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The de Rham cohomology
of soft function algebras

Baskov Igor

Abstract. We study the dg-algebra Ω∙
𝐴|ℝ of algebraic de Rham forms of a

real soft function algebra 𝐴, i.e., the algebra of global sections of a soft sub-
sheaf of 𝐶𝑋 , the sheaf of continuous functions on a space 𝑋. We obtain a
canonical splittingH𝑛(Ω∙

𝐴|ℝ) ≅ H𝑛(𝑋,ℝ)⊕𝑉, where 𝑉 is some vector space.
In particular, we consider the cases 𝐴 = 𝐶(𝑋) for 𝑋 a compact Hausdorff
space and 𝐴 = 𝐶∞(𝑋) for 𝑋 a compact smooth manifold. For the algebra
PPol𝐾(|𝐾|) of piecewise polynomial functions on a polyhedron 𝐾 the above
splitting reduces to a canonical isomorphism H∗(Ω∙

PPol𝐾 (|𝐾|)|ℝ
) ≅ H∗(|𝐾|,ℝ).

We also prove that the algebraic de Rham cohomology H𝑛(Ω∙
𝐶(𝑋)|ℝ) is non-

trivial for each 𝑛 ≥ 1 if 𝑋 is an infinite compact Hausdorff space.
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1. Introduction
All algebras are assumed to be commutative and all dg-algebras are assumed

to be graded-commutative. To an algebra 𝐴 over a field 𝑘 one associates a dg-
algebra Ω∙

𝐴|𝑘 with Ω
0
𝐴|𝑘 = 𝐴, called the de Rham dg-algebra, in a standard way

(see Subsection 2.4 or [Kun86, §3]). Our main focus will be the cases of ℝ-
algebras 𝐴 = 𝐶(𝑋) for a compact Hausdorff space 𝑋, 𝐴 = 𝐶∞(𝑀) for a smooth
manifold𝑀 (possiblywith boundary) and𝐴 = PPol𝐾(|𝐾|), the algebra of piece-
wise polynomial functions on a polyhedron 𝐾. Here all functions are assumed
to be real-valued, but our results will hold for complex-valued functions also.
We study the cohomology groups H∗(Ω∙

𝐴|𝑘).
There is a canonical morphism of dg-algebras 𝜋 ∶ Ω∙

𝐶∞(𝑀)|ℝ → Ω∙(𝑀),
whereΩ∙(𝑀) is the dg-algebra of smooth differentialℝ-forms on𝑀 (see Subsec-
tion 4.2). The morphism 𝜋 is the identity in degree 0. It is not an isomorphism.
For example, the equality 𝑑𝑓(𝑡) = (𝜕𝑓∕𝜕𝑡)𝑑𝑡 holds in Ω1

𝐶∞(ℝ)|ℝ if and only if
𝑓(𝑡) is an algebraic function of 𝑡 ([Osb69, Corollary of Proposition 1]). More-
over, if𝑀 is of dimension ≥ 1, then the cardinality of any set of generators for
Ω1
𝐶∞(𝑀)|ℝ as a 𝐶

∞(𝑀)-module is at least that ofℝ ([Gom90, Corollary 15]). The
map on cohomology, induced by 𝜋, is not an isomorphism either, see [Osb69]
for the proof that the closed form 𝑑𝑡∕(1 + 𝑡2) is not exact in Ω∙

𝐶∞(ℝ)|ℝ. On the
other hand, consider the algebra𝐴 of regular functions on a smooth affine vari-
ety 𝑉 over ℂ. It is a subalgebra of 𝐶∞(𝑉,ℂ) with inclusion 𝑖 ∶ 𝐴 ↪ 𝐶∞(𝑉,ℂ).
Consider the composition

Ω∙
𝐴|ℂ

Ω𝑖,,→ Ω∙
𝐶∞(𝑉)|ℂ

𝜋ℂ,,→ Ω∙(𝑉,ℂ),
where 𝜋ℂ is the analogue of 𝜋 over ℂ. Grothendieck’s comparison theorem
states that the induced map H∗(Ω∙

𝐴|ℂ) → H∗(Ω∙(𝑉,ℂ)) is an isomorphism
([Gro66, Theorem 1′]).
For a soft sheaf of 𝑘-algebrasℱ on a compactHausdorff space𝑋we construct

(see Section 3) a linear map
Λℱ ∶ ℍ∗(𝑋, 𝑘𝑋[0])→ H∗(Ω∙

ℱ(𝑋)|𝑘).
Here the domain is the cohomology of𝑋 with coefficients in the constant sheaf
𝑘𝑋 . This map is natural with respect to morphisms of ringed spaces (see Propo-
sition 3.4). We are mostly interested in the case 𝑘 = ℝ.
We prove (see Theorem 4.1) that for the sheaf of smooth functions 𝐶∞𝑀 on a

smooth manifold𝑀 the following diagram is commutative:

ℍ∗(𝑀,ℝ𝑀[0]) H∗(Ω∙
𝐶∞(𝑀)|ℝ) H∗(Ω∙(𝑀)),
Θ

Λ𝐶∞𝑀 H(𝜋)

where Θ is the canonical isomorphism (see Subsection 4.1). In particular, the
map

H(𝜋) ∶ H𝑛(Ω∙
𝐶∞(𝑀)|ℝ)→ H𝑛(Ω∙(𝑀))
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is surjective for 𝑛 ≥ 0. This is a generalization of a result obtained by Gómez,
namely that H(𝜋) is surjective for 𝑛 even (see [Gom92, Section 4]).
Next, for an arbitrary space 𝑋 and a subalgebra 𝑖 ∶ 𝐴 ↪ 𝐶(𝑋), we construct

a linear map (see Section 6)

Ψ𝐴 ∶ H∗(Ω∙
𝐴|ℝ)→ ℍ∗(𝑋,ℝ𝑋[0]).

Our construction ofΨ𝐴 relies on local Lipschitz contractibility of algebraic sets
(Theorem 2.4) due to Shartser ([Sha11, Theorem 4.18]). This map is natural
with respect to continuous maps of spaces covered by a homomorphism of al-
gebras (see Proposition 6.6); in particular,Ψ𝐴 = Ψ𝐶(𝑋)◦Ω𝑖. We prove (see Theo-
rem 8.4) that for a compact Hausdorff space 𝑋 and a soft subsheafℱ of 𝐶𝑋 , the
sheaf of continuous functions, the composition Ψℱ(𝑋)◦Λℱ coincides with the
identity map. Thus, the groupsℍ∗(𝑋,ℝ𝑋[0]) canonically split off ofH

∗(Ω∙
ℱ(𝑋)).

We also check (see Theorem 7.10) that for a smooth manifold𝑀 the follow-
ing diagram is commutative:

H∗(Ω∙
𝐶∞(𝑀)|ℝ) ℍ∗(𝑀,ℝ𝑀[0])

H∗(Ω∙(𝑀)).

Ψ𝐶∞(𝑀)

H(𝜋)
Θ

For the sheaf of piecewise polynomial functions PPol𝐾 on a polyhedron 𝐾
(see Section 9) we prove that the morphisms ΛPPol𝐾 and ΨPPol𝐾(|𝐾|) are isomor-
phisms (see Theorem 9.11).
In Section 10 we describe the group H0(Ω∙

𝐴|𝑘) for a general function alge-
bra 𝐴 over a field 𝑘 of characteristic 0 (Corollary 10.5) calculated by Gómez
in [Gom90]. The related result is [Osb69, Proposition 5] (note that the coho-
mology considered there is, in general, different from ours). We show that
for a soft subsheaf of algebras ℱ ⊂ 𝐶𝑋 on a compact Hausdorff space 𝑋 the
morphisms Λℱ and Ψℱ(𝑋) are isomorphisms in degree 0 (Proposition 10.6 and
Corollary 10.7). We also prove that for an infinite compact Hausdorff space 𝑋
the maps Λ𝐶𝑋 ∶ ℍ𝑛(𝑋,ℝ𝑋[0]) → H𝑛(Ω∙

𝐶(𝑋)|ℝ) and Ψ𝐶(𝑋) ∶ H𝑛(Ω∙
𝐶(𝑋)|ℝ) →

ℍ𝑛(𝑋,ℝ𝑋[0]) are not isomorphisms in degrees 𝑛 > 0. The same is true for the
algebra of smooth functions on a smooth manifold, see Subsection 10.2.
From our results one can deduce the similar results for ℂ-algebras.
In the paperwe only consider algebraic structures, however one can consider

topological algebras. Using projective tensor products, one can define the dg-
algebra Ω̃∙

𝒜|ℂ for a Fréchetℂ-algebra𝒜 (denoted byΩ∙
ab𝒜 in [GVF01, §8]). This

dg-algebra is a topological analogue of the de Rham dg-algebra.
Consider the Fréchet algebra 𝒜 = 𝐶∞(𝑀,ℂ) for a compact smooth mani-

fold𝑀. The dg-algebra Ω̃∙
𝒜|ℂ is isomorphic to Ω

∙(𝑀,ℂ), see [GVF01, Proposi-
tion 8.1].
Consider the Banach algebra𝒜 = 𝐶(𝑋,ℂ) for a compact Hausdorff space 𝑋.

Then Ω̃𝑛
𝒜|ℂ = 0 for 𝑛 ≥ 1. To see that, first note that by [Joh72, §8] or [Con85,
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Remarks 47, d], the continuous Hochschild cohomology HH𝑛(𝒜,𝒜∗) is zero
for positive 𝑛. Then, by [Joh72, Corollary 1.3] the continuous Hochschild ho-
mology of𝒜 is zero in positive degrees, in particular,HH1(𝒜) = 0. By [GVF01,
p. 346], we haveHH1(𝒜) ≅ Ω̃1

𝒜|ℂ. Hence, by the construction of Ω̃
𝑛
𝒜|ℂ this space

is zero for 𝑛 ≥ 1.
Acknowledgement. I would like to thank Dr. Semën Podkorytov for his pa-
tience, numerous fruitful discussions and help drafting this paper. I am grateful
to the St. Petersburg Department of Steklov Mathematical Institute of Russian
Academy of Sciences for their financial assistence.

2. Preliminaries
2.1. Sheaves. Here we outline the basic definitions and facts of sheaf theory
needed in the paper. For this we follow the books of Godement [God58], Wed-
horn [Wed16] and Bredon [Bre97].
We refer to [Wed16, Definition 10.2] for the definition of the hypercohomol-

ogy groups ℍ∗(𝑋,ℱ∙) of a complex of sheaves ℱ∙ on a space 𝑋. By a complex
we always mean a non-negative cochain complex. For a sheaf ℱ we denote by
ℱ[0] the complex of sheaves with ℱ in degree 0 and other terms zero.
Let ℱ∙ be a complex of sheaves on 𝑋. Then there is a canonical homomor-

phism
Υ ∶ H∗(ℱ∙(𝑋))→ ℍ∗(𝑋,ℱ∙),

natural with respect to morphisms of complexes of sheaves. The map Υ is an
isomorphism in degree 0. If the sheaves ℱ𝑛 are acyclic then Υ is an isomor-
phism, see [Wed16, Theorem and Definition 10.4, Proposition 10.8].
Lemma 2.1. Take complexes of sheaves ℱ∙ and 𝒢∙ on topological spaces 𝑋 and
𝑌, respectively. Suppose 𝑓 ∶ 𝑋 → 𝑌 is a continuous map and 𝜑 ∶ 𝒢∙ → 𝑓∗ℱ∙

is a morphism of complexes of sheaves. Then there is the induced map on hy-
percohomology 𝑓∗ ∶ ℍ(𝑌,𝒢∙) → ℍ(𝑋,ℱ∙). Moreover, the following diagram is
commutative:

ℍ∗(𝑋,ℱ∙) H∗(ℱ∙(𝑋))

ℍ∗(𝑌,𝒢∙) H∗(𝒢∙(𝑌)).

Υ
𝑓∗

Υ

H(𝜑(𝑌))

Proof. See [Sta]. □

For a sheaf ℱ on 𝑋 and a closed subset 𝑍 ⊂ 𝑋 define
ℱ(𝑍) ∶= lim

⟶
open𝑈⊃𝑍

ℱ(𝑈).

