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Brunnian planar braids and
simplicial groups
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Abstract. Twin groups are planar analogues of Artin braid groups and play
a crucial role in theAlexander-Markov correspondence for the isotopy classes
of immersed circles on the 2-sphere without triple and higher intersections.
These groups admit diagrammatic representations, leading to maps obtained
by the addition and deletion of strands. This paper explores Brunnian twin
groups, which are subgroups of twin groups composed of twins that become
trivial when any of their strands are deleted. We establish that Brunnian twin
groups consisting of more than two strands are free groups. Furthermore, we
provide a necessary and sufficient condition for a Brunnian doodle on the
2-sphere to be the closure of a Brunnian twin. Additionally, we delve into
two generalizations of Brunnian twins, namely, 𝑘-decomposable twins and
Cohen twins, and prove some structural results about these groups. We also
investigate a simplicial structure on pure twin groups that admits a simplicial
homomorphism from Milnor’s construction of the simplicial 2-sphere. This
gives a possibility to provide a combinatorial description of homotopy groups
of the 2-sphere in terms of pure twins.
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1. Introduction
The twin group, or the planar braid group 𝑇𝑛 on 𝑛 ≥ 2 strands, is a right

angled Coxeter group generated by 𝑛 − 1 involutions that admit only far com-
mutativity relations. These groups appeared in the work of Khovanov [19]
on real 𝐾(𝜋, 1) subspace arrangements and were further investigated in [17].
Twin groups have a geometrical interpretation similar to the one for Artin braid
groups [17, 19]. We fix parallel lines 𝑦 = 0 and 𝑦 = 1 on the plane ℝ2 with 𝑛
marked points on each line. Consider the set of configurations of 𝑛 strands in
the strip ℝ × [0, 1] connecting the 𝑛 marked points on the line 𝑦 = 1 to those
on the line 𝑦 = 0 such that each strand is monotonic and no three strands have
a point in common. Two such configurations are equivalent if one can be de-
formed into the other by a homotopy of strands, keeping the end points fixed
throughout the homotopy. Such an equivalence class is called a twin. Placing
one twin on top of another and rescaling the interval turns the set of all twins
on 𝑛 strands into a group isomorphic to 𝑇𝑛. The generators 𝑡𝑖 of 𝑇𝑛 can be geo-
metrically represented by configurations as shown in Figure 1.

Figure 1. The generator 𝑡𝑖 of 𝑇𝑛.

Analogous to classical knot theory, it is evident that the closure of a twin
gives a doodle on the 2-sphere. In general, a doodle on a closed surface is a
collection of finitely many piecewise-linear closed curves without triple inter-
sections. These objects first appeared in the work of Fenn and Taylor [13]. In
[17], Khovanov proved that every oriented doodle on the 2-sphere is the closure
of a twin. A Markov theorem for doodles on the 2-sphere has been established
by Gotin [16], although the idea has been implicit in [18]. These constructions
have been generalised by Bartholomew-Fenn-Kamada-Kamada [5], where they
consider a collection of immersed circles in closed oriented surfaces of arbitrary
genus.
The pure twin group, denoted as 𝑃𝑇𝑛, is defined as the kernel of the natu-

ral homomorphism from the twin group 𝑇𝑛 to the symmetric group 𝑆𝑛, which
maps the twin 𝑡𝑖 to the transposition (𝑖, 𝑖 + 1). A nice topological interpretation
of 𝑃𝑇𝑛 is known due to Khovanov. Consider the space

𝑋𝑛 = ℝ𝑛 ⧵
{
(𝑥1, … , 𝑥𝑛) ∈ ℝ𝑛 ∣ 𝑥𝑖 = 𝑥𝑗 = 𝑥𝑘 for 𝑖 ≠ 𝑗 ≠ 𝑘 ≠ 𝑖

}
,

which is the complement of triple diagonals 𝑥𝑖 = 𝑥𝑗 = 𝑥𝑘. In [19], Khovanov
proved that the fundamental group 𝜋1(𝑋𝑛) is isomorphic to 𝑃𝑇𝑛. Prior to this,
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Björner andWelker [9] had investigated the cohomology of these spaces, estab-
lishing that each𝐻𝑖(𝑋𝑛, ℤ) is free.
Simplicial structures on braid groups are connected with homotopy groups

of some manifolds [6, 8, 20, 23, 27]. Notably, they provide a description of ele-
ments in homotopy groups of the 2-sphere in terms of Brunnian braids [6], with
a generalization to higher dimensional spheres [27]. A set of generators for the
Brunnian braid group of a surface other than the 2-sphere and the projective
plane has been provided in [2]. Furthermore, Brunnian subgroups of mapping
class groups have been considered in [7]. In this paper, we explore simplicial
structures on pure twin groups. The geometrical interpretation of elements
in twin groups allows us to define face and degeneracy maps obtained by the
deletion and addition of strands, thereby transforming the family of pure twin
groups into a simplicial group. We adopt the approach introduced by Cohen
and Wu in [11] for Artin pure braid groups.
The paper is organised as follows. In Section 2, we prove that the natural

maps of deletion and addition of strands turn the sequence {𝑇𝑛}𝑛≥1 into a bi-∆-
set, whereas the sequence {𝑃𝑇𝑛}𝑛≥1 is turned into a bi-∆-group (Proposition
2.4). In Section 3, we investigate Brunnian twins, which are twins that be-
come trivial when any one of their strands is removed. We prove that the group
Brun(𝑇𝑛) of Brunnian twins on 𝑛 strands is free for 𝑛 ≥ 3 (Proposition 3.9), and
give an infinite free generating set for Brun(𝑇4) (Theorem 3.5). In Section 4, we
consider two generalisations of Brunnian twins, namely, 𝑘-decomposable twins
and Cohen twins. A twin is 𝑘-decomposable if it becomes trivial after removing
any 𝑘 of its strands. We give a complete description of 𝑘-decomposable twins
on 𝑛 ≥ 4 strands (Proposition 4.4). A twin on 𝑛 strands is said to be Cohen
if the twins obtained by removing any one of its strands are all the same. We
give a characterisation for a twin to be Cohen (Theorem 4.10). In Section 5, we
consider Brunnian doodles on the 2-sphere, and prove that an 𝑚-component
Brunnian doodle on the 2-sphere is the closure of a Brunnian twin if and only
if its twin index is 𝑚 (Theorem 5.4). In Section 6, we observe that pure twin
groups admit the structure of a simplicial group 𝑆𝑃𝑇∗. We relate it with the
well-known Milnor’s construction for simplicial spheres by establishing a ho-
momorphismΘ ∶ 𝐹[𝑆2]∗ ⟶𝑆𝑃𝑇∗ of simplicial groups. We also identify some
low degree terms of the image of Θ as free groups (Theorem 6.6). A complete
description of the image of Θ gives a possibility to provide a combinatorial de-
scription of homotopy groups of the 2-sphere in terms of pure twins.

2. Bi-𝚫-set structure on twin and pure twin groups
For 𝑛 ≥ 2, the twin group 𝑇𝑛 on 𝑛 strands is generated by {𝑡1, … , 𝑡𝑛−1} and it

is defined by the following relations:

𝑡2𝑖 = 1 for 1 ≤ 𝑖 ≤ 𝑛 − 1
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and

𝑡𝑖𝑡𝑗 = 𝑡𝑗𝑡𝑖 for |𝑖 − 𝑗| ≥ 2.

Clearly, each 𝑇𝑛 is a right angled Coxeter group. Further, there is a surjective
homomorphism 𝜈 ∶ 𝑇𝑛 → 𝑆𝑛, that sends the generator 𝑡𝑖 to the transposition
𝜏𝑖 = (𝑖, 𝑖 + 1) in the symmetric group 𝑆𝑛. It’s kernel, denoted as 𝑃𝑇𝑛, is called
the pure twin group. It is not difficult to see that 𝑃𝑇2 is trivial and 𝑃𝑇3 is the
infinite cyclic group generated by the pure twin (𝑡1𝑡2)3 [1]. Figure 2 represents
the pure twin (𝑡1𝑡2)3.

Figure 2. The pure twin (𝑡1𝑡2)3.

Let us consider the following definitions [33, p.16].

Definition 2.1. A sequence of sets {𝐺𝑛}𝑛≥0 is called a ∆-set if there are maps
𝑑𝑖 ∶ 𝐺𝑛 → 𝐺𝑛−1 for each 0 ≤ 𝑖 ≤ 𝑛 such that

𝑑𝑗𝑑𝑖 = 𝑑𝑖𝑑𝑗+1 (2.1)

for all 𝑗 ≥ 𝑖. The maps 𝑑𝑖 are called face maps. If each 𝐺𝑛 is a group and each
face map is a group homomorphism, then {𝐺𝑛}𝑛≥0 is called a ∆-group.

Definition 2.2. A sequence of sets {𝐺𝑛}𝑛≥0 is called a bi-∆-set if there are face
maps 𝑑𝑖 ∶ 𝐺𝑛 → 𝐺𝑛−1 and coface maps 𝑑𝑖 ∶ 𝐺𝑛−1 → 𝐺𝑛 for each 0 ≤ 𝑖 ≤ 𝑛 such
that the following identities hold:

(1) 𝑑𝑗𝑑𝑖 = 𝑑𝑖𝑑𝑗+1 for 𝑗 ≥ 𝑖,
(2) 𝑑𝑗𝑑𝑖 = 𝑑𝑖+1𝑑𝑗 for 𝑗 ≤ 𝑖,
(3) 𝑑𝑗𝑑𝑖 = 𝑑𝑖−1𝑑𝑗 for 𝑗 < 𝑖,
(4) 𝑑𝑗𝑑𝑖 = id for 𝑗 = 𝑖,
(5) 𝑑𝑗𝑑𝑖 = 𝑑𝑖𝑑𝑗−1 for 𝑗 > 𝑖.

Moreover, if each 𝐺𝑛 is a group and each face and coface map is a group homo-
morphism, then {𝐺𝑛}𝑛≥0 is called a bi-∆-group.

Wedefine a bi-∆-set structure on twin groups thatwould induce a bi-∆-group
structure on pure twin groups. For geometrical reasons, we take 𝐺𝑛 = 𝑇𝑛+1 or
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𝑃𝑇𝑛+1 for each 𝑛 ≥ 0. For each 0 ≤ 𝑖 ≤ 𝑛, define the map

𝑑𝑖 ∶ 𝑇𝑛+1 → 𝑇𝑛
that deletes the (𝑖 + 1)-th strand from the diagram of a twin on 𝑛 + 1 strands.
Note that, 𝑑𝑖 is not a group homomorphism, but it satisfies

𝑑𝑖(𝑢𝑤) = 𝑑𝑖(𝑢)𝑑𝜈(𝑢)(𝑖+1)−1(𝑤) (2.2)

for all 𝑢,𝑤 ∈ 𝑇𝑛+1, where 𝜈 ∶ 𝑇𝑛+1 → 𝑆𝑛+1 is the natural surjection. On the
other hand, we have 𝑑𝑖(𝑃𝑇𝑛+1) ⊆ 𝑃𝑇𝑛 for each 0 ≤ 𝑖 ≤ 𝑛. Further, it follows
from (2.2) that 𝑑𝑖 ∶ 𝑃𝑇𝑛+1 → 𝑃𝑇𝑛 is a surjective group homomorphism for each
0 ≤ 𝑖 ≤ 𝑛.

Remark 2.3. The homomorphism 𝑑𝑖 ∶ 𝑃𝑇𝑛+1 → 𝑃𝑇𝑛 has an alternative inter-
pretation. Consider the space

𝑋𝑛 = ℝ𝑛 ⧵
{
(𝑥1, … , 𝑥𝑛) ∈ ℝ𝑛 ∣ 𝑥𝑖 = 𝑥𝑗 = 𝑥𝑘, 𝑖 ≠ 𝑗 ≠ 𝑘 ≠ 𝑖

}
,

which is the complement of triple diagonals 𝑥𝑖 = 𝑥𝑗 = 𝑥𝑘 in ℝ𝑛. For each
1 ≤ 𝑖 ≤ 𝑛 + 1, let

(𝑝𝑖)# ∶ 𝜋1(𝑋𝑛+1) → 𝜋1(𝑋𝑛)
be the grouphomomorphism induced by the coordinate projection𝑝𝑖 ∶ 𝑋𝑛+1 →
𝑋𝑛, where

𝑝𝑖 (𝑥1, … , 𝑥𝑛+1) = (𝑥1, … , 𝑥𝑖−1, 𝑥𝑖+1, … , 𝑥𝑛+1) .
By [19, Proposition 3.1], we identify 𝜋1(𝑋𝑛)with 𝑃𝑇𝑛, and observe that (𝑝𝑖)# =
𝑑𝑖−1 for each 1 ≤ 𝑖 ≤ 𝑛 + 1.

