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Zinbiel superalgebras
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Abstract. Throughout the present work, we extend the study of Zinbiel al-
gebras to Zinbiel superalgebras. In particular, we show that all Zinbiel su-
peralgebras over an arbitrary field are nilpotent in the same way as occurs for
Zinbiel algebras. In addition, and since themost important cases of nilpotent
algebras or superalgebras are those with maximal nilpotency index, we study
the complex null-filiform Zinbiel superalgebra proving that it is unique up to
isomorphism. After that, we characterize the naturally graded filiform ones
and obtain low-dimensional classifications.
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Introduction
Loday introduced a class of symmetric operads generated by one bilinear op-

eration subject to one relation making each left-normed product of three ele-
ments equal to a linear combination of right-normed products:

(𝑎1𝑎2)𝑎3 =
∑

𝜎∈𝕊3
𝑥𝜎𝑎𝜎(1)(𝑎𝜎(2)𝑎𝜎(3));
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such an operad is called a parametrized one-relation operad. For a particular
choice of parameters {𝑥𝜎}, this operad is said to be regular if each of its com-
ponents is the regular representation of the symmetric group; equivalently, the
corresponding free algebra on a vector space 𝑉 is, as a graded vector space, iso-
morphic to the tensor algebra of 𝑉. Bremner and Dotsenko classified, over an
algebraically closed field of characteristic zero, all regular parametrized one-
relation operads. In fact, they proved that each such operad is isomorphic to
one of the following five operads: the left-nilpotent operad, the associative op-
erad, the Leibniz operad, the Zinbiel operad, and the Poisson operad [6]. Then,
an algebra 𝐙 is called a (left) Zinbiel algebra if it satisfies the identity

(𝑥𝑦)𝑧 = 𝑥(𝑦𝑧 + 𝑧𝑦).

Zinbiel algebras were introduced by Loday in [26]. Under the Koszul duality,
the operad of Zinbiel algebras is dual to the operad of Leibniz algebras. Zinbiel
algebras are also known as pre-commutative algebras [25] and chronological
algebras [24]. Remark that a Zinbiel algebra is equivalent to a commutative
dendriform algebra [3]. Also, the variety of Zinbiel algebras is a proper sub-
variety in the variety of right commutative algebras and each Zinbiel algebra
with the commutator multiplication gives a Tortkara algebra [16]. Zinbiel alge-
bras also give an example of algebras of slowly growing length [19]. Recently,
the notion of matching Zinbiel algebras was introduced in [18] and the defined
identities for mono and binary Zinbliel algebras are studied in [21]. Moreover,
Zinbiel algebras also appeared in a study of rack cohomology [14], number the-
ory [12] and in the construction of a Cartesian differential category [20]. Thus,
we can assert that in recent years, there has been a strong interest in the study
of Zinbiel algebras in the algebraic and the operad context, see for instance
[1, 2, 4, 7, 5, 15, 28, 18, 22, 16, 23, 30, 17, 9, 11, 21, 29, 27].
Free Zinbiel algebras were shown to be precisely the shuffle product al-

gebra [27], which is under a certain interest until now [13]. Naurazbekova
proved that, over a field of characteristic zero, free Zinbiel algebras are the
free associative-commutative algebras (without unity) with respect to the sym-
metrization multiplication and their free generators are found; also she con-
structed examples of subalgebras of the two-generated free Zinbiel algebra that
are free Zinbiel algebras of countable rank [28]. Nilpotent algebras play an im-
portant role in the class of Zinbiel algebras. So, Dzhumadildaev and Tulenbaev
proved that each complex finite dimensional Zinbiel algebra is nilpotent [17];
this result was generalized by Towers for an arbitrary field [30]. Naurazbekova
and Umirbaev proved that in characteristic zero any proper subvariety of the
variety of Zinbiel algebras is nilpotent [29]. Finite-dimensional Zinbiel alge-
bras with a “big” nilpotency index are classified in [1, 7]. Central extensions
of three-dimensional Zinbiel algebras were calculated in [22] and of filiform
Zinbiel algebras in [9]. The description of all degenerations in the variety of
complex four-dimensional Zinbiel algebras is given in [23] and the geometric
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classification of complex five-dimensional Zinbiel algebras is given in [4]. Af-
ter that, Ceballos andTowers studied abelian subalgebras and ideals ofmaximal
dimension in Zinbiel algebras [11].
Our main goal then, for the present paper, is to extend the study of Zinbiel

algebras to Zinbiel superalgebras. Thus, we prove that all the Zinbiel super-
algebras over an arbitrary field are nilpotent, as occurs for Zinbiel algebras.
The most important cases of nilpotent superalgebras are those with maximal
nilpotency index, therefore we study the null-filiform and filiform cases. For
the former, we show that they are unique up to isomorphism. For the latter,
we characterise the naturally graded ones for arbitrary dimensions. Note that
among all the gradations, the most important for nilpotent algebras or superal-
gebras is the natural gradation which comes from the filtration defined by the
descending central sequence. Finally, we complete the study of Zinbiel super-
algebras providing low-dimensional classifications.

1. Preliminaries and basic definitions
Zinbiel algebras. First, we recall some definitions and basic results regarding
Zinbiel algebras.

Definition 1.1. An algebra 𝐙 is called a Zinbiel algebra if it satisfies the identity
(𝑥𝑦)𝑧 = 𝑥(𝑦𝑧 + 𝑧𝑦).

For a given Zinbiel (super)algebra 𝐙, the following sequence is defined:

𝐙1 = 𝐙, 𝐙𝑘+1 = 𝐙𝐙𝑘.

Definition 1.2. AZinbiel (super)algebra𝐙 is called nilpotent if there exists 𝑠 ∈ ℕ
such that 𝐙𝑠 = 0. The minimal number 𝑠 satisfying this property is called the
nilpotency index of the (super)algebra 𝐙.

It is not difficult to see that the index of nilpotency of an arbitrary 𝑛-
dimensional nilpotent Zinbiel (super)algebra does not exceed the number 𝑛+1.
Since every finite-dimensional Zinbiel algebra over a field is nilpotent [30], it
made perfect sense to start studying thosewith themaximal index of nilpotency,
i.e. the null-filiform ones.

Definition 1.3. An 𝑛-dimensional Zinbiel (super)algebra 𝐙 is called null-
filiform if dim 𝐙𝑖 = 𝑛 + 1 − 𝑖.

Let us note that a Zinbiel algebra is null-filiform if and only if it is one-
generated. The classification of complex null-filiform Zinbiel algebras was
given in [2].

Theorem 1.4. An arbitrary 𝑛-dimensional null-filiform Zinbiel algebra is iso-
morphic to the following algebra:

𝑒𝑖𝑒𝑗 = 𝐶𝑗𝑖+𝑗−1𝑒𝑖+𝑗.
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After having obtained the aforementioned Zinbiel algebras, the next case to
consider is the filiform case. Let us denote by 𝐿𝑥 the operator of left multiplica-
tion by an element 𝑥. Then, for the operator 𝐿𝑥, we can consider a descending
sequence 𝐶(𝑥) = (𝑛1, 𝑛2,… , 𝑛𝑘)with 𝑛1 +…+ 𝑛𝑘 = 𝑛, which consists of the di-
mensions of the Jordan blocks of the operator 𝐿𝑥. In the set of such sequences,
we consider the lexicographic order, that is, 𝐶(𝑥) = (𝑛1, 𝑛2,… , 𝑛𝑘) < 𝐶(𝑦) =
(𝑚1, 𝑚2,… , 𝑚𝑠) if there exists 𝑖 such that 𝑛𝑖 < 𝑚𝑖 and 𝑛𝑗 = 𝑚𝑗 for 𝑗 < 𝑖.

Definition 1.5. The sequence 𝐶(𝐙) = m𝑎𝑥{𝐶(𝑥) ∶ 𝑥 ∈ 𝐙1∖𝐙2} is called the
characteristic sequence of the Zinbiel algebra 𝐙.

Definition 1.6. The Zinbiel algebra 𝐙 is called 𝑝-filiform if 𝐶(𝐙) = (𝑛 −
𝑝, 1,… , 1⏟⏟⏟

𝑝

). If 𝑝 = 0 (respectively, 𝑝 = 1), then 𝐙 is called a null-filiform (re-

spectively, filiform) Zinbiel algebra.

Let 𝐙 be a finite-dimensional complex Zinbiel algebra with the nilpotency
index equal to 𝑠. Let us consider 𝐙𝑖 = 𝐙𝑖∕𝐙𝑖+1 and denote by gr(𝐙) = 𝐙1⊕𝐙2⊕
…⊕𝐙𝑠−1. It can be easily checked that gr(𝐙) is a graded Zinbiel algebra. If𝐙 and
gr(𝐙) are isomorphic, then 𝐙 is said to be naturally graded. The classification
of complex naturally graded filiform Zinbiel algebras was given in [2]:

Theorem 1.7. An arbitrary 𝑛-dimensional (𝑛 ≥ 5) naturally graded complex
filiform Zinbiel algebra is isomorphic to the following algebra:

𝑒𝑖𝑒𝑗 = 𝐶𝑗𝑖+𝑗−1𝑒𝑖+𝑗, for 2 ≤ 𝑖 + 𝑗 ≤ 𝑛 − 1.

Recently in [5], symmetric (left and right) Zinbiel superalgebras have been
studied. We have extracted the following results concerning (left) Zinbiel su-
peralgebras, which we will refer to just as Zinbiel superalgebras.

Zinbiel superalgebras. The notion of Zinbiel superalgebra can be obtained in
the usual way.

Definition 1.8. Let 𝐙 = 𝐙0̄ ⊕ 𝐙1̄ be a ℤ2-graded vector space with a bilinear
map on 𝐙 such that 𝐙𝑖𝐙𝑗 ⊂ 𝐙𝑖+𝑗 . 𝐙 is called a Zinbiel superalgebra if, for all
homogeneous elements 𝑥, 𝑦, 𝑧 ∈ 𝐙0̄ ∪ 𝐙1̄, it satisfies

(𝑥𝑦)𝑧 = 𝑥
(
𝑦𝑧 + (−1)|𝑦||𝑧|𝑧𝑦

)
.

As usual, for 𝑥 ∈ 𝐙0̄ ∪ 𝐙1̄, it is defined the corresponding endomorphism of 𝐙 by
𝐿𝑥(𝑦) = 𝑥𝑦 for all 𝑦 ∈ 𝐙 which is called the left multiplication by 𝑥.

Remark 1.9. In the same way that any Zinbiel algebra is a right-commutative
algebra, any Zinbiel superalgebra is a right-commutative superalgebra. Namely,
for any homogeneous elements 𝑥, 𝑦 and 𝑧, the following superidentity is satisfied:

(𝑥𝑦)𝑧 = (−1)|𝑦||𝑧|(𝑥𝑧)𝑦.

Next, we extend the definitions and first results of Zinbiel algebras to Zinbiel
superalgebras. Thus, for a given Zinbiel superalgebra 𝐙 = 𝐙0̄ ⊕ 𝐙1̄, we define
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the following sequence:

𝐙1 = 𝐙, 𝐙𝑘+1 = 𝐙𝐙𝑘.
Let us note that also two sequences can be defined as follows:

𝐙10̄ = 𝐙0̄, 𝐙𝑘+10̄ = 𝐙0̄𝐙𝑘0̄ and 𝐙11̄ = 𝐙1̄, 𝐙𝑘+11̄ = 𝐙0̄𝐙𝑘1̄ .
Along the last section of the present paper, we will show that all Zinbiel su-

peralgebras over an arbitrary field are nilpotent, therefore the study of null-
filiform and filiform is crucial for the understanding of finite-dimensional Zin-
biel superalgebras. Now, let us introduce, following the spirit of the theory of
nilpotent superalgebras for Lie and Leibniz cases (see for example [8] and ref-
erence therein), the concepts of characteristic sequence and filiform for super-
algebras.
Firstly, for any even element 𝑥 ∈ 𝐙0̄, we can consider the restrictedmap 𝐿𝑥 ∶

𝐙0̄ → 𝐙0̄ andwe can denote by𝐶0(𝑥) the corresponding descending sequence of
the dimensions of Jordan blocks of the operator 𝐿𝑥 acting on 𝐙0̄. Analogously,
we can consider the restricted map 𝐿𝑥 ∶ 𝐙1̄ → 𝐙1̄ and we can denote by 𝐶1(𝑥)
the corresponding descending sequence of the dimensions of Jordan blocks of
the operator 𝐿𝑥 acting on 𝐙1̄. Then, with regard to the lexicographic order we
have the following definition.