For a sheaf ℱ we fix the notation for the restriction map res𝑊,𝑊′ ∶ ℱ(𝑊)→
ℱ(𝑊′) for sets𝑊′ ⊂ 𝑊 open or closed.
A sheafℱ is called soft if for every closed set 𝑍 ⊂ 𝑋 the restrictionmap res𝑋,𝑍

is surjective. Any soft sheaf on a compact Hausdorff space is acyclic [Wed16,
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Proposition 10.17]. A sheaf ℱ is called flabby if for every open set 𝑈 ⊂ 𝑋 the
restriction map ℱ(𝑋)→ ℱ(𝑈) is surjective. A flabby sheaf is acyclic.
For a presheaf 𝐹 denote by +𝐹 the sheafification of 𝐹. Let sh ∶ 𝐹 → +𝐹

denote the sheafification map, i.e. the canonical map from a presheaf to the
associated sheaf.

2.2. Algebraic sets. An algebraic set in ℝ𝑚 is the set of solutions of a system
of polynomial equations in ℝ𝑚.

Definition. Take 𝐵 a finitely generated ℝ-algebra. Following [Nes03, 3.4], we
define the real spectrum specℝ𝐵 of 𝐵 as the set of algebra homomorphisms 𝜓 ∶
𝐵 → ℝ.

A set of generators 𝑏1,… , 𝑏𝑛 of 𝐵 gives rise to an injective map 𝑖 ∶ specℝ𝐵 ↪
ℝ𝑚, 𝑖(𝜓) ∶= (𝜓(𝑏1),… , 𝜓(𝑏𝑛)). We call such a map a distinguished embedding.
The image of a distinguished embedding is an algebraic set. Equip specℝ𝐵with
the induced topology under some distinguished embedding. This topology does
not depend on the choice of a distinguished embedding because for any two
distinguished embeddings 𝑖 ∶ specℝ𝐵 ↪ ℝ𝑚 and 𝑗 ∶ specℝ𝐵 ↪ ℝ𝑙 there
exists a polynomial map 𝑝 ∶ ℝ𝑚 → ℝ𝑙 such that the following diagram is
commutative

specℝ𝐵 ℝ𝑚

ℝ𝑙.

𝑖

𝑗 𝑝

A polynomial map is smooth, hence, we can talk of maps into specℝ𝐵 being
smooth or locally Lipschitz. Hence, specℝ𝐵 becomes a predifferentiable space
(see [Che75, §1] for the definition).
If 𝜑 ∶ 𝐵′ → 𝐵 is a homomorphism of finitely generated ℝ-algebras, then

define specℝ𝜑 ∶ specℝ𝐵 → specℝ𝐵′ as (specℝ𝜑)(𝜓) ∶= 𝜓◦𝜑. For 𝑏 ∈ 𝐵 define
the function �̂� ∈ 𝐶(specℝ𝐵) by �̂�(𝜓) ∶= 𝜓(𝑏). We have 𝜑(𝑐) = 𝑐◦(specℝ𝜑) in
𝐶(specℝ𝐵) for 𝑐 ∈ 𝐵′.
Now, let’s assume that𝐵 is a finitely generatedℝ-subalgebra of𝐶(𝑋) for some

topological space 𝑋. To each point 𝑥 ∈ 𝑋 we associate the homomorphism
𝐵 → ℝ, 𝑏 ↦ 𝑏(𝑥). We get a continuous map Γ𝐵 ∶ 𝑋 → specℝ𝐵. If 𝑀 is a
smooth manifold and 𝐵 is a finitely generated subalgebra of 𝐶∞(𝑀) then Γ𝐵 is
smooth.
For 𝑏 ∈ 𝐵 we have

�̂�◦Γ𝐵 = 𝑏. (1)

Take 𝑓 ∶ 𝑋 → 𝑌 a continuous map of topological spaces. Suppose that
𝐵 ⊂ 𝐶(𝑋) and 𝐵′ ⊂ 𝐶(𝑌) are finitely generated subalgebras and 𝜑 ∶ 𝐵′ → 𝐵 is
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a homomorphism such that the following diagram is commutative:

𝐶(𝑋) 𝐵

𝐶(𝑌) 𝐵′.

𝑓∗ 𝜑

Then the following diagram is commutative:

𝑋 specℝ𝐵

𝑌 specℝ𝐵′.

Γ𝐵

𝑓 specℝ𝜑
Γ𝐵′

2.3. Sheaves of singular cochains. For a topological space 𝑋 let S𝑛(𝑋) de-
note the space of singular ℝ-chains in 𝑋 and let S𝑛(𝑋) denote the dual space,
the space of singular cochains. We will need the following presheaves S𝑛𝑋 for
𝑛 ≥ 0:

𝑈 ↦ S𝑛(𝑈).
The standard differential on cochains gives rise to a complex of presheaves S∙𝑋
on 𝑋. For a smooth manifold𝑀 (possibly with boundary) let Ssm,𝑛(𝑀) denote
the space of smooth singular ℝ-chains in 𝑀 and let S𝑛sm(𝑀) denote the dual
space. We will need the following presheaves S𝑛sm,𝑀 for 𝑛 ≥ 0:

𝑈 ↦ S𝑛sm(𝑈).

The standard differential on cochains gives rise to a complex of presheaves
S∙sm,𝑀 on 𝑀. More generally, the complex of presheaves S∙sm,𝑄 is well defined
for 𝑄 a predifferentiable space and functorial with respect to smooth maps be-
tween predifferentiable spaces. In particular, S∙sm,specℝ𝐵 are well defined.
For a set 𝑉 ⊂ ℝ𝑚 let SLip,𝑛(𝑉) denote the space of Lipschitz singular ℝ-

chains in 𝑉 and let S𝑛Lip(𝑉) denote the dual space. We will need the following
presheaves S𝑛Lip,𝑉 for 𝑛 ≥ 0:

𝑈 ↦ S𝑛Lip(𝑈).

The standard differential on cochains gives rise to a complex of presheaves
S∙Lip,𝑉 on𝑉. The complex of presheaves S

∙
Lip,specℝ𝐵

is well defined and functorial
with respect to algebra homomorphisms.
The sheaves +S𝑛𝑋 are flabby by [Wed16, proof of Theorem 11.13] and, hence,

are acyclic. Similarly, one can prove that the sheaves +S𝑛sm,𝑄 and +S𝑛Lip,𝑉 are
flabby.
For the complex of sheaves +S∙𝑋 we define the morphism of complexes of

sheaves, called coaugmentation, 𝜖 ∶ ℝ𝑋[0] →
+S∙𝑋 by 𝜖(1) ∶= 1. For the com-

plexes +S∙sm,𝑄 and
+S∙Lip,𝑉 the coaugmentation is defined similarly.
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Lemma 2.2.
(1) For a topological space 𝑋 the morphism of complexes

sh ∶ S∙𝑋(𝑋)→ +S∙𝑋(𝑋)

is a quasi-isomorphism.
(2) For a predifferentiable space 𝑄 the morphism of complexes

sh ∶ S∙sm,𝑄(𝑄)→
+S∙sm,𝑄(𝑄)

is a quasi-isomorphism.
(3) For a subset 𝑉 ⊂ ℝ𝑚 the morphism of complexes

sh ∶ S∙Lip,𝑉(𝑉)→
+S∙Lip,𝑉(𝑉)

is a quasi-isomorphism.

See [Bre97, p. 26] for the proof of the first case. For the other two a similar
proof applies.

Lemma 2.3.
(1) For a locally contractible 𝑋 the coaugmentation 𝜖 ∶ ℝ𝑋[0] →

+S∙𝑋 is a
quasi-isomorphism.

(2) For a smooth manifold𝑀 the coaugmentation 𝜖 ∶ ℝ𝑀[0] →
+S∙sm,𝑀 is a

quasi-isomorphism.
(3) For a locally Lipschitz contractible set 𝑉 ⊂ ℝ𝑚 the coaugmentation 𝜖 ∶

ℝ𝑉[0]→
+S∙Lip,𝑉 is a quasi-isomorphism.

See [Bre97, Example II.1.2] for the case of +S∙𝑋 , the rest is analogous.
An important result needed in this work is the local Lipschitz contractability

of algebraic sets due to Shartser [Sha11, Theorem 4.1.8].

Theorem 2.4. Take an algebraic set 𝑉 ⊂ ℝ𝑚 and a point 𝑣0 ∈ 𝑉. Then there
exist an open set 𝑈 ⊂ ℝ𝑚 with 𝑣0 ∈ 𝑈 and a Lipschitz map 𝐹 ∶ 𝑈 × [0, 1] → 𝑈
such that

(1) 𝐹(𝑢, 0) = 𝑢 for 𝑢 ∈ 𝑈;
(2) 𝐹(𝑢, 1) = 𝑣0 for 𝑢 ∈ 𝑈;
(3) 𝐹(𝑣, 𝑡) ∈ 𝑉 for all 𝑣 ∈ 𝑉 ∩𝑈 and 𝑡 ∈ [0, 1].

Corollary 2.5. The coaugmentation 𝜖 ∶ ℝ𝑉[0]→
+S∙Lip,𝑉 is a quasi-isomorphism

for 𝑉 an algebraic set inℝ𝑚.

Proof. Follows directly from Lemma 2.3 and Theorem 2.4. □

2.4. The de Rhamdg-algebra𝛀∙
𝑨|𝒌 of𝑨. To a 𝑘-algebra𝐴 one associates the

dg-algebra Ω∙
𝐴|𝑘 ([Kun86, Theorem 3.2]) with Ω0

𝐴|𝑘 = 𝐴. It has the following
universal property: for any dg-algebra 𝐸 and any algebra homomorphism 𝑓 ∶
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𝐴 → 𝐸0 there exists a uniquemorphism of dg-algebras 𝐹 ∶ Ω∙
𝐴|𝑘 → 𝐸 such that

𝐹|𝐴 = 𝑓:
𝐴 Ω∙

𝐴|𝑘

𝐸.

𝑓
𝐹

The elements of Ω𝑛
𝐴|𝑘 are called algebraic 𝑛-forms. The dg-algebra Ω

∙
𝐴|𝑘 is co-

variant in the algebra 𝐴.

Lemma 2.6. Suppose 𝐴 and 𝐵 are 𝑘-algebras and 𝜑 ∶ 𝐴 → 𝐵 is a surjective
homomorphism of algebras. Then the induced morphism Ω𝜑 ∶ Ω∙

𝐴|𝑘 → Ω∙
𝐵|𝑘 is

surjective and its kernel is the ideal ofΩ∙
𝐴|𝑘 generated by Ker𝜑 and 𝑑(Ker𝜑).

Proof. Set 𝑇 ∶= Ker𝜑, then it is enough to consider the case 𝐵 = 𝐴∕𝑇 and
𝜑 ∶ 𝐴 → 𝐵 being the canonical projection. Take the ideal 𝐼 of Ω∙

𝐴|𝑘 generated
by 𝑇 and 𝑑𝑇. 𝐼 is a dg-ideal, hence, Ω∙

𝐴|𝑘∕𝐼 is a dg-algebra and the canonical
projection 𝜋 ∶ Ω∙

𝐴|𝑘 → Ω∙
𝐴|𝑘∕𝐼 is a morphism of dg-algebras. By the universal

property there exists a unique morphism of dg-algebras ℒ ∶ Ω∙
𝐵|𝑘 → Ω∙

𝐴|𝑘∕𝐼
such thatℒ|𝐵 is the identity map. On the other hand, the kernel ofΩ𝜑 contains
𝑇 and 𝑑𝑇. Therefore, the morphism Ω𝜑 decomposes as the composition of dg-

algebra morphisms Ω∙
𝐴|𝑘

𝜋
,→ Ω∙

𝐴|𝑘∕𝐼
ℳ
,,→ Ω∙

𝐵|𝑘. The composition

Ω∙
𝐵|𝑘

ℒ
,→ Ω∙

𝐴|𝑘∕𝐼
ℳ
,,→ Ω∙

𝐵|𝑘

is clearly the identity map by the universal property of Ω∙
𝐵|𝑘. Consider the dia-

gram

Ω∙
𝐴|𝑘 Ω∙

𝐵|𝑘 Ω∙
𝐴|𝑘∕𝐼

Ω∙
𝐴|𝑘∕𝐼.

