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Classifying matrix-valued holomorphic
cross-sections over an annulus up to
complete isometric isomorphism

Jacob Cornejo and KathrynMcCormick

Abstract. We classify certain algebras of matrix-valued cross-sections over
an annulus up to complete isometric isomorphism, based on topological bun-
dle invariants. In particular, we study sections of matrix bundles which are
continuous on the closure of the annulus and holomorphic on its interior.
Our strategy includes exploiting the relationship between concomitants and
modulus automorphic functions, as well as the classification of 𝑛-homoge-
neous 𝐶∗-algebras by Fell and Tomiyama-Takesaki. Furthermore, we de-
scribe a partial extension of our results over the annulus to larger classes of
finitely and smoothly bordered planar domains.
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1. Introduction
Let 𝑅 be a bounded domain in the complex plane with a boundary consisting

of finitely many disjoint analytic Jordan curves. On 𝑅, we can define analogues
of the disk algebra and of Hardy spaces 𝐻𝑝(𝑅) [16]. In studying these alge-
bras’ function theory, invariant subspaces, and related operator theory, one nat-
urally encounters algebras of multiple-valued functions on the disk which have
single-valued modulus, i.e. modulus-automorphic functions [17, 21]. These
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multiple-valued function algebras can also be realized as cross-sections of line
bundles over 𝑅 [1, 22].
More specifically, in [17] Sarason describes the function theory and invari-

ant subspaces of𝐻𝑝 spaces on the annulus, and independently in [21] Voichick
studies invariant subspaces for 𝐻2 on finite Riemann surfaces. They attack
these problems by lifting their functions on 𝑅 to the universal covering space
of their Riemann surfaces, the disk. Their study of the invariant subspaces for
modulus-automorphic functions on the disk has been followed up in work of
many others, such as [10].
Sarason shows that the bounded linear operators on 𝐻2-spaces of modulus-

automorphic functions that are operators that commute with the shift are the
operators that can be implemented by multiplication by bounded modulus au-
tomorphic functions. He then uses this result to describe when two shifts are
unitarily equivalent [17, Thm. 10, Cor. 1]. When one translates his work over to
the line bundle perspective, we have a classification up to unitary equivalence
of the shift operators, viewed as operators on sections of line bundles, based on
a line bundle invariant. This second perspective is evenmore fully developed in
the theory of bundle shifts in [1], where Abrahamse and Douglas now consider
vector bundles over more general planar domains than the annulus.
One can ask, though, instead of classifying individual shift operators based

on a bundle invariant, can we classify operator algebras that contain shift op-
erators based on a bundle invariant? In particular, we can study the algebra of
cross-sections of an appropriately chosen matrix bundle, which can act on the
cross-sections of a vector bundle.
The purpose of this paper is to classify, up to complete isometric isomor-

phism, the algebra Γℎ(𝔸,ℬ(𝔸, 𝜌)) of𝑀𝑛(ℂ)-valued cross-sections on a bundle
ℬ(𝔸, 𝜌) over an annulus 𝔸 which are continuous sections on the closed annu-
lus and holomorphic sections on the interior. We show that these algebras are
classified by a bundle invariant in Theorem 3.3. We will also briefly describe
how to generalize our results to finite and smoothly bordered domains 𝑅 in the
complex plane in the special case where the associated bundle is determined
by commuting unitary matrices.
As such, this work can also be seen as a nonselfadjoint analogue to Fell [7]

and Tomiyama-Takesaki’s [19] classification of 𝑛-homogeneous 𝐶∗-algebras,
and we use this 𝑛-homogeneous classification as one ingredient in our proof.
(Note that the matrix section algebras are even completely isometrically 𝑛-sub-
homogeneous, using the terminology of [2].) These nonselfadjoint algebras also
provide another family of unital operator algebras that are not uniform algebras
and have the Bishop Property of [5] inside their natural 𝐶∗-superalgebra.

2. Preliminaries
We let ℂ and 𝑀𝑛(ℂ) denote the complex numbers and 𝑛 × 𝑛 matrices over

the complex numbers, respectively, and 𝐼𝑛 will denote the 𝑛×𝑛 identity matrix.
Then𝑈𝑛(ℂ) is the collection of unitary 𝑛×𝑛matrices, and 𝑃𝑈𝑛(ℂ) denotes the
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projective unitary group. Recall that the elements of 𝑃𝑈𝑛(ℂ) can be identified
with conjugation by a particular unitary matrix. Let Ad(𝐴) ∶ 𝑀𝑛(ℂ)→ 𝑀𝑛(ℂ)
denote the map 𝑋 ↦ 𝐴𝑋𝐴−1; for 𝐴 ∈ 𝑈𝑛(ℂ), this is equivalent to considering
the map 𝑋 ↦ 𝐴𝑋𝐴∗ where ∗ denotes the complex conjugate transpose. The
elements of 𝑃𝑈𝑛(ℂ) can be identified (non-uniquely) as Ad(𝐴) for somematrix
𝐴 ∈ 𝑈𝑛(ℂ). We will use the notation [𝑛] ∶= {1, 2,… , 𝑛} for brevity.

2.1. Topological background. Let𝔸 denote an open annulus in the complex
plane with inner radius 𝑟0 > 0 and outer radius 𝑟1 > 𝑟0. Two open annuli are
conformally equivalent if and only if they have the same ratio 𝑟1∕𝑟0, thus we
assume throughout that 𝑟1 > 𝑟0 = 1. We will use 𝑅 for a planar domain whose
boundary 𝜕𝑅 is piecewise-smooth and consists of finitely many disjoint simple
closed curves with 𝑅 = 𝑅 ∪ 𝜕𝑅; we will sometimes refer to a ‘general 𝑅’ to
indicate a result generalizes from 𝔸 to this setting.
We let 𝐴(𝑅) denote the collection of functions 𝑓 ∶ 𝑅 → ℂ such that 𝑓 is

continuous on𝑅 and holomorphic on𝑅; we call𝐴(𝑅) the algebra of continuous-
holomorphic functions over 𝑅. For general 𝑅, 𝐴(𝑅) is generated as a uniform
algebra by the collection of rational functions with poles off of 𝑅 [13, Thm. 2.3].
The algebra of continuous ℂ-valued functions on 𝑅 will be denoted 𝐶(𝑅). The
algebras 𝐶(𝔸) and 𝐴(𝔸) were studied extensively in Sarason’s thesis [17]. For
general 𝑅, the algebras have been studied in, for example, [10, 21, 18].
We will build a noncommutative version of 𝐴(𝑅) ⊆ 𝐶(𝑅) by considering

cross-sections of a matrix bundleℬ over 𝑅, in such a way that the center of the
algebra of continuous sections will be 𝐶(𝑅)𝐼𝑛. To accomplish this, we will ask
that ℬ be continuous vector bundle with matrix fibres𝑀𝑛(ℂ). We also require
that ℬ has a holomorphic structure when restricted to the interior 𝑅, so that
the center of the algebra of continuous sections holomorphic on the interior of
the bundle is 𝐴(𝑅)𝐼𝑛.
For our algebra of continuous sections to be a 𝐶∗-algebra, we need to require