Definition 1.10. The sequence

𝐶(𝐙) = ( max
𝑥∈𝐙0̄∖𝐙20̄

𝐶0(𝑥)
|||||||||
max

𝑦∈𝐙0̄∖𝐙20̄
𝐶1(𝑦)) ,

is called the characteristic sequence of the Zinbiel superalgebra 𝐙.
Along the present work we assume that both characteristic sequences of the

definition are obtained by the same generator element 𝑥 ∈ 𝐙0̄∖𝐙20̄ which is
usually called the characteristic element.

Definition 1.11. A Zinbiel superalgebra 𝐙 = 𝐙0̄ ⊕ 𝐙1̄, with dim(𝐙0̄) = 𝑛 and
dim(𝐙1̄) = 𝑚, is said to be filiform if its characteristic sequence is exactly 𝐶(𝐙) =
(𝑛 − 1|𝑚).
Remark 1.12. Note that if 𝐙 is a filiform Zinbiel superalgebra, then 𝐙0̄ is a fili-
form Zinbiel algebra.

Recall that among all the gradations, the most important for nilpotent struc-
tures is the natural gradation which comes from the filtration defined by the
descending central sequence. Recently, it has been defined the concept of nat-
urally graded for both nilpotent superalgebras, Lie and Leibniz [10]. We can
extend this concept to Zinbiel superalgebras, which are all of them nilpotent.
Consider a Zinbiel superalgebra 𝐙 = 𝐙0̄ ⊕ 𝐙1̄. It is clear that the sequences

{𝐙𝑘0̄} and {𝐙
𝑘
1̄} define a filtration over 𝐙0̄ and 𝐙1̄, respectively. If we denote 𝔷

𝑖
0̄ ∶=

𝐙𝑖−10̄ ∕𝐙𝑖0̄ and 𝔷
𝑖
1̄ ∶= 𝐙𝑖−11̄ ∕𝐙𝑖1̄, then it is verified that 𝔷

𝑖
0̄𝔷
𝑗
0̄ ⊂ 𝔷𝑖+𝑗0̄ and 𝔷𝑖0̄𝔷

𝑗
1̄ ⊂ 𝔷𝑖+𝑗1̄ .

The definition of a natural gradation follows.
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Definition 1.13. GivenaZinbiel superalgebra𝐙 = 𝐙0̄⊕𝐙1̄, consider 𝔷𝑖 = 𝔷𝑖0̄⊕𝔷
𝑖
1̄,

with 𝔷𝑖0̄ = 𝐙𝑖−10̄ ∕𝐙𝑖0̄ and 𝔷
𝑖
1̄ = 𝐙𝑖−11̄ ∕𝐙𝑖1̄. Thus, 𝐙 is said to be naturally graded if

the following conditions hold:
1. gr(𝐙) =∑

𝑖∈ℕ 𝔷
𝑖 is a graded superalgebra (𝔷𝑖𝔷𝑗 ⊂ 𝔷𝑖+𝑗),

2. 𝐙 and gr(𝐙) are isomorphic.

2. Null-filiform Zinbiel superalgebras
Theorem 2.1. Let𝐙 be an 𝑛-dimensional null-filiformZinbiel superalgebra with
dim(𝐙1̄) ≠ 0. Then 𝐙 is isomorphic to the following superalgebra which occurs
only for the cases dim(𝐙0̄) = dim(𝐙1̄) and dim(𝐙1̄) = dim(𝐙0̄) + 1 ∶

𝑒2𝑘+1𝑒2𝑙 = 𝐶𝑘𝑘+𝑙𝑒2𝑘+2𝑙+1,
𝑒2𝑘𝑒2𝑙 = 𝐶𝑙𝑘+𝑙−1𝑒2𝑘+2𝑙,
𝑒2𝑘+1𝑒2𝑙+1 = 𝐶𝑙𝑘+𝑙𝑒2𝑘+2𝑙+2,

where 𝑒2𝑘, 𝑒2𝑙 ∈ 𝐙0̄ and 𝑒2𝑘+1, 𝑒2𝑙+1 ∈ 𝐙1̄.

Proof. It is clear, that each null-filiform Zinbiel superalgebra is one-generated.
If it is generated by an even element, then it has zero odd part. Hence, we can
suppose that our superalgebra is generated by an odd element 𝑒1 and then, in
the same way, as for null-filiform Zinbiel algebras, we can consider:

𝑒2 ∶= 𝑒1𝑒1, 𝑒3 ∶= 𝑒1(𝑒1𝑒1), … , 𝑒𝑛 ∶= 𝑒1(𝑒1… (𝑒1(𝑒1𝑒1))).
Let us remark that the elements above are linearly independent. This latter

fact allows us to see {𝑒1, 𝑒2,… , 𝑒𝑛} as a basis of the superalgebra 𝐙 being, 𝑒2𝑘+1
odd basis vectors and 𝑒2𝑘 even ones. Moreover, we have only two possibilities:
either dim(𝐙0̄) = dim(𝐙1̄) or dim(𝐙1̄) = dim(𝐙0̄) + 1.
Let us note that by construction we have

𝑒1𝑒𝑖 = 𝑒𝑖+1. (1)

Now, we prove by induction that

𝑒2𝑘𝑒1 = 0 and 𝑒2𝑘+1𝑒1 = 𝑒1𝑒2𝑘+1 = 𝑒2𝑘+2. (2)

For 𝑘 = 1 the equations hold by considering the following Zinbiel superiden-
tity:

𝑒2𝑒1 = (𝑒1𝑒1)𝑒1 = 𝑒1(𝑒1𝑒1) − 𝑒1(𝑒1𝑒1) = 0
and then

𝑒3𝑒1 = (𝑒1𝑒2)𝑒1 = 𝑒1(𝑒2𝑒1) + 𝑒1(𝑒1𝑒2) = 𝑒1𝑒3
Suppose that the equations hold for 𝑘, thus

𝑒2𝑘+2𝑒1 = (𝑒1𝑒2𝑘+1)𝑒1 = 𝑒1(𝑒2𝑘+1𝑒1) − 𝑒1(𝑒1𝑒2𝑘+1) = 0
and then

𝑒2𝑘+3𝑒1 = (𝑒1𝑒2𝑘+2)𝑒1 = 𝑒1(𝑒2𝑘+2𝑒1) + 𝑒1(𝑒1𝑒2𝑘+2) = 𝑒1𝑒2𝑘+3
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and therefore we have equations (2) for 𝑘+1. Next, we prove, also by induction,
the equations

𝑒2𝑘𝑒2 = 𝑘𝑒2𝑘+2, 𝑒2𝑘+1𝑒2 = (𝑘 + 1)𝑒2𝑘+3, 𝑒2𝑒2𝑘 = 𝑒2𝑘+2, 𝑒2𝑒2𝑘+1 = 0. (3)

The equations hold for 𝑘 = 1 by considering the following Zinbiel superi-
dentities:

𝑒2𝑒2 = (𝑒1𝑒1)𝑒2 = 𝑒1(𝑒1𝑒2) + 𝑒1(𝑒2𝑒1) = 𝑒1𝑒3 = 𝑒4,
𝑒3𝑒2 = (𝑒1𝑒2)𝑒2 = 𝑒1(𝑒2𝑒2) + 𝑒1(𝑒2𝑒2) = 2𝑒5,
0 = (𝑒2𝑒1)𝑒2 = 𝑒2(𝑒1𝑒2) + 𝑒2(𝑒2𝑒1) = 𝑒2𝑒3,

supposing that the equations hold for 𝑘 we get the equations for 𝑘 + 1:

𝑒2(𝑘+1)𝑒2 = (𝑒1𝑒2𝑘+1)𝑒2 =
= 𝑒1(𝑒2𝑘+1𝑒2) + 𝑒1(𝑒2𝑒2𝑘+1) = (𝑘 + 1)𝑒2(𝑘+1)+2,

𝑒2𝑒2(𝑘+1) = (𝑒1𝑒1)𝑒2𝑘+2 =
= 𝑒1(𝑒1𝑒2𝑘+2) + 𝑒1(𝑒2𝑘+2𝑒1) = 𝑒2(𝑘+1)+2,

𝑒2(𝑘+1)+1𝑒2 = (𝑒1𝑒2𝑘+2)𝑒2 =
= 𝑒1(𝑒2𝑘+2𝑒2) + 𝑒1(𝑒2𝑒2𝑘+2) = ((𝑘 + 1) + 1)𝑒2(𝑘+1)+3,

0 = (𝑒2𝑒1)𝑒2𝑘+2 =
= 𝑒2(𝑒1𝑒2𝑘+2) + 𝑒2(𝑒2𝑘+2𝑒1) = 𝑒2𝑒2(𝑘+1)+1.

Next, on account of equations (2) together with the fact that 𝑒2𝑘𝑒2𝑙 is a mul-
tiple of 𝑒2𝑘+2𝑙 we have

0 = (𝑒2𝑘𝑒2𝑙)𝑒1 = 𝑒2𝑘(𝑒2𝑙𝑒1) + 𝑒2𝑘(𝑒1𝑒2𝑙) = 𝑒2𝑘𝑒2𝑙+1,

which leads to the equation 𝑒2𝑘𝑒2𝑙+1 = 0. Next, we prove by induction the
equation

𝑒2𝑘+1𝑒2𝑙 = 𝐶𝑘𝑘+𝑙𝑒2𝑘+2𝑙+1. (4)
From the equation (1) we get equation (4) for 𝑘 = 0 and every 𝑙. Supposing that
equation (4) holds for 𝑘 and every 𝑙, we obtain that it also holds for 𝑘 + 1 and
every 𝑙 using the equation (3):

𝑒2(𝑘+1)+1𝑒2𝑙 = 1
𝑘+1

(𝑒2𝑘+1𝑒2)𝑒2𝑙 =
1

𝑘+1

(
𝑒2𝑘+1(𝑒2𝑒2𝑙) + 𝑒2𝑘+1(𝑒2𝑙𝑒2)

)
= 1+𝑙

𝑘+1
𝑒2𝑘+1𝑒2𝑙+2,

but since 𝑒2𝑘+1𝑒2𝑙+2 = 𝐶𝑘𝑘+𝑙+1𝑒2𝑘+2𝑙+3, then

1+𝑙
𝑘+1

𝐶𝑘𝑘+𝑙+1 = (1+𝑙)(𝑘+𝑙+1)!
(𝑘+1)𝑘!(𝑙+1)!

= (𝑘+𝑙+1)!
(𝑘+1)!𝑙!

= 𝐶𝑘+1(𝑘+1)+𝑙,

which concludes the proof of equation (4). Similarly, we prove the equation

𝑒2𝑘+1𝑒2𝑙+1 = 𝐶𝑙𝑘+𝑙𝑒2𝑘+2𝑙+2. (5)
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Equation (1) leads to equation (5) for 𝑘 = 0 and every 𝑙. Supposing that equa-
tion (5) holds for 𝑘 and every 𝑙, we obtain that it also holds for 𝑘 + 1 and every
𝑙 using the equation (3):

𝑒2(𝑘+1)+1𝑒2𝑙+1 =
1

𝑘+1
(𝑒2𝑘+1𝑒2)𝑒2𝑙+1 =

1
𝑘+1

(
𝑒2𝑘+1(𝑒2𝑒2𝑙+1) + 𝑒2𝑘+1(𝑒2𝑙+1𝑒2)

)
=

1+𝑙
𝑘+1

𝑒2𝑘+1𝑒2𝑙+3,

but since 𝑒2𝑘+1𝑒2𝑙+3 = 𝐶𝑙+1𝑘+𝑙+1𝑒2𝑘+2𝑙+4, then
1+𝑙
𝑘+1

𝐶𝑙+1𝑘+𝑙+1 =
(1+𝑙)(𝑘+𝑙+1)!
(𝑘+1)𝑘!(𝑙+1)!

= (𝑘+𝑙+1)!
(𝑘+1)!𝑙!