Figure 3. The geometrical interpretation of a coface map.

In analogy with [33, Example 1.2.8], for each 0 ≤ 𝑖 ≤ 𝑛, we define 𝑑𝑖 ∶ 𝑇𝑛 →
𝑇𝑛+1 on generators by

𝑑𝑖(𝑡𝑗) =
⎧

⎨
⎩

𝑡𝑗 for 𝑗 < 𝑖,
𝑡𝑖+1𝑡𝑖𝑡𝑖+1 for 𝑗 = 𝑖,
𝑡𝑗+1 for 𝑗 > 𝑖.

(2.3)
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A direct calculation shows that each 𝑑𝑖 satisfy the defining relations in 𝑇𝑛, and
hence is a group homomorphism. Geometrically, the coface maps 𝑑0 and 𝑑𝑛
simply insert a trivial strand on the left and on the right of the diagram of a
twin, respectively. Further, for 1 ≤ 𝑖 ≤ 𝑛 − 1, the map 𝑑𝑖 inserts a trivial strand
between the 𝑖-th and the (𝑖 + 1)-th strands of the diagram of the twin generator
𝑡𝑖 such this new strand passes from the right of the crossing corresponding to 𝑡𝑖.
For other twin generators 𝑡𝑗 with 𝑗 ≠ 𝑖, themap 𝑑𝑖 simply inserts a trivial strand
between the 𝑖-th and the (𝑖 + 1)-th strands of 𝑡𝑗. See Figure 3 for an illustration.

Proposition 2.4. Consider the sequence of groups {𝑇𝑛}𝑛≥1. For each 0 ≤ 𝑖 ≤ 𝑛,
let 𝑑𝑖 ∶ 𝑇𝑛+1 → 𝑇𝑛 be the map satisfying (2.2) and 𝑑𝑖 ∶ 𝑇𝑛 → 𝑇𝑛+1 be the homo-
morphism defined by (2.3). Then {𝑇𝑛, 𝑑𝑖, 𝑑𝑖}𝑛≥1 is a bi-∆-set and {𝑃𝑇𝑛, 𝑑𝑖, 𝑑𝑖}𝑛≥1
is a bi-∆-group.

Proof. For each 0 ≤ 𝑖 ≤ 𝑛, the map 𝑑𝑖 ∶ 𝑇𝑛+1 → 𝑇𝑛 clearly satisfies (2.1). Let
𝑑𝑖 ∶ 𝑇𝑛 → 𝑇𝑛+1 be the homomorphism defined by (2.3). A direct computation
yields

𝑑𝑗𝑑𝑖(𝑡𝑘) = 𝑑𝑖+1𝑑𝑗(𝑡𝑘) =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝑡𝑘 for 𝑘 < 𝑗 ≤ 𝑖,
𝑡𝑘+2𝑡𝑘+1𝑡𝑘𝑡𝑘+1𝑡𝑘+2 for 𝑗 = 𝑘 = 𝑖,

𝑡𝑘+1𝑡𝑘𝑡𝑘+1 for 𝑗 = 𝑘 < 𝑖,
𝑡𝑘+2𝑡𝑘+1𝑡𝑘+2 for 𝑗 < 𝑘 = 𝑖,

𝑡𝑘+1 for 𝑗 < 𝑘 < 𝑖,
𝑡𝑘+2 for 𝑗 ≤ 𝑖 < 𝑘,

for all 𝑗 ≤ 𝑖. This proves the identity (2). The identities (3)-(5) follows from the
geometrical interpretation of 𝑑𝑖 and 𝑑𝑖. Hence, {𝑇𝑛, 𝑑𝑖, 𝑑𝑖}𝑛≥1 is a bi-∆-set.
We already noticed that, for each 0 ≤ 𝑖 ≤ 𝑛, 𝑑𝑖(𝑃𝑇𝑛+1) ⊆ 𝑃𝑇𝑛 and 𝑑𝑖 ∶

𝑃𝑇𝑛+1 → 𝑃𝑇𝑛 is a group homomorphism. The inclusion 𝑑𝑖(𝑃𝑇𝑛) ⊆ 𝑃𝑇𝑛+1
follows from the geometrical interpretation of the map 𝑑𝑖. Alternatively, for
each 𝑛 ≥ 1, let 𝜂𝑖 ∶ 𝑆𝑛 → 𝑆𝑛+1 be the map defined by

𝜂𝑖(𝜏𝑗) =
⎧

⎨
⎩

𝜏𝑗 for 𝑗 < 𝑖,
𝜏𝑖+1𝜏𝑖𝜏𝑖+1 for 𝑗 = 𝑖,
𝜏𝑗+1 for 𝑗 > 𝑖.

As with the case of 𝑑𝑖, each 𝜂𝑖 satisfies the far commutativity and involutory
relations of generators of 𝑆𝑛. For braid relations, we see that

𝜂𝑖(𝜏𝑘)𝜂𝑖(𝜏𝑘+1)𝜂𝑖(𝜏𝑘) =
⎧

⎨
⎩

𝜏𝑘𝜏𝑘+1𝜏𝑘 for 𝑘 + 1 < 𝑖,
𝜏𝑘𝜏𝑘+1𝜏𝑘+2𝜏𝑘+1𝜏𝑘 for 𝑖 = 𝑘, 𝑘 + 1,
𝜏𝑘+1𝜏𝑘+2𝜏𝑘+1 for 𝑘 > 𝑖,

= 𝜂𝑖(𝜏𝑘+1)𝜂𝑖(𝜏𝑘)𝜂𝑖(𝜏𝑘+1),
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and hence each 𝜂𝑖 is a group homomorphism. Then the inclusion 𝑑𝑖(𝑃𝑇𝑛) ⊆
𝑃𝑇𝑛+1 also follows from the commutativity of the following diagram

𝑇𝑛 𝑇𝑛+1

𝑆𝑛 𝑆𝑛+1.

𝑑𝑖

𝜂𝑖
𝜈 𝜈

Finally, we prove that each 𝑑𝑖 is group homomorphism at the level of twin
groups itself. Clearly, (𝑑𝑖(𝑡𝑘))2 = 1 for all 𝑖 and 𝑘. Further, for 𝑘 < 𝓁 with
|𝑘 − 𝓁| ≥ 2, we have

𝑑𝑖(𝑡𝑘)𝑑𝑖(𝑡𝓁) =

⎧
⎪

⎨
⎪
⎩

𝑡𝑘𝑡𝓁 for 𝓁 < 𝑖,
𝑡𝑘𝑡𝓁+1𝑡𝓁𝑡𝓁+1 for 𝓁 = 𝑖,

𝑡𝑘𝑡𝓁+1 for 𝑘 < 𝑖 < 𝓁,
𝑡𝑘+1𝑡𝑘𝑡𝑘+1𝑡𝓁+1 for 𝑘 = 𝑖,
𝑡𝑘+1𝑡𝓁+1 for 𝑖 < 𝑘,

= 𝑑𝑖(𝑡𝓁)𝑑𝑖(𝑡𝑘).

This proves that {𝑃𝑇𝑛, 𝑑𝑖, 𝑑𝑖}𝑛≥1 is a bi-∆-group. □

Remark 2.5. For each 0 ≤ 𝑖 ≤ 𝑛, we can also define the cofacemaps 𝑑𝑖 ∶ 𝑇𝑛 →
𝑇𝑛+1 by

𝑑𝑖(𝑡𝑗) =
⎧

⎨
⎩

𝑡𝑗 for 𝑗 < 𝑖,
𝑡𝑖𝑡𝑖+1𝑡𝑖 for 𝑗 = 𝑖,
𝑡𝑗+1 for 𝑗 > 𝑖.

It can be verified that the analogue of Proposition 2.4 holds with these coface
maps.

We now use the bi-∆-set structure on {𝑇𝑛}𝑛≥1 to give a new presentation for
𝑇𝑛+1. We use the coface maps 𝑑𝑖 as defined in Proposition 2.4.

Proposition 2.6. Let 𝑞𝑘 ∶= 𝑑𝑛𝑑𝑛−1⋯𝑑𝑘(𝑡𝑘) for 1 ≤ 𝑘 ≤ 𝑛 − 1 and 𝑞𝑛 ∶=
𝑑𝑛−2(𝑡𝑛−1). Then 𝑇𝑛+1 admits a presentation with generating set {𝑞1, … , 𝑞𝑛} and
the following defining relations:

(1) 𝑞2𝑖 = 1 for all 𝑖,
(2) [𝑞𝑖+1𝑞𝑖𝑞𝑖+1, 𝑞𝑛] = 1 for 𝑖 < 𝑛 − 1,
(3) [𝑞𝑖+1𝑞𝑖𝑞𝑖+1, 𝑞𝑗+1𝑞𝑗𝑞𝑗+1] for |𝑖 − 𝑗| > 2 and 𝑖, 𝑗 ≤ 𝑛 − 1.

Proof. Using the simplicial identity 𝑑𝑗𝑑𝑖 = 𝑑𝑖+1𝑑𝑗 for 𝑗 ≤ 𝑖, we can assume
that 𝑖𝑛−1 > 𝑖𝑛−2 > ⋯ > 𝑖1 in the composite map 𝑑𝑖𝑛−1𝑑𝑖𝑛−2 ⋯𝑑𝑖1 . We see that

𝑞𝑘 = 𝑑𝑛−1𝑑𝑛−2⋯𝑑𝑘(𝑡𝑘)
= 𝑡𝑛𝑡𝑛−1⋯𝑡𝑘+1𝑡𝑘𝑡𝑘+1⋯𝑡𝑛−1𝑡𝑛

for 1 ≤ 𝑘 ≤ 𝑛 − 1 and
𝑞𝑛 = 𝑑𝑛−2(𝑡𝑛−1) = 𝑡𝑛.



1242 VALERIY G. BARDAKOV, PRAVIN KUMAR ANDMAHENDER SINGH

A direct check gives 𝑡𝑘 = 𝑞𝑘+1𝑞𝑘𝑞𝑘+1 for each 1 ≤ 𝑘 ≤ 𝑛 − 1, and hence
{𝑞1, … , 𝑞𝑛} generates 𝑇𝑛+1. Further, the defining relations of 𝑇𝑛+1 in terms of
the Coxeter generating set {𝑡1, … , 𝑡𝑛} gives the defining relations for the new
generating set as follows:

(1) 𝑞2𝑖 = 1 for all 𝑖,
(2) [𝑞𝑖+1𝑞𝑖𝑞𝑖+1, 𝑞𝑛] = 1 for 𝑖 < 𝑛 − 1,
(3) [𝑞𝑖+1𝑞𝑖𝑞𝑖+1, 𝑞𝑗+1𝑞𝑗𝑞𝑗+1] for |𝑖 − 𝑗| > 2 and 𝑖, 𝑗 ≤ 𝑛 − 1.

□

3. Brunnian twins
In the influential work [6], a connection has been established between cer-

tain quotients of the Brunnian braid groups of the 2-sphere and its higher ho-
motopy groups.

Definition 3.1. A pure twin is said to be Brunnian if it becomes trivial after re-
moving any one of its strands.

Let Brun(𝑇𝑛) denote the set of all Brunnian twins on 𝑛 strands.

Proposition 3.2. Brun(𝑇𝑛) is a normal subgroup of 𝑃𝑇𝑛.

Proof. For each 0 ≤ 𝑖 ≤ 𝑛 − 1, let 𝑑𝑖 ∶ 𝑃𝑇𝑛 → 𝑃𝑇𝑛−1 be the face map of
Proposition 2.4. Since each 𝑑𝑖 is a group homomorphism and

Brun(𝑇𝑛) =
𝑛−1⋂

𝑖=0
ker(𝑑𝑖),

it follows that Brun(𝑇𝑛) is a normal subgroup of 𝑇𝑛. □

Next, we attempt to understand the groups of Brunnian twins.

Proposition 3.3. For𝑛 ≥ 4,Brun(𝑇𝑛)does not containany element from {(𝑡𝑖𝑡𝑖+1)3 ∣
1 ≤ 𝑖 ≤ 𝑛 − 1}.

