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An extended variational formula for the
Bismut–Cheeger eta form and

its applications

Man-Ho Ho

Abstract. The purpose of this paper is to extend our previous work on the
variational formula for the Bismut–Cheeger eta formwithout the kernel bun-
dle assumption by allowing the spin𝑐 Dirac operators to be twisted by isomor-
phic vector bundles and to establish the ℤ2-graded additivity of the Bismut–
Cheeger eta form. Using these results, we give alternative proofs of the fact
that the analytic index in differential 𝐾-theory is a well defined group homo-
morphism and the Riemann–Roch–Grothendieck theorem inℝ∕ℤ𝐾-theory.
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1. Introduction
The Bismut–Cheeger eta form serves as a transgression form between the

Chern character of the index bundle and its Atiyah–Singer representative at the
differential form level [3, Theorems 4.35 and 4.95] and [5, Theorem 0.1]. In this
paper, we extend our previous work on the variational formula for the Bismut–
Cheeger eta form [8, Proposition 1] by allowing the spin𝑐 Dirac operators to
be twisted by isomorphic vector bundles. In addition, we prove the ℤ2-graded
additivity of the Bismut–Cheeger eta form. We then present some applications
of these results. All the Dirac operators in this paper are not assumed to satisfy
the kernel bundle assumption.
To put the paper into context, let 𝜋 ∶ 𝑋 → 𝐵 be a submersion with closed,

oriented and spin𝑐 fibers of even dimension, equipped with a Riemannian and
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differential spin𝑐 structure (𝑇𝐻𝑋, 𝑔𝑇𝑉𝑋 , 𝑔𝜆,∇𝜆). Let (𝐸, 𝑔𝐸 ,∇𝐸) be a complex
vector bundle over𝑋with aHermitianmetric and aunitary connection. Denote
by 𝖣𝑆⊗𝐸 the corresponding twisted spin𝑐 Dirac operator. Miščenko–Fomenko
show in [16] that there always exists aℤ2-graded complex vector bundle 𝐿 → 𝐵
such that it represents the analytic index of 𝖣𝑆⊗𝐸 in 𝐾-theory, i.e. ind𝑎([𝐸]) =
[𝐿+] − [𝐿−] ∈ 𝐾(𝐵). The corresponding local family index theorem (FIT) for
𝖣𝑆⊗𝐸 by Freed–Lott [6, (7.26)] states that

𝑑𝜂𝐸(𝑔𝐸 ,∇𝐸 , 𝑇𝐻𝑋, 𝑔𝑇𝑉𝑋 , 𝑔𝜆,∇𝜆, 𝐿) = ∫
𝑋∕𝐵

Todd(∇𝑇𝑉𝑋) ∧ ch(∇𝐸) − ch(∇𝐿),

where ∇𝐿 is the projected ℤ2-graded unitary connection on 𝐿 → 𝐵, and
𝜂𝐸(𝑔𝐸 ,∇𝐸 , 𝑇𝐻𝑋, 𝑔𝑇𝑉𝑋 , 𝑔𝜆,∇𝜆, 𝐿) is the correspondingBismut–Cheeger eta form.
The notation 𝜂𝐸(𝑔𝐸 ,∇𝐸 , 𝑇𝐻𝑋, 𝑔𝑇𝑉𝑋 , 𝑔𝜆,∇𝜆, 𝐿) is to indicate the dependence

on the geometric structures. Given two sets of geometric structures, denoted
by subscripts 0 and 1, variational formula for the Bismut–Cheeger eta form is
an explicit expression of the difference

𝜂𝐸(𝑔𝐸1 ,∇
𝐸
1 , 𝑇

𝐻
1 𝑋, 𝑔

𝑇𝑉𝑋
1 , 𝑔𝜆1 ,∇

𝜆
1 , 𝐿1) − 𝜂𝐸(𝑔𝐸0 ,∇

𝐸
0 , 𝑇

𝐻
0 𝑋, 𝑔

𝑇𝑉𝑋
0 , 𝑔𝜆0 ,∇

𝜆
0 , 𝐿0)

in terms of the geometric structures involved.
In recent years, variational formulas for the Bismut–Cheeger eta form have

been established in various settings and have found numerous applications in
local index theory. For instance, Liu proves a variational formula for theBismut–
Cheeger eta form in the equivariant setting [13, Theorem 1.4] (see also [11,
Theorem 1.2]) and uses it to prove its functoriality [13, Theorem 1.6] (see also
[11, Theorem 1.3]). On the other hand, we prove a variational formula for the
Bismut–Cheeger eta form without the kernel bundle assumption in the even
dimensional fiber case [8, Proposition 1] and use it to prove the ℤ2-graded ver-
sion of the real part of the Riemann–Roch–Grothendieck (RRG) theorem for
complex flat vector bundles in the same case at the differential form level [8,
Theorem 1].
The main result of this paper is an extension of [8, Proposition 1], in the

sense that the spin𝑐 Dirac operators are allowed to be twisted by isomorphic
vector bundles, i.e. an explicit expression for the difference

𝜂𝐹(𝑔𝐹 ,∇𝐹 , 𝑇𝐻1 𝑋, 𝑔
𝑇𝑉𝑋
1 , 𝑔𝜆1 ,∇

𝜆
1 , 𝐿𝐹) − 𝜂𝐸(𝑔𝐸 ,∇𝐸 , 𝑇𝐻0 𝑋, 𝑔

𝑇𝑉𝑋
0 , 𝑔𝜆0 ,∇

𝜆
0 , 𝐿𝐸)

in terms of the geometric structures involved, where the complex vector bun-
dles 𝐸 → 𝑋 and 𝐹 → 𝑋 are isomorphic. To establish the main result of this
paper, we first prove the following special case.

Proposition 1.1. (= Proposition 3.3) Let 𝜋 ∶ 𝑋 → 𝐵 be a submersion with
closed, oriented and spin𝑐 fibers of even dimension, equipped with a Riemann-
ian and differential spin𝑐 structure (𝑇𝐻𝑋, 𝑔𝑇𝑉𝑋 , 𝑔𝜆,∇𝜆). Let (𝐸, 𝑔𝐸) be a Her-
mitian bundle and (𝐹, 𝑔𝐹 ,∇𝐹) a Hermitian bundle with a unitary connection.
If there exists an isometric isomorphism 𝛼 ∶ (𝐸, 𝑔𝐸) → (𝐹, 𝑔𝐹) and 𝐿𝐸,𝛼 → 𝐵
is a ℤ2-graded complex vector bundle representing the analytic index of 𝖣𝑆⊗𝐸,𝛼
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(defined in terms of 𝛼∗∇𝐹) in 𝐾-theory, then there exist a uniqueℤ2-graded com-
plex vector bundle 𝐿𝐹,𝛼 → 𝐵 and a unique ℤ2-graded isometric isomorphism
�̃�𝐿 ∶ (𝐿𝐸,𝛼, 𝑔𝐿𝐸,𝛼 )→ (𝐿𝐹,𝛼, 𝑔𝐿𝐹,𝛼 ) such that 𝐿𝐹,𝛼 → 𝐵 represents the analytic index
of 𝖣𝑆⊗𝐹 (defined in terms of ∇𝐹) in 𝐾-theory and

𝜂𝐸(𝑔𝐸 , 𝛼∗∇𝐹 , 𝑇𝐻𝑋, 𝑔𝑇𝑉𝑋 , 𝑔𝜆,∇𝜆, 𝐿𝐸,𝛼) = 𝜂𝐹(𝑔𝐹 ,∇𝐹 , 𝑇𝐻𝑋, 𝑔𝑇𝑉𝑋 , 𝑔𝜆,∇𝜆, 𝐿𝐹,𝛼).

The main result of this paper is the following theorem.

Theorem 1.2. (= Theorem 3.4) Let 𝜋 ∶ 𝑋 → 𝐵 be a submersion with closed, ori-
ented and spin𝑐 fibers of even dimension, and (𝐸, 𝑔𝐸 ,∇𝐸) and (𝐹, 𝑔𝐹 ,∇𝐹) areHer-
mitian bundles with unitary connections. Denote by 𝖣𝑆⊗𝐸 and 𝖣𝑆⊗𝐹 the twisted
spin𝑐 Dirac operators defined in terms of the following Riemannian and differen-
tial spin𝑐 structures

(𝑇𝐻0 𝑋, 𝑔
𝑇𝑉𝑋
0 , 𝑔𝜆0 ,∇

𝜆
0) and (𝑇𝐻1 𝑋, 𝑔

𝑇𝑉𝑋
1 , 𝑔𝜆1 ,∇

𝜆
1)

on 𝜋 ∶ 𝑋 → 𝐵, respectively, where the underlying topological spin𝑐 structures
coincide. Let 𝐿𝐸 → 𝐵 and 𝐿𝐹 → 𝐵 be ℤ2-graded complex vector bundles that
represent the analytic indexes of 𝖣𝑆⊗𝐸 and 𝖣𝑆⊗𝐹 in 𝐾-theory, respectively.
If there exists an isometric isomorphism 𝛼 ∶ (𝐸, 𝑔𝐸)→ (𝐹, 𝑔𝐹), then there exist

balancedℤ2-graded triples (𝑊0, 𝑔𝑊0 ,∇𝑊0) and (𝑊1, 𝑔𝑊1 ,∇𝑊1) and aℤ2-graded
isometric isomorphism ℎ ∶ (𝐿𝐸 ⊕𝑊0, 𝑔𝐿𝐸 ⊕𝑔𝑊0)→ (𝐿𝐹 ⊕𝑊1, 𝑔𝐿𝐹 ⊕𝑔𝑊1) such
that
𝜂𝐹(𝑔𝐹 ,∇𝐹 , 𝑇𝐻1 𝑋, 𝑔

𝑇𝑉𝑋
1 , 𝑔𝜆1 ,∇

𝜆
1 , 𝐿𝐹) − 𝜂𝐸(𝑔𝐸 ,∇𝐸 , 𝑇𝐻0 𝑋, 𝑔

𝑇𝑉𝑋
0 , 𝑔𝜆0 ,∇

𝜆
0 , 𝐿𝐸)

= ∫
𝑋∕𝐵

(
𝑇𝐴(∇𝑇𝑉𝑋

0 ,∇𝑇𝑉𝑋
1 ) ∧ 𝑒

1
2
𝑐1(∇𝜆

0) + 𝐴(∇𝑇𝑉𝑋
1 ) ∧ 𝑒

1
2
𝑇𝑐1(∇𝜆

0 ,∇
𝜆
1)
)
∧ ch(∇𝐸)

+ ∫
𝑋∕𝐵

Todd(∇𝑇𝑉𝑋
1 ) ∧ CS(∇𝐸 , 𝛼∗∇𝐹) − CS(∇𝐿𝐸 ⊕∇𝑊0 , ℎ∗(∇𝐿𝐹 ⊕∇𝑊1))

in
Ωodd(𝐵)
Im(𝑑)

.

Note that Theorem 1.2 is a special case of the variational formula of the equi-
variant Bismut–Cheeger eta form by Liu [12, Theorem 3.17], which is proved
in the setting of an equivariant version of Bunke–Schick’s model of differential
𝐾-theory [4]. A notable difference is the appearance of the equivariant higher
spectral flow in [12, Theorem 3.17] and the Chern–Simons form in Theorem
1.2.
We present some applications of Proposition 1.1 and Theorem 1.2 in this pa-

per. We use Proposition 1.1 to establish theℤ2-graded additivity of the Bismut–
Cheeger eta form.

Theorem 1.3. (= Theorem 4.5) Let 𝜋 ∶ 𝑋 → 𝐵 be a submersion with closed,
oriented and spin𝑐 fibers of even dimension, equipped with a Riemannian and
differential spin𝑐 structure (𝑇𝐻𝑋, 𝑔𝑇𝑉𝑋 , 𝑔𝜆,∇𝜆). Let (𝐸, 𝑔𝐸 ,∇𝐸) be a ℤ2-graded
Hermitian bundle with a ℤ2-graded unitary connection. Denote by 𝖣𝑆⊗𝐸 , 𝖣𝑆⊗𝐸

+
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and 𝖣𝑆⊗𝐸− the spin𝑐 Dirac operators twisted by 𝐸 → 𝑋, 𝐸+ → 𝑋 and 𝐸− → 𝑋,
respectively. If 𝐿𝐸+ → 𝐵 and 𝐿𝐸− → 𝐵 are ℤ2-graded complex vector bundles
representing the analytic indexes of 𝖣𝑆⊗𝐸+ and 𝖣𝑆⊗𝐸− in 𝐾-theory, respectively,
then 𝐿𝐸+ ⊕ 𝐿op𝐸− → 𝐵 represents the analytic index of 𝖣𝑆⊗𝐸 in 𝐾-theory and

𝜂𝐸(𝑔𝐸 ,∇𝐸 , 𝑇𝐻𝑋, 𝑔𝑇𝑉𝑋 , 𝑔𝜆,∇𝜆, 𝐿𝐸+ ⊕ 𝐿op𝐸−)

= 𝜂𝐸+(𝑔𝐸,+,∇𝐸,+, 𝑇𝐻𝑋, 𝑔𝑇𝑉𝑋 , 𝑔𝜆,∇𝜆, 𝐿𝐸+)

− 𝜂𝐸−(𝑔𝐸,−,∇𝐸,−, 𝑇𝐻𝑋, 𝑔𝑇𝑉𝑋 , 𝑔𝜆,∇𝜆, 𝐿𝐸−)

in
Ωodd(𝐵)
Im(𝑑)

, where 𝐿op𝐸− → 𝐵 denotes the ℤ2-graded complex vector bundle with

the opposite grading of 𝐿𝐸− → 𝐵.

While the additivity of the Bismut–Cheeger eta form is well known for un-
graded direct sums (at least in the case when the Dirac operators satisfy the ker-
nel bundle assumption), its ℤ2-graded additivity is less well known. We could
not find a statement nor a proof of this result in the literature. For the sake of
completeness, we also give a proof of the additivity of the Bismut–Cheeger eta
form for ungraded direct sums without the kernel bundle assumption (Propo-
sition 4.1).
The first application of Theorem 1.2 concerns the analytic index in differ-

ential 𝐾-theory. Given a submersion 𝜋 ∶ 𝑋 → 𝐵 with closed, oriented and
spin𝑐 fibers of even dimension equipped with a Riemannian and differential
spin𝑐 structure (𝑇𝐻𝑋, 𝑔𝑇𝑉𝑋 , 𝑔𝜆,∇𝜆), the analytic index in differential 𝐾-theory
[6, Definition 7.27] is defined to be

ind𝑎𝐾(ℰ;𝐿) = (𝐿, 𝑔𝐿,∇𝐿, ∫
𝑋∕𝐵

Todd(∇𝑇𝑉𝑋) ∧ 𝜔 + 𝜂𝐸(𝑔𝐸 ,∇𝐸 , 𝑇𝐻𝑋, 𝑔𝑇𝑉𝑋 , 𝑔𝜆,∇𝜆, 𝐿)),

whereℰ is a generator of the Freed–Lott differential𝐾-group𝐾FL(𝑋) and𝐿 → 𝐵
is a ℤ2-graded complex vector bundle representing the analytic index of 𝖣𝑆⊗𝐸
in 𝐾-theory. We use Theorem 1.2 and Proposition 4.1 to prove the following
result.

Proposition 1.4. Let 𝜋 ∶ 𝑋 → 𝐵 be a submersion with closed, oriented and
spin𝑐 fibers of even dimension, equippedwith aRiemannian and differential spin𝑐
structure. The analytic index in differential 𝐾-theory

ind𝑎𝐾 ∶ 𝐾FL(𝑋)→ 𝐾FL(𝐵)

is a well defined group homomorphism.

Proposition 1.4 is first derived by Freed–Lott [6, (2) of Corollary 7.36] as
a consequence of the fact that the topological index in differential 𝐾-theory
ind𝑡𝐾 ∶ 𝐾FL(𝑋) → 𝐾FL(𝐵) is a well defined group homomorphism [6, (2) of
Proposition 4.18 and Lemma 5.30] and the FIT in differential𝐾-theory [6, The-
orem 7.35], i.e. for every generator ℰ of 𝐾FL(𝑋),

ind𝑎𝐾(ℰ) = ind𝑡𝐾(ℰ).
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Our proof of Proposition 1.4 does not rely on these results. It is worth noting
that the construction of the topological index in differential𝐾-theory is compli-
cated, and the proofs of the well definedness of the topological index ind𝑡𝐾 and
the FIT in differential 𝐾-theory are highly nontrivial.
Since the analytic index in differential 𝐾-theory ind𝑎𝐾 ∶ 𝐾FL(𝑋) → 𝐾FL(𝐵)

restricts to the analytic index in ℝ∕ℤ 𝐾-theory [14, Definition 14]
ind𝑎ℝ∕ℤ ∶ 𝐾−1

L (𝑋)→ 𝐾−1
L (𝐵), (1.1)

as an immediate consequence of Proposition 1.4, (1.1) is also a well defined
group homomorphism.
Finally, we use Theorems 1.2 and 1.3 to give an alternative proof of the RRG

theorem in ℝ∕ℤ 𝐾-theory.

Theorem 1.5. Let 𝜋 ∶ 𝑋 → 𝐵 be a submersion with closed, oriented and spin𝑐
fibers of evendimension, equippedwith aRiemanniananddifferential spin𝑐 struc-
ture. The following diagram commutes.

𝐾−1
L (𝑋) 𝐻odd(𝑋;ℝ∕ℚ)

𝐾−1
L (𝐵) 𝐻odd(𝐵;ℝ∕ℚ)

chℝ∕ℚ

ind𝑎ℝ∕ℤ ∫𝑋∕𝐵 Todd(𝑇
𝑉𝑋)∪(⋅)

chℝ∕ℚ

(1.2)

That is, for every ℤ2-graded generator ℰ of 𝐾−1
L (𝑋),

chℝ∕ℚ(ind
𝑎
ℝ∕ℤ(ℰ)) = ∫

𝑋∕𝐵
Todd(𝑇𝑉𝑋) ∪ chℝ∕ℚ(ℰ). (1.3)

Here, chℝ∕ℚ is the Chern character in ℝ∕ℤ 𝐾-theory. We prove (1.3) at the
differential form level. Note that (1.3) implies the commutativity of diagram
(1.2) only if (1.1) is well defined.
The paper is organized as follows. In §2.1 we set and fix the notations and

conventions used throughout the paper, and in §2.2 we recall the definitions
and properties of some primary and secondary characteristic forms. In §3.1 we
review the local FIT for twisted spin𝑐 Dirac operators without the kernel bun-
dle assumption by the Miščenko–Fomenko–Freed–Lott approach, and in §3.2
we prove the extended variational formula for the Bismut–Cheeger eta form
(Theorem 1.2). In §4.1, we establish some intermediate results on the Bismut–
Cheeger eta form, which, together with Theorem 1.2, allow us to prove theℤ2-
graded additivity of the Bismut–Cheeger eta form (Theorem 1.3). Furthermore,
we prove the analytic index in differential 𝐾-theory is a well defined group ho-
momorphism (Proposition 1.4) in §4.2 and the RRG theorem inℝ∕ℤ 𝐾-theory
(Theorem 1.5) in §4.3.
Acknowledgements. The author would like to thank Steve Rosenberg for

his comments and suggestions for this paper, and JonathanKin-Yue Lee, where
the idea of Proposition 4.4 is due to him. The author would also like to thank
the referee for the helpful comments.
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2. Preliminaries
2.1. Notations and conventions. In this paper,𝑋 and𝐵 are closedmanifolds
and 𝐼 is the closed interval [0, 1]. Given a manifold 𝑋, define 𝑋 = 𝑋 × 𝐼. Given
𝑡 ∈ 𝐼, define a map 𝑖𝑋,𝑡 ∶ 𝑋 → 𝑋 by 𝑖𝑋,𝑡(𝑥) = (𝑥, 𝑡). Denote by 𝑝𝑋 ∶ 𝑋 → 𝑋 the
standard projection map. For 𝑘 ≥ 0, denote by Ω𝑘

𝐴(𝑋) the set of all real-valued
closed 𝑘-forms on 𝑋 with periods in 𝐴, where 𝐴 is a proper subgroup ofℝ. For
any differential forms 𝜔 and 𝜂, we write 𝜔 ≡ 𝜂 if 𝜔 − 𝜂 ∈ Im(𝑑).
Let 𝜋 ∶ 𝑀 → 𝐵 a smooth fiber bundle with compact fibers of dimension 𝑛

which satisfies certain orientability assumptions. Then

∫
𝑀∕𝐵

𝜋∗𝛼 ∧ 𝛽 = 𝛼 ∧ ( ∫
𝑀∕𝐵

𝛽)

for any 𝛼 ∈ Ω∙(𝐵) and 𝛽 ∈ Ω∙(𝑀). If𝑀 has nonempty boundary, then Stokes’
theorem for integration along the fibers [7, Problem 4 of Chapter VII] states
that for any 𝜔 ∈ Ω𝑘(𝑀),

(−1)𝑘−𝑛+1 ∫
𝜕𝑀∕𝐵

𝑖∗𝜔 = ∫
𝑀∕𝐵

𝑑𝑀𝜔 − 𝑑𝐵 ∫
𝑀∕𝐵

𝜔, (2.1)

where 𝑖 ∶ 𝜕𝑀 ↪ 𝑀 is the inclusion map .
Let 𝐸 → 𝑋 be a complex vector bundle. If 𝐸 → 𝑋 is ℤ2-graded, denote by

𝐸op → 𝑋 the ℤ2-graded complex vector bundle whose ℤ2-grading is the op-
posite to that of 𝐸 → 𝑋. We will also use the notation op for other ℤ2-graded
objects. A triple (𝐸, 𝑔𝐸 ,∇𝐸) consisting of a complex vector bundle with a Her-
mitian metric and a unitary connection is said to be ℤ2-graded if 𝐸 → 𝑋 is
ℤ2-graded and 𝑔𝐸 and ∇𝐸 preserve the ℤ2-grading (which are also said to be
ℤ2-graded). A ℤ2-graded triple (𝐸, 𝑔𝐸 ,∇𝐸) is said to be balanced if 𝐸+ = 𝐸−,
𝑔𝐸,+ = 𝑔𝐸,− and ∇𝐸,+ = ∇𝐸,−.

