∈ℝ𝑑

+
coincides with the one considered in [6] for 𝑑 = 1

(Lemma 2.4 of [6]) and in [7] for 𝑑 ≥ 2. In [7], the author considers the tech-
nique of constructing 𝑉 as an interpolation technique attributed to Bhat and
Skeide ([6]). We prefer to refer to the construction as an induced construction
as it is exactly analogous to the usual induced construction for group represen-
tations.
Before explaining our results, we recall the definition of the index of a semi-

group of isometries. Let 𝑃 be a semigroup. Suppose 𝑉 ∶= {𝑉𝑥}𝑥∈𝑃 is a semi-
group of isometries on a Hilbert spaceℋ. This means that for every 𝑥 ∈ 𝑃, 𝑉𝑥
is an isometry and 𝑉𝑥𝑉𝑦 = 𝑉𝑥𝑦 for 𝑥, 𝑦 ∈ 𝑃. A map 𝜉 ∶ 𝑃 → ℋ is called an
additive cocycle of 𝑉 if

(1) for every 𝑥 ∈ 𝑃, 𝑉∗
𝑥𝜉𝑥 = 0, and

(2) for 𝑥, 𝑦 ∈ 𝑃, 𝜉𝑥𝑦 = 𝜉𝑥 + 𝑉𝑥𝜉𝑦.
The space of additive cocycles of 𝑉 is denoted by 𝒜(𝑉) whose dimension we
call the index of 𝑉, and we denote it by 𝐼𝑛𝑑(𝑉).
Let 𝜎 be an isometric representation of ℕ𝑑, and let 𝑉 be the corresponding

induced representation. We prove that a few properties are preserved when we
pass from 𝜎 to 𝑉. In particular, we show the following.

(1) The index of 𝜎 coincides with the index of 𝑉.
(2) Let {𝑒1, 𝑒2,⋯ , 𝑒𝑑} be the standard basis for ℕ𝑑. Suppose 𝜎(𝑒𝑖) is a pure

isometry for every 𝑖 = 1, 2,⋯ , 𝑑. (Let us agree to call such isometric
representations strongly pure.) Then, 𝜎 is irreducible if and only if 𝑉 is
irreducible.

(3) Let 𝜎1, 𝜎2 be two strongly pure irreducible isometric representations of
ℕ𝑑. Denote by 𝑉𝑖 the isometric representation induced by 𝜎𝑖. Then,
𝜎1 and 𝜎2 are unitarily equivalent if and only if 𝑉1 and 𝑉2 are unitarily
equivalent.

The takeaway from (2) and (3) is that ’enumerating’ irreducible isometric
representations of ℝ𝑑

+ is at least as hard as enumerating irreducible isometric
representations ofℕ𝑑. For 𝑑 = 2, it is known from [5] that irreducible isometric
representations of ℕ2, except the one-dimensional ones, are in one-one corre-
spondence with the irreducible unitary representations of the group ℤ2 ∗ ℤ
whose associated group 𝐶∗-algebra is not type I, and consequently its repre-
sentation theory is quite complicated. Thus, unlike the 1-parameter case, the
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classification problem of isometric representations of ℝ𝑑
+, when 𝑑 ≥ 2, is quite

hard.
Why consider induced isometric representations? Themotivation for us comes

from a problem in the multiparameter theory of 𝐸0-semigroups which we next
explain. Let us recall a few definitions regarding 𝐸0-semigroups. Let 𝑃 be a
closed, convex cone in ℝ𝑑 that spans ℝ𝑑 and is pointed, i.e. 𝑃 ∩ −𝑃 = {0}.
Letℋ be a separable Hilbert space. By an 𝐸0-semigroup, over 𝑃, on 𝐵(ℋ), we
mean a semigroup 𝛼 ∶= {𝛼𝑥}𝑥∈𝑃 of unital normal ∗-endomorphisms of 𝐵(ℋ)
such that the map

𝑃 ∋ 𝑥 → ⟨𝛼𝑥(𝐴)𝜉|𝜂⟩ ∈ ℂ
is continuous for every𝐴 ∈ 𝐵(𝐻) and for every 𝜉, 𝜂 ∈ℋ. The equivalence rela-
tion on ‘the set of 𝐸0-semigroups’ that we consider is that of cocycle conjugacy.
The first numerical invariant for 𝐸0-semigroups, in the 1-parameter case, is due
to Arveson ([3], [4]) and is called the index. Arveson proved that index is a com-
plete invariant for 1-parameter CCR flows. Moreover, index is only relevant for
spatial 𝐸0-semigroups.
An 𝐸0-semigroup 𝛼 ∶= {𝛼𝑥}𝑥∈𝑃 on 𝐵(ℋ) is said to be spatial if it has a unit,

bywhichwemean a strongly continuous semigroup of bounded operators 𝑢 ∶=
{𝑢𝑥}𝑥∈𝑃 onℋ such that

(1) for 𝑥 ∈ 𝑃, 𝑢𝑥 ≠ 0, and
(2) for 𝐴 ∈ 𝐵(ℋ), 𝑥 ∈ 𝑃, 𝛼𝑥(𝐴)𝑢𝑥 = 𝑢𝑥𝐴.

Following Arveson, in [11] the authors, in the multiparameter case, defined a
numerical invariant for a spatial 𝐸0-semigroup 𝛼 called the index of 𝛼 which
we denote by 𝐼𝑛𝑑(𝛼). Roughly, 𝐼𝑛𝑑(𝛼)measures ‘the number of units’ of 𝛼.
Arveson, in the 1-parameter case, proved the remarkable fact that index is a

‘homomorphism’, i.e.

𝐼𝑛𝑑(𝛼 ⊗ 𝛽) = 𝐼𝑛𝑑(𝛼) + 𝐼𝑛𝑑(𝛽). (1)

We mention here that Arveson’s proof, without any modification, works in the
multiparameter case as well. In view of the above equation, it is quite natural
to ask the following question.
Question: Does there exist a prime𝐸0-semigroup that has index at least two?
Recall that an𝐸0-semigroup𝛼 is said to be prime if whenever𝛼 is cocycle con-

jugate to 𝛽⊗𝛾, where 𝛽 and 𝛾 are 𝐸0-semigroups, then either 𝛽 or 𝛾 is an auto-
morphism group. Affirmative answer to the above question, when 𝑃 = [0,∞),
was given by Liebscher ([8]) who constructed such examples by probabilistic
means. In the multiparameter case, we show that such examples exist even
within the class of CCR flows (which are probably the first examples studied in
the theory of 𝐸0-semigroups); a total contrast to the one parameter case.
Let us recall the definition of CCR flows. Let 𝑉 = {𝑉𝑥}𝑥∈𝑃 be an isometric

representation of 𝑃 on a Hilbert spaceℋ. Let Γ(ℋ) denote the symmetric Fock
space of ℋ. There exists a unique 𝐸0-semigroup, denoted 𝛼𝑉 and called the
CCR flow associated to 𝑉, on 𝐵(Γ(ℋ)), such that for all 𝑥 ∈ 𝑃 and 𝜉 ∈ℋ,

𝛼𝑉𝑥 (𝑊(𝜉)) =𝑊(𝑉𝑥𝜉)
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where {𝑊(𝜉)|𝜉 ∈ ℋ} is the collection of Weyl operators on Γ(ℋ). We call 𝛼𝑉
the CCR flow associated to V.
The following facts were proved in [12] and in [11].

(1) For two pure isometric representations 𝑉1 and 𝑉2, the CCR flows 𝛼𝑉1
and 𝛼𝑉2 are cocycle conjugate if and only if 𝑉1 and 𝑉2 are unitarily
equivalent (Thm. 5.2 of [12]).

(2) Let 𝑉 = {𝑉𝑥}𝑥∈𝑃 be a pure isometric representation of 𝑃 on a Hilbert
spaceℋ.
(a) TheCCRflow𝛼𝑉 is prime if and only if the representation𝑉 is irre-

ducible, i.e. it has no non-trivial closed reducing subspaces (Thm.
7.2 of [12]).

(b) The index of 𝛼𝑉 coincides with that of 𝑉 (Prop. 2.7 of [11]).

Thus, the problem of constructing prime CCR flows over 𝑃 with a given index
𝑘 is equivalent to the problem of constructing irreducible isometric representa-
tions of 𝑃 with index 𝑘. Here is where induced isometric representations come
into picture. For the discrete semigroup ℕ2, such examples are available in the
literature ([1]), albeit in a slightly different form. We also construct alternate
examples. We induce such discrete semigroups of isometries to construct the
desired isometric representations, and we prove the following theorem first for
𝑃 = ℝ𝑑

+, and show that the general case can be derived from the case of ℝ𝑑
+.

Theorem1.1. Let𝑃 be a closed convex cone inℝ𝑑 which is spanning and pointed.
Suppose that 𝑑 ≥ 2. Then, for each 𝑘 ∈ {0, 1, 2,⋯ , } ∪ {∞}, there is a continuum
of irreducible isometric representations of 𝑃 that has index 𝑘.

The following theorem is now immediate.

Theorem1.2. Let𝑃 be a closed convex cone inℝ𝑑 which is pointed and spanning.
Suppose that 𝑑 ≥ 2. Then, for each 𝑘 ∈ {0, 1, 2,⋯ , } ∪ {∞}, there is a continuum
of prime CCR flows with index 𝑘.

We end this introduction by mentioning that for 𝑘 ∈ {0, 1}, the above the-
orem is known. For 𝑘 = 0, the CCR flows considered in [2] provide such ex-
amples. For 𝑘 = 1, the authors in [11] constructed such examples. We must
mention here that the examples constructed in [11] are the first ‘genuine’ ex-
amples of CCR flows/𝐸0-semigroups, in the multiparameter case, that are type
one (which roughly means that there is abundance of units). In [11], the focus
was to construct type one examples with index one. On taking tensor product
of such examples, we can easily construct type one examples with index greater
than one. But this is clearly tautological and this motivated us to seek examples
of prime CCR flows with index greater than one.
Notation:- For us, ℕ stands for the set of natural numbers together with 0.

We denote [0,∞) by ℝ+. Our convention is that inner products are linear in
the first variable.
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2. Preliminaries
First, we recall a few definitions that we need. Let 𝐺 be a locally compact,

abelian, second countable, Hausdorfff topological group, and let 𝑃 ⊆ 𝐺 be a
closed semigroup containing 0 such that 𝑃−𝑃 = 𝐺 and 𝐼𝑛𝑡(𝑃) = 𝑃. Letℋ be a
separable Hilbert space. Let 𝑉 = {𝑉𝑥}𝑥∈𝑃 be a strongly continuous semigroup
of isometries onℋ. Such a family is also called an isometric representation of
𝑃 onℋ. We call 𝑉 a pure isometric representation of 𝑃 if

⋂

𝑥∈𝑃
𝑅𝑎𝑛(𝑉𝑥) = {0}.

The representation 𝑉 is said to be irreducible if the only closed subspaces ofℋ
invariant under {𝑉𝑥, 𝑉∗

𝑥|𝑥 ∈ 𝑃} are {0} andℋ.
Let 𝑉 = {𝑉𝑥}𝑥∈𝑃 be an isometric representation of 𝑃 on a Hilbert spaceℋ.

Recall that a map 𝜉 ∶ 𝑃 →ℋ is called an additive cocycle of V if
(a) for all 𝑥 in 𝑃, 𝜉𝑥 ∈ 𝑘𝑒𝑟(𝑉∗

𝑥), and
(b) for all 𝑥, 𝑦 in 𝑃, 𝜉𝑥+𝑦 = 𝜉𝑥 + 𝑉𝑥𝜉𝑦.

