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Boundary behaviour of Neumann harmonic
functions with Lebesuge, Hardy and BMO

traces in the upper half-space

Jiahe Chen, Bo Li, Bolin Ma, Yinhuizi Wu
and Chao Zhang

Abstract. This paper is concerned with the boundary value problem for
the elliptic equation of Neumann type on the upper half-space ℝ𝑛 × ℝ+

⎧

⎨

⎩

−𝜕2𝑡 𝑢(𝑥, 𝑡) − div𝐴∇𝑢(𝑥, 𝑡) = 0, 𝑥 ∈ ℝ𝑛, 𝑡 > 0,

𝜕𝑥𝑛𝑢(𝑥
′, 0, 𝑡) = 0, 𝑥′ ∈ ℝ𝑛−1, 𝑡 > 0,

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑥 ∈ ℝ𝑛,

where the matrix 𝐴 = (𝑎𝑖𝑗(𝑥))𝑛×𝑛 is even with respect to the 𝑛-th variable
and satisfies the ellipticity condition. By using the reflection method from
Strauss’s book [PDEs. An introduction, 2ed, 2008], we derive that the solu-
tion 𝑢 to the above equation can be represented as the Poisson integral (with
an additional perturbation) of the initial value 𝑢0. As applications, the real-
variable characterizations of Neumann harmonic functions with Lebesuge,
Hardy and BMO traces are established, respectively, via the gluing technol-
ogy. Finally, the boundary value problem for the parabolic equation is also
considered.
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1. Introduction
Inmathematics,mathematical physics and the theory of stochastic processes,

a harmonic function is a twice continuously differentiable function 𝑓 ∶ Ω → ℝ

(Ω is an open subset of ℝ𝑛) which satisfies Laplace’s equation, i.e.,

𝜕2𝑓

𝜕𝑥2
1

+
𝜕2𝑓

𝜕𝑥2
2

+⋯+
𝜕2𝑓

𝜕𝑥2𝑛

= 0.

Harmonic functions that arise in physics are determined by their singularities
and boundary conditions (such as Dirichlet/Neumann boundary condition).
The Dirichlet problem for Laplace’s equation consists of finding a harmonic

function𝑓 on some domainΩ such that it takes prescribed values on the bound-
ary ofΩ. Whereas, the Neumann boundary condition specifies not the function
𝑓 itself on the boundary ofΩ (not like the Dirichlet case), but its normal deriv-
ative. Physically, this corresponds to the construction of a potential for a vector
field whose effect is known at the boundary of Ω alone.
In his book [38], Strauss handled the boundary value problem for the heat

equation of Neumann type on the half-line (0,∞)

⎧

⎨

⎩

𝜕𝑡𝑤(𝑥, 𝑡) − 𝜕2𝑥(𝑥, 𝑡) = 0, 0 < 𝑥, 𝑡 < ∞,

𝜕𝑥𝑤(0, 𝑡) = 0, 0 < 𝑡 < ∞,

𝑤(𝑥, 0) = 𝜙(𝑥), 0 < 𝑥 < ∞.

By using the reflectionmethod, he end up this problemwith an explicit formula
for 𝑤(𝑥, 𝑡). It is

𝑤(𝑥, 𝑡) = ∫

∞

0

1
√
4𝜋𝑡

[exp (−
|𝑥 − 𝑦|2

4𝑡
) + exp (−

|𝑥 + 𝑦|2

4𝑡
)] 𝜙(𝑦)𝑑𝑦.

For the 𝑛-dimension case, we refer the readers to [1, 4, 6, 13, 29] formore details
about this subject.
Inspired by [38], we consider the similar problem for the elliptic equation

on ℝ𝑛 × ℝ+. We derive that a Neumann harmonic function 𝑢(𝑥, 𝑡) defined on
ℝ𝑛 ×ℝ+ can be represented as the Poisson integral (with an additional pertur-
bation) of the initial value 𝑢(𝑥, 0); see Section 2 for more details. This is sim-
ilar to the classical case. As applications, the real-variable characterizations
of Neumann harmonic functions with the Lebesgue, Hardy and BMO traces
are considered, respectively. Precisely, when 1 < 𝑝 < ∞, we prove that, the
initial value is in 𝐿𝑝(ℝ𝑛) if and only if the solution to the elliptic equation of
Neumann type is in 𝐿𝑝(ℝ𝑛) uniformly in the time variable; see Theorem 4.1
below. When the Neumann boundary condition is removed, this result can re-
duce to the classical one; see [37, Theorems 2.1 & 2.5] or Appendix A below.
However, our method is totally different from the that used in [37]. With the
help of some new observations from [40], we split an 𝐿𝑝-function into two even
function and glue them together in a sense. Then the Neumann problem can
reduce to the classical case; see the proof of Theorem 4.1 for more details. For
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the endpoint case 𝑝 = 1 or 𝑝 = ∞, it is well known that the Hardy space
𝐻1(ℝ𝑛) or BMO space BMO(ℝ𝑛) shares similar properties with the Lebesgue
space 𝐿1(ℝ𝑛) or 𝐿∞(ℝ𝑛), and it often serves as a substitute for it. For example,
the classical singular integrals do not map 𝐿1(ℝ𝑛) to 𝐿1(ℝ𝑛) and do not map
𝐿∞(ℝ𝑛) to 𝐿∞(ℝ𝑛), but 𝐻1(ℝ𝑛) to 𝐿1(ℝ𝑛) and 𝐿∞(ℝ𝑛) to BMO(ℝ𝑛); see [16].
And, in many instances, interpolation𝐻1-𝐿𝑝 or 𝐿𝑝-BMOworks just as well 𝐿1-
𝐿𝑝 or 𝐿𝑝-𝐿∞. For the left endpoint case 𝑝 = 1, we prove that, the initial value
is in the Hardy space related to the Neumann problem if and only if the maxi-
mal function of the solution to the elliptic equation of Neumann type is in the
Lebesgue space; see Theorem 5.1 below. For the other endpoint case 𝑝 = ∞,
there exists a natural and deep connection between the Carleson measure and
the BMO function; indeed, certain types of measures defined in terms of func-
tions are Carleson if and only if the underlying functions satisfy the BMO con-
dition. Inspired by this and [11, 14, 18, 40], we prove that, the initial value is in
the BMO space related to the Neumann problem if and only if the solution to
the elliptic equation ofNeumann type satisfies a certainCarleson condition; see
Theorem 6.1 below. In fact, we consider the more general Morrey-Campanato
space related to the Neumann problem as the initial value space. It is worth
mentioning that Zhang-Yang [40] solved the Neumann problem for the heat
equation on ℝ𝑛 × ℝ+ with the BMO initial value. For more conclusions about
the Dirichlet problem for the heat/Laplace equation, we refer the readers to
[10, 12, 17, 18, 26, 31, 33, 34, 39] and references therein.
The present paper is built up as follows. In the next section, we first find the

solution formula for the elliptic equation of Neumann type, and then provide
some properties for the Poisson kernel related to the Neumann problem. In
Section 3, we make use of the classical function classes to describe the function
classes related to the Neumann problem. With the help of the conclusions in
Section 3, we study the Neumann harmonic functions with Lebesgue, Hardy
and BMO traces, respectively, in Sections 4-6. Some remarks are then presented
in the final section.
Finally, wemake some conventions on notation. For a function 𝑓 defined on

ℝ𝑛, we denote by 𝑓± the restriction of 𝑓 toℝ𝑛. For every 𝑥 = (𝑥′, 𝑥𝑛) ∈ ℝ𝑛, set
𝑥̃ = (𝑥′, −𝑥𝑛). Let 𝑄 = 𝑄(𝑥𝑄, 𝑟𝑄) be the open cube centered at 𝑥𝑄 of sidelength
2𝑟𝑄. Denote the reflection of 𝑄 across 𝜕ℝ𝑛

+ by 𝑄 = {(𝑥′, 𝑥𝑛) ∈ ℝ𝑛 ∶ (𝑥′, −𝑥𝑛) ∈

𝑄}. Let 𝑄+ = 𝑄 ∩ ℝ𝑛
+ and 𝑄− = 𝑄 ∩ ℝ𝑛

−. If both 𝑄+ and 𝑄− are not empty, we
then define

𝑄+ = {(𝑥′, 𝑥𝑛) ∈ ℝ𝑛 ∶ 𝑥′ ∈ 𝑄 ∩ ℝ𝑛−1, 0 < 𝑥𝑛 < 2𝑟𝑄}

and

𝑄− = {(𝑥′, 𝑥𝑛) ∈ ℝ𝑛 ∶ 𝑥′ ∈ 𝑄 ∩ ℝ𝑛−1, −2𝑟𝑄 < 𝑥𝑛 < 0}.

The letter 𝐶 (or 𝑐) will stand for a positive constant that may vary from line to
line but will remain independent of the main variables.
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2. Neumann harmonic function & Poisson semigroup
2.1. Solution formula for the elliptic equation of Neumann type. Let

𝐴 = 𝐴(𝑥) = (𝑎𝑖𝑗(𝑥))𝑛×𝑛

be an 𝑛×𝑛matrix of real symmetric, boundedmeasurable coefficients, defined
onℝ𝑛, and satisfy the ellipticity (or “accretivity”) condition, namely, there exist
a constant Λ ≥ 1 such that

Λ−1|𝜉|2 ≤ 𝑎𝑖𝑗𝜉𝑖𝜉𝑗 ≤ Λ|𝜉|2

for all 𝜉 = (𝜉1,⋯ , 𝜉𝑛) ∈ ℝ𝑛. We define a second order elliptic operator

𝐿𝑓 = −div(𝐴∇𝑓) = −𝜕𝑥𝑖 (𝑎
𝑖𝑗𝜕𝑥𝑗𝑓),

which we interpret in the usual weak sense via a sesquilinear form.
Consider the elliptic equation of the form

⎧

⎨

⎩

−𝜕2
𝑡
𝑢(𝑥, 𝑡) + 𝐿𝑢(𝑥, 𝑡) = 0, 𝑥 ∈ ℝ𝑛, 𝑡 > 0,

𝜕𝑥𝑛𝑢(𝑥
′, 0, 𝑡) = 0, 𝑥′ ∈ ℝ𝑛−1, 𝑡 > 0,

𝑢(𝑥′, 𝑥𝑛, 0) = 𝑓(𝑥′, 𝑥𝑛), (𝑥′, 𝑥𝑛) ∈ ℝ𝑛,

(2.1)

with mixed boundary value on ℝ𝑛
+ × ℝ+ as in the following Picture 1.

Picture 1

A solution 𝑢(𝑥, 𝑡) to (2.1) is called a harmonic function onℝ𝑛×ℝ+ with Dirich-
let condition at ℝ𝑛 × {0} and Neumann condition at ℝ𝑛−1 × {0} × ℝ+. If the
Dirichlet boundary condition is removed, we shall call this solution 𝑢 as the
Neumann harmonic function onℝ𝑛 ×ℝ+. Due to the Neumann condition, the
matrix 𝐴 is always assumed to be even with respect to the 𝑛-th variable. 1

1In the case of the Dirichlet condition atℝ𝑛−1×{0}×ℝ+, thematrix𝐴 is also even; see Section
7 for more details.
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We are looking for a solution formula for (2.1). In fact, we shall reduce this
problem to the classical initial problem for the elliptic PDE. Our method re-
lies on the idea of an even extension from [38, Chapter 3]. Any function 𝜓(𝑠)
that satisfies 𝜓(−𝑠) = 𝜓(𝑠) is called an even function. This just means that its
graph 𝑦 = 𝜓(𝑠) is symmetric with respect to the 𝑦-axis. Thus, the left and right
halves of the graph are mirror images of each other. Moreover, since the Neu-
mann boundary condition is imposed on the 𝑛-th variable 𝑥𝑛, the last row of
the matrix

𝐴 =

⎛

⎜
⎜

⎝

𝑎11 𝑎12 ⋯ 𝑎1𝑛

𝑎21 𝑎22 ⋯ 𝑎2𝑛

⋮ ⋮ ⋱ ⋮

𝑎𝑛1 𝑎𝑛2 ⋯ 𝑎𝑛𝑛

⎞

⎟
⎟

⎠

is very important to us, and hence denote it by 𝛽 = (𝑎𝑛1 𝑎𝑛2 ⋯ 𝑎𝑛𝑛).
Now we split the elliptic equation (2.1) into the positive part

⎧

⎨

⎩

−𝜕2
𝑡
𝑢+(𝑥, 𝑡) + 𝐿𝑢+(𝑥, 𝑡) = 0, 𝑥 ∈ ℝ𝑛

+, 𝑡 > 0,

𝜕𝑥𝑛𝑢+(𝑥
′, 0, 𝑡) = 0, 𝑥′ ∈ ℝ𝑛−1, 𝑡 > 0,

𝑢+(𝑥
′, 𝑥𝑛, 0) = 𝑓+(𝑥

′, 𝑥𝑛), 𝑥′ ∈ ℝ𝑛−1, 𝑥𝑛 ≥ 0,

(2.2)

and the negative part

⎧

⎨

⎩

−𝜕2
𝑡
𝑢−(𝑥, 𝑡) + 𝐿𝑢−(𝑥, 𝑡) = 0, 𝑥 ∈ ℝ𝑛

−, 𝑡 > 0,

𝜕𝑥𝑛𝑢−(𝑥
′, 0, 𝑡) = 0, 𝑥′ ∈ ℝ𝑛−1, 𝑡 > 0,

𝑢−(𝑥
′, 𝑥𝑛, 0) = 𝑓−(𝑥

′, 𝑥𝑛), 𝑥′ ∈ ℝ𝑛−1, 𝑥𝑛 ≤ 0.