𝜋

Ω𝜑

𝜋

ℒ

ℳ =

The projection map 𝜋 is surjective and the left triangle is clearly commutative.
The upper triangle is commutative by the universal property of Ω∙

𝐴|𝑘. Hence,
the right triangle is commutative. Therefore, the morphismsℒ andℳ are mu-
tually inverse. As the morphism 𝜋 is surjective and its kernel is generated by 𝑇
and 𝑑𝑇, we have Ω𝑓 is surjective and its kernel is generated by 𝑇 and 𝑑𝑇. □

Lemma 2.7. Suppose a 𝑘-algebra𝐴 is the filtered colimit of 𝑘-algebras𝐴𝑖 . Then
Ω𝑛
𝐴|𝑘 ≅ lim

⟶
Ω𝑛
𝐴𝑖|𝑘

.

The proof can be found in [Kun86, Proposition 4.1].
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We can generalize the notion of algebraic forms to the case of sheaves. For
a topological space 𝑋 and a sheaf of 𝑘-algebras ℱ on 𝑋 consider the following
presheaf Ω𝑛

ℱ|𝑘 of ℱ-modules:

𝑈 ↦ Ω𝑛
ℱ(𝑈)|𝑘.

For every open𝑈 we obtain the complexΩ∙
ℱ(𝑈)|𝑘 and, hence, we have the com-

plex of presheaves Ω∙
ℱ|𝑘. The associated sheaves form the complex of sheaves

+Ω∙
ℱ|𝑘.
For sets𝑊′ ⊂ 𝑊 open or closed we fix the notations for the restriction map

res𝑊,𝑊′ ∶ Ω∙
ℱ(𝑊)|𝑘 → Ω∙

ℱ(𝑊′)|𝑘 and res𝑊,𝑊′ ∶ +Ω∙
ℱ|𝑘(𝑊)→ +Ω∙

ℱ|𝑘(𝑊
′) induced

by the restriction map res𝑊,𝑊′ ∶ ℱ(𝑊)→ ℱ(𝑊′).
Consider the morphism of complexes of presheaves ℝ𝑋[0] → Ω∙

ℱ|𝑘, 1 ↦ 1,
where ℝ𝑋 is the constant presheaf. The sheafification functor gives rise to a
morphism of complexes of sheaves, the coaugmentation, 𝜖 ∶ ℝ𝑋[0]→

+Ω∙
ℱ|𝑘.

Lemma 2.8. For a soft sheaf of algebrasℱ on 𝑋 the sheaves +Ω𝑛
ℱ|𝑘 are soft.

Proof. The associated sheaf +Ω𝑛
ℱ|𝑘 has the natural structure of an ℱ-module.

So it is a sheaf of modules over a soft sheaf and, therefore, is soft by [God58,
Theorem II.3.7.1]. □

3. The map 𝚲ℱ ∶ ℍ∗(𝑿, 𝒌𝑿[𝟎])→ 𝐇∗(𝛀∙
ℱ(𝑿)|𝒌)

3.1. The global sections of +𝛀𝒏
ℱ|𝒌. In this subsection we take ℱ to be a soft

sheaf of 𝑘-algebras on a compact Hausdorff space 𝑋.

Lemma 3.1. Suppose that 𝑆, 𝐹 ⊂ 𝑋 are closed sets such that 𝑆 ∩ 𝐹 = ∅. Then
there exists a section 𝑔 ∈ ℱ(𝑋) such that res𝑋,𝑆(𝑔) = 0 and res𝑋,𝐹(𝑔) = 1.

The proof can be found in [God58, Theorem II.3.7.2].

Lemma 3.2. Suppose that 𝑈 ⊂ 𝑋 is an open set. Take 𝜔 ∈ Ω𝑛
ℱ(𝑋)|𝑘 such that

𝜔|𝑈 = 0 in Ω𝑛
ℱ(𝑈)|𝑘. Take also a section 𝜑 ∈ ℱ(𝑋) such that supp𝜑 ⊂ 𝑈. Then

𝜑𝜔 = 0.

Proof. Put 𝑆 ∶= supp𝜑. The restriction homomorphism res𝑋,𝑆 ∶ ℱ(𝑋) →
ℱ(𝑆) is surjective as ℱ is soft. By Lemma 2.6 the kernel of res𝑋,𝑆 ∶ Ω∙

ℱ(𝑋)|𝑘 →
Ω∙
ℱ(𝑆)|𝑘 is the ideal generated by Ker res𝑋,𝑆 and 𝑑(Ker res𝑋,𝑆). By assumption

𝜔 ∈ Ker res𝑋,𝑆 and, hence, it is enough to prove the statement for 𝜔 of the form

𝜔 = 𝑑𝑡 ∧ 𝜆 + 𝑢𝜂,

where 𝑡, 𝑢 ∈ ℱ(𝑋), 𝜆, 𝜂 ∈ Ω∙
ℱ(𝑋)|𝑘 and res𝑋,𝑆(𝑡) = res𝑋,𝑆(𝑢) = 0. We have

𝜑𝜔 = (𝜑𝑑𝑡) ∧ 𝜆 + (𝜑𝑢)𝜂.
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We have 𝜑𝑢 = 0 as the supports of 𝜑 and 𝑢 do not intersect. It remains to
prove that 𝜑𝑑𝑡 = 0. By Lemma 3.1 there exists a section 𝑔 ∈ ℱ(𝑋) such that
res𝑋,𝑆(𝑔) = 0 and res𝑋,supp 𝑡(𝑔) = 1. We have

𝜑𝑑𝑡 = 𝜑𝑑(𝑡𝑔) = (𝜑𝑡)𝑑𝑔 + (𝜑𝑔)𝑑𝑡 = 0
as 𝑡 = 𝑡𝑔, 𝜑𝑡 = 0 and 𝜑𝑔 = 0. □

Lemma 3.3. Suppose ℱ is a soft sheaf of algebras on 𝑋. Then the sheafification
sh ∶ Ω𝑛

ℱ(𝑋)|𝑘 = Ω𝑛
ℱ|𝑘(𝑋)→

+Ω𝑛
ℱ|𝑘(𝑋) is an isomorphism.

Proof. First we prove injectivity. Take an 𝑛-form 𝜔 ∈ Ω𝑛
ℱ|𝑘(𝑋) such that its

image in +Ω𝑛
ℱ|𝑘(𝑋) is 0. Then there is a finite open cover (𝑈𝑖) of 𝑋 such that

the restrictions 𝜔|𝑈𝑖 are 0 for all 𝑖. Choose a partition of unity (𝜑𝑖 ∈ ℱ(𝑋)) sub-
ordinate to the cover (𝑈𝑖). It can always be done by [God58, Theorem II.3.6.1].
By Lemma 3.2, 𝜑𝑖𝜔 = 0 for all 𝑖. Now, 𝜔 =∑

𝑖 𝜑𝑖𝜔 = 0.
For surjectivity, take a global section of the sheaf +Ω𝑛

ℱ|𝑘. It can be represented
by a set of pairs (𝑈𝑖, 𝜔𝑖) where the sets 𝑈𝑖 form a finite open cover of 𝑋 and
𝜔𝑖 ∈ Ω𝑛

ℱ(𝑈𝑖)|𝑘
such that the germs of 𝜔𝑖 agree at every point. We seek a form

𝜔 ∈ Ω𝑛
ℱ(𝑋)|𝑘 such that 𝜔𝑥 = (𝜔𝑖)𝑥 in Ω𝑛

ℱ𝑥|𝑘
for each 𝑖 and 𝑥 ∈ 𝑈𝑖. Take a

partition of unity (𝜑𝑖) subordinate to the cover (𝑈𝑖) and denote 𝐹𝑖 ∶= supp𝜑𝑖.
The restriction map res𝑋,𝑆 ∶ Ω𝑛

ℱ(𝑋)|𝑘 → Ω𝑛
ℱ(𝑆)|𝑘 is surjective for any closed

𝑆 by Lemma 2.6. Hence, we can extend the forms res𝑋,𝐹𝑖 (𝜔𝑖) to some forms
�̄�𝑖 ∈ Ω𝑛

ℱ(𝑋)|𝑘. Now, put 𝜔 ∶= ∑
𝑖 𝜑𝑖�̄�𝑖 ∈ Ω𝑛

ℱ(𝑋)|𝑘. Take 𝑖 and a point 𝑥 ∈ 𝑈𝑖.
Introduce 𝐽 ∶= {𝑗 |𝑥 ∈ 𝐹𝑗}. We have

𝜔𝑥 = (
∑

𝑗
𝜑𝑗�̄�𝑗)𝑥 = (

∑

𝑗∈𝐽
𝜑𝑗�̄�𝑗)𝑥 = (

∑

𝑗∈𝐽
𝜑𝑗𝜔𝑗)𝑥 = (

∑

𝑗∈𝐽
𝜑𝑗)𝑥(𝜔𝑖)𝑥 = (𝜔𝑖)𝑥.

□

3.2. The constructionandnaturality of𝚲ℱ ∶ ℍ∗(𝑿, 𝒌𝑿[𝟎])→ 𝐇∗(𝛀∙
ℱ(𝑿)|𝒌).

Definition. For a soft sheaf of algebrasℱ on a compact Hausdorff space 𝑋 we
define the map Λℱ by the following diagram:

ℍ∗(𝑋, 𝑘𝑋[0]) ℍ∗(𝑋, +Ω∙
ℱ|𝑘)

H∗(+Ω∙
ℱ|𝑘(𝑋))

H∗(Ω∙
ℱ(𝑋)|𝑘).

ℍ(𝜖)

Λℱ

Υ≅

≅ H(sh)

Here the map H(sh) is an isomorphism by Lemma 3.3 and the map Υ is an
isomorphism as the sheaves +Ω∙

ℱ|𝑘 are acyclic by Lemma 2.8.
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Amorphism of ringed spaces (𝑓, 𝜑) ∶ (𝑋,ℱ)→ (𝑌,𝒢) consists of a continu-
ous map 𝑓 ∶ 𝑋 → 𝑌 and a morphism of sheaves 𝜑 ∶ 𝒢→ 𝑓∗ℱ.

Proposition 3.4. The linear map Λ− is natural with respect to morphisms of
ringed spaces in the following sense: for a morphism of ringed spaces (𝑓, 𝜑) ∶
(𝑋,ℱ)→ (𝑌,𝒢) the following diagram is commutative:

ℍ∗(𝑋, 𝑘𝑋[0]) H∗(Ω∙
ℱ(𝑋)|𝑘)

ℍ∗(𝑌, 𝑘𝑌[0]) H∗(Ω∙
𝒢(𝑌)|𝑘).

Λℱ

Λ𝒢
𝑓∗ H(Ω𝜑(𝑌))

Proof. The morphism of sheaves 𝜑 ∶ 𝒢→ 𝑓∗ℱ defines the morphism of com-
plexes of sheaves +Ω𝜑 ∶ +Ω∙

𝒢|𝑘 → 𝑓∗+Ω∙
ℱ|𝑘.

Consider the diagram

ℍ∗(𝑋, 𝑘𝑋[0]) ℍ∗(𝑋, +Ω∙
ℱ|𝑘) H∗(+Ω∙

ℱ|𝑘(𝑋)) H∗(Ω∙
ℱ(𝑋)|𝑘)

ℍ∗(𝑌, 𝑘𝑌[0]) ℍ∗(𝑌, +Ω∙
𝒢|𝑘) H∗(+Ω∙

𝒢|𝑘(𝑌)) H∗(Ω∙
𝒢(𝑌)|𝑘).

ℍ(𝜖)

Λℱ

Υ
≅

H(sh)
≅

𝑓∗

ℍ(𝜖)

Λ𝒢

𝑓∗ H(+Ω𝜑(𝑌))

Υ
≅

H(Ω𝜑(𝑌))
H(sh)
≅

The middle square is commutative by Lemma 2.1. The other squares are com-
mutative for obvious reasons. □

4. Splitting for the algebra of smooth functions
In this section𝑀 is a compact smooth manifold. We prove that for a smooth

manifold𝑀 the groups ℍ∗(𝑀,ℝ𝑀[0]) canonically split off of H
∗(Ω∙

𝐶∞(𝑀)|ℝ).

4.1. Canonical isomorphism 𝚯. Denote by Ω∙
𝑀 the complex of sheaves of

smooth differential forms on𝑀. We often denote byΩ∙(𝑀) the complexΩ∙
𝑀(𝑀).