Remark 2.1. Let 𝐹 → 𝑋 be another complex vector bundle. Suppose there exists
a smooth bundle isomorphism 𝛼 ∶ 𝐸 → 𝐹.

(1) We use the same symbol to denote the resulting 𝐶∞(𝑋)-module isomor-
phismΓ(𝑋, 𝐸)→ Γ(𝑋, 𝐹)and someothers, for example,Γ(𝑋, 𝑇∗𝑋⊗𝐸)→
Γ(𝑋, 𝑇∗𝑋 ⊗ 𝐹).

(2) Let 𝑔𝐸 and 𝑔𝐹 be Hermitian metrics on 𝐸 → 𝑋 and 𝐹 → 𝑋, respectively.
Since 𝑔𝐸 and 𝛼∗𝑔𝐹 are Hermitian metrics on 𝐸 → 𝑋, it follows from [9,
Theorem 8.8 of Chapter I] that there exists a unique 𝑓 ∈ Aut(𝐸) such
that 𝑔𝐸 = 𝑓∗(𝛼∗𝑔𝐹) = (𝛼◦𝑓)∗𝑔𝐹 .
Henceforth, once Hermitian metrics are put on 𝐸 → 𝑋 and 𝐹 → 𝑋,

we always assume a given smooth bundle isomorphism 𝛼 ∶ 𝐸 → 𝐹 is
isometric.

(3) Let ∇𝐹 be a connection on 𝐹 → 𝑋. Write 𝛼∗∇𝐹 for the connection on
𝐸 → 𝑋 defined by

𝛼∗∇𝐹 ∶= 𝛼−1◦∇𝐹◦𝛼. (2.2)
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If ∇𝐹 is compatible with 𝑔𝐹 , it follows from our convention that 𝛼∗∇𝐹 is
compatible with 𝑔𝐸 .

2.2. Some primary and secondary characteristic forms. In this subsec-
tion we recall the definitions and properties of some primary and secondary
characteristic forms. We refer the readers to [15, §B.5] for the details.
Let (𝐸, 𝑔𝐸 ,∇𝐸) be a triple. Denote by 𝑅𝐸 the curvature of ∇𝐸 . The Chern

character form of ∇𝐸 is defined to be

ch(∇𝐸) = tr(𝑒−
1
2𝜋𝑖

𝑅𝐸 ) ∈ Ωeven
ℚ (𝑋),

and the first Chern form of ∇𝐸 is defined to be

𝑐1(∇𝐸) = − 1
2𝜋𝑖 tr(𝑅

𝐸) ∈ Ω2
ℤ(𝑋).

Let (𝑔𝐸0 ,∇
𝐸
0 ) and (𝑔

𝐸
1 ,∇

𝐸
1 ) be two pairs of Hermitianmetrics and unitary con-

nections on 𝐸 → 𝑋. By (2) of Remark 2.1, there exists a unique 𝑓 ∈ Aut(𝐸)
such that 𝑔𝐸0 = 𝑓∗𝑔𝐸1 . Thus 𝑓

∗∇𝐸
1 is unitary with respect to 𝑔

𝐸
0 . For each 𝑡 ∈ 𝐼,

let 𝑓𝑡 = (1 − 𝑡) id𝐸 +𝑡𝑓−1. Then

𝑔𝐸𝑡 = 𝑓∗𝑡 𝑔
𝐸
0 , ∇𝐸

𝑡 = 𝑓∗𝑡
(
(1 − 𝑡)∇𝐸

0 + 𝑡𝑓∗∇𝐸
1
)

(2.3)

are smooth paths of Hermitian metrics and unitary connections from 𝑔𝐸0 to 𝑔
𝐸
1

and from ∇𝐸
0 to ∇

𝐸
1 , respectively. Note that ∇

𝐸
𝑡 is unitary with respect to 𝑔

𝐸
𝑡 for

each 𝑡 ∈ 𝐼. Define a complex vector bundle E → 𝑋 by E = 𝑝∗𝑋𝐸. Then

𝑔E ∶= 𝑝∗𝑋𝑔
𝐸
𝑡 , ∇E ∶= 𝑑𝑡 ∧ ( 𝜕

𝜕𝑡
+ 1
2(𝑔

𝐸
𝑡 )

−1 𝜕
𝜕𝑡
𝑔𝐸𝑡 ) + ∇𝐸

𝑡 (2.4)

are a Hermitian metric and a unitary connection on E → 𝑋, respectively, sat-
isfying 𝑖∗𝑋,𝑗∇

E = ∇𝐸
𝑗 for 𝑗 ∈ {0, 1}. The Chern–Simons form CS(∇𝐸

0 ,∇
𝐸
1 ) ∈

Ωodd(𝑋)
Im(𝑑)

is defined by

CS(∇𝐸
0 ,∇

𝐸
1 ) ∶= − ∫

𝑋∕𝑋
ch(∇E ) mod Im(𝑑).

Note that CS(∇𝐸
0 ,∇

𝐸
1 ) does not depend on the choice of ∇

E satisfying 𝑖∗𝑋,𝑗∇
E =

∇𝐸
𝑗 for 𝑗 ∈ {0, 1} and satisfies the following transgression formula

𝑑CS(∇𝐸
0 ,∇

𝐸
1 ) = ch(∇𝐸

1 ) − ch(∇𝐸
0 ).

Equivalently, the Chern–Simons form can be defined as

CS(∇𝐸
0 ,∇

𝐸
1 ) = − 1

2𝜋𝑖
∫

1

0
tr (

𝑑∇𝐸
𝑡

𝑑𝑡
𝑒−

1
2𝜋𝑖

𝑅𝐸𝑡 )𝑑𝑡. (2.5)

The choices of 0 and 1 are immaterial. If 𝑡 < 𝑇 are two fixed positive real
numbers, then one can replace 0 by 𝑡 and 1 by 𝑇 in (2.5).
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One can also define a differential form 𝑇𝑐1(∇𝐸
0 ,∇

𝐸
1 ) ∈

Ω1(𝑋)
Im(𝑑)

that satisfies

the following transgression formula

𝑑𝑇𝑐1(∇𝐸
0 ,∇

𝐸
1 ) = 𝑐1(∇𝐸

1 ) − 𝑐1(∇𝐸
0 ).

Let (𝐸, 𝑔𝐸𝑘 ,∇
𝐸
𝑘 ) and (𝐹, 𝑔

𝐹
𝑘 ,∇

𝐹
𝑘 ) be triples, where 𝑘 ∈ {0, 1}. The Chern–

Simons form satisfies the following properties:

CS(∇𝐸
1 ,∇

𝐸
0 ) ≡ −CS(∇𝐸

0 ,∇
𝐸
1 ), (2.6)

CS(∇𝐸
1 ,∇

𝐸
0 ) ≡ CS(∇𝐸

1 ,∇
𝐸
2 ) + CS(∇𝐸

2 ,∇
𝐸
0 ), (2.7)

CS(∇𝐸
1 ⊕∇𝐹

1 ,∇
𝐸
0 ⊕∇𝐹

0 ) ≡ CS(∇𝐸
1 ,∇

𝐸
0 ) + CS(∇𝐹

1 ,∇
𝐹
0 ). (2.8)

If (𝐸, 𝑔𝐸) is aℤ2-graded Hermitian bundle with twoℤ2-graded unitary connec-
tions ∇𝐸

0 and ∇
𝐸
1 , then

CS(∇𝐸
0 ,∇

𝐸
1 ) ≡ CS(∇𝐸,+

0 ,∇𝐸,+
1 ) − CS(∇𝐸,−

0 ,∇𝐸,−
1 ). (2.9)

Let (𝐻, 𝑔𝐻 ,∇𝐻) be a Euclidean bundle with a Euclidean connection. Denote
by 𝑅𝐻 the curvature of ∇𝐻 . The 𝐴-genus form of ∇𝐻 is defined to be

𝐴(∇𝐻) =

√
√√√√√det (

− 1
4𝜋𝑖
𝑅𝐻

sinh(− 1
4𝜋𝑖
𝑅𝐻)

) ∈ Ω4∙
ℚ (𝑋).

Similarly, one can define a differential form 𝑇𝐴(∇𝐻
0 ,∇

𝐻
1 ) ∈

Ω4∙−1(𝑋)
Im(𝑑)

that sat-

isfies the following transgression formula

𝑑𝑇𝐴(∇𝐻
0 ,∇

𝐻
1 ) = 𝐴(∇𝐻

1 ) − 𝐴(∇𝐻
0 ).

3. An extended variational formula for the Bismut–Cheeger eta
form

3.1. Local index theory for twisted spin𝒄Dirac operators: theMiščenko–
Fomenko–Freed–Lott approach. In this subsectionwe review the statement
of the local FIT for twisted spin𝑐 Dirac operators without the kernel bundle
assumption by Freed–Lott. We refer the readers to [1, Chapter 10] and [6, §7]
for the details.
Let 𝜋 ∶ 𝑋 → 𝐵 be a submersion with closed, oriented and spin𝑐 fibers 𝑍 of

even dimension 𝑛. Denote by 𝑇𝑉𝑋 → 𝑋 the vertical tangent bundle. Recall
from [6, p.918] that a Riemannian structure on 𝜋 ∶ 𝑋 → 𝐵 consists of a hor-
izontal distribution 𝑇𝐻𝑋 → 𝑋, i.e. 𝑇𝑋 = 𝑇𝑉𝑋 ⊕ 𝑇𝐻𝑋, and a metric 𝑔𝑇𝑉𝑋 on
𝑇𝑉𝑋 → 𝑋. Denote by 𝑃𝑇𝑉𝑋 ∶ 𝑇𝑋 → 𝑇𝑉𝑋 the projection map. Put a Riemann-
ian metric 𝑔𝑇𝐵 on 𝑇𝐵 → 𝐵. Define a metric 𝑔𝑇𝑋 on 𝑇𝑋 → 𝑋 by

𝑔𝑇𝑋 = 𝑔𝑇𝑉𝑋 ⊕𝜋∗𝑔𝑇𝐵.
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Denote by ∇𝑇𝑋 and ∇𝑇𝐵 the Levi-Civita connections on 𝑇𝑋 → 𝑋 and 𝑇𝐵 → 𝑋
associated to 𝑔𝑇𝑋 and 𝑔𝑇𝐵, respectively. Then∇𝑇𝑉𝑋 ∶= 𝑃𝑇𝑉𝑋∇𝑇𝑋 is a Euclidean
connection on 𝑇𝑉𝑋 → 𝑋 with respect to 𝑔𝑇𝑉𝑋 .
Define a connection ∇̃𝑇𝑋 on 𝑇𝑋 → 𝑋 by

∇̃𝑇𝑋 = ∇𝑇𝑉𝑋 ⊕𝜋∗∇𝑇𝐵.

Then 𝑆 ∶= ∇𝑇𝑋 − ∇̃𝑇𝑋 ∈ Ω1(𝑋,End(𝑇𝑋)). By [2, Theorem 1.9] the (3, 0)
tensor 𝑔𝑇𝑋(𝑆(⋅)⋅, ⋅) depends only on the Riemannian structure (𝑇𝐻𝑋, 𝑔𝑇𝑉𝑋). Let
{𝑒1,… , 𝑒𝑛} be a local orthonormal frame for 𝑇𝑉𝑋 → 𝑋. For any 𝑈 ∈ Γ(𝐵, 𝑇𝐵),
denote by 𝑈𝐻 ∈ Γ(𝑋, 𝑇𝐻𝑋) its horizontal lift. Define a horizontal one-form 𝑘
on 𝑋 by

𝑘(𝑈𝐻) = −
𝑛∑

𝑘=1
𝑔𝑇𝑋(𝑆(𝑒𝑘)𝑒𝑘, 𝑈𝐻). (3.1)

For any two 𝑈,𝑉 ∈ Γ(𝐵, 𝑇𝐵),

𝑇(𝑈,𝑉) ∶= −𝑃𝑇𝑉𝑋[𝑈𝐻 , 𝑉𝐻] (3.2)

is a horizontal two-form with values in 𝑇𝑉𝑋 and is called the curvature of 𝜋 ∶
𝑋 → 𝐵.
Denote by 𝑑 vol(𝑍) the Riemannian volume element of the fiber 𝑍, which is

a section of Λ𝑛(𝑇𝑉𝑋)∗ → 𝑋.
Choose and fix a topological spin𝑐 structure on 𝑇𝑉𝑋 → 𝑋. This fixes a com-

plex line bundle 𝜆 → 𝑋 satisfying 𝑤2(𝑇𝑉𝑋) = 𝑐1(𝜆) mod 2 [10, p.397]. The
spinor bundle 𝑆(𝑇𝑉𝑋) → 𝑋 associated to the chosen topological spin𝑐 struc-
ture of 𝑇𝑉𝑋 → 𝑋 is given by

𝑆(𝑇𝑉𝑋) = 𝑆0(𝑇𝑉𝑋)⊗ 𝜆
1
2 ,

where 𝑆0(𝑇𝑉𝑋) is the spinor bundle for the locally existing spin structure of

𝑇𝑉𝑋 → 𝑋 and 𝜆
1
2 is the locally existing square root of 𝜆 → 𝑋. Since 𝑛 is

even, 𝑆(𝑇𝑉𝑋)→ 𝑋 is ℤ2-graded. Recall from [6, p.918] that a differential spin𝑐
structure on 𝜋 ∶ 𝑋 → 𝐵 consists of a topological spin𝑐 structure on 𝑇𝑉𝑋 → 𝑋,
a Hermitian metric 𝑔𝜆 and a unitary connection ∇𝜆 on 𝜆 → 𝑋.
A Riemannian and differential spin𝑐 structure (𝑇𝐻𝑋, 𝑔𝑇𝑉𝑋 , 𝑔𝜆,∇𝜆) on 𝜋 ∶

𝑋 → 𝐵 induce a Hermitian metric 𝑔𝑆(𝑇𝑉𝑋) and a unitary connection∇𝑆(𝑇𝑉𝑋) on
𝑆(𝑇𝑉𝑋)→ 𝑋. Define the Todd form of ∇𝑇𝑉𝑋 by

Todd(∇𝑇𝑉𝑋) = 𝐴(∇𝑇𝑉𝑋) ∧ 𝑒
1
2
𝑐1(∇𝜆). (3.3)

Let (𝐸, 𝑔𝐸 ,∇𝐸) be a triple. Define the twisted spin𝑐 Dirac operator 𝖣𝑆⊗𝐸 ∶
Γ(𝑋, 𝑆(𝑇𝑉𝑋)⊗𝐸)→ Γ(𝑋, 𝑆(𝑇𝑉𝑋)⊗𝐸) by

𝖣𝑆⊗𝐸 =
𝑛∑

𝑘=1
𝑐(𝑒𝑘)∇

𝑆(𝑇𝑉𝑋)⊗𝐸
𝑒𝑘 , (3.4)
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where 𝑐 is the Clifford multiplication and ∇𝑆(𝑇𝑉𝑋)⊗𝐸 is the tensor product of
∇𝑆(𝑇𝑉𝑋) and ∇𝐸 . Note that 𝖣𝑆⊗𝐸 is odd self-adjoint.
Define an infinite-rank ℤ2-graded complex vector bundle 𝜋∗𝐸 → 𝐵 whose

fiber over 𝑏 ∈ 𝐵 is given by

(𝜋∗𝐸)𝑏 = Γ(𝑍𝑏, (𝑆(𝑇𝑉𝑋)⊗𝐸)|𝑍𝑏).

The space of sections of 𝜋∗𝐸 → 𝐵 is defined to be

Γ(𝐵, 𝜋∗𝐸) ∶= Γ(𝑋, 𝑆(𝑇𝑉𝑋)⊗𝐸).

Define an 𝐿2-metric on 𝜋∗𝐸 → 𝐵 by

𝑔𝜋∗𝐸(𝑠1, 𝑠2)(𝑏) = ∫
𝑍𝑏
𝑔𝑆(𝑇𝑉𝑋)⊗𝐸(𝑠1, 𝑠2)𝑑 vol(𝑍). (3.5)

Define a connection on 𝜋∗𝐸 → 𝐵 by

∇𝜋∗𝐸
𝑈 𝑠 ∶= ∇𝑆(𝑇𝑉𝑋)⊗𝐸

𝑈𝐻 𝑠, (3.6)

where 𝑠 ∈ Γ(𝐵, 𝜋∗𝐸) and 𝑈 ∈ Γ(𝐵, 𝑇𝐵). Then the connection on 𝜋∗𝐸 → 𝐵
defined by

∇𝜋∗𝐸,𝑢 ∶= ∇𝜋∗𝐸 + 1
2𝑘, (3.7)

where 𝑘 is given by (3.1), is ℤ2-graded and unitary with respect to 𝑔𝜋∗𝐸 .
The Bismut superconnection on 𝜋∗𝐸 → 𝐵 is defined to be

𝔹𝐸 = 𝖣𝑆⊗𝐸 + ∇𝜋∗𝐸,𝑢 −
𝑐(𝑇)
4 , (3.8)

where 𝑇 is given by (3.2). The rescaled Bismut superconnection is given by

𝔹𝐸𝑡 =
√
𝑡𝖣𝑆⊗𝐸 + ∇𝜋∗𝐸,𝑢 −

𝑐(𝑇)

4
√
𝑡
.

