Canonical components of character varieties of double twist links $J(2m + 1, 2m + 1)$

Anh T. Tran and Nisha Yadav

Abstract. We show that a certain smooth projective model of the canonical component of the $\text{SL}_2(\mathbb{C})$-character variety of the double twist link $J(2m + 1, 2m + 1)$, where m is a positive integer, is the conic bundle over the projective line \mathbb{P}^1 which is isomorphic to the surface obtained from $\mathbb{P}^1 \times \mathbb{P}^1$ by repeating a one-point blow-up $6m + 3$ times.

Contents

1. Introduction 625
2. Preliminaries 628
3. Proof of Theorem 1 631
4. Blow-ups at singular points 637
Acknowledgements 647
References 647

1. Introduction

For a complete finite-volume hyperbolic 3-manifold with cusps, the $\text{SL}_2(\mathbb{C})$-character variety of M, denoted by $X(M)$, is a complex algebraic set associated to representations of $\pi_1(M)$ into $\text{SL}_2(\mathbb{C})$. Thurston [8] showed that any irreducible component of such a variety containing the character of a discrete faithful representation has complex dimension equal to the number of cusps of M. Such components are called canonical components and are denoted by $X_0(M)$. Character varieties have been important tools in studying the topology of M, and canonical components encode a lot of topological information about M. They contain subvarieties corresponding to Dehn fillings of M and their ideal points can be used to determine essential surfaces in M (see [1]).

Let $J(k, l)$ denote the double twist knot/link indicated in Figure 1, where the integers k and l determine the number of half twists in the boxes; positive numbers correspond to right-handed twists and negative numbers correspond...
to left-handed twists. This is the rational knot/link \(C(k, -l) \) in the Conway’s notation, which corresponds to the continued fraction \([k, -l] = k - 1/l \). It is a knot when \(kl \) is even and a two-component link when \(kl \) is odd. These are hyperbolic exactly when \(|k| \) and \(|l| \) are greater than one; the \(J(\pm 1, l) = J(l, \pm 1) \) knot/links are torus knot/links.

Character varieties of the \(J(k, l) \) knots and links were computed and analyzed in [6] and [7] respectively. For the Whitehead link \(5_2^5 \), which is \(J(3, 3) \), Landes [5] showed that a certain smooth projective model of the canonical component in \(\mathbb{P}^2 \times \mathbb{P}^1 \) is the conic bundle over the projective line \(\mathbb{P}^1 \) which is isomorphic to the surface obtained from \(\mathbb{P}^1 \times \mathbb{P}^1 \) by repeating a one-point blow-up nine times. Equivalently, it is isomorphic to the surface obtained from \(\mathbb{P}^2 \) by repeating a one-point blow-up ten times. Harada [2] proved similar results for the links \(6_2^2 \) and \(6_3^2 \) in the Rolfsen’s table. Note that a blow-up of \(\mathbb{P}^2 \) at two points is isomorphic to a blow-up of \(\mathbb{P}^1 \times \mathbb{P}^1 \) at one point, although a blow-up of \(\mathbb{P}^2 \) at one point is not isomorphic \(\mathbb{P}^1 \times \mathbb{P}^1 \) (see e.g. [3, Example 7.22]).

In [7], Petersen and the first author generalized Landes’ result to the double twist links \(J(3, 2m + 1) \) which contain the Whitehead link \(J(3, 3) \), and proved that a certain smooth projective model of the canonical component of \(J(3, 2m + 1) \) in \(\mathbb{P}^2 \times \mathbb{P}^1 \) is the conic bundle over \(\mathbb{P}^1 \) which is isomorphic to the surface obtained from \(\mathbb{P}^1 \times \mathbb{P}^1 \) by repeating a one-point blow-up \(9m \) times if \(m \geq 1 \), and \(-(9m + 6) \) times if \(m \leq -2 \). An important step in proving this result is to show that each singular point of a certain singular projective model of the canonical component of \(J(3, 2m + 1) \) in \(\mathbb{P}^2 \times \mathbb{P}^1 \) requires only one blow-up to resolve. However, this step was assumed without proof in [7]. Note that Harada [2] proved that for the link \(6_2^2 \), which is not a double twist link, a certain singular projective model of the canonical component in \(\mathbb{P}^2 \times \mathbb{P}^1 \) has singular points which require more than one blow-up to resolve.

In this paper, we consider the hyperbolic double twist links \(J(2m + 1, 2m + 1) \) which also contain the Whitehead link \(J(3, 3) \), and identify their canonical components topologically. Since \(J(-(2m + 1), -(2m + 1)) \) is the mirror image

![Figure 1. The double twist knot/link \(J(k, l) \).](image-url)
of \(J(2m + 1, 2m + 1)\), we only need to consider the case \(m \geq 1\). We will show the following.

Theorem 1. The smooth projective model of the canonical component of the \(\text{SL}_2(\mathbb{C})\)-character variety of the double twist link \(J(2m + 1, 2m + 1)\), \(m \geq 1\), is the conic bundle over the projective line \(\mathbb{P}^1\) which is isomorphic to the surface obtained from \(\mathbb{P}^1 \times \mathbb{P}^1\) by repeating a one-point blow-up \(6m + 3\) times. Equivalently, it is isomorphic to the surface obtained from \(\mathbb{P}^2\) by repeating a one-point blow-up \(6m + 4\) times.

Let us explain the meaning of the smooth projective model in Theorem 1 and sketch the proof. An affine model of the canonical component of the \(\text{SL}_2(\mathbb{C})\)-character variety of the double twist link \(J(2m + 1, 2m + 1)\) is given by the zero set of a single polynomial in three complex variables, and it is known to be an affine surface birational to \(\mathbb{C} \times \mathbb{C}\). (This fact actually holds true for all double twist links \(J(2m + 1, 2n + 1)\), by [7].) For affine complex surfaces, choosing the right projective completion is not obvious since different projective completions might result in non-isomorphic smooth projective models. In the case of the canonical component of the double twist link \(J(2m + 1, 2m + 1)\), choosing the projective completion in \(\mathbb{P}^3\) seems natural. However, this projective model has infinitely many singular points. Following [5], we will choose the projective completion in \(\mathbb{P}^2 \times \mathbb{P}^1\) which turns out to have finitely many singular points.

By compactifying the above affine model of the canonical component of \(J(2m + 1, 2m + 1)\) in \(\mathbb{P}^2 \times \mathbb{P}^1\), we obtain a projective model, denoted by \(S\), birational to \(\mathbb{P}^1 \times \mathbb{P}^1\). This projective model is not smooth; it has singular points. By resolving singular points of the surface \(S\) (using one-point blow-ups), we obtain a smooth projective model, denoted by \(\tilde{S}\). *In this paper we refer to \(\tilde{S}\) as the smooth projective model of the canonical component of the \(\text{SL}_2(\mathbb{C})\)-character variety of \(J(2m + 1, 2m + 1)\).*

The smooth projective model \(\tilde{S}\) is also birational to \(\mathbb{P}^1 \times \mathbb{P}^1\). It is known that for two birational varieties the birational equivalence between them can be written as a sequence of blow-ups and blow-downs, see e.g. [4, Chapter 5]. Since \(\mathbb{P}^1 \times \mathbb{P}^1\) is a minimal smooth projective surface (in the sense that it is not a blow-up of any smooth projective surface), we conclude that \(\tilde{S}\) is isomorphic to \(\mathbb{P}^1 \times \mathbb{P}^1\) blown up at \(N\) points. Moreover, this isomorphism (i.e. this number \(N\)) can be determined from the Euler characteristic of \(\tilde{S}\) which, in turn, depends on the Euler characteristic and singular points of \(S\).

An important part of the proof of Theorem 1 is to prove that each singular point of the singular projective model \(S\) requires only one blow-up to resolve, namely, the blow-up of \(\tilde{S}\) at each singular point is smooth everywhere except at the preimages of other singular points of \(S\). A similar proof also works for \(J(3, 2m + 1)\) and therefore fixes the gap in [7]. The remaining of the proof is in the same line as those of [5, 7].

The paper is organized as follows. In Section 2 we review Chebyshev polynomials, character varieties of double twist links, and blowing up surfaces. In Section 3, we give a proof of Theorem 1 with the assumption that each singular component
point of the projective model S of the canonical component of $J(2m+1, 2m+1)$ requires only one blow-up to resolve (Proposition 3.4). Finally, we prove Proposition 3.4 in Section 4 and therefore complete the proof of Theorem 1.

2. Preliminaries

In this section, we first recall the definition of $\text{SL}_2(\mathbb{C})$-character varieties of 3-manifolds. Then, we define Chebychev polynomials of the second kind and prove some of their properties. Next, we review character varieties of two-component double twist links from [7]. Finally, we recall the definition of blowing up varieties at a point.

2.1. Character varieties. Let M be a complete finite-volume hyperbolic 3-manifold with cusps. The $\text{SL}_2(\mathbb{C})$-character variety of M is the set of all characters of representations $\rho : \pi_1(M) \to \text{SL}_2(\mathbb{C})$. The character associated to ρ is $\chi_\rho : \pi_1(M) \to \mathbb{C}$ defined by $\chi_\rho(\gamma) = \text{tr} \rho(\gamma)$.

Let $X(M)$ denote the $\text{SL}_2(\mathbb{C})$-character variety, that is

$$X(M) = \{\chi_\rho \mid \rho : \pi_1(M) \to \text{SL}_2(\mathbb{C})\}.$$

The characters of reducible representations themselves form an algebraic set, which is a subset of $X(M)$. The closure of the set of characters of irreducible representations will be denoted by $X_{\text{irr}}(M)$. Any irreducible component of $X(M)$ which contains the character of a discrete faithful representation is contained in $X_{\text{irr}}(M)$ and is called a canonical component and denoted by $X_0(M)$.

Character varieties have been important tools in studying the topology of M, and canonical components encode a lot of topological information about M. They contain subvarieties corresponding to Dehn fillings of M and their ideal points can be used to determine essential surfaces in M (see [1]).

2.2. Chebychev polynomials. Let $S_k(z)$ be the Chebychev polynomials of the second kind defined by $S_0(z) = 1$, $S_1(z) = z$ and $S_{k+1}(z) = zS_k(z) - S_{k-1}(z)$ for all integers k.

It is elementary to verify the following lemma by induction.