Proof. For 𝑛 ≥ 4, removing a trivial strand from (𝑡𝑖𝑡𝑖+1)3 gives a non-trivial
twin, and hence the assertion follows. □

Proposition 3.4. Brun(𝑇3) ≅ 𝑃𝑇3 ≅ ℤ.

Proof. We already have Brun(𝑇3) ⊆ 𝑃𝑇3. By [1, Theorem 2], we know that
𝑃𝑇3 is the infinite cyclic group generated by (𝑡1𝑡2)3 (see Figure 2), and clearly
(𝑡1𝑡2)3 ∈ Brun(𝑇3). □

In contrast, it is proved in [22] that Brun(𝐵3) is the commutator subgroup of
the Artin pure braid group 𝑃3.

Theorem 3.5. Brun(𝑇4) is a free group of infinite rank.



BRUNNIAN PLANAR BRAIDS AND SIMPLICIAL GROUPS 1243

Proof. By [1, Theorem 2], 𝑃𝑇4 is a free group of rank 7 generated by

𝑥1 = (𝑡1𝑡2)3, 𝑥2 = ((𝑡1𝑡2)3)𝑡3 , 𝑥3 = ((𝑡1𝑡2)3)𝑡3𝑡2 , 𝑥4 = ((𝑡1𝑡2)3)𝑡3𝑡2𝑡1 ,

𝑥5 = (𝑡2𝑡3)3, 𝑥6 = ((𝑡2𝑡3)3)𝑡1 , 𝑥7 = ((𝑡2𝑡3)3)𝑡1𝑡2 .
Denote the generator (𝑡1𝑡2)3 of 𝑃𝑇3 by 𝑦. Direct computations show that images
of 𝑥𝑖’s under the face maps 𝑑𝑖’s are as follows:

𝑑0(𝑥1) = 𝑑0(𝑥2) = 𝑑0(𝑥3) = 𝑑0(𝑥6) = 𝑑0(𝑥7) = 1, 𝑑0(𝑥4) = 𝑑0(𝑥5) = 𝑦,
𝑑1(𝑥1) = 𝑑1(𝑥2) = 𝑑1(𝑥4) = 𝑑1(𝑥5) = 𝑑1(𝑥7) = 1, 𝑑1(𝑥3) = 𝑑1(𝑥6) = 𝑦,
𝑑2(𝑥1) = 𝑑2(𝑥3) = 𝑑2(𝑥4) = 𝑑2(𝑥5) = 𝑑2(𝑥6) = 1, 𝑑2(𝑥2) = 𝑑2(𝑥7) = 𝑦,

𝑑3(𝑥2) = 𝑑3(𝑥3) = 𝑑3(𝑥4) = 𝑑3(𝑥5) = 𝑑3(𝑥6) = 𝑑3(𝑥7) = 1, 𝑑3(𝑥1) = 𝑦.

For each generator 𝑥𝑖, let log𝑖(𝑤) denote the sum of the powers of 𝑥𝑖 in the
word 𝑤. Then, it follows that

ker(𝑑0) = {𝑤 ∈ 𝑃𝑇4 ∣ log4(𝑤) + log5(𝑤) = 0},
ker(𝑑1) = {𝑤 ∈ 𝑃𝑇4 ∣ log3(𝑤) + log6(𝑤) = 0},
ker(𝑑2) = {𝑤 ∈ 𝑃𝑇4 ∣ log2(𝑤) + log7(𝑤) = 0},
ker(𝑑3) = {𝑤 ∈ 𝑃𝑇4 ∣ log1(𝑤) = 0},

and hence

Brun(𝑇4)

=
3⋂

𝑖=0
ker(𝑑𝑖)

=
{
𝑤 ∈ 𝑃𝑇4 ∣ log4(𝑤) + log5(𝑤) = 0, log3(𝑤) + log6(𝑤) = 0,

log2(𝑤) + log7(𝑤) = 0, log1(𝑤) = 0
}
.

Clearly, Brun(𝑇4) is free being a subgroup of the free group 𝑃𝑇4. We now find
an infinite free basis for Brun(𝑇4). It follows from the preceding description of
Brun(𝑇4) that the commutator subgroup of 𝑃𝑇4 is contained in Brun(𝑇4). In
fact, the containment is strict since 𝑥4𝑥−15 ∈ Brun(𝑇4), but 𝑥4𝑥−15 ∉ 𝑃𝑇′𝑛. Thus,
𝑃𝑇4∕Brun(𝑇4) is a non-trivial abelian group. Let 𝑞 ∶ 𝑃𝑇4 → 𝑃𝑇4∕Brun(𝑇4) be
the quotient map with 𝑞(𝑥𝑖) = 𝑦𝑖 for 1 ≤ 𝑖 ≤ 7. Since 𝑥2𝑥−17 , 𝑥3𝑥−16 , 𝑥4𝑥−15 ∈
Brun(𝑇4), the group 𝑃𝑇4∕Brun(𝑇4) is generated by the set {𝑦1, 𝑦2, 𝑦3, 𝑦4}. Note
that 𝑥𝑖𝑥−1𝑗 ∉ Brun(𝑇4) for all 𝑖 ≠ 𝑗 ∈ {1, 2, 3, 4} and 𝑥𝑘𝑖 ∉ Brun(𝑇4) for 𝑘 >
0. Thus, by the fundamental theorem for finitely generated abelian groups,
𝑃𝑇4∕Brun(𝑇4) is a free abelian group of rank 4.
Consider the short exact sequence

1 → Brun(𝑇4) → 𝑃𝑇4 → ℤ4 → 1.

We fix a Schreier system {𝑥𝑘11 𝑥
𝑘2
2 𝑥

𝑘3
3 𝑥

𝑘4
4 ∣ 𝑘1, 𝑘2, 𝑘3, 𝑘4 ∈ ℤ} of coset represen-

tatives of Brun(𝑇4) in 𝑃𝑇4. This gives a free basis for Brun(𝑇4) consisting of
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elements of the form

𝑥𝑘11 𝑥
𝑘2
2 𝑥

𝑘3
3 𝑥

𝑘4
4 𝑥1(𝑥

𝑘1+1
1 𝑥𝑘22 𝑥

𝑘3
3 𝑥

𝑘4
4 )

−1, 𝑥𝑘11 𝑥
𝑘2
2 𝑥

𝑘3
3 𝑥

𝑘4
4 𝑥2(𝑥

𝑘1
1 𝑥

𝑘2+1
2 𝑥𝑘33 𝑥

𝑘4
4 )

−1,

𝑥𝑘11 𝑥
𝑘2
2 𝑥

𝑘3
3 𝑥

𝑘4
4 𝑥3(𝑥

𝑘1
1 𝑥

𝑘2
2 𝑥

𝑘3+1
3 𝑥𝑘44 )

−1, 𝑥𝑘11 𝑥
𝑘2
2 𝑥

𝑘3
3 𝑥

𝑘4
4 𝑥4(𝑥

𝑘1
1 𝑥

𝑘2
2 𝑥

𝑘3
3 𝑥

𝑘4+1
4 )−1,

𝑥𝑘11 𝑥
𝑘2
2 𝑥

𝑘3
3 𝑥

𝑘4
4 𝑥5(𝑥

𝑘1
1 𝑥

𝑘2
2 𝑥

𝑘3
3 𝑥

𝑘4+1
4 )−1, 𝑥𝑘11 𝑥

𝑘2
2 𝑥

𝑘3
3 𝑥

𝑘4
4 𝑥6(𝑥

𝑘1
1 𝑥

𝑘2
2 𝑥

𝑘3+1
3 𝑥𝑘44 )

−1,

𝑥𝑘11 𝑥
𝑘2
2 𝑥

𝑘3
3 𝑥

𝑘4
4 𝑥7(𝑥

𝑘1
1 𝑥

𝑘2+1
2 𝑥𝑘33 𝑥

𝑘4
4 )

−1,

for 𝑘1, 𝑘2, 𝑘3, 𝑘4 ∈ ℤ. This completes the proof. □

Remark 3.6. 𝑃𝑇𝑛∕Brun(𝑇𝑛) is non-abelian for 𝑛 ≥ 5 since 𝑃𝑇′𝑛 ⊈ Brun(𝑇𝑛)
for 𝑛 ≥ 5. For example, if 𝑤 = [(𝑡1𝑡2)3, (𝑡2𝑡3)3], then 𝑑4(𝑤) ≠ 1.

Proposition 3.7. 𝑃𝑇𝑛∕Brun(𝑇𝑛) is torsion free for each 𝑛 ≥ 4 and

𝑃𝑇4∕Brun(𝑇4) ≅ ℤ4.

Proof. The homomorphisms 𝑑𝑖 ∶ 𝑃𝑇𝑛 → 𝑃𝑇𝑛−1 induce an injective homo-
morphism

𝑃𝑇𝑛∕Brun(𝑇𝑛) ↪ 𝑃𝑇𝑛−1 ×⋯ × 𝑃𝑇𝑛−1⏟⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⏟
𝑛 times

.

By [1, Theorem 3], 𝑃𝑇𝑛 is torsion-free for 𝑛 ≥ 3. Hence, 𝑃𝑇𝑛−1 ×⋯ × 𝑃𝑇𝑛−1 is
torsion free, and therefore 𝑃𝑇𝑛∕Brun(𝑇𝑛) is so. The second assertion is proven
in the proof of Theorem 3.5. □

Problem 3.8. Describe the structure of the group 𝑃𝑇𝑛∕Brun(𝑇𝑛) for 𝑛 ≥ 5.

Recall from [1, 30] that the virtual twin group 𝑉𝑇𝑛 on 𝑛 ≥ 2 strands is the
group generated by {𝑡1, … , 𝑡𝑛−1, 𝜌1, … , 𝜌𝑛−1} and having the following defining
relations:

𝑡2𝑖 = 1 for 1 ≤ 𝑖 ≤ 𝑛 − 1,
𝑡𝑖𝑡𝑗 = 𝑡𝑗𝑡𝑖 for |𝑖 − 𝑗| ≥ 2,
𝜌2𝑖 = 1 for 1 ≤ 𝑖 ≤ 𝑛 − 1,

𝜌𝑖𝜌𝑗 = 𝜌𝑗𝜌𝑖 for |𝑖 − 𝑗| ≥ 2,
𝜌𝑖𝜌𝑖+1𝜌𝑖 = 𝜌𝑖+1𝜌𝑖𝜌𝑖+1 for 1 ≤ 𝑖 ≤ 𝑛 − 2,

𝜌𝑖𝑡𝑗 = 𝑡𝑗𝜌𝑖 for |𝑖 − 𝑗| ≥ 2,
𝜌𝑖𝜌𝑖+1𝑡𝑖 = 𝑡𝑖+1𝜌𝑖𝜌𝑖+1 for 1 ≤ 𝑖 ≤ 𝑛 − 2.

The group𝑉𝑇𝑛 plays the role of virtual braid groups in theAlexander-Markov
correspondence for the planar analogue of virtual knot theory. There is a sur-
jective homomorphism 𝜇 ∶ 𝑉𝑇𝑛 → 𝑆𝑛 given by

𝜇(𝑡𝑖) = 𝜇(𝜌𝑖) = (𝑖, 𝑖 + 1)

for all 1 ≤ 𝑖 ≤ 𝑛−1. The kernel 𝑃𝑉𝑇𝑛 of this surjection is called the pure virtual
twin group on 𝑛 strands.
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For each 𝑛 ≥ 2, we have surjective homomorphisms 𝑑𝑛−1 ∶ 𝑃𝑇𝑛 → 𝑃𝑇𝑛−1
and 𝑑𝑛−1 ∶ 𝑃𝑉𝑇𝑛 → 𝑃𝑉𝑇𝑛−1 that delete the 𝑛-th strand from the diagram of a
pure twin and pure virtual twin. In the reverse directions, we have homomor-

phisms 𝑑𝑛−1 ∶ 𝑃𝑇𝑛−1 → 𝑃𝑇𝑛 and 𝑑
𝑛−1

∶ 𝑃𝑉𝑇𝑛−1 → 𝑃𝑉𝑇𝑛 that add a trivial
strand to the right side of the diagram. Further, we have 𝑑𝑛−1 𝑑𝑛−1 = id𝑃𝑇𝑛−1
and 𝑑𝑛−1 𝑑

𝑛−1
= id𝑃𝑉𝑇𝑛−1 . Setting𝑈𝑛 = ker(𝑑𝑛−1) and𝑉𝑛 = ker(𝑑𝑛−1), we have

split short exact sequences

1 → 𝑈𝑛 → 𝑃𝑇𝑛 → 𝑃𝑇𝑛−1 → 1

and
1 → 𝑉𝑛 → 𝑃𝑉𝑇𝑛 → 𝑃𝑉𝑇𝑛−1 → 1.

