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Homotopy types of topological stacks
of categories

David Michael Roberts

Abstract. This note extends Quillen’s Theorem A to a large class of cat-
egories internal to topological spaces. This allows us to show that under a
mild condition a fully faithful and essentially surjective functor between such
topological categories induces a homotopy equivalence of classifying spaces.
It follows from this that we can associate a 2-functorial homotopy type to a
wide class of topological stacks of categories, taking values in the 2-category
of spaces, continuous maps and homotopy classes of homotopies of maps.
This generalises work of Noohi and Ebert on the homotopy types of topolog-
ical stacks of groupoids under the restriction to the site with numerable open
covers.
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It is well known that a category gives rise to a CW complex—its classifying
space—and thus represents a homotopy type. In fact, any CW complex can
be represented (up to homotopy) as the classifying space of a category. It is
therefore of interest to knowwhen a functor induces a homotopy equivalence of
classifying spaces, and Quillen’s Theorem A [Qui73] answers this question for
us: if all the geometric realisations of the lax fibres of a functor are contractible,
the functor induces a homotopy equivalence.
However, there are homotopy types that are best realised as the classifying

spaces of topological categories, that is, categories internal to Top, or some

Received July 5, 2023.
2010 Mathematics Subject Classification. 55P15 (Primary); 55P10, 18F20, 18D40, 22A22

(Secondary).
Key words and phrases. Quillen’s Theorem A, topological categories, topological stacks, ho-

motopy types.
orcid.org/0000-0002-3478-0522. This work was supported by an Australian Postgraduate

Award.

ISSN 1076-9803/2024

940

http://nyjm.albany.edu/nyjm.html
http://nyjm.albany.edu/j/2024/Vol30.htm
https://orcid.org/0000-0002-3478-0522


HOMOTOPY TYPES OF TOPOLOGICAL STACKS OF CATEGORIES 941

cartesian closed variant. Examples include the Borel construction 𝑋 ×𝐾 𝐸𝐾

for a space with the action of a topological group or monoid 𝐾. It is therefore
natural to try to extend Theorem A to topological categories.
The original formulation of Quillen’s Theorem A has the hypothesis that a

family of spaces, indexed by a set, are each contractible. If one writes this down
verbatim for topological categories, the hypothesis turns into “such and such a
map has contractible fibres", which isn’t even sufficient to tell us that a map of
topological spaces is a (weak) homotopy equivalence.
Instead of having contractible fibres, the map of interest is required to be

shrinkable: it has a section that is also a fibrewise homotopy inverse. Shrink-
ability is thus the suitable continuous version of a family of spaces being con-
tractible. This adjustment only affects the last part of the proof, and indeed
most of the current proof is carefully setting up the ‘internal’ (to the category of
topological spaces) version of the first part of Quillen’s proof from [Qui73].
Let 𝑓∶ 𝑋 → 𝑌 be functor between well-pointed topological categories (Defi-

nition 2.7). We introduce a topological category 𝑌0 ↓ 𝑓 (Definition 1.3) that
is analogous to a union of the lax fibres of 𝑓. There is a canonical functor
𝜌∶ 𝑌0 ↓ 𝑓 → disc(𝑌0), where disc(𝑌0) denotes the topological category with
objects 𝑌0 and only identity arrows.

Theorem A. If 𝑓∶ 𝑋 → 𝑌 is a functor such that 𝐵𝜌∶ 𝐵(𝑌0 ↓ 𝑓) → 𝑌0 is
shrinkable, then 𝐵𝑓 is a homotopy equivalence.

Note that a shrinkable map (Definition 3.2) is, amongst other things, an
acyclic fibration. The reverse implication is also true if the domain and codomain
are cofibrant. I also give a variant of this theorem asking merely for 𝐵𝜌 to be an
acyclic fibration, under the same hypothesis on 𝑋 and 𝑌:

Theorem A’. If 𝑓∶ 𝑋 → 𝑌 is a functor such that 𝐵𝜌∶ 𝐵(𝑌0 ↓ 𝑓) → 𝑌0 is an
acyclic Serre fibration, then 𝐵𝑓 is a weak homotopy equivalence.

Wecan then apply TheoremA to essentially surjective and fully faithful func-
tors (where essential surjectivity means: a certain map has local sections over
a numerable cover). As one would hope, such functors give rise to homotopy
equivalences on geometric realisation. Throughout this paper we work with
CGH, the category of compactly generated Hausdorff spaces, to ensure geo-
metric realisation commutes with fibred products [May72, Corollary 11.6].
Note that a different approach to Quillen’s Theorem B is taken in [Mey84]

for more general homotopy colimits, given as 2-sided bar constructions. The
approach taken here is more elementary and, in places, allows for a stronger
conclusion under suitable hypothesis.
Finally, the postscript details how the results so far apply to give a well-

defined 2-functor
St𝑝𝑟𝑒𝑠(CGH, 𝒪num) → CGH2

assigning to each topological stack of categories (with mild restrictions) a ho-
motopy type; the codomain here is the 2-category with objects CGH spaces, ar-
rows continuous maps, and 2-arrows homotopy classes of homotopies of maps.
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The objects in the domain of this functormightwell be called “topological piles”
(following Rezk [Rez14]) or “topological c-stack” (following Drinfeld [Dri20]),
though the latter seems more euphonious.
Acknowledgments: The author thanks Danny Stevenson for suggesting

this line of inquiry and patient discussions. Thanks also to Maxine Elena Calle
for asking about the details of my TheoremA, which I had stated without proof
on the 𝑛Lab, prompting the long-delayed release of this note, and Yuxun Sun,
who pointed out an error in an early public release version of the paper. An
anonymous referee made a number of suggestions that helped tighten up the
article where, in places, the text dated back to when I wrote this as a student.