Consider the morphism of complexes, the coaugmentation, 𝜖 ∶ ℝ𝑀[0] → Ω∙
𝑀

defined by 𝜖(1) ∶= 1. We define Θ by the following commutative diagram

ℍ∗(𝑀,ℝ𝑀[0]) ℍ∗(𝑀,Ω∙
𝑀) H∗(Ω∙(𝑀)).ℍ(𝜖)

≅

Θ

Υ
≅

The mapℍ(𝜖) in this case is an isomorphism (as 𝜖 is a quasi-isomorphism) and
Υ is an isomorphism and so Θ is an isomorphism.
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4.2. Morphisms 𝝅 and 𝝅.
(1) Take an open set𝑈 ⊂ 𝑀; the identitymap𝐶∞(𝑈)→ Ω0(𝑈) can beuniquely

extended to a morphism of dg-algebras 𝜋 ∶ Ω∙
𝐶∞(𝑈)|ℝ → Ω∙(𝑈) by the uni-

versal property of Ω∙
𝐶∞(𝑈)|ℝ. The following diagram is commutative:

𝐶∞(𝑈) Ω∙
𝐶∞(𝑈)|ℝ

Ω∙(𝑈).

𝜋

(2) This way we obtain a morphism of complexes of presheaves 𝜋 ∶ Ω∙
𝐶∞𝑀 |ℝ

→
Ω∙
𝑀 .

(3) By the universal property of sheafification we have the morphism of com-
plexes of sheaves 𝜋 ∶ +Ω∙

𝐶∞𝑀 |ℝ
→ Ω∙

𝑀 .

The following diagrams are commutative:

ℝ𝑀[0]
+Ω∙

𝐶∞𝑀 |ℝ
Ω∙
𝐶∞𝑀 |ℝ

Ω∙
𝑀

Ω∙
𝑀 , +Ω∙

𝐶∞𝑀 |ℝ
.

𝜖

𝜖 𝜋

𝜋

sh 𝜋 (2)

4.3. Main splitting theorem.

Theorem 4.1. The following diagram is commutative:

ℍ∗(𝑀,ℝ𝑀[0]) H∗(Ω∙
𝐶∞(𝑀)|ℝ) H∗(Ω∙(𝑀)).

Λ𝐶∞𝑀

Θ

H(𝜋)

Proof. Consider the diagram

ℍ∗(𝑀,ℝ𝑀[0]) ℍ∗(𝑀, +Ω∙
𝐶∞𝑀 |ℝ

) ℍ∗(𝑀,Ω∙
𝑀)

H∗(+Ω∙
𝐶∞𝑀 |ℝ

(𝑀)) H∗(Ω∙(𝑀))

H∗(Ω∙
𝐶∞(𝑀)|ℝ).

ℍ(𝜖)

Θ

ℍ(𝜖)

Λ𝐶∞𝑀

ℍ(𝜋)

Υ

H(𝜋)

Υ≅

H(sh)
H(𝜋)

The left quadrangle is commutative by the definition ofΛ𝐶∞𝑀 . The upper triangle
and the bottom right triangles are commutative by Diagrams 2. The upper right
square is commutative by the naturality of Υ. The upper triangle with Θ is
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commutative by the definition of Θ. As the right arrow Υ is an isomorphism,
the whole diagram is commutative. □

5. Simplicial dg-algebra of flat cochains𝛀∙
♭(𝚫

−)
5.1. Flat cochains. We present the dg-algebra Ω∙

♭(∆
𝑛) of flat cochains on the

closed𝑛-simplex. We follow [Whi57], see also [Hei05]. The dg-algebrasΩ∙
♭(∆

𝑛),
𝑛 ≥ 0, will form the simplicial dg-algebra Ω∙

♭(∆
−).

For a convex set 𝑉 ⊂ ℝ𝑚 we denote by af f𝑉 the affine hull of 𝑉. We denote
by relint𝑉 the interior of 𝑉 relative to af f𝑉.

Definition. For a convex set 𝑉 ⊂ ℝ𝑚 denote by Saff𝑘 (𝑉) the vector space of
affine singular 𝑘-chains in 𝑉 with coefficients in ℝ. The boundary map 𝜕 ∶
Saff𝑘 (𝑉)→ Saff𝑘−1(𝑉) is defined in the usualmanner: we denote by 𝛾𝑖 ∶ ∆

𝑘−1 → ∆𝑘
the 𝑖-th face embedding, then for a simplex 𝜎 ∶ ∆𝑘 → 𝑉 we denote by 𝜕𝑖𝜎 ∶
∆𝑘−1 → 𝑉 the composition 𝜎◦𝛾𝑖 and by 𝜕𝜎 the singular chain

∑𝑘
𝑖=0(−1)

𝑖𝜕𝑖𝜎.
The vector spaces Saff𝑘 (𝑉) together with the boundary map form the chain com-
plex Saff∙ (𝑉).

An affine map 𝑓 ∶ 𝑉 → 𝑉′ induces the morphism of complexes

Saff(𝑓) ∶ Saff∙ (𝑉)→ Saff∙ (𝑉′).
Hence, the correspondence 𝑉 ↦ Saff∙ (𝑉) is covariant with respect to affine
maps.
Define the mass |𝛼| of an affine 𝑘-chain 𝛼 = ∑ 𝜆𝑖𝜎𝑖, where 𝜎𝑖 are distinct

singular simplices, as
|𝛼| ∶=

∑
|𝜆𝑖||𝜎𝑖|L

where |𝜎𝑖|L denotes the Lebesgue 𝑘-measure of 𝜎𝑖. Define the flat seminorm
| ⋅ |♭ on Saff𝑘 (𝑉) as

|𝛼|♭ ∶= inf
𝛽∈Saff𝑘+1(𝑉)

{|𝛼 − 𝜕𝛽| + |𝛽|}.

Lemma 5.1. The map Saff𝑘 (𝑉) → Saff𝑘 (𝑉
′) induced by an inclusion of convex sets

𝑉 ↪ 𝑉′ preserves the flat seminorm.

Proof. Follows from [Whi57, Lemma V.2b]. □

Lemma 5.2. Let 𝑉 be a convex set. The map Saff𝑘 (relint𝑉)→ Saff𝑘 (𝑉) induced by
the inclusion relint𝑉 ↪ 𝑉 has image dense with respect to the flat seminorm.

Proof. Any singular affine simplex in𝑉 can be approximated by one in relint𝑉.
Cf. [Whi57, VIII.1(h)]. □

Definition. If 𝑉 is a convex set we define Ω𝑘
♭ (𝑉) as the vector space of linear

functionals Saff𝑘 (𝑉) → ℝ bounded with respect to the seminorm | ⋅ |♭. We call
the elements of Ω𝑘

♭ (𝑉) flat cochains on 𝑉. We define the differential 𝑑𝑋 of a
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cochain 𝑋 by the formula ⟨𝑑𝑋, 𝛼⟩ ∶= ⟨𝑋, 𝜕𝛼⟩. We obtain the complex Ω∙
♭(𝑉).

This definition is equivalent to the one given by Whitney in [Whi57, VIII.1(b)
and VII.10].

The complex Saff∙ (𝑉) was covariant in 𝑉 with respect to affine maps, so the
complex Ω∙

♭(𝑉) is contravariant in 𝑉 with respect to affine maps.
We refer the reader to [Whi57, IX.14] where Whitney defines the graded-

commutative multiplication of flat cochains in open sets. The multiplication
is natural with respect to affine maps [Whi57, X.11]. For an open convex set 𝑉
the complexΩ∙

♭(𝑉) becomes a dg-algebra, which is contravariantwith respect to
affinemaps. Hence, themultiplication is well defined in relatively open convex
sets. Next we wish to define the product of two flat cochains on a closed convex
set 𝑉. For this we need the following lemma.

Lemma 5.3. For a closed convex set𝑉 ⊂ ℝ𝑚 the inclusion relint𝑉 ↪ 𝑉 induces
an isomorphism 𝜌 ∶ Ω∙

♭(𝑉)→ Ω∙
♭(relint𝑉).

Proof. Follows from Lemmas 5.1 and 5.2. □

For a closed convex set 𝑉 ⊂ ℝ𝑚 we introduce the multiplication in Ω∙
♭(𝑉)

in the way that the isomorphism of complexes 𝜌 ∶ Ω∙
♭(𝑉) → Ω∙

♭(relint𝑉) from
Lemma 5.3 becomes an isomorphism of dg-algebras. This multiplication and
its naturality are implicit in [Whi57, VII.12]. In Proposition 5.6 we show that
the multiplication is natural with respect to affine maps.
Take 𝑉 a closed convex set. The inclusion 𝑉 ↪ af f𝑉 induces the map 𝜋 ∶

Ω∙
♭(af f𝑉)→ Ω∙

♭(𝑉).

Lemma 5.4. The map 𝜋 ∶ Ω∙
♭(af f𝑉)→ Ω∙

♭(𝑉) is surjective.

Proof. Follows from Lemma 5.1 by the Hahn-Banach theorem. Alternatively,
see [Whi57, VIII.1(h)] and apply Lemma 5.3. □

Lemma 5.5. The map 𝜋 ∶ Ω∙
♭(af f𝑉)→ Ω∙

♭(𝑉) is a morphism of dg-algebras.

Proof. Consider the following diagram

Ω∙
♭(af f𝑉) Ω∙

♭(𝑉) Ω∙
♭(relint𝑉).

𝜋 𝜌

The composition 𝜌◦𝜋 is induced by the inclusion relint𝑉 ↪ af f𝑉 and, hence,
is a morphism of dg-algebras. Since 𝜌 is an isomorphism of dg-algebras, 𝜋 is a
morphism of dg-algebras. □

Proposition 5.6. Consider 𝑓 ∶ 𝑉 → 𝑉′ an affine map of closed convex sets.
Then the induced morphismΩ♭(𝑓) ∶ Ω∙

♭(𝑉
′)→ Ω∙

♭(𝑉) preserves multiplication.
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Proof. Consider the following commutative diagram:

Ω∙
♭(af f𝑉

′) Ω∙
♭(af f𝑉)

Ω∙
♭(𝑉

′) Ω∙
♭(𝑉).

𝜋

Ω♭(af f𝑓)

𝜋
Ω♭(𝑓)

Here af f𝑓 ∶ af f𝑉 → af f𝑉′ is the affine extension of 𝑓. The left vertical arrow
is surjective by Lemma 5.4. The vertical arrows are morphisms of dg-algebras
by Lemma 5.5. The mapΩ♭(af f𝑓) is a morphism of dg-algebras as it is induced
by an affine map of relatively open sets. Therefore, Ω♭(𝑓) is a morphism of
dg-algebras. □

An order-preserving map [𝑛] → [𝑙] induces an affine map ∆𝑛 → ∆𝑙. Hence,
we obtain the simplicial dg-algebraΩ∙

♭(∆
−) defined as [𝑛]↦ Ω∙

♭(∆
𝑛). In partic-

ular, there are face maps 𝜕𝑖 ∶ Ω∙
♭(∆

𝑛) → Ω∙
♭(∆

𝑘−1) induced by the face embed-
dings 𝛾𝑖 ∶ ∆𝑘−1 → ∆𝑛.

5.2. The attributes of the simplicial dg-algebra𝛀∙
♭(𝚫

−). (1) We define the
linear maps𝔍𝑛 ∶ Ω𝑛

♭ (∆
𝑛)→ ℝ as

𝔍𝑛(𝜔) ∶= ⟨𝜔, id∆𝑛⟩ .

Proposition 5.7 (Stokes’ formula). For every 𝜂 ∈ Ω𝑛−1
♭ (∆𝑛) the following for-

mula holds

𝔍𝑛(𝑑𝜂) =
𝑛∑

𝑖=0
(−1)𝑖𝔍𝑛−1(𝜕𝑖𝜂).

Proof. We have

𝔍𝑛(𝑑𝜂) = ⟨𝑑𝜂, id∆𝑛⟩ = ⟨𝜂, 𝜕 id∆𝑛⟩ =
𝑛∑

𝑖=0
(−1)𝑖 ⟨𝜂, 𝛾𝑖⟩ =

=
𝑛∑

𝑖=0
(−1)𝑖 ⟨𝜕𝑖𝜂, id∆𝑛−1⟩ =

𝑛∑

𝑖=0
(−1)𝑖𝔍𝑛−1(𝜕𝑖𝜂).