Lemma 2.1. (1) With $z = a + a^{-1}$ we have

$$S_k(z) = \frac{a^{k+1} - a^{-k-1}}{a - a^{-1}}.$$

(2) For $k \geq 1$, the polynomial $S_k(z)$ has degree k and leading term z^k.

The following two lemmas can be verified by using Lemma 2.1.

Lemma 2.2. (1) For $k \geq 1$, the polynomial $S_k(z) - S_{k-1}(z)$ has exactly k distinct roots given by $z = 2 \cos \frac{(2j-1)\pi}{2k+1}$ where $1 \leq j \leq k$.

(2) For $k \geq 1$, the polynomial $S_k(z) + S_{k-1}(z)$ has exactly k distinct roots given by $z = 2 \cos \frac{2j\pi}{2k+1}$ where $1 \leq j \leq k$.
Lemma 2.3. For any integer k we have
\[S_k^2(z) + S_{k-1}^2(z) - zS_k(z)S_{k-1}(z) = 1. \]

We now prove the following two lemmas.

Lemma 2.4. For $k \geq 1$, the polynomial $2z + (z^2 - 4)S_{k-1}(z)S_k(z)$ has exactly $2k + 1$ distinct roots given by $z = 2 \cos \frac{(2j-1)\pi}{2k}$, $1 \leq j \leq k$, and $z = 2 \cos \frac{(2j-1)\pi}{2k+2}$, $1 \leq j \leq k + 1$. In particular, it is a separable polynomial in $\mathbb{C}[z]$.

Proof. Let $P(z) = 2z + (z^2 - 4)S_{k-1}(z)S_k(z)$. Consider $z = a + a^{-1}$ where $a \neq \pm 1$. Since $S_j(z) = \frac{a^{j+1} - a^{-j-1}}{a - a^{-1}}$, we have
\[P = 2(a + a^{-1}) + (a^2 + a^{-2} - 2) \frac{a^k - a^{-k}}{a - a^{-1}} \frac{a^{k+1} - a^{-k-1}}{a - a^{-1}} = a + a^{-1} + a^{2k+1} + a^{-2k-1} = (a^k + a^{-k})(a^{k+1} + a^{-k-1}). \]

Note that $P = 0$ if $a^k = -1$ or $a^{2k+2} = -1$. Moreover, these two equations do not have any common roots. This implies that $z = 2 \cos \frac{(2j-1)\pi}{2k}$, $1 \leq j \leq k$, and $z = 2 \cos \frac{(2j-1)\pi}{2k+2}$, $1 \leq j \leq k + 1$, are distinct roots of P. Since the degree of P is exactly $2k + 1$, these are all the roots of P. Therefore, P is separable in $\mathbb{C}[z]$. \(\square \)

Lemma 2.5. For any integer k we have
\[\frac{dS_k(z)}{dz} = \frac{kS_{k+1}(z) - (k + 2)S_{k-1}(z)}{z^2 - 4}. \]

Proof. Write $z = a + a^{-1}$. Then $S_k(z) = \frac{a^{k+1} - a^{-k-1}}{a - a^{-1}}$ and so
\[\frac{dS_k(z)}{dz} = \frac{dS_k(z)}{da} \int \frac{dz}{da} \frac{1}{(a - a^{-1})^2} = \frac{k(a^k + a^{-k})(a - a^{-1}) - (a^{k+1} - a^{-k-1})(1 + a^{-2})}{1 - a^{-2}} = \frac{k(a^{k+1} - a^{-k-1})}{z^2 - 4} - \frac{(k + 2)a^{k+1} - a^{-k-1}}{1 - a^{-2}}. \]
The lemma follows, since $\frac{a^{j+1} - a^{-j-1}}{a - a^{-1}} = S_j(z)$. \(\square \)

2.3. Double twist links. Recall that $J(k, l)$ is the double twist knot/link indicated in Figure 1. It is a knot when kl is even and a two-component link when kl is odd. The knot/link $J(k, l)$ is hyperbolic exactly when $|k|$ and $|l|$ are greater than one; the $J(\pm 1, l) = J(l, \pm 1)$ knot/links are torus knots/links. Let $X(k, l)$ denote the $SL_2(\mathbb{C})$-character variety of $S^3 \setminus J(k, l)$ and $X_0(k, l)$ its canonical component.
Character varieties of the $J(k, l)$ knots and links were computed in [6] and [7] respectively. We now review the computation for the $J(k, l)$ links with two components, so both k and l are odd. Suppose $k = 2m + 1$ and $l = 2n + 1$. By [6], the link group of $J(k, l)$ is $\pi_1(k, l) = \pi_1(S^3 \setminus J(k, l))$ and has presentation

$$\pi_1(k, l) = \langle a, b \mid aw^n b = w^{n+1} \rangle$$

where $w_k = (ab^{-1})^m ab(a^{-1}b)^m$. This is the Wirtinger presentation of a link diagram.

For a word u in two letters a and b, let \bar{u} denote the word obtained from u by writing the letters in u in reversed order. By [7], the above presentation of the link group of $J(k, l)$ can be rewritten as

$$\pi_1(k, l) = \langle a, b \mid r = \bar{r} \rangle$$

where $r = w_k^m(ab^{-1})^m$.

For a representation $\rho : \pi_1(k, l) \to \text{SL}_2(\mathbb{C})$, we let $x = \text{tr}(\rho(a))$, $y = \text{tr}(\rho(b))$ and $z = \text{tr}(\rho(ab^{-1}))$. Then, by [9, Thm. 1] the algebraic set $X(k, l)$ is exactly the zero set of $\phi(x, y, z) = \text{tr}(\rho(ab)) - \text{tr}(\rho(ab^{-1})) \in \mathbb{C}[x, y, z]$. Moreover, by [7], this polynomial can be written in terms of Chebyshev polynomials as

$$\phi(x, y, z) = (xyz + 4 - x^2 - y^2 - z^2)(S_n(t)S_{m-1}(z) - S_{n-1}(t)S_m(z)), $$

where

$$t = \text{tr}(w_k) = xy - z + (xyz + 4 - x^2 - y^2 - z^2)S_m(z)S_{m-1}(z).$$

The character variety $X(k, l)$ is clearly reducible. The vanishing set of $xyz + 4 - x^2 - y^2 - z^2 \in \mathbb{C}[x, y, z]$ is the set of characters of reducible representations of $\pi_1(k, l)$ into $\text{SL}_2(\mathbb{C})$. An affine model for the algebraic set $X_{\text{irr}}(k, l)$ is the vanishing set of $S_n(t)S_{m-1}(z) - S_{n-1}(t)S_m(z) \in \mathbb{C}[x, y, z]$. Then we have the following.

Theorem 2.6. [7] Let $k = 2m + 1$ and $l = 2n + 1$. The algebraic set $X_{\text{irr}}(k, l)$ is birational to $C(k, l) \times \mathbb{C}$ where the curve $C(k, l)$ is given by

$$C(k, l) = \{(t, z) \in \mathbb{C}^2 \mid S_n(t)S_{m-1}(z) - S_{n-1}(t)S_m(z) = 0\}.$$

If $k \neq l$ then $C(k, l)$ is irreducible and $X_0(k, l) = X_{\text{irr}}(k, l)$ is birational to $C(k, l) \times \mathbb{C}$.

The curve $C(3, 3) = C(-3, -3)$ is given by $t = z$. If $k = l$ and $|l| > 3$ then $C(l, l)$ is the union of exactly two irreducible components: $C_0(l, l)$, given by $t = z$, and $C_1(l, l)$, the scheme-theoretic complement of $C_0(l, l)$ in $C(l, l)$. The algebraic set $X_{\text{irr}}(l, l)$ is given by the union $X_0(l, l) \cup X_1(l, l)$, where $X_0(l, l)$ is birational to $C_0(l, l) \times \mathbb{C}$ and $X_1(l, l)$ is birational to $C_1(l, l) \times \mathbb{C}$.

2.4. One-point blow-ups. Blowing up varieties is a standard tool for resolving singular points of surfaces. Since blowing up is a local process, it can be done in affine neighborhoods. For our purpose, understanding blowing up subvarieties of \mathbb{A}^n at a point should be sufficient. For more details about blow-ups, see [3] and [4].
3. Proof of Theorem 1

Let \(m \) be a positive integer and \(l = 2m+1 \). By Theorem 2.6, an affine model of the canonical component \(X_0(l, l) \) of the \(SL_2(\mathbb{C}) \)-character variety of the double twist link \(J(l, l) \) is the zero set of the polynomial \(t - z \in \mathbb{C}[x, y, z] \), where

\[
t = xy - z + (xyz + 4 - x^2 - y^2 - z^2)S_m(z)S_{m-1}(z).
\]

Moreover, it is birational to \(C_0(l, l) \times \mathbb{C} \) where \(C_0(l, l) = \{(t, z) \in \mathbb{C}^2 \mid t = z \} \). In particular, \(X_0(l, l) \) is birational to \(\mathbb{C} \times \mathbb{C} \).

3.1. Projective model.

We begin by homogenizing the defining polynomial for \(X_0(l, l) \).

Let \(T_k = T_k(z, w) = w^kS_k(\frac{z}{w}) \) for \(k \geq 0 \).

Lemma 3.1. For \(k \geq 1 \) we have

1. \(T_k(z, 0) = z^k \),
2. \(T_k^2 + w^2T_k^2T_{k-1} - zT_kT_{k-1} = w^{2k} \),
3. \(w^{2k} + (z \pm 2w)T_kT_{k-1} = (T_k \pm w T_{k-1})^2 \).

Proof. (1) follows from Lemma 2.1(2).

(2) follows from Lemma 2.3.

(3) From (2), we have \(w^{2k} + z T_kT_{k-1} = T_k^2 + w^2T_{k-1}^2 \). Hence, \(w^{2k} + (z \pm 2w)T_kT_{k-1} = (T_k \pm w T_{k-1})^2 \).

The homogenization of the defining polynomial \(t - z = xy - 2z + (xyz + 4 - x^2 - y^2 - z^2)S_m(z)S_{m-1}(z) \) in \(\mathbb{P}^2 \times \mathbb{P}^1 = \{([x : y : u], [z : w]) \mid u \neq 0 \} \) is

\[
F = (xyzw - 2uw^2)w^{2m} + (xyzw + 4uw^2w^2 - x^2w^2 - y^2w^2 - u^2z^2)T_mT_{m-1}.
\]
3.2. Singular points. We now determine the singular points of the projective model of $X_0(l, l)$. To do this, we consider solutions $([x : y : u], [z : w]) \in \mathbb{P}^2 \times \mathbb{P}^1$ of $F = F_x = F_y = F_u = F_z = F_w = 0$.