In other words, 𝑃𝑇𝑛 ≅ 𝑈𝑛 ⋊ 𝑃𝑇𝑛−1 and 𝑃𝑉𝑇𝑛 ≅ 𝑉𝑛 ⋊ 𝑃𝑉𝑇𝑛−1.

Proposition 3.9. Brun(𝑇𝑛) is free for all 𝑛 ≥ 3.

Proof. The map 𝑡𝑖 ↦ 𝑡𝑖 gives an embedding of 𝑇𝑛 into 𝑃𝑉𝑇𝑛 [31, Corollary
3.5]. Restricting to 𝑃𝑇𝑛, this gives an inclusion 𝜓𝑛 ∶ 𝑃𝑇𝑛 → 𝑃𝑉𝑇𝑛 such that
the following diagram commutes

𝑃𝑇𝑛 𝑃𝑇𝑛−1

𝑃𝑉𝑇𝑛 𝑃𝑉𝑇𝑛−1.

𝑑𝑛−1

𝜓𝑛 𝜓𝑛−1
𝑑𝑛−1

This gives 𝑈𝑛 ≅ 𝜓𝑛(𝑈𝑛) = 𝜓𝑛(ker(𝑑𝑛−1)) ≤ ker(𝑑𝑛−1) = 𝑉𝑛. Since 𝑉𝑛 is
free for 𝑛 ≥ 2 [30, Theorem 4.1], it follows that 𝑈𝑛 is also free. Note that the
subgroup𝑈𝑖 = ker(𝑑𝑖) is conjugate to𝑈𝑛 by the element 𝑡𝑛−1𝑡𝑛−2⋯𝑡𝑖+1. Thus,
𝑈𝑖 is free group for each 1 ≤ 𝑖 ≤ 𝑛, and hence Brun(𝑇𝑛) = ∩𝑛𝑖=1𝑈𝑖 is a free
group. □

At this juncture, the ensuing problem naturally arises.

Problem 3.10. Determine a free generating set for Brun(𝑇𝑛) for 𝑛 ≥ 5.

We conclude the section with a consequence of the Decomposition Theorem
for bi-∆-groups in our setting [33, Proposition 1.2.9].

Proposition 3.11. The pure twin group 𝑃𝑇𝑛+1 is the iterated semi-direct product
of subgroups

{
𝑑𝑖𝑘𝑑𝑖𝑘−1 ⋯𝑑𝑖1 (Brun(𝑇𝑛−𝑘+1)) ∣ 0 ≤ 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑘 ≤ 𝑛 and 0 ≤ 𝑘 ≤ 𝑛

}

with the lexicographic order on the indexing set
{
(𝑖𝑘, 𝑖𝑘−1, … , 𝑖1, 𝑖0, 𝑖0, … , 𝑖0⏟⎴⏟⎴⏟

𝑛−𝑘 times

) ∣ 0 ≤ 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑘 ≤ 𝑛 and 0 ≤ 𝑘 ≤ 𝑛
}

from the left, where 𝑖0 is the blank symbol considered smaller thanall other indices.
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Example 3.12. For 𝑛 = 3, we have
𝑑0(𝑃𝑇3) = ⟨(𝑡2𝑡3)3⟩, 𝑑1(𝑃𝑇3) = ⟨(𝑡2𝑡1𝑡2𝑡3)3⟩,

𝑑2(𝑃𝑇3) = ⟨(𝑡1𝑡3𝑡2𝑡3)3⟩, 𝑑3(𝑃𝑇3) = ⟨(𝑡1𝑡2)3⟩.

Figure 4. Images of (𝑡1𝑡2)3 under the coface maps 𝑑0, 𝑑1, 𝑑2
and 𝑑3.

See Figure 4. Observing the proof of [33, Proposition 1.2.9], we get

𝑃𝑇4 = ker(𝑑3) ⋊ ⟨(𝑡1𝑡2)3⟩,
where ker(𝑑3) is normal in 𝑃𝑇4 and ⟨(𝑡1𝑡2)3 acts on ker(𝑑3) via conjugation. At
the second stage, we obtain

ker(𝑑3) = (ker(𝑑2) ∩ ker(𝑑3)) ⋊ ⟨(𝑡1𝑡3𝑡2𝑡3)3⟩,
where ker(𝑑2) ∩ ker(𝑑3) is normal in ker(𝑑3) and the subgroup

⟨(𝑡1𝑡3𝑡2𝑡3)3⟩ = ⟨𝑑2((𝑡1𝑡2)3)⟩ ≤ ker(𝑑3)
acts on ker(𝑑2) ∩ ker(𝑑3) via conjugation. At the third stage, we get

ker(𝑑2) ∩ ker(𝑑3) = (ker(𝑑1) ∩ ker(𝑑2) ∩ ker(𝑑3)) ⋊ ⟨(𝑡2𝑡1𝑡2𝑡3)3⟩,
where ker(𝑑1)∩ker(𝑑2)∩ker(𝑑3) is normal in ker(𝑑2)∩ker(𝑑3) and the subgroup
⟨(𝑡2𝑡1𝑡2𝑡3)3⟩ = ⟨𝑑1((𝑡1𝑡2)3)⟩ ≤ ker(𝑑2)∩ker(𝑑3) acts onker(𝑑1)∩ker(𝑑2)∩ker(𝑑3)
via conjugation. Finally, we have

ker(𝑑1) ∩ ker(𝑑2) ∩ ker(𝑑3) = Brun(𝑇4) ⋊ ⟨(𝑡2𝑡3)3⟩,
where Brun(𝑇4) is normal and the subgroup ⟨(𝑡2𝑡3)3⟩ = ⟨𝑑0((𝑡1𝑡2)3)⟩ acts on
Brun(𝑇4) via conjugation. Thus, we obtain the following decomposition of 𝑃𝑇4
as an iterated semi-direct product

𝑃𝑇4 =
(((

Brun(𝑇4) ⋊ ⟨(𝑡2𝑡3)3⟩
)
⋊ ⟨(𝑡2𝑡1𝑡2𝑡3)3⟩

)
⋊ ⟨(𝑡1𝑡3𝑡2𝑡3)3⟩

)
⋊ ⟨(𝑡1𝑡2)3⟩.

Similarly, there are 16 non-trivial terms in the decomposition of 𝑃𝑇5 with the
leftmost term being the Brunnian subgroup Brun(𝑇5).

4. 𝒌-decomposable twins and Cohen twins
In this section, we consider two generalisations of Brunnian twins.
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Figure 5. Converting a pure twin into a Brunnian twin.

4.1. 𝒌-decomposable twins. We begin with the following definition.

Definition 4.1. A pure twin on 𝑛 strands is said to be 𝑘-decomposable if it be-
comes trivial after removing any 𝑘 of its strands.

Clearly, a 1-decomposable twin is simply a Brunnian twin. Further, the set of
all 𝑘-decomposable twins on 𝑛 strands forms a normal subgroup of 𝑃𝑇𝑛 and we
denote this subgroup by 𝐷𝑘,𝑛. For 𝑤 ∈ 𝑃𝑇𝑛 and 1 ≤ 𝑖 < 𝑗 < 𝑘 ≤ 𝑛, let 𝑤𝑖,𝑗,𝑘 be
the pure twin obtained from 𝑤 by deleting all the strands except those indexed
𝑖, 𝑗, 𝑘. We can still view each𝑤𝑖,𝑗,𝑘 as an element of 𝑃𝑇𝑛 by adding trivial (𝑛−3)
strands on its right. See Figure 5 for an example for 𝑛 = 4. Using ideas from
[21], we prove the following result.

Proposition 4.2. For 𝑛 ≥ 4,

𝐷𝑛−3,𝑛 =
{
𝑤

∏

1≤𝑖<𝑗<𝑘≤𝑛
(𝑤−1

𝑖,𝑗,𝑘)
𝑐𝑖,𝑗,𝑘 ∣ 𝑤 ∈ 𝑃𝑇𝑛

}
,

where 𝑐𝑖,𝑗,𝑘 ∈ 𝑇𝑛 is a coset representative of the permutation in 𝑇𝑛∕𝑃𝑇𝑛 ≅ 𝑆𝑛
which takes 𝑖, 𝑗, 𝑘 to 1, 2, 3, respectively, and fix everything else.
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Proof. In view of Proposition 3.4, we have 𝑤𝑖,𝑗,𝑘 ∈ Brun(𝑇3). A direct check
shows that for any 𝑤 ∈ 𝑃𝑇𝑛, the pure twin

𝑤
∏

1≤𝑖<𝑗<𝑘≤𝑛
(𝑤−1

𝑖,𝑗,𝑘)
𝑐𝑖,𝑗,𝑘

is a (𝑛 − 3)-decomposable twin on 𝑛 strands. Note that the map 𝜙 ∶ 𝑃𝑇𝑛 →
𝐷𝑛−3,𝑛 given by

𝜙(𝑤) = 𝑤
∏

1≤𝑖<𝑗<𝑘≤𝑛
(𝑤−1

𝑖,𝑗,𝑘)
𝑐𝑖,𝑗,𝑘

is a retraction, that is, the restriction of 𝜙 on 𝐷𝑛−3,𝑛 is the identity map. Hence,
it follows that each element of 𝐷𝑛−3,𝑛 arises in this fashion. □

Corollary 4.3. Brun(𝑇4) =
{
𝑤𝑤−1

1,2,3(𝑤
−1
1,2,4)

𝑡3(𝑤−1
1,3,4)

𝑡2𝑡3(𝑤−1
2,3,4)

𝑡1𝑡2𝑡3 ∣ 𝑤 ∈ 𝑃𝑇4
}
.

Next, we describe a process of constructing 𝐷𝑘−1,𝑛 from 𝐷𝑘,𝑛. Let 𝑤 ∈ 𝐷𝑘,𝑛
and 1 ≤ 𝑖1 < 𝑖2⋯ < 𝑖𝑛−𝑘+1 ≤ 𝑛. Let𝑤𝑖1,𝑖2,…,𝑖𝑛−𝑘+1 be the pure twin obtained from
𝑤 by removing the 𝑘 − 1 strands except those indexed 𝑖1, 𝑖2, … , 𝑖𝑛−𝑘+1. Since
𝑤 ∈ 𝐷𝑘,𝑛, we have 𝑤𝑖1,𝑖2,…,𝑖𝑛−𝑘+1 ∈ Brun(𝑇𝑛−𝑘+1). The following result can be
proved along the lines of Proposition 4.2.

Proposition 4.4. For 𝑛 ≥ 4,

𝐷𝑘−1,𝑛 =
{
𝑤

∏

1≤𝑖1<𝑖2⋯<𝑖𝑛−𝑘+1≤𝑛
(𝑤−1

𝑖1,𝑖2,…,𝑖𝑛−𝑘+1
)𝑐𝑖1,𝑖2,…,𝑖𝑛−𝑘+1 ∣ 𝑤 ∈ 𝐷𝑘,𝑛},

where 𝑐𝑖1,𝑖2,…,𝑖𝑛−𝑘+1 ∈ 𝑇𝑛 is a coset representative of the permutation in 𝑇𝑛∕𝑃𝑇𝑛 ≅
𝑆𝑛 which takes 𝑖1, 𝑖2, … , 𝑖𝑛−𝑘+1 to 1, 2, … , 𝑛−𝑘+1, respectively, and fix everything
else.

Beginning with 𝑃𝑇𝑛 = 𝐷𝑛−2,𝑛 = 𝐷𝑛−1,𝑛 and iterating the procedure of con-
structing 𝐷𝑘−1,𝑛 from 𝐷𝑘,𝑛, we can construct all Brunnian twins on 𝑛 strands.