By [1, Theorem 10.23],

lim
𝑡→0

ch(𝔹𝐸𝑡 ) = ∫
𝑋∕𝐵

Todd(∇𝑇𝑉𝑋) ∧ ch(∇𝐸). (3.9)

Miščenko–Fomenko [16, p.96-97] (see also [6, Lemma 7.13]) prove that there
exist finite rank subbundles 𝐿± → 𝐵 and complementary closed subbundles
𝐾± → 𝐵 of (𝜋∗𝐸)± → 𝐵 such that

(𝜋∗𝐸)+ = 𝐾+ ⊕ 𝐿+, (𝜋∗𝐸)− = 𝐾− ⊕ 𝐿−, (3.10)

𝖣𝑆⊗𝐸+ ∶ (𝜋∗𝐸)+ → (𝜋∗𝐸)− is block diagonal as a map with respect to (3.10) and
𝖣𝑆⊗𝐸+ |𝐾+ ∶ 𝐾+ → 𝐾− is an isomorphism.
Given𝐿± → 𝐵 satisfying the above conditions, we say theℤ2-graded complex

vector bundle 𝐿 → 𝐵, defined by 𝐿 = 𝐿+ ⊕ 𝐿−, satisfies the MF property for
𝖣𝑆⊗𝐸 . If 𝐿 → 𝐵 satisfies the MF property for 𝖣𝑆⊗𝐸 , then the analytic index of
[𝐸] ∈ 𝐾(𝑋) is defined to be

ind𝑎([𝐸]) = [𝐿+] − [𝐿−] ∈ 𝐾(𝐵).
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It is proved in [16, p.96-97] that ind𝑎([𝐸]) does not depend on the choice of
𝐿 → 𝐵 satisfying the MF property for 𝖣𝑆⊗𝐸 .
Let 𝑔𝐿 be the ℤ2-graded Hermitian metric on 𝐿 → 𝐵 inherited from 𝑔𝜋∗𝐸 .

Denote by 𝑃 ∶ 𝜋∗𝐸 → 𝐿 the ℤ2-graded projection map with respect to (3.10).
Define a connection on 𝐿 → 𝐵 by

∇𝐿 ∶= 𝑃◦∇𝜋∗𝐸,𝑢◦𝑃. (3.11)

Note that ∇𝐿 is ℤ2-graded and compatible with 𝑔𝐿. Henceforth, whenever
(𝐿, 𝑔𝐿,∇𝐿) is a ℤ2-graded triple and 𝐿 → 𝐵 satisfies the MF property for 𝖣𝑆⊗𝐸 ,
𝑔𝐿 and ∇𝐿 are obtained as above unless otherwise specified.
Given an 𝐿 → 𝐵 satisfying the MF property for 𝖣𝑆⊗𝐸 , consider the infinite

rank ℤ2-graded complex vector bundle 𝜋∗𝐸 ⊕ 𝐿op → 𝐵. Let 𝑖− ∶ 𝐿− → (𝜋∗𝐸)−

be the inclusion map and 𝑧 ∈ ℂ. Define a map �̃�𝑆⊗𝐸+ (𝑧) ∶ (𝜋∗𝐸 ⊕ 𝐿op)+ →
(𝜋∗𝐸 ⊕ 𝐿op)− by

�̃�𝑆⊗𝐸+ (𝑧) = (𝖣
𝑆⊗𝐸
+ 𝑧𝑖−
𝑧𝑃+ 0 ) . (3.12)

Note that �̃�𝑆⊗𝐸+ (𝑧) is invertible for all 𝑧 ≠ 0 [6, Lemma 7.20]. Define a map
�̃�𝑆⊗𝐸(𝑧) ∶ 𝜋∗𝐸 ⊕ 𝐿op → 𝜋∗𝐸 ⊕ 𝐿op by

�̃�𝑆⊗𝐸(𝑧) ∶= ( 0 (�̃�𝑆⊗𝐸+ (𝑧))∗

�̃�𝑆⊗𝐸+ (𝑧) 0
) .

Define a Bismut superconnection on 𝜋∗𝐸 ⊕ 𝐿op → 𝐵 by

�̂�𝐸 = �̃�𝑆⊗𝐸(1) + ∇𝜋∗𝐸,𝑢 ⊕∇𝐿,op −
𝑐(𝑇)
4 . (3.13)

Choose and fix 𝑎 ∈ (0, 1). Let 𝛼 ∶ [0,∞) → 𝐼 be a smooth function that
satisfies 𝛼(𝑡) = 0 for all 𝑡 ≤ 𝑎 and 𝛼(𝑡) = 1 for all 𝑡 ≥ 1. Define a rescaled
Bismut superconnection by

�̂�𝐸𝑡 =
√
𝑡�̃�𝑆⊗𝐸(𝛼(𝑡)) + ∇𝜋∗𝐸,𝑢 ⊕∇𝐿,op −

𝑐(𝑇)

4
√
𝑡
.

Since �̃�𝑆⊗𝐸(𝛼(𝑡)) is invertible for 𝑡 ≥ 1,

lim
𝑡→∞

ch(�̂�𝐸𝑡 ) = 0. (3.14)

On the other hand, for 𝑡 ≤ 𝑎, �̂�𝐸𝑡 decouples, i.e.

�̂�𝐸𝑡 = (
√
𝑡𝖣𝑆⊗𝐸 + ∇𝜋∗𝐸,𝑢 −

𝑐(𝑇)

4
√
𝑡
)⊕∇𝐿,op = 𝔹𝐸𝑡 ⊕∇𝐿,op.

By (3.9),

lim
𝑡→0

ch(�̂�𝐸𝑡 ) = lim
𝑡→0

ch(𝔹𝐸𝑡 ) + ch(∇𝐿,op)

= ∫
𝑋∕𝐵

Todd(∇𝑇𝑉𝑋) ∧ ch(∇𝐸) − ch(∇𝐿).
(3.15)
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The Bismut–Cheeger eta form associated to �̂�𝐸𝑡 is defined to be

𝜂𝐸(𝑔𝐸 ,∇𝐸 , 𝑇𝐻𝑋, 𝑔𝑇𝑉𝑋 , 𝑔𝜆,∇𝜆, 𝐿) = 1
√
𝜋
∫

∞

0
str (

𝑑�̂�𝐸𝑡
𝑑𝑡

𝑒−
1
2𝜋𝑖

(�̂�𝐸𝑡 )
2
)𝑑𝑡. (3.16)

By (3.14) and (3.15), the local FIT for 𝖣𝑆⊗𝐸 is

𝑑𝜂𝐸(𝑔𝐸 ,∇𝐸 , 𝑇𝐻𝑋, 𝑔𝑇𝑉𝑋 , 𝑔𝜆,∇𝜆, 𝐿) = ∫
𝑋∕𝐵

Todd(∇𝑇𝑉𝑋) ∧ ch(∇𝐸) − ch(∇𝐿).

(3.17)

3.2. Aproof of the extendedvariational formula for theBismut–Cheeger
eta form. In this subsection we prove an extended variational formula for the
Bismut–Cheeger eta form for spin𝑐 Dirac operators twisted by isomorphic Her-
mitian bundles without the kernel bundle assumption (Theorem 1.2).
The following proposition is the spin𝑐 analog of [8, Proposition 1].

Proposition 3.1. Let𝜋 ∶ 𝑋 → 𝐵 be a submersionwith closed, oriented and spin𝑐
fibers of even dimension, equipped with two sets of Riemannian and differential
spin𝑐 structures

(𝑇𝐻0 𝑋, 𝑔
𝑇𝑉𝑋
0 , 𝑔𝜆0 ,∇

𝜆
0), (𝑇𝐻1 𝑋, 𝑔

𝑇𝑉𝑋
1 , 𝑔𝜆1 ,∇

𝜆
1),

where the underlying topological spin𝑐 structures coincide. Let 𝐸 → 𝑋 be a com-
plex vector bundle, (𝑔𝐸0 ,∇

𝐸
0 ) and (𝑔

𝐸
1 ,∇

𝐸
1 ) are two pairs of Hermitian metrics and

unitary connections on 𝐸 → 𝑋. For 𝑗 ∈ {0, 1}, write 𝖣𝑆⊗𝐸𝑗 for the twisted spin𝑐

Dirac operator defined in terms of

(𝑔𝐸𝑗 ,∇
𝐸
𝑗 , 𝑇

𝐻
𝑗 𝑋, 𝑔

𝑇𝑉𝑋
𝑗 , 𝑔𝜆𝑗 ,∇

𝜆
𝑗 ).

If (𝐿𝑗, 𝑔𝐿𝑗 ,∇𝐿𝑗 ) is a ℤ2-graded triple so that 𝐿𝑗 → 𝐵 satisfies the MF property
for 𝖣𝑆⊗𝐸𝑗 , then there exist two balanced ℤ2-graded triples (𝑊0, 𝑔𝑊0 ,∇𝑊0) and
(𝑊1, 𝑔𝑊1 ,∇𝑊1) and a ℤ2-graded isometric isomorphism

ℎ ∶ (𝐿0 ⊕𝑊0, 𝑔𝐿0 ⊕ 𝑔𝑊0)→ (𝐿1 ⊕𝑊1, 𝑔𝐿1 ⊕ 𝑔𝑊1) (3.18)

such that

𝜂𝐸(𝑔𝐸1 ,∇
𝐸
1 , 𝑇

𝐻
1 𝑋, 𝑔

𝑇𝑉𝑋
1 , 𝑔𝜆1 ,∇

𝜆
1 , 𝐿1) − 𝜂𝐸(𝑔𝐸0 ,∇

𝐸
0 , 𝑇

𝐻
0 𝑋, 𝑔

𝑇𝑉𝑋
0 , 𝑔𝜆0 ,∇

𝜆
0 , 𝐿0)

≡ ∫
𝑋∕𝐵

(
𝑇𝐴(∇𝑇𝑉𝑋

0 ,∇𝑇𝑉𝑋
1 ) ∧ 𝑒

1
2
𝑐1(∇𝜆

0) + 𝐴(∇𝑇𝑉𝑋
1 ) ∧ 𝑒

1
2
𝑇𝑐1(∇𝜆

0 ,∇
𝜆
1)
)
∧ ch(∇𝐸

0 )

+ ∫
𝑋∕𝐵

Todd(∇𝑇𝑉𝑋
1 ) ∧ CS(∇𝐸

0 ,∇
𝐸
1 ) − CS(∇𝐿0 ⊕∇𝑊0 , ℎ∗(∇𝐿1 ⊕∇𝑊1)).

(3.19)

Proof. Since the space of splitting maps is affine, there exists a smooth path of
horizontal distributions {𝑇𝐻𝑡 𝑋 → 𝑋}𝑡∈𝐼 joining 𝑇𝐻0 𝑋 → 𝑋 and 𝑇𝐻1 𝑋 → 𝑋. Let
(𝑔𝐸𝑡 ,∇

𝐸
𝑡 ) be the smooth path of Hermitian metrics and unitary connections on
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𝐸 → 𝑋 joining (𝑔𝐸0 ,∇
𝐸
0 ) and (𝑔

𝐸
1 ,∇

𝐸
1 ) defined by (2.3). Define a smooth path

𝑔𝑇𝑉𝑋𝑡 of Euclidean metric joining 𝑔𝑇𝑉𝑋0 and 𝑔𝑇𝑉𝑋1 in a similar way. Then

𝑐(𝑡) = (𝑔𝐸𝑡 ,∇
𝐸
𝑡 , 𝑇

𝐻
𝑡 𝑋, 𝑔

𝑇𝑉𝑋
𝑡 , 𝑔𝜆𝑡 ,∇

𝜆
𝑡 ),

where 𝑡 ∈ 𝐼, is a smooth path joining 𝑐(0) = (𝑔𝐸0 ,∇
𝐸
0 , 𝑇

𝐻
0 𝑋, 𝑔

𝑇𝑉𝑋
0 , 𝑔𝜆0 ,∇

𝜆
0) and

𝑐(1) = (𝑔𝐸1 ,∇
𝐸
1 , 𝑇

𝐻
1 𝑋, 𝑔

𝑇𝑉𝑋
1 , 𝑔𝜆1 ,∇

𝜆
1). Define a new path 𝑐(𝑡) by

𝑐(𝑡) =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

(𝑔𝐸0 ,∇
𝐸
0 , 𝑇

𝐻
3𝑡𝑋, 𝑔

𝑇𝑉𝑋
3𝑡 , 𝑔𝜆0 ,∇

𝜆
0), for 𝑡 ∈ [0, 13]

(𝑔𝐸0 ,∇
𝐸
0 , 𝑇

𝐻
1 𝑋, 𝑔

𝑇𝑉𝑋
1 , 𝑔𝜆3𝑡−1,∇

𝜆
3𝑡−1), for 𝑡 ∈ [13 ,

2
3]

(𝑔𝐸3𝑡−2,∇
𝐸
3𝑡−2, 𝑇

𝐻
1 𝑋, 𝑔

𝑇𝑉𝑋
1 , 𝑔𝜆1 ,∇

𝜆
1), for 𝑡 ∈ [23 , 1]

.

Consider the submersion 𝜋 ∶ 𝑋 → 𝐵, where 𝜋 = 𝜋 × id𝐼 . Define complex
vector bundles E → 𝑋 and 𝜆 → 𝑋 by E = 𝑝∗𝑋𝐸 and 𝜆 = 𝑝∗𝑋𝜆, respectively.
Define the pair of Hermitian metric and unitary connection (𝑔E ,∇E ) on E →
𝑋 and the Riemannian and differential spin𝑐 structure (𝑇𝐻𝑋, 𝑔𝑇𝑉𝑋 , 𝑔𝜆,∇𝜆) on
𝜋 ∶ 𝑋 → 𝐵 so that for each 𝑡 ∈ 𝐼, the restriction of

(𝑔E ,∇E , 𝑇𝐻𝑋, 𝑔𝑇𝑉𝑋 , 𝑔𝜆,∇𝜆) (3.20)

on 𝑋 × {𝑡} is given by 𝑐(𝑡). Denote by 𝖣𝑆⊗E the twisted spin𝑐 Dirac operator
defined in terms of (3.20). Let (ℒ, 𝑔ℒ,∇ℒ) be a ℤ2-graded triple so that ℒ → 𝐵
satisfies theMF property for𝖣𝑆⊗E , i.e. there exists aℤ2-graded complementary
closed subbundle𝒦 → 𝐵 of 𝜋∗E → 𝐵 such that

𝜋∗E = 𝒦 ⊕ℒ, (3.21)

𝖣𝑆⊗E
+ ∶ (𝜋∗E )+ → (𝜋∗E )− is block diagonal as a map with respect to (3.21),

and 𝖣𝑆⊗E
+ |𝒦+ ∶ 𝒦+ → 𝒦− is a smooth bundle isomorphism. Note that

𝑖∗𝐵,0(𝜋∗E )
± ≅ 𝑖∗𝐵,1(𝜋∗E )

± = (𝜋∗𝐸)± (3.22)

and there exist smooth bundle isomorphisms

𝑖∗𝐵,0ℒ
± ≅ 𝑖∗𝐵,1ℒ

±, 𝑖∗𝐵,0𝒦
± ≅ 𝑖∗𝐵,1𝒦

±. (3.23)

Let 𝑗 ∈ {0, 1}. Write �̃�±𝑗 → 𝐵 for 𝑖∗𝐵,𝑗ℒ
± → 𝐵 and 𝐾±

𝑗 → 𝐵 for 𝑖∗𝐵,𝑗𝒦
± →

𝐵. Moreover, write 𝑔�̃�𝑗 for 𝑖∗𝐵,𝑗𝑔
ℒ. Define a ℤ2-graded complex vector bundle

�̃�𝑗 → 𝐵 by �̃�𝑗 = �̃�+𝑗 ⊕ �̃�−𝑗 . By (3.23), we choose and fix a ℤ2-graded isometric
isomorphism

𝑓 ∶ (�̃�0, 𝑔�̃�0)→ (�̃�1, 𝑔�̃�1). (3.24)
By (3.21) and (3.22) we have

(𝜋∗𝐸)+ = 𝐾+
𝑗 ⊕ 𝐿+𝑗 , (𝜋∗𝐸)− = 𝐾−

𝑗 ⊕ 𝐿−𝑗 . (3.25)
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Since
𝖣𝑆⊗E |𝑖∗𝐵,𝑗𝜋∗E = 𝖣𝑆⊗𝐸𝑗 ,

it follows that 𝖣𝑆⊗𝐸𝑗,+ ∶ (𝜋∗𝐸)+ → (𝜋∗𝐸)− is block diagonal as a map with re-
spect to (3.25) and the restriction 𝖣𝑆⊗𝐸𝑗,+ |𝐾+

𝑗
∶ 𝐾+

𝑗 → 𝐾−
𝑗 is an isomorphism.

Thus �̃�𝑗 → 𝐵 satisfies the MF property for 𝖣𝑆⊗𝐸𝑗 . Since 𝐿𝑗 → 𝐵 satisfies the
MF property for 𝖣𝑆⊗𝐸𝑗 by assumption, there exist balanced ℤ2-graded triples
(𝐻𝑗, 𝑔𝐻𝑗 ,∇𝐻𝑗 ) and (𝑊𝑗, 𝑔𝑊𝑗 ,∇𝑊𝑗 ) and a ℤ2-graded isometric isomorphism

𝑓𝑗 ∶ (�̃�𝑗 ⊕𝐻𝑗, 𝑔�̃�𝑗 ⊕ 𝑔𝐻𝑗 )→ (𝐿𝑗 ⊕𝑊𝑗, 𝑔𝐿𝑗 ⊕ 𝑔𝑊𝑗 ). (3.26)

By (3.24) and (3.26), we have the followingℤ2-graded isometric isomorphisms:

(𝐿0 ⊕𝑊0 ⊕𝐻1, 𝑔𝐿0 ⊕ 𝑔𝑊0 ⊕ 𝑔𝐻1)

(�̃�0 ⊕𝐻0 ⊕𝐻1, 𝑔�̃�0 ⊕ 𝑔𝐻0 ⊕ 𝑔𝐻1)

(�̃�1 ⊕𝐻0 ⊕𝐻1, 𝑔�̃�1 ⊕ 𝑔𝐻0 ⊕ 𝑔𝐻1)

(𝐿1 ⊕𝑊1 ⊕𝐻0, 𝑔𝐿1 ⊕ 𝑔𝑊1 ⊕ 𝑔𝐻0)

𝑓−10 ⊕id𝐻1

𝑓⊕id𝐻0 ⊕ id𝐻1

𝑓1⊕id𝐻0

(3.27)

Write 𝑊0 → 𝐵 for 𝑊0 ⊕ 𝐻1 → 𝐵, 𝐻 → 𝐵 for 𝐻0 ⊕ 𝐻1 → 𝐵, 𝑊1 → 𝐵 for
𝑊1⊕𝐻0 → 𝐵 and similarly for the correspondingℤ2-gradedHermitianmetrics
and ℤ2-graded unitary connections. Moreover, write 𝑓0 for 𝑓0 ⊕ id𝐻1

and 𝑓1
for 𝑓1 ⊕ id𝐻0

. Then the following diagram commutes.

(�̃�0 ⊕𝐻, 𝑔�̃�0 ⊕ 𝑔𝐻) (�̃�1 ⊕𝐻, 𝑔�̃�1 ⊕ 𝑔𝐻)

(𝐿0 ⊕𝑊0, 𝑔𝐿0 ⊕ 𝑔𝑊0) (𝐿1 ⊕𝑊1, 𝑔𝐿1 ⊕ 𝑔𝑊1),

𝑓⊕id𝐻

𝑓0 𝑓1

ℎ

where ℎ ∶= 𝑓1◦(𝑓 ⊕ id𝐻)◦𝑓−10 . Furthermore, by writing 𝐿 → 𝐵 for �̃�0 → 𝐵
and 𝑓1 for 𝑓1◦(𝑓 ⊕ id𝐻), the above diagram becomes

(𝐿 ⊕𝐻, 𝑔𝐿 ⊕ 𝑔𝐻)

(𝐿0 ⊕𝑊0, 𝑔𝐿0 ⊕ 𝑔𝑊0) (𝐿1 ⊕𝑊1, 𝑔𝐿1 ⊕ 𝑔𝑊1)

𝑓0 𝑓1

ℎ
(3.28)

and ℎ becomes ℎ = 𝑓1◦𝑓−10 . Thus (3.18) holds.
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The connection on 𝐿 ⊕𝐻 → 𝐵 defined by

∇𝐿⊕𝐻
𝑗 ∶= 𝑓∗𝑗 (∇

𝐿𝑗 ⊕∇𝑊𝑗 ) (3.29)

isℤ2-graded and unitary. Define a complex vector bundleℋ → 𝐵 byℋ = 𝑝∗𝐵𝐻.
Let (𝑔ℒ⊕ℋ ,∇ℒ⊕ℋ) be a pair of Hermitian metric and unitary connection on
ℒ⊕ℋ → 𝐵 defined by (2.4), which satisfies

𝑖∗𝐵,𝑗∇
ℒ⊕ℋ = ∇𝐿⊕𝐻

𝑗 .