1. First constructions
We first describe a number of categories which will appear in the proof of

TheoremA. The constructions work for internal categories in any finitely com-
plete ambient category (in particular for topological categories), but are also
given here for categories in Set to clarify the nature of the objects and the ar-
rows.

Definition 1.1. For 𝑌 any category, the category 𝑇𝑌 is defined to be the strict
pullback

𝑇𝑌 //

��

𝑌𝟐

dom

��

disc(𝑌0)
𝑖

// 𝑌

where disc(𝑌0) is the discrete category with objects 𝑌0 ∶= Obj(𝑌), 𝑖 the canon-
ical inclusion, 𝑌𝟐 is the arrow category of 𝑌, and dom is the domain functor.

Explicitly, objects of 𝑇𝑌 are morphisms 𝑔∶ 𝑎 → 𝑏 in 𝑌, and morphisms

𝑔
ℎ // 𝑔′ in 𝑇𝑌 are commuting triangles

𝑎
𝑔
//

𝑔′ &&

𝑏

ℎ
��

𝑏′

in𝑌. The category 𝑇𝑌 can be imagined as the union of based path ‘spaces’ over
all basepoints.

Definition 1.2. Given a category 𝑌, define the twisted arrow category ♮𝑌 as
follows. It has the same objects as 𝑌𝟐,

Obj(♮𝑌) = {𝑔∶ 𝑎 → 𝑏 ∈ Mor(𝑌)} =∶ 𝑌1,



HOMOTOPY TYPES OF TOPOLOGICAL STACKS OF CATEGORIES 943

but morphisms 𝑔
(ℎ,𝑘)
// 𝑔′ the commuting squares

𝑎
𝑔
// 𝑏

ℎ
��

𝑎′

𝑘

OO

𝑔′
// 𝑏′

in 𝑌. We compose in this category by pasting squares vertically.

From the point of view of defining the twisted arrow category of𝑌 internally,
we can describe the underlying internal directed graph as follows:

∙ The object of objects is 𝑌1
∙ The object of arrows is 𝑌3 = 𝑌1×𝑌0 𝑌1×𝑌0 𝑌1, the object of composable
triples of morphisms of 𝑌.

∙ The source and target maps are the projection pr
2
∶ 𝑌3 → 𝑌1 and the

composition map 𝑌3 → 𝑌1, respectively.
It is then an easy exercise to define the internal composition map 𝑌3 ×𝑌1 𝑌3 →
𝑌3 (and the unit map 𝑌1 → 𝑌3).
Clearly there is an inclusion 𝑇𝑌 ↪ ♮𝑌, sending

𝑎
𝑔
//

𝑔′ &&

𝑏

ℎ
��

𝑏′

↦

𝑎
𝑔
// 𝑏

ℎ
��

𝑎
𝑔′
// 𝑏′

.

We can similarly define a wide subcategory 𝑇𝑜𝑌 ↪ ♮𝑌 where the morphisms

are only of the form 𝑔
(id,𝑘)

// 𝑔′ , hence diagrams of the form

𝑎
𝑔
// 𝑏

𝑎′

𝑘

OO

𝑔′

GG

in 𝑌. Notice that we have 𝑇𝑜𝑌 = 𝑇(𝑌op).
There is a functor cod♮∶ ♮𝑌 → 𝑌, which sends (𝑥 → 𝑦) ↦ 𝑦 and

𝑎 // 𝑏

��

𝑎′ //

OO

𝑏′

↦

𝑏

��

𝑏′

.

This clearly restricts to a functor cod𝑇 ∶ 𝑇𝑌 → 𝑌.
There is another functor dom♮

∶ ♮𝑌 → 𝑌op, this time sending a morphism
to its source, and a square to the left vertical map. This restricts to the functor
dom

𝑇
∶ 𝑇𝑌 → disc(𝑌0) sending 𝑎 → 𝑏 to 𝑎. There is a section 𝜎∶ disc(𝑌0) →
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𝑇𝑌 of dom𝑇 that is also a left adjoint. Similarly, there is a section 𝜏∶ disc(𝑌0) →

𝑇𝑜𝑌 of cod𝑇
𝑜

that is a right adjoint.

Definition 1.3. Let 𝑓∶ 𝑋 → 𝑌 be a functor. The category 𝑌0 ↓ 𝑓 is defined as
the strict pullback

𝑌0 ↓ 𝑓
//

��

𝑇𝑌

cod
𝑇

��

𝑋
𝑓

// 𝑌

The objects of𝑌0 ↓ 𝑓 are pairs (𝑔∶ 𝑎 → 𝑓(𝑏), 𝑏), for 𝑔 ∈ Mor(𝑌) and 𝑏 ∈ 𝑋0,
with morphisms a pair consisting of a commuting triangle

𝑎
𝑔
//

𝑔′ %%

𝑓(𝑏)

𝑓(ℎ)

��

𝑓(𝑏′)

in 𝑌, and the arrow ℎ from 𝑋. This category acts like the union of the lax fibres
of the functor 𝑓 at all basepoints. Note that taking 𝑓 = id𝑌 we get 𝑌0 ↓ id𝑌 =

𝑇𝑌.

