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The average genus of a 2-bridge knot is
asymptotically linear

Moshe Cohen and AdamM. Lowrance

Abstract. Experimentalwork suggests that the Seifert genus of a knot grows
linearlywith respect to the crossing number of the knot. In this article, we use
a billiard table model for 2-bridge or rational knots to show that the average
genus of a 2-bridge knot with crossing number 𝑐 asymptotically approaches
𝑐∕4 + 1∕12.
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1. Introduction
The Seifert genus 𝑔(𝐾) of a knot 𝐾 in 𝑆3 is the minimum genus of any ori-

ented surface embedded in 𝑆3 whose boundary is the knot 𝐾. Dunfield et al.
[Dun14] presented experimental data that suggests the Seifert genus of a knot
grows linearly with respect to crossing number. Using a billiard table model
for 2-bridge knots developed by Koseleff and Pecker [KP11b, KP11a], Cohen
[Coh23] gave a lower bound on the average genus of a 2-bridge knot.
In this paper, we compute the average genus 𝑔𝑐 of 2-bridge knots with cross-

ing number 𝑐 and show that 𝑔𝑐 is asymptotically linear with respect to 𝑐. Define
𝒦𝑐 be the set of unoriented 2-bridge knots with 𝑐 crossings, where if a 2-bridge
knot 𝐾 with crossing number 𝑐 is chiral, only one of 𝐾 and its mirror image 𝐾
is in 𝒦𝑐. For example |𝒦3| = 1 and contains one of the right- or left-handed
trefoil. Define the average genus 𝑔𝑐 by

𝑔𝑐 =

∑
𝐾∈𝒦𝑐

𝑔(𝐾)

|𝒦𝑐|
. (1.1)
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Since the genus of a knot and the genus of its mirror image are the same, 𝑔𝑐 is
independent of the choice of each knot or its mirror image as elements in𝒦𝑐.
Theorem 1.1. Let 𝑐 ≥ 3. The average genus 𝑔𝑐 of a 2-bridge knot with crossing
number 𝑐 is

𝑔𝑐 =
𝑐
4 +

1
12 + 𝜀(𝑐),

where

𝜀(𝑐) =

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

2
𝑐−4
2 − 4

12 (2𝑐−3 + 2
𝑐−4
2 )

if 𝑐 ≡ 0mod 4,

1

3 ⋅ 2
𝑐−3
2

if 𝑐 ≡ 1mod 4,

2
𝑐−4
2 + 3𝑐 − 11

12 (2𝑐−3 + 2
𝑐−4
2 − 1)

if 𝑐 ≡ 2mod 4, and

2
𝑐+1
2 + 11 − 3𝑐

12 (2𝑐−3 + 2
𝑐−3
2 + 1)

if 𝑐 ≡ 3mod 4.

Since 𝜀(𝑐) → 0 as 𝑐 → ∞, the average genus 𝑔𝑐 approaches
𝑐
4
+ 1

12
as 𝑐 → ∞.

Suzuki and Tran [ST24] independently proved this formula for 𝑔𝑐. Ray and
Diao [RD23] expressed 𝑔𝑐 using sums of products of certain binomial coeffi-
cients. Baader, Kjuchukova, Lewark, Misev, and Ray [BKLMR19] previously
showed that if 𝑐 is sufficiently large, then 𝑐

4
≤ 𝑔𝑐.

The proof of Theorem 1.1 uses the Chebyshev billiard table model for knot
diagrams of Koseleff and Pecker [KP11b, KP11a] as presented by Cohen and
Krishnan [CK15] and with Even-Zohar [CEZK18]. This model yields an ex-
plicit enumeration of the elements of 𝒦𝑐 as well as an alternating diagram in
the format of Figure 2 for each element of𝒦𝑐. Murasugi [Mur58] and Crowell
[Cro59] proved that the genus of an alternating knot is the genus of the sur-
face obtained by applying Seifert’s algorithm [Sei35] to an alternating diagram
of the knot. The proof of Theorem 1.1 proceeds by applying Seifert’s algorithm
to the alternating diagrams obtained from our explicit enumeration of𝒦𝑐 and
averaging the genera of those surfaces.
This paper is organized as follows. In Section 2, we recall how theChebyshev

billiard table model for 2-bridge knots diagrams can be used to describe the set
𝒦𝑐 of 2-bridge knots. In Section 3, we find recursive formulas that allow us to
count the total number of Seifert circles among all 2-bridge knots with crossing
number 𝑐. Finally in Section 4, we find a closed formula for the number of
Seifert circles among all 2-bridge knots and use that to prove Theorem 1.1.
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2. Background
The average genus of 2-bridge knots with crossing number 𝑐 is the quotient

of the sum of the genera of all 2-bridge knots with crossing number 𝑐 and the
number of 2-bridge knots with crossing number 𝑐. Ernst and Sumners [ES87]
proved formulas for the number |𝒦𝑐| of 2-bridge knots.

Theorem2.1 (Ernst-Sumners [ES87], Theorem5). Thenumber |𝒦𝑐| of 2-bridge
knots with 𝑐 crossings where chiral pairs are not counted separately is given by

|𝒦𝑐| =

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

1
3
(2𝑐−3 + 2

𝑐−4
2 ) for 4 ≤ 𝑐 ≡ 0mod 4,

1
3
(2𝑐−3 + 2

𝑐−3
2 ) for 5 ≤ 𝑐 ≡ 1mod 4,

1
3
(2𝑐−3 + 2

𝑐−4
2 − 1) for 6 ≤ 𝑐 ≡ 2mod 4, and

1
3
(2𝑐−3 + 2

𝑐−3
2 + 1) for 3 ≤ 𝑐 ≡ 3mod 4.

A billiard table diagram of a knot is constructed as follows. Let 𝑎 and 𝑏 be
relatively prime positive integers with 𝑎 < 𝑏, and consider an 𝑎 × 𝑏 grid. Draw
a sequence of line segments along diagonals of the grid as follows. Start at the
bottom left corner of the grid with a line segment that bisects the right angle of
the grid. Extend that line segment until it reaches an outer edge of the grid, and
then start a new segment that is reflected 90◦. Continue in this fashion until a
line segment ends in a corner of the grid. Connecting the beginning of the first
line segment with the end of the last line segment results in a piecewise lin-
ear closed curve in the plane with only double-point self-intersections. If each
such double-point self-intersection is replaced by a crossing, then one obtains
a billiard table diagram of a knot. See Figure 1.

Figure 1. A billiard table projection and a billiard table dia-
gram of a knot on a 3 × 8 grid. The diagram corresponds to the
word + − + + − − +. We do not draw the arc connecting the
ends but understand it to be present.

Billiard table diagrams on a 3×𝑏 grid have bridge number either one or two,
that is, such a knot is either the unknot or a 2-bridge knot. In a 3 × 𝑏 billiard
table diagram, there is one crossing on each vertical grid line except the first and
the last. A string of length 𝑏 − 1 in the symbols {+, −} determines a 2-bridge
knot or the unknot, as follows. A crossing corresponding to a + looks like ,
and a crossing corresponding to a − looks like . Figure 1 shows an example.
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A given 2-bridge knot has infinitely many descriptions as strings of various
lengths in the symbols {+, −}. Cohen, Krishnan, andEven-Zohar’swork [CK15,
CEZK18] lets us describe 2-bridge knots in this manner but with more control
on the number of strings representing a given 2-bridge knot.

Definition 2.2. Define the partially double-counted set 𝑇(𝑐) of 2-bridge words
with crossing number 𝑐 as follows. Each word in 𝑇(𝑐) is a word in the symbols
{+, −}. If 𝑐 is odd, then a word 𝑤 is in 𝑇(𝑐) if and only if it is of the form

(+)𝜀1(−)𝜀2(+)𝜀3(−)𝜀4 … (−)𝜀𝑐−1(+)𝜀𝑐 ,
where 𝜀𝑖 ∈ {1, 2} for 𝑖 ∈ {1, … , 𝑐}, 𝜀1 = 𝜀𝑐 = 1, and the length of the word
𝓁 =

∑𝑐
𝑖=1 𝜀𝑖 ≡ 1 mod 3. Similarly, if 𝑐 is even, then a word 𝑤 is in 𝑇(𝑐) if and

only if it is of the form
(+)𝜀1(−)𝜀2(+)𝜀3(−)𝜀4 … (+)𝜀𝑐−1(−)𝜀𝑐 ,

where 𝜀𝑖 ∈ {1, 2} for 𝑖 ∈ {1, … , 𝑐}, 𝜀1 = 𝜀𝑐 = 1, and the length of the word
𝓁 =

∑𝑐
𝑖=1 𝜀𝑖 ≡ 1mod 3.