Define a rescaled Bismut superconnection �̂�E ;ℋ
𝑡 on 𝜋∗E ⊕ (ℒ⊕ℋ)op → 𝐵 by

�̂�E ;ℋ
𝑡 =

√
𝑡(�̃�𝑆⊗E (𝛼(𝑡))⊕ 𝛼(𝑡)𝑠ℋ) + (∇𝜋∗E ,𝑢 ⊕∇ℒ⊕ℋ,op) − 1

√
𝑡
(
𝑐(𝑇)
4 ⊕ 0),

where 𝑠ℋ = ( 0 id
id 0 ) ∈ Γ(𝐵,End(ℋ)−) and 𝑇 is the curvature 2-form of 𝜋 ∶

𝑋 → 𝐵. By the definition of 𝛼, �̂�E ;ℋ
𝑡 decouples for 𝑡 ≤ 𝑎, i.e.

�̂�E ;ℋ
𝑡 = 𝔹E

𝑡 ⊕∇ℒ⊕ℋ,op.

By (3.9) we have

lim
𝑡→0

ch(�̂�E ;ℋ
𝑡 ) = lim

𝑡→0
ch(𝔹E

𝑡 ) − ch(∇ℒ⊕ℋ)

= ∫
𝑋∕𝐵

Todd(∇𝑇𝑉𝑋) ∧ ch(∇E ) − ch(∇ℒ⊕ℋ).
(3.30)

On the other hand, since (�̂�E ;ℋ
𝑡 )[0] is invertible for every 𝑡 ≥ 1, it follows that

lim
𝑡→∞

ch(�̂�E ;ℋ
𝑡 ) = 0. (3.31)

Write 𝜂E ;ℋ(𝑔E ,∇E , 𝑇𝐻𝑋, 𝑔𝑇𝑉𝑋 , 𝑔�̃�,∇�̃�,ℒ) for the Bismut–Cheeger eta form as-
sociated to �̂�E ;ℋ

𝑡 . We temporarily suppress the data defining theBismut–Cheeger
eta form to shorten the notation. By (3.30) and (3.31) we have

𝑑𝜂E ;ℋ = ∫
𝑋∕𝐵

Todd(∇𝑇𝑉𝑋) ∧ ch(∇E ) − ch(∇ℒ⊕ℋ). (3.32)

Denote by 𝑖 ∶ 𝜕𝐵 → 𝐵 the inclusion map. By (2.1) we have

−(𝑖∗𝐵,1𝜂
E ;ℋ− 𝑖∗𝐵,0𝜂

E ;ℋ) = − ∫
𝜕𝐵∕𝐵

𝑖∗𝜂E ;ℋ = ∫
𝐵∕𝐵

𝑑𝐵𝜂E ;ℋ−𝑑𝐵 ∫
𝐵∕𝐵

𝜂E ;ℋ . (3.33)
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By (3.32), (3.33) becomes

𝑖∗𝐵,1𝜂
E ;ℋ − 𝑖∗𝐵,0𝜂

E ;ℋ ≡ − ∫
𝐵∕𝐵

𝑑𝐵𝜂E ;ℋ

≡ − ∫
𝐵∕𝐵

( ∫
𝑋∕𝐵

Todd(∇𝑇𝑉𝑋) ∧ ch(∇E ) − ch(∇ℒ⊕ℋ))

≡ − ∫
𝐵∕𝐵

∫
𝑋∕𝐵

Todd(∇𝑇𝑉𝑋) ∧ ch(∇E ) − CS(∇𝐿⊕𝐻
0 ,∇𝐿⊕𝐻

1 ).

(3.34)

Note that by (3.29) and the definition of ℎ, we have

CS(∇𝐿⊕𝐻
0 ,∇𝐿⊕𝐻

1 ) = CS
(
𝑓∗0 (∇

𝐿0 ⊕∇𝑊0), 𝑓∗1 (∇
𝐿1 ⊕∇𝑊1)

)

≡ CS
(
∇𝐿0 ⊕∇𝑊0 , (𝑓−10 )∗𝑓∗1 (∇

𝐿1 ⊕∇𝑊1)
)

= CS
(
∇𝐿0 ⊕∇𝑊0 , ℎ∗(∇𝐿1 ⊕∇𝑊1)

)
.

(3.35)

On the other hand, since ∫
𝑋∕𝐵

◦ ∫
𝑋∕𝑋

= ∫
𝑋∕𝐵

= ∫
𝐵∕𝐵

◦ ∫
𝑋∕𝐵

, it follows from

(3.20) and the definition of 𝑐(𝑡) that

− ∫
𝐵∕𝐵

∫
𝑋∕𝐵

Todd(∇𝑇𝑉𝑋) ∧ ch(∇E )

= − ∫
𝑋∕𝐵

∫
𝑋∕𝑋

Todd(∇𝑇𝑉𝑋) ∧ ch(∇E )

≡ ∫
𝑋∕𝐵

(
𝑇𝐴(∇𝑇𝑉𝑋

0 ,∇𝑇𝑉𝑋
1 ) ∧ 𝑒

1
2
𝑐1(∇𝜆

0) + 𝐴(∇𝑇𝑉𝑋
1 ) ∧ 𝑒

1
2
𝑇𝑐1(∇𝜆

0 ,∇
𝜆
1)
)
∧ ch(∇𝐸

0 )

+ ∫
𝑋∕𝐵

Todd(∇𝑇𝑉𝑋
1 ) ∧ CS(∇𝐸

0 ,∇
𝐸
1 ).

(3.36)

By (3.35) and (3.36), (3.34) becomes

𝑖∗𝐵,1𝜂
E ;ℋ − 𝑖∗𝐵,0𝜂

E ;ℋ

≡ ∫
𝑋∕𝐵

(
𝑇𝐴(∇𝑇𝑉𝑋

0 ,∇𝑇𝑉𝑋
1 ) ∧ 𝑒

1
2
𝑐1(∇𝜆

0) + 𝐴(∇𝑇𝑉𝑋
1 ) ∧ 𝑒

1
2
𝑇𝑐1(∇𝜆

0 ,∇
𝜆
1)
)
∧ ch(∇𝐸

0 )

+ ∫
𝑋∕𝐵

Todd(∇𝑇𝑉𝑋
1 ) ∧ CS(∇𝐸

0 ,∇
𝐸
1 ) − CS

(
∇𝐿0 ⊕∇𝑊0 , ℎ∗(∇𝐿1 ⊕∇𝑊1)

)
.

(3.37)

By (3.37), to prove (3.19) it remains to show that

𝑖∗𝐵,𝑗𝜂
E ;ℋ(𝑔E ,∇E , 𝑇𝐻𝑋, 𝑔𝑇𝑉𝑋 , 𝑔𝜆,∇𝜆,ℒ) ≡ 𝜂𝐸(𝑔𝐸𝑗 ,∇

𝐸
𝑗 , 𝑇

𝐻
𝑗 𝑋, 𝑔

𝑇𝑉𝑋
𝑗 , 𝑔𝜆𝑗 ,∇

𝜆
𝑗 , 𝐿𝑗)
(3.38)
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for 𝑗 ∈ {0, 1}. First note that 𝑖∗𝐵,𝑗�̂�
E ;ℋ
𝑡 = �̂�𝐸;𝐻𝑗,𝑡 , where �̂�

𝐸;𝐻
𝑗,𝑡 is the rescaledBismut

superconnection on 𝜋∗𝐸 ⊕ (𝐿 ⊕𝐻)op → 𝐵 given by

�̂�𝐸;𝐻𝑗,𝑡 =
√
𝑡
(
�̃�𝑆⊗𝐸𝑗 (𝛼(𝑡))⊕𝛼(𝑡)𝑠𝐻

)
+
(
∇𝜋∗𝐸,𝑢⊕∇𝐿⊕𝐻,op

𝑗
)
− 1
√
𝑡
(
𝑐(𝑇)
4 ⊕0). (3.39)

Here, 𝑠𝐻 ∶= ( 0 id
id 0 ) ∈ Γ(𝐵,End(𝐻)−). By (3.29) and the fact that the ℤ2-

graded triple (𝑊𝑗, 𝑔𝑊𝑗 ,∇𝑊𝑗 ) is balanced, we have

∇𝐿⊕𝐻,op
𝑗 = (𝑓op𝑗 )

∗(∇𝐿𝑗 ,op ⊕∇𝑊𝑗 ). (3.40)

Consider the split quadruple (𝑊𝑗, 𝑔𝑊𝑗 ,∇𝑊𝑗 , 𝑠𝑊𝑗
) given in [8, Example 1]. De-

note by𝔸
𝑊𝑗
𝑡 the rescaled superconnection on𝑊𝑗 → 𝐵 given by [8, (3.2)]. Since

id𝜋∗𝐸⊕(𝑓
−1
𝑗 )op ∶ 𝜋∗𝐸⊕(𝐿𝑗⊕𝑊𝑗)op → 𝜋∗𝐸⊕(𝐿⊕𝐻)op is aℤ2-graded isometric

isomorphism, it follows from (3.39) and (3.40) that

(id𝜋∗𝐸⊕(𝑓
−1
𝑗 )op)∗�̂�𝐸;𝐻𝑗,𝑡

=
√
𝑡
(
�̃�𝑆⊗𝐸𝑗 (𝛼(𝑡))⊕ 𝛼(𝑡)𝑠𝑊𝑗

)
+
(
∇𝜋∗𝐸,𝑢 ⊕ (∇𝐿𝑗 ,op ⊕∇𝑊𝑗 )

)
− 1
√
𝑡
(
𝑐(𝑇)
4 ⊕ 0)

= �̂�𝐸𝑗,𝑡 ⊕𝔸
𝑊𝑗
𝑡 .

Since id𝜋∗𝐸⊕(𝑓
−1
𝑗 )op covers id𝐵, for any 𝑡 < 𝑇 ∈ (0,∞) we have

CS(𝑖∗𝐵,𝑗�̂�
E ;ℋ
𝑇 , 𝑖∗𝐵,𝑗�̂�

E ;ℋ
𝑡 ) ≡ CS(�̂�𝐸;𝐻𝑗,𝑇 , �̂�

𝐸;𝐻
𝑗,𝑡 )

≡ CS
(
(id𝜋∗𝐸⊕(𝑓

−1
𝑗 )op)∗�̂�𝐸;𝐻𝑗,𝑇 , (id𝜋∗𝐸⊕(𝑓

−1
𝑗 )op)∗�̂�𝐸;𝐻𝑗,𝑡

)

≡ CS(�̂�𝐸𝑗,𝑇 ⊕𝔸
𝑊𝑗
𝑇 , �̂�𝐸𝑗,𝑡 ⊕𝔸

𝑊𝑗
𝑡 ).

By letting 𝑡 → 0 and 𝑇 →∞ in above, it follows from [8, Lemma 1] that

𝑖∗𝐵,𝑗𝜂
E ;ℋ(𝑔E ,∇E , 𝑇𝐻𝑋, 𝑔𝑇𝑉𝑋 , 𝑔𝜆,∇𝜆,ℒ) ≡ 𝜂𝐸;𝑊𝑗 (𝑔𝐸𝑗 ,∇

𝐸
𝑗 , 𝑇

𝐻
𝑗 𝑋, 𝑔

𝑇𝑉𝑋
𝑗 , 𝑔𝜆𝑗 ,∇

𝜆
𝑗 , 𝐿𝑗)

≡ 𝜂𝐸(𝑔𝐸𝑗 ,∇
𝐸
𝑗 , 𝑇

𝐻
𝑗 𝑋, 𝑔

𝑇𝑉𝑋
𝑗 , 𝑔𝜆𝑗 ,∇

𝜆
𝑗 , 𝐿𝑗).

Thus (3.19) holds. □

Remark 3.2. In Proposition 3.1, suppose there exists a ℤ2-graded isometric iso-
morphism 𝛽 ∶ (𝐿0, 𝑔𝐿0) → (𝐿1, 𝑔𝐿1). By taking ℎ = 𝛽 ⊕ id𝑊 and 𝑓1 = ℎ◦𝑓0,
diagram (3.28) still commutes, and (3.35) becomes

CS
(
𝑓∗0 (∇

𝐿0 ⊕∇𝑊), 𝑓∗1 (∇
𝐿1 ⊕∇𝑊)

)
= CS

(
𝑓∗0 (∇

𝐿0 ⊕∇𝑊), 𝑓∗0 (ℎ
∗(∇𝐿1 ⊕∇𝑊))

)

= CS
(
∇𝐿0 ⊕∇𝑊 , ℎ∗(∇𝐿1 ⊕∇𝑊)

)

= CS(∇𝐿0 ⊕∇𝑊 , 𝛽∗∇𝐿1 ⊕ id∗𝑊 ∇𝑊)
≡ CS(∇𝐿0 , 𝛽∗∇𝐿1),

where the last equality follows from (2.8) and the fact that CS(∇𝑊 , id∗𝑊 ∇𝑊) ≡ 0.
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Thus if 𝐿0 ≅ 𝐿1 as ℤ2-graded complex vector bundles in Proposition 3.1, with-
out loss of generality we can take𝑊0 → 𝐵 and𝑊1 → 𝐵 to be the zero bundle.

Proposition 3.3. Let 𝜋 ∶ 𝑋 → 𝐵 be a submersion with closed, oriented and
spin𝑐 fibers of even dimension, equippedwith aRiemannian and differential spin𝑐

structure (𝑇𝐻𝑋, 𝑔𝑇𝑉𝑋 , 𝑔𝜆,∇𝜆). Let (𝐸, 𝑔𝐸) and (𝐹, 𝑔𝐹) be Hermitian bundles and
∇𝐹 a unitary connection on 𝐹 → 𝑋. If there exists an isometric isomorphism
𝛼 ∶ (𝐸, 𝑔𝐸)→ (𝐹, 𝑔𝐹) and (𝐿𝐸,𝛼, 𝑔𝐿𝐸,𝛼 ,∇𝐿𝐸,𝛼 ) is aℤ2-graded triple so that 𝐿𝐸,𝛼 →
𝐵 satisfies the MF property for 𝖣𝑆⊗𝐸,𝛼, which is defined in terms of 𝛼∗∇𝐹 , then
there exist a unique ℤ2-graded triple (𝐿𝐹,𝛼, 𝑔𝐿𝐹,𝛼 ,∇𝐿𝐹,𝛼 ) and a unique ℤ2-graded
isometric isomorphism �̃�𝐿 ∶ (𝐿𝐸,𝛼, 𝑔𝐿𝐸,𝛼 ) → (𝐿𝐹,𝛼, 𝑔𝐿𝐹,𝛼 ) such that 𝐿𝐹,𝛼 → 𝐵
satisfies the MF property for 𝖣𝑆⊗𝐹 , which is defined in terms of ∇𝐹 , and

𝜂𝐸(𝑔𝐸 , 𝛼∗∇𝐹 , 𝑇𝐻𝑋, 𝑔𝑇𝑉𝑋 , 𝑔𝜆,∇𝜆, 𝐿𝐸,𝛼) = 𝜂𝐹(𝑔𝐹 ,∇𝐹 , 𝑇𝐻𝑋, 𝑔𝑇𝑉𝑋 , 𝑔𝜆,∇𝜆, 𝐿𝐹,𝛼).
(3.41)

One can think of Proposition 3.3 as the “variational" formula for the Bismut–
Cheeger eta form for the triples (𝐸, 𝑔𝐸 , 𝛼∗∇𝐹) and (𝐹, 𝑔𝐹 ,∇𝐹).

Proof. Note that 𝛼∗∇𝐹 is a unitary connection on 𝐸 → 𝑋. By (a) of Remark
2.1,

∇𝑆(𝑇𝑉𝑋)⊗𝐸 = ∇𝑇𝑉𝑋 ⊗ id+ id⊗𝛼∗∇𝐹

= 𝛼∗(∇𝑇𝑉𝑋 ⊗ id+ id⊗∇𝐹)

⇒ ∇𝑆(𝑇𝑉𝑋)⊗𝐸 = 𝛼∗∇𝑆(𝑇𝑉𝑋)⊗𝐹 . (3.42)

Thus
𝖣𝑆⊗𝐹 = 𝛼◦𝖣𝑆⊗𝐸,𝛼◦𝛼−1. (3.43)

Write �̃� ∶ 𝜋∗𝐸 → 𝜋∗𝐹 for the ℤ2-graded bundle isomorphism induced by 𝛼.
Since 𝑔𝐸 = 𝛼∗𝑔𝐹 , it follows from (3.5) that

𝑔𝜋∗𝐸 = �̃�∗𝑔𝜋∗𝐹 . (3.44)

That is, �̃� is isometric. By (3.6) and (3.42), ∇𝜋∗𝐸 = �̃�∗∇𝜋∗𝐹 , and therefore

∇𝜋∗𝐸,𝑢 = �̃�∗∇𝜋∗𝐹,𝑢. (3.45)

Let 𝐾𝐸,𝛼 → 𝐵 be a ℤ2-graded closed subbundle of 𝜋∗𝐸 → 𝐵 that is comple-
mentary to 𝐿𝐸,𝛼 → 𝐵, i.e.

(𝜋∗𝐸)+ = 𝐾+
𝐸,𝛼 ⊕ 𝐿+𝐸,𝛼, (𝜋∗𝐸)− = 𝐾−

𝐸,𝛼 ⊕ 𝐿−𝐸,𝛼, (3.46)

𝖣𝑆⊗𝐸,𝛼+ ∶ (𝜋∗𝐸)+ → (𝜋∗𝐸)− is block diagonal as amapwith respect to (3.46) and

𝖣𝑆⊗𝐸,𝛼+ |𝐾+
𝐸,𝛼

∶ 𝐾+
𝐸,𝛼 → 𝐾−

𝐸,𝛼 is an isomorphism. Write 𝖣𝑆⊗𝐸,𝛼+ = (𝑎𝐸,𝛼 0
0 𝑑𝐸,𝛼

).

Define complex vector bundles 𝐿±𝐹,𝛼 → 𝐵 and 𝐾±
𝐹,𝛼 → 𝐵 by

𝐿±𝐹,𝛼 ∶= �̃�±(𝐿
±
𝐸,𝛼), 𝐾±

𝐹,𝛼 ∶= �̃�±(𝐾
±
𝐸,𝛼).
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Denote by �̃�𝐿± ∶ 𝐿±𝐸,𝛼 → 𝐿±𝐹,𝛼 and �̃�
𝐾
± ∶ 𝐾±

𝐸,𝛼 → 𝐾±
𝐹,𝛼 the corresponding re-

striction maps. These are isomorphisms. Note that 𝐿±𝐹,𝛼 → 𝐵 have finite ranks
and

(𝜋∗𝐹)+ = 𝐾+
𝐹,𝛼 ⊕ 𝐿+𝐹,𝛼, (𝜋∗𝐹)− = 𝐾−

𝐹,𝛼 ⊕ 𝐿−𝐹,𝛼. (3.47)

With respect to (3.46) and (3.47), �̃�+ and �̃�− are given by

�̃�+ = (�̃�
𝐾
+ 0
0 �̃�𝐿+

) , �̃�− = (�̃�
𝐾
− 0
0 �̃�𝐿−

) . (3.48)

Define ℤ2-graded complex vector bundles 𝐿𝐹,𝛼 → 𝐵 and 𝐾𝐹,𝛼 → 𝐵 by

𝐿𝐹,𝛼 = 𝐿+𝐹,𝛼 ⊕ 𝐿−𝐹,𝛼 and 𝐾𝐹,𝛼 = 𝐾+
𝐹,𝛼 ⊕𝐾−

𝐹,𝛼.