Definition 1.4. Let 𝑓∶ 𝑋 → 𝑌 be a functor. The category 𝑆(𝑓) is defined as
the strict pullback

𝑆(𝑓)
𝑓
//

𝑄𝑓

��

♮𝑌

cod
♮

��

𝑋
𝑓

// 𝑌 .

Again taking 𝑓 = id𝑌 , we have 𝑆(id𝑌) = ♮𝑌.
We thus have spans of categories that fit into a commutative diagram

𝑋

𝑓

��

𝑆(𝑓)
𝑄𝑓
oo

𝑓
��

𝑃𝑓
// 𝑌op

𝑌 ♮𝑌
cod

♮

oo

dom
♮

// 𝑌op

(1)

where 𝑃𝑓 is defined as the composite dom
♮
◦𝑓. We will show below that the

functors cod♮, dom♮ and 𝑄𝑓 are sent by geometric realisation to homotopy
equivalences—and when 𝑓 satisfies the hypothesis in Theorem A, the same
is true for 𝑃𝑓. Hence, by the 2-out-of-3 property for homotopy equivalences, 𝑓
is then sent to a homotopy equivalence, and hence so is 𝑓.
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2. Classifying spaces
We define the functor 𝐵∶ Cat→ CGH to be the composite |𝑁(−)|, where𝑁

is the standard nerve construction and |−| is geometric realisation. Wewill also
use the same notation for the geometric realisation of the nerve of a topological
category.
If a functor becomes a homotopy equivalence when applying 𝐵, then we say

the functor is a homotopy equivalence. The following proposition is stated in
[Qui73, §1, Proposition 2], for example, and holds for categories replaced by
topological categories.

Proposition 2.1. If 𝛼∶ 𝐹 ⇒ 𝐺∶ 𝐶 → 𝐷 is a natural transformation, that is, a
functor 𝛼∶ 𝐶 × 𝟐 → 𝐷, then 𝐵𝛼 is a homotopy from 𝐵𝐹 to 𝐵𝐺.

As noted byQuillen, it follows that any functor with an adjoint is sent by geo-
metric realisation to a homotopy equivalence, although the triangle identities
are not needed for this conclusion.

Example 2.2. The maps 𝐵 dom𝑇
∶ 𝐵𝑇𝑌 → 𝑌0 and 𝐵 cod

𝑇𝑜

∶ 𝐵𝑇𝑜𝑌 → 𝑌0 are
homotopy equivalences.

Notice nothing specific has been said so far about topological categories—I
haven’t needed to because everything said so far works perfectly fine for cat-
egories internal to CGH, in particular the functor 𝐵 extends to give a functor
Cat(CGH) → CGH (cf [May72, Corollary 11.6]) that preserves finite limits,
and which will denoted by the same letter. However, passing to topological cat-
egories doesn’t go through completely without some alteration. Recall that a
simplicial space is a simplicial object in CGH. Our main source of simplicial
spaces is by the nerves of topological categories, and it is good to know when
we can expect to get a homotopy equivalence of geometric realisations of these
nerves.

Proposition 2.3 ([Seg74, PropositionA.1]). If𝑓∶ 𝑀 → 𝑁 is amap of simplicial
topological spaces such that 𝑓𝑗 ∶ 𝑀𝑗 → 𝑁𝑗 is a homotopy equivalence, and if the
degeneracy maps of𝑀 and𝑁 are all closed cofibrations, then |𝑓|∶ |𝑀| → |𝑁| is
a homotopy equivalence.

Segal refers to a simplicial space 𝑀 satisfying the condition “all the degen-
eracy maps of 𝑀 are closed cofibrations” as a good simplicial space. But this
is at the level of simplicial spaces, and we are more interested in the intrin-
sic properties of topological categories. This boils down to talking about the
identity-assigning map 𝑒∶ 𝐶0 → 𝐶1 of a topological category 𝐶, from which all
the degeneracy maps of 𝑁𝐶 are formed.
We know that the nerve of a topological group, when considered as a one-

object groupoid, is good if the inclusion of the identity element is a closed cofi-
bration. When we pass to many elements, we need a relative version of cofibra-
tion, which we will define via a relative version of NDR-pairs.
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Definition 2.4. Let 𝐵 be a space and CGH∕𝐵 the category of spaces over 𝐵. A
pair1 (𝑋,𝐴) in CGH∕𝐵 is an NDR-pair over 𝐵 if there are maps

𝑋
𝑢 //

��

𝐼 × 𝐵

pr
2

||
𝐵

𝑋 × 𝐼
ℎ //

""

𝑋

��

𝐵

such that:
(1) 𝐴 = 𝑢−1({0} × 𝐵);
(2) For all 𝑥 ∈ 𝑋, ℎ(𝑥, 0) = 𝑥, and for all (𝑎, 𝑡) ∈ 𝐴 × 𝐼, ℎ(𝑎, 𝑡) = 𝑎;
(3) For all 𝑥 ∈ 𝑢−1([0, 1) × 𝐵), ℎ(𝑥, 1) ∈ 𝐴.

We say (𝑢, ℎ) represent (𝑋,𝐴).