4.2. Cohen twins. Next, we consider another generalisation of Brunnian twins
motivated by an idea due to Fred Cohen [10], and developed further for surface
braid groups in [4]. Recall that, for 0 ≤ 𝑖 ≤ 𝑛 − 1, the face map 𝑑𝑖 ∶ 𝑇𝑛 → 𝑇𝑛−1
deletes the (𝑖 + 1)-st strand from the diagram of a twin. Although 𝑑𝑖 is not a
group homomorphism, it satisfies

𝑑𝑖(𝑢𝑤) = 𝑑𝑖(𝑢)𝑑𝜈(𝑢)(𝑖+1)−1(𝑤), (4.1)

where 𝜈 ∶ 𝑇𝑛+1 → 𝑆𝑛+1 is the natural surjection. For an arbitrary 𝑢 ∈ 𝑇𝑛−1, we
ask whether there exists 𝑤 ∈ 𝑇𝑛 which is a solution of the system of equations

⎧
⎪

⎨
⎪
⎩

𝑑0(𝑤) = 𝑢,
𝑑1(𝑤) = 𝑢,
⋮
𝑑𝑛−1(𝑤) = 𝑢.

(4.2)

Taking 𝑢 = 1 amounts to 𝑤 ∈ 𝑇𝑛 being a Brunnian twin.
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Figure 6. Elements 𝛿3, 𝛿4 and 𝛾3, 𝛾4.

Definition 4.5. A twin 𝑤 ∈ 𝑇𝑛 is called a Cohen twin if 𝑑0(𝑤) = 𝑑1(𝑤) = ⋯ =
𝑑𝑛−1(𝑤).

For 𝑛 ≥ 2, let us set

𝐶𝑇𝑛 = {𝑤 ∈ 𝑇𝑛 ∣ 𝑑0(𝑤) = 𝑑1(𝑤) = ⋯ = 𝑑𝑛−1(𝑤)} .

In other words, a twin on 𝑛 strands lie in𝐶𝑇𝑛 if it gives the same twin on (𝑛−1)
strands after removing any one of its strands. For example, the twin

𝛿𝑛 ∶= (𝑡1𝑡2⋯𝑡𝑛−1)(𝑡1𝑡2⋯𝑡𝑛−2)⋯ (𝑡1𝑡2)𝑡1
lies in 𝐶𝑇𝑛 for all 𝑛 ≥ 2 and 𝑑0(𝛿𝑛) = 𝛿𝑛−1 (see Figure 6). Similarly, we define

𝐶𝑃𝑇𝑛 = 𝐶𝑇𝑛 ∩ 𝑃𝑇𝑛 = {𝑤 ∈ 𝑃𝑇𝑛 ∣ 𝑑0(𝑤) = 𝑑1(𝑤) = ⋯ = 𝑑𝑛−1(𝑤)} .

We refer to elements of 𝐶𝑃𝑇𝑛 as pure Cohen twins. For instance, the pure twin

𝛾𝑛 ∶= (𝑡1𝑡2⋯𝑡𝑛−1)𝑛

lies in 𝐶𝑃𝑇𝑛 for all 𝑛 ≥ 2 and 𝑑0(𝛾𝑛) = 𝛾𝑛−1 (see Figure 6).
If 𝜙, 𝜓 ∶ 𝐺 → 𝐻 are group homomorphisms, then their equalizer is the

subgroup of 𝐺 given by

{𝑔 ∈ 𝐺 ∣ 𝜙(𝑔) = 𝜓(𝑔)}.

Hence, 𝐶𝑃𝑇𝑛 is a subgroup of 𝑃𝑇𝑛 being the equalizer of group homomor-
phisms 𝑑0, 𝑑1, … , 𝑑𝑛−1 ∶ 𝑃𝑇𝑛 → 𝑃𝑇𝑛−1.

Proposition 4.6. The following assertions hold:
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(1) For each 0 ≤ 𝑖 ≤ 𝑛 − 1, 𝑑𝑖(𝐶𝑃𝑇𝑛) ⊆ 𝐶𝑃𝑇𝑛−1 and the map 𝑑0 = 𝑑1 =
⋯ = 𝑑𝑛−1 ∶ 𝐶𝑃𝑇𝑛 → 𝐶𝑃𝑇𝑛−1 is a group homomorphism.

(2) The set 𝐶𝑇𝑛 is a subgroup of 𝑇𝑛. Moreover, for each 0 ≤ 𝑖 ≤ 𝑛 − 1,
𝑑𝑖(𝐶𝑇𝑛) ⊆ 𝐶𝑇𝑛−1 and the map 𝑑0 = 𝑑1 = ⋯ = 𝑑𝑛−1 ∶ 𝐶𝑇𝑛 → 𝐶𝑇𝑛−1 is
a group homomorphism.

Proof. Let 𝑤 ∈ 𝐶𝑃𝑇𝑛 and 0 ≤ 𝑖 ≤ 𝑛 − 1. Then, using (2.1), we obtain

𝑑𝑗(𝑑𝑖(𝑤)) = 𝑑𝑗(𝑑0(𝑤)) = 𝑑0(𝑑𝑗+1(𝑤)) = 𝑑0(𝑑𝑖(𝑤)) (4.3)

for each 0 ≤ 𝑗 ≤ 𝑛 − 2, and hence 𝑑𝑖(𝐶𝑃𝑇𝑛) ⊆ 𝐶𝑃𝑇𝑛−1. That 𝑑0 = 𝑑1 = ⋯ =
𝑑𝑛−1 ∶ 𝐶𝑃𝑇𝑛 → 𝐶𝑃𝑇𝑛−1 is a group homomorphism follows from Proposition
2.4.
For the second assertion, let 𝑢,𝑤 ∈ 𝐶𝑇𝑛. By (4.1), we have

𝑑𝑖(𝑢𝑤) = 𝑑𝑖(𝑢)𝑑𝜈(𝑢)(𝑖+1)−1(𝑤) = 𝑑0(𝑢)𝑑𝜈(𝑢)(1)−1(𝑤) = 𝑑0(𝑢𝑤) (4.4)

for each 0 ≤ 𝑖 ≤ 𝑛 − 1, and hence 𝑢𝑤 ∈ 𝐶𝑇𝑛. Further, the equation

1 = 𝑑𝑖
(
𝑢−1𝑢

)
= 𝑑𝑖

(
𝑢−1

)
𝑑𝜈(𝑢−1)(𝑖+1)−1(𝑢) = 𝑑𝑖

(
𝑢−1

)
𝑑0(𝑢),

gives
𝑑𝑖
(
𝑢−1

)
= (𝑑0(𝑢))

−1

for each 0 ≤ 𝑖 ≤ 𝑛 − 1, and hence 𝐶𝑇𝑛 is a subgroup of 𝑇𝑛. The proof of
𝑑𝑖(𝐶𝑇𝑛) ⊆ 𝐶𝑇𝑛−1 follows from 4.3. Finally, (4.4) also shows that 𝑑0 = 𝑑1 =
⋯ = 𝑑𝑛−1 ∶ 𝐶𝑇𝑛 → 𝐶𝑇𝑛−1 is a group homomorphism. □

Proposition 4.7. 𝐶𝑃𝑇𝑛 is an index two subgroup of 𝐶𝑇𝑛 for 𝑛 ≥ 3.

Proof. The topological interpretation of elements of 𝑇𝑛 can be applied to el-
ements of 𝑆𝑛 as well by allowing triple intersection points. Thus, for each
0 ≤ 𝑖 ≤ 𝑛 − 1, there is a map 𝑑𝑖 ∶ 𝑆𝑛 → 𝑆𝑛−1 (thought of as deleting the
(𝑖 + 1)-st strand) such the following diagram commutes

𝑃𝑇𝑛 𝑇𝑛 𝑆𝑛

𝑃𝑇𝑛−1 𝑇𝑛−1 𝑆𝑛−1.

𝜈𝑛

𝜈𝑛−1

𝑑𝑖 𝑑𝑖 𝑑𝑖

Set 𝐶𝑆𝑛 ∶= 𝜈𝑛(𝐶𝑇𝑛) for each 𝑛 ≥ 2. Note that 𝐶𝑆2 = 𝜈2(𝑇2) = 𝑆2 ≅ ℤ2.
The commutativity of the preceding diagram shows that every 𝜏 ∈ 𝐶𝑆𝑛 satisfy
𝑑0(𝜏) = 𝑑1(𝜏) = ⋯ = 𝑑𝑛−1(𝜏). By Proposition 4.6(2), we have 𝑑0(𝐶𝑇𝑛) ⊆
𝐶𝑇𝑛−1. The commutativity of the preceding diagram implies that 𝑑0(𝐶𝑆𝑛) =
𝑑0𝜈𝑛(𝐶𝑇𝑛) = 𝜈𝑛−1𝑑0(𝐶𝑇𝑛) ⊆ 𝜈𝑛−1(𝐶𝑇𝑛−1) = 𝐶𝑆𝑛−1. Thus, for 𝑛 ≥ 3, the
restriction of the map 𝑑0 ∶ 𝑆𝑛 → 𝑆𝑛−1 induces a map 𝑑0 ∶ 𝐶𝑆𝑛 → 𝐶𝑆𝑛−1
such that ker(𝑑0) = ∩𝑛−1𝑖=0 ker(𝑑𝑖). Direct computation gives ker(𝑑0) = 1, and
hence the map 𝑑0⋯𝑑0 ∶ 𝐶𝑆𝑛 → 𝐶𝑆2 is injective. Since 𝜈𝑛(𝛿𝑛) ≠ 1, we have
𝐶𝑇𝑛∕𝐶𝑃𝑇𝑛 ≅ 𝐶𝑆𝑛 ≅ ℤ2, and the proof is complete. □

The following result follows along the lines of [32, Lemma 2.10].
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Proposition 4.8. For each 1 ≤ 𝑘 ≤ 𝑛 − 1, the map

𝑑0⋯𝑑0⏟⎴⏟⎴⏟
(𝑛−𝑘) times

∶ 𝐶𝑃𝑇𝑛 → 𝐶𝑃𝑇𝑘

is surjective. In particular, 𝑑0 ∶ 𝐶𝑃𝑇𝑛 → 𝐶𝑃𝑇𝑛−1 is surjective for 𝑛 ≥ 2.

Proof. Let us set 𝑑𝑛−𝑘,𝑛 = 𝑑0⋯𝑑0⏟⎴⏟⎴⏟
(𝑛−𝑘) times

. We use induction on 𝑘. Clearly, for 𝑘 = 1,

themap𝑑𝑛−1,𝑛 ∶ 𝐶𝑃𝑇𝑛 → 𝐶𝑃𝑇1 is surjective. Assume that𝑑𝑛−𝑘+1,𝑛 is surjective
with 𝑘 > 1, and let 𝑤 ∈ 𝐶𝑃𝑇𝑘.
Case 1: Suppose that 𝑤 ∈ ker(𝑑0 ∶ 𝐶𝑃𝑇𝑘 → 𝐶𝑃𝑇𝑘−1). Then consider the

element
𝑤𝑘,𝑛 =

∏

0≤𝑖1<𝑖2<⋯<𝑖𝑛−𝑘≤𝑛−1
𝑑𝑖𝑛−𝑘𝑑𝑖𝑛−𝑘−1 ⋯𝑑𝑖1(𝑤)

of𝑃𝑇𝑛with lexicographic order on the indices from the right. Since𝑤 ∈ ker(𝑑0 ∶
𝐶𝑃𝑇𝑘 → 𝐶𝑃𝑇𝑘−1), a straightforward computation shows that𝑤𝑘,𝑛 ∈ 𝐶𝑃𝑇𝑛 and
𝑑𝑛−𝑘,𝑛(𝑤𝑛,𝑘) = 𝑤. For instance, taking 𝑛 = 4 and 𝑘 = 1, we have

𝑤1,4 =
∏

0≤𝑖1<𝑖2<𝑖3≤3
𝑑𝑖3𝑑𝑖2𝑑𝑖1(𝑤)

with lexicographic order from the right. Note that (𝑖1, 𝑖2, 𝑖3) all lie in the set
{(0, 1, 2), (0, 1, 3), (0, 2, 3), (1, 2, 3)} and

𝑤1,4 = 𝑑2𝑑1𝑑0(𝑤) 𝑑3𝑑1𝑑0(𝑤) 𝑑3𝑑2𝑑0(𝑤) 𝑑3𝑑2𝑑1(𝑤).