□

(2) The Lipschitz functions on ∆𝑛 form the algebra Lip(∆𝑛). The correspon-
dence [𝑛] ↦ Lip(∆𝑛) gives rise to the simplicial algebra Lip(∆−). Every Lips-
chitz function 𝑓 ∈ Lip(∆𝑛) defines a flat 0-cochain 𝜁(𝑓) on ∆𝑛 in the following
way. Take an affine simplex 𝜎 ∶ {𝑣0} = ∆0 → ∆𝑛 and set

⟨
𝜁(𝑓), 𝜎

⟩
∶= 𝑓(𝜎(𝑣0)).

It is easy to check that 0-cochain 𝜁(𝑓) is flat (see [Whi57, Theorem VII.4B].
We obtain the linear map 𝜁 ∶ Lip(∆𝑛) → Ω∙

♭(∆
𝑛) with image in Ω0

♭(∆
𝑛). The

composition 𝜌◦𝜁 ∶ Lip(∆𝑛) → Ω∙
♭(∆

𝑛)
≅
,→ Ω∙

♭(relint ∆
𝑛) is a homomorphism
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of algebras (by the definition of multiplication on open sets [Whi57, IX.14]).
Hence, 𝜁 is a homomorphism of algebras. The map 𝜁 clearly preserves the sim-
plicial structure and we obtain the morphism of simplicial algebras

𝜁 ∶ Lip(∆−)→ Ω0
♭(∆

−).

(3) Consider the simplicial dg-algebra Ω∙(∆−) of smooth differential forms.
Every smooth form 𝜃 ∈ Ω𝑘(∆𝑛) gives rise to a flat cochain ∇(𝜃) ∈ Ω𝑘

♭ (∆
𝑛) by

⟨∇(𝜃), 𝜎⟩ ∶= ∫
∆𝑘
𝜎∗𝜃

for affine 𝜎 ∶ ∆𝑘 → ∆𝑛. The flatness can be easily checked (see [Whi57, V.14
and TheoremV.10A]). This correspondence gives rise to a simplicial linearmap

∇ ∶ Ω∙(∆−)→ Ω∙
♭(∆

−).

By Stokes’ formula for smooth forms the differential is preserved. The compo-
sition

Ω∙(∆𝑛)
∇
,→ Ω∙

♭(∆
𝑛)

𝜌
,→ Ω∙

♭(relint ∆
𝑛)

preservesmultiplication by the definition ofmultiplication of flat cochains [Whi57,
X.14]. Hence, by the definition ofmultiplication inΩ∙

♭(∆
𝑛) themap∇ preserves

multiplication. Therefore, the map

∇ ∶ Ω∙(∆−)→ Ω∙
♭(∆

−)

is a morphism of simplicial dg-algebras.
(4) We define the linear maps𝔗𝑛 ∶ Ω𝑛(∆𝑛)→ ℝ as

𝔗𝑛(𝜔) ∶= ∫
∆𝑛
𝜔.

The diagram

Ω𝑛(∆𝑛) ℝ

Ω𝑛
♭ (∆

𝑛)

𝔗𝑛

∇ 𝔍𝑛

is commutative by construction.
(5) The smooth functions form the simplicial algebra 𝐶∞(∆−). It embeds

via 𝑖 ∶ 𝐶∞(∆−) ↪ Lip(∆−) in the simplicial algebra Lip(∆−). The following
diagram of morphisms of simplicial algebras is commutative:

𝐶∞(∆−) Ω∙(∆−)

Lip(∆−) Ω∙
♭(∆

−).
𝑖 ∇

𝜁
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6. The map𝚿𝑨 ∶ 𝐇∗(𝛀∙
𝑨|ℝ)→ ℍ∗(𝑿,ℝ𝑿[𝟎])

6.1. The pullback of an algebraic de Rham form. Take 𝐵 a finitely gen-
erated ℝ-algebra. We construct a morphism of dg-algebras 𝜇(𝜎) ∶ Ω∙

𝐵|ℝ →
Ω∙
♭(∆

𝑛) for every singular Lipschitz simplex 𝜎 ∶ ∆𝑛 → specℝ𝐵. For such 𝜎
we define an algebra homomorphism 𝜃(𝜎) ∶ 𝐵 → Lip(∆𝑛) as 𝑏 ↦ �̂�◦𝜎. By
the universal property of Ω∙

𝐵|ℝ there exists a unique morphism of dg-algebras
𝜇(𝜎) ∶ Ω∙

𝐵|ℝ → Ω∙
♭(∆

𝑛)making the following diagram commute:

Ω∙
𝐵|ℝ Ω∙

♭(∆
𝑛)

𝐵 Lip(∆𝑛).

𝜇(𝜎)

𝜃(𝜎)
𝜁

Lemma 6.1. The following diagram is commutative:

Ω∙
𝐵|ℝ

Ω∙
♭(∆

𝑛) Ω∙
♭(∆

𝑛−1).

𝜇(𝜎)
𝜇(𝜕𝑖𝜎)

𝜕𝑖

Proof. Consider the following diagram:

Ω∙
𝐵|ℝ Ω∙

♭(∆
𝑛) Ω∙

♭(∆
𝑛−1)

𝐵 Lip(∆𝑛) Lip(∆𝑛−1).

𝜇(𝜎)

𝜇(𝜕𝑖𝜎)

𝜕𝑖

𝜃(𝜎)

𝜃(𝜕𝑖𝜎)

𝜁
𝜕𝑖

𝜁

The right square obviously commutes. By the definition of 𝜇 the left square and
the outer contour commute. The bottom triangle commutes by the definition of
𝜃. Hence, by the universal property of Ω∙

𝐵|ℝ the upper triangle also commutes.
□

The map 𝜇(𝜎) is natural in algebra, namely:

Lemma 6.2. Suppose 𝜑 ∶ 𝐵′ → 𝐵 is a homomorphism of finitely generated
ℝ-algebras. Consider a commutative diagram

∆𝑛 specℝ𝐵

specℝ𝐵′

𝜎

𝜎′
specℝ𝜑
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with 𝜎 and 𝜎′ Lipschitz. Then the following diagram commutes:

Ω∙
𝐵|ℝ Ω∙

♭(∆
𝑛)

Ω∙
𝐵′|ℝ.

𝜇(𝜎)

Ω𝜑
𝜇(𝜎′)

Proof. Consider the following diagram:

Ω∙
𝐵′|ℝ Ω∙

𝐵|ℝ Ω∙
♭(∆

𝑛)

𝐵′ 𝐵 Lip(∆𝑛).

Ω𝜑

𝜇(𝜎′)

𝜇(𝜎)

𝜑

𝜃(𝜎′)

𝜃(𝜎)
𝜁

The left square obviously commutes. By the definition of 𝜇 the right square and
the outer contour commute. The bottom triangle commutes: for 𝑐 ∈ 𝐵′

𝜃(𝜎)(𝜑(𝑐)) = 𝜑(𝑐)◦𝜎 = 𝑐◦(specℝ𝜑)◦𝜎 = 𝑐◦𝜎′ = 𝜃(𝜎′)(𝑐).
Hence, by the universal property of Ω∙

𝐵′|ℝ the upper triangle also commutes.
□

6.2. The map 𝝃𝑩 ∶ 𝛀∙
𝑩|ℝ → 𝐒∙𝐋𝐢𝐩(𝐬𝐩𝐞𝐜ℝ𝑩). Let 𝐵 be a finitely generated ℝ-

algebra. To an algebraic 𝑛-form 𝜔 ∈ Ω𝑛
𝐵|ℝ we associate a Lipschitz singular

cochain 𝜉𝐵(𝜔). On a Lipschitz singular simplex 𝜎 ∶ ∆𝑛 → specℝ𝐵 we define
𝜉𝐵(𝜔) as ⟨

𝜉𝐵(𝜔), 𝜎
⟩
∶= 𝔍𝑛(𝜇(𝜎)(𝜔)) ∈ ℝ.

Proposition 6.3. The above gives a morphism of complexes

𝜉𝐵 ∶ Ω∙
𝐵|ℝ → S∙Lip(specℝ𝐵).

Proof. The only part that needs to be checked is that themap preserves 𝑑. Take
a Lipschitz singular simplex 𝜎 ∶ ∆𝑛 → specℝ𝐵 and 𝜂 ∈ Ω𝑛−1

𝐵|ℝ , then

⟨
𝜉𝐵(𝑑𝜂), 𝜎

⟩
= 𝔍𝑛(𝜇(𝜎)(𝑑𝜂))

(2)= 𝔍𝑛(𝑑(𝜇(𝜎)(𝜂)))
(3)=

𝑛∑

𝑖=0
(−1)𝑖𝔍𝑛−1(𝜕𝑖(𝜇(𝜎)(𝜂)))

(4)=

(4)=
𝑛∑

𝑖=0
(−1)𝑖𝔍𝑛−1(𝜇(𝜕𝑖𝜎)(𝜂)) =

𝑛∑

𝑖=0
(−1)𝑖

⟨
𝜉𝐵(𝜂), 𝜕𝑖𝜎

⟩
=
⟨
𝜉𝐵(𝜂), 𝜕𝜎

⟩
=
⟨
𝑑𝜉𝐵(𝜂), 𝜎

⟩
.

The second equality follows from the fact that𝜇(𝜎) is amorphism of complexes.
The third equality follows from Proposition 5.7. The fourth equality follows
from Lemma 6.1. □

Lemma 6.2 allows us to prove the naturality of 𝜉 in algebras:
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Lemma 6.4. Suppose 𝜑 ∶ 𝐵′ → 𝐵 is a homomorphism of finitely generated
ℝ-algebras. Then the following diagram is commutative

Ω∙
𝐵|ℝ S∙Lip(specℝ𝐵)

Ω∙
𝐵′|ℝ S∙Lip(specℝ𝐵

′).

𝜉𝐵

Ω𝜑

𝜉𝐵′
SLip(specℝ𝜑)

6.3. The map 𝚽𝑩 ∶ 𝐇∗(𝛀∙
𝑩|ℝ)→ ℍ∗(𝐬𝐩𝐞𝐜ℝ𝑩,ℝ𝐬𝐩𝐞𝐜ℝ𝑩

[𝟎]).
We define the homomorphism Φ𝐵 as the vertical map making the following

diagram commutative:

ℍ∗(specℝ𝐵,ℝspecℝ𝐵
[0]) ℍ∗(specℝ𝐵, +S∙Lip,specℝ𝐵)

H∗(Ω∙
𝐵|ℝ) H∗(S∙Lip(specℝ𝐵)).

ℍ(𝜖)
≅

H(𝜉𝐵)
Φ𝐵 ≅ Υ◦H(sh)

Here ℍ(𝜖) is an isomorphism by Corollary 2.5.

Lemma 6.5. Let 𝜑 ∶ 𝐵′ → 𝐵 be a homomorphism of finitely generated ℝ-
algebras. Then the following diagram is commutative:

H∗(Ω∙
𝐵|ℝ) ℍ∗(specℝ𝐵,ℝspecℝ𝐵

[0])

H∗(Ω∙
𝐵′|ℝ) ℍ∗(specℝ𝐵′,ℝspecℝ𝐵′

[0]).

Φ𝐵

H(Ω𝜑)

Φ𝐵′

(specℝ𝜑)∗

Proof. It follows directly from Lemma 6.4 and naturality of Υ◦H(sh). □

Remark. There are other ways to define a map, analogous to Φ𝐵. One way is
to consider semi-algebraic cochains, instead of Lipschitz ones, see [HLTV11].
Another way would be to use the filtered de Rham complex, see [PS08, Proposi-
tion 7.24]. Our construction ofΦ𝐵 allows us to relate it to the classical de Rham
complex Ω∙(𝑀) in the case 𝐵 ⊂ 𝐶∞(𝑀), see Lemma 7.9.

6.4. The map 𝚿𝑨 ∶ 𝐇∗(𝛀∙
𝑨|ℝ) → ℍ∗(𝑿,ℝ𝑿[𝟎]). For a topological space 𝑋

and a subalgebra 𝐴 ⊂ 𝐶(𝑋) write 𝐴 as the filtered colimit of its finitely gener-
ated subalgebras: 𝐴 = lim

⟶
𝐵. The functors Ω and H preserve filtered colimits.

For an inclusion of finitely generated subalgebras 𝑖 ∶ 𝐵′ ↪ 𝐵 of 𝐶(𝑋) consider
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the diagram

H∗(Ω∙
𝐵|ℝ) ℍ∗(specℝ𝐵,ℝspecℝ𝐵

[0]) ℍ∗(𝑋,ℝ𝑋[0])

H∗(Ω∙
𝐵′|ℝ) ℍ∗(specℝ𝐵′,ℝspecℝ𝐵′

[0]).