(2.3)

Since initial datum 𝑓+ of our problem (2.2) is defined only for ℝ𝑛
+, let 𝑓+,𝑒 be

its unique even extension to the whole space ℝ𝑛, i,e.,

𝑓+,𝑒(𝑥) = {
𝑓+(𝑥), 𝑥 ∈ ℝ𝑛

+,

𝑓+(𝑥̃), 𝑥 ∈ ℝ𝑛
−.

We shall call the following elliptic equation as the even extension of (2.2)

{
−𝜕2

𝑡
𝑤(𝑥, 𝑡) + 𝐿𝑤(𝑥, 𝑡) = 0, 𝑥 ∈ ℝ𝑛, 𝑡 > 0,

𝑤(𝑥, 0) = 𝑓+,𝑒(𝑥), 𝑥 ∈ ℝ𝑛.
(2.4)

Due to the elliptic PDE theory, the solution to (2.4) is given via the Poisson
formula

𝑤(𝑥, 𝑡) = exp(−𝑡
√
𝐿)𝑓+,𝑒(𝑥) = ∫

ℝ𝑛

𝑝𝐿(𝑡, 𝑥, 𝑦)𝑓+,𝑒(𝑦)𝑑𝑦, (2.5)

where exp(−𝑡
√
𝐿) denotes the Poisson semigroup and 𝑝𝐿(𝑡, 𝑥, 𝑦) is its integral

kernel. To solve the elliptic equation (2.2), we should introduce the following
additional hypothesis on matrix 𝐴.
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Definition 2.1. A matrix 𝐴 on ℝ𝑛 is said to satisfy the admissible harmonic
condition if, for each harmonic function 𝑤(𝑥, 𝑡) on ℝ𝑛 × ℝ+, it holds

∫
ℝ𝑛×ℝ+

𝛽(∇𝑤𝜕𝑥𝑛𝜑 + ∇𝜑𝜕𝑥𝑛𝑤)𝑑𝑥𝑑𝑡 = 2 ∫
ℝ𝑛×ℝ+

𝑎𝑛𝑛𝜕𝑥𝑛𝑤𝜕𝑥𝑛𝜑𝑑𝑥𝑑𝑡,

for any 𝜑 ∈ 𝐶∞
0
(ℝ𝑛 × ℝ+).

Example 2.2. Evidently, if 𝑎𝑛1 = ⋯𝑎𝑛𝑛−1 = 0, then

𝐴 =

⎛

⎜
⎜

⎝

𝑎11 ⋯ 𝑎1𝑛−1 0

⋮ ⋱ ⋮ ⋮

𝑎𝑛−11 ⋯ 𝑎𝑛−1𝑛−1 0

0 ⋯ 0 𝑎𝑛𝑛

⎞

⎟
⎟

⎠

is an admissible harmonic matrix.

For some technical reasons, the matrix 𝐴 is always assumed to satisfy the
admissible harmonic condition.
We claim the “restriction”

𝑢+(𝑥
′, 𝑥𝑛, 𝑡) = 𝑤(𝑥′, 𝑥𝑛, 𝑡), 𝑥𝑛 ≥ 0, (2.6)

will be the unique solution of our problem (2.2). There is no difference at all
between 𝑢+ and 𝑤 except that negative values of 𝑥𝑛 are not considered when
discussing 𝑢+. Note first that the solution 𝑤(𝑥, 𝑡) to (2.4) must also be an even
function with respect to 𝑥𝑛, i.e., one has

𝑤(𝑥, 𝑡) = 𝑤(𝑥̃, 𝑡) = 𝑤(𝑥′, −𝑥𝑛, 𝑡) = 𝑤(𝑥′, 𝑥𝑛, 𝑡) = 𝑤(𝑥, 𝑡).

Indeed, on the one hand, it holds

𝑤(𝑥, 0) = 𝑤(𝑥̃, 0) = 𝑓+,𝑒(𝑥̃, 0) = 𝑓+,𝑒(𝑥, 0) = 𝑤(𝑥, 0).

One the other hand, the admissible harmonic matrix tells us that, for each
smooth function 𝜑 on ℝ𝑛 × ℝ+ with compact support,

∫
ℝ𝑛×ℝ+

𝑎𝑖𝑗𝜕𝑥𝑖𝑤𝜕𝑥𝑗𝜑𝑑𝑥𝑑𝑡 + ∫
ℝ𝑛×ℝ+

𝜕𝑡𝑤𝜕𝑡𝜑𝑑𝑥𝑑𝑡

= ∫
ℝ𝑛×ℝ+

𝑛−1∑

𝑖,𝑗=1

𝑎𝑖𝑗𝜕𝑥𝑖𝑤𝜕𝑥𝑗𝜑𝑑𝑥𝑑𝑡 + ∫
ℝ𝑛×ℝ+

𝑎𝑛𝑛𝜕𝑥𝑛𝑤𝜕𝑥𝑛𝜑𝑑𝑥𝑑𝑡

+ ∫
ℝ𝑛×ℝ+

𝑛−1∑

𝑖=1

𝑎𝑖𝑛𝜕𝑥𝑖𝑤𝜕𝑥𝑛𝜑𝑑𝑥𝑑𝑡 + ∫
ℝ𝑛×ℝ+

𝑛−1∑

𝑗=1

𝑎𝑛𝑗𝜕𝑥𝑛𝑤𝜕𝑥𝑗𝜑𝑑𝑥𝑑𝑡

+ ∫
ℝ𝑛×ℝ+

𝜕𝑡𝑤𝜕𝑡𝜑𝑑𝑥𝑑𝑡

= ∫
ℝ𝑛×ℝ+

𝑛−1∑

𝑖,𝑗=1

𝑎𝑖𝑗𝜕𝑥𝑖𝑤𝜕𝑥𝑗𝜑𝑑𝑥𝑑𝑡 + ∫
ℝ𝑛×ℝ+

𝑎𝑛𝑛𝜕𝑥𝑛𝑤𝜕𝑥𝑛𝜑𝑑𝑥𝑑𝑡
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− ∫
ℝ𝑛×ℝ+

𝑛−1∑

𝑖=1

𝑎𝑖𝑛𝜕𝑥𝑖𝑤𝜕𝑥𝑛𝜑𝑑𝑥𝑑𝑡 − ∫
ℝ𝑛×ℝ+

𝑛−1∑

𝑗=1

𝑎𝑛𝑗𝜕𝑥𝑛𝑤𝜕𝑥𝑗𝜑𝑑𝑥𝑑𝑡

+ ∫
ℝ𝑛×ℝ+

𝜕𝑡𝑤𝜕𝑡𝜑𝑑𝑥𝑑𝑡

= ∫
ℝ𝑛×ℝ+

𝑎𝑖𝑗𝜕𝑥𝑖𝑤𝜕𝑥𝑗𝜑𝑑𝑥𝑑𝑡 + ∫
ℝ𝑛×ℝ+

𝜕𝑡𝑤𝜕𝑡𝜑𝑑𝑥𝑑𝑡

− 2 ∫
ℝ𝑛×ℝ+

𝑛−1∑

𝑖=1

𝑎𝑖𝑛𝜕𝑥𝑖𝑤𝜕𝑥𝑛𝜑𝑑𝑥𝑑𝑡 − 2 ∫
ℝ𝑛×ℝ+

𝑛−1∑

𝑗=1

𝑎𝑛𝑗𝜕𝑥𝑛𝑤𝜕𝑥𝑗𝜑𝑑𝑥𝑑𝑡

= −2 ∫
ℝ𝑛×ℝ+

[
𝛽(∇𝑤𝜕𝑥𝑛𝜑 + ∇𝜑𝜕𝑥𝑛𝑤) − 2𝑎𝑛𝑛𝜕𝑥𝑛𝑤𝜕𝑥𝑛𝜑

]
𝑑𝑥𝑑𝑡 = 0,

which yields𝑤(𝑥̃, 𝑡) = 𝑤(𝑥, 𝑡). Then, differentiation shows that its derivative is
an odd function. So automatically, its slope at the origin is zero: 𝜕𝑥𝑛𝑢+(𝑥

′, 0, 𝑡) =

𝜕𝑥𝑛𝑤(𝑥
′, 0, 𝑡) = 0, i.e., the Neumann boundary condition is satisfied. Moreover,

𝑢+ solves the PDE as well as the initial condition for 𝑥𝑛 ≥ 0, simply because it
is equal to 𝑤 for 𝑥𝑛 ≥ 0, and 𝑤 satisfies the same PDE for all 𝑥𝑛 and the same
initial condition for 𝑥𝑛 ≥ 0.
The explicit formula for 𝑢+(𝑥, 𝑡) is easily deduced from (2.5) and (2.6). On

the one hand, by the Poisson formula we have

𝑤(𝑥, 𝑡) = ∫
ℝ𝑛
+

𝑝𝐿(𝑡, 𝑥, 𝑦)𝑓+(𝑦)𝑑𝑦 + ∫
ℝ𝑛
−

𝑝𝐿(𝑡, 𝑥, 𝑦)𝑓+(𝑦̃)𝑑𝑦

= ∫
ℝ𝑛
+

𝑝𝐿(𝑡, 𝑥, 𝑦)𝑓+(𝑦)𝑑𝑦 + ∫
ℝ𝑛
+

𝑝𝐿(𝑡, 𝑥, 𝑦̃)𝑓+(𝑦)𝑑𝑦

= ∫
ℝ𝑛
+

[𝑝𝐿(𝑡, 𝑥, 𝑦) + 𝑝𝐿(𝑡, 𝑥, 𝑦̃)]𝑓+(𝑦)𝑑𝑦.

On the other hand, the fact 𝑤(𝑥̃, 𝑡) = 𝑤(𝑥, 𝑡) yields

𝑝𝐿(𝑡, 𝑥̃, 𝑦) + 𝑝𝐿(𝑡, 𝑥̃, 𝑦̃) = 𝑝𝐿(𝑡, 𝑥, 𝑦) + 𝑝𝐿(𝑡, 𝑥, 𝑦̃) (2.7)

which further implies

𝑝𝐿(𝑡, 𝑦̃, 𝑥) + 𝑝𝐿(𝑡, 𝑦̃, 𝑥̃) = 𝑝𝐿(𝑡, 𝑦, 𝑥) + 𝑝𝐿(𝑡, 𝑦, 𝑥̃).