First, we compute these partial derivatives by direct calculations.

Lemma 3.2. The first order partial derivatives of F are given by

\[
F_x = (yw^{2m} + (yz - 2xw)T_mT_{m-1})w, \\
F_y = (xw^{2m} + (xz - 2yw)T_mT_{m-1})w, \\
F_u = -2u(2zw^{2m} + (z^2 - 4w^2)T_mT_{m-1}), \\
F_z = -2u^2w^{2m} + (xyw - 2u^2z)T_mT_{m-1} \\
+ (xyzw + 4u^2w^2 - x^2w^2 - y^2w^2 - u^2z^2)T_{m-1}z, \\
F_w = (2m + 1)xyw^{2m} - 4mu^2zw^{2m-1} + (xyz + 8u^2w - 2x^2w - 2y^2w)T_mT_{m-1} \\
+ (xyzw + 4u^2w^2 - x^2w^2 - y^2w^2 - u^2z^2)T_{m-1}w.
\]

We can now determine the singular points.

Proposition 3.3. The singular points $([x : y : u], [z : w]) \in \mathbb{P}^2 \times \mathbb{P}^1$ of F are

- $s_1 = ([0 : 1 : 0], [1 : 0])$.
- $s_2 = ([1 : 0 : 0], [1 : 0])$.
- $s_3^{(k)} = ([1 : 1 : 0], [z_3^{(k)} : 1])$, where $z_3^{(k)} = 2\cos\frac{(2k-1)\pi}{2m+1}$, $1 \leq k \leq m$.
- $s_4^{(k)} = ([1 : -1 : 0], [z_4^{(k)} : 1])$, where $z_4^{(k)} = 2\cos\frac{2k\pi}{2m+1}$, $1 \leq k \leq m$.

The number of singular points is $2m + 2$.

Proof. Consider the equations $F = F_x = F_y = F_u = F_z = F_w = 0$. We break the analysis down into two cases: $w = 0$ and $w \neq 0$.

Case 1: $w = 0$. We can assume $z = 1$. Note that $T_k(1, 0) = 1$ for all $k \geq 1$. By Lemma 3.2, we have $F_x = F_y = 0$, $F_u = -u^2$ and $F_w = -2u$. Then $F = F_u = 0$ are equivalent to $u = 0$. Now we have $F_z = 0$ and $F_w = xy$. Thus $F_w = 0$ becomes $xy = 0$. In this case, there are two singular points $([0 : 1 : 0], [1 : 0])$ and $([1 : 0 : 0], [1 : 0])$.

Case 2: $w \neq 0$. In this case, we first solve $F_x = F_y = 0$ and then $F = F_u = 0$. Finally, we show that the equations $F_z = F_w = 0$ follow from $F = F_x = F_y = F_u = 0$.

Since $w \neq 0$, we can assume $w = 1$. We first claim that $(x, y) \neq (0, 0)$. Indeed, assuming $(x, y) = (0, 0)$ we have

\[
F = -2z + (4 - z^2)S_{m-1}(z)S_m(z).
\]

By Lemma 2.4, this polynomial is separable in $\mathbb{C}[z]$, so the equations $F = F_z = 0$ cannot occur. Hence, $(x, y) \neq (0, 0)$.

Consider the equations $F_x = F_y = 0$. By Lemma 2.3, we have $S_m^2(z) + S_{m-1}^2(z) - zS_m(z)S_{m-1}(z) = 1$. This implies that

\[F_x = y + (yz - 2x)S_m(z)S_{m-1}(z) = y(S_m^2(z) + S_{m-1}^2(z)) - 2xS_m(z)S_{m-1}(z), \]

\[F_y = x + (xz - 2y)S_m(z)S_{m-1}(z) = x(S_m^2(z) + S_{m-1}^2(z)) - 2yS_m(z)S_{m-1}(z). \]

Hence,

\[2S_m(z)S_{m-1}(z)F_x + (S_m^2(z) + S_{m-1}^2(z))F_y = x(S_m^2(z) - S_{m-1}^2(z))^2, \]

\[2S_m(z)S_{m-1}(z)F_y + (S_m^2(z) + S_{m-1}^2(z))F_x = y(S_m^2(z) - S_{m-1}^2(z))^2. \]

Since x and y are not simultaneously equal to 0, the equations $F_x = F_y = 0$ imply that $S_m^2(z) - S_{m-1}^2(z) = 0$. We now consider the subcases $S_m(z) - S_{m-1}(z) = 0$ and $S_m(z) + S_{m-1}(z) = 0$ separately.

Subcase 2a: $S_m(z) - S_{m-1}(z) = 0$. By Lemma 2.2, $z = 2 \cos \frac{(2k-1)\pi}{2m+1}$ for some $1 \leq k \leq m$. From $S_m^2(z) + S_{m-1}^2(z) - zS_m(z)S_{m-1}(z) = 1$ and $S_m(z) - S_{m-1}(z) = 0$, we have $S_m^2(z) = \frac{1}{2}$. This implies that $F_x = \frac{2(y-x)}{2-2z}$ and $F_y = \frac{2(x-y)}{2-2z}$. Hence, $F_x = F_y = 0$ are equivalent to $x = y$. Since $S_m^2(z) = \frac{1}{2}$, we have $F = u^2(2-z)$ and $F_u = 2u(2-z)$. Hence, $F = F_u = 0$ are equivalent to $u = 0$. Then, by Lemma 3.2 we have

\[F_z = \left[S_m(z)S_{m-1}(z) + (z - 2)(S_m(z)S_{m-1}(z))^2 \right] x^2, \]

\[F_w = \left[(2m + 1) + (z - 4)S_m(z)S_{m-1}(z) + (z - 2)(T_mT_{m-1})_w \right] x^2. \]

We claim that $F_z = F_w = 0$. Indeed, by taking derivative of the identity $S_m^2(z) + S_{m-1}^2(z) - zS_m(z)S_{m-1}(z) = 1$ and using $S_m(z) = S_{m-1}(z)$, we get $(2 - z)(S'_m(z) + S'_{m-1}(z)) = S_m(z)$. It follows that $F_z = 0$.

Similarly, by taking partial derivative w.r.t. w of the identity $T_m^2 + w^2T_{m-1}^2 - z T_mT_{m-1} = w^{2m}$ (by Lemma 3.1(2)) and using $S_m(z) = S_{m-1}(z)$, we get

\[(2 - z)(T_m)_w + (T_{m-1})_w S_m(z) + 2S_m^2(z) = 2m. \]

It follows that

\[(2m + 1) + (z - 4)S_m(z)S_{m-1}(z) + (z - 2)(T_mT_{m-1})_w = 1 + (z - 2)S_m^2(z) = 0. \]

Hence, $F_w = 0$.

We have proved that the singular points in this subcase are $\{(1: 1: 0), [z : 1]\}$ where $z = 2 \cos \frac{(2k-1)\pi}{2m+1}$ for some $1 \leq k \leq m$.

Subcase 2b: $S_m(z) + S_{m-1}(z) = 0$. Similar to the above, singular points in this subcase are $\{(1: -1: 0), [z : 1]\}$ where $z = 2 \cos \frac{2k\pi}{2m+1}$ for some $1 \leq k \leq m$. \square

Let $S = \mathcal{Z}(F) \subset \mathbb{P}^2 \times \mathbb{P}^1$ be the vanishing set of F.

Proposition 3.4. Each singular point p of S requires only one blow-up to resolve. Namely, the blow-up of S at p is smooth everywhere except at the preimages of other singular points $q \neq p$ of S.

We will prove Proposition 3.4 in the last section.

3.3. Euler characteristic. As in [5], to compute the Euler characteristic $\chi(S)$ we observe that $F = G + u^2H$, where G, H are polynomials independent of u. Explicitly,

$$
G = xyw^{2m+1} + (xyzw - x^2w^2 - y^2w^2)T_mT_{m-1}, \\
H = -2z w^{2m} + (4w^2 - z^2)T_mT_{m-1}.
$$

Recall that $T_k = T_k(z, w) = w^kS_k(\frac{z}{w}) \in \mathbb{C}[z, w]$. By Lemma 3.1(2), we have $T_m^2 + w^2T_{m-1}^2 - zT_mT_{m-1} = w^{2m}$. Hence, we can write

$$
G = (xT_m - ywT_{m-1})(yT_m - wxT_{m-1})w.
$$

Due to the special form of F as above, we introduce the rational map

$$
\varphi : S \cong \mathbb{Z}(F) \subseteq \mathbb{P}^2 \times \mathbb{P}^1 \rightarrow \mathbb{P}^1 \times \mathbb{P}^1
$$

defined by $((x : y : u), [z : w]) \mapsto ([x : y], [z : w])$. This will play an important role in the computation of $\chi(S)$.

We first determine the domain of φ.

Lemma 3.5. The domain of φ is the set $U = S \setminus A$, where A is the set of points $([0 : 0 : 1], [z : 1])$ in $\mathbb{P}^2 \times \mathbb{P}^1$ satisfying $-2z + (4 - z^2)S_m(z)S_{m-1}(z) = 0$.

Proof. The map φ is not defined at points of the set

$$
A = \{([0 : 0 : 1], [z : w]) \in \mathbb{P}^2 \times \mathbb{P}^1 \mid F = 0\} \subset S.
$$

When $(x, y, u) = (0, 0, 1)$ we have $G = 0$ and so $F = H$. If $(z, w) = (1, 0)$ then $H = -T_m(1, 0)T_{m-1}(1, 0) = -1 \neq 0$. If $w = 1$ then $H = -2z + (4 - z^2)S_m(z)S_{m-1}(z)$. Hence, A is equal to the set of points $([0 : 0 : 1], [z : 1])$ in $\mathbb{P}^2 \times \mathbb{P}^1$ satisfying $-2z + (4 - z^2)S_m(z)S_{m-1}(z) = 0$. \qed

Note that the set A has cardinality $2m + 1$. We next determine the image $\varphi(U)$.