The set 𝑇(𝑐) is described as partially double-counted because every 2-bridge
knot is represented by exactly one or two words in 𝑇(𝑐), as described in The-
orem 2.5 below. Although the billiard table diagram associated with 𝑤 has 𝓁
crossings, there is an alternating diagramassociatedwith𝑤 that has 𝑐 crossings,
and hence we use the 𝑇(𝑐) notation.
The reverse rev(𝑤) of aword𝑤 of length𝓁 is awordwhose 𝑖th entry is the (𝓁−

𝑖+1)st entry of𝑤; in otherwords, rev(𝑤) is just𝑤 backwards. The reversemirror
rev(𝑤) of aword𝑤 of length𝓁 is theword of length𝓁where each entry disagrees
with the corresponding entry of rev(𝑤); in other words, rev(𝑤) is obtained from
𝑤 by reversing the order and then changing every + to a − and vice versa.

Definition 2.3. The subset 𝑇𝑝(𝑐) ⊂ 𝑇(𝑐) of words of palindromic type consists
of words 𝑤 ∈ 𝑇(𝑐) such that 𝑤 = rev(𝑤) when 𝑐 is odd and 𝑤 = rev(𝑤) when
𝑐 is even.

Example 2.4. It can easily be seen that 𝑇(3) = {+ − − +} = 𝑇𝑝(3)
and 𝑇(4) = {+ − +−} = 𝑇𝑝(4).

The following theorem says exactly which 2-bridge knots are represented by
two words in 𝑇(𝑐) and which 2-bridge knots are represented by only one word
in 𝑇(𝑐). The theorem is based on work by Schubert [Sch56] and Koseleff and
Pecker [KP11a]. The version of the theoremwe state below comes fromLemma
2.1 and Assumption 2.2 in [Coh23].

Theorem 2.5. Let 𝑐 ≥ 3. Every 2-bridge knot is represented by a word in 𝑇(𝑐). If
a 2-bridge knot 𝐾 is represented by a word 𝑤 of palindromic type, that is, a word
in 𝑇𝑝(𝑐), then 𝑤 is the only word in 𝑇(𝑐) that represents 𝐾. If a 2-bridge knot 𝐾 is
represented by a word 𝑤 that is not in 𝑇𝑝(𝑐), then there are exactly two words in
𝑇(𝑐) that represent𝐾, namely𝑤 and rev(𝑤)when 𝑐 is odd or𝑤 and rev(𝑤)when
𝑐 is even.
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A billiard table diagram associated with a word 𝑤 in 𝑇(𝑐) is not necessarily
alternating; however the billiard table diagram associated with 𝑤 can be trans-
formed into an alternating diagram 𝐷 of the same knot as follows. A run in 𝑤
is a subword of 𝑤 consisting of all the same symbols (either all + or all −) that
is not properly contained in a single-symbol subword of longer length. By con-
struction, if 𝑤 ∈ 𝑇(𝑐), then it is made up of 𝑐 runs all of length one or two. The
run + is replaced by 𝜎1, the run++ is replaced by 𝜎−12 , the run− is replaced by
𝜎−12 and the run −− is replaced by 𝜎1, as summarized by pictures in Table 1.
The left side of the diagram has a strand entering from the bottom left and a

cap on the top left. If the last term is 𝜎1, then the right side of the diagram has a
strand exiting to the bottom right and a cap to the top right, and if the last term
is 𝜎−12 , then the right side of the diagram has a strand exiting to the top right
and a cap on the bottom right. See Figure 2 for an example. Theorem 2.4 and
its proof in [Coh23] explain this correspondence.

Run in billiard table diagram word 𝑤 (+)1 (+)2 (−)1 (−)2

Crossing in alternating diagram 𝐷 𝜎1 𝜎−12 𝜎−12 𝜎1

Table 1. Transforming a billiard table diagram into an alter-
nating diagram, as seen in [Coh23, Table 1].

Figure 2. The billiard table diagramknot corresponding to the
word + − + + − − + has alternating diagram 𝜎1𝜎−22 𝜎21.

Murasugi [Mur58] and Crowell [Cro59] proved that the genus of an alternat-
ing knot 𝐾 is the genus of the Seifert surface obtained from Seifert’s algorithm
on an alternating diagram of 𝐾. Therefore, the average genus 𝑔𝑐 is

𝑔𝑐 =
1
2
(
1 + 𝑐 − 𝑠𝑐

)
, (2.1)
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where 𝑠𝑐 is the average number of Seifert circles in the alternating diagrams of
all 2-bridge knots with crossing number 𝑐. In Section 3, we find recursive for-
mulas for the total number of Seifert circles in the alternating diagrams associ-
ated with words in 𝑇(𝑐) and 𝑇𝑝(𝑐), named 𝑠(𝑐) and 𝑠𝑝(𝑐), respectively. Theorem
2.5 implies that

𝑠𝑐 =
𝑠(𝑐) + 𝑠𝑝(𝑐)
2|𝒦𝑐|

. (2.2)

Seifert’s algorithmuses the orientation of a knot diagram to construct a Seifert
surface. Lemma 3.3 in [Coh23] keeps track of the orientations of the crossings
in the alternating diagram𝐷 associatedwith aword𝑤 in𝑇(𝑐). See also Property
7.1 in [Coh21a].

Lemma 2.6. [Coh23, Lemma 3.3] The following conventions determine the ori-
entation of every crossing in the alternating diagram 𝐷 associated with a word 𝑤
in 𝑇(𝑐).

(1) Any vertical line that intersects 𝐷 away from the crossings intersects the
diagram precisely three times. Two of the three strands intersecting any
such vertical line are locally oriented to the right.

(2) If either a single+ or a single− appears in a position congruent to 1mod-
ulo 3 in 𝑤, then it corresponds to a single crossing in the alternating dia-
gram 𝐷 that is horizontally-oriented.

(3) If either a double ++ or a double −− appears in two positions congruent
to 2 and 3modulo 3 in 𝑤, then they correspond to a single crossing in the
alternating diagram 𝐷 that is horizontally-oriented.

(4) The remaining crossings in 𝐷 are vertically-oriented.
These conventions are summarized in Table 2.

3. Recursive formulas for Seifert circles
In this section, we recursively compute the number of elements in the gen-

eral case 𝑇(𝑐) and the palindromic case 𝑇𝑝(𝑐) and the number of Seifert circles
in the alternating diagrams coming from 𝑇(𝑐) and 𝑇𝑝(𝑐). We split the section
into two subsections that are organized similarly. In the first, we handle 𝑇(𝑐),
and in the second, we handle 𝑇𝑝(𝑐).

3.1. General case. The goal of this subsection is to find a recursive formula
for the total number 𝑠(𝑐) of Seifert circles obtained when Seifert’s algorithm is
applied to the alternating diagrams associated to words in 𝑇(𝑐). Our method is
to modify the last three crossings of the alternating diagrams associated with a
word 𝑤 in 𝑇(𝑐) to obtain an alternating diagram for a new word rep(𝑤), called
the replacement word of 𝑤.
In order to relate the number of Seifert circles before and after the replace-

ment, we want the modifications of the last three crossings to preserve the ori-
entations of the portion of the diagram that remains. Furthermore, wewant the
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Possible
orientation(s)

Position mod 3

Run in 𝑇(𝑐)

1

+

or

2 or 3

+

1

−

or

2 or 3

−

Possible
orientation(s)

Positions mod 3

Run in 𝑇(𝑐)

2-3

++

or

3-1 or 1-2

++

2-3

−−

or

3-1 or 1-2

−−

Table 2. Orientations of crossings in the alternating diagram
associated with a word in 𝑇(𝑐), as determined by Lemma 2.6.

modification to result in a diagram with fewer crossings so that we can recur-
sively count the number of knots and the number of Seifert circles. Additionally
we need to preserve the length condition modulo 3 so that we obtain words in
𝑇(𝑐′) for 𝑐′ < 𝑐.
We motivate our choices of replacements by showing examples with up to

six crossings. Our convention is to enclose the final three runs that are being
replaced and the subword replacing those final three runs with parentheses.
The subwords before the parentheses are unchanged; these further instruct our
decisions for replacements.
Define 𝑡(𝑐) to be the number of elements in the set 𝑇(𝑐).

Example 3.1. We replace the final three runs of each word in 𝑇(5) to obtain a
word in 𝑇(3) or 𝑇(4), as depicted in Figure 3. The words + − −(+ − −+) and
+−−(++−+) in 𝑇(5) are both replaced with+−−(+) in 𝑇(3), nominating the
(perhaps obvious) replacement that deletes a 𝜎21 or a 𝜎

−2
2 . The word + − (+ +

− − +) in 𝑇(5) is replaced with + − (+−) in 𝑇(4), nominating the less-obvious
replacement of 𝜎−12 𝜎21 by 𝜎1𝜎

−1
2 .

In Figure 3, the portion of the diagram to the right of the blue segment is
replaced. The portion being replaced consists of two strands: one that starts
and ends on the blue segment and one that starts on the blue segment and ends
to the right, either at the bottom or top. The replacement preserves the starting
points and orientations of the two different strands being replaced.
This example implies that 𝑡(5) = 𝑡(4) + 2𝑡(3).
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+ − −(+ − −+) + − −(+)

+ − −(+ + −+) + − −(+)

+ − (+ + − − +) + − (+−)

Figure 3. Replacements of the three final runs of words in
𝑇(5) result in words in 𝑇(3) or 𝑇(4), as in Example 3.1. Cross-
ings to the left of the blue segment are unchanged while cross-
ings to the right of the vertical segment are modified.