Then the map �̃�𝐿 ∶ 𝐿𝐸,𝛼 → 𝐿𝐹,𝛼 given by

�̃�𝐿 = �̃�𝐿+ ⊕ �̃�𝐿−

is a ℤ2-graded smooth bundle isomorphism. Since the Hermitian metric 𝑔𝐿𝐸,𝛼
on 𝐿𝐸,𝛼 → 𝐵 is inherited from 𝑔𝜋∗𝐸 , it follows from (3.44) that the Hermitian
metric 𝑔𝐿𝐹,𝛼 on 𝐿𝐹,𝛼 → 𝐵, inherited from 𝑔𝜋∗𝐹 , satisfies 𝑔𝐿𝐸,𝛼 = (�̃�𝐿)∗𝑔𝐿𝐹,𝛼 . Thus
�̃�𝐿 is isometric.
By (3.43) and (3.48),

𝖣𝑆⊗𝐹+ = �̃�−◦𝖣
𝑆⊗𝐸,𝛼
+ ◦�̃�−1+

= (�̃�
𝐾
− 0
0 �̃�𝐿−

) (𝑎𝐸,𝛼 0
0 𝑑𝐸,𝛼

) ((�̃�
𝐾
+)

−1 0
0 (�̃�𝐿+)

−1)

= (�̃�
𝐾
−◦𝑎𝐸,𝛼◦(�̃�𝐾+)

−1 0
0 �̃�𝐿−◦𝑑𝐸,𝛼◦(�̃�𝐿+)

−1) .

Thus 𝖣𝑆⊗𝐹+ is block diagonal as a map with respect to (3.47) and

𝖣𝑆⊗𝐹|𝐾+
𝐹
= �̃�𝐾−◦𝑎𝐸,𝛼◦(�̃�𝐾+)

−1 ∶ 𝐾+
𝐹 → 𝐾−

𝐹

is an isomorphism. Therefore 𝐿𝐹,𝛼 → 𝐵 satisfies the MF property for 𝖣𝑆⊗𝐹 .
Denote by𝑃𝐸,𝛼 ∶ 𝜋∗𝐸 → 𝐿𝐸,𝛼 and𝑃𝐹 ∶ 𝜋∗𝐹 → 𝐿𝐹,𝛼 theℤ2-graded projection

maps with respect to (3.46) and (3.47), respectively. Note that the following
diagram commutes.

𝜋∗𝐸 𝜋∗𝐹

𝐿𝐸,𝛼 𝐿𝐹,𝛼

�̃�

𝑃𝐸,𝛼 𝑃𝐹

�̃�𝐿

That is,
�̃�𝐿◦𝑃𝐸,𝛼 = 𝑃𝐹◦�̃�. (3.49)
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Let 𝑠 ∈ Γ(𝐵, 𝐿𝐸,𝛼). By (3.11), (3.45) and (3.49),

∇𝐿𝐸,𝛼𝑠 = (𝑃𝐸,𝛼◦∇𝜋∗𝐸,𝑢◦𝑃𝐸,𝛼)(𝑠)
= (𝑃𝐸,𝛼◦∇𝜋∗𝐸,𝑢)(𝑠)
= (𝑃𝐸,𝛼◦�̃�−1◦∇𝜋∗𝐹,𝑢◦�̃�)(𝑠)
= ((�̃�𝐿)−1◦𝑃𝐹◦∇𝜋∗𝐹,𝑢)(�̃�𝐿(𝑠))
= ((�̃�𝐿)−1◦𝑃𝐹◦∇𝜋∗𝐹,𝑢◦𝑃𝐹)(�̃�𝐿(𝑠))
= ((�̃�𝐿)−1◦∇𝐿𝐹,𝛼 )(�̃�𝐿(𝑠))
= ((�̃�𝐿)−1◦∇𝐿𝐹,𝛼◦�̃�𝐿)(𝑠).

Thus
∇𝐿𝐸,𝛼 = (�̃�𝐿)∗∇𝐿𝐹,𝛼 . (3.50)

Since �̃� ∶ 𝜋∗𝐸 → 𝜋∗𝐹 and �̃�𝐿 ∶ 𝐿𝐸,𝛼 → 𝐿𝐹,𝛼 are ℤ2-graded isometric iso-
morphisms, the same is true for �̂� ∶= �̃� ⊕ �̃�𝐿,op ∶ 𝜋∗𝐸 ⊕ 𝐿op𝐸,𝛼 → 𝜋∗𝐹 ⊕ 𝐿op𝐹,𝛼.
By the definition of �̃�𝑆⊗𝐸,𝛼+ (𝑧), it follows from (3.43) that

�̃�𝑆⊗𝐸,𝛼(𝑧) = �̂�−1◦�̃�𝑆⊗𝐹(𝑧)◦�̂� (3.51)

for every 𝑧 ∈ ℂ. On the other hand, by (3.45) and (3.50),

∇𝜋∗𝐸,𝑢 ⊕∇𝐿𝐸,𝛼 ,op = �̂�∗(∇𝜋∗𝐹,𝑢 ⊕∇𝐿𝐹,𝛼 ,op). (3.52)

By the definition of �̂�𝐸,𝛼, it follows from (3.51) and (3.52) that

�̂�𝐸,𝛼 = �̂�∗�̂�𝐹 .

Since

(�̂�𝐸,𝛼𝑡 )2𝑘 = (�̂�−1◦�̂�𝐹𝑡 ◦�̂�)
2𝑘 = �̂�−1◦(�̂�𝐹𝑡 )

2𝑘◦�̂�,

𝑑�̂�𝐸,𝛼𝑡
𝑑𝑡

=
𝑑(�̂�∗�̂�𝐹𝑡 )

𝑑𝑡
= �̂�−1◦

𝑑�̂�𝐹𝑡
𝑑𝑡

◦�̂�,

for any nonnegative integer 𝑘, it follows that

str (
𝑑�̂�𝐸,𝛼𝑡
𝑑𝑡

𝑒−
1
2𝜋𝑖

(�̂�𝐸,𝛼𝑡 )2) = str (�̂�−1◦
𝑑�̂�𝐹𝑡
𝑑𝑡

𝑒−
1
2𝜋𝑖

(�̂�𝐹𝑡 )
2
◦�̂�)

= str (
𝑑�̂�𝐹𝑡
𝑑𝑡

𝑒−
1
2𝜋𝑖

(�̂�𝐹𝑡 )
2
).

Thus (3.41) holds. □

We now prove Theorem 1.2.

Theorem 3.4. Let 𝜋 ∶ 𝑋 → 𝐵 be a submersion with closed, oriented and spin𝑐
fibers of even dimension, equipped with two sets of Riemannian and differential
spin𝑐 structures

(𝑇𝐻0 𝑋, 𝑔
𝑇𝑉𝑋
0 , 𝑔𝜆0 ,∇

𝜆
0), (𝑇𝐻1 𝑋, 𝑔

𝑇𝑉𝑋
1 , 𝑔𝜆1 ,∇

𝜆
1),
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where the underlying topological spin𝑐 structures coincide. Let (𝐸, 𝑔𝐸 ,∇𝐸) and
(𝐹, 𝑔𝐹 ,∇𝐹) be triples. Denote by𝖣𝑆⊗𝐸 and𝖣𝑆⊗𝐹 the twisted spin𝑐 Dirac operators
defined in terms of

(𝑔𝐸 ,∇𝐸 , 𝑇𝐻0 𝑋, 𝑔
𝑇𝑉𝑋
0 , 𝑔𝜆0 ,∇

𝜆
0) and (𝑔𝐹 ,∇𝐹 , 𝑇𝐻1 𝑋, 𝑔

𝑇𝑉𝑋
1 , 𝑔𝜆1 ,∇

𝜆
1).

Let (𝐿𝐸 , 𝑔𝐿𝐸 ,∇𝐿𝐸 ) and (𝐿𝐹 , 𝑔𝐿𝐹 ,∇𝐿𝐹 ) be ℤ2-graded triples so that 𝐿𝐸 → 𝐵 and
𝐿𝐹 → 𝐵 satisfy the MF property for 𝖣𝑆⊗𝐸 and 𝖣𝑆⊗𝐹 , respectively.
If there exists an isometric isomorphism 𝛼 ∶ (𝐸, 𝑔𝐸) → (𝐹, 𝑔𝐹), then there

exist balancedℤ2-graded triples (𝑊𝐸 , 𝑔𝑊𝐸 ,∇𝑊𝐸 ) and (𝑊𝐹 , 𝑔𝑊𝐹 ,∇𝑊𝐹 ) and aℤ2-
graded isometric isomorphism

ℎ̃ ∶ (𝐿𝐸 ⊕𝑊𝐸 , 𝑔𝐿𝐸 ⊕ 𝑔𝑊𝐸 )→ (𝐿𝐹 ⊕𝑊𝐹 , 𝑔𝐿𝐹 ⊕ 𝑔𝑊𝐹 ),

which depends on 𝛼, such that

𝜂𝐹(𝑔𝐹 ,∇𝐹 , 𝑇𝐻1 𝑋, 𝑔
𝑇𝑉𝑋
1 , 𝑔𝜆1 ,∇

𝜆
1 , 𝐿𝐹) − 𝜂𝐸(𝑔𝐸 ,∇𝐸 , 𝑇𝐻0 𝑋, 𝑔

𝑇𝑉𝑋
0 , 𝑔𝜆0 ,∇

𝜆
0 , 𝐿𝐸)

≡ ∫
𝑋∕𝐵

(
𝑇𝐴(∇𝑇𝑉𝑋

0 ,∇𝑇𝑉𝑋
1 ) ∧ 𝑒

1
2
𝑐1(∇𝜆

0) + 𝐴(∇𝑇𝑉𝑋
1 ) ∧ 𝑒

1
2
𝑇𝑐1(∇𝜆

0 ,∇
𝜆
1)
)
∧ ch(∇𝐸)

+ ∫
𝑋∕𝐵

Todd(∇𝑇𝑉𝑋
1 ) ∧ CS(∇𝐸 , 𝛼∗∇𝐹) − CS(∇𝐿𝐸 ⊕∇𝑊𝐸 , ℎ̃∗(∇𝐿𝐹 ⊕∇𝑊𝐹 )).

(3.53)

Proof. Write 𝖣𝑆⊗𝐸,𝛼 for the twisted spin𝑐 Dirac operator defined in terms of

(𝑔𝐸 , 𝛼∗∇𝐹 , 𝑇𝐻1 𝑋, 𝑔
𝑇𝑉𝑋
1 , 𝑔𝜆1 ,∇

𝜆
1).

Let (𝐿𝐸,𝛼, 𝑔𝐿𝐸,𝛼 ,∇𝐿𝐸,𝛼 ) be a ℤ2-graded triple so that 𝐿𝐸,𝛼 → 𝐵 satisfies the MF
property for 𝖣𝑆⊗𝐸,𝛼. By Proposition 3.1, there exist balanced ℤ2-graded triples
(𝑊0, 𝑔𝑊0 ,∇𝑊0) and (𝑊1, 𝑔𝑊1 ,∇𝑊1) and a ℤ2-graded isometric isomorphism

ℎ ∶ (𝐿𝐸 ⊕𝑊0, 𝑔𝐿𝐸 ⊕ 𝑔𝑊0)→ (𝐿𝐸,𝛼 ⊕𝑊1, 𝑔𝐿𝐸,𝛼 ⊕ 𝑔𝑊1) (3.54)

such that

𝜂𝐸(𝑔𝐸 , 𝛼∗∇𝐹 , 𝑇𝐻1 𝑋, 𝑔
𝑇𝑉𝑋
1 , 𝑔𝜆1 ,∇

𝜆
1 , 𝐿𝐸,𝛼) − 𝜂𝐸(𝑔𝐸 ,∇𝐸 , 𝑇𝐻0 𝑋, 𝑔

𝑇𝑉𝑋
0 , 𝑔𝜆0 ,∇

𝜆
0 , 𝐿𝐸)

≡ ∫
𝑋∕𝐵

(
𝑇𝐴(∇𝑇𝑉𝑋

0 ,∇𝑇𝑉𝑋
1 ) ∧ 𝑒

1
2
𝑐1(∇𝜆

0) + 𝐴(∇𝑇𝑉𝑋
1 ) ∧ 𝑒

1
2
𝑇𝑐1(∇𝜆

0 ,∇
𝜆
1)
)
∧ ch(∇𝐸)

+ ∫
𝑋∕𝐵

Todd(∇𝑇𝑉𝑋
1 ) ∧ CS(∇𝐸 , 𝛼∗∇𝐹) − CS(∇𝐿𝐸 ⊕∇𝑊0 , ℎ∗(∇𝐿𝐸,𝛼 ⊕∇𝑊1)).

(3.55)

By applying Proposition 3.3 to the isometric isomorphism 𝛼, there exist a
unique ℤ2-graded triple (𝐿𝐹,𝛼, 𝑔𝐿𝐹,𝛼 ,∇𝐿𝐹,𝛼 ) and a unique ℤ2-graded isometric
isomorphism

�̃�𝐿 ∶ (𝐿𝐸,𝛼, 𝑔𝐿𝐸,𝛼 )→ (𝐿𝐹,𝛼, 𝑔𝐿𝐹,𝛼 ) (3.56)
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such that 𝐿𝐹,𝛼 → 𝐵 satisfies the MF property for 𝖣𝑆⊗𝐹 and

𝜂𝐸(𝑔𝐸 , 𝛼∗∇𝐹 , 𝑇𝐻1 𝑋, 𝑔
𝑇𝑉𝑋
1 , 𝑔𝜆1 ,∇

𝜆
1 , 𝐿𝐸,𝛼) = 𝜂𝐹(𝑔𝐹 ,∇𝐹 , 𝑇𝐻1 𝑋, 𝑔

𝑇𝑉𝑋
1 , 𝑔𝜆1 ,∇

𝜆
1 , 𝐿𝐹,𝛼).

(3.57)
Since (𝐿𝐹 , 𝑔𝐿𝐹 ,∇𝐿𝐹 ) and (𝐿𝐹,𝛼, 𝑔𝐿𝐹,𝛼 ,∇𝐿𝐹,𝛼 ) are ℤ2-graded triples so that both

𝐿𝐹 → 𝐵 and 𝐿𝐹,𝛼 → 𝐵 satisfy the MF property for 𝖣𝑆⊗𝐹 , it follows from [8,
Corollary 1] that there exist balancedℤ2-graded triples (𝑊𝐹,0, 𝑔𝑊𝐹,0 ,∇𝑊𝐹,0) and
(𝑊𝐹,1, 𝑔𝑊𝐹,1 ,∇𝑊𝐹,1) and a ℤ2-graded isometric isomorphism

ℎ𝐹 ∶ (𝐿𝐹,𝛼 ⊕𝑊𝐹,0, 𝑔𝐿𝐹,𝛼 ⊕ 𝑔𝑊𝐹,0)→ (𝐿𝐹 ⊕𝑊𝐹,1, 𝑔𝐿𝐹 ⊕ 𝑔𝑊𝐹,1) (3.58)

such that

𝜂𝐹(𝑔𝐹 ,∇𝐹 , 𝑇𝐻1 𝑋, 𝑔
𝑇𝑉𝑋
1 , 𝑔𝜆1 ,∇

𝜆
1 , 𝐿𝐹) − 𝜂𝐹(𝑔𝐹 ,∇𝐹 , 𝑇𝐻1 𝑋, 𝑔

𝑇𝑉𝑋
1 , 𝑔𝜆1 ,∇

𝜆
1 , 𝐿𝐹,𝛼)

≡ −CS(∇𝐿𝐹,𝛼 ⊕∇𝑊𝐹,0 , ℎ∗𝐹(∇
𝐿𝐹 ⊕∇𝑊𝐹,1)).

(3.59)

By (3.54), (3.56) and (3.58), the map

ℎ̃ ∶ (𝐿𝐸⊕𝑊0⊕𝑊𝐹,0, 𝑔𝐿𝐸⊕𝑔𝑊0⊕𝑔𝑊𝐹,0)→ (𝐿𝐹⊕𝑊1⊕𝑊𝐹,1, 𝑔𝐿𝐹⊕𝑔𝑊1⊕𝑔𝑊𝐹,1)

given by the composition

𝐿𝐸 ⊕𝑊0 ⊕𝑊𝐹,0

𝐿𝐸,𝛼 ⊕𝑊1 ⊕𝑊𝐹,0

𝐿𝐹,𝛼 ⊕𝑊1 ⊕𝑊𝐹,0

𝐿𝐹 ⊕𝑊1 ⊕𝑊𝐹,1

ℎ⊕id𝑊𝐹,0

�̃�𝐿⊕id𝑊1 ⊕ id𝑊𝐹,0

ℎ𝐹⊕id𝑊1

is a ℤ2-graded isometric isomorphism. On the other hand, (3.57) and (3.59)
imply

𝜂𝐸(𝑔𝐸 , 𝛼∗∇𝐹 , 𝑇𝐻1 𝑋, 𝑔
𝑇𝑉𝑋
1 , 𝑔𝜆1 ,∇

𝜆
1 , 𝐿𝐸,𝛼)

= 𝜂𝐹(𝑔𝐹 ,∇𝐹 , 𝑇𝐻1 𝑋, 𝑔
𝑇𝑉𝑋
1 , 𝑔𝜆1 ,∇

𝜆
1 , 𝐿𝐹,𝛼)

≡ 𝜂𝐹(𝑔𝐹 ,∇𝐹 , 𝑇𝐻1 𝑋, 𝑔
𝑇𝑉𝑋
1 , 𝑔𝜆1 ,∇

𝜆
1 , 𝐿𝐹) + CS(∇𝐿𝐹,𝛼 ⊕∇𝑊𝐹,0 , ℎ∗𝐹(∇

𝐿𝐹 ⊕∇𝑊𝐹,1)).
(3.60)
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By (3.60), (3.55) becomes

𝜂𝐹(𝑔𝐹 ,∇𝐹 , 𝑇𝐻1 𝑋, 𝑔
𝑇𝑉𝑋
1 , 𝑔𝜆1 ,∇

𝜆
1 , 𝐿𝐹) − 𝜂𝐸(𝑔𝐸 ,∇𝐸 , 𝑇𝐻0 𝑋, 𝑔

𝑇𝑉𝑋
0 , 𝑔𝜆0 ,∇

𝜆
0 , 𝐿𝐸)

≡ ∫
𝑋∕𝐵

(
𝑇𝐴(∇𝑇𝑉𝑋

0 ,∇𝑇𝑉𝑋
1 ) ∧ 𝑒

1
2
𝑐1(∇𝜆

0) + 𝐴(∇𝑇𝑉𝑋
1 ) ∧ 𝑒

1
2
𝑇𝑐1(∇𝜆

0 ,∇
𝜆
1)
)
∧ ch(∇𝐸)

+ ∫
𝑋∕𝐵

Todd(∇𝑇𝑉𝑋
1 ) ∧ CS(∇𝐸 , 𝛼∗∇𝐹) − CS(∇𝐿𝐸 ⊕∇𝑊0 , ℎ∗(∇𝐿𝐸,𝛼 ⊕∇𝑊1))

− CS(∇𝐿𝐹,𝛼 ⊕∇𝑊𝐹,0 , ℎ∗𝐹(∇
𝐿𝐹 ⊕∇𝑊𝐹,1)).

(3.61)

Since ∇𝐿𝐸,𝛼 = (�̃�𝐿)∗∇𝐿𝐹,𝛼 by (3.50), it follows that

∇𝐿𝐸,𝛼 ⊕∇𝑊1 ⊕∇𝑊𝐹,0 = (�̃�𝐿 ⊕ id𝑊1
⊕ id𝑊𝐹,0

)∗(∇𝐿𝐹,𝛼 ⊕∇𝑊1 ⊕∇𝑊𝐹,0).

Thus
CS(∇𝐿𝐹,𝛼 ⊕∇𝑊1 ⊕∇𝑊𝐹,0 , (ℎ𝐹 ⊕ id𝑊1

)∗(∇𝐿𝐹 ⊕∇𝑊1 ⊕∇𝑊𝐹,1))
≡ CS((ℎ ⊕ id𝑊𝐹,0

)∗(�̃�𝐿 ⊕ id𝑊1
⊕ id𝑊𝐹,0

)∗(∇𝐿𝐹,𝛼 ⊕∇𝑊1 ⊕∇𝑊𝐹,0),

(ℎ ⊕ id𝑊𝐹,0
)∗(�̃�𝐿 ⊕ id𝑊1

⊕ id𝑊𝐹,0
)∗(ℎ𝐹 ⊕ id𝑊1

)∗(∇𝐿𝐹 ⊕∇𝑊1 ⊕∇𝑊𝐹,1))

≡ CS((ℎ ⊕ id𝑊𝐹,0
)∗(∇𝐿𝐸,𝛼 ⊕∇𝑊1 ⊕∇𝑊𝐹,0), ℎ̃∗(∇𝐿𝐹 ⊕∇𝑊1 ⊕∇𝑊𝐹,1)).