Lemma 3.6. We have

$$
\varphi(U) = \mathbb{P}^1 \times \mathbb{P}^1 - B,
$$

where B is the set of points $([x : y], [z : 1]) \in \mathbb{P}^1 \times \mathbb{P}^1$ satisfying $-2z + (4 - z^2)S_m(z)S_{m-1}(z) = 0$ and $(xS_m(z) - yS_{m-1}(z))(yS_m(z) - xS_{m-1}(z)) \neq 0$.

Proof. Note that a point $([x : y], [z : w]) \in \mathbb{P}^1 \times \mathbb{P}^1$ is not in the image $\varphi(U)$ if and only if $F([x : y : u], [z : w]) \in \mathbb{C}[u]$ is a nonzero constant. This is equivalent to $H = 0$ and $G \neq 0$. Recall that $G = (xT_m - ywT_{m-1})(yT_m - wxT_{m-1})w$.

Since $G \neq 0$, we have $w \neq 0$. We can assume $w = 1$, so $H = -2z + (4 - z^2)S_m(z)S_{m-1}(z)$ and $G = (xS_m(z) - yS_{m-1}(z))(yS_m(z) - xS_{m-1}(z))$. The lemma then follows. \qed

Lemma 3.7. We have

$$
\chi(B) = 0.
$$
Proof. Let \(P(z) = -2z + (4 - z^2)S_m(z)S_{m-1}(z) \). By Lemma 2.4, \(P(z) \) is separable in \(\mathbb{C}[z] \). Moreover, by Lemma 2.2, \(P(z) \) and \(S_m(z) \pm S_{m-1}(z) \) do not share any common roots. Hence, if \(P(z) = 0 \) then \(S_m(z) \neq S_{m-1}(z) \). We have

\[
B = \bigsqcup_{z \in \mathbb{F}} (\mathbb{P}^1 \setminus \{(S_m(z) : S_{m-1}(z)), (S_{m-1}(z) : S_m(z)]\}) \times \{z : 1\}
\]

Since \(\mathbb{P}^1 \) with two points removed has Euler characteristic zero, we obtain \(\chi(B) = 0 \). □

Let \(C = \mathbb{Z}(G) \) be the zero set of \(G \) in \(\mathbb{P}^1 \times \mathbb{P}^1 \).

Lemma 3.8. We have

\[
\chi(C) = 4 - 2m.
\]

Proof. To compute the Euler characteristic of \(C \), we write \(C = C_1 \cup C_2 \cup C_3 \) where \(C_i \)'s are subsets of \(\mathbb{P}^1 \times \mathbb{P}^1 \) defined by

\[
\begin{align*}
C_1 &= \mathbb{Z}(w) = \mathbb{P}^1 \times \{(1 : 0)\}, \\
C_2 &= \mathbb{Z}(x T_m - y w T_{m-1}), \\
C_3 &= \mathbb{Z}(y T_m - x w T_{m-1}).
\end{align*}
\]

Note that \(C_1 \cap C_2 = \{(1 : 0), (1 : 0)\} \) and \(C_1 \cap C_3 = \{(0 : 1), (1 : 0)\} \). Moreover, \((x : y), (z : w) \in C_2 \cap C_3 \) if and only if \(x = y \) and \(T_m = w T_{m-1}, \) or \(x = -y \) and \(T_m = -w T_{m-1} \). If \((z, w) = (1, 0) \) then \(T_k = 1 \) and so \(T_m \neq \pm w T_{m-1} \). If \(w = 1 \) then the equation \(T_m = \pm w T_{m-1} \) is equivalent to \(S_m(z) = \pm S_{m-1}(z) \). Hence,

\[
C_2 \cap C_3 = \{(1 : 1), (1 : 1) : S_m(z) = S_{m-1}(z) = 0\}
\]

which has cardinality \(2m \). Hence,

\[
\begin{align*}
\chi(C) &= \chi(C_1) + \chi(C_2) + \chi(C_3) - \chi(C_1 \cap C_2) - \chi(C_1 \cap C_3) - \chi(C_2 \cap C_3) \\
&= 2 + 2 + 2 - 1 - 1 - 2m + 0 = 4 - 2m.
\end{align*}
\]

Note that \(C_1 \cap C_2 \cap C_3 = \emptyset \). □

We are now ready to compute the Euler characteristic of the surface \(S = \mathbb{Z}(F) \).

Proposition 3.9. We have

\[
\chi(S) = 4m + 5.
\]

Proof. Recall that \(F = G + u^2 H \), where \(G, H \) are polynomials independent of \(u \), and \(\varphi : S \hookrightarrow \mathbb{P}^2 \times \mathbb{P}^1 \to \mathbb{P}^1 \times \mathbb{P}^1 \) is defined by \(([x : y : u], [z : w]) \mapsto ([x : y], [z : w]) \).

Note that \(\chi(S) = \chi(U) + \chi(A) \). Since \(A \) is a finite set of cardinality \(2m + 1 \), we have \(\chi(A) = 2m + 1 \). To compute \(\chi(U) \) we notice that a fixed point \(([x : y], [z : w]) \in \varphi(U) = (\mathbb{P}^1 \times \mathbb{P}^1) \setminus B \) has
where \(B = \{([x : y], [z : w]) \in \mathbb{P}^1 \times \mathbb{P}^1 \mid G \neq 0, H = 0, \} \).

Recall that \(C = \{([x : y], [z : w]) \in \mathbb{P}^1 \times \mathbb{P}^1 \mid G = 0, H = 0 \} \subset \mathbb{P}^1 \times \mathbb{P}^1 \). Let \(L = \{([x : y], [z : w]) \in \mathbb{P}^1 \times \mathbb{P}^1 \mid G = 0, H \neq 0 \} \). Note that
\[
\{(x : y), (z : w) \in \mathbb{P}^1 \times \mathbb{P}^1 \mid G \neq 0, H = 0 \} = \varphi(U) \setminus C,
\{(x : y), (z : w) \in \mathbb{P}^1 \times \mathbb{P}^1 \mid G = 0, H \neq 0 \} = C \setminus L.
\]

Note that \(\varphi(U) \) is the disjoint union of three subsets \(\varphi(U) \setminus C, C \setminus L \) and \(L \).

Hence, \(U = \varphi^{-1}(\varphi(U)) \) can be written as the disjoint union of three subsets \(\varphi^{-1}(\varphi(U) \setminus C), \varphi^{-1}(C \setminus L) \) and \(\varphi^{-1}(L) \). Since
\[
\chi(\varphi^{-1}(\varphi(U) \setminus C)) = 2\chi(\varphi(U) \setminus C),
\chi(\varphi^{-1}(C \setminus L)) = \chi(C \setminus L),
\chi(\varphi^{-1}(L)) = \lvert L \rvert \chi(\mathbb{A}^1) = \lvert L \rvert = \chi(L).
\]
we have
\[
\chi(U) = 2\chi(\varphi(U) \setminus C) + \chi(C \setminus L) + \chi(L)
= 2\chi(\mathbb{P}^1 \times \mathbb{P}^1 \setminus (B \cup C)) + \chi(C)
= (2\chi(\mathbb{P}^1 \times \mathbb{P}^1) - 2\chi(B) - 2\chi(C)) + \chi(C)
= 2\chi(\mathbb{P}^1 \times \mathbb{P}^1) - 2\chi(B) - \chi(C)
= 8 - 0 - (4 - 2m) = 2m + 4.
\]

Finally, since \(\chi(A) = 2m + 1 \) we obtain \(\chi(S) = \chi(U) + \chi(A) = 4m + 5 \). \(\square \)

3.4. Proof of Theorem 1.

Recall that \(S = Z(F) \subset \mathbb{P}^2 \times \mathbb{P}^1 \) is the vanishing set of \(F \). Let \(S_{\text{sing}} \) be the set of singular points of \(S \). By Proposition 3.3, its cardinality is \(\lvert S_{\text{sing}} \rvert = 2m + 2 \).

Let \(\hat{S} \) be the smooth projective surface obtained from \(S \) by resolving all the singular points of \(S \). By Proposition 3.4, each singular point of \(S \) requires one blow-up to resolve. Moreover, from its proof in Section 4 we see that the preimage of each singular point is locally a conic and hence locally isomorphic to \(\mathbb{P}^1 \).

This implies that
\[
\chi(\hat{S}) = \chi(S \setminus S_{\text{sing}}) + \lvert S_{\text{sing}} \rvert \cdot \chi(\mathbb{P}^1) = (\chi(S) - \lvert S_{\text{sing}} \rvert) + 2\lvert S_{\text{sing}} \rvert = \chi(S) + \lvert S_{\text{sing}} \rvert.
\]

Hence,
\[
\chi(\hat{S}) = \chi(S) + \lvert S_{\text{sing}} \rvert = (4m + 5) + (2m + 2) = 6m + 7.
\]

Since \(S \) is birational to \(\mathbb{P}^1 \times \mathbb{P}^1 \), \(\hat{S} \) is a smooth projective surface birational to \(\mathbb{P}^1 \times \mathbb{P}^1 \). It is known that \(\mathbb{P}^1 \times \mathbb{P}^1 \) is a minimal smooth projective surface, namely, it is not a blow-up of any smooth projective surface (see e.g. [3] and [4]). Hence, we can blow down \(\hat{S} \) over \(\mathbb{P}^1 \) some number of times so that it becomes a fiber bundle \(\mathbb{P}^1 \times \mathbb{P}^1 \) over \(\mathbb{P}^1 \).
Let N be such that \mathcal{S} is obtained from $\mathbb{P}^1 \times \mathbb{P}^1$ by N one-point blow-ups. Then
\[
\chi(\mathcal{S}) = (\chi(\mathbb{P}^1 \times \mathbb{P}^1) - N) + N \cdot \chi(\mathbb{P}^1) = 4 + N.
\]
Hence, $N = \chi(\mathcal{S}) - 4 = 6m + 3$. This proves Theorem 1.

4. Blow-ups at singular points

In this section, we prove Proposition 3.4 and therefore complete the proof of Theorem 1. We will show that each of the singular points s_1 and $s^{(k)}_3$ of the projective model \mathcal{S} requires only one blow-up to resolve. Namely, the blow-up of \mathcal{S} at $p = s_1$ (or $p = s^{(k)}_3$) is smooth everywhere except at the preimages of the singular points $q \neq p$ of \mathcal{S}. The proofs for s_2 and $s^{(k)}_4$ are similar.