The vector space of all additive cocycles of 𝑉 is denoted by 𝒜(𝑉).
Remark 2.1. Let𝑉 ∶ 𝑃 → 𝐵(ℋ) be an isometric representation, and let 𝜉 ∶ 𝑃 →
ℋ be an additive cocycle. Then, 𝜉 is norm continuous. To see this, let (𝑠𝑛)𝑛≥1 be a
cofinal sequence in 𝐼𝑛𝑡(𝑃). Set

𝐸𝑛 ∶= {𝑥 ∈ 𝑃 ∶ 𝑠𝑛 − 𝑥 ∈ 𝐼𝑛𝑡(𝑃)}.
Note that for 𝑥 ∈ 𝐸𝑛,

𝜉𝑥 = (1 − 𝑉𝑥𝑉∗
𝑥)𝜉𝑠𝑛 .

It follows from the above equality and the fact that (𝐸𝑛)𝑛≥1 is an open cover of 𝑃
that 𝜉 is norm continuous.

Definition 2.2. For an isometric representation 𝑉 of 𝑃, we define the index of V,
denoted 𝐼𝑛𝑑𝑒𝑥(𝑉), as the dimension of𝒜(𝑉).
Note that if 𝑉 = 𝑉1 ⊕𝑉2, then:

𝐼𝑛𝑑𝑒𝑥(𝑉) = 𝐼𝑛𝑑𝑒𝑥(𝑉1) + 𝐼𝑛𝑑𝑒𝑥(𝑉2).
Notation: We defineℳ(𝑉) ∶= 𝐶∗({𝑉𝑥, 𝑉∗

𝑥|𝑥 ∈ 𝑃}).
Proposition 2.3. Let 𝐺 be a locally compact abelian group, and let 𝑃 be a closed
semigroup of 𝐺 containing 0 such that 𝑃 − 𝑃 = 𝐺. Let 𝑉 ∶ 𝑃 → 𝐵(ℋ) be a pure
isometric representation on a separable Hilbert spaceℋ. Let 𝑄 be another closed
subsemigroup of 𝐺 containing 0 such that 𝑄 − 𝑄 = 𝐺 and 𝑄 ⊂ 𝑃. Denote the
restriction of 𝑉 to 𝑄 by𝑊. Then,

(1) 𝑊 is pure,
(2) 𝑑𝑖𝑚(𝒜(𝑊)) = 𝑑𝑖𝑚(𝒜(𝑉)), and
(3) ℳ(𝑊)′ =ℳ(𝑉)′.

Suppose𝑉(1) and𝑉(2) are twopure isometric representations of𝑃 acting onHilbert
spacesℋ1 andℋ2 respectively. Denote the restrictions of 𝑉(𝑖) to 𝑄 by𝑊(𝑖). Then,
𝑉(1) and 𝑉(2) are unitarily equivalent if and only if𝑊(1) and𝑊(2) are unitarily
equivalent.
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Proof. To see that𝑊 is pure, let 𝜉 ∈ ⋂
𝑥∈𝑄 𝑅𝑎𝑛(𝑊𝑥). Let 𝑎 ∈ 𝑃. Since 𝑄 is

spanning in 𝐺, there exist 𝑥, 𝑦 ∈ 𝑄 such that 𝑎 = 𝑥 − 𝑦, i.e 𝑎 + 𝑦 = 𝑥. Now,
there exists 𝜂 such that 𝜉 =𝑊𝑥𝜂 = 𝑉𝑥𝜂 = 𝑉𝑎(𝑉𝑦𝜂). This implies 𝜉 ∈ 𝑅𝑎𝑛(𝑉𝑎),
for all 𝑎 ∈ 𝑃. However 𝑉 is pure, and thus 𝜉 = 0. Hence,𝑊 is pure.
Let 𝜉 = {𝜉𝑥}𝑥∈𝑃 be an additive cocycle of 𝑉. Define, for 𝑦 ∈ 𝑄,

𝜂𝜉𝑦 ∶= 𝜉𝑦.

It is straightforward to see that 𝜂𝜉 = {𝜂𝜉𝑦 }𝑦∈𝑄 ∈ 𝒜(𝑊). We claim that the map

𝒜(𝑉) ∋ 𝜉 ↦ 𝜂𝜉 ∈ 𝒜(𝑊)
is an isomorphism. To see that it is injective, suppose 𝜉 ∈ 𝒜(𝑉) is such that
𝜉𝑦 = 0 for all 𝑦 ∈ 𝑄. Then, for 𝑎 ∈ 𝑃, write 𝑎 = 𝑥 − 𝑦 with 𝑥, 𝑦 ∈ 𝑄, and
calculate to observe that

0 = 𝜉𝑥 = 𝜉𝑎+𝑦 = 𝜉𝑎 + 𝑉𝑎𝜉𝑦 = 𝜉𝑎.
Thus, 𝜉 = 0, and hence the map is injective.
For proving it is a surjection, let 𝜂 be an additive cocycle of𝑊. Note that for

any 𝑐, 𝑑, 𝛼 ∈ 𝑄, and 𝑏 ∈ 𝑃 such that 𝑏 = 𝑐 − 𝑑,
𝜂𝑐+𝛼 − 𝑉𝑏𝜂𝑑+𝛼 = 𝜂𝑐 +𝑊𝑐𝜂𝛼 − 𝑉𝑏𝜂𝑑 − 𝑉𝑏𝑊𝑑𝜂𝛼

= 𝜂𝑐 + 𝑉𝑐𝜂𝛼 − 𝑉𝑏𝜂𝑑 − 𝑉𝑐𝜂𝛼
= 𝜂𝑐 − 𝑉𝑏𝜂𝑑.

Thus, for 𝑐, 𝑑, 𝛼 ∈ 𝑄, and 𝑏 ∈ 𝑃, if 𝑏 = 𝑐 − 𝑑, then
𝜂𝑐+𝛼 − 𝑉𝑏𝜂𝑑+𝛼 = 𝜂𝑐 − 𝑉𝑏𝜂𝑑. (2)

Let 𝑎 ∈ 𝑃. Then, there exist 𝑥, 𝑦 ∈ 𝑄 such that 𝑎 = 𝑥 − 𝑦. Define
𝜉𝑎 ∶= 𝜂𝑥 − 𝑉𝑎𝜂𝑦.

Say there also exist 𝑢, 𝑣 ∈ 𝑄 such that 𝑎 = 𝑢 − 𝑣. This implies 𝑥 + 𝑣 = 𝑦 + 𝑢,
and applying Eq. 2 twice, we get

𝜂𝑥 − 𝑉𝑎𝜂𝑦 = 𝜂𝑥+𝑣 − 𝑉𝑎𝜂𝑦+𝑣 = 𝜂𝑢+𝑦 − 𝑉𝑎𝜂𝑣+𝑦 = 𝜂𝑢 − 𝑉𝑎𝜂𝑣.
Thus, 𝜉𝑎 is well-defined. Also,

𝑉∗
𝑎𝜉𝑎 = 𝑉∗

𝑎𝜂𝑥 − 𝜂𝑦
= 𝑉∗

𝑥𝑉𝑦𝜂𝑥 − 𝜂𝑦 = 𝑉∗
𝑥(𝜂𝑥+𝑦 − 𝜂𝑦) − 𝜂𝑦

= 𝑉∗
𝑥(𝜂𝑥 + 𝑉𝑥𝜂𝑦 − 𝜂𝑦) − 𝜂𝑦

= 𝜂𝑦 − 𝑉∗
𝑥𝜂𝑦 − 𝜂𝑦

= −𝑉∗
𝑥𝜂𝑦

= −𝑉∗
𝑎𝑉∗

𝑦𝜂𝑦 = 0.
This shows that 𝜉𝑎 ∈ 𝑘𝑒𝑟(𝑉∗

𝑎). To prove the cocycle nature, let 𝑎, 𝑏 ∈ 𝑃. There
exist 𝑥, 𝑦, 𝑧 such that 𝑎 = 𝑥 − 𝑦 and 𝑏 = 𝑦 − 𝑧. Then,

𝜉𝑎+𝑏 = 𝜂𝑥 − 𝑉𝑎+𝑏𝜂𝑧
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= 𝜂𝑥 − 𝑉𝑎𝜂𝑦 + 𝑉𝑎𝜂𝑦 − 𝑉𝑎+𝑏𝜂𝑧
= 𝜉𝑎 + 𝑉𝑎(𝜂𝑦 − 𝑉𝑏𝜂𝑧)
= 𝜉𝑎 + 𝑉𝑎𝜉𝑏.

Therefore, 𝜉 = {𝜉𝑥}𝑥∈𝑃 ∈ 𝒜(𝑉). Also, for 𝑦 ∈ 𝑄, note that 𝜉𝑦 = 𝜂𝑦. Thus,
𝜂𝜉 = 𝜂, and the map is hence a bijection.
Note that for 𝑎 ∈ 𝑃 if 𝑎 = 𝑥 − 𝑦 with 𝑥, 𝑦 ∈ 𝑄, 𝑉𝑦𝑉𝑎 = 𝑉𝑥 which in

turn implies that 𝑉𝑎 = 𝑉∗
𝑦𝑉𝑥 = 𝑊∗

𝑦𝑊𝑥. Thus, the 𝐶∗-algebras generated by
{𝑉𝑎|𝑎 ∈ 𝑃} and {𝑊𝑥|𝑥 ∈ 𝑄} are the same and hence,ℳ(𝑊)′ =ℳ(𝑉)′.
Let𝑉(1) and𝑉(2) be two pure isometric representations of 𝑃 acting onHilbert

spacesℋ1 andℋ2 respectively. Denote the restrictions of 𝑉(𝑖) to 𝑄 by𝑊(𝑖). If
𝑉(1) is unitarily equivalent to 𝑉(2), it is clear that𝑊(1) is uniatrily equivalent to
𝑊(2). Conversely, if𝑊(1) is unitarily equivalent to𝑊(2), there exists a unitary
𝑈 ∶ ℋ1 → ℋ2 such that𝑊(1)

𝑥 𝑈 = 𝑈𝑊(2)
𝑥 , for all 𝑥 ∈ 𝑄. Let 𝑎 ∈ 𝑃; there exist

𝑥, 𝑦 ∈ 𝑄 such that 𝑎 = 𝑥 − 𝑦. Then,

𝑉(1)
𝑎 𝑈 =𝑊(1)∗

𝑦 𝑊(1)
𝑥 𝑈

=𝑊(1)∗
𝑦 𝑈𝑊(2)

𝑥

= 𝑈𝑊(2)∗
𝑦 𝑊(2)

𝑥

= 𝑈𝑉(2)
𝑎 .