As trivial example (needed for the subsequent lemma), consider an arbitrary
(CGH) space 𝐶 → 𝐵 over 𝐵, and the pair (𝐶, ∅). The constant function 𝐶 →

[0, 1], 𝑐 ↦ 1 and the constant homotopy on the identity map of 𝐶, ℎ(𝑐, 𝑡) = 𝑐,
represent (𝐶, ∅) as an NDR-pair over 𝐵. Note that it is not merely true that
𝐴 ↪ 𝑋 is a closed cofibration, but that the inclusion map between fibres over
any given 𝑏 ∈ 𝐵 is also a closed cofibration. We need this formulation of NDR-
pair in the slice category, so that the following product lemma holds.

Lemma 2.5. If (𝑋,𝐴) is an NDR-pair over 𝐵, 𝐶 → 𝐵 a space over 𝐵, then (𝑋 ×𝐵
𝐶,𝐴 ×𝐵 𝐶) is an NDR-pair over 𝐵.

Theproof of this lemma is a slightmodification of the result in [May99, Chap-
ter 6, §4] on products of NDR-pairs, taking the “fibre product NDR-pair”

(𝑋,𝐴) ×𝐵 (𝐶, ∅) = (𝑋 ×𝐵 𝑋,𝑋 ×𝐵 ∅ ∪ 𝐴 ×𝐵 𝐶) = (𝑋 ×𝐵 𝐶,𝐴 ×𝐵 𝐶).

Proposition 2.6. Let 𝑌 be a topological category. Then 𝑁𝑌 is a good simplicial
space if (𝑌1, 𝑌0) is anNDR-pair over𝑌0×𝑌0 (using the diagonal and (𝑠, 𝑡)∶ 𝑌1 →
𝑌0 × 𝑌0).

Proof. Consider for each 0 ≤ 𝑖 ≤ 𝑝 the maps

𝑌𝑝 ≃ 𝑌0 ×𝑌0×𝑌0 (𝑌𝑖 × 𝑌𝑝−𝑖)
𝑠𝑖
⟶𝑌1 ×𝑌0×𝑌0 (𝑌𝑖 × 𝑌𝑝−𝑖) ≃ 𝑌𝑝+1

(𝑦; 𝑦0
𝑎1
,,→ ⋯

𝑎𝑖
,,→ 𝑦; 𝑦

𝑏1
,,→ 𝑧1 →⋯

𝑏𝑝−𝑖
,,,,→ 𝑧𝑝−𝑖)

↦ (𝑦0
𝑎1
,,→ ⋯

𝑎𝑖
,,→ 𝑦

id𝑦
,,,→ 𝑦

𝑏1
,,→ ⋯

𝑏𝑝−𝑖
,,,,→ 𝑧𝑝−𝑖)

inserting an identity in a string of composable arrows. □

Definition 2.7. A topological category is calledwell-pointed if the condition in
Proposition 2.6 holds.

1We do not distinguish between the pair (𝑋,𝐴) and the inclusion map 𝐴 ↪ 𝑋.
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Examples of well-pointed topological categories include well-pointed topo-
logical monoids or groups. A well-pointed CGH-enriched category as defined
in [Vog73] is well-pointed in the sense above if considered as a category internal
to CGH. Note that 𝐶 is well-pointed iff 𝐶op is well-pointed.

3. A span of bisimplicial spaces
Given a functor 𝑓∶ 𝑋 → 𝑌 between topological categories let us define a

bisimplicial space 𝐷 = 𝐷(𝑓) by the following:

𝐷(𝑓)𝑝𝑞 = 𝑁𝑌
op
𝑝 ×𝑌0 𝑌1 ×𝑌0 𝑁𝑋𝑞

where the (𝑝, 𝑞)-simplices look like
(
𝑦𝑝 → … → 𝑦0

𝜂
→ 𝑓(𝑥0); 𝑥0 → … → 𝑥𝑞

)
,

and we consider 𝑝 as indexing the vertical direction, and 𝑞 indexing the hori-
zontal direction. The face maps 𝑑ℎ

𝑖
, 𝑑𝑣

𝑖
, 𝑖 ≥ 1 are induced from 𝑁𝑋 and 𝑁𝑌op

with no effect on the 𝑌1 term. The face maps 𝑑ℎ0 , 𝑑
𝑣
0
are

𝑑ℎ
0

(
𝑦𝑝 → … → 𝑦0

𝜂
→ 𝑓(𝑥0); 𝑥0

𝜈
→ … → 𝑥𝑞

)

=
(
𝑦𝑝 → … → 𝑦0

𝑓(𝜈)𝜂
⟶ 𝑓(𝑥1); 𝑥1 → … → 𝑥𝑞

)

𝑑𝑣
0

(
𝑦𝑝 → …

𝜅
→ 𝑦0

𝜂
→ 𝑓(𝑥0); 𝑥0 → … → 𝑥𝑞

)

=
(
𝑦𝑝 → … → 𝑦1

𝜂𝜅
⟶𝑓(𝑥0); 𝑥0 → … → 𝑥𝑞

)
.

The degeneracy maps 𝑠ℎ
𝑖
, 𝑠𝑣
𝑖
, 𝑖 ≥ 1 are likewise induced from 𝑁𝑋 and 𝑁𝑌op.