Direct computations give

𝑑0(𝑤1,4) = 𝑑1𝑑0(𝑤) 𝑑2𝑑0(𝑤) 𝑑2𝑑1(𝑤) 𝑑2𝑑1𝑑0(𝑑0(𝑤)),
𝑑1(𝑤1,4) = 𝑑1𝑑0(𝑤) 𝑑2𝑑0(𝑤) 𝑑2𝑑1𝑑0(𝑑0(𝑤)) 𝑑2𝑑1(𝑤),
𝑑2(𝑤1,4) = 𝑑1𝑑0(𝑤) 𝑑2𝑑1𝑑0(𝑑0(𝑤)) 𝑑2𝑑0(𝑤) 𝑑2𝑑1(𝑤),
𝑑3(𝑤1,4) = 𝑑2𝑑1𝑑0(𝑑0(𝑤)) 𝑑1𝑑0(𝑤) 𝑑2𝑑0(𝑤) 𝑑2𝑑1(𝑤).

Since 𝑤 ∈ ker(𝑑0 ∶ 𝐶𝑃𝑇𝑘 → 𝐶𝑃𝑇𝑘−1), 𝑑2𝑑1𝑑0(𝑑0(𝑤)) = 1, and hence 𝑤1,4 ∈
𝐶𝑃𝑇4.
Case 2: Now, suppose that 1 ≠ 𝛿 = 𝑑0(𝑤) ∈ 𝐶𝑃𝑇𝑘−1. By induction hypoth-

esis, there exists 𝛾 ∈ 𝐶𝑃𝑇𝑛 such that 𝑑𝑛−𝑘+1,𝑛(𝛾) = 𝑑0(𝑑𝑛−𝑘,𝑛(𝛾)) = 𝛿. Note
that

𝑤 𝑑𝑛−𝑘,𝑛(𝛾)−1 ∈ ker(𝑑0 ∶ 𝐶𝑃𝑇𝑘 → 𝐶𝑃𝑇𝑘−1).

Thus, by Case 1, there exists 𝜆 ∈ 𝐶𝑃𝑇𝑛 such that

𝑑𝑛−𝑘,𝑛(𝜆) = 𝑤 𝑑𝑛−𝑘,𝑛(𝛾)−1,

and hence 𝑑𝑛−𝑘,𝑛(𝜆𝛾) = 𝑤. This proves that the map 𝑑𝑛−𝑘,𝑛 is surjective. □

Proposition 4.9. The map 𝑑0 ∶ 𝐶𝑇𝑛 → 𝐶𝑇𝑛−1 is surjective for each 𝑛 ≥ 2.
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Proof. In viewof Proposition 4.7, we canwrite𝐶𝑇𝑛−1 = 𝐶𝑃𝑇𝑛−1∪𝛿𝑛−1𝐶𝑃𝑇𝑛−1.
Let us take 𝑤 ∈ 𝐶𝑇𝑛−1. If 𝑤 ∈ 𝐶𝑃𝑇𝑛−1, then by Proposition 4.8, there exists an
𝑢 ∈ 𝐶𝑃𝑇𝑛 such that 𝑑0(𝑢) = 𝑤. If 𝑤 ∈ 𝛿𝑛−1𝐶𝑃𝑇𝑛−1, then again by Proposition
4.8, there exists 𝑣 ∈ 𝐶𝑃𝑇𝑛, such that 𝑑0(𝑣) = 𝛿−1𝑛−1𝑤, and hence 𝑑0(𝛿𝑛𝑣) = 𝑤.
This complete the proof. □

Thus, we obtain the following short exact sequences

1 → Brun(𝑇𝑛) → 𝐶𝑇𝑛 → 𝐶𝑇𝑛−1 → 1

and
1 → Brun(𝑇𝑛) → 𝐶𝑃𝑇𝑛 → 𝐶𝑃𝑇𝑛−1 → 1.

Observe that 𝐶𝑃𝑇2 = Brun(𝑇2) = 𝑃𝑇2 = 1 and 𝐶𝑃𝑇3 = Brun(𝑇3) = 𝑃𝑇3 =
⟨(𝑡1𝑡2)3⟩ ≅ ℤ. Thus, the preceding exact sequence gives 𝐶𝑃𝑇4 = Brun(𝑇4) ⋊
⟨(𝑡1𝑡2)3⟩.

Theorem 4.10. For each 𝑢 ∈ 𝑃𝑇𝑛−1 or 𝑢 ∈ 𝑇𝑛−1, the system of equations

⎧
⎪

⎨
⎪
⎩

𝑑0(𝑤) = 𝑢,
𝑑1(𝑤) = 𝑢,
⋮
𝑑𝑛−1(𝑤) = 𝑢,

(4.5)

has a solution if and only if 𝑢 satisfies the condition

𝑑0(𝑢) = 𝑑1(𝑢) = ⋯ = 𝑑𝑛−2(𝑢).

Proof. Let 𝑢 ∈ 𝑃𝑇𝑛−1 such that the system of equations (4.2) has a solution.
Then there exists 𝑤 ∈ 𝑃𝑇𝑛 such that 𝑑0(𝑤) = ⋯ = 𝑑𝑛−1(𝑤) = 𝑢. It fol-
lows from Proposition 4.6 that 𝑢 ∈ 𝐶𝑃𝑇𝑛−1, and hence 𝑑0(𝑢) = ⋯ = 𝑑𝑛−2(𝑢).
Conversely, suppose that 𝑑0(𝑢) = ⋯ = 𝑑𝑛−2(𝑢), that is, 𝑢 ∈ 𝐶𝑃𝑇𝑛−1. By Propo-
sition 4.8, 𝑑0 ∶ 𝐶𝑃𝑇𝑛 → 𝐶𝑃𝑇𝑛−1 is surjective, and hence there exists𝑤 ∈ 𝐶𝑃𝑇𝑛
which is a solution to (4.2). The proof for the case when 𝑢 ∈ 𝑇𝑛−1 is similar. □

5. Brunnian doodles on the 2-sphere
Note that the closure of a Brunnian braid is a Brunnian link. The converse is

not true and there exist Brunnian links that cannot be obtained as the closure
of Brunnian braids (see [12]). The same scenario occurs with doodles on the
2-sphere. Consider the Brunnian doodle on the 2-sphere as shown in Figure 7.
We will justify in Remark 5.6 that this Brunnian doodle cannot be realised as
the closure of a Brunnian twin.

Definition 5.1. A doodle diagram on the 2-sphere is called minimal if it has no
monogons and bigons.
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Figure 7. A Brunnian doodle which is not the closure of a
Brunnian twin.

Figure 8. Transformation of doodle diagrams.

Figure 9. Reidemeister moves.

Theorem5.2. [17, Theorem2.2]Anydoodle has a unique (up to the transforma-
tion shown in Figure 8) minimal doodle diagram with a minimal number of in-
tersection points. Further, this minimal doodle diagram can be constructed from
any other doodle diagram by applying Reidemeister moves 𝑅1 and 𝑅2 (see Figure
9) that reduce the number of intersection points.

For a given reduced word 𝑤 = 𝑡𝑖1 … 𝑡𝑖𝑘 ∈ 𝑇𝑛, let 𝓁(𝑤) = 𝑘 be the length of
𝑤. For each 1 ≤ 𝑖 ≤ 𝑛 − 1, if log𝑖(𝑤) denote the number of 𝑡𝑖’s present in the
expression 𝑤, then

𝓁(𝑤) =
𝑛−1∑

𝑖=1
log𝑖(𝑤).
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A cyclic permutation of a word𝑤 = 𝑡𝑖1 … 𝑡𝑖𝑘 ∈ 𝑇𝑛 (not necessarily reduced) is
a word 𝑤′ = 𝑡𝑖𝑟 𝑡𝑖𝑟+1 … 𝑡𝑖𝑘 𝑡𝑖1𝑡𝑖2 ⋯𝑡𝑖𝑟−1 for some 1 ≤ 𝑟 ≤ 𝑘. It is easy to see that 𝑤
and 𝑤′ are conjugate to each other in 𝑇𝑛, in fact,

𝑤′ = (𝑡𝑖1𝑡𝑖2 … 𝑡𝑖𝑟−1)
−1𝑤(𝑡𝑖1𝑡𝑖2 … 𝑡𝑖𝑟−1).

Aword𝑤 is called cyclically reduced if each cyclic permutation of𝑤 is reduced.
Clearly, a cyclically reduced word is reduced.
Lemma 5.3. Let 𝑤 ∈ 𝑃𝑇𝑛 be a pure twin. Then the following assertions hold:

(1) If 𝓁(𝑤) is minimal among all the elements in the conjugacy class of 𝑤,
then the closure of 𝑤 is a minimal doodle diagram.

(2) The closure of 𝑤 is an 𝑛-component trivial doodle if and only if 𝑤 is a
trivial twin.

Proof. It follows from [29, Corollary 2.4] that each word in 𝑇𝑛 is conjugate to
some cyclically reducedword. Since 𝓁(𝑤) is minimal among all the elements in
the conjugacy class of 𝑤, it follows that 𝑤 is a cyclically reduced word. Hence,
the closure of 𝑤 has no bigons. Since 𝑤 is pure twin, its closure has no mono-
gons, and hence the diagram is minimal.
By Markov Theorem for doodles on the 2-sphere [16, Theorem 4.1], conju-

gate twins have the same closure. Thus, we can assume that 𝓁(𝑤) is minimal
among all the elements in the conjugacy class of 𝑤. It follows from assertion
(1) that the closure of 𝑤 is a minimal doodle diagram. Note that the number of
double points in the closure of the twin 𝑤 equals 𝓁(𝑤), and hence 𝓁(𝑤) = 0.
But, this implies that 𝑤 is trivial twin. The converse implication in assertion
(2) is obvious. □

Let 𝑤 denote the closure of a twin 𝑤 on the 2-sphere. By [17, Theorem 2.1],
every oriented doodle on the 2-sphere is the closure of a twin. The twin index
𝐼(𝐷) of a doodle 𝐷 on the 2-sphere is the minimal 𝑛 such that there is a twin
𝑤 ∈ 𝑇𝑛 whose closure is equivalent to 𝐷.
Theorem 5.4. An 𝑚-component Brunnian doodle 𝐷 on the 2-sphere is the clo-
sure of a Brunnian twin if and only if 𝐼(𝐷) = 𝑚.
Proof. If 𝑢 is a Brunnian twin on 𝑚 strands, then its closure on the 2-sphere
is a Brunnian doodle on 𝑚 components with 𝐼(𝑢) = 𝑚. Conversely, if 𝐷 is a
Brunnian doodle on 𝑚 components and 𝐼(𝐷) = 𝑚, then there exist 𝑤 ∈ 𝑃𝑇𝑚
such that 𝑤 = 𝐷. Removing any strand from 𝑤 corresponds to removing a
component from 𝐷. Thus, 𝑑𝑖(𝑤) is a trivial doodle for each 𝑖. By Lemma 5.3,
𝑑𝑖(𝑤) = 1 for each 𝑖, and hence 𝑤 is a Brunnian twin. □

Remark 5.5. An analogue of Theorem 5.4 for Brunnian links in 𝑆3 is proved
in [24, Theorem 2.2].
Remark 5.6. The Brunnian doodle in Figure 7 cannot have twin index 3, since
the closure of a pure twin on 3 strands is a minimal doodle diagram with the
number of crossings being amultiple of 6. Hence, this Brunnian doodle cannot
be realised as the closure of a Brunnian twin.
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6. Simplicial structure on pure twin groups
In this section, we discuss simplicial structures on twin and pure twin groups

and relate them with Milnor’s construction for simplicial spheres.

6.1. Simplicial sets and simplicial groups. We recall some basic definitions
and constructions [25, 26].

Definition 6.1. A sequence of sets 𝑋∗ = {𝑋𝑛}𝑛≥0 is called a simplicial set if there
are face maps

𝑑𝑖 ∶ 𝑋𝑛 ⟶𝑋𝑛−1 for 0 ≤ 𝑖 ≤ 𝑛

and degeneracy maps

𝑠𝑖 ∶ 𝑋𝑛 ⟶𝑋𝑛+1 for 0 ≤ 𝑖 ≤ 𝑛,

which satisfy the following simplicial identities:
(1) 𝑑𝑖𝑑𝑗 = 𝑑𝑗−1𝑑𝑖 if 𝑖 < 𝑗,
(2) 𝑠𝑖𝑠𝑗 = 𝑠𝑗+1𝑠𝑖 if 𝑖 ≤ 𝑗,
(3) 𝑑𝑖𝑠𝑗 = 𝑠𝑗−1𝑑𝑖 if 𝑖 < 𝑗,
(4) 𝑑𝑗𝑠𝑗 = id = 𝑑𝑗+1𝑠𝑗 ,
(5) 𝑑𝑖𝑠𝑗 = 𝑠𝑗𝑑𝑖−1 if 𝑖 > 𝑗 + 1.