= 𝐶𝑙(𝑘+1)+𝑙,

which concludes the proof of equation (5). Finally, we prove the last equation

𝑒2𝑘𝑒2𝑙 = 𝐶𝑙𝑘+𝑙−1𝑒2𝑘+2𝑙, 𝑘 ≥ 1, 𝑙 ≥ 1. (6)

Equation (3) leads to equation (6) for 𝑘 = 1 and every 𝑙. Supposing that equa-
tion (6) holds for 𝑘 and every 𝑙, we obtain that it also holds for 𝑘 + 1 and every
𝑙 using the equation (3):

𝑒2(𝑘+1)𝑒2𝑙 =
1
𝑘
(𝑒2𝑘𝑒2)𝑒2𝑙 =

1
𝑘
(𝑒2𝑘

(
𝑒2𝑒2𝑙) + 𝑒2𝑘(𝑒2𝑙𝑒2)

)
= 1+𝑙

𝑘
𝑒2𝑘𝑒2𝑙+2

but as 𝑒2𝑘𝑒2𝑙+2 = 𝐶𝑙+1𝑘+𝑙𝑒2𝑘+2𝑙+2, then
1+𝑙
𝑘
𝐶𝑙+1𝑘+𝑙 =

(1+𝑙)(𝑘+𝑙)!
(𝑘−1)!𝑘(𝑙+1)!

= (𝑘+𝑙)!
𝑘!𝑙!

= 𝐶𝑙(𝑘+1)+𝑙−1,

which concludes the proof of equation (6) and of the statement of the Theorem.
□

3. Naturally graded filiform Zinbiel superalgebras
Lemma 3.1. Let 𝐙 be a complex naturally graded filiform Zinbiel superalgebra
with dim(𝐙0̄) = 𝑛, 𝑛 ≥ 5 and dim(𝐙1̄) = 𝑚. Then, there are a basis {𝑒1,… , 𝑒𝑛} for
𝐙0̄ and a basis {𝑓1,… , 𝑓𝑚} for 𝐙1̄, for which we have the following multiplication
table

𝑒𝑖𝑒𝑗 = 𝐶𝑗𝑖+𝑗−1𝑒𝑖+𝑗, 2 ≤ 𝑖 + 𝑗 ≤ 𝑛 − 1,
𝑒1𝑓𝑗 = 𝑓𝑗+1, 1 ≤ 𝑗 ≤ 𝑚 − 1.

Proof. Consider 𝐙 = 𝐙0̄⊕𝐙1̄ to be a naturally graded filiform Zinbiel superal-
gebra with dim(𝐙0̄) = 𝑛 and dim(𝐙1̄) = 𝑚. We set {𝑒1,… , 𝑒𝑛} and {𝑓1,… , 𝑓𝑚} as
bases of 𝐙0̄ and 𝐙1̄ respectively. It derives from the definition that 𝐙0̄ is a nat-
urally graded Zinbiel algebra and then, for 𝑛 ≥ 5 we have from [2] completely
determined its products 𝑒𝑖𝑒𝑗 = 𝐶𝑗𝑖+𝑗−1𝑒𝑖+𝑗, for 2 ≤ 𝑖 + 𝑗 ≤ 𝑛 − 1. Since 𝑒1 is the
characteristic element above then there is no loss of generality in supposing
that 𝑒1𝑓𝑗 = 𝑓𝑗+1, for 1 ≤ 𝑗 ≤ 𝑚 − 1. □

Let us assume the following convention
−1∏
𝑘=0

𝑓(𝑘) ∶= 1.



ZINBIEL SUPERALGEBRAS 1349

Theorem 3.2. Let 𝐙 be a complex naturally graded filiform Zinbiel superalgebra
with dim(𝐙0̄) = 𝑛, (𝑛 ≥ 5), and dim(𝐙1̄) = 𝑚, (𝑚 > 3). Then 𝐙 is isomorphic to
one of the following superalgebras:

𝔫𝔣1 ∶

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

𝑒𝑖𝑒𝑗 = 𝐶𝑗𝑖+𝑗−1𝑒𝑖+𝑗, 2 ≤ 𝑖 + 𝑗 ≤ 𝑛 − 1.

𝑒𝑖𝑓𝑗 =

𝑖−2∏
𝑘=0

(𝑗+𝑘−1)

(𝑖−1)!
𝑓𝑗+𝑖, 1 ≤ 𝑖 ≤ 𝑛 − 1.

𝑓𝑗𝑒𝑖 =

𝑖−1∏
𝑘=0

(𝑗+𝑘−2)

𝑖!
𝑓𝑗+𝑖, 1 ≤ 𝑖 ≤ 𝑛 − 1.

𝑒𝑛𝑓1 = 𝑓2, 𝑓1𝑒𝑛 = −𝑓2.

𝔫𝔣𝛼2 ∶

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝑒𝑖𝑒𝑗 = 𝐶𝑗𝑖+𝑗−1𝑒𝑖+𝑗, 2 ≤ 𝑖 + 𝑗 ≤ 𝑛 − 1.

𝑒𝑖𝑓𝑗 =

𝑖−2∏
𝑘=0

(𝛼+𝑗+𝑘)

(𝑖−1)!
𝑓𝑗+𝑖, 1 ≤ 𝑖 ≤ 𝑛 − 1.

𝑓𝑗𝑒𝑖 =

𝑖−1∏
𝑘=0

(𝛼+𝑗+𝑘−1)

𝑖!
𝑓𝑗+𝑖, 1 ≤ 𝑖 ≤ 𝑛 − 1.

𝔫𝔣3 ∶

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

𝑒𝑖𝑒𝑗 = 𝐶𝑗𝑖+𝑗−1𝑒𝑖+𝑗, 2 ≤ 𝑖 + 𝑗 ≤ 𝑛 − 1.

𝑒𝑖𝑓𝑗 =

𝑖−2∏
𝑘=0

(2−𝑚+𝑗+𝑘)

(𝑖−1)!
𝑓𝑗+𝑖, 1 ≤ 𝑖 ≤ 𝑛 − 1.

𝑓𝑗𝑒𝑖 =

𝑖−1∏
𝑘=0

(1−𝑚+𝑗+𝑘)

𝑖!
𝑓𝑗+𝑖, 1 ≤ 𝑖 ≤ 𝑛 − 1,

𝑒𝑛𝑓𝑚−1 = 𝑓𝑚.

If 𝑚 ≥ 𝑛 − 2, the superalgebra 𝐙 is either isomorphic to one of the previous
superalgebras or isomorphic to one of the next two:

𝔫𝔣4 ∶

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

𝑒𝑖𝑒𝑗 = 𝐶𝑗𝑖+𝑗−1𝑒𝑖+𝑗, 2 ≤ 𝑖 + 𝑗 ≤ 𝑛 − 1.

𝑒𝑖𝑓𝑗 =

𝑖−2∏
𝑘=0

(𝑛−3+𝑗+𝑘)

(𝑖−1)!
𝑓𝑗+𝑖, 1 ≤ 𝑖 ≤ 𝑛 − 1.

𝑓𝑗𝑒𝑖 =

𝑖−1∏
𝑘=0

(𝑛−4+𝑗+𝑘)

𝑖!
𝑓𝑗+𝑖, 1 ≤ 𝑖 ≤ 𝑛 − 1.

𝑓1𝑓𝑛−2 = 𝑒𝑛−1.
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𝔫𝔣5 ∶

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

𝑒𝑖𝑒𝑗 = 𝐶𝑗𝑖+𝑗−1𝑒𝑖+𝑗, 2 ≤ 𝑖 + 𝑗 ≤ 𝑛 − 1.

𝑒𝑖𝑓𝑗 =

𝑖−2∏
𝑘=0

(3−𝑛+𝑗+𝑘)

(𝑖−1)!
𝑓𝑗+𝑖, 1 ≤ 𝑖 ≤ 𝑛 − 1.

𝑓𝑗𝑒𝑖 =

𝑖−1∏
𝑘=0

(2−𝑛+𝑗+𝑘)

𝑖!
𝑓𝑗+𝑖, 1 ≤ 𝑖 ≤ 𝑛 − 1.

𝑒𝑛𝑓𝑛−2 = 𝑓𝑛−1, 𝑓1𝑓𝑛−2 = 𝑒𝑛−1.

Proof. First, we consider 𝐙 = 𝐙0̄ ⊕ 𝐙1̄ a complex naturally graded filiform
Zinbiel superalgebra with dim(𝐙0̄) = 𝑛 with 𝑛 ≥ 5 and dim(𝐙1̄) = 𝑚 with
𝑚 ≥ 3. Then, there exists a basis {𝑒1,… , 𝑒𝑛, 𝑓1,… , 𝑓𝑚} and we have one of the
following possibilities depending if𝑚 < 𝑛 − 1,𝑚 = 𝑛 − 1 or𝑚 > 𝑛 − 1.

⟨𝑒1, 𝑒𝑛 , 𝑓1⟩⏟⎴⎴⏟⎴⎴⏟
𝔷1

⊕ ⟨𝑒2, 𝑓2⟩⏟ ⏟ ⏟
𝔷2

⊕ … ⊕ ⟨𝑒𝑚 , 𝑓𝑚⟩⏟⎴⏟⎴⏟
𝔷𝑚

⊕ ⟨𝑒𝑚+1⟩⏟⏟⏟
𝔷𝑚+1

⊕ … ⊕ ⟨𝑒𝑛−1⟩⏟⏟⏟
𝔷𝑛−1

⟨𝑒1, 𝑒𝑛 , 𝑓1⟩⏟⎴⎴⏟⎴⎴⏟
𝔷1

⊕ ⟨𝑒2, 𝑓2⟩⏟ ⏟ ⏟
𝔷2

⊕ … ⊕ ⟨𝑒𝑛−1, 𝑓𝑛−1⟩⏟⎴⎴⏟⎴⎴⏟
𝔷𝑛−1

⟨𝑒1, 𝑒𝑛 , 𝑓1⟩⏟⎴⎴⏟⎴⎴⏟
𝔷1

⊕ ⟨𝑒2, 𝑓2⟩⏟ ⏟ ⏟
𝔷2

⊕ … ⊕ ⟨𝑒𝑛−1, 𝑓𝑛−1⟩⏟⎴⎴⏟⎴⎴⏟
𝔷𝑛−1

⊕ ⟨𝑓𝑛⟩⏟⏟⏟
𝔷𝑛

⊕ … ⊕ ⟨𝑓𝑚⟩⏟⏟⏟
𝔷𝑚

Wewill study these three cases together. We consider 𝑓1𝑒1 = 𝛼𝑓2. By induc-
tion using the Zinbiel superidentity we obtain:

𝑒𝑖𝑓𝑗 =

𝑖−2∏
𝑘=0

(𝛼+𝑗+𝑘)

(𝑖−1)!
𝑓𝑗+𝑖, 𝑓𝑗𝑒𝑖 =

𝑖−1∏
𝑘=0

(𝛼+𝑗+𝑘−1)

𝑖!
𝑓𝑗+𝑖, 1 ≤ 𝑖 ≤ 𝑛 − 1,

𝑓1𝑒𝑛 = 𝑐1𝑓2. 𝑒𝑛𝑓𝑗 = 𝑏𝑗𝑓𝑗+1, 1 ≤ 𝑗 ≤ 𝑚 − 1.

For every three homogeneous elements 𝑎, 𝑏, 𝑐 ∈ 𝐙, we define
𝔰ℨ{𝑎, 𝑏, 𝑐} ∶= (𝑎𝑏)𝑐 − 𝑎

(
𝑏𝑐 + (−1)|𝑎||𝑏|𝑐𝑏

)
.

Now, applying the Zinbiel superidentity for basis elements gives the following
relations.
{
𝔰ℨ{𝑒𝑛, 𝑒1, 𝑓𝑗} = 0

}
2≤𝑗≤𝑚−1

⇒ (𝛼 + 𝑗 − 1)𝑏𝑗 = 0
{
𝔰ℨ{𝑒𝑛, 𝑓𝑗, 𝑒1} = 0

}
1≤𝑗≤𝑚−2

⇒ (𝛼 + 𝑗)𝑏𝑗 = 0 ⇒ 𝑏𝑗 = 0, 2 ≤ 𝑗 ≤ 𝑚 − 2
{
𝔰ℨ{𝑓1, 𝑒𝑛, 𝑒1} = 0

}
⇒ (𝛼 + 1)𝑐1 = 0,{

𝔰ℨ{𝑓2, 𝑒𝑛, 𝑒1} = 0
}

⇒ (𝛼 + 2)(𝑐1 + 𝑏1) = 0 ⇒ 𝑐1 = −𝑏1

thus, 𝑓1𝑒𝑛 = −𝑏1𝑓2 and 𝑓𝑗𝑒𝑛 = 0 with 2 ≤ 𝑗 ≤ 𝑚 − 1. Then, we have the
following products:

𝑒𝑖𝑒𝑗 = 𝐶𝑗𝑖+𝑗−1𝑒𝑖+𝑗, 2 ≤ 𝑖 + 𝑗 ≤ 𝑛 − 1.