In the next example, since 𝑐 = 6 is even, the final crossing is determined by
a single − instead of a single +, switching all of the pluses and minuses from
the previous example.

Example 3.2. We replace the final three runs of each word in 𝑇(6) to obtain a
word in 𝑇(4) or 𝑇(5), as depicted in Figure 4.
In the first three words we still have the obvious replacements (− + +−) by

(−) and (− − +−) by (−) like before, as well as the less-obvious replacement
(−−++−) by (−+). Finally the word+−++(−+−) in 𝑇(6) is replaced by the
word+−++(−−+) in 𝑇(5), and the word+−−+(−+−) in 𝑇(6) is replaced
by the word+−−+ (−−+) in 𝑇(5), nominating the less-obvious replacement
of 𝜎−12 𝜎1𝜎−12 by 𝜎21.
This example implies that 𝑡(6) = 𝑡(5) + 2𝑡(4).

We nowprovide proof of concept of these replacements by showing they con-
tinue to work in the next example.

Example 3.3. We replace the final three runs of each word in 𝑇(7) to obtain a
word in 𝑇(5) or 𝑇(6), as depicted in Table 3.
In what is becoming a pattern, we see that 𝑡(7) = 𝑡(6) + 2𝑡(5).
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+ − +(− + +−) + − (+−)

+ − +(− − +−) + − (+−)

+ − − + +(− − + + −) + − − + +(−+)

+ − + + (− + −) + − + + (− − +)

+ − − + (− + −) + − − + (− − +)

Figure 4. Replacements of the three final runs of words in
𝑇(6) result in words in 𝑇(4) or 𝑇(5), as in Example 3.2. Cross-
ings to the left of the blue segment are unchanged while cross-
ings to the right of the vertical segment are modified.

Examples 3.1, 3.2, and 3.3 suggest a general definition for howwe replace the
final strings of a word in 𝑇(𝑐) to obtain words for fewer crossings. Definition 3.4
below formalizes this construction, while Table 4 shows how the replacement
function changes the final few crossings of a diagram.
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Word 𝑤 in 𝑇(7) Replacement word rep(𝑤)
+ − − + + −(+ − −+) + − − + + −(+)
+ − + + − − (+ − −+) + − + + − − (+) 𝑇(5)
+ − − + − − (+ − −+) + − − + − − (+)
+ − − + + −(+ + −+) + − − + + −(+)
+ − + + − − (+ + −+) + − + + − − (+) 𝑇(5)
+ − − + − − (+ + −+) + − − + − − (+)
+ − + − − (+ + − − +) + − + − − (+−)
+ − + + −(+ + − − +) + − + + −(+−)
+ − − + − (+ + − − +) + − − + − (+−) 𝑇(6)

+ − + − (+ − +) + − + − (+ + −)
+ − − + + − − (+ − +) + − − + + − − (+ + −)

Table 3. Replacements of the three final runs of words in 𝑇(7)
result in words in 𝑇(5) or 𝑇(6), as in Example 3.3.

Partition 𝑇(𝑐) into four subsets, as follows. The final run of each of word 𝑤
in 𝑇(𝑐) is fixed by construction; if 𝑐 is odd, then 𝑤 ends in a single +, and if 𝑐 is
even, then 𝑤 ends in a single −.
If 𝑐 is odd, then the final three runs in a word 𝑤 in 𝑇(𝑐)must be exactly one

of the following cases.
(1) The final three runs of 𝑤 are + − +.
(2) The final three runs of 𝑤 are + + − − +.
(3) The final three runs of 𝑤 are + − −+.
(4) The final three runs of 𝑤 are + + −+.

If 𝑐 is even, then interchange + and − to define analogous cases (1) - (4). For
each 𝑐, the four cases partition 𝑇(𝑐). Recall that 𝑡(𝑐) is the number of words in
𝑇(𝑐), and for each 1 ≤ 𝑖 ≤ 4, define 𝑡𝑖(𝑐) to be the number of words in case 𝑖 of
𝑇(𝑐).

Definition 3.4. Define the replacement function rep ∶ 𝑇(𝑐) → 𝑇(𝑐−1)∪𝑇(𝑐−2)
as follows. Suppose 𝑐 is odd, and let 𝑤 ∈ 𝑇(𝑐).

(1) If the final three runs of𝑤 are (+−+), then rep(𝑤) is the word obtained
by replacing the final three runs of 𝑤 with (+ + −). Thus rep(𝑤) ∈
𝑇(𝑐 − 1).

(2) If the final three runs of 𝑤 are (+ + −+), then rep(𝑤) is the word ob-
tained by replacing the final three runs of 𝑤 with (+−). Thus rep(𝑤) ∈
𝑇(𝑐 − 1).

(3) If the final three runs of 𝑤 are (+ − −+), then rep(𝑤) is the word ob-
tained by replacing the final three runs of 𝑤 with (+). Thus rep(𝑤) ∈
𝑇(𝑐 − 2).

(4) If the final three runs of 𝑤 are (+ + −+), then rep(𝑤) is the word ob-
tained by replacing the final three runs of 𝑤 with (+). Thus rep(𝑤) ∈
𝑇(𝑐 − 2).
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If 𝑐 is even, then we define rep(𝑤) in the same way as above where+ and− are
interchanged.

In each of the cases above, the length of𝑤 and rep(𝑤) are congruent modulo
3.

Final
Runs

Alternating
Diagram

+−+

Case 1

Final
Runs

Alternating
Diagram

++−

++−−+

Case 2
+−

+−−+

Case 3
+

++−+

Case 4
+

Table 4. Changes in alternating diagrams induced by the re-
placement function for each case (when 𝑐 is odd).

Recall the final conclusions in Examples 3.1, 3.2, and 3.3 above regarding
𝑡(5), 𝑡(6), and 𝑡(7). In the next lemma, we use the replacement function to
establish bijections between subsets of 𝑇(𝑐) and subsets of 𝑇(𝑐−1) and 𝑇(𝑐−2).

Lemma 3.5. The restriction of the replacement function to each of the four cases
is a bijection onto its image. Therefore

𝑡1(𝑐) = 𝑡2(𝑐 − 1) + 𝑡3(𝑐 − 1), 𝑡2(𝑐) = 𝑡1(𝑐 − 1) + 𝑡4(𝑐 − 1),
𝑡3(𝑐) = 𝑡(𝑐 − 2), and 𝑡4(𝑐) = 𝑡(𝑐 − 2).

Proof. In each of the four cases, the replacement function replaces the final
three runs of a word 𝑤 in 𝑇(𝑐) with some other word 𝑤′ in {+, −} resulting in
the word rep(𝑤). This inverse of this operation replaces the word 𝑤′ with the
final three runs in 𝑤. Since the restriction of rep to each case is invertible, it is
a bijection onto its image.
Suppose 𝑐 is odd. If𝑤 ∈ 𝑇(𝑐) is in case 1, then rep(𝑤) ∈ 𝑇(𝑐−1) has final two

runs++−, and hence belongs to cases 2 or 3. Thus 𝑡1(𝑐) = 𝑡2(𝑐 −1)+ 𝑡3(𝑐 −1).
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If 𝑤 ∈ 𝑇(𝑐) is in case 2, then rep(𝑤) ∈ 𝑇(𝑐 − 1) has final two runs +−, and
hence belongs to cases 1 or 4. Thus 𝑡2(𝑐) = 𝑡1(𝑐 − 1) + 𝑡4(𝑐 − 1). If 𝑤 ∈ 𝑇(𝑐) is
in cases 3 or 4, then rep(𝑤) ∈ 𝑇(𝑐 − 2) has final run +, and hence can belong
to any case. Thus 𝑡3(𝑐) = 𝑡4(𝑐) = 𝑡(𝑐 − 2).
If 𝑐 is even, the above argument can be repeated by interchanging + and −.

□

Examples 3.1, 3.2, and 3.3 show that when 𝑐 = 5, 6, or 7, the relation 𝑡(𝑐) =
𝑡(𝑐−1)+2𝑡(𝑐−2)holds. The Jacobsthal sequenceA001045 [SEI22b] is an integer
sequence satisfying the same recurrence relation
𝐽(𝑛) = 𝐽(𝑛 − 1) + 2𝐽(𝑛 − 2) with initial values 𝐽(0) = 0 and 𝐽(1) = 1. The
closed formula for the 𝑛th Jacobsthal number is 𝐽(𝑛) = 2𝑛−(−1)𝑛

3
. We use the

Jacobsthal sequence to find a formula for the number of words in 𝑇(𝑐).

Proposition 3.6. The number 𝑡(𝑐) = 2𝑐−2−(−1)𝑐

3
is the Jacobsthal number 𝐽(𝑐−2)

and satisfies the recursive formula 𝑡(𝑐) = 𝑡(𝑐 − 1) + 2𝑡(𝑐 − 2) when 𝑐 ≥ 5.