The most important thing to note about the degeneracy maps is that they are
all the identity on the 𝑌1 factor. We get a span of bisimplicial spaces that on
(𝑝, 𝑞) simplices looks like

𝑁𝑋𝑞 ← 𝐷(𝑓)𝑝𝑞 → 𝑁𝑌
op
𝑝

where the codomains are constant in one direction.
For fixed 𝑝, the simplicial space 𝐷𝑝∙ is the fibred product of 𝑁(𝑌0 ↓ 𝑓) and

the constant simplicial space 𝑁𝑌op
𝑝 . Thus, the horizontal realisation |𝐷|ℎ of 𝐷

is a simplicial space with 𝑝-simplices

(|𝐷|ℎ)𝑝 = 𝑁𝑌
op
𝑝 ×𝑌0 𝐵(𝑌0 ↓ 𝑓), (2)

such that the degeneracymaps are given by the fibred product of the degeneracy
maps for 𝑁𝑌op and the identity map for 𝐵(𝑌0 ↓ 𝑓). We can therefore apply
Lemma 2.5 and so if 𝑌 is well-pointed, then 𝑁𝑌op and hence |𝐷|ℎ are good.
There is amap of bisimplicial spaces𝐷 → 𝑁𝑌op (wherewe think of the latter

as being constant in the 𝑞-direction) which is simply the projection map. The
following proposition is proved in [Qui73, §1] and used in the special case that
all spaces involved are discrete:
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Proposition 3.1. If𝑇 is a bisimplicial space, then there are natural isomorphisms
|||||𝑇|ℎ

|||| ≃ |𝑑𝑇| ≃
|||||𝑇|𝑣

||||.

Here 𝑑 is the diagonal functor, which sends the bisimplicial space {𝑇𝑝𝑞} to the
simplicial space {𝑇𝑝𝑝}. We have constructed 𝐷(𝑓) such that 𝑑𝐷(𝑓) = 𝑁(𝑆(𝑓)),
and as a result the diagonal functor applied to the span (2) gives (the nerve of)
the top row of (1). As a particular example of this, we have 𝑑𝐷(id𝑌) = 𝑁(♮𝑌),
and hence also get the bottom row of (1).

Definition 3.2 (Dold [Dol63]). A map 𝑝∶ 𝐸 → 𝐵 is shrinkable if there is a
section 𝑠 ∶ 𝐵 → 𝐸 of 𝑝 such that 𝑠◦𝑝 is fibrewise homotopic to id𝐸 .

The geometric realisation of a functor with a left or right adjoint section is
shrinkable, as the (co)unit natural transformation geometrically realises to the
required fibrewise homotopy.
When we apply the horizontal geometric realisation functor to themap𝐷 →

𝑁𝑌op we get a map 𝛽 of simplicial spaces which at each level looks like

𝛽𝑝 ∶ (|𝐷|ℎ)𝑝 = 𝑁𝑌
op
𝑝 ×𝑌0 𝐵(𝑌0 ↓ 𝑓) → 𝑁𝑌

op
𝑝 ×𝑌0 𝑌0 = 𝑁𝑌

op
𝑝 .

Now if 𝐵(𝑌0 ↓ 𝑓) → 𝑌0 is shrinkable, 𝛽𝑝 is a homotopy equivalence, as
the pullback of a shrinkable map is shrinkable. Then, 𝛽 is a map of simplicial
spaces which is a homotopy equivalence at each level. Given that 𝑁𝑌op and
𝑁𝑌op ×𝑌0 𝐵(𝑌0 ↓ 𝑓) are good, we know that |𝛽| is a homotopy equivalence
by Proposition 2.3. But |𝛽| is secretly 𝐵𝑃𝑓 (using Proposition 3.1), the map we
wanted to show was a homotopy equivalence. Further, in the special case that
we take 𝑓 = id𝑌 , then as 𝐵𝑇𝑌 → 𝑌0 is shrinkable (since 𝑇𝑌 → disc(𝑌0) has
a left adjoint section), then the map 𝐵 dom♮

∶ 𝐵♮𝑌 → 𝐵𝑌op is also a homotopy
equivalence. And we also have the analogous result for 𝐵 cod♮∶ 𝐵♮𝑌 → 𝐵𝑌,
since cod𝑇

𝑜

∶ 𝑇𝑜𝑌 → disc(𝑌0) has a right adjoint section.
Finally, we need to show that𝐵𝑄𝑓 ∶ 𝐵𝑆(𝑓) → 𝐵𝑋 is a homotopy equivalence.

This follows since the vertical realisation |𝐷|𝑣 is the simplicial space 𝐵𝑇𝑜𝑌 ×𝑌0
𝑁𝑋, which is good if𝑋 is well-pointed, and the projection to𝑁𝑋 is at each level
the shrinkable map

𝐵𝑇𝑜𝑌 ×𝑌0 𝑁𝑋𝑞 → 𝑌0 ×𝑌0 𝑁𝑋𝑞 = 𝑁𝑋𝑞

that is the pullback of the shrinkable map 𝐵𝑇𝑜𝑌 → 𝑌0. Then applying Propo-
sitions 3.1 and 2.3 again we have that

𝐵𝑄𝑓 ∶ 𝐵𝑆(𝑓) = |𝑑𝑆(𝑓)| ≃
|||||𝐷|𝑣

|||| → 𝐵𝑋

is a homotopy equivalence.
Thus, we have shown:

Theorem A. If 𝑓∶ 𝑋 → 𝑌 is a functor between well-pointed topological cate-
gories such that 𝐵𝜌∶ 𝐵(𝑌0 ↓ 𝑓) → 𝑌0 is shrinkable, 𝐵𝑓 is a homotopy equiva-
lence.