𝑒𝑖𝑓𝑗 =

𝑖−2∏
𝑘=0

(𝛼+𝑗+𝑘)

(𝑖−1)!
𝑓𝑗+𝑖, 1 ≤ 𝑖 ≤ 𝑛 − 1,
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𝑓𝑗𝑒𝑖 =

𝑖−1∏
𝑘=0

(𝛼+𝑗+𝑘−1)

𝑖!
𝑓𝑗+𝑖, 1 ≤ 𝑖 ≤ 𝑛 − 1,

𝑒𝑛𝑓1 = 𝑏1𝑓2, 𝑒𝑛𝑓𝑚−1 = 𝑏𝑚−1𝑓𝑚,
𝑓1𝑒𝑛 = −𝑏1𝑓2, 𝑓𝑗𝑒𝑛 = 0, 2 ≤ 𝑗 ≤ 𝑚 − 1,

with (𝛼 + 1)𝑏1 = (𝛼 +𝑚 − 2)𝑏𝑚−1 = 0.
Finally, only rest to compute the products 𝑓𝑖𝑓𝑗 = ℎ𝑖𝑗𝑒𝑖+𝑗.We compute them

by induction:
∙ Step 1: We have:

𝑓1𝑓1 = ℎ11𝑒2,
𝑓2𝑓1 = (𝑒1𝑓1)𝑓1 = 𝑒1(𝑓1𝑓1) − 𝑒1(𝑓1𝑓1) = 0,
𝑓1𝑓2 = ℎ12𝑒3.

Moreover, we have

𝔰ℨ{𝑓1, 𝑓1, 𝑒1} = 0 ⇒ 2ℎ11 = (𝑎 + 1)ℎ12,
𝔰ℨ{𝑓1, 𝑒1, 𝑓1} = 0 ⇒ (𝛼 + 1)ℎ12 = 0 ⇒ ℎ11 = (𝑎 + 1)ℎ12 = 0.

∙ Step 2: Now, we can write:

𝑓1𝑓1 = 𝑓2, 𝑓2𝑓1 = 0,
𝑓1𝑓2 = ℎ12𝑒3, 𝑓1𝑓3 = ℎ13𝑒4,

𝑓2𝑓2 = (𝑒1𝑓1)𝑓2 = 𝑒1(𝑓1𝑓2) − 𝑒1(𝑓2𝑓1) = ℎ12(𝑒1𝑒3) = ℎ12𝑒4,
𝑓3𝑓1 = (𝑒1𝑓2)𝑓1 = 𝑒1(𝑓2𝑓1) − 𝑒1(𝑓1𝑓2) = −ℎ12(𝑒1𝑒3) = −ℎ12𝑒4,

with (𝛼 + 1)ℎ12 = 0. Applying the Zinbiel superidentity, we get:

𝔰ℨ{𝑓1, 𝑓2, 𝑒1} = 0 ⇒ 3ℎ12 = (𝛼 + 2)ℎ13,
𝔰ℨ{𝑓1, 𝑒1, 𝑓2} = 0 ⇒ (𝛼 + 2)ℎ13 = 𝛼ℎ12.

Therefore, joining the following equations:

(𝛼 + 1)ℎ12 = 0
3ℎ12 = (𝛼 + 2)ℎ13

(𝛼 + 2)ℎ13 = 𝛼ℎ12

⎫

⎬
⎭

⇒ ℎ12 = 0, (𝛼 + 2)ℎ13 = 0.

∙ Step 3: We suppose that

𝑓𝑖𝑓𝑘+1−𝑖 = 0, 2 ≤ 𝑖 ≤ 𝑘,
𝑓1𝑓𝑘 = ℎ1𝑘𝑒𝑘+1,

𝑓1𝑓𝑘+1 = ℎ1 𝑘+1𝑒𝑘+2,
𝑓𝑘+1𝑓1 = (𝑒1𝑓𝑘)𝑓1 = 𝑒1(𝑓𝑘𝑓1) − 𝑒1(𝑓1𝑓𝑘) =

= −ℎ1𝑘(𝑒1𝑒𝑘+1) = −ℎ1𝑘𝑒𝑘+2,
𝑓2𝑓𝑘 = (𝑒1𝑓1)𝑓𝑘 = 𝑒1(𝑓1𝑓𝑘) − 𝑒1(𝑓𝑘𝑓1) =

= ℎ1𝑘(𝑒1𝑒𝑘+1) = ℎ1𝑘𝑒𝑘+2,
𝑓𝑘𝑓2 = (𝑒1𝑓𝑘−1)𝑓2 = 𝑒1(𝑓𝑘−1𝑓2) − 𝑒1(𝑓2𝑓𝑘−1) = 0,
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𝑓𝑖𝑓𝑘+2−𝑖 = (𝑒1𝑓𝑖−1)𝑓𝑘+2−𝑖 = 𝑒1(𝑓𝑖−1𝑓𝑘+2−𝑖) − 𝑒1(𝑓𝑘+2−𝑖𝑓𝑖−1) = 0,
(by induction hypothesis),

with (𝛼+𝑘−1)ℎ1𝑘 = 0.Applying the Zinbiel superidentitywe obtain:

𝔰ℨ{𝑓1, 𝑓𝑘, 𝑒1} = 0 ⇒ (𝑘 + 1)ℎ1𝑘 = (𝛼 + 𝑘)ℎ1 𝑘+1,
𝔰ℨ{𝑓1, 𝑒1, 𝑓𝑘} = 0 ⇒ (𝛼 + 𝑘)ℎ1 𝑘+1 = 𝑎ℎ1𝑘.

It follows that

(𝛼 + 𝑘 − 1)ℎ1𝑘 = 0
(𝑘 + 1)ℎ1𝑘 = (𝛼 + 𝑘)ℎ1 𝑘+1

(𝛼 + 𝑘)ℎ1 𝑘+1 = 𝛼ℎ1𝑘

⎫

⎬
⎭

⇒ ℎ1𝑘 = 0, (𝛼 + 𝑘)ℎ1 𝑘+1 = 0.

This process is finite, so we get 𝑓1𝑓𝑚 = ℎ1𝑚𝑒𝑚+1 (otherwise 𝑓𝑖𝑓𝑗 = 0) with
(𝛼+𝑚− 1)ℎ1𝑚 = 0 if𝑚 < 𝑛− 2 and 𝑓1𝑓𝑛−2 = ℎ1𝑛−2𝑒𝑛−1 (otherwise 𝑓𝑖𝑓𝑗 = 0)
with (𝛼 + 𝑛 − 3)ℎ1𝑛−2 = 0 if𝑚 ≥ 𝑛 − 2.
In the case𝑚 < 𝑛 − 2: 𝔰ℨ{𝑓1, 𝑓𝑚, 𝑒1} = 0 gives ℎ1𝑚 = 0.
Thus, the Zinbiel superalgebra has the following multiplication table:

𝑒𝑖𝑒𝑗 = 𝐶𝑗𝑖+𝑗−1𝑒𝑖+𝑗, 2 ≤ 𝑖 + 𝑗 ≤ 𝑛 − 1,

𝑒𝑖𝑓𝑗 =

𝑖−2∏
𝑘=0

(𝛼+𝑗+𝑘)

(𝑖−1)!
𝑓𝑗+𝑖, 1 ≤ 𝑖 ≤ 𝑛 − 1,

𝑓𝑗𝑒𝑖 =

𝑖−1∏
𝑘=0

(𝛼+𝑗+𝑘−1)

𝑖!
𝑓𝑗+𝑖, 1 ≤ 𝑖 ≤ 𝑛 − 1,

𝑒𝑛𝑓1 = 𝑏1𝑓2, 𝑒𝑛𝑓𝑚−1 = 𝑏𝑚−1𝑓𝑚, 𝑚 ≥ 𝑛 − 2
𝑓1𝑒𝑛 = −𝑏1𝑓2, 𝑓1𝑓𝑛−2 = ℎ𝑒𝑛−1,

with (𝛼+ 1)𝑏1 = (𝛼+𝑚− 2)𝑏𝑚−1 = 0 and (𝛼+ 𝑛− 3)ℎ = 0 if𝑚 ≥ 𝑛− 2.Now,
we consider𝑚 > 3 and𝑚 < 𝑛 − 2.We can distinguish the following cases:

Case 1: 𝑏1 ≠ 0. In this case, we have 𝛼 = −1 and 𝑏𝑚−1 = 0. If 𝑚 ≥ 𝑛 − 2, we
also have that ℎ = 0. Then we obtain the Zinbiel superalgebra 𝔫𝔣1.

Case 2: 𝑏1 = 0 and 𝑏𝑚−1 = 0. In this case, we have the family of Zinbiel super-
algebras 𝔫𝔣𝛼2 .

Case 3: 𝑏1 = 0 and 𝑏𝑚−1 ≠ 0. Then, 𝛼 = 2 −𝑚.We have the superalgebra 𝔫𝔣3.

Now, we consider𝑚 > 3 and𝑚 ≥ 𝑛−2.Analyzing the cases above, we have
a new superalgebra in Case 2 (when 𝛼 = 𝑛 − 3 and ℎ ≠ 0, we can consider
ℎ = 1), 𝔫𝔣4, and another one in Case 3 (when𝑚 = 𝑛−1, 𝛼 = 3− 𝑛, and ℎ ≠ 0,
we can consider ℎ = 1), 𝔫𝔣5. □
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Finally, we study the particular case 𝑚 = 3. Let 𝐙 be a complex naturally
graded filiform Zinbiel superalgebra with dim(𝐙0̄) = 𝑛, 𝑛 ≥ 5 and dim(𝐙1̄) = 3.
Then, there exists a basis {𝑒1,… , 𝑒𝑛, 𝑓1, 𝑓2, 𝑓3} and we have the gradation:

⟨𝑒1, 𝑒𝑛, 𝑓1⟩⏟⎴⏟⎴⏟
⊕ ⟨𝑒2, 𝑓2⟩⏟ ⏟ ⏟

⊕ ⟨𝑒3, 𝑓3⟩⏟ ⏟ ⏟
⊕ ⟨𝑒4⟩⏟⏟⏟

⊕ ⟨𝑒5⟩⏟⏟⏟
⊕ …

𝔷1 𝔷2 𝔷3 𝔷4 𝔷5

Theorem 3.3. Let 𝐙 be a complex naturally graded filiform Zinbiel superalgebra
with dim(𝐙0̄) = 𝑛, (𝑛 ≥ 5), and dim(𝐙1̄) = 3. Then 𝐙 is isomorphic to one of the
following superalgebras:

∙ If 𝑛 > 5, then 𝐙 is isomorphic either to 𝔫𝔣1, 𝔫𝔣
𝛼
2 , 𝔫𝔣3, or

𝔞1 ∶
⎧

⎨
⎩

𝑒𝑖𝑒𝑗 = 𝐶𝑗𝑖+𝑗−1𝑒𝑖+𝑗, 2 ≤ 𝑖 + 𝑗 ≤ 𝑛 − 1,
𝑒1𝑓1 = 𝑓2, 𝑒1𝑓2 = 𝑓3, 𝑓1𝑒1 = −𝑓2,
𝑒𝑛𝑓1 = 𝑓2, 𝑒𝑛𝑓2 = 𝑓3, 𝑓1𝑒𝑛 = −𝑓2.

∙ If 𝑛 = 5, then 𝐙 is isomorphic either to 𝔫𝔣1, 𝔫𝔣
𝛼≠−2
2 , 𝔫𝔣3, 𝔞1 or

𝔞2 ∶

⎧
⎪
⎨
⎪
⎩

𝑒𝑖𝑒𝑗 = 𝐶𝑗𝑖+𝑗−1𝑒𝑖+𝑗, 2 ≤ 𝑖 + 𝑗 ≤ 𝑛 − 1,
𝑓1𝑒1 = −2𝑓2, 𝑓2𝑒1 = −𝑓3, 𝑓1𝑒2 = 𝑓3,
𝑒1𝑓1 = 𝑓2, 𝑒1𝑓2 = 𝑓3,
𝑒2𝑓1 = −𝑓2, 𝑓1𝑓𝑛−2 = 𝑒𝑛−1.