that ℬ is a bundle with transition functions which are 𝑃𝑈𝑛(ℂ)-valued. To ask
thatℬ have holomorphic structure on the interior and have projective unitary-
valued transition functions, ℬ must have locally constant transition functions
– in other words, we will assume that ℬ is a flat bundle.
Therefore, weuseℬ to denote aflat𝑃𝑈𝑛(ℂ)-bundlewithmatrix fibres, which

is then determined by a representation 𝜌 of the fundamental group of 𝑅 [9]. We
sometimes write ℬ = ℬ(𝑅, 𝜌) to emphasize the dependence on 𝜌. In our main
case, where𝔸 is an annulus, 𝜋1(𝔸) ≃ ℤ, 𝜌 ∶ ℤ→ 𝑃𝑈𝑛(ℂ), and 𝜌 is completely
determined by 𝜌(1). Pick an open cover 𝒪 of 𝑅, and let 𝑈,𝑉 ∈ 𝒪. The bundle
ℬ has transition functions 𝑔𝑈𝑉 ∶ 𝑈 ∩ 𝑉 → 𝑃𝑈𝑛(ℂ), where 𝑔𝑈𝑉(𝑤) ∈ 𝑃𝑈𝑛(ℂ)
acts on the fibres𝑀𝑛(ℂ) by conjugating by powers of a fixed matrix in 𝑈𝑛(ℂ).
In a particular category of bundles and bundle maps, we can ask that (1) all

the bundles have the same base space and that the bundle maps fix the base
space, or that (2) the bundle maps are allowed to transform the base space
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by a homeomorphism or (2’) the bundle maps are allowed to transform the
base space by a homeomorphism that is holomorphic on the interior. Sup-
pose the two bundles in question have transition functions 𝑔𝑈𝑉 , 𝑈,𝑉 ∈ 𝒪 and
ℎ𝑈′𝑉′ , 𝑈′, 𝑉′ ∈ 𝒪′. In the first sense, a bundle equivalence is implemented
by choosing a refinement 𝒪′′ of the open covers 𝒪,𝒪′, and finding functions
𝑗𝑈′′ ∶ 𝑈′′ → 𝑃𝑈𝑛(ℂ) such that ℎ𝑈′′𝑉′′ = 𝑗𝑈′′𝑔𝑈′′𝑉′′𝑗−1𝑉′′ for every 𝑈′′, 𝑉′′ ∈ 𝒪′′.
In the second sense, a bundle equivalence is implemented in the same way but
by additionally composing with a homeomorphism; or in the third sense, by
additionally composing with a homeomorphism that is holomorphic on the in-
terior.
If we say our bundle equivalence is aflat equivalence of (flat) bundlesℬ(𝑅, 𝜌)

and ℬ(𝑆, 𝜏), we mean that the functions 𝑗𝑈′′ ∶ 𝑈′′ → 𝑃𝑈𝑛(ℂ) implementing
the equivalence can be chosen to be (locally) constant. From the representa-
tion perspective, this is equivalent to (1) requiring the representations 𝜌 and 𝜏
defining the bundles to be 𝑃𝑈𝑛(ℂ)-conjugate and 𝑅 = 𝑆, or (2) requiring that 𝜌
and 𝜏 to be conjugate and there to exist a homeomorphism between 𝑅 and 𝑆, or
(2’) requiring that 𝜌 and 𝜏 to be conjugate and there to exist a homeomorphism
between 𝑅 and 𝑆 that is holomorphic on the interior.
Fix representations 𝜌, 𝜏 ∶ ℤ → 𝑃𝑈𝑛(ℂ) that determine the flat bundles

ℬ(𝔸, 𝜌), ℬ(𝔸, 𝜏) over an annulus. These representations, in turn, are deter-
mined by matrices 𝐴𝜌, 𝐴𝜏 ∈ 𝑈𝑛(ℂ) for which 𝜌(1) = Ad(𝐴𝜌) and 𝜏(1) =
Ad(𝐴𝜏). The representations 𝜌 and 𝜏 will be 𝑃𝑈𝑛(ℂ)-conjugate if and only if
the representative matrices 𝐴𝜌, 𝐴𝜏 are unitarily conjugate.
If we restrict the bundle ℬ = ℬ(𝑅, 𝜌) to 𝜕𝑅, then we will have a continu-

ous, flat bundle ℬ(𝑅, 𝜌)|𝜕𝑅, and if we restrict to the interior of 𝑅, we will have
a holomorphic, flat bundle ℬ(𝑅, 𝜌)|𝑅. The restriction of a flat bundle over 𝑅
to a bundle over 𝑆 ⊆ 𝑅 will also be a flat bundle by simply restricting the lo-
cally constant transition functions. However, its equivalence class as a bun-
dle may be very different, as the domain of functions implementing bundle
equivalence has been changed. Also, it somewhat complicates the perspec-
tive of representations of the fundamental group since the base space may no
longer be connected. However, the restriction to boundary components or the
interior is sufficiently nicely behaved in our setting to make some identifica-
tions. Choose a point 𝑤0 ∈ int(𝑅), and points 𝑤1, 𝑤2,… , 𝑤𝑏 ∈ 𝜕𝑅 for each
boundary component. If we identify 𝜋1(𝑅) = 𝜋1(𝑅,𝑤0), restricting to int(𝑅)
we will get 𝜋1(𝑅,𝑤0) ≃ 𝜋1(𝑅,𝑤0) in a way that preserves the relationship be-
tween flat bundles and representations of the fundamental group. In the case
of restricting to the boundary, it is certainly true that 𝜋1(𝑅,𝑤0) ≃ 𝜋1(𝑅,𝑤𝑖)
(𝑖 ≠ 0) via a choice of path from 𝑤0 to 𝑤𝑖. Fix such a system of paths, and
a representation of 𝜋1(𝑅,𝑤0) coming from a flat bundle structure. If we re-
strict 𝑅 to 𝜕𝑅, and look at the fundamental groupoid Π1(𝜕𝑅,𝑤1,… , 𝑤𝑏) of 𝜕𝑅
restricted to the points𝑤1,… , 𝑤𝑏, then representations ofΠ1(𝜕𝑅,𝑤1,… , 𝑤𝑏) can
be identified with a product of representations of each connected component.
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By choosing base points and restricting to 𝜕𝑅 we induce a representation of
Π1(𝜕𝑅) ∶= Π1(𝜕𝑅,𝑤1,… , 𝑤𝑏) into 𝑃𝑈𝑛(ℂ), which we call the 𝜌-induced repre-
sentation. For example, suppose 𝑅 = 𝔸 is the closed annulus and 𝜌(1) = Ad(𝐴)
for some 𝐴 ∈ 𝑈𝑛(ℂ). The fundamental groupoid of 𝜕𝑅 restricted to two base-
points 𝑤1, 𝑤2 on the boundary circles is a trivial ℤ-bundle over two points,
and the 𝜌-induced representation can be identified with the homomorphism
𝜌′ ∶ ℤ ×ℤ→ 𝑃𝑈𝑛(ℂ) satisfying 𝜌′(1, 0) = 𝜌′(0, 1) = Ad(𝐴).
The following definitions clarify what we mean by flat equivalence for bun-

dles that have been restricted to the boundary of 𝑅. The goal will be to classify
an algebra of cross-sections based on the bundle’s equivalence class.