This proves that𝑉(1) is unitarily equivalent to𝑉(2) iff𝑊(1) is unitarily equivalent
to𝑊(2). □

3. Induced isometric representations
Let us recall once again the construction of the induced isometric represen-

tation mentioned in the introduction. Letℋ be a separable Hilbert space with
an orthonormal basis {𝑒𝑛}𝑛∈ℕ. Let 𝑑 ≥ 1 be an integer. Let 𝜎 ∶ ℕ𝑑 → 𝐵(ℋ) be
an isometric representation. Let

𝒦 ∶={𝜉 ∶ [0,∞)𝑑 →ℋ|𝜉 is measurable, square-integrable over compact sets
and 𝜉(�̃� + �̃�) = 𝜎(�̃�)𝜉(�̃�),∀�̃� ∈ [0,∞)𝑑, �̃� ∈ ℕ𝑑}

Define an inner product ⟨ | ⟩ on𝒦 by

⟨𝜉|𝜂⟩ ∶= ∫
1

0
∫

1

0
... ∫

1

0
⟨𝜉(�̃�)|𝜂(�̃�)⟩𝑑(�̃�)

for all 𝜉, 𝜂 ∈ 𝒦. It goes without saying that we identify two elements of 𝒦
if they agree almost everywhere. Then, 𝒦 is a Hilbert space under this inner
product. For each 𝑡 ∈ [0,∞)𝑑, define 𝑉𝑡 ∶ 𝒦 → 𝒦 by

𝑉𝑡𝜉(�̃�) ∶= 𝜉(�̃� + 𝑡).
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It is routine to check that 𝑉 ∶= {𝑉𝑡}𝑡∈ℝ𝑑
+
is a strongly continuous semigroup of

isometries. The representation 𝑉 ∶ [0,∞)𝑑 → 𝐵(𝒦) thus obtained is an iso-
metric representation, and we shall call it the isometric representation induced
by 𝜎.
Let (𝑡1,⋯ , 𝑡𝑑) ∈ ℝ𝑑

+. There exist 𝑛1,⋯ , 𝑛𝑑 ∈ ℕ such that, for each 𝑘, 𝑛𝑘 ≤
𝑡𝑘 < 𝑛𝑘 + 1. For each 𝑘, let 𝑖𝑘 ∈ {𝑛𝑘, 𝑛𝑘 + 1}. Define

𝐼𝑖𝑘 ∶= {[𝑡𝑘 − 𝑛𝑘, 1), 𝑖𝑘 = 𝑛𝑘,
[0, 𝑡𝑘 − 𝑛𝑘), 𝑖𝑘 = 𝑛𝑘 + 1.

and

𝐽𝑖𝑘 ∶= {[0, 1 − 𝑡𝑘 + 𝑛𝑘), 𝑖𝑘 = 𝑛𝑘,
[1 − 𝑡𝑘 + 𝑛𝑘, 1), 𝑖𝑘 = 𝑛𝑘 + 1.

Then, one can check that, for any 𝜉 ∈ 𝒦,

𝑉∗
(𝑡1,⋯,𝑡𝑑)

𝜉(𝑥1,⋯ , 𝑥𝑑) = 𝜎(𝑖1, 𝑖2,⋯ , 𝑖𝑑)∗𝜉(𝑥1 + 𝑖1 − 𝑡1,⋯ , 𝑥𝑑 + 𝑖𝑑 − 𝑡𝑑),
whenever (𝑥1, 𝑥2,⋯ , 𝑥𝑑) ∈ 𝐼𝑖1 × 𝐼𝑖2 ×⋯ × 𝐼𝑖𝑑 .
Also, if 𝜉 ∈ 𝑘𝑒𝑟(𝑉∗

(𝑡1,𝑡2,⋯,𝑡𝑑)
), then 𝜉(𝑥1, 𝑥2,⋯ , 𝑥𝑑) ∈ 𝑘𝑒𝑟(𝜎(𝑖1, 𝑖2,⋯ , 𝑖𝑑)∗)

whenever (𝑥1, 𝑥2,⋯ , 𝑥𝑑) ∈ 𝐽𝑖1 × 𝐽𝑖2 ×⋯ × 𝐽𝑖𝑑 . Conversely, suppose that 𝜉 ∈
𝐿2([0, 1)𝑑,ℋ) is such that 𝜉(𝑥1, 𝑥2,⋯ , 𝑥𝑑) ∈ 𝑘𝑒𝑟(𝜎(𝑖1, 𝑖2,⋯ , 𝑖𝑑)∗) whenever
(𝑥1, 𝑥2,⋯ , 𝑥𝑑) ∈ 𝐽𝑖1 × 𝐽𝑖2 ×⋯ × 𝐽𝑖𝑑 . Then, 𝜉 ∈ 𝑘𝑒𝑟(𝑉(𝑡1,𝑡2,⋯,𝑡𝑑)).
The space𝒦 can be identified with 𝐿2([0, 1)𝑑)⊗ℋ via the map

𝒦 ∋ 𝜉 ↦
∑

𝑛∈ℕ
(𝜉𝑛 ⊗ 𝑒𝑛) ∈ 𝐿2([0, 1)𝑑)⊗ℋ,

where 𝜉𝑛 ∶ [0, 1)𝑑 → ℂ is defined by 𝜉𝑛(�̃�) = ⟨𝜉(�̃�)|𝑒𝑛⟩ for �̃� ∈ [0, 1)𝑑, 𝑛 ∈ ℕ.
We always use this identification. Under this identification, we obtain

𝑉�̃� = 1𝐿2([0,1)𝑑) ⊗ 𝜎(�̃�), for all �̃� ∈ ℕ𝑑.
Remark 3.1. (1) Note that if 𝜎 is a pure isometric representation onℋ, then

𝑉 too is a pure isometric representation on𝒦. To see this, consider a pure
isometric representation 𝜎 ∶ ℕ𝑑 → 𝐵(ℋ) and the corresponding induced
representation 𝑉 ∶ [0,∞)𝑑 → 𝐵(𝒦). This implies, for all �̃� ∈ ℕ𝑑, 𝑉�̃� =
1𝐿2([0,∞)𝑑) ⊗ 𝜎(�̃�). Since 𝜎 is pure,

⋂

�̃�∈ℕ𝑑
𝑅𝑎𝑛(𝜎(�̃�)) = {0}. Thus,

⋂

𝑡∈[0,∞)𝑑
𝑅𝑎𝑛(𝑉𝑡) ⊆

⋂

�̃�∈ℕ𝑑
𝑅𝑎𝑛(𝑉�̃�) = {0}.

Hence, 𝑉 is a pure isometric representation.
(2) Suppose 𝜎(1) and 𝜎(2) are two pure irreducible isometric representations

of ℕ𝑑 acting on ℋ1 and ℋ2 respectively, and let 𝑉(1) and 𝑉(2) be the
corresponding induced representations. Then, 𝜎(1) and 𝜎(2) are unitar-
ily equivalent if and only if 𝑉(1) and 𝑉(2) are unitarily equivalent. This
follows from Schur’s lemma and the fact that for 𝑖 = 1, 2, and �̃� ∈ ℕ𝑑,
𝑉(𝑖)
�̃� = 1⊗ 𝜎(𝑖)�̃� .
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Let us consider the case when 𝑑 = 1. Let ℋ be a separable Hilbert space
with an orthonormal basis {𝑒𝑛}𝑛∈ℕ. Let 𝜎 ∶ ℕ → 𝐵(ℋ) be a pure isometric
representation on ℋ. Let 𝑉 be the isometric representation induced by 𝜎 on
𝒦. Recall that

𝒦 = {𝜉 ∶ [0,∞)→ℋ|𝜉 is measurable, square-integrable over compact sets,
𝜉(𝑡 + 𝑛) = 𝜎(𝑛)𝜉(𝑡),∀𝑡 ≥ 0, 𝑛 ∈ ℕ},

where the inner product is defined by

⟨𝜉|𝜂⟩ = ∫
1

0
⟨𝜉(𝑡)|𝜂(𝑡)⟩𝑑𝑡.

We usually identify𝒦 with 𝐿2([0, 1))⊗ℋ and ‘move’ between the two spaces
freely whenever convenient. Recall that, for each 𝑡 ≥ 0, 𝑉𝑡 ∶ 𝒦 → 𝒦 is given
by,

𝑉𝑡𝜉(𝑥) ∶= 𝜉(𝑥 + 𝑡).
The representation 𝑉 = {𝑉𝑡}𝑡≥0 is pure, since 𝜎 is pure. We first calculate 𝑉∗

𝑡 .
Let 𝑡 ≥ 0, there exists 𝑛 ∈ ℕ such that 𝑛 ≤ 𝑡 < 𝑛 + 1. Let 𝜉, 𝜂 ∈ 𝒦. Then,

⟨𝑉∗
𝑡 𝜉|𝜂⟩ = ⟨𝜉|𝑉𝑡𝜂⟩

= ∫
1

0
⟨𝜉(𝑥)|𝜂(𝑥 + 𝑡)⟩𝑑𝑥

= ∫
1

0
⟨𝜎(𝑛)∗𝜉(𝑥)|𝜂(𝑥 + 𝑡 − 𝑛)⟩𝑑𝑥

= ∫
𝑡−𝑛+1

𝑡−𝑛
⟨𝜎(𝑛)∗𝜉(𝑥 − 𝑡 + 𝑛)|𝜂(𝑥)⟩𝑑𝑥

= ∫
1

𝑡−𝑛
⟨𝜎(𝑛)∗𝜉(𝑥 − 𝑡 + 𝑛)|𝜂(𝑥)⟩𝑑𝑥 + ∫

1+𝑡−𝑛

1
⟨𝜎(𝑛)∗𝜉(𝑥 − 𝑡 + 𝑛)|𝜂(𝑥)⟩𝑑𝑥

= ∫
1

𝑡−𝑛
⟨𝜎(𝑛)∗𝜉(𝑥 − 𝑡 + 𝑛)|𝜂(𝑥)⟩𝑑𝑥

+ ∫
1+𝑡−𝑛

1
⟨𝜎(𝑛 + 1)∗𝜉(𝑥 − 𝑡 + 𝑛)|𝜂(𝑥 − 1)⟩𝑑𝑥

= ∫
1

𝑡−𝑛
⟨𝜎(𝑛)∗𝜉(𝑥 − 𝑡 + 𝑛)|𝜂(𝑥)⟩𝑑𝑥

+ ∫
𝑡−𝑛

0
⟨𝜎(𝑛 + 1)∗𝜉(𝑥 − 𝑡 + 𝑛 + 1)|𝜂(𝑥)⟩𝑑𝑥

Thus, we have

𝑉∗
𝑡 𝜉(𝑥) = {𝜎(𝑛 + 1)∗𝜉(𝑥 − 𝑡 + 𝑛 + 1), for 𝑥 ∈ [0, 𝑡 − 𝑛),

𝜎(𝑛)∗𝜉(𝑥 − 𝑡 + 𝑛), for 𝑥 ∈ [𝑡 − 𝑛, 1). (3)
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Let 0 ≤ 𝑡 < 1. Note that Eqn. 3 implies that

𝑘𝑒𝑟(𝑉∗
𝑡 ) =

{
𝜉 ∈ 𝐿2((0, 1],ℋ) ||||| 𝜉|[0,1−𝑡) = 0 (4)

and 𝜉(𝑥) ∈ 𝑘𝑒𝑟(𝜎(1)∗), 𝑥 ∈ [1 − 𝑡, 1)
}

(5)

Also, keeping in mind the correspondence𝒦 ≅ 𝐿2((0, 1],ℋ), for 𝑛 ≤ 𝑡 < 𝑛+1
and 𝜉 ∈ 𝒦,

(𝑉𝑡𝜉)(𝑥) = {𝜎(𝑛)𝜉(𝑥 + 𝑡 − 𝑛), 𝑥 ∈ [0, 1 − 𝑡 + 𝑛),
𝜎(𝑛 + 1)𝜉(𝑥 + 𝑡 − 𝑛 − 1), 𝑥 ∈ [1 − 𝑡 + 𝑛, 1). (6)

Lemma 3.2. Let 𝜂 ∶ ℕ → ℋ be a map. Define, for 𝑛 ≤ 𝑡 < 𝑛 + 1, 𝜉𝜂𝑡 ∶ [0, 1) →
ℋ,

𝜉𝜂𝑡 (𝑥) ∶= {𝜂𝑛, 𝑥 ∈ [0, 1 − 𝑡 + 𝑛),
𝜂𝑛+1, 𝑥 ∈ [1 − 𝑡 + 𝑛, 1).