Proof. Similar to the general case (see the proof of Theorem 3.2) we get that 𝐙
is isomorphic to

𝑒𝑖𝑒𝑗 = 𝐶𝑗𝑖+𝑗−1𝑒𝑖+𝑗, 2 ≤ 𝑖 + 𝑗 ≤ 𝑛 − 1,
𝑓1𝑒1 = 𝑎𝑓2, 𝑓1𝑒2 = 𝛼(𝛼+1)

2
𝑓3,

𝑓2𝑒1 = (𝛼 + 1)𝑓3, 𝑒𝑛𝑓1 = 𝑏1𝑓2,
𝑒1𝑓1 = 𝑓2, 𝑒2𝑓1 = (𝛼 + 1)𝑓2,
𝑒1𝑓2 = 𝑓3, 𝑒𝑛𝑓2 = 𝑏2𝑓3,
𝑓1𝑒𝑛 = −𝑏1𝑓2, (𝑓1𝑓3 = ℎ𝑒4, if 𝑛 = 5.),

with (𝛼 + 1)𝑏1 = (𝛼 + 1)𝑏2 = 0 and (𝛼 + 2)ℎ = 0 if 𝑛 = 5.
First, we consider 𝑛 > 5.We can distinguish the following cases:

∙ 𝑏1 ≠ 0 and 𝑏2 ≠ 0. In this case, 𝛼 = −1 and by a change of basis we can
consider 𝑏1 = 𝑏2 = 1 obtaining the superalgebra 𝔞1.

∙ 𝑏1 ≠ 0 and 𝑏2 = 0.We obtain 𝔫𝔣1.
∙ 𝑏1 = 0.We obtain 𝔫𝔣3 (for 𝑏2 ≠ 0) and 𝔫𝔣𝛼2 (for 𝑏2 = 0)

Finally, the case when 𝑛 = 5 leads to a similar study, obtaining the superal-
gebras in the statement. □
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4. Classification of low-dimensional complex Zinbiel
superalgebras
In this section, we obtain the classification of the complex Zinbiel superal-

gebras up to dimension three. Let us begin by proving the following important
lemma.

Lemma 4.1. Given a 𝑛-dimensional Zinbiel superalgebra 𝐙 of type (𝑛−1, 1), i.e.
dim(𝐙0̄) = 𝑛− 1 and dim(𝐙1̄) = 1, then 𝐙0̄𝐙1̄ = 𝐙1̄𝐙0̄ = {0}. Moreover, 𝐙1̄𝐙1̄ is a
subspace of AnnL (𝐙0̄).
Proof. Let 𝑒1,… , 𝑒𝑛−1 be a basis of 𝐙0̄ and let 𝑓1 be a basis of 𝐙1̄. Denote by
𝑒𝑖𝑓1 = 𝑎𝑖𝑓1 and 𝑓1𝑒𝑖 = 𝑏𝑖𝑓1, for 𝑎𝑖, 𝑏𝑖 ∈ ℂ and 𝑖 = 1,… , 𝑛 − 1. On the one
hand, for 𝑖 = 1,… , 𝑛 − 1 we have

(𝑒𝑖𝑓1)𝑒𝑖 = 𝑒𝑖(𝑓1𝑒𝑖) + 𝑒𝑖(𝑒𝑖𝑓1); 𝑎𝑖𝑏𝑖𝑓1 = 𝑎𝑖𝑏𝑖𝑓1 + 𝑎2𝑖 𝑓1.
Hence, we have 𝑎𝑖 = 0 and 𝐙0̄𝐙1̄ = {0}.
On the other hand, since 𝐙0̄ is a Zinbiel algebra, it is nilpotent. Suppose

𝐙𝑠0̄ = 0 and proceed by induction. For 𝑥 ∈ 𝐙𝑠−10̄ , we have

(𝑓1𝑥)𝑥 = 𝑓1(𝑥𝑥 + 𝑥𝑥) = 2𝑓1(𝑥𝑥),
and since 𝑥𝑥 ∈ 𝐙𝑠0̄ = {0}, we obtain (𝑓1𝑥)𝑥 = 0, which implies 𝑓1𝑥 = 0, and
we may write 𝑓1𝐙𝑠−10̄ = {0}. Now, suppose 𝑓1𝐙𝑠−𝑘+10̄ = {0}, then for 𝑥 ∈ 𝐙𝑠−𝑘0̄ ,
we have (𝑓1𝑥)𝑥 = 2𝑓1(𝑥𝑥) = 0, because 𝑥𝑥 ∈ 𝐙𝑠−𝑘+10̄ . Therefore, 𝑓1𝑥 = 0, and
we have 𝑓1𝐙𝑠−𝑘0̄ = {0}. For 𝑘 = 𝑠 − 1, we conclude that 𝐙1̄𝐙10̄ = 𝐙1̄𝐙0̄ = {0}.

Further, we have (𝑓1𝑓1)𝑥 = 𝑓1(𝑓1𝑥) + 𝑓1(𝑥𝑓1) = 0 for 𝑥 ∈ 𝐙0̄. Therefore,
(𝑓1𝑓1) ∈ AnnL (𝐙0̄) and 𝐙1̄𝐙1̄ is a subspace of AnnL (𝐙0̄), where AnnL (𝐙0̄) =
{𝑥 ∈ 𝐴 ∶ 𝑥𝐙0̄ = 0}. □

The converse is a straightforward verification.

Remark 4.2. Given a (𝑛 − 1)-dimensional Zinbiel algebra 𝐙0̄. If we construct a
superalgebra 𝐙 such that 𝐙0̄𝐙1̄ = 𝐙1̄𝐙0̄ = {0} and such that 𝐙1̄𝐙1̄ is a subspace of
AnnL (𝐙0̄). Then, 𝐙 is a Zinbiel superalgebra of type (𝑛 − 1, 1).
Remark 4.3. Given anon-zero𝑛-dimensional Zinbiel superalgebra𝐙 of type (𝑛−
1, 1) such that 𝐙0̄ is the zero algebra. Then it is isomorphic to 𝐙𝑛,0 ∶ 𝑓1𝑓1 = 𝑒1,
simply choosing 𝜙 ∶ 𝐴 → 𝐴𝑛,0 such that 𝜙(𝑓1𝑓1) = 𝑒1. The classification of the
2-dimensional Zinbiel superalgebras follows by this statement.
Now, we recover the classification of the 𝑛-dimensional Zinbiel algebras [2,

4], as it will be required.

Theorem 4.4. Given an 𝑛-dimensional, for 𝑛 ≤ 3, non-trivial Zinbiel algebra,
then it is isomorphic to only one of the following

∙ If 𝑛 = 2, then it is
(1) ℨ2,1 ∶ 𝑒1𝑒1 = 𝑒2.
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∙ If 𝑛 = 3, then it is isomorphic to ℨ3,1 = ℨ2,1 ⊕ ℂ or to
(1) ℨ3,2 ∶ 𝑒1𝑒1 = 𝑒2, 𝑒1𝑒2 =

1
2
𝑒3, 𝑒2𝑒1 = 𝑒3.

(2) ℨ3,3 ∶ 𝑒1𝑒2 = 𝑒3, 𝑒2𝑒1 = −𝑒3.
(3) ℨ3,4 ∶ 𝑒1𝑒1 = 𝑒3, 𝑒1𝑒2 = 𝑒3, 𝑒2𝑒2 = 𝛽𝑒3.
(4) ℨ3,5 ∶ 𝑒1𝑒1 = 𝑒3, 𝑒1𝑒2 = 𝑒3, 𝑒2𝑒1 = 𝑒3.

4.1. 3-dimensional Zinbiel superalgebras. In our classification, wewill not
consider non-proper superalgebras. So type (𝑛, 0), which corresponds to Zinbiel
algebras, and type (0, 𝑛) (zero algebra) are omitted. Also, we omit the superal-
gebras with ℨ0ℨ1 = ℨ1ℨ0 = ℨ2

1 = 0, as they are split algebras.
4.1.1. (1, 2) superalgebras. Let {𝑒1, 𝑓1, 𝑓2} be a basis of a superalgebra of 𝐙 =
𝐙0̄⊕ 𝐙1̄. Since 𝐙0̄ is the trivial one dimensional algebra, we have the following
multiplication table for 𝐙:

𝑒1𝑓𝑖 = 𝑎1𝑖 𝑓1 + 𝑎2𝑖 𝑓2, 𝑓𝑖𝑒1 = 𝑏1𝑖 𝑓1 + 𝑏2𝑖 𝑓2, 𝑓𝑖𝑓𝑗 = 𝑐𝑖𝑗𝑒1,
where 1 ≤ 𝑖, 𝑗 ≤ 2. We find the equations on variables the structural constants
studying case by case:

𝔰ℨ{𝑒1, 𝑒1, 𝑓1} = 0 ⇒ (𝑎11)
2 + 𝑎11𝑏

1
1 + 𝑎21𝑎

1
2 + 𝑎12𝑏

2
1 = 0

and 𝑎11𝑎
2
1 + 𝑎21𝑎

2
2 + 𝑎21𝑏

1
1 + 𝑎22𝑏

2
1 = 0

𝔰ℨ{𝑒1, 𝑒1, 𝑓2} = 0 ⇒ 𝑎11𝑎
1
2 + 𝑎11𝑏

1
2 + 𝑎12𝑎

2
2 + 𝑎12𝑏

2
2 = 0

and 𝑎21𝑎
1
2 + 𝑎21𝑏

1
2 + (𝑎22)

2 + 𝑎22𝑏
2
2 = 0

𝔰ℨ{𝑒1, 𝑓1, 𝑒1} = 0 ⇒ (𝑎11)
2 + 𝑎21𝑎

1
2 − 𝑎21𝑏

1
2 + 𝑎12𝑏

2
1 = 0

and 𝑎11𝑎
2
1 − 𝑎11𝑏

2
1 + 𝑎21𝑎

2
2 + 𝑎21𝑏

1
1 − 𝑎21𝑏

2
2 + 𝑎22𝑏

2
1 = 0

𝔰ℨ{𝑒1, 𝑓2, 𝑒1} = 0 ⇒ 𝑎11𝑎
1
2 + 𝑎11𝑏

1
2 + 𝑎12𝑎

2
2 − 𝑎12𝑏

1
1 + 𝑎12𝑏

2
2 − 𝑎22𝑏

1
2 = 0

and 𝑎21𝑎
1
2 + 𝑎21𝑏

1
2 − 𝑎12𝑏

2
1 + (𝑎22)

2 = 0
𝔰ℨ{𝑒1, 𝑓1, 𝑓1} = 0 ⇒ 𝑎11𝑐11 + 𝑎21𝑐21 = 0
𝔰ℨ{𝑒1, 𝑓1, 𝑓2} = 0 ⇒ 𝑎11𝑐12 + 𝑎21𝑐22 = 0
𝔰ℨ{𝑒1, 𝑓2, 𝑓1} = 0 ⇒ 𝑎12𝑐11 + 𝑎22𝑐21 = 0
𝔰ℨ{𝑒1, 𝑓2, 𝑓2} = 0 ⇒ 𝑎12𝑐12 + 𝑎22𝑐22 = 0
𝔰ℨ{𝑓1, 𝑒1, 𝑒1} = 0 ⇒ (𝑏11)

2 + 𝑏21𝑏
1
2 = 0 and 𝑏11𝑏

2
1 + 𝑏21𝑏

2
2 = 0

𝔰ℨ{𝑓2, 𝑒1, 𝑒1} = 0 ⇒ 𝑏11𝑏
1
2 + 𝑏12𝑏

2
2 = 0 and 𝑏21𝑏

1
2 + (𝑏22)