Φ𝐵 Γ∗𝐵

H(Ω𝑖)
Φ𝐵′

(specℝ𝑖)∗ Γ∗𝐵′

The left square is commutative by Lemma 6.5 and the right triangle is com-
mutative by the naturality of Γ𝐵 (see Subsection 2.2). We pass to the colimit of
Γ∗𝐵◦Φ𝐵 over all finitely generated subalgebras 𝐵 ⊂ 𝐴 and obtain the map

Ψ𝐴 ∶ H∗(Ω∙
𝐴|ℝ)→ ℍ∗(𝑋,ℝ𝑋[0]).

Proposition 6.6. Take 𝑓 ∶ 𝑋 → 𝑌 a continuous map of topological spaces.
Suppose that 𝐴 ⊂ 𝐶(𝑋) and 𝐴′ ⊂ 𝐶(𝑌) are subalgebras and 𝜑 ∶ 𝐴′ → 𝐴 is a
homomorphism such that the following diagram is commutative:

𝐶(𝑋) 𝐴

𝐶(𝑌) 𝐴′.

𝑓∗ 𝜑

Then the following diagram is commutative:

H∗(Ω∙
𝐴|ℝ) ℍ∗(𝑋,ℝ𝑋[0])

H∗(Ω∙
𝐴′|ℝ) ℍ∗(𝑌,ℝ𝑌[0]).

Ψ𝐴

H(Ω𝜑)
Ψ𝐴′

𝑓∗

Proof. It follows directly from Lemma 6.5 and naturality of Γ. □

7. Identifying the map𝚿𝑪∞(𝑴)

7.1. The map 𝝃 𝐬𝐦𝑩 ∶ 𝛀∙
𝑩|ℝ → 𝐒∙𝐬𝐦(𝐬𝐩𝐞𝐜ℝ𝑩). This subsection mirrors the Sub-

sections 6.1 and 6.2, so the proofs will be omitted.
Take𝐵 afinitely generatedℝ-algebra. We construct amorphismof dg-algebras

𝜇sm(𝜎) ∶ Ω∙
𝐵|ℝ → Ω∙(∆𝑛) for every smooth singular simplex 𝜎 ∶ ∆𝑛 → specℝ𝐵.

For such 𝜎 we define an algebra homomorphism 𝜃sm(𝜎) ∶ 𝐵 → 𝐶∞(∆𝑛) as
𝑏 ↦ �̂�◦𝜎. By the universal property of Ω∙

𝐵|ℝ there exists a unique morphism of
dg-algebras 𝜇sm(𝜎) ∶ Ω∙

𝐵|ℝ → Ω∙(∆𝑛)making the following diagram commute:

Ω∙
𝐵|ℝ Ω∙(∆𝑛)

𝐵 𝐶∞(∆𝑛).

𝜇sm(𝜎)

𝜃sm(𝜎)
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Lemma 7.1 (cf. Lemma 6.1). The following diagram is commutative:

Ω∙
𝐵|ℝ

Ω∙(∆𝑛) Ω∙(∆𝑛−1).

𝜇sm(𝜎)
𝜇sm(𝜕𝑖𝜎)

𝜕𝑖

The map 𝜇sm(𝜎) is natural in algebra, namely:

Lemma 7.2 (cf. Lemma 6.2). Suppose 𝜑 ∶ 𝐵′ → 𝐵 is a homomorphism of
finitely generatedℝ-algebras. Consider a commutative diagram

∆𝑛 specℝ𝐵

specℝ𝐵′

𝜎

𝜎′
specℝ𝜑

with 𝜎 and 𝜎′ smooth. Then the following diagram commutes:

Ω∙
𝐵|ℝ Ω∙

♭(∆
𝑛)

Ω∙
𝐵′|ℝ.

𝜇sm(𝜎)

Ω𝜑
𝜇sm(𝜎′)

Next we construct the map 𝜉sm𝐵 ∶ Ω∙
𝐵|ℝ → S∙sm(specℝ𝐵) for a finitely gen-

erated ℝ-algebra 𝐵. For an algebraic 𝑛-form 𝜔 ∈ Ω𝑛
𝐵|ℝ and a smooth simplex

𝜎 ∶ ∆𝑛 → specℝ𝐵 we set
⟨
𝜉sm𝐵 (𝜔), 𝜎

⟩
∶= 𝔗𝑛(𝜇sm(𝜎)(𝜔)) ∈ ℝ

(the map𝔗𝑛 was defined in Paragraph 5.2(4)).

Proposition 7.3 (cf. Proposition 6.3). The above gives a morphism of complexes

𝜉sm𝐵 ∶ Ω∙
𝐵|ℝ → S∙sm(specℝ𝐵).

Lemma 7.2 allows us to prove the naturality of 𝜉sm in algebras:

Lemma 7.4 (cf. Lemma 6.4). Suppose 𝜑 ∶ 𝐵′ → 𝐵 is a homomorphism of
finitely generatedℝ-algebras. Then the following diagram is commutative:

Ω∙
𝐵|ℝ S∙sm(specℝ𝐵)

Ω∙
𝐵′|ℝ S∙sm(specℝ𝐵′).

𝜉sm𝐵

Ω𝜑
𝜉sm𝐵′

Ssm(specℝ𝜑)
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7.2. Comparing 𝝃𝑩 and 𝝃 𝐬𝐦𝑩 . Take 𝐵 a finitely generated ℝ-algebra.

Lemma 7.5. Take 𝜎 ∶ ∆𝑛 → specℝ𝐵 a smooth simplex. Then the following
diagram is commutative:

Ω∙
𝐵|ℝ Ω∙(∆𝑛)

Ω∙
♭(∆

𝑛).
𝜇(𝜎)

𝜇sm(𝜎)

∇

Proof. Consider the following diagram:

Ω∙
𝐵|ℝ Ω∙(∆𝑛) Ω∙

♭(∆
𝑛)

𝐵 𝐶∞(∆𝑛) Lip(∆𝑛).

𝜇sm(𝜎)

𝜇(𝜎)

∇

𝜃sm(𝜎)

𝜃(𝜎)

𝜁

The left square and the outer contour commute by the definitions of 𝜇 and
𝜇sm. The right square commutes by Paragraph 5.2(5). The bottom triangle com-
mutes by the definitions of 𝜃 and 𝜃sm. Hence, by the universal property ofΩ∙

𝐵|ℝ
the upper triangle also commutes. □

Lemma 7.6. The following diagram is commutative:

Ω∙
𝐵|ℝ S∙sm(specℝ𝐵)

S∙Lip(specℝ𝐵).
𝜉𝐵

𝜉sm𝐵

res (3)

Here res is the restriction of Lipschitz cochains to smooth chains.

Proof. Consider the diagram:

Ω∙
𝐵|ℝ Ω∙(∆𝑛) ℝ

Ω∙
♭(∆

𝑛).

𝜇sm(𝜎)

𝜇(𝜎)
∇

𝔗𝑛

𝔍𝑛
(4)

The left triangle is commutative by Lemma 7.5 The right triangle is commuta-
tive by Paragraph 5.2(4). Hence, the statement follows by the definitions of 𝜉
and 𝜉sm. □
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7.3. Morphisms 𝜘 and 𝜘. Let 𝑀 be a smooth manifold. Take an open set
𝑈 ⊂ 𝑀, a smooth simplex 𝜎 ∶ ∆𝑛 → 𝑈 and a smooth 𝑛-form 𝜔 ∈ Ω𝑛(𝑈). We
define ⟨𝜘(𝜔), 𝜎⟩ ∶= 𝔗𝑛(𝜎∗(𝜔)). By Stokes’ formula we obtain the morphism of
complexes

𝜘 ∶ Ω∙(𝑈)→ S∙sm(𝑈).
This way we obtain a morphism of complexes of presheaves 𝜘 ∶ Ω∙

𝑀 → S∙sm,𝑀 .
Taking the composition with the sheafification map we get the morphism of
complexes of sheaves

𝜘 ∶ Ω∙
𝑀 → +S∙sm,𝑀 .

The following diagram is commutative:

ℝ𝑀[0] Ω∙
𝑀

+S∙sm,𝑀 .

𝜖

𝜖
𝜘 (5)

The following diagram is also commutative:

H∗(S∙sm(𝑀)) H∗(+S∙sm(𝑀)) ℍ∗(𝑀, +S∙sm,𝑀)

H∗(Ω∙(𝑀)) ℍ∗(𝑀,Ω∙
𝑀)

H(sh) Υ

H(𝜘)
H(𝜘(𝑀))

Υ

ℍ(𝜘) (6)

7.4. Identifying the map𝚿𝑩. In this subsection we take𝑀 a smooth mani-
fold.

Lemma 7.7. For the inclusion of a finitely generated subalgebra 𝑖 ∶ 𝐵 ↪ 𝐶∞(𝑀)
and a smooth singular simplex 𝜎 ∶ ∆𝑛 → 𝑀 the following diagram commutes:

Ω∙
𝐵|ℝ

Ω∙
𝐶∞(𝑀)|ℝ Ω∙(𝑀) Ω∙(∆𝑛).

𝜇sm(Γ𝐵◦𝜎)
Ω𝑖

𝜋 𝜎∗

Proof. Consider the diagram:

Ω∙
𝐵|ℝ Ω∙

𝐶∞(𝑀)|ℝ Ω∙(𝑀) Ω∙(∆𝑛)

𝐵 𝐶∞(𝑀) 𝐶∞(𝑀) 𝐶∞(∆𝑛).

𝜇sm(Γ𝐵◦𝜎)

Ω𝑖 𝜋 𝜎∗

𝜃sm(Γ𝐵◦𝜎)

𝑖 𝜎∗



THE DE RHAM COHOMOLOGY OF SOFT FUNCTION ALGEBRAS 1325

The left and right squares clearly commute. The middle square commutes
by the definition of 𝜋. The outer contour commutes by the definition of 𝜇sm.
For 𝑏 ∈ 𝐵 we have

𝜃sm(Γ𝐵◦𝜎)(𝑏) = �̂�◦Γ𝐵◦𝜎 = 𝑏◦𝜎 = 𝜎∗(𝑏)
by the definition of 𝜃sm and Equation 1. Hence, the bottom quadrangle com-
mutes. By the universal property ofΩ∙

𝐵|ℝ the upper quadrangle commutes. □

Lemma 7.8. For the inclusion of a finitely generated subalgebra 𝑖 ∶ 𝐵 ↪ 𝐶∞(𝑀)
the following diagram is commutative:

Ω∙
𝐵|ℝ S∙sm(specℝ𝐵)

Ω∙
𝐶∞(𝑀)|ℝ Ω∙(𝑀) S∙sm(𝑀)

𝜉sm𝐵

Ω𝑖 Ssm(Γ𝐵)

𝜋 𝜘

Proof. For a form 𝜔 ∈ Ω∙
𝐵|ℝ we have

⟨
Ssm(Γ𝐵)(𝜉sm𝐵 (𝜔)), 𝜎

⟩
=
⟨
𝜉sm𝐵 (𝜔),Γ𝐵◦𝜎

⟩
= 𝔗𝑛(𝜇sm(Γ𝐵◦𝜎)(𝜔))

(3)=
(3)= 𝔗𝑛(𝜎∗(𝜋(Ω𝑖(𝜔)))) = ⟨𝜘(𝜋(Ω𝑖(𝜔))), 𝜎⟩ .

The equality (3) follows from Lemma 7.7. □

Lemma 7.9. For the inclusion of a finitely generated subalgebra 𝑖 ∶ 𝐵 ↪ 𝐶∞(𝑀)
the following diagram is commutative:

H∗(Ω∙
𝐵|ℝ) ℍ∗(specℝ𝐵,ℝspecℝ𝐵

[0])

H∗(Ω∙
𝐶∞(𝑀)|ℝ) H∗(Ω∙(𝑀)) ℍ∗(𝑀,ℝ𝑀[0]).