Proof. The base cases of 𝑡(3) = 𝑡(4) = 1 hold by on Example 2.4.
Since the four cases partition 𝑇(𝑐), it follows that 𝑡(𝑐) =

∑4
𝑖=1 𝑡𝑖(𝑐). Lemma

3.5 implies that

𝑡(𝑐) =
4∑

𝑖=1
𝑡𝑖(𝑐)

= 𝑡2(𝑐 − 1) + 𝑡3(𝑐 − 1) + 𝑡1(𝑐 − 1) + 𝑡4(𝑐 − 1) + 2𝑡(𝑐 − 2)
= 𝑡(𝑐 − 1) + 2𝑡(𝑐 − 2).

Since 𝑡(𝑐) satisfies the Jacobsthal recurrence relation and 𝑡(3) = 𝑡(4) = 𝐽(1) =
𝐽(2) = 1, it follows that 𝑡(𝑐) = 𝐽(𝑐 − 2) = 2𝑐−2−(−1)𝑐

3
. □

Wefind additional expressions for two of the quantities in Lemma 3.5. These
expressions will be used in the proof of Theorem 3.8 below where we find a
recursive formula for the the total number of Seifert circles.

Lemma 3.7. For each 𝑐 ≥ 6,
𝑡1(𝑐) = 2𝑡(𝑐 − 3) and 𝑡2(𝑐) = 𝑡(𝑐 − 2).

Proof. We prove both equalities simultaneously by induction on 𝑐. For 𝑐 = 6,
the relevant sets are 𝑇1(6) = {+ − − + + − +−,+ − − + − + −} and 𝑇2(6) =
{+ − + − − + −}. By Example 2.4, we have that 𝑡1(6) = 2𝑡(3) and 𝑡2(6) = 𝑡(4).
For the inductive step, we assume that 𝑡1(𝑐′) = 2𝑡(𝑐′−3) and 𝑡2(𝑐′) = 𝑡(𝑐′−2)

for all 𝑐′ < 𝑐. Lemma 3.5 implies that
𝑡1(𝑐) = 𝑡2(𝑐 − 1) + 𝑡3(𝑐 − 1) = 𝑡2(𝑐 − 1) + 𝑡(𝑐 − 3).

By the inductive hypothesis, 𝑡2(𝑐 − 1) = 𝑡(𝑐 − 3), and thus 𝑡1(𝑐) = 2𝑡(𝑐 − 3).
Lemma 3.5 also implies that

𝑡2(𝑐) = 𝑡1(𝑐 − 1) + 𝑡4(𝑐 − 1) = 𝑡1(𝑐 − 1) + 𝑡(𝑐 − 3).

https://oeis.org/A001045
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By the inductive hypothesis, 𝑡1(𝑐 − 1) = 2𝑡(𝑐 − 4). Therefore, Proposition 3.6
implies

𝑡2(𝑐) = 2𝑡(𝑐 − 4) + 𝑡(𝑐 − 3) = 𝑡(𝑐 − 2),
completing the proof. □

Recall that 𝑠(𝑐) is the total number of Seifert circles coming from 𝑇(𝑐). We
are nearly ready to prove our recursive formula for 𝑠(𝑐). Throughout the proof,
we refer to Table 5 below.

Alternating
Diagram

Seifert
State

Case 1

∆𝑠 = 1

Alternating
Diagram

Seifert
State

Case 2A

∆𝑠 = 1

Case 2B

∆𝑠 = −1

Case 3

∆𝑠 = 1

Case 4

∆𝑠 = 2

Table 5. The pieces of alternating diagrams and Seifert states
corresponding to the cases in the proof of Theorem 3.8. The
quantity ∆𝑠 records the difference between the number of
Seifert circles of 𝑤 and rep(𝑤).

If a word 𝑤 is in case 2, then the change in the number of Seifert circles
between the alternating diagram associated with 𝑤 and rep(𝑤) depends on the
(𝑐 − 3)rd run of 𝑤. If 𝑐 is odd, we define subcases 2A and 2B depending on the
(𝑐 − 3)rd run of 𝑤 as follows.
(2A) The final four runs of 𝑤 are − + + − − +.
(2B) The final four runs of 𝑤 are − − + + − − +.
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If 𝑐 is even, then interchange+ and− to obtain analogous subcases 2A and 2B.
By the same arguments given in the proof of Lemma 3.5, the restriction of

the replacement function to each of these two cases is a bijection onto its image.
Furthermore, by the definition of these cases, we have

𝑡2𝐴(𝑐) = 𝑡1(𝑐 − 1) and 𝑡2𝐴(𝑐) = 𝑡4(𝑐 − 1). (3.1)

Let 𝑠2𝐴(𝑐) and 𝑠2𝐵(𝑐) be the number of Seifert circles coming from cases 2A and
2B, respectively.

Theorem3.8. Let 𝑠(𝑐) be the total number of Seifert circles obtainedwhenSeifert’s
algorithm is applied to the alternating 2-bridge diagrams associated with words
in 𝑇(𝑐). Then 𝑠(𝑐) satisfies the recursion

𝑠(𝑐) = 𝑠(𝑐 − 1) + 2𝑠(𝑐 − 2) + 3𝑡(𝑐 − 2).

Proof. Following the ideas from earlier in this section, we consider the con-
tributions to 𝑠(𝑐) from each of the (sub)cases, calling these 𝑠1(𝑐), 𝑠2𝐴(𝑐), 𝑠2𝐵(𝑐)
𝑠3(𝑐), and 𝑠4(𝑐) so that 𝑠(𝑐) = 𝑠1(𝑐) + 𝑠2𝐴(𝑐) + 𝑠2𝐵(𝑐) + 𝑠3(𝑐) + 𝑠4(𝑐). Refer to
Table 5 for pictures of each of the cases, where the orientations of the crossings
are determined by Lemma 2.6.
For each word 𝑤 ∈ 𝑇(𝑐), we compare the number Seifert circles in the al-

ternating diagrams associated with 𝑤 and the replacement word rep(𝑤). This
comparison can be made by completing the partial Seifert states in Table 5 and
is recorded by ∆𝑠 in Table 5.
In each case, the total number of Seifert circles before replacement is the total

number of Seifert circles after replacement plus the product of the change in the
number of Seifert cirlces ∆𝑠 and the number of words in this case. Lemma 3.5
and Equation (3.1) allow us to count the number of Seifert circles before and
after replacement, and Table 5 records ∆𝑠 in each case, implying the following:

𝑠1(𝑐) = 𝑠2(𝑐 − 1) + 𝑠3(𝑐 − 1) + 𝑡1(𝑐),
𝑠2𝐴(𝑐) = 𝑠1(𝑐 − 1) + 𝑡2𝐴(𝑐),
𝑠2𝐵(𝑐) = 𝑠4(𝑐 − 1) − 𝑡2𝐵(𝑐),
𝑠3(𝑐) = 𝑠(𝑐 − 2), and
𝑠4(𝑐) = 𝑠(𝑐 − 2) + 2𝑡4(𝑐).

Thus Lemma 3.7 implies that

𝑠(𝑐) = 𝑠1(𝑐) + 𝑠2𝐴(𝑐) + 𝑠2𝐵(𝑐) + 𝑠3(𝑐) + 𝑠4(𝑐)
= [𝑠2(𝑐 − 1) + 𝑠3(𝑐 − 1) + 2𝑡(𝑐 − 3)] + [𝑠1(𝑐 − 1) + 2𝑡(𝑐 − 4)]

+ [𝑠4(𝑐 − 1) − 𝑡(𝑐 − 3)] + [𝑠(𝑐 − 2)] + [𝑠(𝑐 − 2) + 2𝑡(𝑐 − 2)]

=
4∑

𝑖=1
𝑠𝑖(𝑐 − 1) + 2𝑠(𝑐 − 2) + 2𝑡(𝑐 − 2) + [𝑡(𝑐 − 3) + 2𝑡(𝑐 − 4)]

= 𝑠(𝑐 − 1) + 2𝑠(𝑐 − 2) + 3𝑡(𝑐 − 2),

completing the proof. □
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3.2. Palindromic case. The goal of this subsection is to find a recursive for-
mula for the total number 𝑠𝑝(𝑐) of Seifert circles obtained when Seifert’s al-
gorithm is applied to the alternating diagrams associated to the words in 𝑇𝑝(𝑐).
Our process is similar to the general case in the previous subsection. We replace
themiddle few runs of aword𝑤 ∈ 𝑇𝑝(𝑐) to obtain the palindromic replacement
word prep(𝑤) in 𝑇𝑝(𝑐 − 2) or 𝑇𝑝(𝑐 − 4). We start with concrete examples for
𝑐 = 7, 8, 9, and 10motivating our choice of replacements. Then we define our
replacements for palindromes and use palindromic replacement to find the re-
cursive formula for 𝑠𝑝(𝑐).
We continue our convention of enclosing the subword being replaced and its

replacement subword in parenthesis. Each replacement below preserves the
length of the word modulo 3 and the orientations of the crossings not being re-
placed induced by Lemma 2.6. As these examples will show, the replacement
rules for palindromicwords look quite different for even and odd crossing num-
bers.