From this identity and the symmetry of the Poisson kernel (which is guaranteed
by the self-adjoint of 𝐿), it follows

𝑝𝐿(𝑡, 𝑥, 𝑦̃) + 𝑝𝐿(𝑡, 𝑥̃, 𝑦̃) = 𝑝𝐿(𝑡, 𝑥, 𝑦) + 𝑝𝐿(𝑡, 𝑥̃, 𝑦). (2.8)

By comparing (2.7) and (2.8), we arrive at

𝑝𝐿(𝑡, 𝑥, 𝑦̃) = 𝑝𝐿(𝑡, 𝑥̃, 𝑦).
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Therefore, for all 𝑥 ∈ ℝ𝑛
+, it holds

𝑢+(𝑥, 𝑡) = ∫
ℝ𝑛
+

[𝑝𝐿(𝑡, 𝑥, 𝑦) + 𝑝𝐿(𝑡, 𝑥, 𝑦̃)] 𝑓+(𝑦)𝑑𝑦

= ∫
ℝ𝑛
+

[𝑝𝐿(𝑡, 𝑥, 𝑦) + 𝑝𝐿(𝑡, 𝑥̃, 𝑦)]𝑓+(𝑦)𝑑𝑦,

which is the complete solution formula for (2.2).
For the negative part, we can use the similar arguments above to obtain that,

for any 𝑥 ∈ ℝ𝑛
−,

𝑢−(𝑥, 𝑡) = ∫
ℝ𝑛
−

[𝑝𝐿(𝑡, 𝑥, 𝑦) + 𝑝𝐿(𝑡, 𝑥, 𝑦̃)] 𝑓−(𝑦)𝑑𝑦

= ∫
ℝ𝑛
−

[𝑝𝐿(𝑡, 𝑥, 𝑦) + 𝑝𝐿(𝑡, 𝑥̃, 𝑦)]𝑓−(𝑦)𝑑𝑦,

which is the complete solution formula for (2.3).
Finally, the solution to (2.1) can be reads as

𝑢(𝑥, 𝑡) = ∫
ℝ𝑛

[𝑝𝐿(𝑡, 𝑥, 𝑦) + 𝑝𝐿(𝑡, 𝑥̃, 𝑦)]𝑓(𝑦)𝑑𝑦

via the gluing the positive part and the negative part.

2.2. Poisson semigroup of Neumann type. Recall the Neumann boundary
problem (2.2) and then denote this corresponding Neumann elliptic operator
by 𝐿𝑁+

. Similarly we can define the Neumann elliptic operator 𝐿𝑁−
on ℝ𝑛

−.
The Neumann elliptic operators 𝐿𝑁±

are positive-definite and self-adjoint
operators. From the spectral theorem one can define the Poisson semigroups
{exp(−𝑡

√
𝐿𝑁±

)}𝑡>0 generated by these operators 𝐿𝑁±
. Denote by 𝑝𝐿𝑁± (𝑡, 𝑥, 𝑦)

the corresponding integral kernels. Based on the arguments above, we see that

𝑝𝐿𝑁±
(𝑡, 𝑥, 𝑦) = 𝑝𝐿(𝑡, 𝑥, 𝑦) + 𝑝𝐿(𝑡, 𝑥̃, 𝑦), 𝑥, 𝑦 ∈ ℝ𝑛

±.

Note that, for each function 𝑓 on ℝ𝑛
±, we have

exp(−𝑡
√
𝐿)𝑓𝑒(𝑥) =

⎧

⎨

⎩

exp(−𝑡
√
𝐿𝑁±

)𝑓(𝑥), 𝑥 ∈ ℝ𝑛
±, 𝑡 > 0,

exp(−𝑡
√
𝐿𝑁±

)𝑓(𝑥̃), 𝑥 ∈ ℝ𝑛
∓, 𝑡 > 0.

(2.9)

Now let𝐿𝑁 be theuniquely determinedunbounded operator acting on𝐿2(ℝ𝑛)

such that
(𝐿𝑁𝑓)± = 𝐿𝑁±

𝑓±

for all 𝑓 ∶ ℝ𝑛 → ℝ satisfying 𝑓± ∈ 𝑊1,2(ℝ𝑛
±). Then 𝐿𝑁 is a positive self-adjoint

operator and there holds

(exp(−𝑡
√
𝐿𝑁)𝑓)± = exp(−𝑡

√

𝐿𝑁±
)𝑓±.
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The Poisson kernel of exp(−𝑡
√
𝐿𝑁), denoted by 𝑝𝐿𝑁 (𝑡, 𝑥, 𝑦), is then given as

𝑝𝐿𝑁 (𝑡, 𝑥, 𝑦) = [𝑝𝐿(𝑡, 𝑥, 𝑦) + 𝑝𝐿(𝑡, 𝑥̃, 𝑦)]𝜒[0,∞)(𝑥𝑛𝑦𝑛).

On the other hand, the Poisson kernel 𝑝𝐿𝑁 (𝑡, 𝑥, 𝑦) can be obtain through
Bochner’s subordination formula

𝑝𝐿𝑁 (𝑡, 𝑥, 𝑦) =
1
√
𝜋
∫

∞

0

(
𝑡2

4𝑠
)

1∕2

exp (−
𝑡2

4𝑠
) ℎ𝐿𝑁 (𝑠, 𝑥, 𝑦)

𝑑𝑠

𝑠
,

where ℎ𝐿𝑁 (𝑠, 𝑥, 𝑦) is the heat kernel associated to 𝐿𝑁 as

ℎ𝐿𝑁 (𝑠, 𝑥, 𝑦) = [ℎ𝐿(𝑠, 𝑥, 𝑦) + ℎ𝐿(𝑠, 𝑥̃, 𝑦)]𝜒[0,∞)(𝑥𝑛𝑦𝑛).

Indeed, one has

𝑝𝐿𝑁 (𝑡, 𝑥, 𝑦) =
1
√
𝜋
∫

∞

0

(
𝑡2

4𝑠
)

1∕2

exp (−
𝑡2

4𝑠
) ℎ𝐿(𝑠, 𝑥, 𝑦)

𝑑𝑠

𝑠
𝜒[0,∞)(𝑥𝑛𝑦𝑛)

+
1
√
𝜋
∫

∞

0

(
𝑡2

4𝑠
)

1∕2

exp (−
𝑡2

4𝑠
) ℎ𝐿(𝑠, 𝑥̃, 𝑦)

𝑑𝑠

𝑠
𝜒[0,∞)(𝑥𝑛𝑦𝑛)

= [𝑝𝐿(𝑡, 𝑥, 𝑦) + 𝑝𝐿(𝑡, 𝑥̃, 𝑦)]𝜒[0,∞)(𝑥𝑛𝑦𝑛).

Let us note that:
(i) All the operators 𝐿𝑁 and 𝐿𝑁±

are self-adjoint and they generate bounded
analytic positive semigroups acting on all 𝐿𝑝-spaces for 1 ≤ 𝑝 ≤ ∞.

(ii) Suppose that𝑝ℒ(𝑡, 𝑥, 𝑦) is the Poisson kernel corresponding to the semi-
group generated by one of the operators ℒ listed in (i). If the matrix 𝐴
satisfies ellipticity condition, then the kernel 𝑝ℒ(𝑡, 𝑥, 𝑦) and its time de-
rivative admit the Poisson upper bound

|𝑡𝑘𝜕𝑘
𝑡
𝑝ℒ(𝑡, 𝑥, 𝑦)| ≤ 𝐶(𝑘)

𝑡

(𝑡 + |𝑥 − 𝑦|)𝑛+1
, 𝑘 = 0, 1, 2,⋯

for all 𝑥, 𝑦 ∈ Ω, where Ω = ℝ𝑛 for 𝐿𝑁 , and Ω = ℝ𝑛
± for 𝐿𝑁±

.
(iii) If ℒ is one of the operators 𝐿𝑁 and 𝐿𝑁±

, then ℒ conserves probability,
that is

exp(−𝑡
√
ℒ)1 = 1.

3. Some function classes of Neumann type
In this section, we first introduce some function classes related to the Neu-

mann problem, and then describe them by the classical spaces.

3.1. Morrey space. The Morrey space was first introduced by Morrey [32] to
show that certain systems of PDEs had Hölder continuous solutions. We shall
establish an equivalent characterization of Morrey space (Lebesgue as a special
case), which can reduce our Neumann boundary problem to the classical one.
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Definition 3.1. For 0 < 𝑝 < ∞ and −1∕𝑝 ≤ 𝛼 < 0, a function 𝑓 ∈ 𝐿
𝑝

loc
(ℝ𝑛) is

said to be in 𝐿𝑝,𝛼(ℝ𝑛), the Morrey space, if

‖𝑓‖𝐿𝑝,𝛼(ℝ𝑛) = sup
𝑄⊂ℝ𝑛

1

|𝑄|𝛼
(
1

|𝑄|
∫
𝑄

|𝑓(𝑥)|𝑝𝑑𝑥)

1∕𝑝

< ∞.

For the endpoint case 𝛼 = −1∕𝑝, the Morrey space 𝐿𝑝,−1∕𝑝(ℝ𝑛) coincides
with the classical Lebesgue space 𝐿𝑝(ℝ𝑛).

Proposition 3.2. For 0 < 𝑝 < ∞ and−1∕𝑝 ≤ 𝛼 < 0, theMorrey space 𝐿𝑝,𝛼(ℝ𝑛)

can be described in the following way

𝐿𝑝,𝛼(ℝ𝑛) = {𝑓 ∈ 𝐿
𝑝

loc
(ℝ𝑛) ∶ 𝑓±,𝑒 ∈ 𝐿𝑝,𝛼(ℝ𝑛)}.

Proof. Pick a function 𝑓 ∈ 𝐿𝑝,𝛼(ℝ𝑛). For each 𝑄 ⊂ ℝ𝑛, we have

∫
𝑄

|𝑓+,𝑒(𝑥)|
𝑝𝑑𝑥 + ∫

𝑄

|𝑓−,𝑒(𝑥)|
𝑝𝑑𝑥

= ∫
𝑄+

|𝑓(𝑥)|𝑝𝑑𝑥 + ∫
𝑄−

|𝑓(𝑥̃)|𝑝𝑑𝑥 + ∫
𝑄+

|𝑓(𝑥̃)|𝑝𝑑𝑥 + ∫
𝑄−

|𝑓(𝑥)|𝑝𝑑𝑥

= ∫
𝑄

|𝑓(𝑥)|𝑝𝑑𝑥 + ∫
𝑄

|𝑓(𝑥)|𝑝𝑑𝑥 ≤ 2|𝑄|1+𝑝𝛼‖𝑓‖
𝑝

𝐿𝑝,𝛼(ℝ𝑛)
,

which yields 𝑓±,𝑒 ∈ 𝐿𝑝,𝛼(ℝ𝑛).
Conversely, assume 𝑓±,𝑒 ∈ 𝐿𝑝,𝛼(ℝ𝑛). For each 𝑄 ⊂ ℝ𝑛, it follows

∫
𝑄

|𝑓(𝑥)|𝑝𝑑𝑥 ≤ ∫
𝑄+

|𝑓+,𝑒(𝑥)|
𝑝𝑑𝑥 + ∫

𝑄−

|𝑓−,𝑒(𝑥)|
𝑝𝑑𝑥

≤ |𝑄+|
1+𝑝𝛼‖𝑓+,𝑒‖

𝑝

𝐿𝑝,𝛼(ℝ𝑛)
+ |𝑄+|

1+𝑝𝛼‖𝑓−,𝑒‖
𝑝

𝐿𝑝,𝛼(ℝ𝑛)

= |𝑄|1+𝑝𝛼‖𝑓+,𝑒‖
𝑝

𝐿𝑝,𝛼(ℝ𝑛)
+ |𝑄|1+𝑝𝛼‖𝑓−,𝑒‖

𝑝

𝐿𝑝,𝛼(ℝ𝑛)
,

which implies 𝑓 ∈ 𝐿𝑝,𝛼(ℝ𝑛). The proof is completed. □

3.2. Hardy space. The real-variable theory of Hardy space on the Euclidean
space ℝ𝑛 was initiated by Stein-Weiss [36], and then systematically developed
by Fefferman-Stein [14]. However, to solve the Neumann problem, we shall
recall the Hardy space associated with operator; see [3, 2, 6, 8, 19, 29, 30] for
examples.