Definition 2.1. Consider a flat𝑃𝑈𝑛(ℂ) bundleℬ(𝑅, 𝜌) over𝑅 and a flat𝑃𝑈𝑛(ℂ)
bundleℬ(𝜕𝑅, 𝜏) over 𝜕𝑅.

(1) The bundle ℬ(𝑅, 𝜌)|𝜕𝑅 is called restricted flat equivalent to ℬ(𝜕𝑅, 𝜏) in
the sense (1) if the bundles are flat equivalent, the base spaces are fixed by
the bundle equivalence, and the 𝜌-induced representation of Π1(𝜕𝑅) and
the representation 𝜏 ofΠ1(𝜕𝑅) are conjugate by a (single, fixed) matrix.

(2) The bundle ℬ(𝑅, 𝜌)|𝜕𝑅 is called restricted flat equivalent to ℬ(𝜕𝑅, 𝜏) in
the sense (2) if the bundles are flat equivalent; the 𝜌-induced representa-
tion of Π1(𝜕𝑅) and the representation 𝜏 are conjugate by a (single, fixed)
matrix; and a homeomorphism 𝜙 ∶ 𝜕𝑅 → 𝜕𝑅 in the bundle equivalence
in sense (2) such that the homeomorphism is the restriction of a homeo-
morphism of 𝑅 that is holomorphic on the interior 𝑅.

2.2. Functional analysis preliminaries. For background references on op-
erator spaces, completely boundedmaps, operator algebras, and the𝐶∗-envelope,
see for example [14, 4]. We will also make use of the theory of 𝑛-homogeneous
𝐶∗-algebras, which can be found in [19, 7].
Recall 𝐴(𝑅) is used to denote the ℂ-valued continuous-holomorphic func-

tions defined on 𝑅 , Γ𝑐(𝑅,ℬ(𝑅)) denote the 𝐶∗-algebra of continuous cross-
sections of ℬ(𝑅), and Γℎ(𝑅,ℬ(𝑅)) denote the holomorphic subalgebra of
Γ𝑐(𝑅,ℬ(𝑅)) where the sections are holomorphic on the interior of 𝑅 and con-
tinuous on the boundary.
There are two ways we will view a cross-section 𝜎 of the bundle ℬ. A con-

tinuous section 𝜎 is defined locally by picking an open cover 𝒪 of 𝑅, and then
𝜎 = (𝜎𝑈)𝑈∈𝒪 where 𝜎𝑈 ∶ 𝑈 ⊆ 𝑅 → 𝑀𝑛(ℂ) is a continuous function and
the ambiguities of defining 𝜎𝑈 and 𝜎𝑉 where 𝑈 ∩ 𝑉 is nonempty are resolved
via the transition functions. However, since our bundle ℬ is flat, we can also
lift 𝜎 to a well-defined function on the universal covering space of 𝑅. We de-
note the universal covering space of 𝑅 as �̃�, viewed as the union of an open
disk 𝐷 with its boundary components, and for which the complement of the
boundary forms a Cantor set in the boundary circle; see [12, Sec. 2] for more
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details. Then 𝜎 may be identified with a function 𝐹𝜎 ∶ �̃� → 𝑀𝑛(ℂ) that sat-
isfies 𝐹𝜎(𝑔 ⋅ 𝑥) = 𝜌(𝑔) ⋅ 𝐹𝜎(𝑥). This perspective of 𝜎 is useful for many of our
arguments.
In either perspective, we can put a norm on the continuous sections by using

the standard 𝐶∗-norm on the fibres𝑀𝑛(ℂ) and taking ‖𝜎‖ = sup𝑧∈𝑅 ‖𝜎𝑈(𝑧)‖ =
sup𝑤∈�̃� ‖𝐹𝜎(𝑤)‖, which is well-defined. Since the collection of continuous sec-
tions ofℬ is a𝐶∗-algebra with respect to this norm and the standard involution,
we can put the canonical operator space structure on Γℎ(𝑅,ℬ(𝑅)). The collec-
tion of continuous sections that are holomorphic on the interior form a non-
self-adjoint, closed subalgebra of the 𝐶∗-algebra, and inherit the superalgebra’s
operator space structure. See [12] for more details.
The algebra𝐴(𝜕𝑅) ⊆ 𝐶(𝜕𝑅) is the algebra of continuous functions on 𝜕𝑅 that

are restrictions of functions in𝐴(𝑅), i.e.𝐴(𝜕𝑅) consists of continuous functions
that extend to be holomorphic on𝑅. Since the norm is attained on the boundary,
𝐴(𝜕𝑅) ≃ 𝐴(𝑅). Similarly, Γℎ(𝜕𝑅,ℬ(𝑅)|𝜕𝑅) ≃ Γℎ(𝑅,ℬ(𝑅)) [12, Lem. 3.3]. The
algebra 𝐴(𝑅) can also be viewed as the uniform closure of rational functions
with poles off of 𝑅 [11].

Remark 2.2. Here we can make a connection between these algebras and the
operator 𝑇𝛾 on 𝐻2

ℌ(𝜕𝐷, 𝛾) from [1] which is unitarily equivalent to the bun-
dle shift. Suppose 𝛾 ∶ 𝜋1(𝑅) → 𝑈𝑛(ℂ) is a unitary representation of the fun-
damental group of 𝑅. Then Ad(𝛾) is a projective unitary representation. Let
𝑓 ∈ 𝐻2(𝜕𝑅,ℂ𝑛)where 𝑓(𝛾(𝑔)𝑣) = 𝛾(𝑔)𝑓(𝑣) 𝑎.𝑒.with respect to Lebesgue mea-
sure; that is, let 𝑓 ∈ 𝐻2

ℂ𝑛(𝜕𝐷, 𝛾). Take a cross-section 𝜎 ∈ Γℎ(𝑅,ℬ(𝑅,Ad(𝛾)))
and identify it with a concomitant 𝐹𝜎. Note that 𝐹𝜎𝑓 ∈ 𝐻2

ℂ𝑛(𝜕𝐷, 𝛾) since it
satisfies the right concomitant relation on 𝜕�̃� and 𝜕𝐷 ⧵ 𝜕�̃� has measure 0. If
we take 𝐹𝜎 to be a diagonal matrix with the universal covering map on the di-
agonal, this is the operator 𝑇𝛾. Thus the classification results in [1, Thm. 6 &
Thm. 10(b)] are related to a subalgebra of Γℎ(𝑅,ℬ(𝑅,Ad(𝛾))), and are true for
general 𝑅.

3. Results
The first proposition is true for general 𝑅:

Proposition 3.1. Suppose thatℬ(𝑅, 𝜌)|𝜕𝑅 is restricted flat 𝑃𝑈𝑛(ℂ) equivalent to
the bundle ℬ(𝑅, 𝜏)|𝜕𝑅 in the sense (2). Then Γℎ(𝑅,ℬ(𝑅, 𝜌)) is completely isomet-
rically isomorphic to Γℎ(𝑅,ℬ(𝑅, 𝜏)). If the bundle equivalence fixes 𝜕𝑅 pointwise
(i.e. is in the sense (1)), then the isomorphism of the section algebras pointwise-
preserves the elements 𝑓 ∈ 𝐴(𝑅)𝐼𝑛 in the center.