(3.62)

Since CS(∇𝑊𝐹,0 , id∗𝑊𝐹,0
∇𝑊𝐹,0) ≡ 0 and CS(∇𝑊1 , id∗𝑊1

∇𝑊1) ≡ 0, it follows from
(3.62) and (2.7) that the sum of the last two terms of the right-hand side of (3.61)
is equal to

CS(∇𝐿𝐸 ⊕∇𝑊0 , ℎ∗(∇𝐿𝐸,𝛼 ⊕∇𝑊1)) + CS(∇𝐿𝐹,𝛼 ⊕∇𝑊𝐹,0 , ℎ∗𝐹(∇
𝐿𝐹 ⊕∇𝑊𝐹,1))

≡ CS(∇𝐿𝐸 ⊕∇𝑊0 ⊕∇𝑊𝐹,0 , (ℎ ⊕ id𝑊𝐹,0
)∗(∇𝐿𝐸,𝛼 ⊕∇𝑊1 ⊕∇𝑊𝐹,0))

+ CS(∇𝐿𝐹,𝛼 ⊕∇𝑊1 ⊕∇𝑊𝐹,0 , (ℎ𝐹 ⊕ id𝑊1
)∗(∇𝐿𝐹 ⊕∇𝑊1 ⊕∇𝑊𝐹,1))

≡ CS(∇𝐿𝐸 ⊕∇𝑊0 ⊕∇𝑊𝐹,0 , (ℎ ⊕ id𝑊𝐹,0
)∗(∇𝐿𝐸,𝛼 ⊕∇𝑊1 ⊕∇𝑊𝐹,0))

+ CS((ℎ ⊕ id𝑊𝐹,0
)∗(∇𝐿𝐸,𝛼 ⊕∇𝑊1 ⊕∇𝑊𝐹,0), ℎ̃∗(∇𝐿𝐹 ⊕∇𝑊1 ⊕∇𝑊𝐹,1))

≡ CS(∇𝐿𝐸 ⊕∇𝑊0 ⊕∇𝑊𝐹,0 , ℎ̃∗(∇𝐿𝐹 ⊕∇𝑊1 ⊕∇𝑊𝐹,1)).
(3.63)

By taking𝑊𝐸 = 𝑊0 ⊕𝑊𝐹,0 and𝑊𝐹 = 𝑊1 ⊕𝑊𝐹,1 and similarly for 𝑔𝑊𝐸 , 𝑔𝑊𝐹

and ∇𝑊𝐸 , ∇𝑊𝐹 , (3.61) and (3.63) show that (3.53) holds. □

Note that Remark 3.2 applies to Theorem 3.4 as well.

4. Applications of the extended variational formula for the
Bismut–Cheeger eta form
In this section we present some applications of Proposition 1.1 and Theo-

rem 1.2. All the results in this subsection are under the following setup. Let
𝜋 ∶ 𝑋 → 𝐵 be a submersion with closed, oriented and spin𝑐 fibers of even
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dimension, equipped with a fixed Riemannian and differential spin𝑐 structure
(𝑇𝐻𝑋, 𝑔𝑇𝑉𝑋 , 𝑔𝜆,∇𝜆). In this section, we suppress the dependence of theBismut–
Cheeger eta form on (𝑇𝐻𝑋, 𝑔𝑇𝑉𝑋 , 𝑔𝜆,∇𝜆) when no confusion arises.

4.1. ℤ𝟐-gradedadditivity of theBismut–Cheeger eta form. In this subsec-
tion, we establish some intermediate results for the Bismut–Cheeger eta form.
These results, along with Proposition 3.3, are used to prove the ℤ2-graded ad-
ditivity of the Bismut–Cheeger eta form (Theorem 1.3).
The following proposition says the Bismut–Cheeger eta form is additive with

respect to direct sums.

Proposition 4.1. Let (𝐸, 𝑔𝐸 ,∇𝐸) and (𝐹, 𝑔𝐹 ,∇𝐹) be two ℤ2-graded triples over
𝑋. If (𝐿𝐸 , 𝑔𝐿𝐸 ,∇𝐿𝐸 ) and (𝐿𝐹 , 𝑔𝐿𝐹 ,∇𝐿𝐹 ) are ℤ2-graded triples so that 𝐿𝐸 → 𝐵 and
𝐿𝐹 → 𝐵 satisfy the MF property for 𝖣𝑆⊗𝐸 and 𝖣𝑆⊗𝐹 , respectively, then there exists
a ℤ2-graded triple

(𝐿𝐸⊕𝐹 , 𝑔𝐿𝐸⊕𝐹 ,∇𝐿𝐸⊕𝐹 )
such that 𝐿𝐸⊕𝐹 → 𝐵 satisfies the MF property for 𝖣𝑆⊗(𝐸⊕𝐹) and

𝜂𝐸⊕𝐹(𝑔𝐸 ⊕ 𝑔𝐹 ,∇𝐸 ⊕∇𝐹 , 𝐿𝐸⊕𝐹) ≡ 𝜂𝐸(𝑔𝐸 ,∇𝐸 , 𝐿𝐸) + 𝜂𝐹(𝑔𝐹 ,∇𝐹 , 𝐿𝐹).

Proof. Let 𝐾𝐸 → 𝐵 and 𝐾𝐹 → 𝐵 be ℤ2-graded closed subbundles of 𝜋∗𝐸 → 𝐵
and 𝜋∗𝐹 → 𝐵 that are complementary to 𝐿𝐸 → 𝐵 and 𝐿𝐹 → 𝐵, respectively, i.e.

(𝜋∗𝐸)+ = 𝐾+
𝐸 ⊕ 𝐿+𝐸 , (𝜋∗𝐸)− = 𝐾−

𝐸 ⊕ 𝐿−𝐸 ,
(𝜋∗𝐹)+ = 𝐾+

𝐹 ⊕ 𝐿+𝐹 , (𝜋∗𝐹)− = 𝐾−
𝐹 ⊕ 𝐿−𝐹 ,

(4.1)

𝖣𝑆⊗𝐸+ and 𝖣𝑆⊗𝐹+ are block diagonal as maps with respect to (4.1), say

𝖣𝑆⊗𝐸+ = (𝑎𝐸 0
0 𝑑𝐸

) , 𝖣𝑆⊗𝐹+ = (𝑎𝐹 0
0 𝑑𝐹

) , (4.2)

and 𝑎𝐸 ∶ 𝐾+
𝐸 → 𝐾−

𝐸 and 𝑎𝐹 ∶ 𝐾
+
𝐹 → 𝐾−

𝐹 are isomorphisms.
Define a ℤ2-graded triple (𝐿𝐸⊕𝐹 , 𝑔𝐿𝐸⊕𝐹 ,∇𝐿𝐸⊕𝐹 ) by

𝐿𝐸⊕𝐹 = 𝐿𝐸 ⊕ 𝐿𝐹 , 𝑔𝐿𝐸⊕𝐹 = 𝑔𝐿𝐸 ⊕ 𝑔𝐿𝐹 , ∇𝐿𝐸⊕𝐹 = ∇𝐿𝐸 ⊕∇𝐿𝐹 . (4.3)
By (4.1),

(𝜋∗(𝐸 ⊕ 𝐹))+ = (𝜋∗𝐸)+ ⊕ (𝜋∗𝐹)+ = (𝐾+
𝐸 ⊕𝐾+

𝐹 )⊕ (𝐿+𝐸 ⊕ 𝐿+𝐹 ),
(𝜋∗(𝐸 ⊕ 𝐹))− = (𝜋∗𝐸)− ⊕ (𝜋∗𝐹)− = (𝐾−

𝐸 ⊕𝐾−
𝐹 )⊕ (𝐿−𝐸 ⊕ 𝐿−𝐹 ).

(4.4)

Thus 𝐾𝐸 ⊕ 𝐾𝐹 → 𝐵 is complementary to 𝐿𝐸⊕𝐹 → 𝐵. With respect to (4.4),
𝖣𝑆⊗(𝐸⊕𝐹)+ is given by

𝖣𝑆⊗(𝐸⊕𝐹)+ =
⎛
⎜
⎜
⎝

𝑎𝐸 0 0 0
0 𝑎𝐹 0 0
0 0 𝑑𝐸 0
0 0 0 𝑑𝐹

⎞
⎟
⎟
⎠

,

which is block diagonal as a map with respect to (4.4), and shows that

𝖣𝑆⊗(𝐸⊕𝐹)+ |𝐾+
𝐸⊕𝐾

+
𝐹
= 𝑎𝐸 ⊕ 𝑎𝐹
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is an isomorphism. Thus 𝐿𝐸⊕𝐹 → 𝐵 satisfies the MF property for 𝖣𝑆⊗(𝐸⊕𝐹).
We show that the Bismut superconnection �̂�𝐸⊕𝐹 is additive in the following

sense:
�̂�𝐸⊕𝐹 = �̂�𝐸 ⊕ �̂�𝐹 . (4.5)

With respect to the decomposition

𝜋∗(𝐸 ⊕ 𝐹)⊕ 𝐿op𝐸⊕𝐹 = (𝜋∗𝐸 ⊕ 𝐿op𝐸 )⊕ (𝜋∗𝐹 ⊕ 𝐿op𝐹 ),

we have

𝖣𝑆⊗(𝐸⊕𝐹)+ = 𝖣𝑆⊗𝐸+ ⊕ 𝖣𝑆⊗𝐹+ , 𝑖−𝐸⊕𝐹 = 𝑖−𝐸 ⊕ 𝑖−𝐹 , 𝑃+𝐸⊕𝐹 = 𝑃+𝐸 ⊕ 𝑃+𝐹 .

Thus �̃�𝑆⊗(𝐸⊕𝐹)+ (𝑧) = �̃�𝑆⊗𝐸+ (𝑧)⊕ �̃�𝑆⊗𝐹+ (𝑧) for any 𝑧 ∈ ℂ, and therefore

�̃�𝑆⊗(𝐸⊕𝐹)(𝑧) = �̃�𝑆⊗𝐸(𝑧)⊕ �̃�𝑆⊗𝐹(𝑧). (4.6)

Since ∇𝜋∗(𝐸⊕𝐹),𝑢 = ∇𝜋∗𝐸,𝑢 ⊕∇𝜋∗𝐹,𝑢, it follows that

∇𝜋∗(𝐸⊕𝐹),𝑢 ⊕∇𝐿𝐸⊕𝐹 ,op = (∇𝜋∗𝐸,𝑢 ⊕∇𝐿𝐸 ,op)⊕ (∇𝜋∗𝐹,𝑢 ⊕∇𝐿𝐹 ,op). (4.7)

By (4.6) and (4.7), (4.5) holds.
Let 𝑡, 𝑇 ∈ (0,∞) satisfy 𝑡 < 𝑇. By (4.5) and (2.8),

CS(�̂�𝐸⊕𝐹𝑡 , �̂�𝐸⊕𝐹𝑇 ) ≡ CS(�̂�𝐸𝑡 ⊕ �̂�𝐹𝑡 , �̂�
𝐸
𝑇 ⊕ �̂�𝐹𝑇) ≡ CS(�̂�𝐸𝑡 , �̂�

𝐸
𝑇) +CS(�̂�

𝐹
𝑡 , �̂�

𝐹
𝑇). (4.8)

By letting 𝑡 → 0 and 𝑇 →∞ in (4.8), the result follows. □

Proposition 4.1 is also valid if not all of the triples (𝐸, 𝑔𝐸 ,∇𝐸) and (𝐹, 𝑔𝐹 ,∇𝐹)
are ℤ2-graded.
The following lemma says for any givenℤ2-graded triple (𝐸, 𝑔𝐸 ,∇𝐸), theℤ2-

graded complex vector bundle satisfying the MF property for 𝖣𝑆⊗𝐸 can be ex-
pressed in terms of those for 𝖣𝑆⊗𝐸+ and 𝖣𝑆⊗𝐸− .

Lemma 4.2. Let (𝐸, 𝑔𝐸 ,∇𝐸) be aℤ2-graded triple over𝑋. If 𝐿𝐸+ → 𝐵 and 𝐿𝐸− →
𝐵 areℤ2-graded complex vector bundles satisfying theMF property for𝖣𝑆⊗𝐸

+ and
𝖣𝑆⊗𝐸− , respectively, then 𝐿𝐸+ ⊕ 𝐿op𝐸− → 𝐵 is a ℤ2-graded complex vector bundle
satisfying the MF property for 𝖣𝑆⊗𝐸 .

Proof. Let𝐾𝐸+ → 𝐵 and𝐾𝐸− → 𝐵 beℤ2-graded closed subbundles of 𝜋∗𝐸+ →
𝐵 and 𝜋∗𝐸− → 𝐵 that are complementary to 𝐿𝐸+ → 𝐵 and 𝐿𝐸− → 𝐵, respec-
tively, i.e.

(𝜋∗𝐸+)+ = 𝐾+
𝐸+ ⊕ 𝐿+𝐸+ , (𝜋∗𝐸+)− = 𝐾−

𝐸+ ⊕ 𝐿−𝐸+ ,
(𝜋∗𝐸−)+ = 𝐾+

𝐸− ⊕ 𝐿+𝐸− , (𝜋∗𝐸−)− = 𝐾−
𝐸− ⊕ 𝐿−𝐸− ,

(4.9)

𝖣𝑆⊗𝐸
+

+ and 𝖣𝑆⊗𝐸
−

+ are block diagonal as maps with respect to (4.9), say

𝖣𝑆⊗𝐸
+

+ = (𝑎𝐸+ 0
0 𝑑𝐸+

) , 𝖣𝑆⊗𝐸
−

+ = (𝑎𝐸− 0
0 𝑑𝐸−

) ,

and 𝑎𝐸+ ∶ 𝐾+
𝐸+ → 𝐾−

𝐸+ and 𝑎𝐸− ∶ 𝐾
+
𝐸− → 𝐾−

𝐸− are isomorphisms.
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By (4.9),
(𝜋∗𝐸)+ = (𝜋∗𝐸+)+ ⊕ (𝜋∗𝐸−)−

= 𝐾+
𝐸+ ⊕ 𝐿+𝐸+ ⊕𝐾−

𝐸− ⊕ 𝐿−𝐸−
= (𝐾𝐸+ ⊕𝐾op

𝐸−)
+ ⊕ (𝐿𝐸+ ⊕ 𝐿op𝐸−)

+

(4.10)

and
(𝜋∗𝐸)− = (𝜋∗𝐸+)− ⊕ (𝜋∗𝐸−)+

= 𝐾−
𝐸+ ⊕ 𝐿−𝐸+ ⊕𝐾+

𝐸− ⊕ 𝐿+𝐸−
= (𝐾𝐸+ ⊕𝐾op

𝐸−)
− ⊕ (𝐿𝐸+ ⊕ 𝐿op𝐸−)

−.
(4.11)

By (4.10) and (4.11), 𝜋∗𝐸 = (𝐾𝐸+ ⊕𝐾op
𝐸−)⊕ (𝐿𝐸+ ⊕𝐿op𝐸−). With respect to (4.10)

and (4.11), 𝖣𝑆⊗𝐸+ is given by

𝖣𝑆⊗𝐸+ =
⎛
⎜
⎜
⎝

𝑎𝐸+ 0 0 0
0 𝑎∗𝐸− 0 0
0 0 𝑑𝐸+ 0
0 0 0 𝑑∗𝐸−

⎞
⎟
⎟
⎠

,

where 𝖣𝑆⊗𝐸
−

− = (𝖣𝑆⊗𝐸
−

+ )∗ = (𝑎
∗
𝐸− 0
0 𝑑∗𝐸−

). Note that 𝖣𝑆⊗𝐸+ |(𝐾𝐸+⊕𝐾op
𝐸− )+

= 𝑎𝐸+ ⊕

𝑎∗𝐸− , which is an isomorphism. Thus 𝐿𝐸+ ⊕ 𝐿op𝐸− → 𝐵 satisfies the MF property
for 𝖣𝑆⊗𝐸 . □

Let 𝐸 → 𝑋 be a ℤ2-graded complex vector bundle. Since

End(𝐸)+ = End(𝐸+)⊕ End(𝐸−),

it follows that

End(𝐸op)+ = End(𝐸op,+)⊕ End(𝐸op,−) = End(𝐸−)⊕ End(𝐸+) = End(𝐸)+.

Thus 𝑇 ∈ End(𝐸op)+ if and only if 𝑇 ∈ End(𝐸)+. Moreover, str𝐸op(𝑇) exists if
and only if str𝐸(𝑇) exists. If either one of them exists, then

str𝐸op(𝑇) = tr(𝑇|𝐸op,+) − tr(𝑇|𝐸op,−) = tr(𝑇|𝐸−) − tr(𝑇|𝐸+) = − str𝐸(𝑇). (4.12)

The following lemma says switching the ℤ2-grading of a ℤ2-graded triple
induces a minus sign in the corresponding Bismut–Cheeger eta form.

Lemma 4.3. Suppose (𝐸, 𝑔𝐸 ,∇𝐸) is a ℤ2-graded triple over 𝑋. If (𝐿, 𝑔𝐿,∇𝐿)
is a ℤ2-graded triple so that 𝐿 → 𝐵 satisfies the MF property for 𝖣𝑆⊗𝐸 , then
(𝐿op, 𝑔𝐿,op,∇𝐿,op) is a ℤ2-graded triple so that 𝐿op → 𝐵 satisfies the MF property
for 𝖣𝑆⊗𝐸op , and

𝜂𝐸op(𝑔𝐸,op,∇𝐸,op, 𝐿op) ≡ −𝜂𝐸(𝑔𝐸 ,∇𝐸 , 𝐿). (4.13)

Proof. Let 𝐾 → 𝐵 be a ℤ2-graded closed subbundle of 𝜋∗𝐸 → 𝐵 that is com-
plementary to 𝐿 → 𝐵, i.e.

(𝜋∗𝐸)+ = 𝐾+ ⊕ 𝐿+, (𝜋∗𝐸)− = 𝐾− ⊕ 𝐿−, (4.14)
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𝖣𝑆⊗𝐸+ is block diagonal as a map with respect to (4.14) and 𝖣𝑆⊗𝐸|𝐾+ is an iso-
morphism. Since

(𝑆(𝑇𝑉𝑋)⊗𝐸op)+ = (𝑆(𝑇𝑉𝑋)+ ⊗𝐸−)⊕ (𝑆(𝑇𝑉𝑋)− ⊗𝐸+) = (𝑆(𝑇𝑉𝑋)⊗𝐸)−,
(𝑆(𝑇𝑉𝑋)⊗𝐸op)− = (𝑆(𝑇𝑉𝑋)+ ⊗𝐸+)⊕ (𝑆(𝑇𝑉𝑋)− ⊗𝐸−) = (𝑆(𝑇𝑉𝑋)⊗𝐸)+,

it follows that
(𝜋∗(𝐸op))+ = (𝜋∗𝐸)− = 𝐾− ⊕ 𝐿−,
(𝜋∗(𝐸op))− = (𝜋∗𝐸)+ = 𝐾+ ⊕ 𝐿+.