HOMOTOPY TYPES OF TOPOLOGICAL STACKS OF CATEGORIES 949

We have thus reduced the problem of showing 𝐵𝑋 is homotopy equivalent
to 𝐵𝑌 to showing that the classifying space of a single topological category is
homotopy equivalent to a given space.
We can in fact do better than this:

Theorem A’. If 𝑓∶ 𝑋 → 𝑌 is a functor between well-pointed topological cate-
gories such that 𝐵𝜌∶ 𝐵(𝑌0 ↓ 𝑓) → 𝑌0 is an acyclic Serre fibration, 𝐵𝑓 is a weak
homotopy equivalence.

Proof. Amap of proper simplicial spaces which is a weak equivalence in each
dimension geometrically realises to aweak homotopy equivalence (see [May74,
A.4]), and a good simplicial space is proper [LGL82]. Further, acyclic Serre
fibrations are stable under pullback (as they are characterised by a right lifting
property), so that the map 𝛽𝑝 is an acyclic Serre fibration when 𝐵𝜌 is one. Then
|𝛽| = 𝐵𝑃𝑓 is weak homotopy equivalence, and using the 2-out-of-3 property of
weak homotopy equivalences in the geometric realisation of the diagram (1),
so is 𝐵𝑓, and hence so is 𝐵𝑓, as desired. □

To remove the condition that 𝑌 is well-pointed, we would need to use fat re-
alisation, which models the homotopy colimit of a simplicial topological space.
It is known that the fat realisation of a levelwise weak homotopy equivalence is
a weak homotopy equivalence [Seg74, Appendix A], so this step works. This
then leads to thinking about how to commute homotopy colimits past each
other, specifically, the diagonal then fat realisation, and fat horizontal realisa-
tion then fat realisation, at the cost of the two constructions only being weakly
homotopy equivalent.
Private discussion with J. Scherer leads me to believe it should be possible

to generalise Theorem A’ and remove the hypothesis of well-pointedness of 𝑌,
but I leave this as an challenge for the motivated reader.

4. Weak equivalences give homotopy equivalences
Recall, firstly, that an open cover which admits a subordinate partition of

unity is called numerable [Dol63]. Define the singleton Grothendieck pretopol-
ogy𝒪num on CGH of ‘numerable covers’ to have the covering maps of a (CGH)
topological space 𝑀 to be those local homeomorphisms 𝑈 ∶=

∐

𝛼
𝑈𝛼 → 𝑀

arising from a numerable open cover {𝑈𝛼} of𝑀.
Secondly, a functor 𝑓∶ 𝑋 → 𝑌 is fully faithful if the diagram

𝑋1
𝑓1 //

(𝑠,𝑡)

��

𝑌1

(𝑠,𝑡)

��

𝑋0 × 𝑋0
𝑓0

// 𝑌0 × 𝑌0

(3)
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is a pullback, and is essentially 𝒪num-surjective if 𝜌0 in the diagram

𝑋0

𝑓0

��

𝑋0 ×𝑌0 𝑌
𝑖𝑠𝑜
1

oo

��

𝜌0

��

𝑌0 𝑌𝑖𝑠𝑜
1𝑠

oo
𝑡

// 𝑌0

(4)

admits local sections relative to some numerable cover 𝜋0∶ 𝑈 → 𝑌0. That is,
there is a map (𝑠𝑋 , 𝑠𝑌)∶ 𝑈 → 𝑋0 ×𝑌0 𝑌

𝑖𝑠𝑜
1

such that 𝑡(𝑠𝑌(𝑢)) = 𝜋0(𝑢) for all
𝑢 ∈ 𝑈. Note that here 𝑌𝑖𝑠𝑜

1
⊆ 𝑌1 is the subspace of invertible arrows. Let 𝑈[2]

denote the topological groupoid 𝑈 ×𝑀 𝑈 ⇉ 𝑈 attached to a numerable cover
𝑈 → 𝑀, which comes equipped with a functor 𝜋∶ 𝑈[2] → disc(𝑀).

Proposition 4.1 (Segal [Seg68]). If 𝑈 → 𝑀 is a numerable cover of a space𝑀,
then 𝐵𝜋∶ 𝐵𝑈[2] →𝑀 is shrinkable.

Wenow come to themain application of the paper, generalising Segal’s result
to functors between topological categories.

Theorem4.2. If𝑓∶ 𝑋 → 𝑌 is a fully faithful, essentially𝒪num-surjective functor
between well-pointed topological categories, then 𝐵𝑓 is a homotopy equivalence.

Proof. Because (3) is a pullback, there is an isomorphism of topological cate-
gories2

𝑋 ≃ codisc(𝑋0) ×codisc(𝑌0) 𝑌.