Proof. For the first claim, it’s enough to show that

Γℎ(𝜕𝑅,ℬ(𝑅, 𝜌)|𝜕𝑅) ≃ Γℎ(𝜕𝑅,ℬ(𝑅, 𝜏)|𝜕𝑅),

since the algebra Γℎ(𝑅,ℬ(𝑅, 𝜌)) ≃ Γℎ(𝜕𝑅,ℬ(𝑅, 𝜌)|𝜕𝑅) via the restriction map.
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Suppose that ℬ(𝑅, 𝜌)|𝜕𝑅 is restricted flat 𝑃𝑈𝑛(ℂ) equivalent to the bundle
ℬ(𝑅, 𝜏)|𝜕𝑅 in sense (2), then there is a homeomorphism 𝜑 ∶ 𝜕𝑅 → 𝜕𝑅 and
a matrix 𝑉 ∈ 𝑈𝑛(ℂ) so that 𝜏(𝑘) = 𝑉−1𝜌(𝑘)𝑉 for all 𝑘 ∈ 𝜋1(𝑅). Let �̃� be
the induced map by 𝜑 on the universal covers of 𝜕𝑅 and 𝜑(𝜕𝑅) which satisfies
�̃�(𝑘 ⋅ 𝑧) = 𝑘 ⋅ �̃�(𝑧).
View Γℎ(𝜕𝑅,ℬ(𝑅, 𝜌)|𝜕𝑅) as the collection of restrictions of (continuous holo-

morphic) concomitants 𝐹 ∶ 𝜕�̃� → 𝑀𝑛(ℂ) satisfying 𝐹(𝑘 ⋅ 𝑧) = 𝜌(𝑘) ⋅ 𝐹(𝑧) for
every 𝑘 ∈ 𝜋1(𝑅) and 𝑧 ∈ 𝜕�̃�. Also view Γℎ(𝜕𝑅,ℬ(𝑅, 𝜏)|𝜕𝑅) as the collection
of concomitants 𝐹1 ∶ �̃�(𝜕�̃�) → 𝑀𝑛(ℂ) satisfying 𝐹1(𝑘 ⋅ 𝑧1) = 𝜏(𝑘) ⋅ 𝐹1(𝑧1) for
every 𝑧1 ∈ �̃�(𝜕�̃�), or in other words, for every 𝑧 ∈ 𝜕�̃�,

𝐹1(�̃�(𝑘 ⋅ 𝑧)) = 𝜏(𝑘) ⋅ 𝐹1(�̃�(𝑧))

= 𝑉−1𝜌(𝑘)𝑉 ⋅ 𝐹1(�̃�(𝑧))

= 𝑉−1(𝜌(𝑘) ⋅ (𝑉𝐹1(�̃�(𝑧))𝑉−1))𝑉.
So

𝑉(𝐹1(�̃�(⋅)))𝑉−1 ∶ 𝜕�̃� → 𝑀𝑛(ℂ)
is a concomitant with respect to 𝜌. Since 𝜑 is the restriction of a holomorphic
homeomorphismof𝑅, we conclude that𝑉(𝐹1(�̃�(⋅)))𝑉−1 is inΓℎ(𝜕𝑅,ℬ(𝑅, 𝜌)|𝜕𝑅).
Moreover, the norm of 𝑉(𝐹1(�̃�(⋅)))𝑉−1 at any matrix level is equal to the norm
of 𝐹1(�̃�(⋅)). Therefore, the map 𝐹1 ↦ 𝑉(𝐹1(�̃�(⋅)))𝑉−1 a complete isometry, and
which is also quickly seen to be an isomorphismof the algebraΓℎ(𝜕𝑅,ℬ(𝑅, 𝜏)|𝜕𝑅)
with Γℎ(𝜕𝑅,ℬ(𝜕𝑅, 𝑅, 𝜌)|𝜕𝑅).
Suppose that in addition, �̃�(𝑧) = 𝑧. Then the isomorphism is defined as

𝐹1 ↦ 𝑉(𝐹1(⋅))𝑉−1

If we use 𝐹1(𝑧) = 𝑓(𝑧)𝐼𝑛 for some 𝑓 ∈ 𝐴(𝜕𝑅), then we will have
𝑓(𝑧)𝐼𝑛 ↦ 𝑉(𝑓(𝑧)𝐼𝑛)𝑉−1 = 𝑓(𝑧)𝐼𝑛.

□

The main classification result is the following:

Theorem 3.3. Let 𝔸 be an annulus. Suppose that Γℎ(𝔸,ℬ(𝔸, 𝜌)) is completely
isometrically isomorphic to Γℎ(𝔸,ℬ(𝔸, 𝜏)). Then ℬ(𝔸, 𝜌)|𝜕𝑅 is restricted flat
𝑃𝑈𝑛(ℂ) equivalent toℬ(𝔸, 𝜏)|𝜕𝑅.

To prove Theorem 3.3, we will show the slightly more specific statement be-
low.

Proposition 3.2. Let 𝔸 be an annulus. Suppose that Γℎ(𝔸,ℬ(𝔸, 𝜌)) is com-
pletely isometrically isomorphic toΓℎ(𝔸,ℬ(𝔸, 𝜏)) and that the isomorphism takes
𝑓 ∈ 𝐴(𝔸)𝐼𝑛 ⊆ Γℎ(𝔸,ℬ(𝔸, 𝜌))↦ 𝑓 ∈ 𝐴(𝔸)𝐼𝑛 ⊆ Γℎ(𝔸,ℬ(𝔸, 𝜏)) pointwise. Then
ℬ(𝔸, 𝜌)|𝜕𝔸 is restricted flat 𝑃𝑈𝑛(ℂ) bundle equivalent toℬ(𝔸, 𝜏)|𝜕𝔸 such that the
bundle equivalence fixes 𝜕𝔸 pointwise.
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To see Proposition 3.2 implies Theorem 3.3, suppose that Γℎ(𝑅,ℬ(𝑅, 𝜌)) is
completely isometrically isomorphic to Γℎ(𝑅,ℬ(𝑅, 𝜏)) via an isomorphism Φ,
but thatΦdoesn’t necessarily fix the center pointwise. The isomorphismon sec-
tions will induce an isometric isomorphism on the center algebras 𝜙 ∶ 𝐴(𝑅)→
𝐴(𝑅). An automorphism of 𝐴(𝑅) induces a bijective map 𝑡 ∶ 𝑅 → 𝑅 via
𝑡 ∶= 𝜙(𝑧), and the functions 𝜙 and pre𝑡 ∶ 𝑓 ↦ 𝑓◦𝑡 agree on rational func-
tions. By [11, Cor. 4], 𝐴(𝑅) is equal to the uniform closure of rational functions
with poles off of 𝑅, and so 𝜙 and pre𝑡 agree everywhere. Consider the newmap
𝜎 ↦ Φ(𝜎◦𝑡−1), which is an isomorphism that fixes 𝐴(𝑅)𝐼𝑛 pointwise, and then
apply Proposition 3.2.
Thus fromnowon, by ‘flat equivalence’we alwaysmeanflat equivalence that

fixes the base space 𝑅 pointwise. To prove Proposition 3.2, of which the proof
follows in the next several sub-sections, we will use the following outline:

(1) Compute several families of continuous holomorphic sections ofℬ(𝔸, 𝜌).