(4.15)

That is, 𝜋∗(𝐸op) = 𝐾op ⊕ 𝐿op. Moreover, 𝖣𝑆⊗𝐸
op

+ = 𝖣𝑆⊗𝐸− = (𝖣𝑆⊗𝐸+ )∗. Thus
𝖣𝑆⊗𝐸

op

+ is also block diagonal as a map with respect to (4.15), and 𝖣𝑆⊗𝐸
op

+ |𝐾op,+

is the inverse of 𝖣𝑆⊗𝐸+ |𝐾+ , which is an isomorphism. Thus 𝐿op → 𝐵 satisfies the
MF property for 𝖣𝑆⊗𝐸op .
Note that 𝑔𝐿,op is inherited from 𝑔𝜋∗(𝐸op) and ∇𝐿,op = 𝑃op◦∇𝜋∗(𝐸op),𝑢◦𝑃op,

where 𝑃op ∶ 𝜋∗(𝐸op) → 𝐿op is the obvious ℤ2-graded projection map. By ap-

plying (4.12) to
𝑑�̂�𝐸op𝑡
𝑑𝑡

𝑒−
1
2𝜋𝑖

(�̂�𝐸op𝑡 )2 , (4.13) holds. □

Proposition 4.4. Suppose (𝑉, 𝑔𝑉 ,∇𝑉) is a balanced ℤ2-graded triple over 𝑋. If
(𝐿+, 𝑔𝐿+ ,∇𝐿+) is a ℤ2-graded triple so that 𝐿+ → 𝐵 satisfies the MF property for
𝖣𝑆⊗𝑉+ , then there exists a balanced ℤ2-graded triple (𝐿, 𝑔𝐿,∇𝐿) such that 𝐿 → 𝐵
satisfies the MF property for 𝖣𝑆⊗𝑉 and

𝜂𝑉(𝑔𝑉 ,∇𝑉 , 𝐿) ≡ 0.

Proof. Since the ℤ2-graded triple (𝑉, 𝑔𝑉 ,∇𝑉) is balanced, (𝑉+, 𝑔𝑉,+,∇𝑉,+) =
(𝑉−, 𝑔𝑉,−,∇𝑉,−). Thus 𝐿+ → 𝐵 also satisfies theMF property for𝖣𝑆⊗𝑉− . Define
a ℤ2-graded triple (𝐿, 𝑔𝐿,∇𝐿) by

𝐿 = 𝐿+ ⊕ 𝐿op+ , 𝑔𝐿 = 𝑔𝐿+ ⊕ 𝑔𝐿+,op, ∇𝐿 = ∇𝐿+ ⊕∇𝐿+,op.

By Lemma 4.2, 𝐿 → 𝐵 satisfies the MF property for 𝖣𝑆⊗𝑉 . Since

𝐿+ = 𝐿++ ⊕ 𝐿−+ and 𝐿− = 𝐿−+ ⊕ 𝐿++,

and similarly for 𝑔𝐿 and ∇𝐿, the ℤ2-graded triple (𝐿, 𝑔𝐿,∇𝐿) is balanced. Since
(𝑉op, 𝑔𝑉,op,∇𝑉,op) = (𝑉, 𝑔𝑉 ,∇𝑉), it follows from Lemma 4.3 and the fact
(𝐿op, 𝑔𝐿,op,∇𝐿,op) = (𝐿, 𝑔𝐿,∇𝐿) that

𝜂𝑉(𝑔𝑉 ,∇𝑉 , 𝐿) ≡ −𝜂𝑉op(𝑔𝑉,op,∇𝑉,op, 𝐿op) ≡ −𝜂𝑉(𝑔𝑉 ,∇𝑉 , 𝐿).

Thus 𝜂𝑉(𝑔𝑉 ,∇𝑉 , 𝐿) ≡ 0. □

We now prove Theorem 1.3.

Theorem 4.5. Let (𝐸, 𝑔𝐸 ,∇𝐸) be a ℤ2-graded triple over 𝑋. If (𝐿𝐸+ , 𝑔𝐿𝐸+ ,∇𝐿𝐸+ )
and (𝐿𝐸− , 𝑔𝐿𝐸− ,∇𝐿𝐸− ) areℤ2-graded triples so that 𝐿𝐸+ → 𝐵 and 𝐿𝐸− → 𝐵 satisfy
the MF property for 𝖣𝑆⊗𝐸+ and 𝖣𝑆⊗𝐸− , respectively, then

𝜂𝐸(𝑔𝐸 ,∇𝐸 , 𝐿𝐸+ ⊕ 𝐿op𝐸−) ≡ 𝜂𝐸+(𝑔𝐸,+,∇𝐸,+, 𝐿𝐸+) − 𝜂𝐸−(𝑔𝐸,−,∇𝐸,−, 𝐿𝐸−). (4.16)
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Proof. By Lemma 4.2, 𝐿𝐸+⊕𝐿op𝐸− → 𝐵 satisfies theMF property for𝖣𝑆⊗𝐸 . Thus
the left-hand side of (4.16) makes sense.
Consider the (ungraded) triple (𝐸⊕𝐸−, 𝑔𝐸⊕𝑔𝐸,−,∇𝐸⊕∇𝐸,−). By Proposition

4.1,
(
(𝐿𝐸+ ⊕ 𝐿op𝐸−)⊕ 𝐿𝐸− , (𝑔𝐿𝐸+ ⊕ 𝑔𝐿𝐸− ,op)⊕ 𝑔𝐿𝐸− , (∇𝐿𝐸+ ⊕∇𝐿𝐸− ,op)⊕∇𝐿𝐸−

)

is a ℤ2-graded triple so that (𝐿𝐸+ ⊕ 𝐿op𝐸−)⊕ 𝐿𝐸− → 𝐵 satisfies the MF property
for 𝖣𝑆⊗(𝐸⊕𝐸−), which is defined in terms of ∇𝐸 ⊕∇𝐸,−.
On the other hand, define a balancedℤ2-graded triple (𝐻, 𝑔𝐻 ,∇𝐻) by𝐻± ∶=

𝐸−, and similarly for 𝑔𝐻 and∇𝐻 . Consider the (ungraded) triple (𝐸+⊕𝐻, 𝑔𝐸,+⊕
𝑔𝐻 ,∇𝐸,+ ⊕∇𝐻). The map

𝛼 ∶ (𝐸 ⊕ 𝐸−, 𝑔𝐸 ⊕ 𝑔𝐸,−)→ (𝐸+ ⊕𝐻, 𝑔𝐸,+ ⊕ 𝑔𝐻)

defined by
𝛼((𝑎, 𝑏), 𝑐) = (𝑎, (𝑐, 𝑏))

is obviously an isometric isomorphism and satisfies

𝛼∗(∇𝐸,+ ⊕∇𝐻) = ∇𝐸 ⊕∇𝐸,−. (4.17)

By applying Proposition 3.3 to the isometric isomorphism 𝛼 and noting that
(𝐿𝐸+⊕𝐿

op
𝐸−)⊕𝐿𝐸− → 𝐵 satisfies theMFproperty for𝖣𝑆⊗(𝐸⊕𝐸−), which is defined

in terms of ∇𝐸 ⊕ ∇𝐸,− = 𝛼∗(∇𝐸,+ ⊕ ∇𝐻) by (4.17), there exists a unique ℤ2-
graded triple (𝐿𝛼, 𝑔𝐿𝛼 ,∇𝐿𝛼 ) and a unique ℤ2-graded isometric isomorphism

�̃�𝐿 ∶
(
(𝐿𝐸+ ⊕ 𝐿op𝐸−)⊕ 𝐿𝐸− , (𝑔𝐿𝐸+ ⊕ 𝑔𝐿𝐸− ,op)⊕ 𝑔𝐿𝐸−

)
→ (𝐿𝛼, 𝑔𝐿𝛼 )

such that 𝐿𝛼 → 𝐵 satisfies the MF property for 𝖣𝑆⊗(𝐸+⊕𝐻), which is defined in
terms of ∇𝐸,+ ⊕∇𝐻 , and

𝜂𝐸⊕𝐸−(𝑔𝐸 ⊕ 𝑔𝐸,−, 𝛼∗(∇𝐸,+ ⊕∇𝐻), (𝐿𝐸+ ⊕ 𝐿op𝐸−)⊕ 𝐿𝐸−)

= 𝜂𝐸+⊕𝐻(𝑔𝐸,+ ⊕ 𝑔𝐻 ,∇𝐸,+ ⊕∇𝐻 , 𝐿𝛼).
(4.18)

By the definition of 𝛼, the ℤ2-graded triple (𝐿𝛼, 𝑔𝐿𝛼 ,∇𝐿𝛼 ) is given by
(
𝐿𝐸+ ⊕ (𝐿𝐸− ⊕𝐿op𝐸−), 𝑔

𝐿𝐸+ ⊕ (𝑔𝐿𝐸− ⊕𝑔𝐿𝐸− ,op),∇𝐿𝐸+ ⊕ (∇𝐿𝐸− ⊕∇𝐿𝐸− ,op)
)
. (4.19)

By (4.17) and (4.19), (4.18) becomes

𝜂𝐸⊕𝐸−(𝑔𝐸 ⊕ 𝑔𝐸,−,∇𝐸 ⊕∇𝐸,−, (𝐿𝐸+ ⊕ 𝐿op𝐸−)⊕ 𝐿𝐸−)

= 𝜂𝐸+⊕𝐻(𝑔𝐸,+ ⊕ 𝑔𝐻 ,∇𝐸,+ ⊕∇𝐻 , 𝐿𝐸+ ⊕ (𝐿𝐸− ⊕ 𝐿op𝐸−)).
(4.20)

By Propositions 4.1 and 4.4, (4.20) becomes

𝜂𝐸(𝑔𝐸 ,∇𝐸 , 𝐿𝐸+ ⊕ 𝐿op𝐸−) + 𝜂𝐸−(𝑔𝐸,−,∇𝐸,−, 𝐿𝐸−)

≡ 𝜂𝐸⊕𝐸−(𝑔𝐸 ⊕ 𝑔𝐸,−,∇𝐸 ⊕∇𝐸,−, (𝐿𝐸+ ⊕ 𝐿op𝐸−)⊕ 𝐿𝐸−)

= 𝜂𝐸+⊕𝐻(𝑔𝐸,+ ⊕ 𝑔𝐻 ,∇𝐸,+ ⊕∇𝐻 , 𝐿𝐸+ ⊕ (𝐿𝐸− ⊕ 𝐿op𝐸−))

≡ 𝜂𝐸+(𝑔𝐸,+,∇𝐸,+, 𝐿𝐸+) + 𝜂𝐻(𝑔𝐻 ,∇𝐻 , 𝐿𝐸− ⊕ 𝐿op𝐸−)

≡ 𝜂𝐸+(𝑔𝐸,+,∇𝐸,+, 𝐿𝐸+).
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Thus (4.16) holds. □

4.2. The analytic index in differential andℝ∕ℤ𝑲-theory. In this subsec-
tion we prove that the analytic index in differential 𝐾-theory ind𝑎𝐾 ∶ 𝐾FL(𝑋)→
𝐾FL(𝐵) is a well defined group homomorphism (Proposition 1.4).

Remark 4.6. Here is a remark on representing elements in the topological 𝐾-
group 𝐾(𝑋) using ℤ2-graded complex vector bundles. First note that every ℤ2-
graded complex vector bundle𝐸 → 𝑋 represents the element [𝐸+]−[𝐸−] in𝐾(𝑋).
Conversely, given an element in 𝐾(𝑋) written as a formal difference [𝐸] − [𝐹], by
defining a ℤ2-graded complex vector bundle𝐻 → 𝑋 by𝐻+ ∶= 𝐸 and𝐻− ∶= 𝐹,
we see that𝐻 → 𝑋 represents [𝐸] − [𝐹].
By [1, p.289], two ℤ2-graded complex vector bundles 𝐸 → 𝑋 and 𝐹 → 𝑋

represent the same element in 𝐾(𝑋) if there exist complex vector bundles 𝐺 → 𝑋
and𝐻 → 𝑋 such that

𝐸+ ⊕𝐺 ≅ 𝐹+ ⊕𝐻, 𝐸− ⊕𝐺 ≅ 𝐹− ⊕𝐻.

In other words, 𝐸 → 𝑋 and 𝐹 → 𝑋 represent the same element in 𝐾(𝑋) if there
existℤ2-graded complex vector bundles𝐺 → 𝑋 and �̂� → 𝑋 of the form𝐺+ = 𝐺−

and �̂�+ = �̂�− such that 𝐸 ⊕ 𝐺 ≅ 𝐹 ⊕ �̂� as ℤ2-graded complex vector bundles.

The Freed–Lott differential 𝐾-group 𝐾FL(𝑋) [6, Definition 2.16] can be de-
scribed in terms of ℤ2-graded generators of the form ℰ = (𝐸, 𝑔𝐸 ,∇𝐸 , 𝜔), where

(𝐸, 𝑔𝐸 ,∇𝐸) is a ℤ2-graded triple and 𝜔 ∈
Ωodd(𝑋)
Im(𝑑)

. Two ℤ2-graded generators

ℰ andℱ are equal in𝐾FL(𝑋) if and if only there exist balancedℤ2-graded triples
(𝑉𝐸 , 𝑔𝑉𝐸 ,∇𝑉𝐸 ) and (𝑉𝐹 , 𝑔𝑉𝐹 ,∇𝑉𝐹 ) and a ℤ2-graded isometric isomorphism 𝛼 ∶
(𝐸 ⊕ 𝑉𝐸 , 𝑔𝐸 ⊕ 𝑔𝑉𝐸 )→ (𝐹 ⊕ 𝑉𝐹 , 𝑔𝐹 ⊕ 𝑔𝑉𝐹 ) such that

𝜔𝐸 − 𝜔𝐹 ≡ CS(∇𝐸 ⊕∇𝑉𝐸 , 𝛼∗(∇𝐹 ⊕∇𝑉𝐹 )). (4.21)

The analytic index of a ℤ2-graded generator ℰ of 𝐾FL(𝑋) is defined to be

ind𝑎𝐾(ℰ;𝐿) = (𝐿, 𝑔𝐿,∇𝐿, ∫
𝑋∕𝐵

Todd(∇𝑇𝑉𝑋) ∧ 𝜔 + 𝜂𝐸(𝑔𝐸 ,∇𝐸 , 𝑇𝐻𝑋, 𝑔𝑇𝑉𝑋 , 𝑔𝜆,∇𝜆, 𝐿)),

(4.22)
where (𝐿, 𝑔𝐿,∇𝐿) is a ℤ2-graded triple so that 𝐿 → 𝐵 satisfies the MF prop-
erty for 𝖣𝑆⊗𝐸 . By [8, Corollary 1], ind𝑎𝐾(ℰ;𝐿) does not depend on the choice of
(𝐿, 𝑔𝐿,∇𝐿) so that 𝐿 → 𝐵 satisfies the MF property for 𝖣𝑆⊗𝐸 . Henceforth we
write ind𝑎𝐾(ℰ) for ind

𝑎
𝐾(ℰ;𝐿).

Let ℰ and ℱ be ℤ2-graded generators of 𝐾FL(𝑋). By [8, Corollary 1] and
Proposition 4.1, the analytic index of ind𝑎𝐾(ℰ +ℱ) is given by

ind𝑎𝐾(ℰ +ℱ) = (𝐿𝐸⊕𝐹 , 𝑔𝐿𝐸⊕𝐹 ,∇𝐿𝐸⊕𝐹 , ∫
𝑋∕𝐵

Todd(∇𝑇𝑉𝑋) ∧ (𝜔𝐸 + 𝜔𝐹),

𝜂𝐸⊕𝐹(𝑔𝐸 ⊕ 𝑔𝐹 ,∇𝐸 ⊕∇𝐹 , 𝑇𝐻𝑋, 𝑔𝑇𝑉𝑋 , 𝑔𝜆,∇𝜆, 𝐿𝐸⊕𝐹)),
(4.23)
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where (𝐿𝐸⊕𝐹 , 𝑔𝐿𝐸⊕𝐹 ,∇𝐿𝐸⊕𝐹 ) is the ℤ2-graded triple given by (4.3). Thus the an-
alytic index in differential 𝐾-theory is additive, i.e.

ind𝑎𝐾(ℰ +ℱ) = ind𝑎𝐾(ℰ) + ind𝑎𝐾(ℱ). (4.24)

We now prove Proposition 1.4.

Proof of Proposition 1.4. We first show that ind𝑎𝐾 passes to a well defined
map 𝐾FL(𝑋) → 𝐾FL(𝐵), i.e. if ℰ and ℱ are ℤ2-graded generators of 𝐾FL(𝑋)
satisfying ℰ = ℱ, then

ind𝑎𝐾(ℰ) = ind𝑎𝐾(ℱ). (4.25)

Once (4.25) is established, (4.24) immediately implies that ind𝑎𝐾 ∶ 𝐾FL(𝑋) →
𝐾FL(𝐵) is a group homomorphism.
Since ℰ = ℱ, there exist two balanced ℤ2-graded triples (𝑉𝐸 , 𝑔𝑉𝐸 ,∇𝑉𝐸 ) and

(𝑉𝐹 , 𝑔𝑉𝐹 ,∇𝑉𝐹 ) and a ℤ2-graded isometric isomorphism

𝛼 ∶ (𝐸 ⊕ 𝑉𝐸 , 𝑔𝐸 ⊕ 𝑔𝑉𝐸 )→ (𝐹 ⊕ 𝑉𝐹 , 𝑔𝐹 ⊕ 𝑔𝑉𝐸 )
such that (4.21) holds. By Proposition 4.4 there exist balancedℤ2-graded triples
(𝐿𝑉𝐸 , 𝑔

𝐿𝑉𝐸 ,∇𝐿𝑉𝐸 ) and (𝐿𝑉𝐹 , 𝑔
𝐿𝑉𝐹 ,∇𝐿𝑉𝐹 ) such that 𝐿𝑉𝐸 → 𝐵 and 𝐿𝑉𝐹 → 𝐵 satisfy

the MF property for 𝖣𝑆⊗𝑉𝐸 and 𝖣𝑆⊗𝑉𝐹 , respectively, and
𝜂𝑉𝐸 (𝑔𝑉𝐸 ,∇𝑉𝐸 , 𝐿𝑉𝐸 ) ≡ 0 ≡ 𝜂𝑉𝐹 (𝑔𝑉𝐹 ,∇𝑉𝐹 , 𝐿𝑉𝐹 ). (4.26)

Let (𝐿𝐸+ , 𝑔𝐿𝐸+ ,∇𝐿𝐸+ ) and (𝐿𝐸− , 𝑔𝐿𝐸− ,∇𝐿𝐸− ) beℤ2-graded triples so that 𝐿𝐸+ →
𝐵 and 𝐿𝐸− → 𝐵 satisfy the MF property for 𝖣𝑆⊗𝐸+ and 𝖣𝑆⊗𝐸− , respectively. By
Lemma 4.2, (𝐿𝐸+ ⊕𝐿op𝐸− , 𝑔

𝐿𝐸+ ⊕𝑔𝐿𝐸− ,op,∇𝐿𝐸+ ⊕∇𝐿𝐸− ,op) is aℤ2-graded triple so
that 𝐿𝐸+ ⊕ 𝐿op𝐸− → 𝐵 satisfies the MF property for 𝖣𝑆⊗𝐸 . By Proposition 4.1,

(
(𝐿𝐸+ ⊕ 𝐿op𝐸−)⊕ 𝐿𝑉𝐸 , (𝑔

𝐿𝐸+ ⊕ 𝑔𝐿𝐸− ,op)⊕ 𝑔𝐿𝑉𝐸 , (∇𝐿𝐸+ ⊕∇𝐿𝐸− ,op)⊕∇𝐿𝑉𝐸
)

is a ℤ2-graded triple so that (𝐿𝐸+ ⊕ 𝐿op𝐸−)⊕ 𝐿𝑉𝐸 → 𝐵 satisfies the MF property
for 𝖣𝑆⊗(𝐸⊕𝑉𝐸).
Let (𝐿𝐹+ , 𝑔𝐿𝐹+ ,∇𝐿𝐹+ ) and (𝐿𝐹− , 𝑔𝐿𝐹− ,∇𝐿𝐹− ) beℤ2-graded triples so that 𝐿𝐹+ →

𝐵 and 𝐿𝐹− → 𝐵 satisfy the MF property for 𝖣𝑆⊗𝐹+ and 𝖣𝑆⊗𝐹− , respectively.
Similarly,

(
(𝐿𝐹+ ⊕ 𝐿op𝐹−)⊕ 𝐿𝑉𝐹 , (𝑔

𝐿𝐹+ ⊕ 𝑔𝐿𝐹− ,op)⊕ 𝑔𝐿𝑉𝐹 , (∇𝐿𝐹+ ⊕∇𝐿𝐹− ,op)⊕∇𝐿𝑉𝐹
)

is a ℤ2-graded triple so that (𝐿𝐹+ ⊕ 𝐿op𝐹−)⊕ 𝐿𝑉𝐹 → 𝐵 satisfies the MF property
for 𝖣𝑆⊗(𝐹⊕𝑉𝐹).
By applying Theorem 3.4 to the ℤ2-graded isometric isomorphism 𝛼, there

exist balancedℤ2-graded triples (𝑊𝐸 , 𝑔𝑊𝐸 ,∇𝑊𝐸 ) and (𝑊𝐹 , 𝑔𝑊𝐹 ,∇𝑊𝐹 ) and aℤ2-
graded isometric isomorphism

(
(𝐿𝐸+ ⊕ 𝐿op𝐸−)⊕ 𝐿𝑉𝐸 ⊕𝑊𝐸 , (𝑔𝐿𝐸+ ⊕ 𝑔𝐿𝐸− ,op)⊕ 𝑔𝐿𝑉𝐸 ⊕ 𝑔𝑊𝐸 )

)

(
(𝐿𝐹+ ⊕ 𝐿op𝐹−)⊕ 𝐿𝑉𝐹 ⊕𝑊𝐹 , (𝑔𝐿𝐹+ ⊕ 𝑔𝐿𝐹− ,op)⊕ 𝑔𝐿𝑉𝐹 ⊕ 𝑔𝑉𝐹 )

)
ℎ (4.27)
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such that
𝜂𝐹⊕𝑉𝐹 (𝑔𝐹 ⊕ 𝑔𝑉𝐹 ,∇𝐹 ⊕∇𝑉𝐹 , (𝐿𝐹+ ⊕ 𝐿op𝐹−)⊕ 𝐿𝑉𝐹 )

− 𝜂𝐸⊕𝑉𝐸 (𝑔𝐸 ⊕ 𝑔𝑉𝐸 ,∇𝐸 ⊕∇𝑉𝐸 , (𝐿𝐸+ ⊕ 𝐿op𝐸−)⊕ 𝐿𝑉𝐸 )

≡ ∫
𝑋∕𝐵

Todd(∇𝑇𝑉𝑋) ∧ CS(∇𝐸 ⊕∇𝑉𝐸 , 𝛼∗(∇𝐹 ⊕∇𝑉𝐹 ))

− CS
(
(∇𝐿𝐸+ ⊕∇𝐿𝐸− ,op)⊕∇𝐿𝑉𝐸 ⊕∇𝑊𝐸 , ℎ∗((∇𝐿𝐹+ ⊕∇𝐿𝐹− ,op)⊕∇𝐿𝑉𝐹 ⊕∇𝑊𝐹 )

)
.