Example 3.9. We replace the middle runs of each word in 𝑇𝑝(7) to obtain a
word in 𝑇𝑝(3) or 𝑇𝑝(5), as shown in Table 6. The words +(− + − + −)+ and
+(− + + − − + +−)+ are both replaced with +(−−)+ in 𝑇𝑝(3), and the word
+ − −(+ − −+) − −+ is replaced by + − −(+) − −+ in 𝑇𝑝(5). This example
implies that 𝑡𝑝(7) = 𝑡𝑝(5) + 2𝑡𝑝(3).

Word 𝑤 in 𝑇𝑝(7) Replacement word prep(𝑤)
+(− + − + −)+ +(−−)+ 𝑇𝑝(3)

+(− + + − − + +−)+ +(−−)+ 𝑇𝑝(3)
+ − −(+ − −+) − −+ + − −(+) − −+ 𝑇𝑝(5)

Table 6. Replacements of the middle runs of words in 𝑇𝑝(7)
result in words in 𝑇𝑝(3) or 𝑇𝑝(5), as in Example 3.9.

Example 3.10. We replace the middle runs of each word in 𝑇𝑝(8) to obtain a
word in 𝑇𝑝(4) or 𝑇𝑝(6), as shown in Table 7. The words +(− + − − + + −+)−
and +(− + + − + − −+)− are both replaced with +(−+)− in 𝑇𝑝(4), and the
word+−−(+−+−)++− is replaced with+−−(++−−)++− in 𝑇𝑝(6). This
example implies that 𝑡𝑝(8) = 𝑡𝑝(6) + 2𝑡𝑝(4).

Word 𝑤 in 𝑇𝑝(8) Replacement word prep(𝑤)
+(− + − − + + −+)− +(−+)− 𝑇𝑝(4)
+(− + + − + − −+)− +(−+)− 𝑇𝑝(4)
+ − −(+ − +−) + +− + − −(+ + −−) + +− 𝑇𝑝(6)

Table 7. Replacements of the middle runs of words in 𝑇𝑝(8)
result in words in 𝑇𝑝(4) or 𝑇𝑝(6), as in Example 3.10.
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Example 3.11. We replace the middle runs of each word in 𝑇𝑝(9) to obtain a
word in 𝑇𝑝(5) or 𝑇𝑝(7), as shown in Table 8. This example implies that 𝑡𝑝(9) =
𝑡𝑝(7) + 2𝑡𝑝(5).

Word 𝑤 in 𝑇𝑝(9) Replacement word prep(𝑤)
+ − −(+ + − − + + − − ++) − −+ + − −(+) − −+ 𝑇𝑝(5)

+ − −(+ + − + − + +) − −+ + − −(+) − −+ 𝑇𝑝(5)
+ − +(− + +−) + −+ + − +(−) + −+

𝑇𝑝(7)+ − + + (− − + − −) + + − + + − + + (−−) + + − +
+ − − + (− − + − −) + − − + + − − + (−−) + − − +
Table 8. Replacements of the middle runs of words in 𝑇𝑝(9)
result in words in 𝑇𝑝(5) or 𝑇𝑝(7), as in Example 3.11.

Example 3.12. We replace the middle runs of each word in 𝑇𝑝(10) to obtain a
word in 𝑇𝑝(6) or 𝑇𝑝(8), as shown in Table 9. This example implies that 𝑡𝑝(10) =
𝑡𝑝(8) + 2𝑡𝑝(6).

Word 𝑤 in 𝑇𝑝(10) Replacement word prep(𝑤)
+ − −(+ + − + + − − + −−) + +− + − −(+ + −−) + +− 𝑇𝑝(6)
+ − −(+ + − − + − + + −−) + +− + − −(+ + −−) + +− 𝑇𝑝(6)

+ − +(− + −+) − +− + − +(− − ++) − +−
𝑇𝑝(8)+ − + + (− − + + − − ++) − − + − + − + + (−+) − − + −

+ − − + (− − + + − − ++) − + + − + − − + (−+) − + + −
Table 9. Replacements of the middle runs of words in 𝑇𝑝(10)
result in words in 𝑇𝑝(6) or 𝑇𝑝(8), as in Example 3.12.

In the previous subsection, we partitioned the set𝑇(𝑐) into four cases in order
to find a recursive formula for 𝑡(𝑐) in Proposition 3.6. We further partitioned
into subcases in order to describe the change in the number of Seifert circles
when performing replacements in Theorem 3.8. For the current palindromic
case, we define all the cases and subcases at once. We keep the language of
subcases in analogy to the general case and because the behavior of the subcases
are analogous when 𝑐 is odd or even.
When 𝑐 = 2𝑖 is even, partition 𝑇𝑝(𝑐) into six subsets, as follows. Since 𝑐

is even, a word 𝑤 is in 𝑇𝑝(𝑐) if 𝑤 = rev(𝑤). Therefore the (𝑖 + 1 − 𝑘)th and
(𝑖 +𝑘)th runs must have the same length but be opposite symbols for each 𝑘. If
𝑤 ∈ 𝑇𝑝(𝑐) and 𝑐 ≡ 0mod 4, the middle four or six runs of𝑤, that is, the (𝑖−1)st
through (𝑖 + 2)nd runs or the (𝑖 − 2)nd through (𝑖 + 3)rd runs, respectively, of
𝑤 are exactly one of the following six cases.
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(1𝑝𝑒) The middle four runs of 𝑤 are + − +−.
(2𝑝𝑒) The middle four runs of 𝑤 are + + − − + + −−.

(3𝐴𝑝𝑒) The middle six runs of 𝑤 are − + − − + + −+.
(3𝐵𝑝𝑒) The middle six runs of 𝑤 are − − + − − + + − ++.
(4𝐴𝑝𝑒) The middle six runs of 𝑤 are − + + − + − −+.
(4𝐵𝑝𝑒) The middle six runs of 𝑤 are − − + + − + − − ++.
If 𝑐 ≡ 2mod 4, then interchange+ and− to define analogous cases 1𝑝𝑒 through
4𝐵𝑝𝑒. We say that a word is in case 3𝑝𝑒 to mean it is in case 3𝐴𝑝𝑒 or 3𝐵𝑝𝑒 and
similarly for case 4𝑝𝑒.
When 𝑐 = 2𝑖 + 1 is odd, partition 𝑇𝑝(𝑐) into six subsets, as follows. Since 𝑐 is

odd, a word 𝑤 is in 𝑇𝑝(𝑐) if it is a palindrome, that is, if 𝑤 = rev(𝑤). Therefore,
for each positive 𝑘, the (𝑖 − 𝑘)th run and the (𝑖 + 𝑘)th run of 𝑤 are the same.
We partition 𝑇𝑝(𝑐) according to the middle three or middle five runs of a word
𝑤, that is, according to the (𝑖 − 1)st through the (𝑖 + 1)st runs or the (𝑖 − 2)nd
through (𝑖 + 2)nd runs respectively. If𝑤 ∈ 𝑇𝑝(𝑐) and 𝑐 ≡ 1mod 4, then middle
three or five runs of 𝑤 are exactly one of the following six cases.
(1𝑝𝑜) The middle three runs of 𝑤 are − + +−.
(2𝑝𝑜) The middle three runs of 𝑤 are − − + − −.

(3A𝑝𝑜) The middle five runs of 𝑤 are + − + − +.
(3B𝑝𝑜) The middle five runs of 𝑤 are + + − + − + +.
(4A𝑝𝑜) The middle five runs of 𝑤 are + − − + + − −+.
(4B𝑝𝑜) The middle five runs of 𝑤 are + + − − + + − − ++.
If 𝑐 ≡ 3mod 4, then interchange+ and− to define analogous cases 1𝑝𝑜 through
4𝐵𝑝𝑜. We say that a word is in case 3𝑝𝑜 to mean it is in case 3𝐴𝑝𝑜 or 3𝐵𝑝𝑜 and
similarly for case 4𝑝𝑜.

Definition 3.13. As in Definition 3.4, we define the palindromic replacement
function prep ∶ 𝑇𝑝(𝑐) → 𝑇𝑝(𝑐 − 2) ∪ 𝑇𝑝(𝑐 − 4) as follows. Suppose 𝑐 ≡ 0mod 4
and 𝑤 ∈ 𝑇𝑝(𝑐).
(1𝑝𝑒) If the middle four runs of 𝑤 are (+ − +−), then prep(𝑤) is the word

obtained by replacing the middle four runs of 𝑤 with (+ + −−). Thus
prep(𝑤) ∈ 𝑇𝑝(𝑐 − 2).

(2𝑝𝑒) If the middle four runs of 𝑤 are (+ + −−++−−), then prep(𝑤) is the
word obtained by replacing the middle four runs of 𝑤 with (+−). Thus
prep(𝑤) ∈ 𝑇𝑝(𝑐 − 2).

(3𝐴𝑝𝑒) If the middle six runs of 𝑤 are (− + − − + + −+), then prep(𝑤) is the
word obtained by replacing the middle six runs of 𝑤 with (−+). Thus
prep(𝑤) ∈ 𝑇𝑝(𝑐 − 4).

(3𝐵𝑝𝑒) If the middle six runs of 𝑤 are (− − + − − + + − ++), then prep(𝑤) is
the word obtained by replacing the middle six runs of𝑤 with (−−++).
Thus prep(𝑤) ∈ 𝑇𝑝(𝑐 − 4).