(2) Assume there is a complete isometric isomorphism of the continuous
holomorphic section algebras, and lift the complete isometric isomor-
phism to a 𝐶∗-isomomorphism of the 𝐶∗-envelopes which will restrict
appropriately on the subalgebras.

(3) Use results of Fell and Tomiyama and Takesaki to conclude that the 𝐶∗-
isomorphism is induced by a topological 𝑃𝑈𝑛(ℂ)-bundle equivalence of
the bundles ℬ(𝜕𝔸, 𝜌) and ℬ(𝜕𝔸, 𝜏).

(4) Explicitly map the (continuous) holomorphic sections of ℬ(𝜕𝔸, 𝜌) to
sections of ℬ(𝜕𝔸, 𝜏).

(5) Use the previous item to conclude that the 𝑃𝑈𝑛(ℂ) equivalence (𝜆𝑈)𝒰
corresponds to an identically constant function on 𝜕𝔸, and thus 𝜌 is
unitarily conjugate to 𝜏.

3.1. Computing holomorphic sections. Recall from Section 2.2 that, view-
ing �̃� as the infinite strip, there is a one-to-one correspondence between con-
tinuous holomorphic concomitant functions 𝐹 ∶ �̃� → 𝑀𝑛(ℂ) and sections
(𝜎𝑈 ∶ 𝑈 ⊆ 𝔸 → 𝑀𝑛(ℂ))𝑈∈𝒪 for some open cover 𝒪 of 𝔸 and 𝑈 ∈ 𝒪, given by
the maps:

𝐹 ↦ (𝜎𝐹,𝑈)𝑈∈𝒪
(𝜎𝑈)𝑈∈𝒪 ↦ 𝐹𝜎

where
𝜎𝐹,𝑈(𝑤) = 𝐹(ln𝑈(𝑤)) and

𝐹𝜎(𝑧) = 𝜎𝑈(𝑒𝑧) whenever 𝑒𝑧 ∈ 𝑈
and ln𝑈 is a branch of the logarithm restricted to 𝑈. Therefore to produce ex-
amples of sections we will explicitly write down some concomitant functions,
and then apply the first correspondence in the map above. We will also use
the definition of a concomitant to make observations about its entries and the
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relationship with invariant and modulus automorphic functions described in
[17].
Fix a representation 𝜌 and a matrix 𝐴 ∈ 𝑈𝑛(ℂ) such that 𝜌(1) = Ad(𝐴). If

𝐴 is also diagonal, we write 𝐴 = diag(𝑎1,… , 𝑎𝑛) for some 𝑎𝑖 ∈ 𝕋. Given such
a matrix, we may pick 𝐾𝑟𝑠 to be a real number such that 𝑒2𝜋𝑖𝐾𝑟𝑠 =

𝑎𝑠
𝑎𝑟
for 𝑟 < 𝑠,

𝑟, 𝑠 ∈ [𝑛], and 𝐾𝑟𝑠 = 𝐾𝑠𝑟. This provides us with
(𝑛
2

)
of these 𝐾𝑟𝑠.

Next we will define two families of functions which are dependent on pa-
rameters 𝐷𝑖, 𝐶𝑗𝑘 ∈ ℂ, 𝑖, 𝑗, 𝑘 ∈ [𝑛]. These functions are clearly continuous on
�̃� and holomorphic on 𝐷: the constant function

𝐹𝑛,𝐃(𝑧) = 𝐹𝐷1,𝐷2,…,𝐷𝑛(𝑧) ∶=
⎛
⎜
⎜
⎝

𝐷1 0 ⋯ 0
0 𝐷2 ⋱ 0
⋮ ⋱ ⋱ ⋮
0 ⋯ 0 𝐷𝑛

⎞
⎟
⎟
⎠

(1)

and the function 𝐹𝑛,𝐂(𝑧) ∶= (𝐶𝑗𝑘𝑒±𝐾𝑗𝑘𝑧)𝑗,𝑘∈[𝑛] where 𝐶𝑗𝑘 ≡ 0 if 𝑗 = 𝑘 and ± is
chosen to be − for 𝑗 > 𝑘 and + for 𝑗 < 𝑘, that is,

𝐹𝑛,𝐂(𝑧) =
⎛
⎜
⎜
⎝

0 𝐶12𝑒𝐾12𝑧 ⋯ 𝐶1𝑛𝑒𝐾1𝑛𝑧
𝐶21𝑒−𝐾21𝑧 0 ⋱ 𝐶2𝑛𝑒𝐾2𝑛𝑧

⋮ ⋱ ⋱ ⋮
𝐶𝑛1𝑒−𝐾𝑛1𝑧 ⋯ 𝐶𝑛(𝑛−1)𝑒−𝐾𝑛(𝑛−1)𝑧 0

⎞
⎟
⎟
⎠

. (2)

We can quickly verify that when𝐴 is diagonal, the constant functions of type
(1) satisfy the concomitant condition with respect to 𝜌 if the matrix 𝐴 is diag-
onal. We can also verify that functions of type (2) are also concomitants with
respect to 𝜌 when 𝐴 is diagonal:

𝐹𝑛,C(𝑧 + 2𝜋𝑖𝑘)

=
⎛
⎜
⎝

0 𝐶12𝑒𝐾12(𝑧+2𝜋𝑖𝑘) ⋯ 𝐶1𝑛𝑒𝐾1𝑛(𝑧+2𝜋𝑖𝑘)

𝐶21𝑒−𝐾21(𝑧+2𝜋𝑖𝑘) 0 ⋱ 𝐶2𝑛𝑒𝐾2𝑛(𝑧+2𝜋𝑖𝑘)
⋮ ⋱ ⋱ ⋮

𝐶𝑛1𝑒−𝐾𝑛1(𝑧+2𝜋𝑖𝑘) ⋯ 𝐶𝑛(𝑛−1)𝑒
−𝐾𝑛(𝑛−1)(𝑧+2𝜋𝑖𝑘) 0

⎞
⎟
⎠

= Diag(𝑎𝑘𝑖 ) ⋅
⎛
⎜
⎝

0 𝐶12𝑒−𝐾12𝑧 ⋯ 𝐶1𝑛𝑒−𝐾1𝑛𝑧
𝐶21𝑒𝐾21𝑧 0 ⋱ 𝐶2𝑛𝑒−𝐾2𝑛𝑧

⋮ ⋱ ⋱ ⋮
𝐶𝑛1𝑒𝐾𝑛1𝑧 ⋯ 𝐶𝑛(𝑛−1)𝑒

𝐾𝑛(𝑛−1)𝑧 0

⎞
⎟
⎠
⋅ Diag(𝑎−𝑘𝑖 )

= 𝐴𝑘𝐹𝑛,𝐂(𝑧)𝐴−𝑘 = 𝜌(𝑘) ⋅ 𝐹𝑛,𝐂(𝑧)