Recall that the defining equation for \mathcal{S} in $\mathbb{P}^2 \times \mathbb{P}^1 = \{(x : y : u), [z : w]\}$ is
\[
F = (xyw - 2u^2z)w^{2m} - (x^2w^2 + y^2w^2 + u^2w^2 - xyzw - 4u^2w^2)T_mT_{m-1},
\]
where $T_k = T_k(z, w) = w^kS_k(\frac{z}{w})$.

4.1. Singular point s_1. To perform the blow-up of \mathcal{S} at $s_1 = (\{0 : 1 : 0\}, \{1 : 0\})$, we consider the affine open set A'_1 such that $y \neq 0$ and $z \neq 0$. Since A'_1 contains the singular points $s_3^{(k)}$ and $s_4^{(k)}$ where $1 \leq k \leq m$, we actually look at the blow-up of \mathcal{S} at s_1 in the affine open set $A_1 = A'_1 \setminus \bigcup_{1 \leq k \leq m} \{s_3^{(k)}, s_4^{(k)}\}$. The local affine coordinates for $A_1 \cong \mathbb{A}^3$ are x, u, w. So to blow up \mathcal{S} at s_1, we blow up $X_1 = Z(F|_{y=1, z=1})$ at the point $(x, u, w) = (0, 0, 0)$ in A_1. Using coordinates a, b, c for \mathbb{P}^2, the blow-up Y_1 of X_1 at $(0, 0, 0)$ is the closed subset in $A_1 \times \mathbb{P}^2$ defined as the zero set of the following polynomials:
\[
F_1 = F|_{y=1, z=1} = (xw - 2u^2)w^{2m} - (x^2w^2 + w^2 + u^2 - xw - 4u^2w^2)T_m(1, w)T_{m-1}(1, w),
\]
\[
e_1 = xb - ua,
\]
\[
e_2 = xc - ua,
\]
\[
e_3 = wb - uc.
\]
We will determine the local model of Y_1 and check for smoothness by looking at Y_1 in the affine open sets defined by $a \neq 0, b \neq 0, \text{ and } c \neq 0$.

Let $D(w) = T_m(1, w)T_{m-1}(1, w)$. Note that $D(0) = 1$ (by Lemma 3.1(1)).

4.1.1. $a \neq 0$. First we look at Y_1 in the affine open set defined by $a \neq 0$ (we can assume $a = 1$). In this open set, the defining equations for Y_1 become
\[
F_1 = (xw - 2u^2)w^{2m} - (x^2w^2 + w^2 + u^2 - xw - 4u^2w^2)D(w),
\]
\[
e_1 = xb - u,
\]
\[
e_2 = xc - w,
\]
\[
e_3 = wb - uc.
\]
From equations \(e_1 = 0 \) and \(e_2 = 0 \), we have \(u = xb \) and \(w = xc \). By replacing \(u \) with \(xb \) and \(w \) with \(xc \) in \(F_1 \), we obtain
\[
F_1 = x^2 \left[(c - 2b^2)(xc)^2m - (x^2c^2 + c^2 + b^2 - c - 4x^2b^2c^2)D(xc) \right].
\]
The first factor corresponds to the exceptional plane \(E_1 \) and the other factor is the defining equation for the local model of \(Y_1 \). Note that the preimage of \(s_1 \) is exactly the intersection of \(E_1 \) and \(Y_1 \) which is equal to the smooth conic \(c^2 + b^2 - c = 0 \). This local model of \(Y_1 \) is smooth in \(A_1 \times \mathbb{P}^2 \) if we can show that
\[
R(b, c, x) : = (c - 2b^2)(xc)^{2m} - (x^2c^2 + c^2 + b^2 - c - 4x^2b^2c^2)D(xc)
\]
is smooth. We now prove that the system \(R = R_b = R_c = R_x = 0 \) has no solutions.

By direct calculations, we have
\[
\begin{align*}
R_b &= -2b \left(2x^2mc^{2m} + (1 - 4x^2c^2)D \right), \\
R_c &= (xc)^{2m} + 2m(c - 2b^2)x^{2m}c^{2m-1} - (2x^2c + 2c - 1 - 8x^2b^2c)D \\
&\quad - (x^2c^2 + c^2 + b^2 - c - 4x^2b^2c^2)xD_w, \\
R_x &= 2m(c - 2b^2)x^{2m-1}c^{2m} - (2c^2x - 8xb^2c^2)D \\
&\quad - (x^2c^2 + c^2 + b^2 - c - 4x^2b^2c^2)cD_w.
\end{align*}
\]

Note that
\[
R - bR_b/2 = c \left(x^2mc^{2m} - (x^2c + c - 1)D \right), \\
xR_x - cR_c = c \left(-x^2mc^{2m} + (2c - 1)D \right).
\]

Assume that \(R = R_b = R_c = R_x = 0 \) at some point \((b, c, x) \). We will consider the two cases \(b = 0 \) and \(b \neq 0 \) separately.

Suppose \(b = 0 \). We claim that \(xc \neq 0 \). Indeed, if \(c = 0 \) then \(R_c = D(0) = 1 \neq 0 \). If \(c \neq 0 \) and \(x = 0 \), then \(R - bR_b/2 = 0 \) implies that \((c-1)D(0) = 1 \). So \(c = 1 \) and \(R_c =-D(0) = -1 \neq 0 \). Hence, \(xc \neq 0 \). From \(R - bR_b/2 = 0 \) and \(xR_x - cR_c = 0 \), we have \(x^{2m}c^{2m} - (x^2c + c - 1)D = 0 \) and \(-x^2mc^{2m} + (2c - 1)D = 0 \).

So \(x^2c + c - 1 = 2c - 1 \), i.e. \(x = \pm 1 \). Then \(D = \frac{x^{2m-2m}}{2c-1} = \frac{w^{2m}}{\pm 2w-1} \). Since \(D = T_m(1, w)T_{m-1}(w) = w^{2m-1}S_m(\frac{1}{w})S_{m-1}(\frac{1}{w}) \), we obtain \(S_m(\frac{1}{w})S_{m-1}(\frac{1}{w}) = \frac{w}{\pm 2w-1} \).

This is equivalent to \((\pm 2 - \frac{1}{w})S_m(\frac{1}{w})S_{m-1}(\frac{1}{w}) = 1 \), i.e. \((S_m(\frac{1}{w}) \neq S_{m-1}(\frac{1}{w}))^2 = 0 \) (by Lemma 2.3). Hence,
\[
([x : y : u], [z : w]) = ([x : 1 : u], [1 : w])
\]
\[
= ([\pm 1 : 1 : 0], [1 : w])
\]
\[
= ([1 : \pm 1 : 0], [\frac{1}{w} : 1]),
\]
which is equal to either \(s_3^{(k)} \) or \(s_4^{(k)} \). This point is not in \(A_1 \), since it has already been removed from \(A_1 \).

Suppose \(b \neq 0 \). Then \(R_b = 0 \) implies that \(2x^2mc^{2m} + (1 - 4x^2c^2)D = 0 \). Note that \(xc \neq 0 \). (Otherwise \(2x^2mc^{2m} + (1 - 4x^2c^2)D = D(0) = 1 \neq 0 \). From
that

$$\frac{R - bR_c/2}{2} = 0$$

and

$$xR_x - cR_x = 0$$

we also have

$$x^{2m}c^{2m} - (c^2c + c - 1)D = 0$$

and

$$−x^{2m}c^{2m} + (2c - 1)D = 0.$$

This implies that

$$x^2c + c - 1 = 2c - 1 = \frac{1}{2}(4c^2 - 1).$$

Hence, $x^2 = 1$ and $2c - 1 = \frac{1}{2}(4c^2 - 1)$, so $c = 1/2$. But then

$$2x^{2m}c^{2m} + (1 − 4x^2c^2)D = 2x^{2m}c^{2m} \neq 0,$$

a contradiction.

4.1.2. $b \neq 0$. Now we look at Y_1 in the affine open set defined by $b \neq 0$ (we can assume $b = 1$). In this open set, the defining equations for Y_1 become

$$F_1 = (xw - 2u^2)w^{2m} - (x^2w^2 + w^2 + u^2 - xw - 4uw^2)D(u),$$

$$e_1 = x - u,$n

$$e_2 = xc - wa,$n

$$e_3 = w - uc.$$

From equations $e_1 = 0$ and $e_3 = 0$, we have $x = ua$ and $w = uc$. By replacing x with ua and w with uc in F_1, we obtain

$$F_1 = u^2 [(ac - 2)(uc)^{2m} - (a^2c^2u^2 + c^2 + 1 - ac - 4u^2c^2)D(uc)].$$

The first factor corresponds to the exceptional plane E_1 and the other factor is the defining equation for the local model of Y_1. Note that the preimage of s_1 is exactly the intersection of E_1 and Y_1 which is equal to the smooth conic $c^2 + 1 − ac = 0$. This local model of Y_1 is smooth in $A_1 \times \mathbb{P}^2$ if we can show that

$$R(a, c, u) := (ac - 2)(uc)^{2m} - (a^2c^2u^2 + c^2 + 1 - ac - 4u^2c^2)D(uc)$$

is smooth. We now prove that the system $R = R_a = R_c = R_u = 0$ has no solutions.

By direct calculations, we have

$$R_a = c\left(u^{2m}c^{2m} - (2au^2c - 1)D\right),$$

$$R_c = a(uc)^{2m} + 2m(ac - 2)u^{2m}c^{2m-1} - (2a^2c^2u^2 + 2c - a - 8u^2c)D$$

$$- (a^2c^2u^2 + c^2 + 1 - ac - 4u^2c^2)uDw, $$

$$R_u = 2m(ac - 2)u^{2m-1}c^{2m} - (2a^2c^2u^2 - 8uc^2)D$$

$$- (a^2c^2u^2 + c^2 + 1 - ac - 4u^2c^2)cDw.$$

Note that

$$uR_a - cR_c = c\left(-au^{2m}c^{2m} + (2c - a)D\right).$$

Assume that $R = R_a = R_c = R_u = 0$ at some point (a, c, u). If $c = 0$, then $R = −D(0) = −1 \neq 0$, a contradiction. Hence, $c \neq 0$. Then $R_a = 0$ implies that

$$u^{2m}c^{2m} - (2au^2c - 1)D = 0.$$

Note that $u \neq 0$. (Otherwise $u^{2m}c^{2m} - (2au^2c - 1)D = D(0) = 1 \neq 0$.) Hence, $2au^2c - 1 \neq 0$ and $D = \frac{u^{2m}c^{2m}}{2au^2c - 1}$. From

$$uR_a - cR_c = 0,$$

we get

$$-au^{2m}c^{2m} + (2c - a)\frac{u^{2m}c^{2m}}{2au^2c - 1} = 0.$$

This implies that

$$- a + \frac{2c - a}{2au^2c - 1} = 0,$$

i.e., $a^2u^2 = 1$.