Then, 𝜉𝜂 = {𝜉𝜂𝑡 }𝑡≥0 is an additive cocycle of𝑉 iff 𝜂 = {𝜂𝑘}𝑘∈ℕ is an additive cocycle
of 𝜎.
Proof. Assume that 𝜉𝜂 is an additive cocycle of 𝑉. Since 𝜉𝜂𝑘 ∈ 𝑘𝑒𝑟(𝑉∗

𝑘),

𝜎(𝑘)∗𝜂𝑘 = 𝜎(𝑘)∗𝜉𝜂𝑘(𝑥) = 𝑉∗
𝑘𝜉

𝜂
𝑘(𝑥) = 0.

Thus, 𝜂𝑘 ∈ 𝑘𝑒𝑟(𝜎(𝑘)∗), for all 𝑘 ∈ ℕ. Also,
𝜂𝑘+𝑚 = 𝜉𝜂𝑘+𝑚(𝑥) = 𝜉𝜂𝑘(𝑥) + 𝑉𝑘𝜉𝜂𝑚(𝑥) = 𝜂𝑘 + 𝜎(𝑘)𝜂𝑚.

Thus, 𝜂 = {𝜂𝑘}𝑘∈ℕ is an additive cocycle of 𝜎.
Suppose 𝜂 is an additive cocycle of 𝜎. Then, for 𝑛 ≤ 𝑡 < 𝑛 + 1,

𝑉∗
𝑡 𝜉

𝜂
𝑡 (𝑥) = {𝜎(𝑛 + 1)∗𝜉𝜂𝑡 (𝑥 − 𝑡 + 𝑛 + 1), whenever 𝑥 ∈ [0, 𝑡 − 𝑛),

𝜎(𝑛)∗𝜉𝜂𝑡 (𝑥 − 𝑡 + 𝑛), whenever 𝑥 ∈ [𝑡 − 𝑛, 1).

= {𝜎(𝑛 + 1)∗𝜂𝑛+1, whenever 𝑥 ∈ [0, 𝑡 − 𝑛),
𝜎(𝑛)∗𝜂𝑛, whenever 𝑥 ∈ [𝑡 − 𝑛, 1).

= 0.

This shows 𝜉𝜂𝑡 ∈ 𝑘𝑒𝑟(𝑉∗
𝑡 ), for all 𝑡 ≥ 0.

To prove the cocycle nature, let 𝑠, 𝑡 ≥ 0 be given. Choose𝑚, 𝑛 ∈ ℕ such that
𝑚 ≤ 𝑠 < 𝑚 + 1 and 𝑛 ≤ 𝑡 < 𝑛 + 1.Then,
Case (i) 𝑚 + 𝑛 ≤ 𝑠 + 𝑡 < 𝑚 + 𝑛 + 1,

Under this condition,

𝜉𝜂𝑠+𝑡(𝑥) = {𝜂𝑚+𝑛, 𝑥 ∈ [0, 1 − 𝑠 − 𝑡 +𝑚 + 𝑛),
𝜂𝑚+𝑛+1, 𝑥 ∈ [1 − 𝑠 − 𝑡 +𝑚 + 𝑛, 1).

Now,

𝜉𝜂𝑠 (𝑥) + 𝑉𝑠𝜉𝜂𝑡 (𝑥)
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= {𝜉
𝜂
𝑠 (𝑥) + 𝜎(𝑚)𝜉𝜂𝑡 (𝑥 + 𝑠 −𝑚), 𝑥 ∈ [0, 1 − 𝑠 +𝑚),
𝜉𝜂𝑠 (𝑥) + 𝜎(𝑚 + 1)𝜉𝜂𝑡 (𝑥 + 𝑠 −𝑚 − 1), 𝑥 ∈ [1 − 𝑠 +𝑚, 1).

=
⎧
⎨
⎩

𝜂𝑚 + 𝜎(𝑚)𝜂𝑛, 𝑥 ∈ [0, 1 − 𝑠 +𝑚) ∩ [0, 1 − 𝑠 − 𝑡 +𝑚 + 𝑛),
𝜂𝑚 + 𝜎(𝑚)𝜂𝑛+1, 𝑥 ∈ [0, 1 − 𝑠 +𝑚) ∩ [1 − 𝑠 − 𝑡 +𝑚 + 𝑛, 1),
𝜂𝑚+1 + 𝜎(𝑚 + 1)𝜂𝑛, 𝑥 ∈ [1 − 𝑠 +𝑚, 1) ∩ [0, 1).

= {𝜂𝑚+𝑛, 𝑥 ∈ [0, 1 − 𝑠 − 𝑡 +𝑚 + 𝑛),
𝜂𝑚+𝑛+1, 𝑥 ∈ [1 − 𝑠 − 𝑡 +𝑚 + 𝑛, 1).

= 𝜉𝜂𝑠+𝑡(𝑥).
Case (ii) 𝑚 + 𝑛 + 1 ≤ 𝑠 + 𝑡 < 𝑚 + 𝑛 + 2. The verification in this case is similar.
Thus, 𝜉𝜂 = {𝜉𝜂𝑡 }𝑡≥0 is an additive cocycle of 𝑉 whenever 𝜂 is an additive cocycle
of 𝜎. □

Let 𝒜(𝜎) and 𝒜(𝑉) denote the space of additive cocycles of 𝜎 and 𝑉 respec-
tively.

Proposition 3.3. The map

𝒜(𝜎) ∋ 𝜂 ↦ 𝜉𝜂 ∈ 𝒜(𝑉)
is an isomorphism. Hence, 𝐼𝑛𝑑(𝜎) = 𝐼𝑛𝑑(𝑉).
Proof. The map is clearly injective. To see that it is onto, let 𝜉 = {𝜉𝑡}𝑡≥0 be a
non-zero additive cocycle of 𝑉. Recall that 𝑉 acts on𝒦 where𝒦 is given by

𝒦 = {𝜉 ∶ [0,∞)→ℋ|𝜉 is measurable, square-integrable over compact sets,
𝜉(𝑡 + 𝑛) = 𝜎(𝑛)𝜉(𝑡),∀𝑡 ≥ 0, 𝑛 ∈ ℕ},

The fact that 𝜉 is an additive cocylce implies that for all 𝑠, 𝑡 ≥ 0,
𝜉𝑠+𝑡(𝑥) = 𝜉𝑠(𝑥) + 𝜉𝑡(𝑥 + 𝑠)

for almost all 𝑥. By Theorem 5.3.2 of [4], there exists 𝑓 ∈ 𝐿2𝑙𝑜𝑐([0,∞),ℋ), such
that for every 𝑡,

𝜉𝑡(𝑥) = 𝑓(𝑥 + 𝑡) − 𝑓(𝑥), (7)
for almost all 𝑥. However, 𝜉𝑡 ∈ 𝑘𝑒𝑟(𝑉∗

𝑡 ), and hence, by Eqn. 4, for 0 ≤ 𝑡 < 1,
𝜉𝑡(𝑥) = 0, for almost all 𝑥 ∈ [0, 1 − 𝑡). This implies, for every 𝑡 ∈ [0, 1),
𝑓(𝑥 + 𝑡) = 𝑓(𝑥), for almost all 𝑥 ∈ [0, 1 − 𝑡). Define 𝑓𝑛 ∶ [0,∞) → ℂ by
𝑓𝑛(𝑥) ∶= ⟨𝑓(𝑥)|𝑒𝑛⟩, for all 𝑛 ∈ ℕ. Then, for every 𝑡 ∈ [0, 1), 𝑓𝑛(𝑥 + 𝑡) = 𝑓𝑛(𝑥)
for almost all 𝑥 ∈ [0, 1 − 𝑡). Thus, the distributional derivative of 𝑓𝑛 is zero on
(0, 1). Hence, the function 𝑓𝑛 is constant on the interval [0, 1), and thereby, so
is the function 𝑓
Therefore, there exists a vector 𝛾 ∈ℋ, such that

𝑓(𝑥) = 𝛾 (8)

for almost all 𝑥 ∈ [0, 1).
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Let 𝜙 ∶ [0,∞)→ℋ be defined by

𝜙(𝑥) = 𝑓(𝑥 + 1) − 𝜎(1)𝑓(𝑥).
For every 𝑡 > 0, since 𝜉𝑡(𝑥+1) = 𝜎(1)𝜉𝑡(𝑥) for almost all 𝑥, it follows that given
𝑡 > 0,

𝑓(𝑥 + 𝑡 + 1) − 𝑓(𝑥 + 1) = 𝜎(1)(𝑓(𝑥 + 𝑡) − 𝑓(𝑥))
for almost all 𝑥 ∈ [0,∞). In other words, given 𝑡 > 0, 𝜙(𝑥+𝑡) = 𝜙(𝑥) for almost
all 𝑥 ∈ [0,∞). This forces that 𝜙 is constant. Let 𝛾 ∈ ℋ be such that 𝜙(𝑥) = 𝛾
for almost all 𝑥 ∈ [0,∞). It follows from Eq. 8, that for almost all 𝑥 ∈ [0, 1),

𝑓(𝑥 + 1) = 𝜎(1)𝑓(𝑥) + 𝛾 = 𝜎(1)𝛾 + 𝛾 (9)

for almost all 𝑥 ∈ [0, 1). Set 𝜂1 ∶= 𝜎(1)𝛾 + 𝛾 − 𝛾.
Combining Eq. 7, Eq. 8 and Eq. 9, we have, for 0 ≤ 𝑡 < 1,

𝜉𝑡(𝑥) = {0, 𝑥 ∈ [0, 1 − 𝑡),
𝜂1, 𝑥 ∈ [1 − 𝑡, 1).