By focusing on the entries of𝐹𝑛,D and𝐹𝑛,C, the following observations can be
made. First, the family 𝐹𝑛,D could be extended more generally to any diagonal
matrix of continuous holomorphic scalar-valued functions 𝐷𝑖(𝑧) which are in-
variant under the action of the fundamental group, namely that𝐷𝑖(𝑧+2𝜋𝑖𝑘) =
𝐷𝑖(𝑧). Second, the entries of 𝐹𝑛,𝐂(𝑧) are examples of what Sarason calls mod-
ulus automorphic functions [17, I.3]: By defining 𝑓𝑗𝑘(𝑧) ∶= 𝐶𝑗𝑘𝑒±𝐾𝑗𝑘𝑧, we note
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that |𝑓𝑗𝑘(𝑧)| = |𝑓𝑗𝑘(𝑧 + 2𝜋𝑖𝑘)| holds for every 𝑧 ∈ �̃�. Moreover, the con-
stant (𝑎𝑘

𝑎𝑗
)±1 called the multiplier for which 𝑓𝑗𝑘(𝑧 + 2𝜋𝑖𝑞) = (𝑎𝑘

𝑎𝑗
)±𝑞 𝑓𝑗𝑘(𝑧) for

all 𝑧 ∈ �̃�, 𝑞 ∈ ℤ. In fact, any modulus automorphic function can be written as
the product of an invariant function with a power function [17, pg. 12].
More generally, the following is true: let �̃� be the universal covering space of

a finitely, smoothly bordered planar domain 𝑅. Suppose 𝜌 ∶ 𝜋1(𝑅) → 𝑃𝑈𝑛(ℂ)
is such that the image of the generators of𝜋1(𝑅) can bewritten as Ad(𝐴𝑖)where
𝐴𝑖 ∈ 𝑈𝑛(ℂ) are diagonal. Then any entry of any 𝜌-concomitant function is a
modulus automorphic function. The diagonal entries will be invariant func-
tions, i.e. modulus automorphic with multiplier 1. Note that this correspon-
dence between concomitants andmodulus automorphic functions does not fol-
low through when the matrices 𝐴𝑖 are not simultaneously diagonalizable.

3.2. Mapping holomorphic sections, and conclusions about the bundle
equivalence. Having completed step (1), we proceedwith the rest of the proof.

Theorem 3.3. Let 𝔸 be an annulus. Suppose that Γℎ(𝔸,ℬ(𝔸, 𝜌)) is completely
isometrically isomorphic to Γℎ(𝔸,ℬ(𝔸, 𝜏)). Then ℬ(𝔸, 𝜌)|𝜕𝔸 is restricted flat
𝑃𝑈𝑛(ℂ) equivalent toℬ(𝔸, 𝜏)|𝜕𝔸.

Proof. Let Φ ∶ Γℎ(𝔸,ℬ(𝔸, 𝜌)) → Γℎ(𝔸,ℬ(𝔸, 𝜏)) be a complete isometric iso-
morphism that preserves the center pointwise. Then Φ lifts to a complete iso-
metric isomorphism Ψ of the 𝐶∗-envelopes; by [12], this means

Ψ ∶ Γ𝑐(𝜕𝔸,ℬ(𝔸, 𝜌)|𝜕𝔸)→ Γ𝑐(𝜕𝔸,ℬ(𝔸, 𝜏)|𝜕𝔸)

where the image of Γℎ(𝔸,ℬ(𝔸, 𝜌)) in Γ𝑐(𝜕𝔸,ℬ(𝔸, 𝜌)|𝜕𝔸) is the image of the
restriction map. This completes step (2).
By [19], Ψ is induced by a topological 𝑃𝑈𝑛(ℂ)-bundle equivalence of

ℬ(𝔸, 𝜌)|𝜕𝔸 with ℬ(𝔸, 𝜏)|𝜕𝔸. Therefore, there exists an open cover 𝒪 of 𝜕𝔸 and
family of continuous unitary-valued maps (𝝁𝑈)𝑈∈𝒪, 𝝁𝑈 ∶ 𝜕𝔸 → 𝑈𝑛(ℂ), such
that the transition functions of the bundle ℬ(𝔸, 𝜏)|𝜕𝔸 are given by conjugating
the transition functions of ℬ(𝔸, 𝜌)|𝜕𝔸 by the family (𝝁𝑈)𝑈∈𝒪, completing step
(3). Thus we can rewrite Ψ:

Ψ((𝜎𝑈)𝑈∈𝒪) = (𝝁𝑈𝜎𝑈𝝁−1𝑈 )𝑈∈𝒪
for every section

(𝜎𝑈)𝑈∈𝒪 ∈ Γ𝑐(𝜕𝔸,ℬ(𝔸, 𝜌)|𝜕𝔸).
In particular, for every (𝜎𝑈)𝑈 that is the (restriction of) a continuous holomor-
phic section onℬ(𝔸, 𝜌), (𝝁𝑈𝜎𝑈𝝁−1𝑈 )𝑈∈𝒪 is (the restriction of) a continuousholo-
morphic section in ℬ(𝔸, 𝜏) . We can also apply the correspondence in Section
3.1 to identify (𝜎𝑈)𝑈∈𝒪 and (𝝁𝑈𝜎𝑈𝝁−1𝑈 )𝑈∈𝒪 with concomitant functions with
respect to the 𝜌- and 𝜏-induced actions.
The bundle ℬ(𝔸, 𝜏)|𝜕𝔸 is determined by 𝜏(1) =∶ Ad(𝐷), 𝐷 ∈ 𝑈𝑛(ℂ). With-

out loss of generality, we may assume that 𝐷 is diagonal: if not, then 𝐷 =
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𝑃𝐷′𝑃−1 = 𝑃𝐷′𝑃∗ for some diagonal 𝐷′ and unitary 𝑃, and Γℎ(𝔸,ℬ(𝔸, 𝜏)|𝜕𝔸) ≃
𝑃Γℎ(𝔸,ℬ(𝔸, 𝑃∗𝜏(⋅)𝑃)|𝜕𝔸)𝑃∗.
Let 𝜌(1) ∶= Ad(𝐴), 𝐴 ∈ 𝑈𝑛(ℂ), and let 𝐴 = 𝑆𝐴′𝑆∗ be a unitary diagonal-

ization of 𝐴. Given a section (𝜎′𝑈)𝑈 ∈ Γ𝑐(𝜕𝔸,ℬ(𝔸, 𝑆∗𝜌(⋅)𝑆)|𝜕𝔸), the section
(𝑆∗𝜎′𝑈𝑆)𝑈 ∈ Γ𝑐(𝜕𝔸,ℬ(𝔸, 𝜌)|𝜕𝔸). In fact, every section in Γ𝑐(𝜕𝔸,ℬ(𝔸, 𝜌)|𝜕𝔸)
has this form.
Therefore, for every (𝜎′𝑈)𝑈 ∈ Γ𝑐(𝜕𝔸,ℬ(𝔸, 𝑆∗𝜌(⋅)𝑆)|𝜕𝔸),

Ψ((𝑆∗𝜎′𝑈𝑆)𝑈∈𝒪) = (𝝁𝑈𝑆∗𝜎′𝑈𝑆𝝁
−1
𝑈 )𝑈∈𝒪.