Definition 3.3. A function 𝑓 ∈ 𝐿1(Ω) is said to be in 𝐻1
ℒ
(Ω), the Hardy space

associated with ℒ, if

‖𝑓‖𝐻1
ℒ
(Ω) = ∫

Ω

sup
𝑡>0

| exp(−𝑡
√
ℒ)𝑓(𝑥)|𝑑𝑥 < ∞,

where Ω = ℝ𝑛 for ℒ = 𝐿𝑁 , and Ω = ℝ𝑛
± for ℒ = 𝐿𝑁±

.
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Proposition 3.4. The Neumann Hardy space 𝐻1
𝐿𝑁
(ℝ𝑛) can be described in the

following way

𝐻1
𝐿𝑁
(ℝ𝑛) = {𝑓 ∈ 𝐿1(ℝ𝑛) ∶ 𝑓± ∈ 𝐻1

𝐿𝑁±
(ℝ𝑛

±)}

= {𝑓 ∈ 𝐿1(ℝ𝑛) ∶ 𝑓±,𝑒 ∈ 𝐻1(ℝ𝑛)},

where𝐻1(ℝ𝑛) denotes the classical Hardy space defined by themaximal function.

Proof. For each 𝑥 ∈ ℝ𝑛
±, note that

sup
𝑡>0

| exp(−𝑡
√
𝐿𝑁)𝑓(𝑥)| = sup

𝑡>0

| exp(−𝑡

√

𝐿𝑁±
)𝑓±(𝑥)|

= sup
𝑡>0

| exp(−𝑡
√
𝐿)𝑓±,𝑒(𝑥)|.

Therefore, we have

∫
ℝ𝑛

sup
𝑡>0

| exp(−𝑡
√
𝐿𝑁)𝑓(𝑥)|𝑑𝑥

= ∫
ℝ𝑛
+

sup
𝑡>0

| exp(−𝑡

√

𝐿𝑁+
)𝑓+(𝑥)|𝑑𝑥 + ∫

ℝ𝑛
−

sup
𝑡>0

| exp(−𝑡

√

𝐿𝑁−
)𝑓−(𝑥)|𝑑𝑥

= ∫
ℝ𝑛
+

sup
𝑡>0

| exp(−𝑡
√
𝐿)𝑓+,𝑒(𝑥)|𝑑𝑥 + ∫

ℝ𝑛
−

sup
𝑡>0

| exp(−𝑡
√
𝐿)𝑓−,𝑒(𝑥)|𝑑𝑥

=
1

2
∫
ℝ𝑛

sup
𝑡>0

| exp(−𝑡
√
𝐿)𝑓+,𝑒(𝑥)|𝑑𝑥 +

1

2
∫
ℝ𝑛

sup
𝑡>0

| exp(−𝑡
√
𝐿)𝑓−,𝑒(𝑥)|𝑑𝑥,

which completes the proof. □

3.3. BMO space. The space of functions of bounded mean oscillation (BMO)
naturally arises as the class of functions whose deviation from their means over
cubes is bounded. In [8, 9], Duong and Yan first introduce the BMO space as-
sociated with operator. We say that a locally integrable function 𝑓 is in the class
𝑀(Ω), if there exists 𝛽 > 0 such that

∫
Ω

|𝑓(𝑥)|

(1 + |𝑥|)𝑛+𝛽
𝑑𝑥 < ∞.

Definition 3.5. For −1∕2 < 𝛼 < 𝜃∕𝑛, 2 a function 𝑓 ∈ 𝑀(Ω) is said to be in
BMO

𝛼
ℒ(Ω), the Morrey-Campanato space associated with ℒ, if

‖𝑓‖BMO𝛼
ℒ(Ω)

= sup
𝑄⊂Ω

1

|𝑄|𝛼
(
1

|𝑄|
∫
𝑄

|𝑓(𝑥) − exp(−𝑟𝑄

√
ℒ)𝑓(𝑥)|2𝑑𝑥)

1∕2

< ∞,

where Ω = ℝ𝑛 for ℒ = 𝐿∕𝐿𝑁 , and Ω = ℝ𝑛
± for ℒ = 𝐿𝑁±

.

2Here 𝜃 denotes the Hölder index of the Poisson kernel 𝑝𝐿(𝑡, 𝑥, 𝑦).
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Note that (BMO𝛼
ℒ(Ω), ‖ ⋅ ‖BMO𝛼

ℒ(ℝ
𝑛)) is a semi-normed vector space, with the

semi-norm vanishing on the kernel space𝒦ℒ defined by

𝒦ℒ = {𝑓 ∈ 𝑀(Ω) ∶ exp(−𝑡
√
ℒ)𝑓 = 𝑓, ∀𝑡 > 0}.

In this paper, theMorrey-Campanato spaceBMO𝛼
ℒ(Ω) is understood to bemod-

ulo kernel space𝒦ℒ; see [5, 4, 9, 20, 29, 33] for more detials about this subject.
In order to analyze theseMorrey-Campanato spaces, let us introduce the fol-

lowing classical Campanato space. For −1∕2 < 𝛼 < 𝜃∕𝑛, the classical Cam-
panato space BMO𝛼

(ℝ𝑛) is defined as the class of all locally square integrable
functions 𝑓 endowed with the norm

‖𝑓‖BMO𝛼
(ℝ𝑛) = sup

𝑄⊂ℝ𝑛

1

|𝑄|𝛼
(
1

|𝑄|
∫
𝑄

|𝑓(𝑥) − 𝑓𝑄|
2𝑑𝑥)

1∕2

< ∞,

where 𝑓𝑄 stands for the mean (or average) of 𝑓 over 𝑄. In fact, when 𝛼 = 0,
the Campanato space BMO0 reduces to the BMO space BMO(ℝ𝑛) of John and
Nirenberg (see [22]), and when 0 < 𝛼 < 𝜃∕𝑛, it coincides with the Lipschitz
space Λ𝛼(ℝ𝑛) (see [14]). Moreover, when −1∕2 < 𝛼 < 0, the norm of a Cam-
panato function is equivalent to the following Morrey norm

‖𝑓‖𝐿2,𝛼(ℝ𝑛) = sup
𝑄⊂ℝ𝑛

1

|𝑄|𝛼
(
1

|𝑄|
∫
𝑄

|𝑓(𝑥)|2𝑑𝑥)

1∕2

;

see [32].
Therefore, the Campanato norm ‖ ⋅ ‖BMO𝛼

(ℝ𝑛) unifies the Morrey norm ‖ ⋅

‖𝐿2,𝛼(ℝ𝑛), the BMO norm ‖ ⋅ ‖BMO(ℝ𝑛) and the Lipschitz norm ‖ ⋅ ‖Λ𝛼(ℝ𝑛) by as-
signing different values to 𝛼.
The following proposition reveals the connection between the Neumann

Morrey-Campanato space and the classical one.

Proposition 3.6. Let −1∕2 < 𝛼 < 𝜃∕𝑛. The Neumann Morrey-Campanato
space BMO𝛼

𝐿𝑁
(ℝ𝑛) can be described in the following way

BMO
𝛼
𝐿𝑁
(ℝ𝑛) = {𝑓 ∈ 𝑀(ℝ𝑛) ∶ 𝑓± ∈ BMO

𝛼
𝐿𝑁±

(ℝ𝑛
±)}

= {𝑓 ∈ 𝑀(ℝ𝑛) ∶ 𝑓±,𝑒 ∈ BMO
𝛼
𝐿(ℝ

𝑛)}

= {𝑓 ∈ 𝐿1
loc
(ℝ𝑛) ∶ 𝑓±,𝑒 ∈ BMO

𝛼
(ℝ𝑛)}.

Proof. We divide our proof in following four steps
BMO

𝛼
𝐿𝑁
(ℝ𝑛)⟶ BMO

𝛼
𝐿𝑁±

(ℝ𝑛
±)

↖ ↙

BMO
𝛼
𝐿(ℝ

𝑛)⟷ BMO
𝛼
(ℝ𝑛)

Step 1. From BMO
𝛼
𝐿𝑁
(ℝ𝑛) to BMO𝛼

𝐿𝑁±
(ℝ𝑛

±).
Pick a function 𝑓 ∈ BMO

𝛼
𝐿𝑁
(ℝ𝑛), then we have

‖𝑓±‖BMO𝛼
𝐿𝑁±

(ℝ𝑛
±)
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= sup
𝑄⊂ℝ𝑛

±

1

|𝑄|𝛼
(
1

|𝑄|
∫
𝑄

|𝑓±(𝑥) − (exp(−𝑟𝑄

√
𝐿𝑁)𝑓)±(𝑥)|

2𝑑𝑥)

1∕2

= sup
𝑄⊂ℝ𝑛

±

1

|𝑄|𝛼
(
1

|𝑄|
∫
𝑄

|𝑓(𝑥) − exp(−𝑟𝑄

√
𝐿𝑁)𝑓(𝑥)|

2𝑑𝑥)

1∕2

≤ ‖𝑓‖BMO𝛼
𝐿𝑁
(ℝ𝑛),

which yields 𝑓± ∈ BMO
𝛼
𝐿𝑁±

(ℝ𝑛
±).

Step 2. From BMO
𝛼
𝐿𝑁±

(ℝ𝑛
±) to BMO

𝛼
𝐿(ℝ

𝑛).
Assume 𝑓+ ∈ BMO

𝛼
𝐿𝑁+

(ℝ𝑛
+). For every 𝑄 ⊂ ℝ𝑛, it is sufficient to show that

∫
𝑄

|𝑓+,𝑒(𝑥) − exp(−𝑟𝑄

√
𝐿)𝑓+,𝑒(𝑥)|

2𝑑𝑥 ≤ 2|𝑄|1+2𝛼‖𝑓+‖
2

BMO
𝛼
𝐿𝑁+

(ℝ𝑛
+)
.

If 𝑄+ ≠ ∅ and 𝑄− ≠ ∅, then there holds by (2.9) that

∫
𝑄

|𝑓+,𝑒(𝑥) − exp(−𝑟𝑄

√
𝐿)𝑓+,𝑒(𝑥)|

2𝑑𝑥

= ∫
𝑄+

|𝑓+(𝑥) − exp(−𝑟𝑄

√

𝐿𝑁+
)𝑓+(𝑥)|

2𝑑𝑥

+ ∫
𝑄−

|𝑓+(𝑥̃) − exp(−𝑟𝑄

√

𝐿𝑁+
)𝑓+(𝑥̃)|

2𝑑𝑥

≤ 2 ∫
𝑄+

|𝑓+(𝑥) − exp(−𝑟𝑄

√

𝐿𝑁+
)𝑓+(𝑥)|

2𝑑𝑥

≤ 2|𝑄+|
1+2𝛼‖𝑓+‖

2

BMO
𝛼
𝐿𝑁+

(ℝ𝑛
+)

= 2|𝑄|1+2𝛼‖𝑓+‖
2

BMO
𝛼
𝐿𝑁+

(ℝ𝑛
+)
.

If 𝑄+ = ∅ or 𝑄− = ∅, then we can deduce from a similar argument above that

∫
𝑄

|𝑓+,𝑒(𝑥) − exp(−𝑟𝑄

√
𝐿)𝑓+,𝑒(𝑥)|

2𝑑𝑥 ≤ |𝑄|1+2𝛼‖𝑓+‖
2

BMO
𝛼
𝐿𝑁+

(ℝ𝑛
+)
.

Therefore, one has 𝑓±,𝑒 ∈ BMO
𝛼
𝐿(ℝ

𝑛) with desired norm control.
Step 3. From BMO

𝛼
𝐿(ℝ

𝑛) to BMO𝛼
𝐿𝑁
(ℝ𝑛).

Assuming 𝑓±,𝑒 ∈ BMO
𝛼
𝐿(ℝ

𝑛), for each 𝑄 ⊂ ℝ𝑛, we arrive at

∫
𝑄

|𝑓(𝑥) − exp(−𝑟𝑄

√
𝐿𝑁)𝑓(𝑥)|

2𝑑𝑥

= ∫
𝑄+

|𝑓+(𝑥) − exp(−𝑟𝑄

√

𝐿𝑁+
)𝑓+(𝑥)|

2𝑑𝑥

+ ∫
𝑄−

|𝑓−(𝑥) − exp(−𝑟𝑄

√

𝐿𝑁−
)𝑓−(𝑥)|

2𝑑𝑥
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= ∫
𝑄+

|𝑓+,𝑒(𝑥) − exp(−𝑟𝑄

√
𝐿)𝑓+,𝑒(𝑥)|

2𝑑𝑥

+ ∫
𝑄−

|𝑓−,𝑒(𝑥) − exp(−𝑟𝑄

√
𝐿)𝑓−,𝑒(𝑥)|

2𝑑𝑥

≤ |𝑄|1+2𝛼‖𝑓+,𝑒‖
2

BMO
𝛼
𝐿(ℝ

𝑛)
+ |𝑄|1+2𝛼‖𝑓−,𝑒‖

2

BMO
𝛼
𝐿 (ℝ

𝑛)
,

which implies 𝑓 ∈ BMO
𝛼
𝐿𝑁
(ℝ𝑛).