It immediately follows that
𝑌0 ↓ 𝑓 ≃ codisc(𝑋0) ×codisc(𝑌0) 𝑇𝑌,

and using the local sections 𝑠 of 𝜌0 we can construct a functor 𝜎∶ 𝑈[2] →

codisc(𝑋0) ×codisc(𝑌0) 𝑇𝑌, in the following way.
First note that there is a map

𝑈 ×𝑌0 𝑈 → 𝑋0 ×𝑌0 𝑌
𝑖𝑠𝑜
1
×𝑌0 𝑋0 ×𝑌0 𝑌

𝑖𝑠𝑜
1

(𝑢, 𝑣) ↦ (𝑠𝑋(𝑢), 𝑓(𝑠𝑋(𝑢))
𝑠𝑌(𝑢)
,,,,→ 𝜋(𝑢); 𝑠𝑋(𝑣), 𝑓(𝑠𝑋(𝑣))

𝑠𝑌(𝑣)
,,,,→ 𝜋(𝑣))

where 𝜋(𝑢) = 𝜋(𝑣). If we define 𝑠′(𝑢, 𝑣) = 𝑠𝑌(𝑣)
−1◦𝑠𝑌(𝑢), then this gives a

commuting triangle

𝜋(𝑢)
𝑠𝑌(𝑢)

−1

//

𝑠𝑌(𝑣)
−1 ''

𝑓(𝑠𝑋(𝑢))

𝑠′(𝑢,𝑣)

��

𝑓(𝑠𝑋(𝑣))

which is a morphism in 𝑇𝑌. Together with the pair
(𝑠𝑋(𝑢), 𝑠𝑋(𝑣)) ∈ Mor(codisc(𝑋0))

2Recall that given a space 𝑆, the topological category codisc(𝑆) has as objects 𝑆 and a unique
morphism between any ordered pair of elements of 𝑆.
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this defines a map

𝜎1∶ 𝑈 ×𝑌0 𝑈 = Mor(𝑈[2]) → Mor(codisc(𝑋0) ×codisc(𝑌0) 𝑇𝑌),

which is the morphism component of the functor

𝜎∶ 𝑈[2] → codisc(𝑋0) ×codisc(𝑌0) 𝑇𝑌.

The object component is given by the map 𝜎0∶ 𝑈 → 𝑋0 ×𝑌0 𝑌1 of the form

𝑢 ↦ (𝑠𝑋(𝑢), 𝜋(𝑢)
𝑠𝑌(𝑢)

−1

,,,,,,→ 𝑓(𝑠𝑋(𝑢))),

and one can easily check using the definition of 𝑠′ that this is indeed an inter-
nal functor. Moreover, the functor 𝜎 satisfies the property that 𝜌◦𝜎 is equal to
𝜋∶ 𝑈[2] → disc(𝑌0).
Let 𝑃 be the strict pullback

𝑃 //

𝑝𝑈
��

codisc(𝑋0) ×codisc(𝑌0) 𝑇𝑌

𝜌

��

𝑈[2]
𝜋

// disc(𝑌0) .

The section 𝜎 induces a section 𝜏 of 𝑝𝑈 , for which there is a natural transfor-
mation 𝜏◦𝑝𝑈 ⇒ id𝑃; the component at (𝑢; 𝜋(𝑢)

𝑔
,→ 𝑓(𝑥); 𝑥) is given by a tuple

(representing a morphism of 𝑃) consisting of the pair (𝑢, 𝑢) ∈ Mor(𝑈[2]), the
pair (𝑠𝑋(𝑢), 𝑥), and the commuting triangle

𝜋(𝑢)
𝑠𝑌(𝑢)

−1

//

𝑔
((

𝑓(𝑠𝑋(𝑢))

𝑔𝑠𝑌(𝑢)

��

𝑓(𝑥)

Thus, we see that 𝐵𝑝𝑈 is a homotopy equivalence by Proposition 2.1,
as 𝐵𝜏◦𝐵𝑝𝑈 = id𝐵𝑈[2] and the natural transformation gives rise to a homotopy
from 𝐵𝑝𝑈◦𝐵𝜏 to id𝐵𝑃.
But, further, the natural transformation 𝜏◦𝑝𝑈 ⇒ id𝑃 ∶ 𝑃 → 𝑃 satisfies the

condition that the corresponding functor ℎ∶ 𝑃 × 𝟐 → 𝑃 makes the diagram

𝑃 × 𝟐 //

##

𝑃

𝑝𝑈}}

𝑈[2]

commute, where the left diagonal map is the composition of the projection and
𝑝𝑈 . This is because the 𝑈[2]-component of the natural transformation is the
identity arrow on the object 𝑢. Thus, 𝐵ℎ is a fibrewise homotopy over 𝐵𝑈[2],
and hence 𝐵𝑝𝑈 is shrinkable.
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When we pass to geometric realisations,

𝐵𝑃 //

𝐵𝑝𝑈
��

𝐵(codisc(𝑋0) ×codisc(𝑌0) 𝑇𝑌)

𝐵𝜌

��

𝐵𝑈[2] // 𝑌0

(5)

it turns out that 𝐵𝜌 is a retract of 𝐵𝑝𝑈 , as follows. Recall that 𝐵𝜋 is shrinkable
(with section 𝑠′, say) by Proposition 4.1, as we assumed𝑈 → 𝑌0 is a numerable
cover and then applying the pullback pasting lemma to the diagram

𝑌0 ×𝐵𝑈[2] 𝐵𝑃

pr
1

��

pr
2 // 𝐵𝑃

𝑟 //

𝐵𝑝𝑈
��

𝐵(codisc(𝑋0) ×codisc(𝑌0) 𝑇𝑌)