Similarly, from $R = (ac - 2)(uc)^{2m} - (a^2c^2u^2 + c^2 + 1 - ac - 4u^2c^2)\frac{u^{2m}c^{2m}}{2au^2c - 1} = 0$

we have

$$ac - 2 - \frac{a^2c^2u^2 + c^2 + 1 - ac - 4u^2c^2}{2au^2c - 1} = 0.$$

Since $u^2 = 1/a^2$, we obtain $ac - 2 -$
\[\frac{2c^2+1-4c^2/a^2}{2c/a-1} = 0. \] This is equivalent to \(\left(\frac{2c}{a} - 1 \right)^2 = 0 \), i.e. \(2c = a \). But then \(2au^2c - 1 = a^2u^2 - 1 = 0 \), a contradiction.

4.1.3. \(c \neq 0 \). Finally we look at \(Y_1 \) in the affine open set defined by \(c \neq 0 \) (we can assume \(c = 1 \)). In this open set, the defining equations for \(Y_1 \) become

\[
F_1 = (xw - 2u^2)w^2m - (x^2w^2 + w^2 + xw - 4u^2w^2)D(w),
\]

\[
e_1 = xb - ua,
\]

\[
e_2 = x - wa,
\]

\[
e_3 = wb - u.
\]

From equations \(e_2 = 0 \) and \(e_3 = 0 \), we have \(x = wa \) and \(u = wb \). By replacing \(x \) with \(wa \) and \(u \) with \(wb \) in \(F_1 \), we obtain

\[
F_1 = w^2 [(a - 2b^2)w^2m - (a^2w^2 + 1 + b^2 - a - 4b^2w^2)D(w)].
\]

The first factor corresponds to the exceptional plane \(E_1 \) and the other factor is the defining equation for the local model of \(Y_1 \). Note that the preimage of \(s_1 \) is exactly the intersection of \(E_1 \) and \(Y_1 \) which is equal to the smooth conic \(1 + b^2 - a = 0 \). This local model of \(Y_1 \) is smooth in \(A_1 \times \mathbb{P}^2 \) if we can show that

\[
R(a, b, w): = (a - 2b^2)w^2m - (a^2w^2 + 1 + b^2 - a - 4b^2w^2)D(w),
\]

is smooth. We now prove that the system \(R = R_a = R_b = R_w = 0 \) has no solutions.

By direct calculations, we have

\[
R_a = w^2m - (2aw^2 - 1)D,
\]

\[
R_b = -2b (2w^2m + (1 - 4w^2)D),
\]

\[
R_w = 2m(a - 2b^2)w^{2m-1} - (2a^2w - 8b^2w)D
\]

\[-(a^2w^2 + 1 + b^2 - a - 4b^2w^2)D_w.
\]

Note that

\[
R - (a - 2b^2)R_a = (a^2w^2 - 1 + b^2 + 4b^2w^2 - 4ab^2w^2)D.
\]

Assume that \(R = R_a = R_b = R_w = 0 \) at some point \((a, b, w)\). We will consider the two cases \(b = 0 \) and \(b \neq 0 \) separately.

Suppose \(b = 0 \). Then \(R - (a - 2b^2)R_a = 0 \) implies that \((a^2w^2 - 1)D = 0 \). If \(D = 0 \), then from \(R_a = 0 \) we have \(w = 0 \). This implies that \(D = D(0) = 1 \neq 0 \), a contradiction. Hence, \(a^2w^2 - 1 = 0 \), i.e. \(a = \pm 1/w \). From \(R_a = 0 \), we have \(D = \frac{w^2m}{\pm 2w-1} \). This is equivalent to \((S_m(\frac{1}{w}) \not\equiv S_{m-1}(\frac{1}{w}))^2 = 0 \). Hence,

\[
([x : y : u], [z : w]) = ([aw : 1 : bw], [1 : w])
\]

\[= ([\pm 1 : 1: 0], [1 : w])
\]

\[= ([1 : 1 : 0], [\frac{1}{w} : 1]),
\]
which corresponds to either \(s_3^{(k)} \) or \(s_4^{(k)} \). This point is not in \(A_1 \), since it has already been removed from \(A_1 \).

Suppose \(b \neq 0 \). From \(R_b = 0 \), we have \(2w^{2m} + (1 - 4w^2)D = 0 \). This implies that \(w \neq 0 \) (otherwise \(2w^{2m} + (1 - 4w^2)D = D(0) = 1 \neq 0 \), so \(4w^2 - 1 \neq 0 \) and \(D = \frac{2w^{2m}}{4w^2 - 1} \neq 0 \). Then \(R_a = 0 \) becomes \(1 - \frac{2(2aw^2 - 1)}{4w^2 - 1} = 0 \), which means that \(a = 1 + \frac{1}{4w^2} \). From \(R - (a - 2b^2)R_a = 0 \) and \(D \neq 0 \), we have \(a^2w^2 - 1 + b^2 + 4b^2w^2 - 4ab^2w^2 = 0 \). But \(b^2 + 4b^2w^2 - 4ab^2w^2 = b^2(1 + 4w^2 - 4aw^2) = 0 \), so \(a^2w^2 - 1 = 0 \). Hence, \(a = 1 + \frac{1}{4w^2} = 1 + \frac{a^2}{4} \), i.e. \(a = 2 \). This implies that \(4w^2 - 1 = 0 \), which contradicts \(4w^2 - 1 \neq 0 \).

4.1.4. Conclusion. From the cases \(a \neq 0 \), \(b \neq 0 \), and \(c \neq 0 \) considered above, we conclude that the singular point \(s_1 \) requires only one blow-up to resolve.

4.2. Singular points \(s_3^{(k)} \). To perform the blow-up of \(S \) at

\[
s_3^{(k)} = (1 : 1 : 0, z_3^{(k)} : 1),
\]

we consider the affine open set \(A'_3 \) such that \(x \neq 0 \) and \(z \neq 0 \). Since \(A'_3 \) contains all other singularities except \(s_1 \), we actually look at the blow-up of \(S \) at \(s_1 \) in the affine open set \(A_3 = A'_3 \setminus (S_{\text{sing}} \setminus \{s_1, s_3^{(k)}\}) \). The local affine coordinates for \(A_3 \cong \mathbb{A}^3 \) are \(y, u, w \). So to blow up \(S \) at \(s_3^{(k)} \), we blow up \(X_3 = \mathbb{Z}(F|_{x=1, z=z_3^{(k)}}) \) at the point \((y, u, w) = (1, 0, 1)\) in \(A_3 \). For short, we write \(z_0 \) for \(z_3^{(k)} \). Note that \(S_m(z_0) - S_{m-1}(z_0) = 0 \). Using coordinates \(a, b, c \) for \(\mathbb{P}^2 \), the blow-up \(Y_3 \) of \(X_3 \) at \((1, 0, 1)\) is the closed subset in \(A_3 \times \mathbb{P}^2 \) defined as the zero set of the following polynomials:

\[
F_3 = F|_{x=1, z=z_0} = (yw - 2u^2z_0)w^{2m} + (yz_0w + 4u^2w^2 - w^2 - y^2w^2 - u^2z_0^2)P(w),
\]

\[
e_1 = ua - (y - 1)b,
\]

\[
e_2 = (w - 1)a - (y - 1)c,
\]

\[
e_3 = (w - 1)b - uc,
\]

where \(P(w) = T_m(z_0, w)T_{m-1}(z_0, w) \). Note that \(P(0) = z_0^{2m-1} \) (by Lemma 3.1(1)).

We will determine the local model of \(Y_3 \) and check for smoothness by looking at \(Y_3 \) in the affine open sets defined by \(a \neq 0 \), \(b \neq 0 \), and \(c \neq 0 \).

By Lemma 3.1(3), we have \(w^{2m} + (z - 2w)T_mT_{m-1} = (T_m - wT_{m-1})^2 \). Hence,

\[
F_3 = yw(w^{2m} + (z_0 - 2w)P) - 2u^2z_0w^{2m} + (4u^2w^2 - (y - 1)^2w^2 - u^2z_0^2)P = yw(T_m(z_0, w) - T_{m-1}(z_0, w))^2 - 2u^2z_0w^{2m} + (4u^2w^2 - (y - 1)^2w^2 - u^2z_0^2)P.
\]

Let

\[
Q = Q(w) = \frac{T_m(z_0, w) - wT_{m-1}(z_0, w)}{w - 1}.
\]
Lemma 4.1. We have \(S_m^2(z_0) = \frac{1}{2-z_0} \) and
\[
Q(1) = -\frac{(2m + 1)z_0}{z_0 + 2} S_m(z_0).
\]

Proof. Since \(S_m^2(z_0) + S_{m-1}^2(z_0) - z_0 S_m(z_0) S_{m-1}(z_0) = 1 \) (by Lemma 2.3) and \(S_m(z_0) - S_{m-1}(z_0) = 0 \), we get \(S_m^2 = \frac{1}{2-z_0} \). By L'Hospital rule, we have
\[
Q(1) = \frac{S_m(z_0) - S_{m-1}(z_0)}{w-1} |_{w=1}
\]
\[
= -\frac{z_0}{w^2} (S_m'(z_0) - S_{m-1}'(z_0)) |_{w=1}
\]
\[
= -z_0 (S_m'(z_0) - S_{m-1}'(z_0)).
\]