Step 4. BMO𝛼
𝐿(ℝ

𝑛) vs BMO𝛼
(ℝ𝑛).

When−1∕2 < 𝛼 < 0, 𝛼 = 0 or 0 < 𝛼 < 𝜃∕𝑛, the space BMO𝛼
(ℝ𝑛) reduces to

the Morrey space, the BMO space and the Lipschitz space, respectively. These
spaces can be characterized by the Morrey-Campanato space BMO𝛼

𝐿(ℝ
𝑛) asso-

ciated with 𝐿; see [5, 7, 8, 9] for more details.
Based on the above arguments, we obtain the desired conclusion. □

3.4. HMO space. To introduce the HMO space related to the Neumann prob-
lem, we shall recall the classical HMO space; see [11, 17, 18, 33, 34] for exam-
ples. For −1∕2 < 𝛼 < 𝜃∕𝑛, a harmonic function 𝑢(𝑥, 𝑡) defined on ℝ𝑛 × ℝ+ is
said to be inHMO𝛼

𝐿(ℝ
𝑛 ×ℝ+), the harmonic mean oscillation space associated

with 𝐿, if

‖𝑢‖HMO𝛼
𝐿(ℝ

𝑛×ℝ+)
= sup

𝑄⊂ℝ𝑛

1

|𝑄|𝛼
(∫

𝑟𝑄

0

1

|𝑄|
∫
𝑄

|𝑡∇𝑥,𝑡𝑢(𝑥, 𝑡)|
2𝑑𝑥

𝑑𝑡

𝑡
)

1∕2

< ∞.

Definition 3.7. For −1∕2 < 𝛼 < 𝜃∕𝑛, a Neumann harmonic function 𝑢(𝑥, 𝑡)
defined on Ω × ℝ+ is said to be in HMO

𝛼
ℒ(Ω × ℝ+), the Neumann harmonic

mean oscillation space associated with ℒ, if

‖𝑢‖HMO𝛼
ℒ(Ω×ℝ+)

= sup
𝑄⊂Ω

1

|𝑄|𝛼
(∫

𝑟𝑄

0

1

|𝑄|
∫
𝑄

|𝑡∇𝑥,𝑡𝑢(𝑥, 𝑡)|
2𝑑𝑥

𝑑𝑡

𝑡
)

1∕2

< ∞,

where Ω = ℝ𝑛 for ℒ = 𝐿𝑁 , and Ω = ℝ𝑛
± for ℒ = 𝐿𝑁±

.

Proposition 3.8. For−1∕2 < 𝛼 < 𝜃∕𝑛, theNeumannHMO spaceHMO𝛼
𝐿𝑁
(ℝ𝑛×

ℝ+) can be described in the following way

HMO
𝛼
𝐿𝑁
(ℝ𝑛 × ℝ+) = {𝑢 ∈ 𝑊1,2(ℝ𝑛 × ℝ+) ∶ 𝑢± ∈ HMO

𝛼
𝐿𝑁±

(ℝ𝑛
± × ℝ+)}

= {𝑢 ∈ 𝑊1,2(ℝ𝑛 × ℝ+) ∶ 𝑢±,𝑒 ∈ HMO
𝛼
𝐿(ℝ

𝑛 × ℝ+)}.

Proof. We divide our proof in following three steps

HMO
𝛼
𝐿𝑁
(ℝ𝑛 × ℝ+)⟶ HMO

𝛼
𝐿𝑁±

(ℝ𝑛
± × ℝ+)

↖ ↙

HMO
𝛼
𝐿(ℝ

𝑛 × ℝ+)

Step 1. From HMO
𝛼
𝐿𝑁
(ℝ𝑛 × ℝ+) to HMO

𝛼
𝐿𝑁±

(ℝ𝑛
± × ℝ+).
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Pick a function 𝑢 ∈ HMO
𝛼
𝐿𝑁
(ℝ𝑛). Evidently, its restriction 𝑢± is also a Neu-

mann harmonic function on ℝ𝑛
± × ℝ+. Moreover, it holds that

‖𝑢±‖HMO𝛼
𝐿𝑁±

(ℝ𝑛
±×ℝ+)

= sup
𝑄⊂ℝ𝑛

±

1

|𝑄|𝛼
(∫

𝑟𝑄

0

1

|𝑄|
∫
𝑄

|𝑡∇𝑥,𝑡𝑢(𝑥, 𝑡)|
2𝑑𝑥

𝑑𝑡

𝑡
)

1∕2

≤ sup
𝑄⊂ℝ𝑛

1

|𝑄|𝛼
(∫

𝑟𝑄

0

1

|𝑄|
∫
𝑄

|𝑡∇𝑥,𝑡𝑢(𝑥, 𝑡)|
2𝑑𝑥

𝑑𝑡

𝑡
)

1∕2

= ‖𝑢‖HMO𝛼
𝐿𝑁
(ℝ𝑛×ℝ+)

,

which yields 𝑢± ∈ HMO
𝛼
𝐿𝑁±

(ℝ𝑛
± × ℝ+).

Step 2. From HMO
𝛼
𝐿𝑁±

(ℝ𝑛
± × ℝ+) to HMO

𝛼
𝐿(ℝ

𝑛 × ℝ+).
Assume 𝑢± ∈ HMO

𝛼
𝐿𝑁±

(ℝ𝑛
± × ℝ+). Since 𝑢± is Neumann harmonic in ℝ𝑛

± ×

ℝ+, the even extension of 𝑢± is harmonic in ℝ𝑛 × ℝ+. For each 𝑄 ⊂ ℝ𝑛, there
holds

∫

𝑟𝑄

0

∫
𝑄

|𝑡∇𝑥,𝑡𝑢+,𝑒(𝑥, 𝑡)|
2𝑑𝑥

𝑑𝑡

𝑡

= ∫

𝑟𝑄

0

∫
𝑄+

|𝑡∇𝑥,𝑡𝑢+(𝑥, 𝑡)|
2𝑑𝑥

𝑑𝑡

𝑡
+ ∫

𝑟𝑄

0

∫
𝑄−

|𝑡∇𝑥,𝑡𝑢+(𝑥̃, 𝑡)|
2𝑑𝑥

𝑑𝑡

𝑡

≤ 2|𝑄+|
1+2𝛼‖𝑢+‖

2

HMO
𝛼
𝐿𝑁+

(ℝ𝑛
+×ℝ+)

= 2|𝑄|1+2𝛼‖𝑢+‖
2

HMO
𝛼
𝐿𝑁+

(ℝ𝑛
+×ℝ+)

,

which implies 𝑢+,𝑒 ∈ HMO
𝛼
𝐿(ℝ

𝑛 × ℝ+) and 𝑢−,𝑒 ∈ HMO
𝛼
𝐿(ℝ

𝑛 × ℝ+) similarly.
Step 3. From HMO

𝛼
𝐿(ℝ

𝑛 × ℝ+) to HMO
𝛼
𝐿𝑁
(ℝ𝑛 × ℝ+).

Assume 𝑢±,𝑒 ∈ HMO
𝛼
𝐿(ℝ

𝑛 × ℝ+). Noticing that 𝑢±,𝑒 is an even function
with respect to 𝑥𝑛, we obtain that its derivative is an odd function, and hence
𝑢 = 𝑢+ + 𝑢− satisfies the Neumann boundary condition automatically. For
every 𝑄 ⊂ ℝ𝑛, it follows

∫

𝑟𝑄

0

∫
𝑄

|𝑡∇𝑥,𝑡𝑢(𝑥, 𝑡)|
2𝑑𝑥

𝑑𝑡

𝑡

≤ ∫

𝑟𝑄

0

∫
𝑄+

|𝑡∇𝑥,𝑡𝑢+,𝑒(𝑥, 𝑡)|
2𝑑𝑥

𝑑𝑡

𝑡
+ ∫

𝑟𝑄

0

∫
𝑄−

|𝑡∇𝑥,𝑡𝑢−,𝑒(𝑥, 𝑡)|
2𝑑𝑥

𝑑𝑡

𝑡

≤ |𝑄+|
1+2𝛼‖𝑢+,𝑒‖

2

HMO
𝛼
𝐿(ℝ

𝑛×ℝ+)
+ |𝑄−|

1+2𝛼‖𝑢−,𝑒‖
2

HMO
𝛼
𝐿(ℝ

𝑛×ℝ+)

= |𝑄|1+2𝛼‖𝑢+,𝑒‖
2

HMO
𝛼
𝐿(ℝ

𝑛×ℝ+)
+ |𝑄|1+2𝛼‖𝑢−,𝑒‖

2

HMO
𝛼
𝐿(ℝ

𝑛×ℝ+)
,

which yields 𝑢 ∈ HMO
𝛼
𝐿𝑁
(ℝ𝑛 × ℝ+).

Based on the above arguments, we obtain the desired conclusion. □
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4. Neumann harmonic function with Lebesgue trace
This section is devoted to solving the elliptic equation of Neumann type with

the Lebesgue initial value.

Theorem 4.1. Let 1 < 𝑝 < ∞. A function 𝑢(𝑥, 𝑡) is Neumann harmonic in
ℝ𝑛 × ℝ+ with

sup
𝑡>0

‖𝑢(⋅, 𝑡)‖𝐿𝑝(ℝ𝑛) ≤ 𝐶

if and only if 𝑢(𝑥, 𝑡) = exp(−𝑡
√
𝐿𝑁)𝑓(𝑥) for some 𝑓 ∈ 𝐿𝑝(ℝ𝑛).

Proof. Step 1. Necessity: from solution to trace.
If 𝑢(⋅, 𝑡) ∈ 𝐿𝑝(ℝ𝑛), then 𝑢±,𝑒(⋅, 𝑡) ∈ 𝐿𝑝(ℝ𝑛) by Proposition 3.2. Noticing

𝑢+,𝑒(𝑥, 𝑡) is harmonic in ℝ𝑛 × ℝ+ and
sup
𝑡>0

‖𝑢+,𝑒(⋅, 𝑡)‖𝐿𝑝(ℝ𝑛) ≤ 𝐶,

wededuce from the characterization of the Poisson integralwith Lebesgue trace
(see Appendix A) that

𝑢+,𝑒(𝑥, 𝑡) = exp(−𝑡
√
𝐿)𝑔(𝑥)

for some 𝑔 ∈ 𝐿𝑝(ℝ𝑛). Moreover, it holds

𝑔(𝑥′, −𝑥𝑛) = lim
𝑡→0+

exp(−𝑡
√
𝐿)𝑔(𝑥′, −𝑥𝑛) = lim

𝑡→0+
𝑢+,𝑒(𝑥

′, −𝑥𝑛, 𝑡)

= lim
𝑡→0+

𝑢+,𝑒(𝑥
′, 𝑥𝑛, 𝑡) = lim

𝑡→0+
exp(−𝑡

√
𝐿)𝑔(𝑥′, 𝑥𝑛) = 𝑔(𝑥′, 𝑥𝑛),

which yields 𝑔 is an even function with respect to 𝑥𝑛. Therefore, for all 𝑥 ∈ ℝ𝑛
+,

we have

𝑢+(𝑥, 𝑡) = 𝑢+,𝑒(𝑥, 𝑡) = exp(−𝑡
√
𝐿)𝑔(𝑥)

= exp(−𝑡
√
𝐿)𝑔+,𝑒(𝑥) = exp(−𝑡

√

𝐿𝑁+
)𝑔+(𝑥).

Similarly, for 𝑢−,𝑒(⋅, 𝑡) ∈ 𝐿𝑝(ℝ𝑛), there exists an even function ℎ ∈ 𝐿𝑝(ℝ𝑛)

such that
𝑢−,𝑒(𝑥, 𝑡) = exp(−𝑡

√
𝐿)ℎ(𝑥)

and, for each 𝑥 ∈ ℝ𝑛
−, it holds

𝑢−(𝑥, 𝑡) = exp(−𝑡

√

𝐿𝑁−
)ℎ−(𝑥).