We view 𝑋𝑛 geometrically as the set of 𝑛-simplices including all possible de-
generate simplices. Here, a simplex 𝑥 is degenerate if 𝑥 = 𝑠𝑖(𝑦) for some simplex
𝑦 and degeneracy operator 𝑠𝑖, otherwise 𝑥 is non-degenerate. A simplicial set𝑋∗
is pointed if we fix a basepoint⋆ ∈ 𝑋0 that creates one and only one degenerate
𝑛-simplex in each 𝑋𝑛 by applying iterated degeneracy operations on it. A sim-
plicial group is a simplicial set 𝑋∗ such that each 𝑋𝑛 is a group and all face and
degeneracy maps are group homomorphisms.

Remark 6.2. In the context of braid-type groups (for example, braid group 𝐵𝑛,
virtual braid group 𝑉𝐵𝑛, welded braid group 𝑊𝐵𝑛, etc.), the maps 𝑑𝑖 usually
represents deleting of the (𝑖 + 1)-th strand and 𝑠𝑖 represents doubling of the
(𝑖 + 1)-th strand.

Remark 6.3. Note that the defining identities of a bi-∆-set and that of a simpli-
cial set are similar. The only differences are that we don’t have 𝑑𝑗+1𝑠𝑗 = id for
bi-∆-sets, and when viewed as maps from 𝑋𝑛−1 → 𝑋𝑛, the number of degener-
acymaps is one less than the number of cofacemaps. We have used the bi-∆-set
structure at three instances in the preceding sections. Thefirst instance of usage
of a bi-∆-set is Proposition 2.4, though its arguments can be modified to adapt
to a simplicial set structure. The second instance is the proof of Proposition 4.8,
where we defined the element𝑤𝑘,𝑛 and showed that𝑤𝑘,𝑛 ∈ 𝐶𝑃𝑇𝑛. In the latter
case, a simplicial structure would not be helpful. Finally, using the Decompo-
sition Theorem for bi-∆-groups, we have given a decomposition of pure twin
groups in Proposition 3.11 with Brunnian subgroups as constituents.
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Let 𝐺∗ = {𝐺𝑛}𝑛≥0 be a simplicial group. The group of Moore 𝑛-cycles
𝑍𝑛(𝐺∗) ≤ 𝐺𝑛 is defined by

𝑍𝑛(𝐺∗) =
𝑛⋂

𝑖=0
Ker(𝑑𝑖 ∶ 𝐺𝑛 → 𝐺𝑛−1)

and the group ofMoore 𝑛-boundaries 𝐵𝑛(𝐺∗) ≤ 𝐺𝑛 is defined by

𝐵𝑛(𝐺∗) = 𝑑0
⎛
⎜
⎝

𝑛+1⋂

𝑖=1
Ker(𝑑𝑖 ∶ 𝐺𝑛+1 → 𝐺𝑛)

⎞
⎟
⎠
.

Simplicial identities guarantees that 𝐵𝑛(𝐺∗) is a (normal) subgroup of 𝑍𝑛(𝐺∗)
(see [6, Proposition 4.1.3] or [14, Example 7.7]). The 𝑛-th Moore homotopy
group 𝜋𝑛(𝐺∗) of 𝐺∗ is defined by

𝜋𝑛(𝐺∗) = 𝑍𝑛(𝐺∗)∕𝐵𝑛(𝐺∗).

It is a classical result due to Moore [28] that 𝜋𝑛(𝐺∗) ≅ 𝜋𝑛(|𝐺∗|), where |𝐺∗| is
the geometric realisation of 𝐺∗. A simplicial group 𝐺∗ is called contractible if
𝜋𝑛(𝐺∗) = 1 for all 𝑛 > 0.

Milnor’s𝐹[𝐾] construction is the adjoint functor to the forgetful functor from
the category of pointed simplicial groups to the category of pointed simplicial
sets. For a given pointed simplicial set 𝐾∗ = {𝐾𝑛, ⋆}𝑛≥0, Milnor’s 𝐹[𝐾] con-
struction is the simplicial group with 𝐹[𝐾]𝑛 = 𝐹(𝐾𝑛 ⧵ ⋆), the free group on
𝐾𝑛 ⧵ ⋆, with the face and the degeneracy maps induced from the face and de-
generacy maps of 𝐾∗. It is well-known from [26] that there is weak homotopy
equivalence

|𝐹[𝐾]∗| ≃ ΩΣ|𝐾∗|, (6.1)

where |𝑋∗| denotes the geometric realisation of a simplicial set𝑋∗. Here,Ω𝑍 is
the loop space of all based loops in a pointed topological space 𝑍 and Σ𝑍 is the
reduced suspension of 𝑍.
Consider the pointed simplicial 2-sphere 𝑆2 = ∆[2]∕𝜕∆[2] with

𝑆20 = {⋆}, 𝑆21 = {⋆}, 𝑆22 = {⋆, 𝜎}, 𝑆23 = {⋆, 𝑠0(𝜎), 𝑠1(𝜎), 𝑠2(𝜎)}, … ,

𝑆2𝑛 = {⋆, 𝑥𝑖𝑗 ∣ 0 ≤ 𝑖 < 𝑗 ≤ 𝑛 − 1}, …

where 𝜎 = (0, 1, 2) is the non-degenerate 2-simplex and

𝑥𝑖𝑗 = 𝑠𝑛−1… 𝑠𝑗+1𝑠𝑗𝑠𝑗−1… 𝑠𝑖+1𝑠𝑖𝑠𝑖−1… 𝑠0(𝜎)
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with 𝑠𝑘 meaning that the degeneracy map 𝑠𝑘 is omitted. Then 𝐹[𝑆2] construc-
tion has the following terms:

𝐹[𝑆2]0 = 1,

𝐹[𝑆2]1 = 1,

𝐹[𝑆2]2 = 𝐹(𝜎),

𝐹[𝑆2]3 = 𝐹(𝑠0(𝜎), 𝑠1(𝜎), 𝑠2(𝜎)),

𝐹[𝑆2]4 = 𝐹(𝑠1𝑠0(𝜎), 𝑠2𝑠0(𝜎), 𝑠3𝑠0(𝜎), 𝑠2𝑠1(𝜎), 𝑠3𝑠1(𝜎), 𝑠3𝑠2(𝜎)),
⋮

𝐹[𝑆2]𝑛 = 𝐹(𝑥𝑖𝑗; 0 ≤ 𝑖 < 𝑗 ≤ 𝑛 − 1),
⋮

For each 𝑛 ≥ 2, the group 𝐹[𝑆2]𝑛 is a free group of rank 𝑛(𝑛 − 1)∕2. In this
construction of the simplicial 2-sphere, it is convenient to present the degen-
eracy map 𝑠𝑖 as a doubling of the (𝑖 + 1)-th component and the face map 𝑑𝑖 as
deletion of the (𝑖 + 1)-th component. For example,

𝑠0(𝜎) = (0, 0, 1, 2), 𝑠1(𝜎) = (0, 1, 1, 2), 𝑠2(𝜎) = (0, 1, 2, 2),

𝑠1𝑠0(𝜎) = (0, 0, 0, 1, 2), 𝑠2𝑠0(𝜎) = (0, 0, 1, 1, 2), 𝑠3𝑠0(𝜎) = (0, 0, 1, 2, 2),
𝑠2𝑠1(𝜎) = (0, 1, 1, 1, 2), 𝑠3𝑠1(𝜎) = (0, 1, 1, 2, 2), 𝑠3𝑠2(𝜎) = (0, 1, 2, 2, 2).

The face and degeneracymaps are determinedwith respect to the standard sim-
plicial identities for simplicial groups. For example, the first non-trivial face
maps 𝑑𝑖 ∶ 𝐹[𝑆2]3 → 𝐹[𝑆2]2 are given by

𝑑0 ∶ 𝑠0(𝜎) ↦ 𝜎, 𝑠1(𝜎) ↦ ⋆, 𝑠2(𝜎) ↦ ⋆,
𝑑1 ∶ 𝑠0(𝜎) ↦ 𝜎, 𝑠1(𝜎) ↦ 𝜎, 𝑠2(𝜎) ↦ ⋆,
𝑑2 ∶ 𝑠0(𝜎) ↦ ⋆, 𝑠1(𝜎) ↦ 𝜎, 𝑠2(𝜎) ↦ 𝜎,
𝑑3 ∶ 𝑠0(𝜎) ↦ ⋆, 𝑠1(𝜎) ↦ ⋆, 𝑠2(𝜎) ↦ 𝜎.

Milnor’s construction gives a possibility to define the homotopy groups
𝜋𝑛(𝑆3) combinatorially, in terms of free groups. By (6.1), the geometric realisa-
tion of 𝐹[𝑆2]∗ is weakly homotopically equivalent to the loop spaceΩ𝑆3. Thus,
the homotopy groups of 𝑆3 are isomorphic to the Moore homotopy groups of
𝐹[𝑆2], that is,

𝜋𝑛+1(𝑆3) ≅ 𝑍𝑛(𝐹[𝑆2]∗)∕𝐵𝑛(𝐹[𝑆2]∗). (6.2)

6.2. Simplicial pure twin group. By [1, Theorem 2], we have

𝑃𝑇3 = ⟨(𝑡1𝑡2)3⟩ ≅ ℤ, 𝑃𝑇4 ≅ 𝐹7,

where 𝐹7 is the free group on the elements

𝑥1 = (𝑡1𝑡2)3, 𝑥2 =
(
(𝑡1𝑡2)3

)𝑡3 , 𝑥3 =
(
(𝑡1𝑡2)3

)𝑡3𝑡2 , 𝑥4 =
(
(𝑡1𝑡2)3

)𝑡3𝑡2𝑡1 ,
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𝑥5 = (𝑡2𝑡3)3, 𝑥6 =
(
(𝑡2𝑡3)3

)𝑡1 , 𝑥7 =
(
(𝑡2𝑡3)3

)𝑡1𝑡2 .
Let 𝑆𝑃𝑇∗ = {𝑆𝑃𝑇𝑛}𝑛≥0, where 𝑆𝑃𝑇𝑛 = 𝑃𝑇𝑛+1 for each 𝑛 ≥ 0. Following the

methodology of [11], consider the sequence of groups

…
⟶…⟶⟵…⟵

𝑃𝑇4
⟶⟶⟶⟶⟵⟵⟵

𝑃𝑇3
⟶⟶⟶⟵⟵𝑃𝑇2 ⟶⟶⟵𝑃𝑇1

with face and degeneracy homomorphisms

𝑑𝑖 ∶ 𝑆𝑃𝑇𝑛 = 𝑃𝑇𝑛+1 → 𝑆𝑃𝑇𝑛−1 = 𝑃𝑇𝑛,
𝑠𝑖 ∶ 𝑆𝑃𝑇𝑛 = 𝑃𝑇𝑛+1 → 𝑆𝑃𝑇𝑛+1 = 𝑃𝑇𝑛+2,

where the face map 𝑑𝑖 is the deleting of the (𝑖 +1)-th strand and the degeneracy
map 𝑠𝑖 is the doubling of the (𝑖+1)-th strand for each 0 ≤ 𝑖 ≤ 𝑛. For example, we
prove in the proof of Proposition 3.5 that 𝑑3 ∶ 𝑃𝑇4 → 𝑃𝑇3 is given by 𝑑3(𝑥1) = 𝑦
and

𝑑3(𝑥2) = 𝑑3(𝑥3) = 𝑑3(𝑥4) = 𝑑3(𝑥5) = 𝑑3(𝑥6) = 𝑑3(𝑥7) = 1,
where 𝑦 = (𝑡1𝑡2)3 ∈ 𝑃𝑇3. As in the classical case it is not difficult to prove the
following result, whose proof is adapted from [3, Proposition 3.1].

Proposition 6.4. 𝑆𝑃𝑇∗ is a contractible simplicial group.