2 = 0
𝔰ℨ{𝑓1, 𝑒1, 𝑓1} = 0 ⇒ 𝑎11𝑐11 + 𝑎21𝑐12 + 𝑏21𝑐12 − 𝑏21𝑐21 = 0
𝔰ℨ{𝑓1, 𝑒1, 𝑓2} = 0 ⇒ 𝑎12𝑐11 + 𝑎22𝑐12 − 𝑏11𝑐12 − 𝑏21𝑐22 + 𝑏12𝑐11 + 𝑏22𝑐12 = 0
𝔰ℨ{𝑓2, 𝑒1, 𝑓1} = 0 ⇒ 𝑎11𝑐21 + 𝑎21𝑐22 + 𝑏11𝑐21 + 𝑏21𝑐22 − 𝑏12𝑐11 − 𝑏22𝑐21 = 0
𝔰ℨ{𝑓2, 𝑒1, 𝑓2} = 0 ⇒ 𝑎12𝑐21 + 𝑎22𝑐22 − 𝑏12𝑐12 + 𝑏12𝑐21 = 0
𝔰ℨ{𝑓1, 𝑓1, 𝑒1} = 0 ⇒ 𝑎11𝑐11 + 𝑎21𝑐12 + 𝑏11𝑐11 + 𝑏21𝑐12 = 0
𝔰ℨ{𝑓1, 𝑓2, 𝑒1} = 0 ⇒ 𝑎12𝑐11 + 𝑎22𝑐12 + 𝑏12𝑐11 + 𝑏22𝑐12 = 0
𝔰ℨ{𝑓2, 𝑓1, 𝑒1} = 0 ⇒ 𝑎11𝑐21 + 𝑎21𝑐22 + 𝑏11𝑐21 + 𝑏21𝑐22 = 0
𝔰ℨ{𝑓2, 𝑓2, 𝑒1} = 0 ⇒ 𝑎12𝑐21 + 𝑎22𝑐22 + 𝑏12𝑐21 + 𝑏22𝑐22 = 0
𝔰ℨ{𝑓1, 𝑓1, 𝑓1} = 0 ⇒ 𝑎11𝑐11 = 0 and 𝑎21𝑐11 = 0
𝔰ℨ{𝑓1, 𝑓1, 𝑓2} = 0 ⇒ 𝑎12𝑐11 − 𝑏11𝑐12 + 𝑏11𝑐21 = 0

and 𝑎22𝑐11 − 𝑏21𝑐12 + 𝑏21𝑐21 = 0
𝔰ℨ{𝑓1, 𝑓2, 𝑓1} = 0 ⇒ 𝑎11𝑐12 + 𝑏11𝑐12 − 𝑏11𝑐21 = 0
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and 𝑎21𝑐12 + 𝑏21𝑐12 − 𝑏21𝑐21 = 0
𝔰ℨ{𝑓1, 𝑓2, 𝑓2} = 0 ⇒ 𝑎12𝑐12 = 0 and 𝑎22𝑐12 = 0
𝔰ℨ{𝑓2, 𝑓1, 𝑓1} = 0 ⇒ 𝑎11𝑐21 = 0 and 𝑎21𝑐21 = 0
𝔰ℨ{𝑓2, 𝑓1, 𝑓2} = 0 ⇒ 𝑎12𝑐21 − 𝑏12𝑐12 + 𝑏12𝑐21 = 0

and 𝑎22𝑐21 − 𝑏22𝑐12 + 𝑏22𝑐21 = 0
𝔰ℨ{𝑓2, 𝑓2, 𝑓1} = 0 ⇒ 𝑎11𝑐22 + 𝑏12𝑐12 − 𝑏12𝑐21 = 0

and 𝑎21𝑐22 + 𝑏22𝑐12 − 𝑏22𝑐21 = 0
𝔰ℨ{𝑓2, 𝑓2, 𝑓2} = 0 ⇒ 𝑎12𝑐22 = 0 and 𝑎22𝑐22 = 0.

By solving the system of equations, we have one of the following possibilities
for 𝐙:

(1) 𝑓1𝑓1 = 𝜆11𝑒1, 𝑓1𝑓2 = 𝜆12𝑒1,
𝑓2𝑓1 = 𝜆21𝑒1, 𝑓2𝑓2 = 𝜆22𝑒1.

(2)

𝑓1𝑒1 = 𝜇𝑓1 −
𝜆11
𝜆12
𝜇𝑓2, 𝑓2𝑒1 = 𝜆12

𝜆11
𝜇𝑓1 − 𝜇𝑓2,

𝑓1𝑓1 = 𝜆11𝑒1, 𝑓1𝑓2 = 𝜆12𝑒1,
𝑓2𝑓1 = 𝜆12𝑒1, 𝑓2𝑓2 = 𝜆212

𝜆11
𝑒1.

(3) 𝑒1𝑓1 = 𝜇𝑓1 −
𝜇2

𝜇′
𝑓2, 𝑒1𝑓2 = 𝜇′𝑓1 − 𝜇𝑓2.

(4)
𝑒1𝑓1 = 𝜇𝑓1 −

𝜇𝜈
𝜈′
𝑓2, 𝑒1𝑓2 = 𝜇𝜈′

𝜈
𝑓1 − 𝜇𝑓2,

𝑓1𝑒1 = 𝜈𝑓1 −
𝜈2

𝜈′
𝑓2, 𝑓2𝑒1 = 𝜈′𝑓1 − 𝜈𝑓2.

(5) 𝑓1𝑒1 = 𝜇𝑓2, 𝑓1𝑓1 = 𝜇′𝑒1.
(6) 𝑓2𝑒1 = 𝜇𝑓1, 𝑓2𝑓2 = 𝜇′𝑒1.
(7) 𝑒1𝑓1 = 𝜇𝑓2, 𝑓1𝑒1 = 𝜇′𝑓2.
(8) 𝑒1𝑓2 = 𝜇𝑓1, 𝑓2𝑒1 = 𝜇′𝑓1.

Lemma 4.5. The isomorphism clases of the eight cases above can be reduced to
the study of the cases (a), (e) and (g).

(1) The superalgebras (e) and (f) are isomorphic.
(2) The superalgebras (g) and (h) are isomorphic.
(3) The superalgebras (b) are isomorphic to (e) for 𝜇′ = 𝜆212

𝜆11
.

(4) The superalgebras (c) are isomorphic to (g) for 𝜇′ = 0.
(5) The superalgebras (d) are isomorphic to (g) for 𝜇′ = 𝜈.

Proof. The statements (1) and (2) are trivial. The statements (3), (4) and (5)
can be shown, respectively, using the following maps.

𝜙1(𝑒1) = 𝑒1, 𝜙1(𝑒2) = 𝜆11
𝜆12
𝑒2, 𝜙1(𝑒3) = 𝑒2 + 𝑒3,

𝜙2(𝑒1) = 𝑒1, 𝜙2(𝑒2) = 𝜇
𝜇′
𝑒2 +

𝜇
𝜇′
𝑒3, 𝜙2(𝑒3) = 𝑒2,

𝜙3(𝑒1) = 𝑒1, 𝜙3(𝑒2) = 𝑒2, 𝜙3(𝑒3) = 𝜈′

𝜈
𝑒2 −

𝜈′

𝜈
𝑒3.

□
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Next, we study the remaining cases.
Case (a) is equivalent to one of the following, depending on the parameter.

∙ If 𝜆11 ≠ 0 and 𝜆12 ≠ 𝜆21. Now, choose
𝜙(𝑒1) =

𝜆11
(𝜆12−𝜆21)2

𝑒1, 𝜙(𝑒2) =
𝜆11

𝜆21−𝜆12
𝑒2 and 𝜙(𝑒3) =

𝜆12
𝜆21−𝜆12

𝑒2 + 𝑒3,

then
𝐳𝛼3,1 ∶ 𝑓1𝑓1 = 𝑒1, 𝑓2𝑓1 = 𝑒1, 𝑓2𝑓2 = 𝛼𝑒1.

∙ If 𝜆11 ≠ 0 and 𝜆12 = 𝜆21. Then, by choosing the map

𝜙(𝑒1) = 𝜆−111 𝑒1, 𝜙(𝑒2) = 𝑒3, 𝜙(𝑒3) = −
√
𝜆11𝜆22−𝜆212
𝜆11

𝑒2 + 𝜆12𝜆−111 𝑒3,

we obtain
𝐳3,2 ∶ 𝑓1𝑓1 = 𝑒1, 𝑓2𝑓2 = 𝑒1.

Note that, if 𝜆22 = 𝜆212𝜆
−1
11 , then this is equivalent to some case in (e).

∙ If 𝜆11 = 0, 𝜆12 ≠ 𝜆21 and (𝜆12 ≠ −𝜆21 or 𝜆22 ≠ 0). Choose the map
𝜙(𝑒1) =

𝜆22
(𝜆12−𝜆21)2

𝑒1, 𝜙(𝑒2) =
𝜆21

𝜆12−𝜆21
𝑒2 + 𝑒3 and 𝜙(𝑒3) =

𝜆22
𝜆12−𝜆21

,

we obtain 𝐳𝛼3,1.
∙ If 𝜆11 = 0 and 𝜆12 = 𝜆21 ≠ 0, then we have 𝐳3,2.
∙ If 𝜆11 = 𝜆12 = 𝜆21 = 0, then we obtain

𝐳3,3 ∶ 𝑓1𝑓1 = 𝑒1,
choosing 𝜙(𝑒1) = 𝜆−122 𝑒1, 𝜙(𝑒2) = 𝑒3 and 𝜙(𝑒3) = 𝑒2.

∙ If 𝜆11 = 𝜆22 = 0 and 𝜆12 = −𝜆21. Choose the map
𝜙(𝑒1) = 𝜆−112 𝑒1, 𝜙(𝑒2) = 𝑒2 and 𝜙(𝑒3) = 𝑒3

to obtain
𝐳3,4 ∶ 𝑓1𝑓2 = 𝑒1, 𝑓2𝑓1 = −𝑒1.

Case (e) is equivalent to one of the following, depending on the parameters.
∙ If 𝜇 ≠ 0 and 𝜇′ ≠ 0, then the map given by

𝜙(𝑒1) = 𝜇′−1𝑒1, 𝜙(𝑒2) = 𝑒2 and 𝜙(𝑒3) = 𝜇−1𝜇′−1𝑒3
shows that it is isomorphic to

𝐳3,5 ∶ 𝑓1𝑒1 = 𝑓2, 𝑓1𝑓1 = 𝑒1.
∙ If 𝜇 = 0 and 𝜇′ ≠ 0, then, choosing 𝜙(𝑒1) = 𝜇′−1𝑒1, 𝜙(𝑒2) = 𝑒2 and
𝜙(𝑒3) = 𝑒3, we have 𝐳3,3.

∙ If 𝜇 ≠ 0 and 𝜇′ = 0, choose 𝜙(𝑒1) = 𝑒1, 𝜙(𝑒2) = 𝑒2 and 𝜙(𝑒3) = 𝜇−1𝑒3 to
obtain

𝐳3,6 ∶ 𝑓1𝑒1 = 𝑓2.
Case (g) is equivalent to one of the following, depending on the parameters.

∙ If 𝜇′ ≠ 0, then, with 𝜙 such that 𝜙(𝑒1) = 𝑒1, 𝜙(𝑒2) = 𝑒2 and 𝜙(𝑒3) =
𝜇′−1𝑒3, we have

𝐳3,7 ∶ 𝑒1𝑓1 = 𝛼𝑓2, 𝑓1𝑒1 = 𝑓2.
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∙ If 𝜇′ = 0, choosing 𝜙(𝑒1) = 𝑒1, 𝜙(𝑒2) = 𝑒2 and 𝜙(𝑒3) = 𝜇−1𝑒3 then we
obtain

𝐳3,8 ∶ 𝑒1𝑓1 = 𝑓2.

4.1.2. (2, 1) superalgebras.
∙ Even part ℨ2,0. Then, by Remark 4.3, we have 𝐳3,0.
∙ Even part ℨ2,1. By Lemma 4.1 and Remark 4.2, we have that every su-
peralgebra constructed on ℨ2,1 is of the form

𝑒1𝑒1 = 𝑒2, 𝑓1𝑓1 = 𝜆2𝑒2.

Choose the linear map 𝜙 such that 𝜙(𝑒1) = 𝜆
− 1
2

2 𝑒1, 𝜙(𝑒2) =
𝜆−12 𝑒2, 𝜙(𝑒3) = 𝑒3, to obtain the superalgebra

𝐳3,9 ∶ 𝑒1𝑒1 = 𝑒2, 𝑓1𝑓1 = 𝑒2.
Summing up, we have the classification of the 3-dimensional Zinbiel super-

algebras.

Theorem 4.6. Given a 3-dimensional complex non-split Zinbiel superalgebra 𝐙,
then it is isomorphic to a 3-dimensional Zinbiel algebra or to only one of the fol-
lowing algebras.