Finally, by letting 𝑓 = 𝑔+ + ℎ−, we see that 𝑓+,𝑒 = 𝑔+,𝑒 = 𝑔 ∈ 𝐿𝑝(ℝ𝑛)

and 𝑓−,𝑒 = ℎ−,𝑒 = ℎ ∈ 𝐿𝑝(ℝ𝑛), which together with Proposition 3.2 implies
𝑓 ∈ 𝐿𝑝(ℝ𝑛). It can been easily seen that, for all 𝑥 ∈ ℝ𝑛,

𝑢(𝑥, 𝑡) = exp(−𝑡

√

𝐿𝑁+
)𝑔+(𝑥) + exp(−𝑡

√

𝐿𝑁−
)ℎ−(𝑥)

= exp(−𝑡

√

𝐿𝑁+
)𝑓+(𝑥) + exp(−𝑡

√

𝐿𝑁−
)𝑓−(𝑥)

= (exp(−𝑡
√
𝐿𝑁)𝑓)+(𝑥) + (exp(−𝑡

√
𝐿𝑁)𝑓)−(𝑥)
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= exp(−𝑡
√
𝐿𝑁)𝑓(𝑥).

Therefore, the necessity of Theorem 4.1 follows.
Step 2. Sufficiency: from trace to solution.
If 𝑓 ∈ 𝐿𝑝(ℝ𝑛), then 𝑓±,𝑒 ∈ 𝐿𝑝(ℝ𝑛) by Proposition 3.2. Note that

𝑢±(𝑥, 𝑡) = (exp(−𝑡
√
𝐿𝑁)𝑓)±(𝑥)

= exp(−𝑡

√

𝐿𝑁±
)𝑓±(𝑥) = exp(−𝑡

√
𝐿)𝑓±,𝑒(𝑥)𝜒ℝ𝑛

±
(𝑥),

which tells us that 𝑢 is Neumann harmonic in ℝ𝑛 × ℝ+. By the Poisson upper
bound on 𝑝𝐿(𝑡, 𝑥, 𝑦), and Minkowski’s inequality, we arrive at

sup
𝑡>0

‖𝑢(⋅, 𝑡)‖𝐿𝑝(ℝ𝑛) = sup
𝑡>0

(∫
ℝ𝑛

||||||||
∫
ℝ𝑛

𝑝𝐿𝑁 (𝑡, 𝑥, 𝑦)𝑓(𝑦)𝑑𝑦

||||||||

𝑝

𝑑𝑥)

1∕𝑝

≤ 𝐶 sup
𝑡>0

⎡
⎢

⎣

∫
ℝ𝑛

(∫
ℝ𝑛

𝑡

(𝑡 + |𝑦|)𝑛+1
|𝑓(𝑥 − 𝑦)|𝑑𝑦)

𝑝

𝑑𝑥
⎤
⎥

⎦

1∕𝑝

≤ 𝐶 sup
𝑡>0

∫
ℝ𝑛

(∫
ℝ𝑛

|𝑓(𝑥 − 𝑦)|𝑝𝑑𝑥)

1∕𝑝

𝑡

(𝑡 + |𝑦|)𝑛+1
𝑑𝑦

≤ 𝐶‖𝑓‖𝐿𝑝(ℝ𝑛),

which completes the proof of the sufficiency and hence Theorem 4.1. □

5. Neumann harmonic function with Hardy trace
In this section, we consider the Neumann harmonic function with Hardy

trace. For a harmonic function 𝑢 inℝ𝑛×ℝ+, let 𝑢∗ denote its maximal function
defined by

𝑢∗(𝑥) = sup
𝑡>0

|𝑢(𝑥, 𝑡)|.

Theorem 5.1. A function 𝑢(𝑥, 𝑡) is Neumann harmonic inℝ𝑛 × ℝ+ with

‖𝑢∗‖𝐿1(ℝ𝑛) ≤ 𝐶

if and only if 𝑢(𝑥, 𝑡) = exp(−𝑡
√
𝐿𝑁)𝑓(𝑥) for some 𝑓 ∈ 𝐻1

𝐿𝑁
(ℝ𝑛).

Remark 5.2. When 𝐴 = identity matrix, Stein [35, page 119, Proposition 1]
characterized the harmonic function with 𝐻𝑝 trace for all 0 < 𝑝 < ∞. He
proved that, for 0 < 𝑝 < ∞, a function 𝑢(𝑥, 𝑡) is harmonic in ℝ𝑛 × ℝ+ with
‖𝑢∗‖𝐿𝑝(ℝ𝑛) ≤ 𝐶 if and only if 𝑢(𝑥, 𝑡) = exp(−𝑡

√
∆)𝑓(𝑥) for some 𝑓 ∈ 𝐻𝑝(ℝ𝑛),

where ∆ is the negative Laplacian on ℝ𝑛. When 0 < 𝑝 ≤ 1, the Hardy space
𝐻𝑝(ℝ𝑛) is a proper subset of 𝐿𝑝(ℝ𝑛), and when 𝑝 > 1, 𝐻𝑝(ℝ𝑛) = 𝐿𝑝(ℝ𝑛). In
order to emphasize the difference betweenHardy space andLebesgue space, we
only consider the left endpoint case 𝑝 = 1. In fact, our Theorem 5.1 also holds
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for 𝑝 > 1. It is worth pointing out that𝐻𝑝

𝐿𝑁
(ℝ𝑛) = 𝐿𝑝(ℝ𝑛) provided 𝑝 > 1, and

hence

(∫
ℝ𝑛

sup
𝑡>0

|𝑢(𝑥, 𝑡)|𝑝𝑑𝑥)

1∕𝑝

≤ 𝐶 ⇔ sup
𝑡>0

(∫
ℝ𝑛

|𝑢(𝑥, 𝑡)|𝑝𝑑𝑥)

1∕𝑝

≤ 𝐶

for arbitrary Neumann harmonic function 𝑢.

Proof of Theorem 5.1. Step 1. Necessity: from solution to trace.
If 𝑢∗ ∈ 𝐿1(ℝ𝑛), then (𝑢±,𝑒)∗ = (𝑢∗)±,𝑒 ∈ 𝐿1(ℝ𝑛) by Proposition 3.2. Noticing

𝑢+,𝑒(𝑥, 𝑡) is harmonic in ℝ𝑛 × ℝ+ and

‖(𝑢+,𝑒)
∗‖𝐿1(ℝ𝑛) ≤ 𝐶,

we deduce from the characterization of the Poisson integral with Hardy trace
(see Appendix A) that

𝑢+,𝑒(𝑥, 𝑡) = exp(−𝑡
√
𝐿)𝑔(𝑥)

for some 𝑔 ∈ 𝐻1
𝐿
(ℝ𝑛). Moreover, it holds

𝑔(𝑥′, −𝑥𝑛) = lim
𝑡→0+

exp(−𝑡
√
𝐿)𝑔(𝑥′, −𝑥𝑛) = lim

𝑡→0+
𝑢+,𝑒(𝑥

′, −𝑥𝑛, 𝑡)

= lim
𝑡→0+

𝑢+,𝑒(𝑥
′, 𝑥𝑛, 𝑡) = lim

𝑡→0+
exp(−𝑡

√
𝐿)𝑔(𝑥′, 𝑥𝑛) = 𝑔(𝑥′, 𝑥𝑛),

which yields 𝑔 is an even function with respect to 𝑥𝑛. Therefore, for all 𝑥 ∈ ℝ𝑛
+,

we have

𝑢+(𝑥, 𝑡) = 𝑢+,𝑒(𝑥, 𝑡) = exp(−𝑡
√
𝐿)𝑔(𝑥)

= exp(−𝑡
√
𝐿)𝑔+,𝑒(𝑥) = exp(−𝑡

√

𝐿𝑁+
)𝑔+(𝑥).

Similarly, for (𝑢−,𝑒)∗ ∈ 𝐿1(ℝ𝑛), there exists an even function ℎ ∈ 𝐻1
𝐿
(ℝ𝑛)

such that
𝑢−,𝑒(𝑥, 𝑡) = exp(−𝑡

√
𝐿)ℎ(𝑥)

and, for each 𝑥 ∈ ℝ𝑛
−, it holds

𝑢−(𝑥, 𝑡) = exp(−𝑡

√

𝐿𝑁−
)ℎ−(𝑥).

Finally, by letting 𝑓 = 𝑔+ + ℎ−, we see that 𝑓+,𝑒 = 𝑔+,𝑒 = 𝑔 ∈ 𝐻1
𝐿
(ℝ𝑛)

and 𝑓−,𝑒 = ℎ−,𝑒 = ℎ ∈ 𝐻1
𝐿
(ℝ𝑛), which together with Proposition 3.4 implies

𝑓 ∈ 𝐻1
𝐿𝑁
(ℝ𝑛). It can been easily seen that, for all 𝑥 ∈ ℝ𝑛,

𝑢(𝑥, 𝑡) = exp(−𝑡

√

𝐿𝑁+
)𝑔+(𝑥) + exp(−𝑡

√

𝐿𝑁−
)ℎ−(𝑥)

= exp(−𝑡

√

𝐿𝑁+
)𝑓+(𝑥) + exp(−𝑡

√

𝐿𝑁−
)𝑓−(𝑥)

= (exp(−𝑡
√
𝐿𝑁)𝑓)+(𝑥) + (exp(−𝑡

√
𝐿𝑁)𝑓)−(𝑥)

= exp(−𝑡
√
𝐿𝑁)𝑓(𝑥).
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Therefore, the necessity of Theorem 4.1 follows.
Step 2. Sufficiency: from trace to solution.
If 𝑓 ∈ 𝐻1

𝐿𝑁
(ℝ𝑛), then 𝑓±,𝑒 ∈ 𝐻1

𝐿
(ℝ𝑛) by Proposition 3.4. Note that

𝑢±(𝑥, 𝑡) = (exp(−𝑡
√
𝐿𝑁)𝑓)±(𝑥)

= exp(−𝑡

√

𝐿𝑁±
)𝑓±(𝑥) = exp(−𝑡

√
𝐿)𝑓±,𝑒(𝑥)𝜒ℝ𝑛

±
(𝑥),

which tells us that 𝑢 is Neumann harmonic in ℝ𝑛 × ℝ+.
Moreover, it holds that

‖𝑢∗‖𝐿1(ℝ𝑛) = ∫
ℝ𝑛

sup
𝑡>0

| exp(−𝑡
√
𝐿𝑁)𝑓(𝑥)|𝑑𝑥 = ‖𝑓‖𝐻1

𝐿𝑁
(ℝ𝑛),

which completes the proof. □

6. Neumann harmonic function with BMO trace
The following theorem is the main result in this section.

Theorem 6.1. Let −1∕2 < 𝛼 < 𝜃∕𝑛. A function 𝑢(𝑥, 𝑡) is Neumann harmonic
inℝ𝑛 × ℝ+ with

‖𝑢‖HMO𝛼
𝐿𝑁
(ℝ𝑛×ℝ+)

≤ 𝐶

if and only if 𝑢(𝑥, 𝑡) = exp(−𝑡
√
𝐿𝑁)𝑓(𝑥) for some 𝑓 ∈ BMO

𝛼
𝐿𝑁
(ℝ𝑛).

Remark 6.2. In Theorem 6.1, when the Neumann boundary condition is re-
moved, the Laplace version of this result can reduce to the classical one of
Fabes-Johnson-Neri [11, Theorem 1.0] and Jiang-Xiao-Yang [18, Theorem 1.1];
see [23] for the fractional case. They proved that, for −1∕2 < 𝛼 < 1∕𝑛, a func-
tion 𝑢 ∈ HMO

𝛼
∆(ℝ

𝑛 × ℝ+) if and only if 𝑢(𝑥, 𝑡) = exp(−𝑡
√
∆)𝑓(𝑥) for some

𝑓 ∈ BMO
𝛼
∆(ℝ

𝑛). Moreover there exists a constant 𝐶 > 0 such that

𝐶−1‖𝑓‖BMO𝛼
∆(ℝ

𝑛) ≤ ‖𝑢‖HMO𝛼
∆(ℝ

𝑛×ℝ+)
≤ 𝐶‖𝑓‖BMO𝛼

∆(ℝ
𝑛).