(4.28)

By Proposition 4.1 and (4.26),

𝜂𝐸⊕𝑉𝐸 (𝑔𝐸⊕𝑔𝑉𝐸 ,∇𝐸⊕∇𝑉𝐸 , (𝐿𝐸+⊕𝐿op𝐸−)⊕𝐿𝑉𝐸 ) ≡ 𝜂𝐸(𝑔𝐸 ,∇𝐸 , 𝐿𝐸+⊕𝐿op𝐸−), (4.29)

and similarly,

𝜂𝐹⊕𝑉𝐹 (𝑔𝐹⊕𝑔𝑉𝐹 ,∇𝐹⊕∇𝑉𝐹 , (𝐿𝐹+⊕𝐿op𝐹−)⊕𝐿𝑉𝐹 ) ≡ 𝜂𝐹(𝑔𝐹 ,∇𝐹 , 𝐿𝐹+⊕𝐿op𝐹−). (4.30)

By (4.21), (4.29) and (4.30), (4.28) becomes

𝜂𝐹(𝑔𝐹 ,∇𝐹 , 𝐿𝐹+ ⊕ 𝐿op𝐹−) − 𝜂𝐸(𝑔𝐸 ,∇𝐸 , 𝐿𝐸+ ⊕ 𝐿op𝐸−) ≡ ∫
𝑋∕𝐵

Todd(∇𝑇𝑉𝑋) ∧ (𝜔𝐸 − 𝜔𝐹)

− CS
(
(∇𝐿𝐸+ ⊕∇𝐿𝐸− ,op)⊕∇𝐿𝑉𝐸 ⊕∇𝑊𝐸 , ℎ∗((∇𝐿𝐹+ ⊕∇𝐿𝐹− ,op)⊕∇𝐿𝑉𝐹 ⊕∇𝑊𝐹 )

)
.

(4.31)

Since theℤ2-graded triples (𝐿𝑉𝐸 ⊕𝑊𝐸 , 𝑔𝐿𝑉𝐸 ⊕𝑔𝑊𝐸 ,∇𝐿𝑉𝐸 ⊕∇𝑊𝐸 ) and (𝐿𝑉𝐹 ⊕
𝑊𝐹 , 𝑔𝐿𝑉𝐹 ⊕ 𝑔𝑊𝐹 ,∇𝐿𝑉𝐹 ⊕ ∇𝑊𝐹 ) are balanced, it follows from (4.27) and (4.31)
that (4.25) holds. □

4.3. The RRG theorem in ℝ∕ℤ 𝑲-theory for the twisted spin𝒄 Dirac op-
erators. In this subsection we give an alternative proof of the RRG theorem
in ℝ∕ℤ 𝐾-theory for twisted spin𝑐 Dirac operators without the kernel bundle
assumption (Theorem 1.5).
Define amap ch𝐾 ∶ 𝐾FL(𝑋)→ Ωeven

ℚ (𝑋) by ch𝐾(ℰ) = ch(∇𝐸)+𝑑𝜔. Theℝ∕ℤ
𝐾-group 𝐾−1

L (𝑋) [14, Definition 7] (cf. [6, (2.20)]) can be defined as 𝐾−1
L (𝑋) =

ker(ch𝐾). Thus a ℤ2-graded generator ℰ of 𝐾−1
L (𝑋) is a ℤ2-graded generator of

𝐾FL(𝑋) satisfying
ch(∇𝐸,+) − ch(∇𝐸,−) = −𝑑𝜔. (4.32)

Note that (4.32) implies that rank(𝐸+) = rank(𝐸−).
The ℝ∕ℚ Chern character chℝ∕ℚ ∶ 𝐾−1

L (𝑋) → 𝐻odd(𝑋;ℝ∕ℚ) is defined as
follows. Let ℰ be a ℤ2-graded generator of 𝐾−1

L (𝑋). By (4.32), there exist a
𝑘 ∈ ℕ and an isometric isomorphism 𝛼 ∶ (𝑘𝐸+, 𝑘𝑔𝐸,+)→ (𝑘𝐸−, 𝑘𝑔𝐸,−) (see [8,
Remark 1] for a proof). Define chℝ∕ℚ(ℰ) by

chℝ∕ℚ(ℰ) = [1
𝑘
CS(𝛼∗(𝑘∇𝐸,−), 𝑘∇𝐸,+) + 𝜔] mod ℚ. (4.33)

It is easy to check that the odd form of the right-hand side of (4.33) is closed.
Note that chℝ∕ℚ(ℰ) is independent of the choices of 𝑘 and 𝛼 [14, p.289].



AN EXTENDED VARIATIONAL FORMULA FOR THE BISMUT–CHEEGER ETA FORM 1527

The analytic index ind𝑎ℝ∕ℤ in ℝ∕ℤ 𝐾-theory of a ℤ2-graded generator ℰ of
𝐾−1
L (𝑋) is defined by the same formula (4.22). It is easy to check that ind𝑎ℝ∕ℤ(ℰ) ∈

𝐾−1
L (𝐵). As an immediate consequence of Proposition 1.4, the analytic index in

ℝ∕ℤ 𝐾-theory
ind𝑎ℝ∕ℤ ∶ 𝐾−1

L (𝑋)→ 𝐾−1
L (𝐵)

is a well-defined group homomorphism.
We now prove Theorem 1.5.

Proof of Theorem 1.5. As mentioned in §1, we prove (1.3) at the differential
form level. Let ℰ be a ℤ2-graded generator of 𝐾−1

L (𝑋). By (4.32), there exists a
𝑘1 ∈ ℕ such that 𝑘1𝐸+ ≅ 𝑘1𝐸−.
Let (𝐿𝐸+ , 𝑔𝐿𝐸+ ,∇𝐿𝐸+ ) and (𝐿𝐸− , 𝑔𝐿𝐸− ,∇𝐿𝐸− ) beℤ2-graded triples so that 𝐿𝐸+ →

𝐵 and 𝐿𝐸− → 𝐵 satisfy the MF property for 𝖣𝑆⊗𝐸+ and 𝖣𝑆⊗𝐸− , respectively. By
Lemma 4.2,

(𝐿𝐸+ ⊕ 𝐿op𝐸− , 𝑔
𝐿𝐸+ ⊕ 𝑔𝐿𝐸− ,op,∇𝐿𝐸+ ⊕∇𝐿𝐸− ,op)

is aℤ2-graded triple so that 𝐿𝐸+ ⊕𝐿op𝐸− → 𝐵 satisfies the MF property for 𝖣𝑆⊗𝐸 .
By [8, Corollary 1], ind𝑎ℝ∕ℤ(ℰ) is given by

ind𝑎ℝ∕ℤ(ℰ) = (𝐿𝐸+ ⊕ 𝐿op𝐸− , 𝑔
𝐿𝐸+ ⊕ 𝑔𝐿𝐸− ,op,∇𝐿𝐸+ ⊕∇𝐿𝐸− ,op,

∫
𝑋∕𝐵

Todd(∇𝑇𝑉𝑋) ∧ 𝜔 + 𝜂𝐸(𝑔𝐸 ,∇𝐸 , 𝐿𝐸+ ⊕ 𝐿op𝐸−)).
(4.34)

On the other hand, by (3.17), (4.32) and Theorem 4.5,

ch(∇𝐿𝐸+ ) − ch(∇𝐿𝐸− ) = ∫
𝑋∕𝐵

Todd(∇𝑇𝑉𝑋) ∧
(
ch(∇𝐸,+) − ch(∇𝐸,−)

)

− 𝑑𝜂𝐸+(𝑔𝐸,+,∇𝐸,+, 𝐿𝐸+) + 𝑑𝜂𝐸−(𝑔𝐸,−,∇𝐸,−, 𝐿𝐸−)

= ∫
𝑋∕𝐵

Todd(∇𝑇𝑉𝑋) ∧ (−𝑑𝜔) − 𝑑𝜂𝐸(𝑔𝐸 ,∇𝐸 , 𝐿𝐸+ ⊕ 𝐿op𝐸−)

= −𝑑( ∫
𝑋∕𝐵

Todd(∇𝑇𝑉𝑋) ∧ 𝜔 + 𝜂𝐸(𝑔𝐸 ,∇𝐸 , 𝐿𝐸+ ⊕ 𝐿op𝐸−)).

Thus there exists a 𝑘2 ∈ ℕ such that 𝑘2𝐿𝐸+ ≅ 𝑘2𝐿𝐸− .
Let 𝑘 be the least common multiple of 𝑘1 and 𝑘2. Let 𝛼 ∶ (𝑘𝐸+, 𝑘𝑔𝐸,+) →

(𝑘𝐸−, 𝑘𝑔𝐸,−) be an isometric isomorphism. By Theorem 3.4, there exist bal-
anced ℤ2-graded triples (𝑊+, 𝑔𝑊+ ,∇𝑊+) and (𝑊−, 𝑔𝑊− ,∇𝑊−) and a ℤ2-graded
isometric isomorphism ℎ ∶ (𝐿𝑘𝐸+ ⊕𝑊+, 𝑔𝐿𝑘𝐸+ ⊕ 𝑔𝑊+)→ (𝐿𝑘𝐸− ⊕𝑊−, 𝑔𝐿𝑘𝐸− ⊕
𝑔𝑊−) such that

𝜂𝑘𝐸−(𝑘𝑔𝐸,−, 𝑘∇𝐸,−, 𝐿𝑘𝐸−) − 𝜂𝑘𝐸+(𝑘𝑔𝐸,+, 𝑘∇𝐸,+, 𝐿𝑘𝐸+)

≡ ∫
𝑋∕𝐵

Todd(∇𝑇𝑉𝑋) ∧ CS(𝑘∇𝐸,+, 𝛼∗(𝑘∇𝐸,−))

− CS(∇𝐿𝑘𝐸+ ⊕∇𝑊+ , ℎ∗(∇𝐿𝑘𝐸− ⊕∇𝑊−)).

(4.35)
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Recall from (4.3) that

𝐿𝑘𝐸± = 𝑘𝐿𝐸± , 𝑔𝐿𝑘𝐸± = 𝑘𝑔𝐿𝐸± , ∇𝐿𝑘𝐸± = 𝑘∇𝐿𝐸± . (4.36)

By applying Remark 3.2 to 𝑘𝐿𝐸+ ≅ 𝑘𝐿𝐸− , we take𝑊+ → 𝐵 and𝑊− → 𝐵 to be
the zero bundle. By (4.36), (4.35) becomes

𝜂𝑘𝐸−(𝑘𝑔𝐸,−, 𝑘∇𝐸,−, 𝑘𝐿𝐸−) − 𝜂𝑘𝐸+(𝑘𝑔𝐸,+, 𝑘∇𝐸,+, 𝑘𝐿𝐸+)

≡ ∫
𝑋∕𝐵

Todd(∇𝑇𝑉𝑋) ∧ CS(𝑘∇𝐸,+, 𝛼∗(𝑘∇𝐸,−)) − CS(𝑘∇𝐿𝐸+ , ℎ∗(𝑘∇𝐿𝐸− )).
(4.37)

By Proposition 4.1 and Theorem 4.5,

𝜂𝑘𝐸−(𝑘𝑔𝐸,−, 𝑘∇𝐸,−, 𝑘𝐿𝐸−) − 𝜂𝑘𝐸+(𝑘𝑔𝐸,+, 𝑘∇𝐸,+, 𝑘𝐿𝐸+)

≡ 𝑘
(
𝜂𝐸−(𝑔𝐸,−,∇𝐸,−, 𝐿𝐸−) − 𝜂𝐸+(𝑔𝐸,+,∇𝐸,+, 𝐿𝐸+)

)

≡ −𝑘𝜂𝐸(𝑔𝐸 ,∇𝐸 , 𝐿𝐸+ ⊕ 𝐿op𝐸−).

(4.38)

On the other hand, denote by ℎ+ ∶ (𝑘𝐿+𝐸+ , 𝑘𝑔
𝐿𝐸+ ,+) → (𝑘𝐿+𝐸− , 𝑘𝑔

𝐿𝐸− ,+) and
ℎ− ∶ (𝑘𝐿−𝐸+ , 𝑘𝑔

𝐿𝐸+ ,−) → (𝑘𝐿−𝐸− , 𝑘𝑔
𝐿𝐸− ,−) the even and the odd part of ℎ, respec-

tively. Then

ℎ+⊕ℎ−1− ∶ (𝑘𝐿+𝐸+⊕𝑘𝐿
−
𝐸− , 𝑘𝑔

𝐿𝐸+ ,+⊕𝑘𝑔𝐿𝐸− ,−)→ (𝑘𝐿+𝐸−⊕𝑘𝐿
−
𝐸+ , 𝑘𝑔

𝐿𝐸− ,+⊕𝑘𝑔𝐿𝐸+ ,−)

is an isometric isomorphism. By (2.9), (2.6) and (2.8),

CS
(
𝑘∇𝐿𝐸+ , ℎ∗(𝑘∇𝐿𝐸− )

)

= CS
(
𝑘∇𝐿𝐸+ ,+ ⊕ 𝑘∇𝐿𝐸+ ,−, ℎ∗+(𝑘∇

𝐿𝐸− ,+)⊕ ℎ∗−(𝑘∇𝐿𝐸− ,−)
)

≡ CS
(
𝑘∇𝐿𝐸+ ,+, ℎ∗+(𝑘∇

𝐿𝐸− ,+)
)
− CS

(
𝑘∇𝐿𝐸+ ,−, ℎ∗−(𝑘∇𝐿𝐸− ,−)

)

≡ CS
(
𝑘∇𝐿𝐸+ ,+, ℎ∗+(𝑘∇

𝐿𝐸− ,+)
)
− CS

(
(ℎ−1− )∗(𝑘∇𝐿𝐸+ ,−), 𝑘∇𝐿𝐸− ,−

)

≡ CS
(
𝑘∇𝐿𝐸+ ,+, ℎ∗+(𝑘∇

𝐿𝐸− ,+)
)
+ CS

(
𝑘∇𝐿𝐸− ,−, (ℎ−1− )∗(𝑘∇𝐿𝐸+ ,−)

)

≡ CS
(
𝑘∇𝐿𝐸+ ,+ ⊕ 𝑘∇𝐿𝐸− ,−, ℎ∗+(𝑘∇

𝐿𝐸− ,+)⊕ (ℎ−1− )∗(𝑘∇𝐿𝐸+ ,−)
)

≡ CS
(
𝑘(∇𝐿𝐸+ ,+ ⊕∇𝐿𝐸− ,−), (ℎ+ ⊕ ℎ−1− )∗(𝑘(∇𝐿𝐸− ,+ ⊕∇𝐿𝐸+ ,−))

)
. (4.39)

By (4.38) and (4.39), (4.37) becomes

− 𝑘𝜂𝐸(𝑔𝐸 ,∇𝐸 , 𝐿𝐸+ ⊕ 𝐿op𝐸−)

+ CS
(
𝑘(∇𝐿𝐸+ ,+ ⊕∇𝐿𝐸− ,−), (ℎ+ ⊕ ℎ−1− )∗(𝑘(∇𝐿𝐸− ,+ ⊕∇𝐿𝐸+ ,−))

)

≡ ∫
𝑋∕𝐵

Todd(∇𝑇𝑉𝑋) ∧ CS(𝑘∇𝐸,+, 𝛼∗(𝑘∇𝐸,−)).

By (2.6) it becomes

𝑘𝜂𝐸(𝑔𝐸 ,∇𝐸 , 𝐿𝐸+ ⊕ 𝐿op𝐸−)

+ CS
(
(ℎ+ ⊕ ℎ−1− )∗(𝑘(∇𝐿𝐸− ,+ ⊕∇𝐿𝐸+ ,−)), 𝑘(∇𝐿𝐸+ ,+ ⊕∇𝐿𝐸− ,−)

)

≡ ∫
𝑋∕𝐵

Todd(∇𝑇𝑉𝑋) ∧ CS(𝛼∗(𝑘∇𝐸,−), 𝑘∇𝐸,+).
(4.40)
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By first dividing both sides of (4.40) by 𝑘, and adding ∫
𝑋∕𝐵

Todd(∇𝑇𝑉𝑋) ∧ 𝜔 to

both sides of (4.40), (4.40) becomes

1
𝑘
CS

(
(ℎ+ ⊕ ℎ−1− )∗(𝑘(∇𝐿𝐸− ,+ ⊕∇𝐿𝐸+ ,−)), 𝑘(∇𝐿𝐸+ ,+ ⊕∇𝐿𝐸− ,−)

)

+ ∫
𝑋∕𝐵

Todd(∇𝑇𝑉𝑋) ∧ 𝜔 + 𝜂𝐸(𝑔𝐸 ,∇𝐸 , 𝐿𝐸+ ⊕ 𝐿op𝐸−)

≡ ∫
𝑋∕𝐵

Todd(∇𝑇𝑉𝑋) ∧ (1
𝑘
CS(𝛼∗(𝑘∇𝐸,−), 𝑘∇𝐸,+) + 𝜔).

(4.41)

Since the left-hand side of (4.41) is a differential form representative of

chℝ∕ℚ(ind
𝑎
ℝ∕ℤ(ℰ))

and the right-hand side of (4.41) is that of

∫
𝑋∕𝐵

Todd(𝑇𝑉𝑋) ∪ chℝ∕ℚ(ℰ),

we see that (1.3) holds. □

Note that (4.41) is a refinement of (1.3) at the differential form level.
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