𝐳𝛼3,1 ∶ 𝑓1𝑓1 = 𝑒1 𝑓2𝑓1 = 𝑒1 𝑓2𝑓2 = 𝛼𝑒1
𝐳3,2 ∶ 𝑓1𝑓1 = 𝑒1 𝑓2𝑓2 = 𝑒1
𝐳3,3 ∶ 𝑓1𝑓1 = 𝑒1
𝐳3,4 ∶ 𝑓1𝑓2 = 𝑒1 𝑓2𝑓1 = −𝑒1
𝐳3,5 ∶ 𝑓1𝑒1 = 𝑓2 𝑓1𝑓1 = 𝑒1
𝐳3,6 ∶ 𝑓1𝑒1 = 𝑓2
𝐳3,7 ∶ 𝑒1𝑓1 = 𝛼𝑓2 𝑓1𝑒1 = 𝑓2
𝐳3,8 ∶ 𝑒1𝑓1 = 𝑓2
𝐳3,9 ∶ 𝑒1𝑒1 = 𝑒2 𝑓1𝑓1 = 𝑒2.

5. Finite-dimensional Zinbiel superalgebras are nilpotent
It is well-known that finite-dimensional Zinbiel algebras are nilpotent over

an arbitrary field [30] (also see [17] for context). It is a natural question to won-
der if this is also true in the case of Zinbiel superalgebras. Note, for instance,
that all the 3-dimensional Zinbiel superalgebras are nilpotent (Theorem 4.6). It
turns out that the answer is positive, as we will see in this section.

Definition 5.1. Given an algebra 𝐙we define the right annihilator of an element
𝑎 ∈ 𝐙 as the set

𝑅𝐶(𝑎) = {𝑥 ∈ 𝐙 ∶ 𝑎𝑥 = 0} .

Lemma 5.2. Given a right-commutative superalgebra 𝐙, then for homogeneous
elements 𝑎1, 𝑎2 ∈ 𝐙, we have 𝑅𝐶(𝑎1) ⊆ 𝑅𝐶(𝑎1𝑎2).
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Proof. Given 𝑥 ∈ 𝑅𝐶(𝑎1) and suppose 𝑥 = 𝑥0 + 𝑥1, for 𝑥𝑖 ∈ 𝐙𝑖. Then, since 𝑎1
is homogeneous 𝑎1𝑥 = 𝑎1𝑥0+𝑎1𝑥1 = 0 implies 𝑎1𝑥0 = 0 and 𝑎1𝑥1 = 0. Hence,
we have

(𝑎1𝑎2)𝑥 = (𝑎1𝑎2)𝑥0 + (𝑎1𝑎2)𝑥1 = (𝑎1𝑥0)𝑎2 + (−1)|𝑎2|(𝑎1𝑥1)𝑎2 = 0.

□

The first key lemma of this section is the following.

Lemma 5.3. Given a finite-dimensional Zinbiel superalgebra 𝐙, there exists a
homogeneous element 𝑒 such that 𝑒𝐙 = 0.

Proof. Since 𝐙0 is a Zinbiel algebra, it is nilpotent. Assume it has nilpotency
index 𝑁, then we have some non-zero element 𝑒0 ∈ 𝐙𝑁−10̄ such that 𝑒0𝐙0̄ =
𝐙0̄𝑒0 = 0. Construct 𝑒 as follows.

(1) Fix 𝑒 = 𝑒0.
(2) If there is some 𝑥 ∈ 𝐙1̄ such that 𝑒𝑥 ≠ 0, set 𝑒0 = 𝑒𝑥. Then 𝑥 ∈

𝑅𝐶(𝑒0), by the Zinbiel superidentity. Otherwise, set 𝑒 = 𝑒0 and finish
the iteration.

(3) Repeat from (1).
Note that the element obtained in each iteration is homogeneous, so by

Lemma 5.2, in each iteration, the right annihilator becomes bigger. Also, since
the algebra is finite-dimensional, this process is finite, as it is enough to run it
for a basis of 𝐙1̄. So we conclude 𝑅𝐶(𝑒) = 𝐙, that is 𝑒𝐙 = 0. □

Lemma 5.4. Given 𝐼 a right ideal of a Zinbiel superalgebra𝐙, then𝐙𝐼 is an ideal.

Proof. We have 𝐙(𝐙𝐼) ⊆ 𝐙2𝐼 + 𝐙(𝐼𝐙) ⊆ 𝐙𝐼 and (𝐙𝐼)𝐙 ⊆ 𝐙2𝐼 ⊆ 𝐙𝐼. □

The next result follows by the previous lemmas.

Lemma 5.5. Any Zinbiel superalgebra of dimension 𝑛 > 1 has a proper graded
ideal.

Proof. Given a finite-dimensional Zinbiel superalgebra𝐙, by Lemma 5.3, there
exists an element 𝑒 ∈ 𝐙𝑖, for 𝑖 = 0 or 𝑖 = 1, such that 𝑒𝐙 = 0. Now, if 𝐙𝑒 = 0,
then the vector space generated by 𝐸 is a proper graded ideal. Conversely, if
𝐙𝑒 ≠ 0, choose 𝐼 = 𝐙𝑒, then since the linear spam of 𝑒 is a right ideal, 𝐼 is an
ideal, by Lemma 5.4.
To show that it is a proper ideal, we have to prove that its dimension is lower

than 𝑛. Choose a basis 𝑒1, 𝑒2,… , 𝑒𝑛 of 𝐙 such that 𝑒1 = 𝐸, then the ideal 𝐼 is
linearly generated by the elements 𝑒1𝐸 = 0, 𝑒2𝐸,… , 𝑒𝑛𝐸, therefore, at most it
has dimension 𝑛 − 1.
The ideal 𝐼 is graded as a consequence of 𝑒 being homogeneous. □

Now, we can prove the first main result of this section.

Lemma 5.6. Any finite-dimensional Zinbiel superalgebra is solvable.
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Proof. Let 𝐙 be a finite-dimensional Zinbiel superalgebra. We proceed by in-
duction on the dimension 𝑛. If 𝑛 = 1, we have the trivial one-dimensional
algebra, which is solvable. Now, if 𝑛 > 1 and the statement is true for up to
dimension 𝑛 − 1, then 𝐴 has a proper graded ideal 𝐼, so 𝐼 and 𝐙∕𝐼 are Zinbiel
superalgebras of dimension lower than 𝑛, therefore they are solvable. Hence,
𝐙 itself is solvable. □

Proposition 5.7. Let 𝐼 be a minimal ideal of a finite-dimensional Zinbiel super-
algebra 𝐙. Let 𝐽 be a minimal right ideal of 𝐙 such that 𝐽 ⊆ 𝐼. Then 𝐼 = 𝐽.

Proof. The proof is identical to the proof of [30, Proposition 2.2]. □

Corollary 5.8. Let 𝐼 be a minimal ideal of a finite-dimensional Zinbiel superal-
gebra 𝐙, then we have 𝐼𝐙 = 𝐙𝐼 = 0. Hence, we have dim 𝐼 = 1.

Proof. The proof is identical to the proof of [30, Corollary 2.3]. □

Observe that the previous result implies that any finite-dimensional Zinbiel
superalgebra has a non-trivial annihilator. However, this is not enough to prove
that any finite-dimensional Zinbiel superalgebra is nilpotent, we need the next
straightforward remark.

Remark 5.9. Let 𝐼 be a minimal ideal of a Zinbiel superalgebra 𝐙. Suppose it
is generated by some element 𝑒 = 𝑒0 + 𝑒1 ∈ 𝐙, where 𝑒𝑖 ∈ 𝐙𝑖 . Note that 𝑒 ∈
Ann(𝐙). Then 𝑒𝐙𝑖 = 0 implies 𝑒0𝐙𝑖 = 0 and 𝑒1𝐙𝑖 = 0 (resp. 𝐙𝑖𝑒 = 0 implies
𝐙𝑖𝑒0 = 0 and 𝐙𝑖𝑒1 = 0), and we have 𝑒𝑖 ∈ Ann(𝐴). Moreover, 𝐼𝑖 = ⟨𝑒𝑖⟩ is an
ideal. Furthermore, if 𝑒𝑖 ≠ 0, then 𝐼𝑖 is a proper graded ideal. Hence, we have the
following corollary.

Corollary 5.10. Any finite-dimensional Zinbiel superalgebra 𝐙 has a minimal
ideal which is graded. Moreover, there exist a homonegeous element 𝑒 ∈ 𝐙 such
that 𝑒 ∈ Ann(𝐙).

Finally, Corollary 5.10 enables us to prove the main result of this section.

Theorem 5.11. Any finite-dimensional Zinbiel superalgebra is nilpotent.

Proof. Let 𝐙 be a finite-dimensional Zinbiel superalgebra. We proceed by in-
duction on the dimension 𝑛. If 𝑛 = 1, we have the trivial one-dimensional
algebra, which is nilpotent. Now, suppose we have that any finite-dimensional
Zinbiel superalgebra is nilpotent up to dimension 𝑛 − 1 for 𝑛 > 1. Since 𝐙 has
a graded ideal 𝐼 of dimension one (generated by a homogeneous element) such
that 𝐙𝐼 = 𝐼𝐙 = 0, then 𝐙∕𝐼 is a Zinbiel superalgebra of dimension 𝑛 − 1, and
so it is nilpotent. Therefore, 𝐙 is nilpotent. □

References
1. Adashev J., Camacho L. M., Gómez-Vidal S., Karimjanov I., Naturally graded Zin-

biel algebras with nilindex 𝑛 − 3, Linear Algebra and Its Applications. 443 (2014), 86–104.
MR3496758, Zbl 1317.17002. doi: 10.1016/j.laa.2013.11.021. 1342

http://www.ams.org/mathscinet-getitem?mr=3496758
http://www.emis.de/cgi-bin/MATH-item?1317.17002
http://dx.doi.org/10.1016/j.laa.2013.11.021


ZINBIEL SUPERALGEBRAS 1361

2. Adashev J., Khudoyberdiyev A., Omirov B., Classifications of some classes of Zinbiel
algebras, Journal of Generalized Lie Theory andApplications. 4 (2010), S090601.MR2645324,
Zbl 1241.17003. doi: 10.4303/jglta/S090601. 1342, 1343, 1344, 1348, 1354

3. Aguiar M., Pre-Poisson algebras, Letters in Mathematical Physics. 54 (2000), 263–277.
MR1846958, Zbl 1032.17038. doi: 10.1023/A:1010818119040. 1342

4. Álvarez A., Fehlberg Júnior R., Kaygorodov I., The algebraic and geometric classi-
fication of Zinbiel algebras, Journal of Pure and Applied Algebra. 226 (2022), 11, 107106.
MR4412231, Zbl 1506.17001. doi: 10.1016/j.jpaa.2022.107106. 1342, 1343, 1354

5. Benayadi S., Kaygorodov I., Mhamdi F., Symmetric Zinbiel superalgebras,
Communications in Algebra. 51 (2023), 1, 224–238. MR4525294, Zbl 07637666.
doi: 10.1080/00927872.2022.2096224. 1342, 1344

6. Bremner M., Dotsenko V., Classification of regular parametrized one-relation operads,
Canadian Journal of Mathematics. 69 (2017), 5, 992–1035. MR3693146, Zbl 1388.18010.
doi: 10.4153/CJM-2017-018-3. 1342

7. Camacho L. M., Cañete E. M., Gómez-Vidal S., Omirov B., 𝑝-Filiform Zinbiel algebras,
Linear Algebra and its Applications. 438 (2013), 7, 2958–2972. MR3018050, Zbl 1300.17002.
doi: 10.1016/j.laa.2012.11.030. 1342

8. Camacho L.M., Gómez J.R., Navarro R.M., Omirov B.A., Classification of some nilpo-
tent class of Leibniz superalgebras, Acta Mathematica Sinica, English Series. 26 (2010), 5,
799–816. MR2644010, Zbl 1260.17003. doi: 10.1007/s10114-010-8358-2. 1345

9. Camacho L., Karimjanov I., Kaygorodov I., Khudoyberdiyev A., Central exten-
sions of filiform Zinbiel algebras, Linear and Multilinear Algebra. 70 (2022), 2, 1479–1495.
MR4420911, Zbl 1493.17004. doi: 10.1080/03081087.2020.1764903. 1342

10. Camacho L.M., Navarro R.M., Sánchez J.M., On Naturally Graded Lie and Leibniz Su-
peralgebras, Bulletin of theMalaysianMathematical Sciences Society. 43 (2020), 5, 3411–3435.
MR4152838, Zbl 1477.17011. doi: 10.1007/s40840-019-00876-9. 1345