By Eqn. 4, we have 𝜂1 ∈ 𝑘𝑒𝑟(𝜎(1)∗). Set 𝜂𝑘+1 = 𝜂𝑘+𝜎(𝑘)𝜂1, for all 𝑘 ≥ 1, 𝑘 ∈
ℕ, and 𝜂0 = 0. This makes 𝜂 = {𝜂𝑘}𝑘∈ℕ an additive cocycle of 𝜎. Therefore, 𝜉𝜂
is an additive cocycle of 𝑉. Also,

𝜉𝑡 = 𝜉𝜂𝑡
for 0 ≤ 𝑡 < 1. Since 𝜉 and 𝜉𝜂 are additive cocycles, 𝜉 = 𝜉𝜂. This proves that the
map is indeed a bijection. □

Remark 3.4. Let 𝑊 = {𝑊𝑡}𝑡≥0 be a pure isometric representation on a sepa-
rable Hilbert space ℒ. Then, {𝑊𝑡}𝑡≥0 is unitarily equivalent to {𝑆𝑡 ⊗ 1}𝑡≥0 on
𝐿2([0,∞)) ⊗ℋ0, for some separable Hilbert spaceℋ0. Here, {𝑆𝑡}𝑡≥0 is the shift
semigroup on 𝐿2([0,∞)). Moreover, 𝑑𝑖𝑚(𝒜(𝑊)) = 𝑑𝑖𝑚(ℋ0). The last equality
can be proveddirectly, or by appealing to the index computation, due toArveson, of
1-parameter CCR flows and the fact that for CCR flows, 𝐼𝑛𝑑(𝛼𝑊) = 𝑑𝑖𝑚(𝒜(𝑊)).
Thus,𝑊 is irreducible if and only if 𝑑𝑖𝑚(𝒜(𝑊)) = 1.
Recall that

ℳ(𝜎) = 𝐶∗({𝜎(1)}),
ℳ(𝑉) = 𝐶∗({𝑉𝑡|𝑡 ≥ 0})

and denote their commutants byℳ(𝜎)′ andℳ(𝑉)′.
Proposition 3.5. With the foregoing notation,ℳ(𝑉)′ = 1𝐿2([0,1)) ⊗ℳ(𝜎)′.
Proof. Define �̃� ∶ ℕ → 𝐵(𝓁2(ℕ)) by �̃�(𝑛) = 𝑆𝑛, where 𝑆 ∶ 𝓁2(ℕ) → 𝓁2(ℕ)
is the unilateral shift operator. Then, �̃� is a pure isometric representation on
𝓁2(ℕ). Let �̃� ∶ [0,∞) → 𝐵(𝐿2([0, 1)) ⊗ 𝓁2(ℕ)) be the pure isometric rep-
resentation induced by �̃�. Clearly, 𝑑𝑖𝑚(𝒜(�̃�)) = 1. By Prop. 3.3, we have
𝑑𝑖𝑚(𝒜(�̃�)) = 1, and consequently, �̃� is irreducible, and

ℳ(�̃�)′ = ℂ1𝐿2([0,1)) ⊗ 1𝓁2(ℕ). (10)
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Let 𝜎 ∶ ℕ → 𝐵(ℋ) be a pure isometric representation. Since 𝜎 is pure, by
Wold decomposition, there exists a Hilbert spaceℋ0 and a unitary𝑈 ∶ 𝓁2(ℕ)⊗
ℋ0 →ℋ such that

𝜎(1) = 𝑈(𝑆 ⊗ 1)𝑈∗.
So, we can assume that up to a unitary equivalence,ℋ = 𝓁2(ℕ)⊗ℋ0, for some
Hilbert spaceℋ0, and 𝜎(1) = 𝑆⊗1 = �̃�(1)⊗1, where 1 ∈ 𝐵(ℋ0) is the identity
onℋ0. Let 𝑉 be the induced representation due to 𝜎. We thus have

ℳ(𝜎)′ = {1𝓁2(ℕ) ⊗ 𝑇|𝑇 ∈ 𝐵(ℋ0)},
𝑉𝑡 = �̃�𝑡 ⊗ 1, and

ℳ(𝑉)′ = {1𝐿2([0,1)) ⊗ 1𝓁2(ℕ) ⊗ 𝑇|𝑇 ∈ 𝐵(ℋ0)} (by Eq. 10)
= 1𝐿2([0,1)) ⊗ℳ(𝜎)′.

The proof is complete. □

Now, let 𝑑 ≥ 2. Let 𝜎 ∶ ℕ𝑑 → 𝐵(ℋ) be an isometric representation, and let𝑉
be the associated induced isometric representation. For amap 𝜂 ∶ ℕ𝑑 →ℋ, we
define 𝜉𝜂 ∶ ℝ𝑑

+ → 𝐿2([0, 1)𝑑,ℋ) in the following manner: let (𝑡1, 𝑡2,⋯ , 𝑡𝑑) ∈
ℝ𝑑
+. Then, there exist 𝑛1, 𝑛2,⋯ , 𝑛𝑑 ∈ ℕ such that 𝑛𝑘 ≤ 𝑡𝑘 < 𝑛𝑘 + 1, for all

1 ≤ 𝑘 ≤ 𝑑. Define,
𝜉𝜂(𝑡1,⋯,𝑡𝑑)

(𝑥1,⋯ , 𝑥𝑑) ∶= 𝜂(𝑖1,⋯,𝑖𝑑),
whenever (𝑥1, 𝑥2,⋯ , 𝑥𝑑) ∈ 𝐽𝑖1 × 𝐽𝑖2 ×⋯ × 𝐽𝑖𝑑 . Recall that

𝐽𝑖𝑘 ∶= {[0, 1 − 𝑡𝑘 + 𝑛𝑘), 𝑖𝑘 = 𝑛𝑘,
[1 − 𝑡𝑘 + 𝑛𝑘, 1), 𝑖𝑘 = 𝑛𝑘 + 1.

With the foregoing notation, we have the following theorem.

Theorem 3.6. Assume that 𝜎 is strongly pure. Then,
(1) The representation 𝑉 is pure.
(1) The map𝒜(𝜎) ∋ 𝜂 ↦ 𝜉𝜂 ∈ 𝒜(𝑉) is an isomorphism.
(2) ℳ(𝑉)′ = 1𝐿2([0,1)𝑑) ⊗ℳ(𝜎)′.

In particular, 𝐼𝑛𝑑𝑒𝑥(𝜎) = 𝐼𝑛𝑑𝑒𝑥(𝑉). Also, 𝑉 is irreducible if and only if 𝜎 is
irreducible.

Proof. We prove this by induction. The case 𝑑 = 1 follows from Prop. 3.3 and
Prop. 3.5. Assume that the theorem holds for 𝑑. Let 𝜎 ∶ ℕ𝑑+1 → 𝐵(ℋ) be a
strongly pure isometric representation. Define

𝜎(1) ∶ ℕ𝑑 → 𝐵(ℋ), 𝜎(1)(�̃�) ∶= 𝜎(�̃�, 0),
𝜎(2) ∶ ℕ→ 𝐵(ℋ), 𝜎(2)(𝑛) ∶= 𝜎(0̃, 𝑛).

Then, for all (�̃�, 𝑛) ∈ ℕ𝑑+1, 𝜎(�̃�, 𝑛) = 𝜎(1)(�̃�)𝜎(2)(𝑛) = 𝜎(2)(𝑛)𝜎(1)(�̃�). Note
that 𝜎(1) and 𝜎(2) are strongly pure. Let 𝑉(1) ∶ ℝ𝑑

+ → 𝐵(𝐿2([0, 1)𝑑,ℋ)) and
𝑉(2) ∶ ℝ+ → 𝐵(𝐿2([0, 1),ℋ)) be the respective induced isometric representa-
tion. Define

𝑈 ∶ 𝐿2([0, 1)𝑑+1,ℋ)→ 𝐿2([0, 1)𝑑+1,ℋ),
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𝑈𝜉(𝑥1, 𝑥2,⋯ , 𝑥𝑑+1) ∶= 𝜉(𝑥2, 𝑥3,⋯ , 𝑥𝑑+1, 𝑥1)
for all 𝜉 ∈ 𝐿2([0, 1)𝑑+1,ℋ). This implies,

𝑈(1𝐿2([0,1)) ⊗𝑉(1)
𝑠 )𝑈∗ = 𝑉(𝑠,0), ∀𝑠 ∈ ℝ𝑑

+,

1𝐿2([0,1)𝑑) ⊗𝑉(2)
𝑡 = 𝑉(0̃,𝑡), ∀𝑡 ∈ ℝ+

Thus, by our assumption, we have

𝐶∗{𝑉(𝑠,0)|𝑠 ∈ ℝ𝑑
+}′ = 𝑈(𝐵(𝐿2([0, 1)))⊗ 1𝐿2([0,1)𝑑) ⊗ℳ(𝜎(1))′)𝑈∗

= 1𝐿2([0,1)𝑑) ⊗ 𝐵(𝐿2([0, 1)))⊗ℳ(𝜎(1))′

𝐶∗{𝑉(0̃,𝑡)|𝑡 ≥ 0}′ = 𝐵(𝐿2([0, 1)𝑑))⊗ 1𝐿2([0,1)) ⊗ℳ(𝜎(2))′.
However,ℳ(𝑉)′ = 𝐶∗{𝑉(𝑠,0)|𝑠 ∈ ℝ𝑑

+}′ ∩ 𝐶∗{𝑉(0̃,𝑡)|𝑡 ≥ 0}′. Therefore,
ℳ(𝑉)′ = 1𝐿2([0,1)𝑑) ⊗ 1𝐿2([0,1)) ⊗ (ℳ(𝜎(1))′ ∩ℳ(𝜎(2))′)

= 1𝐿2([0,1)𝑑+1) ⊗ℳ(𝜎)′.
Let 𝜂 ∶ ℕ𝑑+1 → ℋ be a map. Recall that 𝜉𝜂 ∶ ℝ𝑑+1

+ → 𝐿2([0, 1)𝑑+1,ℋ) is
defined as follows: let (𝑡1, 𝑡2,⋯ , 𝑡𝑑+1) ∈ ℝ𝑑+1

+ , and let 𝑛1, 𝑛2,⋯ , 𝑛𝑑+1 be non-
negative integers such that 𝑛𝑘 ≤ 𝑡𝑘 < 𝑛𝑘 + 1, for all 1 ≤ 𝑘 ≤ 𝑑 + 1. Then,

𝜉𝜂(𝑡1,⋯,𝑡𝑑+1)
(𝑥1,⋯ , 𝑥𝑑+1) ∶= 𝜂(𝑖1,⋯,𝑖𝑑+1),

whenever (𝑥1, 𝑥2,⋯ , 𝑥𝑑+1) ∈ 𝐽𝑖1×𝐽𝑖2×⋯×𝐽𝑖𝑑+1 . Then, 𝜉𝜂 is an additive cocycle
of 𝑉 iff 𝜂 is an additive cocycle of 𝜎 and the proof is similar to Lemma 3.2.
We now claim that the map

𝒜(𝜎) ∋ 𝜂 ↦ 𝜉𝜂 ∈ 𝒜(𝑉)
is an isomorphism. This map is clearly injective.
Let 𝜉 ∈ 𝒜(𝑉). Then, {𝜉(0̃,𝑡)}𝑡≥0 is an additive cocycle of the 1-parameter

isometric representation {𝑉(0̃,𝑡)}𝑡≥0 = {1 ⊗ 𝑉(2)
𝑡 }𝑡≥0. Thus, there exists 𝑓 ∈

𝐿2([0, 1)𝑑) and an additive cocycle 𝜉(2) of 𝑉(2) such that 𝜉(0̃,𝑡) = 𝑓 ⊗ 𝜉(2)𝑡 , i.e.

𝜉(0̃,𝑡)(𝑥1,⋯ , 𝑥𝑑+1) = 𝑓(𝑥1,⋯ , 𝑥𝑑)𝜉(2)𝑡 (𝑥𝑑+1).

By Prop. 3.3, there exists a unique 𝜂(2) ∈ 𝒜(𝜎(2)) such that 𝜉(2) = 𝜉(𝜂(2)). There-
fore, for 𝑛 ≤ 𝑡 < 𝑛 + 1,

𝜉(0̃,𝑡)(𝑥1,⋯ , 𝑥𝑑+1) = {𝑓(𝑥1,⋯ , 𝑥𝑑)𝜂(2)𝑛 , if 𝑥𝑑+1 ∈ [0, 1 − 𝑡 + 𝑛),
𝑓(𝑥1,⋯ , 𝑥𝑑)𝜂(2)𝑛+1, if 𝑥𝑑+1 ∈ [1 − 𝑡 + 𝑛, 1).