(4𝐴𝑝𝑒) If the middle six runs of 𝑤 are (− + + − + − −+), then prep(𝑤) is the
word obtained by replacing the middle six runs of 𝑤 with (−+). Thus
prep(𝑤) ∈ 𝑇𝑝(𝑐 − 4).
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(4𝐵𝑝𝑒) If the middle six runs of 𝑤 are (− − + + − + − − ++), then prep(𝑤) is
the word obtained by replacing the middle six runs of𝑤 with (−−++).
Thus prep(𝑤) ∈ 𝑇𝑝(𝑐 − 4).

If 𝑐 ≡ 2mod 4, then we define prep(𝑤) in the same way as above, but where +
and − are interchanged.
Suppose 𝑐 ≡ 1mod 4 and 𝑤 ∈ 𝑇𝑝(𝑐).
(1𝑝𝑜) If themiddle three runs of𝑤 are (−++−), then prep(𝑤) is the word ob-

tained by replacing themiddle three runs of𝑤with (−). Thusprep(𝑤) ∈
𝑇𝑝(𝑐 − 2).

(2𝑝𝑜) If the middle three runs of 𝑤 are (− − + − −), then prep(𝑤) is the
word obtained by replacing themiddle three runs of𝑤with (−−). Thus
prep(𝑤) ∈ 𝑇𝑝(𝑐 − 2).

(3A𝑝𝑜) If themiddle five runs of𝑤 are (+−+−+), then prep(𝑤) is the word ob-
tained by replacing themiddle five runs of𝑤with (++). Thusprep(𝑤) ∈
𝑇𝑝(𝑐 − 4).

(3B𝑝𝑜) If the middle five runs of 𝑤 are (+ + − + − + +), then prep(𝑤) is the
word obtained by replacing the middle five runs of 𝑤 with (+). Thus
prep(𝑤) ∈ 𝑇𝑝(𝑐 − 4).

(4A𝑝𝑜) If the middle five runs of 𝑤 are (+ − − + + − −+), then prep(𝑤) is the
word obtained by replacing the middle five runs of 𝑤 by (++). Thus
prep(𝑤) ∈ 𝑇𝑝(𝑐 − 4).

(4B𝑝𝑜) If the middle five runs of 𝑤 are (+ + −−++−−++), then prep(𝑤) is
the word obtained by replacing the middle five runs of 𝑤 by (+). Thus
prep(𝑤) ∈ 𝑇𝑝(𝑐 − 4).

If 𝑐 ≡ 3mod 4, then we define prep(𝑤) in the same way as above, but where +
and − are interchanged.

See Tables 10 and 11 for figures depicting how palindromic replacement
changes the alternating diagram and the Seifert states associated to a palin-
dromic word.
Recall that 𝑡𝑝(𝑐) is the number of elements in 𝑇𝑝(𝑐), and define 𝑡𝑝𝑗(𝑐) to be

the number of words in case 𝑗𝑝𝑒 if 𝑐 is even and the number of words in case
𝑗𝑝𝑜 if 𝑐 is odd where 𝑗 ∈ {1, 2, 3𝐴, 3𝐵, 4𝐴, 4𝐵}.

Lemma 3.14. The restriction of the palindromic replacement function to each
case is a bijection onto its image. Moreover, if 𝑐 ≥ 7, then

𝑡𝑝1(𝑐) = 𝑡𝑝2(𝑐 − 2) + 𝑡𝑝3(𝑐 − 2), 𝑡𝑝2(𝑐) = 𝑡𝑝1(𝑐 − 2) + 𝑡𝑝4(𝑐 − 2),
𝑡𝑝3𝐴(𝑐) = 𝑡𝑝1(𝑐 − 4) + 𝑡𝑝4(𝑐 − 4), 𝑡𝑝3𝐵(𝑐) = 𝑡𝑝2(𝑐 − 4) + 𝑡𝑝3(𝑐 − 4),
𝑡𝑝4𝐴(𝑐) = 𝑡𝑝1(𝑐 − 4) + 𝑡𝑝4(𝑐 − 4), and 𝑡𝑝4𝐵(𝑐) = 𝑡𝑝2(𝑐 − 4) + 𝑡𝑝3(𝑐 − 4).

Proof. The palindromic replacement function replaces the middle few runs of
a word 𝑤 with another word 𝑤′ in {+, −}, resulting in the word prep(𝑤). The
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𝑅

𝑅

Case 1𝑝𝑒

∆𝑠 = 0

𝑅

𝑅

𝑅

𝑅

Case 2𝑝𝑒

∆𝑠 = 0

𝑅

𝑅

𝑅

𝑅

Case 3𝐴𝑝𝑒

∆𝑠 = 2

𝑅

𝑅

𝑅

𝑅

Case 3𝐵𝑝𝑒

∆𝑠 = 4

𝑅

𝑅

𝑅

𝑅

Case 4𝐴𝑝𝑒

∆𝑠 = 4

𝑅

𝑅

𝑅

𝑅

Case 4𝐵𝑝𝑒

∆𝑠 = 2

𝑅

𝑅

Table 10. Alternating diagrams and Seifert states correspond-
ing to the 𝑐 ≡ 0 mod 4 case in the proof of Theorem 3.16.
The quantity ∆𝑠 records the difference between the number of
Seifert circles of 𝑤 and prep(𝑤).
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𝑅 𝑅
Case 1𝑝𝑜

∆𝑠 = 0

𝑅 𝑅

𝑅 𝑅
Case 2𝑝𝑜

∆𝑠 = 0

𝑅 𝑅

𝑅 𝑅
Case 3𝐴𝑝𝑜

∆𝑠 = 2

𝑅 𝑅

𝑅 𝑅
Case 3𝐵𝑝𝑜

∆𝑠 = 4

𝑅 𝑅

𝑅 𝑅
Case 4𝐴𝑝𝑜

∆𝑠 = 4

𝑅 𝑅

𝑅 𝑅
Case 4𝐵𝑝𝑜

∆𝑠 = 2

𝑅 𝑅

Table 11. Alternating diagrams and Seifert states correspond-
ing to the 𝑐 ≡ 1 mod 4 case in the proof of Theorem 3.16.
The quantity ∆𝑠 records the difference between the number of
Seifert circles of 𝑤 and prep(𝑤).
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inverse operation replaces𝑤′ with the appropriate middle few runs of𝑤. Since
the restriction of prep to each case is invertible, it is a bijection onto its image.
Suppose 𝑐 ≡ 0 mod 4. If 𝑤 ∈ 𝑇𝑝(𝑐) is in case 1𝑝𝑒, then prep(𝑤) ∈ 𝑇𝑝(𝑐 −

2) has middle two runs + + −−, and hence belongs to case 2𝑝𝑒 or 3𝑝𝑒. Thus
𝑡𝑝1(𝑐) = 𝑡𝑝2(𝑐 − 2) + 𝑡𝑝3(𝑐 − 2). If 𝑤 ∈ 𝑇𝑝(𝑐) is in case 2𝑝𝑒, then prep(𝑤) ∈
𝑇𝑝(𝑐 − 2) has middle two runs +−, and hence belongs to case 1𝑝𝑒 or 4𝑝𝑒. Thus
𝑡𝑝2(𝑐) = 𝑡𝑝1(𝑐 − 2) + 𝑡𝑝4(𝑐 − 2). If 𝑤 ∈ 𝑇𝑝(𝑐) is in case 3𝐴𝑝𝑒 or 4𝐴𝑝𝑒, then
prep(𝑤) ∈ 𝑇𝑝(𝑐 − 4) has middle two runs −+, and hence belongs to case 1𝑝𝑒 or
4𝑝𝑒. Thus 𝑡𝑝3𝐴(𝑐) = 𝑡𝑝4𝐴(𝑐) = 𝑡𝑝1(𝑐 − 4) + 𝑡𝑝4(𝑐 − 4). If 𝑤 ∈ 𝑇𝑝(𝑐) is in case
3𝐵𝑝𝑒 or 4𝐵𝑝𝑒, then prep(𝑤) ∈ 𝑇𝑝(𝑐−4) hasmiddle two runs−−++, and hence
belongs to case 2𝑝𝑒 or 3𝑝𝑒. Thus 𝑡𝑝3𝐵(𝑐) = 𝑡𝑝4𝐵(𝑐) = 𝑡𝑝2(𝑐 − 4) + 𝑡𝑝4(𝑐 − 4).
If 𝑐 ≡ 2 mod 4, the argument in this paragraph can be repeated with + and −
interchanged.
Suppose 𝑐 ≡ 1mod 4. If𝑤 ∈ 𝑇𝑝(𝑐) is in case 1𝑝𝑜, then prep(𝑤) in𝑇𝑝(𝑐−2)has