Since \(S_m(z_0) = S_{m-1}(z_0) \), we have \(S_{m+1}(z) = (z_0 - 1)S_m(z_0) \) and \(S_{m-2}(z) = (z_0 - 1)S_m(z_0) \). Lemma 2.5 then implies that
\[
S_m'(z_0) = \frac{mS_{m+1}(z_0) - (m + 2)S_{m-1}(z_0)}{z_0^2 - 4} = \frac{m(z_0 - 1) - (m + 2)}{z_0^2 - 4} S_m(z_0),
\]
\[
S_{m-1}'(z_0) = \frac{(m - 1)S_m(z_0) - (m + 1)S_{m-2}(z_0)}{z_0^2 - 4} = \frac{m - 1 - (m + 1)(z_0 - 1)}{z_0^2 - 4} S_m(z_0).
\]

Hence, \(Q(1) = -z_0 (S_m'(z_0) - S_{m-1}'(z_0)) = -\frac{(2m+1)z_0}{z_0 + 2} S_m(z_0) \). \(\square \)

4.2.1. \(a \neq 0 \). First we look at \(Y_3 \) in the affine open set defined by \(a \neq 0 \) (we can assume \(a = 1 \)). In this open set, the defining equations for \(Y_3 \) become
\[
F_3 = (yw - 2u^2z_0)w^{2m} + (yz_0w + 4u^2w^2 - w^2 - y^2w^2 - u^2z_0^2)P(w),
\]
\[
e_1 = u - (y-1)b,
\]
\[
e_2 = (w-1) - (y-1)c,
\]
\[
e_3 = (w-1)b - uc.
\]

From equations \(e_1 = 0 \) and \(e_2 = 0 \), we have \(u = (y-1)b \) and \(w = (y-1)c + 1 \). By replacing \(u \) with \((y-1)b \) and \(w \) with \((y-1)c + 1 \) in \(F_3 \), we obtain
\[
F_3 = (yw - 1)^2Q^2 - 2u^2z_0w^{2m} + (4u^2w^2 - (y-1)^2w^2 - u^2z_0^2)P
\]
\[
= (y-1)^2 [yw c^2Q^2 - 2b^2z_0w^{2m} + (4b^2w^2 - w^2 - b^2z_0^2)P] .
\]
Let
\[R(b, c, y) = ywc^2Q^2 - 2b^2z_0w^{2m} + (4b^2w^2 - w^2 - b^2z_0^2)P, \]
where \(w = (y - 1)c + 1 \). Then
\[R|_{y=1} = c^2Q^2(1) - 2b^2z_0 + (4b^2 - 1 - b^2z_0^2)P(1) \]
\[= c^2 \left(\frac{(2m+1)^2z_0^2}{(z_0 + 2)^2}S_m(z_0) - 2b^2z_0 + (4b^2 - 1 - b^2z_0^2)S_m(z_0)S_{m-1}(z_0) \right) \]
\[= \frac{1}{2 - z_0} \left(c^2 \left(\frac{(2m+1)^2z_0^2}{(z_0 + 2)^2} - 2b^2z_0(2 - z_0) + (4b^2 - 1 - b^2z_0^2) \right) \right) \]
\[= \frac{1}{2 - z_0} \left(c^2 \left(\frac{(2m+1)^2z_0^2}{(z_0 + 2)^2} + b^2(z_0 - 2)^2 - 1 \right) \right). \]

We have \(F_3 = (y - 1)^2R \). The first factor corresponds to the exceptional plane \(E_3 \) and the other factor is the defining equation for the local model of \(Y_3 \). Note that the preimage of \(S_j^{(k)} \) is exactly the intersection of \(E_3 \) and \(Y_3 \) which is equal to the smooth conic \(c^2(2m+1)^2z_0^2 + b^2(z_0 - 2)^2 - 1 = 0 \). This local model of \(Y_3 \) is smooth in \(A_3 \times \mathbb{P}^2 \) if we can show that \(R(b, c, y) \) is smooth.

We now prove that the system \(R = R_b = R_c = R_y = 0 \) has no solutions. By direct calculations, we have
\[R_b = 2b \left(-2z_0w^{2m} + (4w^2 - z_0^2)P \right), \]
\[R_c = y(y - 1)c^2Q^2 + 2ywQ^2 + ywc^2(y - 1)(Q^2)_w - 4mb^2z_0(y - 1)w^{2m-1} \]
\[+ (8b^2w - 2w)(y - 1)P + (4b^2w^2 - w^2 - b^2z_0^2)(y - 1)P_w, \]
\[R_y = wc^2Q^2 + yc^2Q^2 + ywc^3(Q^2)_w - 4mb^2z_0cw^{2m-1} \]
\[+ (8b^2w - 2w)cP + (4b^2w^2 - w^2 - b^2z_0^2)cP_w. \]

Note that
\[R - bR_b/2 = w(yc^2Q^2 - wP), \]
\[cR_c - (y - 1)R_y = (y + 1)wc^2Q^2. \]

Assume that \(R = R_b = R_c = R_y = 0 \) at some point \((b, c, y)\). We first claim that \(w \neq 0 \). Indeed, if \(w = 0 \) then \(R = 0 \) implies that \(-b^2z_0^2P(0) = 0 \). Since \(P(0) = z_0^{2m-1} \neq 0 \), we get \(b = 0 \). Then \(R_y = 0 \) implies that \(yc^2Q^2(0) = 0 \). Note that \(c \neq 0 \) (since \(w = (y - 1)c + 1 = 0 \) and \(Q(0) = T_m(z_0, 0) = z_0^{2m} \neq 0 \)). Hence, \(y = 0 \). Then \((x : y : u), [z : w]) = ([1 : 0 : 0], [z_0 : 0]) = s_2 \) which has been removed from \(A_3 \). This proves that \(w \neq 0 \).

Now \(cR_c - (y - 1)R_y = 0 \) implies \(y = -1 \) or \(c^2Q^2 = 0 \). If \(c^2Q^2 = 0 \) then \(w^{2m} + (z_0 - 2w)P = (y - 1)^2c^2Q^2 = 0 \), which implies that \(P \neq 0 \). Then \(R - bR_b/2 = -w^2P \neq 0 \), a contradiction. Hence, \(y = -1 \).

Since \(w^{2m} + (z_0 - 2w)P = (w - 1)^2Q^2 = (y - 1)^2c^2Q^2 = 4c^2Q^2 \), we have \(c^2Q^2 = \frac{w^{2m} + (z_0 - 2w)P}{4} \). From \(R - bR_b/2 = 0 \), we get \(-w^{2m} + (z_0 - 2w)P - wP = 0 \),
which implies that \(w^{2m} + (z_0 + 2w)P = 0 \). By Lemma 3.1(3), this is equivalent to \(T_m(z_0, w) + wT_{m-1}(z_0, w) = 0 \), i.e. \(S_m(z_0) + S_{m-1}(z_0) = 0 \). So

\[
([x : y : u], [z : w]) = ([1 : -1 : 0], [z_0 : w]) = ([1 : -1 : 0], [\frac{z_0}{w} : 1]) = s_4^{(k)}
\]

which has been removed from \(A_3 \).

4.2.2. \(b \neq 0 \)

Now we look at \(Y_3 \) in the affine open set defined by \(b \neq 0 \) (we can assume \(b = 1 \)). In this open set, the defining equations for \(Y_3 \) become

\[
F_3 = (yw - 2uz_0)w^{2m} + (yz_0w + 4u^2w^2 - w^2 - y^2w^2 - u^2z_0^2)P(w),
\]

\[
e_1 = ua - (y - 1),
\]

\[
e_2 = (w - 1)a - (y - 1)c,
\]

\[
e_3 = (w - 1) - uc.
\]

From equations \(e_1 = 0 \) and \(e_3 = 0 \), we have \(y = au + 1 \) and \(w = uc + 1 \). By replacing \(y \) with \(au + 1 \) and \(w \) with \(uc + 1 \) in \(F_3 \), we obtain

\[
F_3 = yw(w - 1)^2Q^2 - 2u^2z_0w^{2m} + (4u^2w^2 - (y - 1)^2w^2 - u^2z_0^2)P
\]

\[
= u^2[(au + 1)wc^2Q^2 - 2z_0w^{2m} + (4w^2 - a^2w^2 - z_0^2)P].
\]

Let

\[
R(a, c, u) = (au + 1)wc^2Q^2 - 2z_0w^{2m} + (4w^2 - a^2w^2 - z_0^2)P(w),
\]

where \(w = uc + 1 \). Then

\[
R\mid_{u=0} = c^2Q^2(1) - 2z_0 + (4 - a^2 - z_0^2)P(1),
\]

\[
= c^2\frac{(2m + 1)^2z_0^2}{(z_0 + 2)^2}S_m(z_0) - 2z_0 + (4 - a^2 - z_0^2)S_m(z_0)S_{m-1}(z_0)
\]

\[
= \frac{1}{2 - z_0}\left(c^2\frac{(2m + 1)^2z_0^2}{(z_0 + 2)^2} - 2z_0(2 - z_0) + (4 - a^2 - z_0^2)\right)
\]

\[
= \frac{1}{2 - z_0}\left(c^2\frac{(2m + 1)^2z_0^2}{(z_0 + 2)^2} - a^2 + (z_0 - 2)^2\right).
\]

We have \(F_3 = u^2R \). The first factor corresponds to the exceptional plane \(E_3 \) and the other factor is the defining equation for the local model of \(Y_3 \). Note that the preimage of \(s_3^{(k)} \) is exactly the intersection of \(E_3 \) and \(Y_3 \) which is equal to the smooth conic \(c^2\frac{(2m + 1)^2z_0^2}{(z_0 + 2)^2} - a^2 + (z_0 - 2)^2 = 0 \). This local model of \(Y_3 \) is smooth in \(A_3 \times \mathbb{P}^2 \) if we can show that \(R(a, c, u) \) is smooth.
We now prove that the system $R = R_a = R_c = R_u = 0$ has no solutions. By direct calculations, we have

\[
R_a = w(uw^2Q^2 - 2awP),
\]

\[
R_c = (au + 1)uw^2Q^2 + (au + 1)uwQ^2 + (au + 1)uw^3Q^2 - 4mz_0uw^{2m-1} + (4u - a^2)uwP + (4u^2 - a^2w^2 - z_0^2)uwP_w,
\]

\[
R_u = aw^2Q^2 + (au + 1)uw^2Q^2 + (au + 1)uw^3Q^2 - 4mz_0uw^{2m-1} + (4u - a^2)uwP + (4u^2 - a^2w^2 - z_0^2)uwP_w.
\]

Note that

\[
R - aR_a/2 = (au/2 + 1)uw^2Q^2 - 2z_0uw^{2m} + (4u^2 - z_0^2)P,
\]

\[
cR_c - uR_u = (au + 2)uw^2Q^2.
\]

We first claim that $w \neq 0$. Indeed, if $w = 0$ then $R = 0$ implies that $-z_0^2P(0) = 0$. But $P(0) = z_0^{2m-1} \neq 0$, a contradiction. Hence, $w \neq 0$.