Similarly, {𝜉(𝑠,0)}𝑠∈ℝ𝑑
+
is an additive cocycle of the isometric representation

{𝑉(𝑠,0)}𝑠∈ℝ𝑑
+
= {𝑈(1𝐿2([0,1))⊗𝑉(1)

𝑠 )𝑈∗}𝑠∈ℝ𝑑
+
. This implies that {𝑈∗𝜉(𝑠,0)}𝑠∈ℝ𝑑

+
is an

additive cocycle of {1𝐿2([0,1)) ⊗ 𝑉(1)
𝑠 }𝑠∈ℝ𝑑

+
. Therefore, there exists 𝑔 ∈ 𝐿2([0, 1))

and 𝜉(1) ∈ 𝒜(𝑉(1)) such that
𝑈∗𝜉(𝑠,0)(𝑥1,⋯ , 𝑥𝑑+1) = (𝑔 ⊗ 𝜉(1)𝑠 )(𝑥1,⋯ , 𝑥𝑑+1),
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and hence, 𝜉(𝑠,0)(𝑥1,⋯ , 𝑥𝑑+1) = 𝑔(𝑥𝑑+1)𝜉(1)𝑠 (𝑥1,⋯ , 𝑥𝑑).
By the induction hypothesis, there exists 𝜂(1) ∈ 𝒜(𝜎(1)) such that, for 𝑚𝑘 ≤

𝑠𝑘 < 𝑚𝑘 + 1,
𝜉(𝑠1,⋯,𝑠𝑑 ,0)(𝑥1,⋯ , 𝑥𝑑+1) = 𝑔(𝑥𝑑+1)𝜂(1)(𝑖1,⋯,𝑖𝑑)

whenever (𝑥1,⋯ , 𝑥𝑑) ∈ 𝐽𝑖1×⋯×𝐽𝑖𝑑 and 𝑥𝑑+1 ∈ [0, 1), where 𝑖𝑘 ∈ {𝑚𝑘, 𝑚𝑘+1}.
Let 0 ≤ 𝑡𝑘 < 1, for 1 ≤ 𝑘 ≤ 𝑑 + 1. Then, 𝑖𝑘 ∈ {0, 1}, for 1 ≤ 𝑘 ≤ 𝑑 + 1.

𝜉(𝑡1,⋯,𝑡𝑑 ,0)(𝑥1,⋯ , 𝑥𝑑+1) = 𝑔(𝑥𝑑+1)𝜂(1)(𝑖1,⋯,𝑖𝑑)
,

whenever (𝑥1,⋯ , 𝑥𝑑) ∈ 𝐽𝑖1 ×⋯ × 𝐽𝑖𝑑 and 𝑥𝑑+1 ∈ [0, 1).

𝜉(0,⋯,0,𝑡𝑑+1)(𝑥1,⋯ , 𝑥𝑑+1) =

{0, (𝑥1,⋯ , 𝑥𝑑+1) ∈ [0, 1)𝑑 × [0, 1 − 𝑡𝑑+1),
𝑓(𝑥1,⋯ , 𝑥𝑑)𝜂(2)1 , (𝑥1,⋯ , 𝑥𝑑+1) ∈ [0, 1)𝑑 × [1 − 𝑡𝑑+1, 1).

Since 𝜉 is an additive cocycle, we get the following.
𝜉(𝑡1,⋯,𝑡𝑑+1)(𝑥1,⋯ , 𝑥𝑑+1)
= 𝜉(𝑡1,⋯,𝑡𝑑 ,0)(𝑥1,⋯ , 𝑥𝑑+1) + 𝑉(𝑡1,⋯,𝑡𝑑 ,0)𝜉(0,⋯,0,𝑡𝑑+1)(𝑥1,⋯ , 𝑥𝑑+1)

=

⎧
⎪
⎨
⎪
⎩

𝑔(𝑥𝑑+1)𝜂(1)(𝑖1,⋯,𝑖𝑑)
, (𝑥1,⋯ , 𝑥𝑑, 𝑥𝑑+1) ∈ 𝐽𝑖1 ×⋯ × 𝐽𝑖𝑑 × 𝐽0,

𝑔(𝑥𝑑+1)𝜂(1)(𝑖1,⋯,𝑖𝑑)
+ 𝜎(𝑖1,⋯ , 𝑖𝑑, 0)𝑓(𝑥1 + 𝑡1 − 𝑖1,⋯ , 𝑥𝑑 + 𝑡𝑑 − 𝑖𝑑)𝜂(2)1 ,

(𝑥1,⋯ , 𝑥𝑑, 𝑥𝑑+1) ∈ 𝐽𝑖1 ×⋯ × 𝐽𝑖𝑑 × 𝐽1,

Again,

𝜉(𝑡1,⋯,𝑡𝑑+1)(𝑥1,⋯ , 𝑥𝑑+1)
= 𝜉(0,⋯,0,𝑡𝑑+1)(𝑥1,⋯ , 𝑥𝑑+1) + 𝑉(0,⋯,0,𝑡𝑑+1)𝜉(𝑡1,⋯,𝑡𝑑 ,0)(𝑥1,⋯ , 𝑥𝑑+1)

=

⎧
⎪
⎨
⎪
⎩

𝑔(𝑥𝑑+1 + 𝑡𝑑+1)𝜂(1)(𝑖1,⋯,𝑖𝑑)
, (𝑥1,⋯ , 𝑥𝑑, 𝑥𝑑+1) ∈ 𝐽𝑖1 ×⋯ × 𝐽𝑖𝑑 × 𝐽0,

𝜎(0,⋯ , 0, 1)𝑔(𝑥𝑑+1 + 𝑡𝑑+1 − 1)𝜂(1)(𝑖1,⋯,𝑖𝑑)
+ 𝑓(𝑥1,⋯ , 𝑥𝑑)𝜂(2)1 ,

(𝑥1,⋯ , 𝑥𝑑, 𝑥𝑑+1) ∈ 𝐽𝑖1 ×⋯ × 𝐽𝑖𝑑 × 𝐽1,

Combining both, we get, for each (𝑖1,⋯ , 𝑖𝑑), given 0 ≤ 𝑡𝑑+1 < 1,

𝑔(𝑦)𝜂(1)(𝑖1,⋯,𝑖𝑑)
= 𝑔(𝑦 + 𝑡𝑑+1)𝜂(1)(𝑖1,⋯,𝑖𝑑)

,

for all almost all 𝑦 ∈ [0, 1− 𝑡𝑑+1). Similarly, when (𝑖1,⋯ , 𝑖𝑑) = (0,⋯ , 0), given
𝑡1,⋯ , 𝑡𝑑 ∈ [0, 1), we have, for almost all 𝑥𝑘 ∈ [0, 1 − 𝑡𝑘),

𝑓(𝑥1,⋯ , 𝑥𝑑)𝜂(2)1 = 𝑓(𝑥1 + 𝑡1,⋯ , 𝑥𝑑 + 𝑡𝑑)𝜂(2)1 ,

Thus, 𝑓𝜂(2)1 is constant on [0, 1)𝑑 and, for each 𝑖1,⋯ , 𝑖𝑑) ∈ {0, 1}, 𝑔𝜂(1)(𝑖1,⋯,𝑖𝑑)
is

constant on [0, 1), i.e, there exist 𝑐(𝑖1,⋯,𝑖𝑑), 𝑑0 ∈ ℂ such that 𝑓(𝑥1,⋯ , 𝑥𝑑)𝜂(2)1 =
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𝑑0𝜂(2)1 almost everywhere on [0, 1)𝑑, and 𝑔(𝑦)𝜂(1)(𝑖1,⋯,𝑖𝑑)
= 𝑐(𝑖1,⋯,𝑖𝑑)𝜂

(1)
(𝑖1,⋯,𝑖𝑑)

for al-
most all 𝑦 ∈ [0, 1). Hence, for 𝑛𝑘 ≤ 𝑡𝑘 < 𝑛𝑘 +1, 𝑘 = 1, 2,⋯ , 𝑑+1, we have, for
(𝑥1, 𝑥2,⋯ , 𝑥𝑑+1) ∈ 𝐽𝑖1 ×⋯ × 𝐽𝑖𝑑 × [0, 1),

𝜉(𝑡1,⋯,𝑡𝑑 ,0)(𝑥1,⋯ , 𝑥𝑑+1) = 𝑐(𝑖1−𝑛1,⋯,𝑖𝑑−𝑛𝑑)𝜂
(1)
(𝑖1,⋯,𝑖𝑑)

.

Also,

𝜉(0,⋯,0,𝑡)(𝑥1,⋯ , 𝑥𝑑+1) = {𝑑0𝜂
(2)
𝑛𝑑+1 , (𝑥1,⋯ , 𝑥𝑑+1) ∈ [0, 1)𝑑 × 𝐽𝑛𝑑+1 ,

𝑑0𝜂(2)𝑛𝑑+1+1, (𝑥1,⋯ , 𝑥𝑑+1) ∈ [0, 1)𝑑 × 𝐽𝑛𝑑+1+1.

Denote 𝑐0 = 𝑐(0,⋯,0) and define

𝜂(𝑛1,⋯,𝑛𝑑+1) ∶= 𝑐0𝜂(1)(𝑛1,⋯,𝑛𝑑)
+ 𝜎(𝑛1,⋯ , 𝑛𝑑, 0)𝑑0𝜂(2)𝑛𝑑+1 ,

for all 𝑛𝑖 ∈ ℕ. It is clear that 𝜂(𝑛1,⋯,𝑛𝑑+1) ∈ 𝑘𝑒𝑟(𝜎(𝑛1,⋯ , 𝑛𝑑+1)∗). For any
�̃� ∈ ℕ𝑑 and 𝑛 ∈ ℕ, we have

𝜂(�̃�,0) + 𝜎(�̃�, 0)𝜂(0̃,𝑛)
= 𝑐0𝜂(1)�̃� + 𝜎(0̃, 𝑛)𝑑0𝜂(2)0 + 𝜎(�̃�, 0)(𝑐0𝜂(1)0̃ + 𝜎(0̃, 0)𝑑0𝜂(2)𝑛 )
= 𝑐0𝜂(1)�̃� + 𝜎(�̃�, 0)𝑑0𝜂(2)𝑛
= 𝜉(�̃�,0)(𝑥1,⋯ , 𝑥𝑑+1) + 𝜎(�̃�, 0)𝜉(0̃,𝑛)(𝑥1,⋯ , 𝑥𝑑+1)
= 𝜉(�̃�,𝑛)(𝑥1,⋯ , 𝑥𝑑+1)
= 𝜉(0̃,𝑛)(𝑥1,⋯ , 𝑥𝑑+1) + 𝜎(0̃, 𝑛)𝜉(�̃�,0)(𝑥1,⋯ , 𝑥𝑑+1)
= 𝑑0𝜂(2)𝑛 + 𝜎(0̃, 𝑛)𝑐0𝜂(1)�̃�
= (𝑐0𝜂(1)0̃ + 𝜎(0̃, 0)𝑑0𝜂(2)𝑛 ) + 𝜎(0̃, 𝑛)(𝑐0𝜂(1)�̃� + 𝜎(�̃�, 0)𝑑0𝜂(2)0 )
= 𝜂(0̃,𝑛) + 𝜎(0̃, 𝑛)𝜂(�̃�,0).