middle run −, and hence belongs to case 2𝑝𝑜, or 3𝑝𝑜. Thus 𝑡𝑝1(𝑐) = 𝑡𝑝2(𝑐 − 2) +
𝑡𝑝3(𝑐 − 2). If 𝑤 ∈ 𝑇𝑝(𝑐) is in case 2𝑝𝑜, then prep(𝑤) ∈ 𝑇𝑝(𝑐 − 2) has middle run
−−, and hence belongs to case 1𝑝𝑜 or 4𝑝𝑜. Thus 𝑡𝑝2(𝑐) = 𝑡𝑝1(𝑐 − 2) + 𝑡𝑝4(𝑐 − 2).
If 𝑤 ∈ 𝑇𝑝(𝑐) is in case 3𝐴𝑝𝑜 or 4𝐴𝑝𝑜, then prep(𝑤) ∈ 𝑇𝑝(𝑐 − 4) has middle run
++, and hence belongs to case 1𝑝𝑜 or 4𝑝𝑜. Thus 𝑡𝑝3𝐴(𝑐) = 𝑡𝑝4𝐴(𝑐) = 𝑡𝑝1(𝑐−4)+
𝑡𝑝4(𝑐 − 4). If 𝑤 ∈ 𝑇𝑝(𝑐) is in case 3𝐵𝑝𝑜 or 4𝐵𝑝𝑜, then prep(2) ∈ 𝑇𝑝(𝑐 − 4) has
middle run +, and hence belongs to case 2𝑝𝑜 or 3𝑝𝑜. Thus 𝑡𝑝3𝐵(𝑐) = 𝑡𝑝4𝐵(𝑐) =
𝑡𝑝2(𝑐 − 4) + 𝑡𝑝3(𝑐 − 4). If 𝑐 ≡ 3 mod 4, the argument in this paragraph can be
repeated with + and − interchanged. □

Lemma 3.14 implies the following proposition giving recursive and closed
formulas for the number 𝑡𝑝(𝑐) of words in 𝑇𝑝(𝑐). When restricting parity, the
recursive formula for 𝑡𝑝(𝑐) follows a similar pattern as the recursion 𝑡(𝑐) = 𝑡(𝑐−
1) + 2𝑡(𝑐 − 2).

Proposition 3.15. If 𝑐 ≥ 7, the number 𝑡𝑝(𝑐) of words of palindromic type in
𝑇𝑝(𝑐) satisfies the recursion 𝑡𝑝(𝑐) = 𝑡𝑝(𝑐 − 2) + 2𝑡𝑝(𝑐 − 4). Moreover,

𝑡𝑝(𝑐) =
⎧

⎨
⎩

𝐽
( 𝑐−2

2

)
= 2(𝑐−2)∕2−(−1)(𝑐−2)∕2

3
if 𝑐 is even and

𝐽
( 𝑐−1

2

)
= 2(𝑐−1)∕2−(−1)(𝑐−1)∕2

3
if 𝑐 is odd,

where 𝐽(𝑛) is the 𝑛th Jacobsthal number.

Proof. Examples 3.9 and 3.10 show that 𝑡𝑝(3) = 𝑡𝑝(4) = 𝑡𝑝(5) = 𝑡𝑝(6) = 1.
Lemma 3.14 implies that

𝑡𝑝3(𝑐) = 𝑡𝑝3𝐴(𝑐) + 𝑡𝑝3𝐵(𝑐) =
4∑

𝑗=1
𝑡𝑝𝑗(𝑐 − 4) = 𝑡𝑝(𝑐 − 4)



1050 MOSHE COHEN AND ADAMM. LOWRANCE

and similarly that

𝑡𝑝4(𝑐) = 𝑡𝑝4𝐴(𝑐) + 𝑡𝑝4𝐵(𝑐) =
4∑

𝑗=1
𝑡𝑝𝑗(𝑐 − 4) = 𝑡𝑝(𝑐 − 4).

Therefore

𝑡𝑝(𝑐) =
4∑

𝑗=1
𝑡𝑝𝑗(𝑐)

= (𝑡𝑝2(𝑐 − 2) + 𝑡𝑝3(𝑐 − 2)) + (𝑡𝑝1(𝑐 − 2) + 𝑡𝑝4(𝑐 − 2)) + 2𝑡𝑝(𝑐 − 4)
= 𝑡𝑝(𝑐 − 2) + 2𝑡𝑝(𝑐 − 4).

When 𝑐 is even, the terms 𝑡𝑝(2𝑖 + 2) form the Jacobsthal sequence, and when
𝑐 is odd, the terms 𝑡𝑝(2𝑖 + 1) form the Jacobsthal sequence. Hence, the result
follows. □

We end this section by finding a recursive formula for 𝑠𝑝(𝑐), the total number
of Seifert circles from 𝑇𝑝(𝑐).

Theorem 3.16. Let 𝑠𝑝(𝑐) be the total number of Seifert circles over all 2-bridge
knots of palindromic type with crossing number 𝑐 for all knots appearing in𝑇𝑝(𝑐).
Then 𝑠𝑝(𝑐) satisfies the recursion

𝑠𝑝(𝑐) = 𝑠𝑝(𝑐 − 2) + 2𝑠𝑝(𝑐 − 4) + 6𝑡𝑝(𝑐 − 4).

Proof. For each word 𝑤 ∈ 𝑇𝑝(𝑐), we compare the number of Seifert circles
in the alternating diagrams associated with 𝑤 and prep(𝑤). This comparison
can be made by examining the Seifert states in Tables 10 and 11 depending on
whether 𝑐 is odd or even.
In each case, the total number of Seifert circles before replacement is the total

number of Seifert circles after replacement plus the product of the change in the
number of Seifert cirlces ∆𝑠 and the number of words in this case. Lemma 3.14
allows us to count the number of Seifert circles before and after replacement.
Table 10 records ∆𝑠 when 𝑐 ≡ 0 mod 4, and the case where 𝑐 ≡ 2 mod 4 is
analogous. Table 11 records ∆𝑠 when 𝑐 ≡ 1 mod 4, and the case where 𝑐 ≡ 3
mod 4 is analogous. Since ∆𝑠 is the same for each corresponding even and odd
case, we conclude the following:

𝑠𝑝1(𝑐) = 𝑠𝑝2(𝑐 − 2) + 𝑠𝑝3(𝑐 − 2),
𝑠𝑝2(𝑐) = 𝑠𝑝1(𝑐 − 2) + 𝑠𝑝4(𝑐 − 2),
𝑠𝑝3𝐴(𝑐) = 𝑠𝑝1(𝑐 − 4) + 𝑠𝑝4(𝑐 − 4) + 2𝑡𝑝3𝐴(𝑐),
𝑠𝑝3𝐵(𝑐) = 𝑠𝑝2(𝑐 − 4) + 𝑠𝑝3(𝑐 − 4) + 4𝑡𝑝3𝐵(𝑐),
𝑠𝑝4𝐴(𝑐) = 𝑠𝑝1(𝑐 − 4) + 𝑠𝑝4(𝑐 − 4) + 4𝑡𝑝4𝐴(𝑐), and
𝑠𝑝4𝐵(𝑐) = 𝑠𝑝2(𝑐 − 4) + 𝑠𝑝3(𝑐 − 4) + 2𝑡𝑝4𝐵(𝑐).

Lemma 3.14 implies that
𝑠𝑝3(𝑐) + 𝑠𝑝4(𝑐) = 𝑠𝑝3𝐴(𝑐) + 𝑠𝑝3𝐵(𝑐) + 𝑠𝑝4𝐴(𝑐) + 𝑠𝑝4𝐵(𝑐)
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= 2
4∑

𝑗=1
𝑠𝑝𝑗(𝑐 − 4) + 6

4∑

𝑗=1
𝑡𝑝𝑗(𝑐 − 4)

= 2𝑠𝑝(𝑐 − 4) + 6𝑡𝑝(𝑐 − 4).

Therefore

𝑠𝑝(𝑐) =
4∑

𝑗=1
𝑠𝑝𝑗(𝑐) = 𝑠𝑝(𝑐 − 2) + 2𝑠𝑝(𝑐 − 4) + 6𝑡𝑝(𝑐 − 4),

as desired. □

4. Seifert circles and average genus
In Section 3, we find recursive formulas for the total number of Seifert circles

𝑠(𝑐) and 𝑠𝑝(𝑐) coming from the alternating diagrams associated to words in 𝑇(𝑐)
and 𝑇𝑝(𝑐), respectively. In this section, we find closed formulas for 𝑠(𝑐) and
𝑠𝑝(𝑐), and then use those formulas to prove Theorem 1.1.
The total number 𝑠(𝑐) of Seifert circles in the alternating diagrams coming

from words in 𝑇(𝑐) is given by the following theorem.

Theorem 4.1. Let 𝑐 ≥ 3. The number 𝑠(𝑐) of Seifert circles in the alternating
diagrams with crossing number 𝑐 coming from words in 𝑇(𝑐) can be expressed as

𝑠(𝑐) =
(3𝑐 + 5)2𝑐−3 + (−1)𝑐(5 − 3𝑐)

9 .