Applying the correspondence between sections and concomitants, we have
that for each section (𝜎′𝑈)𝑈 ∈ Γ𝑐(𝜕𝔸,ℬ(𝔸, 𝑆∗𝜌(⋅)𝑆)|𝜕𝔸), the function

𝝁𝑈(𝑒𝑧)𝑆∗𝜎′𝑈(𝑒
𝑧)𝑆𝝁−1𝑈 (𝑒𝑧) , 𝑧 ∈ 𝜕𝔸 (3)

is a concomitant with respect to the 𝜏-induced action.
Let’s apply the results of Subsection 3.1 to input several choices of 𝜎′. The

matrix 𝐴′ determining the flat bundle ℬ(𝔸, 𝑆∗𝜌(⋅)𝑆)|𝜕𝔸) is diagonal, so given
any two 𝑛-tuples of complex numbers C and D, we can construct 𝑆∗𝜌(⋅)𝑆-con-
comitants 𝐹𝑛,C and 𝐹𝑛,D such that

𝐹𝑛,D◦ ln𝑈 , 𝐹𝑛,C◦ ln𝑈 ∈ Γ𝑐(𝜕𝔸,ℬ(𝔸, 𝑆∗𝜌(⋅)𝑆)|𝜕𝔸).

Push forward the sections in (3) by Ψ:

(𝜉C)𝑈 ∶= (Ψ◦𝐹𝑛,D◦ ln𝑈)𝑈∈𝒪 = (𝝁𝑈(𝑆∗(𝐹𝑛,C◦ ln𝑈)𝑆)𝝁−1𝑈 )𝑈∈𝒪,

(𝜉D)𝑈 ∶= (Ψ◦𝐹𝑛,C◦ ln𝑈)𝑈∈𝒪 = (𝝁𝑈(𝑆∗(𝐹𝑛,D◦ ln𝑈)𝑆)𝝁−1𝑈 )𝑈∈𝒪,

which land as sections in Γ𝑐(𝜕𝔸,ℬ(𝔸, 𝜏)|𝜕𝔸).
By previous observations at the end of Section 3.1, the cross-sections in

Γ𝑐(𝜕𝔸,ℬ(𝔸, 𝜏)|𝜕𝔸), being defined on a bundle with diagonal matrix 𝐷, corre-
spond to concomitant functions 𝐺𝜉𝐂 , 𝐺𝜉𝐃 whose entries are modulus automor-
phic functions. This completes step (4) in our proof outline.
Recall that the overall goal is to show the map that is conjugation by the

family of unitaries

𝝁𝑈(𝑤) ∶=
⎛
⎜
⎜
⎝

𝝁11,𝑈(𝑤) ⋯ 𝝁1(𝑛−1),𝑈(𝑤) 𝝁1𝑛,𝑈(𝑤)
⋮ ⋱ 𝝁2(𝑛−1),𝑈(𝑤) 𝝁2𝑛,𝑈(𝑤)

𝝁(𝑛−1)1,𝑈(𝑤) ⋯ ⋱ ⋮
𝝁𝑛1,𝑈(𝑤) ⋯ ⋯ 𝝁𝑛𝑛,𝑈(𝑤)

⎞
⎟
⎟
⎠

.

is locally constant, andmoreover independent of𝑈 so therefore pieces together
to be a constant function with respect to the variable 𝑤. By a quick calculation
we can see that a sufficient conditions for conjugation by 𝝁𝑈 being constant
are if (i) products of the form 𝝁𝑗𝑘,𝑈(𝑤)𝝁𝑙𝑚,𝑈(𝑤) are constant for all 𝑗, 𝑘, 𝑙, 𝑚 ∈
[𝑛] ∶= {1, 2,… , 𝑛} such that either (𝑗, 𝑘) = (𝑙, 𝑚) or 𝑘 ≠ 𝑚, and (ii) these
products are the same constant for all 𝑈 ∈ 𝒰.
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For any fixed 𝑛 ∈ ℕ, we have:

𝜉D𝑈(𝑤) = 𝝁𝑈(𝑤)𝐹𝑛,𝐃(ln𝑈 (𝑤))𝝁𝑈(𝑤)∗

= (
𝑛∑

𝑞=1
𝐷𝑞𝝁𝑗𝑞,𝑈(𝑤)𝝁𝑘𝑞,𝑈(𝑤))

𝑗,𝑘∈[𝑛]

and

𝜉C𝑈(𝑤) = 𝝁𝑈(𝑤)𝐹𝑛,𝐂(ln𝑈 (𝑤))𝝁𝑈(𝑤)∗

= (
𝑛∑

𝑞=1
𝑚=1
𝑞<𝑚

𝐶𝑞𝑚𝝁𝑗𝑞,𝑈(𝑤)𝝁𝑘𝑚,𝑈(𝑤)𝑒𝐾𝑞𝑚ln𝑈(𝑤)

+
𝑛∑

𝑞=1
𝑚=1
𝑚<𝑞

𝐶𝑞𝑚𝝁𝑗𝑞,𝑈(𝑤)𝝁𝑘𝑚,𝑈(𝑤)𝑒−𝐾𝑚𝑞 ln𝑈(𝑤))
𝑗,𝑘∈[𝑛]

.

Now, when we set D = (0,… , 0, 𝐷𝑘, 0,…0), we get that for each pair 𝑗, 𝑘 ∈
[𝑛], the expression (𝝁𝑗𝑘,𝑈(𝑤)𝝁𝑗𝑘,𝑈(𝑤))𝑈 = (|𝝁𝑗𝑘,𝑈(𝑤)|2)𝑈 is the (𝑗, 𝑗) entry of
𝜉D𝑈(𝑤). The correspondence between sections and concomitants gives us that
this entry |𝝁𝑗𝑘,𝑈(𝑤)|2 defines a modulus automorphic function 𝑓𝑗𝑘 ∶ 𝜕�̃� →
ℂ. In particular, whenever 𝑒𝑧 ∈ 𝑈 ∩ 𝑉, |𝝁𝑗𝑘,𝑈(𝑒𝑧)|2 = |𝝁𝑗𝑘,𝑉(𝑒𝑧)|2 = 𝑓𝑗𝑘(𝑧)
and the value of |𝝁𝑗𝑘,𝑈(𝑒𝑧)|2 is independent of 𝑈. Moreover, 𝑓𝑗𝑘 is both real-
valued on 𝜕�̃� and the restriction of a function analytic on 𝐷. By a standard
argument using the function theory on the universal cover �̃�, we conclude that
𝝁𝑗𝑘,𝑈(𝑤)𝝁𝑗𝑘,𝑈(𝑤) = |𝝁𝑗𝑘(𝑤)|2 on 𝜕𝔸 is constant.
We next apply a slightly more complex version of this argument to the case

of 𝝁𝑗𝑘,𝑈𝝁𝑙𝑚,𝑈 where 𝑘 ≠ 𝑚. Let 𝐴′ ∶= diag(𝑎1,… , 𝑎𝑛) be the unitary matrix
determining 𝑆∗𝜌(1)𝑆. We can then define the concomitant function 𝐹𝑛,C(𝑧)
from section 3.1.
As in the previous case, we canmap the section𝐹𝑛,𝐂(ln𝑈(𝑤)) over to a section

of the bundle ℬ(𝔸, 𝜏)|𝜕𝔸 using Ψ:

Ψ(𝐹𝑛,𝐂(ln𝑈 (𝑤))) = 𝝁𝑈(𝑤)𝐹𝑛,𝐂(ln𝑈 (𝑤))𝝁𝑈(𝑤)∗

= (
𝑛∑

𝑞=1
𝑚=1
𝑞<𝑚

𝐶𝑞𝑚𝝁𝑗𝑞,𝑈(𝑤)𝝁𝑘𝑚,𝑈(𝑤)𝑒𝐾𝑞𝑚ln𝑈(𝑤)
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+
𝑛∑

𝑞=1
𝑚=1
𝑚<𝑞

𝐶𝑞𝑚𝝁𝑗𝑞,𝑈(𝑤)𝝁𝑘𝑚,𝑈(𝑤)𝑒−𝐾𝑚𝑞 ln𝑈(𝑤))
𝑗,𝑘∈[𝑛]

For each choice of (𝐶𝑞𝑚)𝑞𝑚, the (𝑗, 𝑘) entry of the matrix in the above equation
corresponds to a modulus automorphic function on 𝜕�̃�. Suppose 𝑟 < 𝑠 is fixed,
and pick the choice 𝐶𝑟𝑠 = 1, 𝐶𝑞𝑚 = 0 else. Then the (𝑗, 𝑘) entry of the matrix
above is 𝑔𝑟𝑠(𝑧) ∶= 𝝁𝑗𝑟,𝑈(𝑒𝑧)𝝁𝑘𝑠,𝑈(𝑒𝑧)𝑒𝐾𝑟𝑠𝑧. Suppose 𝑠 < 𝑟 is fixed, and pick
the choice 𝐶𝑟𝑠 = 1, 𝐶𝑞𝑚 = 0 else. Then the (𝑗, 𝑘) entry of the matrix above is
ℎ̃𝑠𝑟(𝑧) ∶= 𝝁𝑗𝑟,𝑈(𝑒𝑧)𝝁𝑘𝑠,𝑈(𝑒𝑧)𝑒−𝐾𝑠𝑟𝑧.
The functions 𝑔𝑟𝑠, ℎ̃𝑠𝑟 also must be restrictions to 𝜕�̃� of functions that are

analytic on 𝐷.
Now, 𝑒±𝐾𝑖𝑗𝑧 are already modulus automorphic functions, so the products

𝑔𝑘𝑚(𝑧)𝑒−𝐾𝑘𝑚𝑧 and ℎ̃𝑚𝑘(𝑧)𝑒𝐾𝑚𝑘𝑧 are also modulus automorphic (with a differ-
ent multiplier), and will still be restrictions of functions that are analytic on
𝐷. Thus for 𝑘 ≠ 𝑚, we still have that 𝝁𝑗𝑘,𝑈(𝑒𝑧)𝝁𝑙𝑚,𝑈(𝑒𝑧) are analytic as well.
Since the order of the pairs (𝑗, 𝑘) and (𝑙, 𝑚) doesn’t matter, we also have that the
conjugate function 𝝁𝑗𝑘,𝑈(𝑒𝑧)𝝁𝑙𝑚,𝑈(𝑒𝑧) is also a modulus automorphic function
that is the restriction of a function analytic on 𝐷. We can again use a standard
argument on �̃� to conclude that 𝝁𝑗𝑘(𝑤)𝝁𝑙𝑚(𝑤) is a constant function on 𝜕𝔸,
concluding the final step (5) of our proof. □

Corollary 3.4. The algebras Γℎ(𝔸,ℬ(𝔸, 𝜌)) over the annulus are classified, up
to complete isometric isomorphism, by restricted flat bundle equivalence.

4. Generalization to other domains in the commuting case

In our main theorem, 𝑅 is an annulus in the complex plane. This mostly
comes into play when analyzing the representation 𝜌 ∶ 𝜋1(𝑅) → 𝑃𝑈𝑛(ℂ); for
an annulus the fundamental group 𝜋1(𝑅) is isomorphic to ℤ, thus 𝜌 is deter-
mined by 𝜌(1). Suppose instead we consider a more general finitely-bordered
and smoothly-bordered planar domain 𝑅 with 𝑏 boundary components. We
may still consider complex functions on 𝑅, and the algebras 𝐴(𝑅), Γℎ(𝑅,ℬ(𝑅)),
etc., like in [12].
For such a bordered planar domain, 𝜋1(𝑅) is a free group on 𝑏−1 generators,

𝔽𝑏−1. Therefore, 𝜌 will be determined by where 𝜌 sends the generators of 𝔽𝑏−1.
As before, given a choice of base points and paths one can build the 𝜌-induced
representation of Π1(𝜕𝑅).
Understanding when the 𝜌- and 𝜌′-induced representation are unitarily con-

jugate will be, in the most general case, a complex problem. However, this
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problem can be simplified if one assumes that the generators are sent to ele-
ments in 𝑃𝑈𝑛(ℂ) that can be represented as conjugation by commuting matri-
ces 𝐴1,… , 𝐴𝑏−1 ∈ 𝑈𝑛(ℂ). Here we will briefly sketch how one can rework the
calculations in the previous section to treat this case.
First note that the universal covering space of𝑅 can still be viewed as a subset

of the closed disk 𝐷, which we continue to call �̃�. Moreover, the Lebesgue
measure of the boundary inside the boundary circle is still 2𝜋 [20, Ch. XI]. We
will also still be able to apply the remark after Proposition 3.2.
Let us begin with Step 1 in our proof of Proposition 3.2. Because of our com-

muting assumption, the matrices 𝐴1,… , 𝐴𝑏−1 can be simultaneously diagonal-
ized by a unitary. Thuswemay relate the sections of a bundleℬ(𝑅, 𝜌)with (con-
jugated) sections of a bundleℬ(𝑅, 𝜌′)where 𝜌′ takes the generators of 𝜋1(𝑅) to
diagonal unitaries 𝐴′

1, 𝐴
′
2,… , 𝐴

′
𝑏−1.

To generate concomitants (and thus sections) with respect to ℬ(𝑅, 𝜌′) we
need to consider analogues of the functions 𝐹𝑪 , 𝐹𝑫 ∶ �̃� → 𝑀𝑛(ℂ). Replace
the invertible modulus automorphic functions built by the exponentials on the
infinite strip by continuous holomorphic functions 𝑓𝑖 ∶ �̃� → ℂ satisfying 𝑓(𝑔𝑗 ⋅
𝑧) = 𝑢𝑖𝑗 ⋅ 𝑓(𝑧) where |𝑢𝑖𝑗| = 1 and the value of 𝑢𝑖𝑗 depends on the eigenvalues
of the representing matrix 𝐴′

𝑗 for the generator 𝑔𝑗 ∈ 𝔽𝑏−1.
Next, we recall that even in the more general setting of a finitely bordered

planar domain 𝑅, we still may study the modulus automorphic functions [1].
Making these adjustments, we may follow the proofs in Section 3 through to
conclude that bundles ℬ(𝑅, 𝜌)|𝜕𝑅 and ℬ(𝑅, 𝜏)|𝜕𝑅 coming from 𝜌, 𝜏 with com-
muting generator images are restricted flat equivalent if and only if the algebras
Γℎ(𝑅,ℬ(𝑅, 𝜌)) and Γℎ(𝑅,ℬ(𝑅, 𝜏)) are completely isometrically isomorphic.
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