This suffices to prove that 𝜂 is an additive cocycle of 𝜎. But, this also implies
that 𝜉𝜂 is an additive cocycle of 𝑉. Since 𝜉 and 𝜉𝜂 are additive cocycles, and
𝜉(𝑠,0) = 𝜉𝜂(𝑠,0), 𝜉(0̃,𝑡) = 𝜉𝜂(0̃,𝑡) for 𝑠 ∈ ℝ𝑑

+, 𝑡 ≥ 0, it follows that 𝜉 = 𝜉𝜂. Thus, the
map 𝒜(𝜎) ∋ 𝜂 → 𝜉𝜂 ∈ 𝒜(𝑉) is a bijection and that concludes our proof. □

Remark 3.7. Let 𝜎 ∶ ℕ𝑑 → 𝐵(ℋ) be an isometric representation. For 𝑘 ∈
{1, 2,⋯ , 𝑑}, define isometric representations 𝜎(𝑘) of ℕ onℋ by setting

𝜎(𝑘)(𝑚) ∶= 𝜎(0,⋯ , 0, 𝑚, 0,⋯ , 0),

with𝑚 in the 𝑘𝑡ℎ position. Recall that the representation 𝜎 is called strongly pure
if 𝜎(𝑘) is a pure isometric representation, for all 1 ≤ 𝑘 ≤ 𝑑.
Suppose 𝜎 is a pure isometric representation, not necessarily strongly pure, of

ℕ𝑑 on ℋ. Let 𝑎1, 𝑎2,⋯ , 𝑎𝑑 ∈ ℕ𝑑 be order units for ℤ𝑑, i.e., for every 𝑥 ∈ ℤ𝑑,
there exist 𝑚1, 𝑚2,⋯ , 𝑚𝑑 ∈ ℕ such that 𝑚𝑘𝑎𝑘 − 𝑥 ∈ ℕ𝑑, for all 𝑘. Define �̃� ∶
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ℕ𝑑 → 𝐵(ℋ) by setting �̃�(0,⋯ , 0, 1, 0,⋯ , 0) ∶= 𝜎(𝑎𝑘) whenever 1 is at the 𝑘𝑡ℎ
position. Since 𝜎 is a pure isometric representation and 𝑎𝑘 is an order unit,⋂

𝑛∈ℕ
𝑅𝑎𝑛(�̃�(0,⋯ , 𝑛,⋯ , 0)) =

⋂

𝑛∈ℕ
𝑅𝑎𝑛(𝜎(𝑛𝑎𝑘))

=
⋂

(𝑛1,⋯,𝑛𝑑)∈ℕ𝑑
𝑅𝑎𝑛(𝜎(𝑛1,⋯ , 𝑛𝑑))

= {0}.

Therefore, �̃�(𝑘) is a pure isometric representation of ℕ, for all 1 ≤ 𝑘 ≤ 𝑑. Thus, �̃�
is strongly pure.
We can choose the order units 𝑎1,⋯ , 𝑎𝑑 such that they span ℤ𝑑. Then, due to

Prop. 2.3, dim(𝒜(𝜎)) = 𝑑𝑖𝑚(𝒜(�̃�)) andℳ(𝜎)′ =ℳ(�̃�)′.

4. Examples
In this section, we prove Thm. 1.1. First, we explain that Thm. 1.1 follows

if we prove the analogous two parameter discrete version. The reduction is
explained below. Let 𝑃 be a closed, convex cone in ℝ𝑑 that is spanning and
pointed. Assume that 𝑑 ≥ 2.

(1) Since 𝑃 is spanning and pointed, without loss of generality, we can as-
sume that 𝑃 ⊂ ℝ𝑑

+. Thanks to Prop. 2.3, it suffices to prove Thm. 1.1
when 𝑃 = ℝ𝑑

+. Hereafter, assume that 𝑃 = ℝ𝑑
+.

(2) Suppose 𝑉 ∶ ℝ2
+ → 𝐵(ℋ) is an isometric representation of ℝ2

+. Let
𝑊 ∶ ℝ𝑑

+ → 𝐵(ℋ) be defined by
𝑊(𝑡1,𝑡2,⋯,𝑡𝑑) ∶= 𝑉(𝑡1,𝑡2).

Then, it is not difficult to show that 𝒜(𝑊) ≅ 𝒜(𝑉). Consequently,
𝐼𝑛𝑑(𝑊) = 𝐼𝑛𝑑(𝑉). Clearly, 𝑊 is irreducible if and only if 𝑉 is irre-
ducible. To denote the dependence of𝑊 on 𝑉, we denote𝑊 by𝑊𝑉 .
Moreover, for isometric representations 𝑉1 and 𝑉2 of ℝ2

+, 𝑊𝑉1 and
𝑊𝑉2 are unitarily equivalent if and only if𝑉1 and𝑉2 are unitarily equiv-
alent. Thus, it suffices to prove Thm. 1.1 under the assumption that
𝑃 = ℝ2

+.
(3) Thanks to Thm. 3.6, to prove Thm. 1.1 when 𝑃 = ℝ2

+, it suffices to
produce, for any given 𝑘, a continuum of strongly pure irreducible iso-
metric representations ofℕ2 with index 𝑘. Remark 3.7 allows us to drop
the requirement that the desired irreducible isometric representations
of ℕ2 need to be strongly pure.

With the discussion above, the problem now boils down to finding pure iso-
metric representations of ℕ2 that are irreducible and whose space of additive
cocycles have dimension 𝑘 for 𝑘 ∈ {0, 1, 2, 3,⋯ , } ∪ {∞}.
Proposition 4.1. Let 𝑑 ∈ {1, 2,⋯}∪{∞}, and letℋ be a separable Hilbert space.
Let {𝑃𝑖|1 ≤ 𝑖 ≤ 𝑑} be a family of mutually orthogonal projections onℋ such that
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𝑑∑

𝑖=1
𝑃𝑖 = 1. For each 𝑘 ≥ 1, define 𝑄𝑘 ∶= 1 −

𝑘∑

𝑖=1
𝑃𝑖 . Let 𝑈 be a unitary onℋ.

Define an isometric representation 𝜎 ∶ ℕ2 → 𝐵(ℋ ⊗ 𝓁2(ℕ)) by

𝜎(1, 0) ∶= 1⊗ 𝑆, 𝜎(0, 1) ∶=
𝑑∑

𝑖=1
𝑈𝑃𝑖 ⊗ 𝑆𝑖−1,

where 𝑆 is the usual shift operator on 𝓁2(ℕ). Then,
(1) 𝑑𝑖𝑚(𝒜(𝜎)) = 𝑑𝑖𝑚({𝑥 ∈ ℋ|𝑥 ∈ 𝑘𝑒𝑟(𝑈 − 1) and ∑𝑑

𝑖=1 ||𝑄𝑖𝑥||2 < ∞}),
and

(2) ℳ(𝜎)′ = 𝐶∗({𝑈, 𝑃𝑖|1 ≤ 𝑖 ≤ 𝑑})′ ⊗ 1.
Proof. Let {𝛿𝑖}𝑖≥0 be the standard orthonormal basis for 𝓁2(ℕ). Suppose 𝜉 =
{𝜉(𝑚,𝑛)}(𝑚,𝑛)∈ℕ2 is an additive cocycle of 𝜎. Since 𝜉(1,0) ∈ 𝑘𝑒𝑟(𝜎(1, 0)∗), 𝜉(1,0) =
𝑥 ⊗ 𝛿0, for some 𝑥 ∈ℋ. Let 𝜉(0,1) =

∑

𝑗≥0
𝑦𝑗 ⊗ 𝛿𝑗. As 𝜎(0, 1)∗𝜉(0,1) = 0,

∑

𝑘≥0
(
∑

𝑗≥𝑘
𝑃𝑗−𝑘+1𝑈∗𝑦𝑗)⊗ 𝛿𝑘 = 0.

This gives us that for each 𝑗 ≥ 0,

𝑈∗𝑦𝑗 ∈ 𝑘𝑒𝑟(
𝑗+1∑

𝑖=1
𝑃𝑖) = 𝑅𝑎𝑛(𝑄𝑗+1).

Now, since 𝜉 is an additive cocycle, it satisfies
𝜉(1,0) + 𝜎(1, 0)𝜉(0,1) = 𝜉(0,1) + 𝜎(0, 1)𝜉(1,0),

which in turn implies

𝑈∗𝑦𝑗 = 𝑈∗𝑥 − (
𝑗+1∑

𝑖=1
𝑃𝑖)𝑥,∀𝑗 ≥ 0.

Since 𝑈∗𝑦𝑗 ∈ 𝑅𝑎𝑛(𝑄𝑗+1), we get 𝑃𝑖𝑥 = 𝑃𝑖𝑈∗𝑥 for every 𝑖, and consequently,
for every 𝑗, 𝑈∗𝑦𝑗 = 𝑄𝑗+1𝑈∗𝑥, i.e 𝑦𝑗 = 𝑈𝑄𝑗+1𝑈∗𝑥. Since 𝑃𝑖(𝑥 − 𝑈∗𝑥) = 0, for
all 𝑖, and ∑𝑖 𝑃𝑖 = 1, we have 𝑈∗𝑥 = 𝑥. Hence, 𝑦𝑗 = 𝑈𝑄𝑗+1𝑥. The fact that∑

𝑗≥0 𝑦𝑗 ⊗ 𝛿𝑗 ∈ℋ ⊗ 𝓁2(ℕ) implies∑𝑑
𝑖=1 ||𝑄𝑖𝑥||2 <∞.

Conversely, choose 𝑥 ∈ 𝑘𝑒𝑟(𝑈 −1) such that∑𝑑
𝑖=1 ||𝑄𝑖𝑥||2 <∞. Let 𝜂(1,0) =

𝑥 ⊗ 𝛿0 and 𝜂(0,1) =
∑

𝑗≥0𝑈𝑄𝑗+1𝑥 ⊗ 𝛿𝑗. It is routine to check that
𝜂(1,0) + 𝜎(1, 0)𝜂(0,1) = 𝜂(0,1) + 𝜎(0, 1)𝜂(1,0).

Therefore, there exists an additive cocycle 𝜉 ∶= {𝜉(𝑚,𝑛)}(𝑚,𝑛)∈ℕ2 such that 𝜉(1,0) =
𝑥 ⊗ 𝛿0 and 𝜉(0,1) =

∑
𝑗≥0𝑈𝑄𝑗+1𝑥 ⊗ 𝛿𝑗.

Define a map {𝑥 ∈ℋ|𝑥 ∈ 𝑘𝑒𝑟(𝑈 − 1) and ∑𝑑
𝑖=1 ||𝑄𝑖𝑥||2 <∞}→ 𝒜(𝜎) by

𝑥 ↦ 𝜉𝑥,
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where 𝜉𝑥(1,0) ∶= 𝑥 ⊗ 𝛿0 and 𝜉𝑥(0,1) ∶=
∑

𝑗≥0
𝑈𝑄𝑗+1𝑥 ⊗ 𝛿𝑗. It is now obvious that

this map is an isomorphism. Therefore,

𝑑𝑖𝑚(𝒜(𝜎)) = 𝑑𝑖𝑚({𝑥 ∈ℋ|𝑥 ∈ 𝑘𝑒𝑟(𝑈 − 1) and
𝑑∑

𝑖=1
||𝑄𝑖𝑥||2 <∞}).

That concludes the first part of the proof.
Let 𝑇 ∈ℳ(𝜎)′. Since, 𝑇 ∈ 𝐶∗{𝜎(1, 0) = 1⊗𝑆}′, 𝑇 is of the form 𝑇 = 𝑇0⊗ 1,

for some 𝑇0 ∈ 𝐵(ℋ). Also, 𝑇𝜎(0, 1) = 𝜎(0, 1)𝑇. Thus,
∑

𝑖≥1
𝑇0𝑈𝑃𝑖 ⊗ 𝑆𝑖−1 =

∑

𝑖≥1
𝑈𝑃𝑖𝑇0 ⊗ 𝑆𝑖−1

Hence, 𝑇0𝑈𝑃𝑖 = 𝑈𝑃𝑖𝑇0, for all 𝑖 ≥ 1. Summing over all 𝑖, we get
𝑇0𝑈 = 𝑈𝑇0,

and that implies, for all 𝑖 ≥ 1,
𝑇0𝑃𝑖 = 𝑃𝑖𝑇0.