Proof. Recall that 𝑠(𝑐) satisfies the recurrence relation 𝑠(𝑐) = 𝑠(𝑐 − 1) + 2𝑠(𝑐 −
2) + 3𝑡(𝑐 − 2) with initial conditions 𝑠(3) = 2 and 𝑠(4) = 3 and that 3𝑡(𝑐 − 2) =
2𝑐−4 − (−1)𝑐−4.
Proceed by induction. The base cases of 𝑠(3) = 2 and 𝑠(4) = 3 can be shown

by direct computation. The recurrence relation is satisfied because

𝑠(𝑐 − 1) + 2𝑠(𝑐 − 2) + 3𝑡(𝑐 − 2)

=
[3(𝑐 − 1) + 5]2(𝑐−1)−3 + (−1)𝑐−1[5 − 3(𝑐 − 1)]

9

+ 2 (
[3(𝑐 − 2) + 5]2(𝑐−2)−3 + (−1)𝑐−2[5 − 3(𝑐 − 2)]

9 ) + 2𝑐−4 − (−1)𝑐−4

=
(3𝑐 + 2)2𝑐−4 + (−1)𝑐(3𝑐 − 8)

9 +
(3𝑐 − 1)2𝑐−4 + (−1)𝑐(22 − 6𝑐)

9

+
9 ⋅ 2𝑐−4 − 9(−1)𝑐

9

=
(6𝑐 + 10)2𝑐−4 + (−1)𝑐[(3𝑐 − 8) + (22 − 6𝑐) − 9]

9

=
(3𝑐 + 5)2𝑐−3 + (−1)𝑐(5 − 3𝑐)

9 .

□
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The total number 𝑠𝑝(𝑐) of Seifert circles in the alternating diagrams coming
from words of palindromic type in 𝑇𝑝(𝑐) is given by the following theorem.

Theorem 4.2. Let 𝑐 ≥ 3. The number 𝑠𝑝(𝑐) of Seifert circles in the alternating
diagrams coming from words of palindromic type in 𝑇𝑝(𝑐) can be expressed as

𝑠𝑝(𝑐) =
⎧

⎨
⎩

(3𝑐 + 1)2(𝑐−3)∕2 + (−1)(𝑐−1)∕2(1 − 3𝑐)
9 if 𝑐 is odd,

(3𝑐 + 4)2(𝑐−4)∕2 + (−1)(𝑐−2)∕2(1 − 3𝑐)
9 if 𝑐 is even.

Proof. Recall that 𝑠𝑝(𝑐) satisfies the recurrence relation 𝑠𝑝(𝑐) = 𝑠𝑝(𝑐 − 2) +
2𝑠𝑝(𝑐 − 4) + 6𝑡𝑝(𝑐 − 4) with initial conditions 𝑠𝑝(3) = 2, 𝑠𝑝(4) = 3, 𝑠𝑝(5) = 2,
and 𝑠𝑝(6) = 3 .
Proceed by induction. One may verify the initial conditions by direct com-

putation. Since the recursion relation for 𝑠𝑝(𝑐) either involves only odd indexed
terms or only even indexed terms, we handle each case separately. Suppose 𝑐 is
odd. Then Proposition 3.15 implies that 𝑡𝑝(𝑐 − 4) = 𝐽( 𝑐−5

2
) = 2(𝑐−5)∕2−(−1)(𝑐−5)∕2)

3
.

Thus
𝑠𝑝(𝑐 − 2) + 2𝑠𝑝(𝑐 − 4) + 6𝑡𝑝(𝑐 − 4)

=
(3(𝑐 − 2) + 1)2((𝑐−2)−3)∕2 + (−1)((𝑐−2)−1)∕2(1 − 3(𝑐 − 2))

9

+ 2 (
(3(𝑐 − 4) + 1)2((𝑐−4)−3)∕2 + (−1)((𝑐−4)−1)∕2(1 − 3(𝑐 − 4))

9 )

+ 6 (
2(𝑐−5)∕2 − (−1)(𝑐−5)∕2

3 )

=
(3𝑐 − 5)2(𝑐−5)∕2 + (−1)(𝑐−3)∕2(7 − 3𝑐)

9

+
(3𝑐 − 11)2(𝑐−5)∕2 + (−1)(𝑐−5)∕2(26 − 6𝑐)

9

+
18 ⋅ 2(𝑐−5)∕2 − (−1)(𝑐−5)∕2 ⋅ 18

9

=
(6𝑐 + 2)2(𝑐−5)∕2 + (−1)(𝑐−1)∕2((3𝑐 − 7) + (26 − 6𝑐) − 18)

9

=
(3𝑐 + 1)2(𝑐−3)∕2 + (−1)(𝑐−1)∕2(1 − 3𝑐)

9 .

Suppose 𝑐 is even. Then Proposition 3.15 implies 𝑡𝑝(𝑐 − 4) = 𝐽( 𝑐−6
2
) =

2(𝑐−6)∕2−(−1)(𝑐−6)∕2

3
. Thus

𝑠𝑝(𝑐 − 2) + 2𝑠𝑝(𝑐 − 4) + 6𝑡𝑝(𝑐 − 4)

=
(3(𝑐 − 2) + 4)2((𝑐−2)−4)∕2 + (−1)((𝑐−2)−2)∕2(1 − 3(𝑐 − 2))

9
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+ 2(
(3(𝑐 − 4) + 4)2((𝑐−4)−4)∕2 + (−1)((𝑐−4)−2)∕2(1 − 3(𝑐 − 4))

9 )

+ 6 (
2(𝑐−6)∕2 − (−1)(𝑐−6)∕2

3 )

=
(3𝑐 − 2)2(𝑐−6)∕2 + (−1)(𝑐−4)∕2(7 − 3𝑐)

9

+
(3𝑐 − 8)2(𝑐−6)∕2 + (−1)(𝑐−6)∕2(26 − 6𝑐)

9

+
18 ⋅ 2(𝑐−6)∕2 − (−1)(𝑐−6)∕2 ⋅ 18

9

=
(6𝑐 + 8)2(𝑐−6)∕2 + (−1)(𝑐−2)∕2((3𝑐 − 7) + (26 − 6𝑐) − 18)

9

=
(3𝑐 + 4)2(𝑐−4)∕2 + (−1)(𝑐−2)∕2(1 − 3𝑐)

9 .

□

Although the proofs of Theorems 4.1 and 4.2 are straightforward, finding the
formulas for 𝑠(𝑐) and 𝑠𝑝(𝑐) involved combining several closed formulas found
in the Online Encyclopedia of Integer Sequences [SEI22a]. We use the formu-
las for |𝒦𝑐|, 𝑠(𝑐), and 𝑠𝑝(𝑐) in Theorems 2.1, 4.1, and 4.2, respectively to prove
Theorem 1.1.

Proof of Theorem 1.1. If 𝐾 is an alternating knot, then Crowell [Cro59] and
Murasugi [Mur58] showed that its genus is 𝑔(𝐾) = 1

2
(1 + 𝑐(𝐾) − 𝑠(𝐾)) where

𝑐(𝐾) and 𝑠(𝐾) are the crossing number andnumber of components in the Seifert
state of a reduced alternating diagram of 𝐾. Theorem 2.5 implies that

∑

𝐾∈𝒦𝑐

𝑠(𝐾) = 1
2(𝑠(𝑐) + 𝑠𝑝(𝑐)).

As in Equation (1.1), the average genus 𝑔𝑐 satisfies

𝑔𝑐 =

∑
𝐾∈𝒦𝑐

𝑔(𝐾)

|𝒦𝑐|
=

∑
𝐾∈𝒦𝑐

(1 + 𝑐 − 𝑠(𝐾))

2|𝒦𝑐|
= 1
2 +

𝑐
2 −

𝑠(𝑐) + 𝑠𝑝(𝑐)
4|𝒦𝑐|

.

Theorems 2.1, 4.1 and 4.2 contain expressions for |𝒦𝑐|, 𝑠(𝑐), and 𝑠𝑝(𝑐) that
depend on 𝑐 mod 4. If 𝑐 ≡ 0mod 4, then

𝑠(𝑐) + 𝑠𝑝(𝑐)
4|𝒦𝑐|

=
(3𝑐 + 5)2𝑐−3 + (5 − 3𝑐) + (3𝑐 + 4)2(𝑐−4)∕2 + (3𝑐 − 1)

12(2𝑐−3 + 2(𝑐−4)∕2)

=
(3𝑐 + 5)2𝑐−3 + (3𝑐 + 5)2(𝑐−4)∕2 − 2(𝑐−4)∕2 + 4

12(2𝑐−3 + 2(𝑐−4)∕2)

=
(3𝑐 + 5)(2𝑐−3 + 2(𝑐−4)∕2)
12(2𝑐−3 + 2(𝑐−4)∕2)

+ 4 − 2(𝑐−4)∕2

12(2𝑐−3 + 2(𝑐−4)∕2)
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= 𝑐
4 +

5
12 +

4 − 2(𝑐−4)∕2

12(2𝑐−3 + 2(𝑐−4)∕2)
.

When 𝑐 ≡ 0mod 4, the average genus is

𝑔𝑐 =
𝑐
4 +

1
12 +

2(𝑐−4)∕2 − 4
12(2𝑐−3 + 2(𝑐−4)∕2)

.

The cases where 𝑐 ≡ 1, 2, or 3mod 4 are similar.
□
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