Proof of Theorem 6.1. Step 1. Necessity: from solution to trace.
If 𝑢 ∈ HMO

𝛼
𝐿𝑁
(ℝ𝑛 × ℝ+), then 𝑢±,𝑒 ∈ HMO

𝛼
𝐿(ℝ

𝑛 × ℝ+) by Proposition 3.8.
From Appendix A, we know that 𝑢+,𝑒(𝑥, 𝑡) = exp(−𝑡

√
𝐿)𝑔(𝑥) for some 𝑔 ∈

BMO
𝛼
𝐿(ℝ

𝑛) with
‖𝑔‖BMO𝛼

𝐿(ℝ
𝑛) ≤ 𝐶‖𝑢+,𝑒‖HMO𝛼

𝐿(ℝ
𝑛×ℝ+)

.

It can been easily seen

𝑔(𝑥′, −𝑥𝑛) = lim
𝑡→0+

exp(−𝑡
√
𝐿)𝑔(𝑥′, −𝑥𝑛) = lim

𝑡→0+
𝑢+,𝑒(𝑥

′, −𝑥𝑛, 𝑡)

= lim
𝑡→0+

𝑢+,𝑒(𝑥
′, 𝑥𝑛, 𝑡) = lim

𝑡→0+
exp(−𝑡

√
𝐿)𝑔(𝑥′, 𝑥𝑛) = 𝑔(𝑥′, 𝑥𝑛),

which yields 𝑔 is an even function with respect to 𝑥𝑛, and hence

‖𝑔+,𝑒‖BMO𝛼
𝐿 (ℝ

𝑛) = ‖𝑔‖BMO𝛼
𝐿(ℝ

𝑛) ≤ 𝐶‖𝑢+,𝑒‖HMO𝛼
𝐿(ℝ

𝑛×ℝ+)
.
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Moreover, for every 𝑥 ∈ ℝ𝑛
+, one has

𝑢+(𝑥, 𝑡) = 𝑢+,𝑒(𝑥, 𝑡) = exp(−𝑡
√
𝐿)𝑔(𝑥)

= exp(−𝑡
√
𝐿)𝑔+,𝑒(𝑥) = exp(−𝑡

√

𝐿𝑁+
)𝑔+(𝑥).

Similarly, for 𝑢−,𝑒 ∈ HMO
𝛼
𝐿(ℝ

𝑛 × ℝ+), there exists an even function ℎ ∈

BMO
𝛼
𝐿(ℝ

𝑛) such that 𝑢−,𝑒(𝑥, 𝑡) = exp(−𝑡
√
𝐿)ℎ(𝑥) with

‖ℎ−,𝑒‖BMO𝛼
𝐿 (ℝ

𝑛) ≤ 𝐶‖𝑢−,𝑒‖HMO𝛼
𝐿 (ℝ

𝑛×ℝ+)

and, for every 𝑥 ∈ ℝ𝑛
−, it holds

𝑢−(𝑥, 𝑡) = exp(−𝑡

√

𝐿𝑁−
)ℎ−(𝑥).

Finally, by letting 𝑓 = 𝑔+ + ℎ−, we see that 𝑓+,𝑒 = 𝑔+,𝑒 = 𝑔 ∈ BMO
𝛼
𝐿(ℝ

𝑛)

and 𝑓−,𝑒 = ℎ−,𝑒 = ℎ ∈ BMO
𝛼
𝐿(ℝ

𝑛), which together with Propositions 3.6 and
3.8 yields 𝑓 ∈ BMO

𝛼
𝐿𝑁
(ℝ𝑛) with

‖𝑓‖BMO𝛼
𝐿𝑁
(ℝ𝑛) ≤ ‖𝑓+,𝑒‖BMO𝛼

𝐿(ℝ
𝑛) + ‖𝑓−,𝑒‖BMO𝛼

𝐿(ℝ
𝑛)

= ‖𝑔+,𝑒‖BMO𝛼
𝐿(ℝ

𝑛) + ‖ℎ−,𝑒‖BMO𝛼
𝐿(ℝ

𝑛)

≤ 𝐶‖𝑢+,𝑒‖HMO𝛼
𝐿(ℝ

𝑛×ℝ+)
+ 𝐶‖𝑢−,𝑒‖HMO𝛼

𝐿(ℝ
𝑛×ℝ+)

≤ 𝐶‖𝑢‖HMO𝛼
𝐿𝑁
(ℝ𝑛×ℝ+)

.

Moreover, it can been easily seen that, for all 𝑥 ∈ ℝ𝑛,

𝑢(𝑥, 𝑡) = exp(−𝑡

√

𝐿𝑁+
)𝑔+(𝑥) + exp(−𝑡

√

𝐿𝑁−
)ℎ−(𝑥)

= exp(−𝑡

√

𝐿𝑁+
)𝑓+(𝑥) + exp(−𝑡

√

𝐿𝑁−
)𝑓−(𝑥)

= (exp(−𝑡
√
𝐿𝑁)𝑓)+(𝑥) + (exp(−𝑡

√
𝐿𝑁)𝑓)−(𝑥)

= exp(−𝑡
√
𝐿𝑁)𝑓(𝑥).

Therefore, the necessity of Theorem 6.1 follows.
Step 2. Sufficiency: from trace to solution.
If 𝑓 ∈ BMO

𝛼
𝐿𝑁
(ℝ𝑛), then 𝑓±,𝑒 ∈ BMO

𝛼
𝐿(ℝ

𝑛) by Proposition 3.6. Note that

𝑢(𝑥, 𝑡) = (exp(−𝑡
√
𝐿𝑁)𝑓)+(𝑥) + (exp(−𝑡

√
𝐿𝑁)𝑓)−(𝑥)

= exp(−𝑡

√

𝐿𝑁+
)𝑓+(𝑥) + exp(−𝑡

√

𝐿𝑁−
)𝑓−(𝑥)

= exp(−𝑡
√
𝐿)𝑓+,𝑒(𝑥)𝜒ℝ𝑛

+
(𝑥) + exp(−𝑡

√
𝐿)𝑓−,𝑒(𝑥)𝜒ℝ𝑛

−
(𝑥),

and hence
𝑢±,𝑒(𝑥, 𝑡) = exp(−𝑡

√
𝐿)𝑓±,𝑒(𝑥).

This implies 𝑢 is Neumann harmonic in ℝ𝑛 ×ℝ+. From Appendix A, Proposi-
tions 3.6 and 3.8, we deduce

‖𝑢‖HMO𝛼
𝐿𝑁
(ℝ𝑛×ℝ+)

≤ ‖𝑢+,𝑒‖HMO𝛼
𝐿 (ℝ

𝑛×ℝ+)
+ ‖𝑢−,𝑒‖HMO𝛼

𝐿 (ℝ
𝑛×ℝ+)
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≤ 𝐶‖𝑓+,𝑒‖BMO𝛼
𝐿(ℝ

𝑛) + 𝐶‖𝑓−,𝑒‖BMO𝛼
𝐿(ℝ

𝑛)

≤ 𝐶‖𝑓‖BMO𝛼
𝐿𝑁
(ℝ𝑛),

which completes the proof of the sufficiency and hence Theorem 6.1. □

7. Final remarks
This paper will end by pointing out some further results. Since it is intended

solely as a brief review and not as a rigorous development, the pertinent results
are stated without proof.

7.1. Theelliptic equationofDirichlet type. Let us first substitute theDirich-
let boundary condition for the Neumann one, and then consider the following
problem

⎧

⎨

⎩

−𝜕2
𝑡
𝑢(𝑥, 𝑡) + 𝐿𝑢(𝑥, 𝑡) = 0, 𝑥 ∈ ℝ𝑛, 𝑡 > 0,

𝑢(𝑥′, 0, 𝑡) = 0, 𝑥′ ∈ ℝ𝑛−1, 𝑡 > 0,

𝑢(𝑥) = 𝑓(𝑥), 𝑥 ∈ ℝ𝑛.

In this case, the reflectionmethod is to use the odd extension rather than the
even one.
Denote by 𝐿𝐷 the corresponding Dirichlet elliptic operator on ℝ𝑛, and let

{exp(−𝑡
√
𝐿𝐷)}𝑡>0 be the the Poisson semigroups associated with ∆𝐷 . Note that

the conservative property
exp(−𝑡

√
ℒ)1 = 1

does not hold for ℒ = 𝐿𝐷 or 𝐿𝐷± .
Similar to the Neumann case, we can define some function classes related

to the Dirichlet problem; for example𝐻1
𝐿𝐷
(ℝ𝑛), BMO𝛼

𝐿𝐷
(ℝ𝑛) andHMO𝛼

𝐿𝐷
(ℝ𝑛 ×

ℝ+). Therefore, we can derive the following result by means of these function
classes.

Theorem7.1. For different Lebesgue, Hardy andBMO traces, the following state-
ments are valid.

(i) Let 1 < 𝑝 < ∞. A function 𝑢(𝑥, 𝑡) is Dirichlet harmonic inℝ𝑛 ×ℝ+ with

sup
𝑡>0

‖𝑢(⋅, 𝑡)‖𝐿𝑝(ℝ𝑛) ≤ 𝐶

if and only if 𝑢(𝑥, 𝑡) = exp(−𝑡
√
𝐿𝐷)𝑓(𝑥) for some 𝑓 ∈ 𝐿𝑝(ℝ𝑛).

(ii) A function 𝑢(𝑥, 𝑡) is Dirichlet harmonic inℝ𝑛 × ℝ+ with

‖𝑢∗‖𝐿1(ℝ𝑛) ≤ 𝐶

if and only if 𝑢(𝑥, 𝑡) = exp(−𝑡
√
𝐿𝐷)𝑓(𝑥) for some 𝑓 ∈ 𝐻1

𝐿𝐷
(ℝ𝑛).

(iii) Let−1∕2 < 𝛼 < 𝜃∕𝑛. A function 𝑢(𝑥, 𝑡) is Dirichlet harmonic inℝ𝑛×ℝ+

with
‖𝑢‖HMO𝛼

𝐿𝐷
(ℝ𝑛×ℝ+)

≤ 𝐶

if and only if 𝑢(𝑥, 𝑡) = exp(−𝑡
√
𝐿𝐷)𝑓(𝑥) for some 𝑓 ∈ BMO

𝛼
𝐿𝐷
(ℝ𝑛).
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7.2. The parabolic equation of Neumann/Dirichlet type. In paper [40],
Zhang and Yang consider the following boundary value problem for the heat
equation

⎧

⎨

⎩

𝜕𝑡𝑢(𝑥, 𝑡) + ∆𝑢(𝑥, 𝑡) = 0, 𝑥 ∈ ℝ𝑛, 𝑡 > 0,

𝜕𝑥𝑛𝑢(𝑥
′, 0, 𝑡) = 0, 𝑥′ ∈ ℝ𝑛−1, 𝑡 > 0,

𝑢(𝑥, 0) = 𝑓(𝑥), 𝑥 ∈ ℝ𝑛,

where ∆ is the negative Laplacian on ℝ𝑛. They proved that a caloric function
(the solution to the heat equation) defined on ℝ𝑛 × ℝ+ with the Neumann
boundary condition satisfies the parabolic Carleson measure condition if and
only if it can be represented as the Gaussian integral of a BMO function associ-
ated with ∆𝑁 . They define the solution space TMO∆𝑁

(ℝ𝑛 × ℝ+) as follows.

Definition 7.2. ANeumann caloric function 𝑢(𝑥, 𝑡) defined onℝ𝑛×ℝ+ is said
to be in TMO∆𝑁

(ℝ𝑛 × ℝ+), the temperature mean oscillation space associated
with ∆𝑁 , if

‖𝑢‖TMO∆𝑁
(ℝ𝑛×ℝ+)

= max ‖𝑢±‖TMO∆𝑁±
(ℝ𝑛

±×ℝ+)

= max sup
𝑄⊂ℝ𝑛

±

⎛

⎜

⎝

∫

𝑟2
𝑄

0

1

|𝑄|
∫
𝑄

|∇𝑥𝑢±(𝑥, 𝑡)|
2𝑑𝑥𝑑𝑡

⎞

⎟

⎠

1∕2

< ∞.