𝐵𝜌

��

𝑌0
𝑠′

// 𝐵𝑈[2]
𝜋

// 𝑌0

we see that𝑌0×𝐵𝑈[2]𝐵𝑃 ≃ 𝐵(codisc(𝑋0)×codisc(𝑌0)𝑇𝑌) over𝑌0. Thus, pr1 can be
identifiedwith𝐵𝜌, and the composite of the top horizontal arrowswith identity
map. The section of 𝐵𝜌 is 𝑟◦𝐵𝜏◦𝑠′, and it is then a short calculation to check
that 𝐵𝜌 is shrinkable. As a result we can apply TheoremA to 𝑓 to conclude that
𝐵𝑓 is a homotopy equivalence. □

Because every open cover of a paracompact Hausdorff space is refined by a
numerable one, an immediate corollary is that if𝑌0 is paracompact3, then local
sections of 𝜌0 over any open coverwill suffice for the conclusion of Theorem4.2.

5. Postscript: homotopy types of topological stacks of categories
The previous sections were written as a precursor to the content of my PhD

thesis later published as [Rob12], and so did not benefit from the idea of stacks
presentable by internal categories and Pronk’s notion of bicategorical localisa-
tion. With that machinery, one can give the following corollary to Theorem 4.2
(using judicious amounts of Global Choice). Assume now that all topological
categories are well-pointed.

Corollary 5.1. The classifying space 2-functor 𝐵∶ Cat(CGH) → CGH2 extends
to give a classifying space 2-functor for presentable stacks of categories on the site
(CGH, 𝒪num).

Here Cat(CGH) denotes the (2,2)-category of well-pointed categories inter-
nal toCGH, and𝒪num is the pretopology onCGH given by numerable open cov-
ers. Also, CGH2 denotes the (2,1)-category of compactly generated Hausdorff
spaces, continuous maps, and homotopy classes of homotopies as 2-arrows.
Equivalences in CGH2 are precisely homotopy equivalences.
A presentable stack of categories on a given site (𝑆, 𝐽) is any stack that is the

image of the stackification of a prestack associated to a category internal to 𝑆,

3Note that 𝑌0 is always Hausdorff by the choice of CGH as our category of spaces.
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up to equivalence. The 2-category of these is denoted St𝑝𝑟𝑒𝑠(𝑆, 𝐽). There is an
essentially surjective and locally fully faithful 2-functor

よ∶ Cat(CGH) → St𝑝𝑟𝑒𝑠(CGH, 𝒪num)

sending a topological category to the stack onCGH that it presents. Presentable
stacks of categories in the algebro-geometric/homotopy theoretic setting have
been explored in [Rez14] and [Dri20] (see also [Rob11]).

Proof (of Corollary 5.1). The 2-functorよ is a bicategorical localisation of
Cat(CGH) at the fully faithful, essentially 𝒪num-surjective functors (this fol-
lows by combining [Rob12] and [PW14]). The 2-functor 𝐵 sends such functors
to homotopy equivalences, by Theorem 4.2, hence to equivalences in CGH2.
Thus, by the definition of bicategorical localisation, there is a 2-functor

St𝑝𝑟𝑒𝑠(CGH, 𝒪num) → CGH2

whose composite with Cat(CGH) → St𝑝𝑟𝑒𝑠(CGH, 𝒪num) is isomorphic to 𝐵.
□

Thus, every presentable stack of categories on (CGH, 𝒪num) has a well-
defined homotopy type. This corollary should be compared with results of
Ebert [Ebe09] and Noohi [Noo12]. The latter, in particular constructs a (weak)
homotopy type for topological stacks of groupoids on the full site of topological
spaces with all open covers (and so neither that result nor Corollary 5.1 is a
proper generalisation of the other).
However, Ebert’s classifying space/homotopy type functor is defined for topo-

logical stacks presented by topological groupoids 𝑋 where every space 𝑁𝑋𝑛,
𝑛 ≥ 0, in the nerve 𝑁𝑋 is paracompact Hausdorff. As the construction in this
paperworks for (well-pointed) topological categories, and only requires that the
space𝑋0 = 𝑁𝑋0 of objects is paracompact, we very nearly have a generalisation
of Ebert’s construction in the well-pointed context—at least up to homotopy.
This is because Ebert uses fat realisation, which under our assumption of well-
pointedness agrees with ordinary geometric realisation up to weak homotopy
equivalence.
Noohi’s homotopy type of a “hoparacompact” topological stack [Noo12, §8.2]

is closer to the construction here, as this notion amounts to paracompactness
of the object space 𝑋0 of some presenting groupoid 𝑋, plus an assumption on
the properties of the presentation map 𝑋0 → 𝒳 down to the topological stack
presented by 𝑋. Note that the topological space used by Noohi to present the
homotopy type uses a Milnor-style classifying space construction, rather than
the usual geometric realisation (fat or otherwise).
The usefulness of the present construction, in the author’s view, lies in the

fact that one is checking only very ‘local’ information to know that a topologi-
cal stack has a well-defined homotopy type: at most knowing properties of the
presenting space 𝑋0 (which becomes the object space of the internal category)
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and the unit map 𝑋0 → 𝑋1. This is to be compared to having to know prop-
erties of the presentation map 𝑋0 → 𝒳—the map itself, in the case of Noohi’s
homotopy type, or the simplicial space induced by it, in the case of Ebert’s.
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