Thus, ℳ(𝜎)′ ⊆ 𝐶∗({𝑈, 𝑃𝑖|1 ≤ 𝑖 ≤ 𝑑})′ ⊗ 1. Clearly, the reverse side of the
inclusion holds as well, and we get

ℳ(𝜎)′ = 𝐶∗({𝑈, 𝑃𝑖|1 ≤ 𝑖 ≤ 𝑑})′ ⊗ 1.
□

Remark 4.2. Note that, in Prop. 4.1, whenℋ is finite-dimensional,

𝐼𝑛𝑑(𝜎) = 𝑑𝑖𝑚(𝒜(𝜎)) = 𝑑𝑖𝑚(𝑘𝑒𝑟(𝑈 − 1)).
We use Prop. 4.1 to produce concrete examples of irreducible isometric rep-

resentations of ℕ2 with any given index.
Example 1: For this example, we refer to the work of Albeverio and Ra-

banovich [1]. Let 𝐵3 denote Artin’s braid group,
𝐵3 = ⟨𝑆, 𝐽|𝑆2 = 𝐽3⟩

Let 𝑚 be a positive integer. Theorem 5 of [1] asserts that there exists a non-
empty open set Ω in a Euclidean space and a family of irreducible unitary rep-
resentations {𝜋ℎ}ℎ∈Ω of 𝐵3 on ℂ6𝑚 such that

(1) for ℎ ≠ 𝑘, 𝜋ℎ and 𝜋𝑘 are not unitarily equivalent, and
(2) for ℎ ∈ Ω, 𝑑𝑖𝑚(𝑘𝑒𝑟(𝜋ℎ(𝐽) − 1)) = 2𝑚.

For the explicit expression of the representation 𝜋ℎ, the reader is referred to
Section 3 of [1]. For ℎ ∈ Ω, set 𝑃ℎ ∶=

1+𝜋ℎ(𝑆)
2

, and 𝑈ℎ ∶= 𝜋ℎ(𝐽), and define an
isometric representation 𝜎ℎ ∶ ℕ2 → 𝐵(ℂ6𝑚 ⊗ 𝓁2(ℕ)) by setting

𝜎ℎ(1, 0) = 1⊗ 𝑆; 𝜎ℎ(0, 1) = 𝑈ℎ𝑃ℎ ⊗ 1 +𝑈ℎ(1 − 𝑃ℎ)⊗ 𝑆.
Let ℎ ∈ Ω. It follows from (2) and from Prop. 4.1 that 𝐼𝑛𝑑(𝜎ℎ) = 2𝑚 for every
ℎ ∈ Ω. By Prop. 4.1 and the fact that 𝜋ℎ is irreducible, it follows that 𝜎ℎ is
irreducible.
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Let ℎ, 𝑘 ∈ Ω be given. Suppose 𝑇 is a unitary operator that intertwines 𝜎ℎ
and 𝜎𝑘, i.e 𝑇𝜎ℎ(⋅) = 𝜎𝑘(⋅)𝑇. Then, 𝑇(1⊗𝑆) = (1⊗𝑆)𝑇. Hence, 𝑇 is of the form
𝑇 = 𝑇0 ⊗ 1 for some unitary operator 𝑇0 on ℂ2𝑚. The equality

(𝑇0 ⊗ 1)𝜎ℎ(0, 1) = 𝜎𝑘(0, 1)(𝑇0 ⊗ 1)
leads to the conclusion 𝑇0𝑈ℎ = 𝑈𝑘𝑇0 and 𝑇0𝑃ℎ = 𝑃𝑘𝑇0. In other words, 𝜋ℎ and
𝜋𝑘 are unitarily equivalent. Thus, the isometric representations 𝜎ℎ and 𝜎𝑘 are
not unitarily equivalent if ℎ ≠ 𝑘. This gives a plethora of irreducible examples
with even index that are not unitarily equivalent.
It is not difficult to construct other examples as the following two classes of

examples show.
Example 2: Letℋ be a finite-dimensional Hilbert space with an orthonor-

mal basis {𝑒1, 𝑒2, ..., 𝑒𝑛}. Let 𝑃𝑖 ∈ 𝐵(ℋ) be the projection onto the subspace
spanned by 𝑒𝑖, for 𝑖 = 1, 2, ..., 𝑛. Choose 𝑎 ∈ ℋ such that ⟨𝑎|𝑒𝑖⟩ ≠ 0 for every
𝑖 = 1, 2, ..., 𝑛. Let 𝑃𝑎 ∈ 𝐵(ℋ) be the projection onto the subspace spanned by 𝑎,
i.e. 𝑃𝑎(𝑥) ∶= ⟨𝑥|𝑎⟩𝑎, for all 𝑥 ∈ℋ. Define𝑈𝑎 ∈ 𝐵(ℋ) by𝑈𝑎 = 1−2𝑃𝑎. Then,
𝑈𝑎 is a self-adjoint unitary onℋ and 𝑑𝑖𝑚(𝑘𝑒𝑟(𝑈𝑎−1)) = 𝑑𝑖𝑚(𝑘𝑒𝑟(𝑃𝑎)) = 𝑛−1.
Also, 𝐶∗({𝑈𝑎, 𝑃1, ..., 𝑃𝑛})′ = ℂ. Define an isometric representation 𝜎(𝑎) ∶ ℕ2 →
𝐵(ℋ ⊗ 𝓁2(ℕ)) by

𝜎(𝑎)(1, 0) ∶= 1⊗ 𝑆, 𝜎(𝑎)(0, 1) ∶=
𝑛∑

𝑖=1
𝑈𝑎𝑃𝑖 ⊗ 𝑆𝑖−1.

It follows from Prop. 4.1 that 𝐼𝑛𝑑(𝜎(𝑎)) = 𝑛 − 1, and 𝜎(𝑎) is irreducible
Let 𝑎, 𝑏 ∈ ℋ be such that ⟨𝑎|𝑒𝑖⟩ ≠ 0, ⟨𝑏|𝑒𝑖⟩ ≠ 0, for all 1 ≤ 𝑖 ≤ 𝑛, and

there exists 𝑘 ∈ ℕ, 1 ≤ 𝑘 ≤ 𝑛 such that |⟨𝑎|𝑒𝑘⟩| ≠ |⟨𝑏|𝑒𝑘⟩|. We claim that
𝜎(𝑎) and 𝜎(𝑏) are not unitarily equivalent. Let us assume there exists a unitary
𝑇 ∶ℋ ⊗ 𝓁2(ℕ)→ℋ ⊗ 𝓁2(ℕ) such that

𝑇𝜎(𝑎)(𝑚, 𝑛) = 𝜎(𝑏)(𝑚, 𝑛)𝑇
for (𝑚, 𝑛) ∈ ℕ2.
Since 𝑇 commutes with 𝜎(𝑎)(1, 0) = 𝜎(𝑏)(1, 0) = 1⊗ 𝑆, it follows that there

exists a unitary 𝑇0 ∈ 𝐵(ℋ) such that 𝑇 = 𝑇0 ⊗ 1. Also, the equality (𝑇0 ⊗
1)𝜎(𝑎)(0, 1) = 𝜎(𝑏)(0, 1)(𝑇0 ⊗ 1) gives

𝑇0𝑈𝑎𝑃𝑖 = 𝑈𝑏𝑃𝑖𝑇0, for all 1 ≤ 𝑖 ≤ 𝑛. (11)

Adding them, we get
𝑇0𝑈𝑎 = 𝑈𝑏𝑇0. (12)

Eq. 12 and Eq. 11 imply that 𝑇0𝑃𝑖 = 𝑃𝑖𝑇0 for every 𝑖. Thus,
𝑇0𝑒𝑖 = 𝜆𝑖𝑒𝑖

for some 𝜆𝑖 ∈ 𝕋, for all 1 ≤ 𝑖 ≤ 𝑛. Eq. 12 implies 𝑇0𝑃𝑎𝑒𝑘 = 𝑃𝑏𝑇0𝑒𝑘 for all 𝑘,
which simplifies to

𝜆𝑖⟨𝑒𝑘|𝑎⟩⟨𝑎|𝑒𝑖⟩ = 𝜆𝑘⟨𝑒𝑘|𝑏⟩⟨𝑏|𝑒𝑖⟩, ∀𝑖
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Thus, we get |⟨𝑎|𝑒𝑘⟩| = |⟨𝑏|𝑒𝑘⟩| for all 𝑘, which is a contradiction. There-
fore, 𝜎(𝑎) and 𝜎(𝑏) are not unitarily equivalent whenever there exists 𝑘 such that
|⟨𝑎|𝑒𝑘⟩| ≠ |⟨𝑏|𝑒𝑘⟩|.
Example 3: Let ℋ be an infinite dimensional Hilbert space with an or-

thonormal basis {𝑒𝑛}𝑛∈ℕ. Define 𝑃𝑖 ∶ ℋ → ℋ by 𝑃𝑖𝑒𝑗 = 𝛿𝑖𝑗𝑒𝑖, for all 𝑖 ∈ ℕ.
Choose any 𝑎 ∈ ℋ with ⟨𝑎|𝑒𝑖⟩ ≠ 0 for all 𝑖 ∈ ℕ, and let 𝑃𝑎 be the projection
defined by 𝑃𝑎𝑒𝑖 ∶= ⟨𝑒𝑖|𝑎⟩𝑎, for all 𝑖. Set 𝑈𝑎 = 1 − 2𝑃𝑎. Define an isometric
representation 𝜎(𝑎) ∶ ℕ2 → 𝐵(ℋ ⊗ 𝓁2(ℕ)) by

𝜎(𝑎)(1, 0) ∶= 1⊗ 𝑆, 𝜎(𝑎)(0, 1) ∶=
∞∑

𝑖=1
𝑈𝑎𝑃𝑖 ⊗ 𝑆𝑖−1.

Note that 𝐶∗{𝑈𝑎, 𝑃𝑖 ∶ 𝑖 = 1, 2,⋯}′ = ℂ. Hence, by Prop. 4.1 𝜎(𝑎) is an irre-
ducible isometric representation of ℕ2. By Prop. 4.1, 𝜎(𝑎) has index equal to
the dimension of the space

{
𝑥 ∈ 𝑘𝑒𝑟(𝑈𝑎 − 1)|

∑

𝑛≥2
(𝑛 − 1)||𝑃𝑛𝑥||2 < ∞

}
and

the latter has infinite dimension. Thus, 𝐼𝑛𝑑(𝜎(𝑎)) = ∞. Also, just like in the
finite-dimensional case, if we choose 𝑎, 𝑏 ∈ ℋ such that for some 𝑘 ∈ ℕ,
|⟨𝑎|𝑒𝑘⟩| ≠ |⟨𝑏|𝑒𝑘⟩|, then 𝜎(𝑎) and 𝜎(𝑏) are not unitarily equivalent.
We encompass all of the above in the following theorem.

Theorem 4.3. For each 𝑘 ∈ {0, 1, 2,⋯ , } ∪ {∞}, there is a continuum of irre-
ducible isometric representations of ℕ2 that has index 𝑘.

Note that Thm. 1.1 is now immediate from Thm. 4.3 and the discussions
made at the beginning of this section. As explained in the introduction, Thm.
1.1 implies Thm. 1.2.
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