Proof. Let 𝑥 ∈ 𝑍𝑛(𝑆𝑃𝑇∗) be a Moore 𝑛-cycle, that is, 𝑥 ∈ 𝑆𝑃𝑇𝑛 and 𝑑𝑖(𝑥) =
1 for all 0 ≤ 𝑖 ≤ 𝑛. Note that 𝑆𝑃𝑇∗ admits an additional degeneracy map
𝜄𝑛+1 ∶ 𝑆𝑃𝑇𝑛 → 𝑆𝑃𝑇𝑛+1, which adds a trivial strand on the left of the diagram
of the twin. If we set 𝑦 = 𝜄𝑛+1(𝑥) ∈ 𝑆𝑃𝑇𝑛+1, then we see that 𝑑𝑗(𝑦) = 1 for all
1 ≤ 𝑗 ≤ 𝑛 + 1 and 𝑑0(𝑦) = 𝑥. Thus, 𝑥 ∈ 𝐵𝑛(𝑆𝑃𝑇∗) is a Moore 𝑛-boundary, and
hence 𝜋𝑛(𝑆𝑃𝑇∗) = 1 for all 𝑛. □

We write 𝑈𝑛,𝑖 ∶= Ker(𝑑𝑖 ∶ 𝑃𝑇𝑛 → 𝑃𝑇𝑛−1) for each 0 ≤ 𝑖 ≤ 𝑛 − 1. Then, we
have the following short exact sequence

1 𝑈𝑛,𝑖 𝑃𝑇𝑛 𝑃𝑇𝑛−1 1
𝑑𝑖

with the splitting given by 𝑑𝑖 ∶ 𝑃𝑇𝑛−1 → 𝑃𝑇𝑛 as defined in Proposition 2.4.
This gives a semi-direct product decomposition 𝑃𝑇𝑛 = 𝑈𝑛,𝑖 ⋊ 𝑃𝑇𝑛−1. Clearly,
𝑈3,0 = 𝑈3,1 = 𝑈3,2 = 𝑃𝑇3. The following problem seems interesting.

Problem 6.5. Find presentations of𝑈𝑛,𝑖 for 𝑛 ≥ 4.

We construct a simplicial subgroup 𝐾∗ of 𝑆𝑃𝑇∗, which would be the image
of the simplicial sphere 𝑆2 under a simplicial map. We set 𝐾0 = 𝐾1 = 1, 𝐾2 =
𝑆𝑃𝑇2 = ⟨𝑐0,1;2⟩, the infinite cyclic group generated by 𝑐0,1;2 = (𝑡1𝑡2)3, and

𝐾3 = ⟨𝑐1,2;3 = 𝑠0(𝑐0,1;2), 𝑐0,2;3 = 𝑠1(𝑐0,1;2), 𝑐0,1;3 = 𝑠2(𝑐0,1;2)⟩.

In general, we define
𝐾𝑛 = ⟨𝑐𝑖,𝑗;𝑛 = 𝑠𝑛−1… 𝑠𝑗+1𝑠𝑗𝑠𝑗−1… 𝑠𝑖+1𝑠𝑖𝑠𝑖−1… 𝑠0(𝑐0,1;2) ∣ 0 ≤ 𝑖 < 𝑗 ≤ 𝑛 − 1⟩,
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the subgroup of 𝑆𝑃𝑇𝑛 generated by 𝑛(𝑛 − 1)∕2 elements. It follows from the
simplicial identities that 𝑑𝑖(𝑐𝑖,𝑗;𝑛) ∈ 𝐾𝑛−1 and 𝑠𝑗(𝑐𝑖,𝑗;𝑛) ∈ 𝐾𝑛+1 for each gen-
erator 𝑐𝑖,𝑗;𝑛 of 𝐾𝑛 and all 𝑑𝑖, 𝑠𝑗. Thus, for each 𝑛 ≥ 0, restriction of face maps
𝑑𝑖 ∶ 𝑆𝑃𝑇𝑛 → 𝑆𝑃𝑇𝑛−1 gives face maps 𝑑𝑖 ∶ 𝐾𝑛 → 𝐾𝑛−1. Similarly, restriction
of degeneracy maps 𝑠𝑖 ∶ 𝑆𝑃𝑇𝑛 → 𝑆𝑃𝑇𝑛+1 induce degeneracy maps 𝑠𝑖 ∶ 𝐾𝑛 →
𝐾𝑛+1, turning 𝐾∗ = {𝐾𝑛}𝑛≥0 into a simplicial subgroup of 𝑆𝑃𝑇∗.

Theorem 6.6. 𝐾3 ≅ 𝐹[𝑆2]3 and 𝐾4 ≅ 𝐹[𝑆2]4.

Proof. Using the geometrical interpretation of 𝑐0,1;2 (see Figure 2) and degen-
eracy maps 𝑠𝑖, we write the generators of 𝐾3 in terms of the generators of 𝑃𝑇4
as follows:

𝑐1,2;3 = (𝑡2𝑡1𝑡3𝑡2)(𝑡1𝑡2𝑡3)(𝑡1𝑡2𝑡3) =
(
(𝑡1𝑡2)3

)𝑡3𝑡2 (𝑡2𝑡3)3 = 𝑥3𝑥5,

𝑐0,2;3 = (𝑡1𝑡2𝑡3)(𝑡2𝑡1𝑡3𝑡2)(𝑡1𝑡2𝑡3) =
(
(𝑡2𝑡3)3

)𝑡1 ((𝑡1𝑡2)3
)𝑡3 = 𝑥6𝑥2,

𝑐0,1;3 = (𝑡1𝑡2𝑡3)(𝑡1𝑡2𝑡3)(𝑡2𝑡1𝑡3𝑡2) = (𝑡1𝑡2)3
(
(𝑡2𝑡3)3

)𝑡1𝑡2 = 𝑥1𝑥7.
Since 𝑃𝑇4 is a free group of rank 7, it follows that 𝐾3 is a free group of rank
3, and hence 𝐾3 ≅ 𝐹[𝑆2]3. It is known from [15, Section 5] that 𝑆𝑃𝑇4 = 𝑃𝑇5
is free group of rank 31, but [15] does not give any free generating set for 𝑃𝑇5.
However, using [1, Theorem 4], we obtain a generating set for𝑃𝑇5 of cardinality
43. By removing the redundant generators, we obtain the following minimial
generating set for 𝑃𝑇5:

𝑎1 = (𝑡1𝑡2
)3

𝑎2 =
(
(𝑡1𝑡2)3

)𝑡3

𝑎3 =
(
(𝑡1𝑡2)3

)𝑡3𝑡2

𝑎4 =
(
(𝑡1𝑡2)3

)𝑡3𝑡2𝑡1

𝑎5 =
(
(𝑡1𝑡2)3

)𝑡3𝑡2𝑡1𝑡4𝑡3𝑡2

𝑎6 =
(
(𝑡1𝑡2)3

)𝑡3𝑡2𝑡1𝑡4𝑡3

𝑎7 =
(
(𝑡1𝑡2)3

)𝑡3𝑡2𝑡1𝑡4

𝑎8 =
(
(𝑡1𝑡2)3

)𝑡3𝑡2𝑡4𝑡3

𝑎9 =
(
(𝑡1𝑡2)3

)𝑡3𝑡4𝑡3𝑡2

𝑎10 =
(
(𝑡1𝑡2)3

)𝑡3𝑡4

𝑎11 = (𝑡2𝑡3)3

𝑎12 =
(
(𝑡2𝑡3)3

)𝑡1

𝑎13 =
(
(𝑡2𝑡3)3

)𝑡1𝑡2

𝑎14 =
(
(𝑡2𝑡3)3

)𝑡4𝑡3𝑡2𝑡1

𝑎15 =
(
(𝑡2𝑡3)3

)𝑡4𝑡3𝑡2

𝑎16 =
(
(𝑡2𝑡3)3

)𝑡4𝑡3

𝑎17 =
(
(𝑡2𝑡3)3

)𝑡4

𝑎18 =
(
(𝑡2𝑡3)3

)𝑡1𝑡2𝑡4𝑡3𝑡2𝑡1

𝑎19 =
(
(𝑡2𝑡3)3

)𝑡1𝑡2𝑡4𝑡3𝑡2

𝑎20 =
(
(𝑡2𝑡3)3

)𝑡1𝑡2𝑡4𝑡3

𝑎21 =
(
(𝑡2𝑡3)3

)𝑡1𝑡2𝑡4

𝑎22 =
(
(𝑡2𝑡3)3

)𝑡1𝑡4𝑡3𝑡2𝑡1

𝑎23 =
(
(𝑡2𝑡3)3

)𝑡1𝑡4𝑡3𝑡2

𝑎24 =
(
(𝑡2𝑡3)3

)𝑡1𝑡4𝑡3

𝑎25 =
(
(𝑡2𝑡3)3

)𝑡1𝑡4

𝑎26 =
(
(𝑡3𝑡4)3

)

𝑎27 =
(
(𝑡3𝑡4)3

)𝑡2𝑡1𝑡3𝑡2

𝑎28 =
(
(𝑡3𝑡4)3

)𝑡2𝑡1𝑡3

𝑎29 =
(
(𝑡3𝑡4)3

)𝑡2𝑡1

𝑎30 =
(
(𝑡3𝑡4)3

)𝑡2𝑡3

𝑎31 =
(
(𝑡3𝑡4)3

)𝑡2
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By definition, we have

𝐾4 = ⟨𝑠1𝑠0(𝑐0,1;2), 𝑠2𝑠0(𝑐0,1;2), 𝑠3𝑠0(𝑐0,1;2), 𝑠2𝑠1(𝑐0,1;2), 𝑠3𝑠1(𝑐0,1;2), 𝑠3𝑠2(𝑐0,1;2)⟩.

Direct calculation gives

𝑠1(𝑥3𝑥5) = 𝑎8𝑎16𝑎26, 𝑠2(𝑥3𝑥5) = 𝑎23𝑎9𝑎31𝑎17,
𝑠3(𝑥3𝑥5) = 𝑎3𝑎19𝑎11𝑎30, 𝑠2(𝑥6𝑥2) = 𝑎29𝑎25𝑎10,
𝑠3(𝑥6𝑥2) = 𝑎12𝑎28𝑎2𝑎20, 𝑠3(𝑥1𝑥7) = 𝑎1𝑎13𝑎27.

Thus, 𝐾4 is free of rank 6, and hence 𝐾4 ≅ 𝐹[𝑆2]4. □

Problem 6.7. Determine a presentation of 𝐾𝑛 for 𝑛 ≥ 4.

We consider 𝑐0,1;2 as a 2-simplex in the simplicial group 𝑆𝑃𝑇∗. Since

𝑑0(𝑐0,1;2) = 𝑑1(𝑐0,1;2) = 𝑑2(𝑐0,1;2) = 1,

there is a (unique) simplicial map

𝜃 ∶ 𝑆2 → 𝑆𝑃𝑇∗
such that 𝜃(𝜎) = 𝑐0,1;2, where 𝜎 = (0, 1, 2) is the non-degenerate 2-simplex
of the simplicial 2-sphere 𝑆2. By Milnor’s construction, the simplicial map 𝜃
extends uniquely to a simplicial homomorphism

Θ ∶ 𝐹[𝑆2]∗ ⟶𝑆𝑃𝑇∗.

We note that 𝐾∗ = Θ(𝐹[𝑆2]∗) and it is the smallest simplicial subgroup of 𝑆𝑃𝑇∗
containing 𝑐0,1;2. Further, by Proposition 6.6,

Θ𝑛 ∶ 𝐹[𝑆2]𝑛 ⟶𝑆𝑃𝑇𝑛
is injective for 𝑛 ≤ 4. If each Θ𝑛 ∶ 𝐹[𝑆2]𝑛 → 𝑆𝑃𝑇𝑛 is injective, then by (6.2),
we have

𝜋𝑛+1(𝑆3) ≅ 𝑍𝑛(𝐹[𝑆2]∗)∕𝐵𝑛(𝐹[𝑆2]∗) ≅ 𝑍𝑛(𝐾∗)∕𝐵𝑛(𝐾∗) ≅ 𝜋𝑛(𝐾∗).

Thus, ifΘ is injective, thenwe can describe𝜋𝑛+1(𝑆3) as a quotient of a subgroup
of 𝑃𝑇𝑛+1. For instance, the generator of 𝜋3(𝑆3) ≅ ℤ can be represented by the
pure twin (𝑡1𝑡2)3.
It appears that the following statement holds.

Conjecture 6.8. Θ ∶ 𝐹[𝑆2]∗ ⟶𝐾∗ is an isomorphism.
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