From $cR_c - uR_u = 0$ and $R - aR_a/2 = 0$, we have $(au + 2)uw^2Q^2 = 0$ and $-2z_0uw^{2m} + (4u^2 - z_0^2)P = 0$. Since $z_0uw^{2m} \neq 0$, we get $4u^2 - z_0^2 \neq 0$ and

\[
P = \frac{2z_0uw^{2m}}{4u^2 - z_0^2}.
\]

If $c^2Q^2 = 0$, then $w^{2m} + (z_0 - 2w)P = (w - 1)^2Q^2 = u^2c^2Q^2 = 0$. This implies that $2w - z_0 \neq 0$ and $P = \frac{w^{2m}}{2w - z_0}$. Together with $P = \frac{2z_0uw^{2m}}{4u^2 - z_0^2}$, we get $\frac{2z_0}{2w - z_0} = 1$. So $z_0 = 2w$, which contradicts $2w - z_0 \neq 0$.

If $au + 2 = 0$, then $a = -2/u$. From $R_a = 0$, we have $u^2c^2Q + 4wP = 0$, i.e. $(w - 1)^2Q^2 + 4wP = 0$. This is equivalent to $w^{2m} + (z_0 - 2w)P + 4wP = 0$. So $2w + z_0 \neq 0$ and $P = -\frac{u^{2m}}{2w + z_0}$. Together with $P = \frac{2z_0uw^{2m}}{4w^2 - z_0^2}$, we get $\frac{2z_0}{2w + z_0} = -1$. So $z_0 = -2w$, which contradicts $2w + z_0 \neq 0$.

4.2.3. $c \neq 0$. Finally we look at Y_3 in the affine open set defined by $c \neq 0$ (we can assume $b = 1$). In this open set, the defining equations for Y_3 become

\[
F_3 = (yw - 2u^2z_0)uw^{2m} + (yz_0w + 4u^2w^2 - w^2 - y^2w^2 - u^2z_0^2)P(w),
\]

\[
e_1 = ua - (y - 1)b,
\]

\[
e_2 = (w - 1)a - (y - 1),
\]

\[
e_3 = (w - 1)b - u.
\]

From equations $e_2 = 0$ and $e_3 = 0$, we have $y = a(w - 1) + 1$ and $u = b(w - 1)$. By replacing y with $a(w - 1) + 1$ and u with $b(w - 1)$ in F_3, we obtain

\[
F_3 = yu(w - 1)^2Q^2 - 2u^2z_0uw^{2m} + (4u^2w^2 - (y - 1)^2w^2 - u^2z_0^2)P(w)
\]

\[
= (w - 1)^2 \left[(a(w - 1) + 1)wQ^2 - 2b^2z_0uw^{2m} + (4b^2w^2 - a^2w^2 - b^2z_0^2)P(w)\right].
\]

Let

\[
R(a, b, w) = (a(w - 1) + 1)wQ^2(w) - 2b^2z_0uw^{2m} + (4b^2w^2 - a^2w^2 - b^2z_0^2)P(w).
\]
Then
\[R_{|w=1} = Q(1) - 2b^2z_0 + (4b^2 - a^2 - b^2z_0^2)P(1), \]
\[= \frac{(2m + 1)^2z_0^2}{(z_0 + 2)^2} - 2b^2z_0 + (4b^2 - a^2 - b^2z_0^2)S_m(z_0)S_{m-1}(z_0) \]
\[= \frac{1}{2 - z_0} \left(\frac{(2m + 1)^2z_0^2}{(z_0 + 2)^2} - 2b^2z_0(2 - z_0) + (4b^2 - a^2 - b^2z_0^2) \right) \]
\[= \frac{1}{2 - z_0} \left(\frac{(2m + 1)^2z_0^2}{(z_0 + 2)^2} - a^2 + b^2(z_0 - 2)^2 \right). \]

We have \(F_3 = (w - 1)^2R. \) The first factor corresponds to the exceptional plane \(E_3 \) and the other factor is the defining equation for the local model of \(Y_3. \) Note that the preimage of \(s_3^{(k)} \) is exactly the intersection of \(E_3 \) and \(Y_3 \) which is equal to the smooth conic \(\frac{(2m + 1)^2z_0^2}{(z_0 + 2)^2} - a^2 + b^2(z_0 - 2)^2 = 0. \) This local model of \(Y_3 \) is smooth in \(A_3 \times \mathbb{P}^2 \) if we can show that \(R(a, b, w) \) is smooth.

We now prove that the system \(R = R_a = R_b = R_w = 0 \) has no solutions. By direct calculations, we have
\[R_a = (w - 1)wQ^2 - 2aw^2P, \]
\[R_b = 2b(-2z_0w^{2m} + (4w^2 - z_0^2)P), \]
\[R_w = awQ^2 + (a(w - 1) + 1)Q^2 + (a(w - 1) + 1)w(Q^2)_w - 4mb^2z_0w^{2m-1} + 2(4b^2 - a^2)wP + (4b^2w^2 - a^2w^2 - b^2z_0^2)P_w. \]

Note that
\[2R - bR_b - aR_a = (a(w - 1) + 2)wQ^2. \]

We first claim that \(w \neq 0. \) Indeed, if \(w = 0 \) then \(R = 0 \) implies that \(b^2z_0^2P(0) = 0. \) Since \(z_0 \neq 0 \) and \(P(0) = 1, \) we have \(b = 0. \) Then \(R_w = 0 \) becomes \((a(w - 1) + 1)Q^2 = 0. \) Note that \(Q(0) = z_0^{2m} \neq 0, \) hence \(a(w - 1) + 1 = 0. \) Then \(([x : y : u], [z : w]) = ([1 : 0 : 0], [z_0 : 0]) = s_2 \) which has been removed from \(A_3. \) Hence, \(w \neq 0. \)

From \(2R - bR_b - aR_a = 0, \) we have \(a(w - 1) + 2 \) or \(Q = 0. \) Similarly, \(R_b = 0 \) implies that \(b = 0 \) or \(-2z_0w^{2m} + (4w^2 - z_0^2)P = 0. \) There are four cases to consider.

Case 1: Suppose \(b = 0 \) and \(Q = 0. \) Then \(R_a = 0 \) implies that \(aP = 0. \) Note that \(P \neq 0, \) since \(w^{2m} + (z_0 - 2w)P = (w - 1)^2Q^2 = 0. \) Hence, \(a = 0. \) From \(Q = 0, \) we have \(T_m(z_0, w) = wT_m(z_0, w) = 0, \) which is equivalent to \(S_m(z_0) - S_{m-1}(z_0) = 0, \) so \(z_0 \neq z_0^{(l)} \) for some \(l. \) Note that \(Q(1) = \frac{1}{2 - z_0} (2m + 1^2z_0^2) \neq 0, \) so \(w \neq 1. \) This implies that \(z_0^{(l)} = z_0 \neq z_0^{(k)}. \) Since \(([x : y : u], [z : w]) = ([1 : 1 : 0], [z_0^{(l)} : 1]) = s_3^{(l)} \) has been removed from \(A_3, \) we obtain a contradiction.
Case 2: Suppose $b = 0$ and $a(w - 1) + 2 = 0$. Then $a = -2/(w - 1)$ and $y = a(w - 1) + 1 = -1$. From $R = 0$, we have $(w - 1)^2Q^2 + 4wP = 0$, i.e. $w^{2m} + (z_0 - 2w)P + 4wP = 0$. By Lemma 3.1(3), this is equivalent to $S_m(\frac{z_0}{w}) + S_{m-1}(\frac{z_0}{w}) = 0$, so $z_0 = z^{(l)}_4$ for some l. Then $([x : y : u], [z : w]) = ([1 : -1 : 0], [z^{(l)}_4 : 1]) = s^{(l)}_4$ which has been removed from A_3.

Case 3: Suppose $-2z_0w^{2m} + (4w^2 - z_0^2)P = 0$ and $Q = 0$. Then $4w^2 - z_0^2 \neq 0$ and $P = \frac{2z_0w^{2m}}{4w^2 - z_0^2}$. From $Q = 0$, we have $w^{2m} + (z_0 - 2w)P = (w - 1)^2Q^2 = 0$.

Hence, $1 + (z_0 - 2w)\frac{2z_0}{4w^2 - z_0^2} = 0$, i.e. $1 - \frac{2z_0}{z_0 + 2w} = 0$. This implies that $z_0 = 2w$, which contradicts $4w^2 - z_0^2 \neq 0$.

Case 4: Suppose $-2z_0w^{2m} + (4w^2 - z_0^2)P = 0$ and $a(w - 1) + 2 = 0$. From $R_a = 0$, we have $(w - 1)^2Q^2 + 4wP = 0$, which is equivalent to $w^{2m} + (z_0 - 2w)P + 4wP = 0$. So $1 + (z_0 + 2w)\frac{2z_0}{4w^2 - z_0^2} = 0$, i.e. $1 - \frac{2z_0}{z_0 - 2w} = 0$. This implies that $z_0 = -2w$, which contradicts $4w^2 - z_0^2 \neq 0$.

4.2.4. Conclusion. From the cases $a \neq 0$, $b \neq 0$, and $c \neq 0$ considered above, we conclude that the singular point $s^{(k)}_3$ requires only one blow-up to resolve.

Acknowledgements

The authors would like to thank the referee for helpful comments and suggestions which greatly improves the exposition of the paper.

References

(Anh T. Tran) DEPARTMENT OF MATHEMATICAL SCIENCES, THE UNIVERSITY OF TEXAS AT DALLAS, RICHARDSON, TX 75080, USA
att140830@utdallas.edu

(Nisha Yadav) SCHOOL OF MATHEMATICAL AND STATISTICAL SCIENCES, CLEMSON UNIVERSITY, CLEMSON, SC 29634, USA
fnisha@clemson.edu

This paper is available via http://nyjm.albany.edu/j/2024/30-28.html.