Φ𝐵

H(Ω𝑖) Γ∗𝐵
H(𝜋)

Θ

Proof. Consider the diagram:

H∗(S∙Lip(specℝ𝐵)) ℍ∗(specℝ𝐵, +S∙Lip,specℝ𝐵)

H∗(S∙sm(specℝ𝐵)) ℍ∗(specℝ𝐵, +S∙sm,specℝ𝐵) ℍ∗(specℝ𝐵,ℝspecℝ𝐵
[0])

H∗(S∙sm(𝑀)) ℍ∗(𝑀, +S∙sm,𝑀) ℍ∗(𝑀,ℝ𝑀[0])

H∗(Ω∙(𝑀)) ℍ∗(𝑀,Ω∙
𝑀)

Υ◦H(sh)
≅

H(res) ℍ(res)

H(Ssm(Γ𝐵))

Υ◦H(sh)
≅

Γ∗𝐵

ℍ(𝜖)
≅

ℍ(𝜖)

Γ∗𝐵
Υ◦H(sh)

≅
ℍ(𝜖)
≅

ℍ(𝜖)≅

Υ

H(𝜘)
ℍ(𝜘)

(7)
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The diagram without the bottom row commutes for obvious reasons. The bot-
tom left quadrangle commutes by Diagram 6. The bottom right triangle com-
mutes by Diagram 5. We do not know if the morphism ℍ(𝜖) in the middle row
is an isomorphism.
Next, we consider the following diagram:

H∗(S∙sm(𝑀)) ℍ∗(𝑀,ℝ𝑀[0])

H∗(Ω∙(𝑀)) ℍ∗(𝑀,Ω∙
𝑀).

ℍ(𝜖)−1◦Υ◦H(sh)

ℍ(𝜖)≅H(𝜘)

Υ

Θ−1 (8)

By the bottom stage of the previous diagram the outer contour commutes. The
bottom triangle commutes by the definition of Θ, Subsection 4.1. The vertical
map ℍ(𝜖) is an isomorphism. Therefore, the upper triangle is commutative.
Consider the following diagram:

H∗(Ω∙
𝐵|ℝ) H∗(S∙Lip(specℝ𝐵)) ℍ∗(specℝ𝐵,ℝspecℝ𝐵

[0])

H∗(S∙sm(specℝ𝐵))

H∗(Ω∙
𝐶∞(𝑀)|ℝ) H∗(S∙sm(𝑀)) ℍ∗(𝑀,ℝ𝑀[0])

H∗(Ω∙(𝑀)) .

H(Ω𝑖)

Φ𝐵

H(𝜉𝐵)

H(𝜉sm𝐵 ) H(res)

ℍ(𝜖)−1◦Υ◦H(sh)

Γ∗𝐵

H(Ssm(Γ𝐵))

H(𝜋)

ℍ(𝜖)−1◦Υ◦H(sh)
H(𝜘)

Θ−1

The upper triangle is commutative by the definition of Φ𝐵. The left pentagon
is commutative by Lemma 7.8. The left triangle is commutative by Diagram 3.
The right pentagon is commutative by Diagram 7. The bottom right triangle
commutes by Diagram 8 andΘ is an isomorphism. Thus, the whole diagram is
commutative. Therefore, the claim follows. □

7.5. The calculation of𝚿𝑪∞(𝑴). In the previous section we have constructed
a morphismΨ𝐴 ∶ H∗(Ω∙

𝐴|ℝ)→ ℍ∗(𝑋,ℝ𝑋[0]) for every topological space 𝑋 and
subalgebra 𝐴 ⊂ 𝐶(𝑋). In case 𝑋 = 𝑀 a smooth manifold and 𝐴 = 𝐶∞(𝑀) we
would like to calculate this map explicitly.
By passing in Lemma 7.9 to colimit over all finitely generated subalgebras

𝐵 ⊂ 𝐶∞(𝑀) we get
Theorem 7.10. The following diagram is commutative:

H∗(Ω∙
𝐶∞(𝑀)|ℝ) H∗(Ω∙(𝑀)) ℍ∗(𝑀,ℝ𝑀[0]).

Ψ𝐶∞(𝑀)

H(𝜋) Θ
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8. The composition

ℍ∗(𝑿,ℝ𝑿[𝟎])
𝚲ℱ,,→ 𝐇∗(𝛀∙

ℱ(𝑿)|ℝ)
𝚿ℱ(𝑿),,,,→ ℍ∗(𝑿,ℝ𝑿[𝟎])

Lemma 8.1. Take𝑀 a compact smooth manifold. Then the following diagram
is commutative:

H∗(Ω∙
𝐶∞(𝑀)|ℝ)

ℍ∗(𝑀,ℝ𝑀[0]) ℍ∗(𝑀,ℝ𝑀[0]).

Ψ𝐶∞(𝑀)Λ𝐶∞𝑀

id

Proof. Consider the following diagram:

H∗(Ω∙
𝐶∞(𝑀)|ℝ) H∗(Ω∙(𝑀))

ℍ∗(𝑀,ℝ𝑀[0]) ℍ∗(𝑀,ℝ𝑀[0]).

Ψ𝐶∞(𝑀)

H(𝜋)

Λ𝐶∞𝑀
id

Θ

The right triangle commutes by Theorem 7.10. The outer contour is commu-
tative by Theorem 4.1 . Since Θ is an isomorphism, the left triangle also com-
mutes. □

Corollary 8.2. For a compact smoothmanifold𝑀 the following diagram is com-
mutative:

H∗(Ω∙
𝐶(𝑀)|ℝ)

ℍ∗(𝑀,ℝ𝑀[0]) ℍ∗(𝑀,ℝ𝑀[0]).

Ψ𝐶(𝑀)Λ𝐶𝑀

id

Proof. The inclusion morphism of sheaves 𝐶∞𝑀 ↪ 𝐶𝑀 allows us to consider
the diagram

H∗(𝑀,ℝ𝑀[0]) H∗(Ω∙
𝐶(𝑀)|ℝ) H∗(Ω∙

𝐶∞(𝑀)|ℝ)

ℍ∗(𝑀,ℝ𝑀[0]).

Λ𝐶𝑀

id

Λ𝐶∞𝑀

Ψ𝐶(𝑀) Ψ𝐶∞(𝑀)

The outer contour is commutative by Lemma 8.1. The right triangle is commu-
tative by Proposition 6.6. The upper triangle is commutative by Proposition 3.4.
Hence, the left triangle is commutative. □
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Corollary 8.3. For a compact Hausdorff space 𝑋 the following diagram is com-
mutative:

H∗(Ω∙
𝐶(𝑋)|ℝ)

ℍ∗(𝑋,ℝ𝑋[0]) ℍ∗(𝑋,ℝ𝑋[0]).

Ψ𝐶(𝑋)Λ𝐶𝑋

id

Proof. Choose a cohomology class 𝜆 ∈ ℍ∗(𝑋,ℝ𝑋[0]). We show that

(Ψ𝐶(𝑋)◦Λ𝐶𝑋 )(𝜆) = 𝜆.

First, by [God58, II.5.10] there is a polyhedron 𝑁 (the geometric realization
of some nerve) and a continuous map 𝑓 ∶ 𝑋 → 𝑁, such that 𝜆 = 𝑓∗(𝛿) for
some 𝛿 ∈ ℍ∗(𝑁,ℝ𝑁[0]). Second, there exists a compact smoothmanifold (with
boundary)𝑀 such that𝑁 ⊂ 𝑀 and𝑁 is a deformation retract of𝑀 (see [Hir62,
Theorem 1]). There exists 𝛾 ∈ ℍ∗(𝑀,ℝ𝑀[0]) such that 𝛾|𝑁 = 𝛿. Consider the

composition 𝑔 ∶ 𝑋
𝑓
,→ 𝑁 ↪ 𝑀. We have 𝜆 = 𝑔∗(𝛾). Consider the diagram

ℍ∗(𝑋,ℝ𝑋[0]) H∗(Ω∙
𝐶(𝑋)|ℝ) ℍ∗(𝑋,ℝ𝑋[0])

ℍ∗(𝑀,ℝ𝑀[0]) H∗(Ω∙
𝐶(𝑀)|ℝ) ℍ∗(𝑀,ℝ𝑀[0]).

Λ𝐶𝑋 Ψ𝐶(𝑋)

Λ𝐶𝑀

𝑔∗

Ψ𝐶(𝑀)

H(Ω𝑔∗ ) 𝑔∗

This diagram is commutative by Propositions 3.4 and 6.6. By Corollary 8.2 the
equality (Ψ𝐶(𝑋)◦Λ𝐶𝑋 )(𝜆) = 𝜆 follows. □

Theorem 8.4. For a compact Hausdorff space 𝑋 and a soft subsheaf of algebras
ℱ ↪ 𝐶𝑋 the following diagram is commutative

H∗(Ω∙
ℱ(𝑋)|ℝ)

ℍ∗(𝑋,ℝ𝑋[0]) ℍ∗(𝑋,ℝ𝑋[0]).

Ψℱ(𝑋)Λℱ

id

Proof. It immediately follows from naturality ofΛ andΨ (Propositions 3.4 and
6.6) and Corollary 8.3. □

9. Piecewise polynomial functions
9.1. Polyhedra and rectilinearmaps. A polyhedron𝐾 is a finite set of affine
simplices in ℝ𝑚 such that

(1) for any 𝑎 ∈ 𝐾 and any face 𝑏 ⊂ 𝑎 we have 𝑏 ∈ 𝐾;
(2) if 𝑎, 𝑏 ∈ 𝐾 then 𝑎 ∩ 𝑏 is either a common face of 𝑎 and 𝑏 or empty.
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A subset 𝑃 of 𝐾 that is also a polyhedron is called a subpolyhedron of 𝐾. Define
the space |𝐾| ⊂ ℝ𝑚 as the union of all simplices of 𝐾.
We say that a function 𝑓 ∶ |𝐾| → |𝐾′| is a rectilinear map if for any 𝑎 ∈ 𝐾

there exists 𝑏 ∈ 𝐾′ such that 𝑓(𝑎) ⊂ 𝑏 and 𝑓 maps 𝑎 to 𝑏 affinely. We call two
rectilinear maps 𝑓, 𝑔 ∶ |𝐾| → |𝐾′| adjacent if for every simplex 𝑎 ∈ 𝐾 the set
𝑓(𝑎) ∪ 𝑔(𝑎) is contained in a simplex of 𝐾′.
We say that a polyhedron 𝑃 is a minor of a polyhedron 𝐾 if |𝑃| ⊂ |𝐾| and

|𝑃| ↪ |𝐾| is a rectilinear map (in other words, for any 𝑎 ∈ 𝑃 there is 𝑏 ∈ 𝐾
such that 𝑎 ⊂ 𝑏). We call a minor 𝑃 of 𝐾 a subdivision if |𝑃| = |𝐾|.
We call a polyhedron 𝑆 a starwith the center 𝑥 ∈ ℝ𝑚 if {𝑥} is a vertex of 𝑆 and

each maximal by inclusion simplex of 𝑆 has {𝑥} as a vertex. Take a polyhedron
𝐾 with 𝑥 ∈ |𝐾|, then a minor 𝑆 of 𝐾 is called a star neighborhood of 𝑥 if 𝑆 is a
star with center 𝑥 and 𝑥 ∈ int|𝐾| |𝑆|.
For a polyhedron 𝐾 consider the algebra Pol(𝐾) of functions 𝜑 ∶ |𝐾| →

ℝ such that for each simplex 𝑎 ∈ 𝐾 𝜑|𝑎 is a polynomial. This algebra was
considered, for example, in [Bil89]. The algebra Pol(𝐾) is contravariant with
respect to rectilinear maps, in particular, if 𝑖 ∶ |𝑃| ↪ |𝐾| is an inclusion of a
minor we have the restriction homomorphism Pol(𝑖) ∶ Pol(𝐾)→ Pol(𝑃).

Lemma 9.1. Suppose 𝐾, 𝑃1,… , 𝑃𝑙 are polyhedra such that 𝑃𝑖 are minors of 𝐾.
Then there exist subdivisions 𝐾′ of 𝐾 and 𝑃′𝑖 of 𝑃𝑖 such that 𝑃

′
𝑖 is a subpolyhedron

of 𝐾′ for each 𝑖.

Proof. See [RS72, Addendum 2.12]. □

Lemma 9.2. Take 𝐾 a polyhedron, 𝑈 ⊂ |𝐾| a set open in |𝐾| and 𝐷 ⊂ 𝑈 a
set closed in |𝐾|. Then there exists a minor 𝑃 of 𝐾 such that |𝑃| ⊂ 𝑈 and 𝐷 ⊂
int|𝐾| |𝑃|.