However, in the classical case, for a caloric function 𝑢(𝑥, 𝑡)without the Neu-
mann boundary condition, its TMO norm is related to the parabolic Carleson
measure on the whole spaceℝ𝑛 ×ℝ+, rather than its restriction 𝑢±(𝑥, 𝑡) on the
half-space ℝ𝑛

± × ℝ+. In fact, by repeating the arguments in the proof of Propo-
sition 3.8, the Neumann TMO space can be described in the following way

TMO∆𝑁
(ℝ𝑛) = {𝑢 ∈ 𝑊1,2(ℝ𝑛) ∶ 𝑢±,𝑒 is a caloric function

and |∇𝑥𝑢±,𝑒|
2𝑑𝑥𝑑𝑡 is a parabolic Carleson measure}

= {𝑢 ∈ 𝑊1,2(ℝ𝑛) ∶ 𝑢 is a Neumann caloric function

and |∇𝑥𝑢|
2𝑑𝑥𝑑𝑡 is a parabolic Carleson measure}.

Analogously, we can consider the following parabolic equation of Neumann
or Dirichlet type

⎧

⎨

⎩

𝜕𝑡𝑢(𝑥, 𝑡) − div𝐴∇𝑢(𝑥, 𝑡) = 0, 𝑥 ∈ ℝ𝑛, 𝑡 > 0,

𝜕𝑥𝑛𝑢(𝑥
′, 0, 𝑡)∕𝑢(𝑥′, 0, 𝑡) = 0, 𝑥′ ∈ ℝ𝑛−1, 𝑡 > 0,

𝑢(𝑥, 0) = 𝑓(𝑥), 𝑥 ∈ ℝ𝑛,

where the matrix 𝐴 is even with respect to the 𝑛-th variable and satisfies the
admissible caloric condition, namely, for each caloric function 𝑤(𝑥, 𝑡) on ℝ𝑛 ×

ℝ+, it holds

∫
ℝ𝑛×ℝ+

𝛽(∇𝑤𝜕𝑥𝑛𝜑 + ∇𝜑𝜕𝑥𝑛𝑤)𝑑𝑥𝑑𝑡 = 2 ∫
ℝ𝑛×ℝ+

𝑎𝑛𝑛𝜕𝑥𝑛𝑤𝜕𝑥𝑛𝜑𝑑𝑥𝑑𝑡,
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for any 𝜙 ∈ 𝐶∞
0
(ℝ𝑛 × ℝ+).

To state the main result, let us introduce some function classes related to the
Neumann/Dirichlet heat equation.

Definition 7.3. A function 𝑓 ∈ 𝐿1(Ω) is said to be in 𝐻1
ℒ
(Ω), the Hardy space

associated with ℒ, if

‖𝑓‖𝐻1
ℒ
(Ω) = ∫

ℝ𝑛

sup
𝑡>0

| exp(−𝑡ℒ)𝑓(𝑥)|𝑑𝑥 < ∞,

where ℒ = 𝐿𝑁∕𝐿𝐷 for the Neumann/Dirichlet problem.

Definition 7.4. For −1∕2 < 𝛼 < 𝜃∕𝑛,3 a function 𝑓 ∈ 𝑀(ℝ𝑛) is said to be in
BMO

𝛼
ℒ(ℝ

𝑛), the Morrey-Campanato space associated with ℒ, if

‖𝑓‖BMO𝛼
ℒ(ℝ

𝑛) = sup
𝑄⊂ℝ𝑛

1

|𝑄|𝛼
(
1

|𝑄|
∫
𝑄

|𝑓(𝑥) − exp(−𝑟2
𝑄
ℒ)𝑓(𝑥)|2𝑑𝑥)

1∕2

< ∞,

where ℒ = 𝐿𝑁∕𝐿𝐷 for the Neumann/Dirichlet problem.

Theorem7.5. For different Lebesgue, Hardy andBMO traces, the following state-
ments are valid.

(i) Let 1 < 𝑝 < ∞. A function 𝑢(𝑥, 𝑡) is Neumann/Dirichlet caloric in ℝ𝑛 ×

ℝ+ with
sup
𝑡>0

‖𝑢(⋅, 𝑡)‖𝐿𝑝(ℝ𝑛) ≤ 𝐶

if and only if 𝑢(𝑥, 𝑡) = exp(−𝑡𝐿𝑁)𝑓(𝑥)∕ exp(−𝑡𝐿𝐷)𝑓(𝑥) for some 𝑓 ∈

𝐿𝑝(ℝ𝑛).
(ii) A function 𝑢(𝑥, 𝑡) is Neumann/Dirichlet caloric inℝ𝑛 × ℝ+ with

‖𝑢∗‖𝐿1(ℝ𝑛) ≤ 𝐶

if and only if 𝑢(𝑥, 𝑡) = exp(−𝑡𝐿𝑁)𝑓(𝑥)∕ exp(−𝑡𝐿𝐷)𝑓(𝑥) for some 𝑓 ∈

𝐻1
𝐿𝑁
(ℝ𝑛)∕𝐻1

𝐿𝐷
(ℝ𝑛).

(iii) Let −1∕2 < 𝛼 < 𝜃∕𝑛. A function 𝑢(𝑥, 𝑡) is Neumann/Dirichlet caloric in
ℝ𝑛 × ℝ+ with

‖𝑢‖HMO𝛼
𝐿𝑁
(ℝ𝑛×ℝ+)∕HMO

𝛼
𝐿𝐷
(ℝ𝑛×ℝ+)

≤ 𝐶

if and only if 𝑢(𝑥, 𝑡) = exp(−𝑡𝐿𝑁)𝑓(𝑥)∕ exp(−𝑡𝐿𝐷)𝑓(𝑥) for some 𝑓 ∈

BMO
𝛼
𝐿𝑁
(ℝ𝑛)∕BMO

𝛼
𝐿𝐷
(ℝ𝑛).

Appendix A: Some classical conclusions
In this appendix, we provide some classical results about the boundary value

problem for the elliptic/parabolic equation.

3Here 𝜃 denotes the Hölder index of the heat kernel ℎ𝐿(𝑡, 𝑥, 𝑦).
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Theorem A.1 Let 1 < 𝑝 < ∞. A function 𝑢(𝑥, 𝑡) is harmonic/caloric in
ℝ𝑛 × ℝ+ with

sup
𝑡>0

‖𝑢(⋅, 𝑡)‖𝐿𝑝(ℝ𝑛) ≤ 𝐶

if and only if 𝑢(𝑥, 𝑡) = exp(−𝑡
√
𝐿)𝑓(𝑥)∕ exp(−𝑡𝐿)𝑓(𝑥) for some 𝑓 ∈ 𝐿𝑝(ℝ𝑛).

Proof. For this conclusion, see [25, 27] for more details. □

Theorem A.2 A function 𝑢(𝑥, 𝑡) is harmonic/caloric inℝ𝑛 × ℝ+ with

‖𝑢∗‖𝐿1(ℝ𝑛) ≤ 𝐶

if and only if 𝑢(𝑥, 𝑡) = exp(−𝑡
√
𝐿)𝑓(𝑥)∕ exp(−𝑡𝐿)𝑓(𝑥) for some 𝑓 ∈ 𝐻1

𝐿
(ℝ𝑛).

Proof. We only consider the elliptic case since the proof of the parabolic case
is similar.4
Step 1. Necessity: from solution to trace.
Suppose that 𝑢(𝑥, 𝑡) is harmonic in ℝ𝑛 × ℝ+ with ‖𝑢∗‖𝐿1(ℝ𝑛) ≤ 𝐶. We first

claim that

𝑢(𝑥, 𝑡 + 𝑠) = exp(−𝑡
√
𝐿)(𝑢(⋅, 𝑠))(𝑥). (7.1)

To this end, define

𝐻(𝑥, 𝑡) = 𝑢(𝑥, 𝑡 + 𝑠) − exp(−𝑡
√
𝐿)(𝑢(⋅, 𝑠))(𝑥).

It follows from the mean value property of the harmonic function that

|𝑢(𝑥, 𝑡)| ≤ 𝐶 ⨏

3𝑡∕2

𝑡∕2

⨏
𝐵(𝑥,𝑡∕2)

|𝑢(𝑦, 𝑠)|𝑑𝑦𝑑𝑠

≤ 𝐶 ⨏

3𝑡∕2

𝑡∕2

⨏
𝐵(𝑥,𝑡∕2)

|𝑢∗(𝑦)|𝑑𝑦𝑑𝑠 ≤
𝐶

𝑡𝑛
‖𝑢∗‖𝐿1(ℝ𝑛),

and from the conservative property of exp(−𝑡
√
𝐿) that

| exp(−𝑡
√
𝐿)(𝑢(⋅, 𝑠))(𝑥)| ≤ ∫

ℝ𝑛

𝑝𝐿(𝑡, 𝑥, 𝑦)|𝑢(𝑦, 𝑠)|𝑑𝑦 ≤
𝐶

𝑠𝑛
‖𝑢∗‖𝐿1(ℝ𝑛).

By these estimates, we see that

|𝐻(𝑥, 𝑡)| ≤
𝐶

(𝑡 + 𝑠)𝑛
‖𝑢∗‖𝐿1(ℝ𝑛) +

𝐶

𝑠𝑛
‖𝑢∗‖𝐿1(ℝ𝑛) ≤

𝐶

𝑠𝑛
‖𝑢∗‖𝐿1(ℝ𝑛)

with

𝐻(𝑥, 0) = lim
𝑡→0

𝐻(𝑥, 𝑡) = lim
𝑡→0

𝑢(𝑥, 𝑡 + 𝑠) − lim
𝑡→0

exp(−𝑡
√
𝐿)(𝑢(⋅, 𝑠))(𝑥) = 0.

4For the proof of the parabolic case, we refer the readers to the book [15, Chapter 8] for
example.
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Thismeans𝐻(𝑥, 𝑡) is a bounded harmonic function onℝ𝑛×ℝ+ with zero trace.
Therefore, one can employ the reflectionmethod to define a bounded harmonic
function on the whole space ℝ𝑛 × ℝ as follows

ℋ(𝑥, 𝑡) = {
𝐻(𝑥, 𝑡), 𝑡 ≥ 0,

−𝐻(𝑥,−𝑡), 𝑡 < 0.

However, the Liouville theorem tells us that there is no bounded harmonic
function on ℝ𝑛 × ℝ other than constant, which indicates

𝑢(𝑥, 𝑡 + 𝑠) − exp(−𝑡
√
𝐿)(𝑢(⋅, 𝑠))(𝑥) = 𝐻(𝑥, 𝑡) ≡ 0

by notingℋ(𝑥, 0) = 0. The claims follows.
With (7.1) in hand, the remainder of the arguments is analogous to that in

[28, Theorem 1.2] and is left to the reader.
Step 2. Sufficiency: from trace to solution.
If 𝑓 ∈ 𝐻1

𝐿
(ℝ𝑛), then 𝑢(𝑥, 𝑡) = exp(−𝑡

√
𝐿)𝑓(𝑥) is well-defined harmonic

function on ℝ𝑛 × ℝ+ with

‖𝑢∗‖𝐿1(ℝ𝑛) = ∫
ℝ𝑛

sup
𝑡>0

| exp(−𝑡
√
𝐿)𝑓(𝑥)|𝑑𝑥 = ‖𝑓‖𝐻1

𝐿
(ℝ𝑛),

which completes the proof. □

Theorem A.3 Let −1∕2 < 𝛼 < 𝜃∕𝑛. A function 𝑢(𝑥, 𝑡) is harmonic/caloric in
ℝ𝑛 × ℝ+ with

‖𝑢‖HMO𝛼
𝐿 (ℝ

𝑛×ℝ+)∕TMO
𝛼
𝐿 (ℝ

𝑛×ℝ+)
≤ 𝐶

if and only if 𝑢(𝑥, 𝑡) = exp(−𝑡
√
𝐿)𝑓(𝑥)∕ exp(−𝑡𝐿)𝑓(𝑥) for some

𝑓 ∈ BMO
𝛼
𝐿(ℝ

𝑛).

Proof. See [21, 24] for the elliptic case and [26] for the parabolic case. □
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