11. CeballosM., Towers D.,Abelian subalgebras and ideals of maximal dimension in Zinbiel
algebras, Communications in Algebra. 51 (2023), 4, 1323–1333. MR4552895, Zbl 07664512.
doi: 10.1080/00927872.2022.2134409. 1342, 1343

12. Chapoton F., Zinbiel algebras and multiple zeta values, Documenta Mathematica. 27
(2022), 519–533. MR4424028, Zbl 1498.17006. doi: 10.25537/dm.2022v27.519-533. 1342

13. Colmenarejo L., Diehl J., Sorea M., A quadratic identity in the shuffle algebra and
an alternative proof for de Bruijn’s formula, European Journal of Combinatorics. 99 (2022),
103406. MR4304214, Zbl 1483.17023. doi: 10.1016/j.ejc.2021.103406. 1342

14. Covez S., Farinati M., Lebed V., Manchon D., Bialgebraic approach to rack cohomol-
ogy, Algebraic & Geometric Topology. 23 (2023), 4, 1551–1582. MR4602407, Zbl 07706504.
doi: 10.2140/agt.2023.23.1551. 1342

15. Dokas I., Zinbiel algebras and commutative algebras with divided powers, Glas-
gow Mathematical Journal. 52 (2010), 2, 303–313. MR2610974, Zbl 1250.17002.
doi: 10.1017/S0017089509990358. 1342

16. Dzhumadildaev A., Zinbiel algebras under 𝑞-commutators, Journal of Mathe-
matical Sciences (New York). 144 (2007), 2, 3909–3925. MR2176680, Zbl 1119.17001.
doi: 10.1007/s10958-007-0244-9. 1342

17. Dzhumadildaev A., Tulenbaev K., Nilpotency of Zinbiel algebras, Journal of
Dynamical and Control Systems. 11 (2005), 2, 195–213. MR2131808, Zbl 1063.17002.
doi: 10.1007/s10883-005-4170-1. 1342, 1358

18. GaoX., GuoL., ZhangYi.,CommutativematchingRota-Baxter operators, shuffle products
with decorations and matching Zinbiel algebras, Journal of Algebra. 586 (2021), 402–432.
MR4287778, Zbl 1496.17015. doi: 10.1016/j.jalgebra.2021.06.032. 1342

19. Guterman A., Kudryavtsev D., Algebras of slowly growing length, International Jour-
nal of Algebra and Computation. 32 (2022), 7, 1307–1325. MR4514265, Zbl 1519.17001.
doi: 10.1142/S0218196722500564. 1342

http://www.ams.org/mathscinet-getitem?mr=2645324
http://www.emis.de/cgi-bin/MATH-item?1241.17003
http://dx.doi.org/10.4303/jglta/S090601
http://www.ams.org/mathscinet-getitem?mr=1846958
http://www.emis.de/cgi-bin/MATH-item?1032.17038
http://dx.doi.org/10.1023/A:1010818119040
http://www.ams.org/mathscinet-getitem?mr=4412231
http://www.emis.de/cgi-bin/MATH-item?1506.17001
http://dx.doi.org/10.1016/j.jpaa.2022.107106
http://www.ams.org/mathscinet-getitem?mr=4525294
http://www.emis.de/cgi-bin/MATH-item?07637666
http://dx.doi.org/10.1080/00927872.2022.2096224
http://www.ams.org/mathscinet-getitem?mr=3693146
http://www.emis.de/cgi-bin/MATH-item?1388.18010
http://dx.doi.org/10.4153/CJM-2017-018-3
http://www.ams.org/mathscinet-getitem?mr=3018050
http://www.emis.de/cgi-bin/MATH-item?1300.17002
http://dx.doi.org/10.1016/j.laa.2012.11.030
http://www.ams.org/mathscinet-getitem?mr=2644010
http://www.emis.de/cgi-bin/MATH-item?1260.17003
http://dx.doi.org/10.1007/s10114-010-8358-2
http://www.ams.org/mathscinet-getitem?mr=4420911
http://www.emis.de/cgi-bin/MATH-item?1493.17004
http://dx.doi.org/10.1080/03081087.2020.1764903
http://www.ams.org/mathscinet-getitem?mr=4152838
http://www.emis.de/cgi-bin/MATH-item?1477.17011
http://dx.doi.org/10.1007/s40840-019-00876-9
http://www.ams.org/mathscinet-getitem?mr=4552895
http://www.emis.de/cgi-bin/MATH-item?07664512
http://dx.doi.org/10.1080/00927872.2022.2134409
http://www.ams.org/mathscinet-getitem?mr=4424028
http://www.emis.de/cgi-bin/MATH-item?1498.17006
http://dx.doi.org/10.25537/dm.2022v27.519-533
http://www.ams.org/mathscinet-getitem?mr=4304214
http://www.emis.de/cgi-bin/MATH-item?1483.17023
http://dx.doi.org/10.1016/j.ejc.2021.103406
http://www.ams.org/mathscinet-getitem?mr=4602407
http://www.emis.de/cgi-bin/MATH-item?07706504
http://dx.doi.org/10.2140/agt.2023.23.1551
http://www.ams.org/mathscinet-getitem?mr=2610974
http://www.emis.de/cgi-bin/MATH-item?1250.17002
http://dx.doi.org/10.1017/S0017089509990358
http://www.ams.org/mathscinet-getitem?mr=2176680
http://www.emis.de/cgi-bin/MATH-item?1119.17001
http://dx.doi.org/10.1007/s10958-007-0244-9
http://www.ams.org/mathscinet-getitem?mr=2131808
http://www.emis.de/cgi-bin/MATH-item?1063.17002
http://dx.doi.org/10.1007/s10883-005-4170-1
http://www.ams.org/mathscinet-getitem?mr=4287778
http://www.emis.de/cgi-bin/MATH-item?1496.17015
http://dx.doi.org/10.1016/j.jalgebra.2021.06.032
http://www.ams.org/mathscinet-getitem?mr=4514265
http://www.emis.de/cgi-bin/MATH-item?1519.17001
http://dx.doi.org/10.1142/S0218196722500564


1362 CAMACHO, FERNÁNDEZ OUARIDI, KAYGORODOV AND NAVARRO

20. Ikonicoff S., Pacaud Lemay J.-P., Cartesian Differential Comonads and New Models
of Cartesian Differential Categories, Cahiers de Topologie et Géométrie Différentielle Caté-
goriques. 64 (2023), 2, 198–239. MR4605864, Zbl 1511.18002. 1342

21. Ismailov N., Mashurov F., Smadyarov N., Defining Identities for mono and binary Zin-
biel algebras, Journal of Algebra and Its Applications. 22 (2023), 8, 2350165. MR4598670, Zbl
07709974. doi: 10.1142/S0219498823501657. 1342

22. Kaygorodov I., Alvarez M.A., Castilho de Mello T., Central extensions of 3-
dimensional Zinbiel algebras, Ricerche di Matematica. 72 (2023), 2, 921–947. MR4649473,
Zbl 07754375. doi: 10.1007/s11587-021-00604-1. 1342

23. Kaygorodov I., Popov Yu., Pozhidaev A., Volkov Yu., Degenerations of Zinbiel
and nilpotent Leibniz algebras, Linear and Multilinear Algebra. 66 (2018), 4, 704–
716. [Corrigendum to "Degenerations of Zinbiel and nilpotent Leibniz algebras", Lin-
ear and Multilinear Algebra, 70 (2022), 5, 993–995.] MR3779144, Zbl 1472.17100.
doi: 10.1080/03081087.2017.1319457. 1342

24. Kawski M., Chronological algebras: combinatorics and control, Journal of Math-
ematical Sciences (New York). 103 (2001), 6, 725–744. MR1871128, Zbl 1157.93353.
doi: 10.1023/A:1009502501461. 1342

25. Kolesnikov P., Commutator algebras of pre-commutative algebras,Matematicheskii Zhur-
nal. 16 (2016), 2, 56–70. Zbl 1479.17006. 1342

26. Loday J.-L., Cup product for Leibniz cohomology and dual Leibniz algebras,
Mathematica Scandinavica. 77 (1995), 2, 189–196. MR1379265, Zbl 0859.17015.
doi: 10.7146/math.scand.a-12560. 1342

27. Loday J.-L., On the algebra of quasi-shuffles,Manuscripta mathematica. 123 (2007), 1, 79–
93. MR2300061, Zbl 1126.16029. doi: 10.1007/s00229-007-0086-2. 1342

28. Naurazbekova A., On the structure of free dual Leibniz algebras, Eurasian Mathematical
Journal. 10 (2019), 3, 40–47. MR4034423, Zbl 1463.17009. doi: 10.32523/2077-9879-2019-10-
3-40-47. 1342

29. Naurazbekova A., Umirbaev U., Identities of dual Leibniz algebras, TWMS Journal of
Pure and Applied Mathematics. 1 (2010), 1, 86–91. MR2745589, Zbl 1223.17003. 1342

30. Towers D., Zinbiel algebras are nilpotent, Journal of Algebra and Its Applications. 22 (2023),
8, 2350166. MR4598671, Zbl 07709975. doi: 10.1142/S0219498823501669. 1342, 1343, 1358,
1360

(Camacho) Dpto. Matemática Aplicada I, Universidad de Sevilla, Sevilla, Spain
lcamacho@us.es

(Fernández Ouaridi) Centro deMatemática, Universidade de Coimbra, Coimbra, Por-
tugal; University of Cadiz, Puerto Real, Spain
amir.fernandez.ouaridi@gmail.com

(Kaygorodov)CMA-UBI, Universidade da Beira Interior, Covilhã, Portugal; Moscow
Center for Fundamental and AppliedMathematics, Moscow, Russia; Saint Peters-
burg University, Russia
kaygorodov.ivan@gmail.com

(Navarro) Dpto. de Matemáticas, Universidad de Extremadura, Cáceres, Spain
rnavarro@unex.es

This paper is available via http://nyjm.albany.edu/j/2023/29-51.html.

http://www.ams.org/mathscinet-getitem?mr=4605864
http://www.emis.de/cgi-bin/MATH-item?1511.18002
http://www.ams.org/mathscinet-getitem?mr=4598670
http://www.emis.de/cgi-bin/MATH-item?07709974
http://www.emis.de/cgi-bin/MATH-item?07709974
http://dx.doi.org/10.1142/S0219498823501657
http://www.ams.org/mathscinet-getitem?mr=4649473
http://www.emis.de/cgi-bin/MATH-item?07754375
http://dx.doi.org/10.1007/s11587-021-00604-1
http://www.ams.org/mathscinet-getitem?mr=3779144
http://www.emis.de/cgi-bin/MATH-item?1472.17100
http://dx.doi.org/10.1080/03081087.2017.1319457
http://www.ams.org/mathscinet-getitem?mr=1871128
http://www.emis.de/cgi-bin/MATH-item?1157.93353
http://dx.doi.org/10.1023/A:1009502501461
http://www.emis.de/cgi-bin/MATH-item?1479.17006
http://www.ams.org/mathscinet-getitem?mr=1379265
http://www.emis.de/cgi-bin/MATH-item?0859.17015
http://dx.doi.org/10.7146/math.scand.a-12560
http://www.ams.org/mathscinet-getitem?mr=2300061
http://www.emis.de/cgi-bin/MATH-item?1126.16029
http://dx.doi.org/10.1007/s00229-007-0086-2
http://www.ams.org/mathscinet-getitem?mr=4034423
http://www.emis.de/cgi-bin/MATH-item?1463.17009
http://dx.doi.org/10.32523/2077-9879-2019-10-3-40-47
http://dx.doi.org/10.32523/2077-9879-2019-10-3-40-47
http://www.ams.org/mathscinet-getitem?mr=2745589
http://www.emis.de/cgi-bin/MATH-item?1223.17003
http://www.ams.org/mathscinet-getitem?mr=4598671
http://www.emis.de/cgi-bin/MATH-item?07709975
http://dx.doi.org/10.1142/S0219498823501669
mailto:lcamacho@us.es
mailto:amir.fernandez.ouaridi@gmail.com
mailto:kaygorodov.ivan@gmail.com
mailto:rnavarro@unex.es
http://nyjm.albany.edu/j/2023/29-51.html

	Introduction
	1. Preliminaries and basic definitions
	2. Null-filiform Zinbiel superalgebras
	3. Naturally graded filiform Zinbiel superalgebras
	4. Classification of low-dimensional complex Zinbiel superalgebras
	5. Finite-dimensional Zinbiel superalgebras are nilpotent
	References