Proof. For each 𝑥 ∈ 𝐷 choose a cube 𝑄𝑥 with center 𝑥 such that |𝑄𝑥| ⊂ 𝑈. By
compactness of 𝐷 choose a finite set (𝑄𝑥𝑖 )

𝑙
𝑖=1 of cubes such that

𝑆 ⊂
𝑙⋃

𝑖=1
int|𝐾| |𝑄𝑥𝑖 |.

By Lemma 9.1 there exist subdivisions 𝐾′ of 𝐾 and 𝑄′
𝑥𝑖 of 𝑄𝑥𝑖 such that 𝑄′

𝑥𝑖
is a subpolyhedron of 𝐾′ for each 𝑖. Therefore, the union of all 𝑄′

𝑥𝑖 forms a
subpolyhedron of 𝐾′ and hence a minor of 𝐾. □

Definition. Let us define the sheaf of piecewise polynomial functions on a
polyhedron.
(1) For a polyhedron 𝐾 and a subset 𝑈 ⊂ |𝐾| open in |𝐾| we call a function

𝑠 ∶ 𝑈 → ℝ piecewise polynomial if for each point 𝑥 ∈ 𝑈 there exists aminor
𝐾𝑥 of 𝐾, such that |𝐾𝑥| ⊂ 𝑈 with 𝑥 ∈ int|𝐾| |𝐾𝑥| and 𝑠||𝐾𝑥| ∈ Pol(𝐾𝑥).

(2) The set PPol(𝑈) of piecewise polynomial functions on 𝑈 forms an algebra
(use Lemma 9.1).
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(3) Take two sets 𝑉 ⊂ 𝑈 open in |𝐾|. It is not hard to see that the restriction of
a piecewise polynomial function 𝑠 ∈ PPol(𝑈) to𝑉 is piecewise polynomial.
Hence, the correspondence 𝑈 ↦ PPol(𝑈) defines a sheaf on |𝐾| which we
denote by PPol𝐾 .

Proposition 9.3. For a polyhedron 𝐾 the sheaf PPol𝐾 is soft.

Proof. Take a subset𝐷 ⊂ |𝐾| closed in |𝐾| and an element of PPol𝐾(𝐷), which
is represented by a set 𝑈 ⊂ |𝐾| open in |𝐾| with 𝐷 ⊂ 𝑈 and a section 𝑠 ∈
PPol𝐾(𝑈). By Lemma 9.2 there exists a minor 𝑃 of 𝐾 such that 𝐷 ⊂ int|𝐾| |𝑃|
and |𝑃| ⊂ 𝑈. Apply Lemma 9.2 again to obtain a minor 𝑃2 of 𝐾 such that
|𝑃| ⊂ int|𝐾| |𝑃2| and |𝑃2| ⊂ 𝑈. By Lemma 9.1 there exist subdivisions 𝐾′ of
𝐾, 𝑃′2 of 𝑃2 and 𝑃

′ of 𝑃 such that 𝑃′ and 𝑃′2 are subpolyhedra of 𝐾
′. Take an

element 𝑡 ∈ Pol(𝐾′) such that 𝑡||𝑃′| ≡ 1 and 𝑡||𝐾′|−|𝑃′2| ≡ 0. The function 𝑡𝑠 is a
global section of PPol𝐾 and 𝑡𝑠 and 𝑠 coincide in PPol𝐾(𝐷). □

9.2. The maps 𝚲𝐏𝐏𝐨𝐥𝑲 and 𝚿𝐏𝐏𝐨𝐥𝑲 (|𝑲|)|ℝ. Here we prove that for the sheaf of
piecewise polynomial functions on 𝐾 the maps ΛPPol𝐾 and ΨPPol𝐾(|𝐾|)|ℝ are in
fact isomorphisms.
The following notion can be found in [Ger71]. Twomorphisms ofℝ-algebras

𝜑0, 𝜑1 ∶ 𝐴 → 𝐵 are called simply homotopic if there exists a homomorphism
𝐻 ∶ 𝐴 → 𝐵⊗ℝ[𝑡] such that the following diagram is commutative for 𝜆 = 0, 1:

𝐴 𝐵 ⊗ℝ[𝑡] 𝐵.

𝜑𝜆

𝐻 𝑡↦𝜆 (9)

The following is a well known definition of homotopic morphisms of dg-
algebras and can be found in [Leh90, II.1].

Definition. Two morphisms of dg-algebras 𝜑0, 𝜑1 ∶ 𝐸 → 𝐸′ are called homo-
topic if there exists a morphism 𝐻 ∶ 𝐸 → 𝐸′ ⊗ Ω∙

ℝ[𝑡]|ℝ such that the following
diagram is commutative for 𝜆 = 0, 1:

𝐸 𝐸′ ⊗Ω∙
ℝ[𝑡]|ℝ 𝐸′.

𝜑𝜆

𝐻 𝑡↦𝜆

Here 𝑡 ↦ 𝜆 is the dg-algebra morphism that is the identity on 𝐸′ and sends 𝑡 to
𝜆.

Lemma 9.4. Homotopic morphisms of dg-algebras induce equal maps on the
cohomology groups.

Proof. See [Leh90, Lemma II.1]. □

Proposition 9.5. Suppose the morphisms 𝜑0, 𝜑1 ∶ 𝐴 → 𝐵 of algebras are simply
homotopic. Then the induced morphisms H(Ω𝜑𝜆) ∶ H

∗(Ω∙
𝐴|ℝ) → H∗(Ω∙

𝐵|ℝ) for
𝜆 = 0, 1 are equal.
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Proof. We prove that the morphisms of dg-algebras Ω𝜑𝜆 ∶ Ω∙
𝐴|ℝ → Ω∙

𝐵|ℝ are
homotopic for 𝜆 = 0, 1. By Lemma 9.4 it will imply that the maps on the co-
homology are equal. As 𝜑𝜆 are simply homotopic for 𝜆 = 0, 1, we have a ho-
momorphism 𝐻 ∶ 𝐴 → 𝐵 ⊗ ℝ[𝑡] such that Diagram 9 commutes. The obvi-
ous morphisms Ω∙

𝐵|ℝ → Ω∙
𝐵⊗ℝ[𝑡]|ℝ and Ω∙

ℝ[𝑡]|ℝ → Ω∙
𝐵⊗ℝ[𝑡]|ℝ form the canoni-

cal morphism 𝑢 ∶ Ω∙
𝐵|ℝ ⊗ Ω∙

ℝ[𝑡]|ℝ → Ω∙
𝐵⊗ℝ[𝑡]|ℝ, which is an isomorphism by

[Kun86, Corollary 4.2].
Consider the following commutative diagram:

Ω∙
𝐴|ℝ

Ω∙
𝐵|ℝ ⊗Ω∙

ℝ[𝑡]|ℝ Ω∙
𝐵⊗ℝ[𝑡]|ℝ Ω∙

𝐵|ℝ.

𝑢−1◦Ω𝐻
Ω𝐻

Ω𝜑𝜆

≅
𝑢

𝑡↦𝜆

𝑡↦𝜆

We obtain that Ω𝜑𝜆 are homotopic for 𝜆 = 0, 1. □

Lemma 9.6. Suppose 𝑓0, 𝑓1 ∶ |𝐾| → |𝐾′| are two adjacent rectilinear maps of
polyhedra. Then the induced homomorphisms 𝑓∗0 , 𝑓

∗
1 ∶ Pol(𝐾′) → Pol(𝐾) are

simply homotopic.

Proof. Consider the algebra 𝑇 of functions 𝑠 on |𝐾| × [0, 1] such that for each
𝑎 ∈ 𝐾 the restriction 𝑠|𝑎×[0,1] is a polynomial function. The map Pol(𝐾) ⊗
ℝ[𝑡]→ 𝑇 sending 𝛽⊗𝑝(𝑡) to the function (𝑥, 𝑡)↦ 𝛽(𝑥)𝑝(𝑡) is an isomorphism.
Construct the homomorphism 𝐻 ∶ Pol(𝐾′) → 𝑇 as 𝐻(𝛼)(𝑥, 𝑡) ∶= 𝛼(𝑓0(𝑥)(1 −
𝑡)+𝑓1(𝑥)𝑡). As 𝑓0 and 𝑓1 are adjacent,𝐻(𝛼) ∈ 𝑇. Also,𝐻(𝛼)|𝑡=𝜆 = 𝛼(𝑓𝜆(𝑥)) =
𝑓∗𝜆(𝛼) for 𝜆 = 0, 1. The needed homotopy map is the lift of the homomorphism
𝐻 to Pol(𝐾)⊗ℝ[𝑡]. □

For a dg-algebra 𝐸 we consider the morphism of complexes, the coaugmen-
tation, 𝜖 ∶ ℝ[0]→ 𝐸 defined by 𝜖(1) = 1.

Corollary 9.7 (Poincaré lemma). Suppose 𝑆 is a star with center 𝑥. Then the
coaugmentation 𝜖 ∶ ℝ[0]→ Ω∙

Pol(𝑆)|ℝ is a quasi-isomorphism.

Proof. We denote by 𝑄 the one-point polyhedron {{𝑥}}. Consider the rectilin-
ear maps col ∶ |𝑆| → |𝑄| and 𝑖 ∶ |𝑄| ↪ |𝑆|. By the definition of a star the
composition 𝑖◦col is adjacent to the identity id ∶ |𝑆| → |𝑆|. Consider the fol-
lowing diagram:

H∗(ℝ[0])

H∗(Ω∙
Pol(𝑆)|ℝ) H∗(Ω∙

Pol(𝑄)|ℝ) H∗(Ω∙
Pol(𝑆)|ℝ)

H(𝜖)
H(𝜖) ≅

H(𝜖)

H(ΩPol(𝑖))

id

H(ΩPol(col))
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By Proposition 9.5 and Lemma 9.6 the bottom triangle is commutative. The
rest of the diagram commutes for obvious reasons. One can easily see that
the morphism of complexes 𝜖 ∶ ℝ[0] → Ω∙

Pol(𝑄)|ℝ is an isomorphism. Hence,
H(𝜖) ∶ H∗(ℝ[0])→ H∗(Ω∙

Pol(𝐾)|ℝ) is an isomorphism. □

Lemma 9.8. Take 𝐾 a polyhedron and 𝑥 ∈ |𝐾|. Suppose 𝑆0, 𝑆1 are star neigh-
borhoods of 𝑥 in 𝐾, then there exists a star neighborhood 𝑆′ of 𝑥 in 𝐾 which is a
minor of 𝑆𝑖 for 𝑖 = 0, 1.

Proof. Follows from Lemma 9.1. □

Consider a polyhedron 𝐾 and a point 𝑥 ∈ |𝐾|. Let Σ(𝑥) be the set of all star
neighborhoods 𝑆 of 𝑥 in 𝐾. Define a partial order on Σ(𝑥) as 𝑆 ≤ 𝑆′ if 𝑆′ is a
minor of 𝑆. By Lemma 9.8 the set Σ(𝑥) is directed. Each star neighborhood 𝑆 of
𝑥 in 𝐾 gives rise to a homomorphism Pol(𝑆)→ (PPol𝐾)𝑥. By taking the colimit
over the directed set Σ(𝑥) we obtain the homomorphism

𝜒 ∶ lim
⟶

𝑆∈Σ(𝑥)

Pol(𝑆)→ (PPol𝐾)𝑥.

Lemma 9.9. The map 𝜒 is an isomorphism.

Proof. For injectivity, take a star neighborhood 𝑆 of 𝑥 in𝐾 and 𝑡 ∈ Pol(𝑆) such
that 𝜒(𝑡) = 0. There exists a set 𝑈 open in |𝐾| with 𝑥 ∈ 𝑈 such that 𝑡|𝑈 = 0
as a function. Take a star neighborhood 𝑆′ of 𝑥 such that |𝑆′| ⊂ 𝑈 and 𝑆′ is
a minor of 𝑆. We observe that 𝑡||𝑆′| = (𝑡|𝑈)||𝑆′| = 0 and, hence, 𝑡 is zero in
lim
⟶ 𝑆∈Σ(𝑥)

PPol𝐾(𝑆).

For surjectivity, take a germ 𝑔 ∈ (PPol𝐾)𝑥, a set 𝑈 ⊂ |𝐾| open in |𝐾| and a
section 𝑔 ∈ PPol𝐾(𝑈) such that 𝑔𝑥 = 𝑔. As 𝑔 ∈ PPol𝐾(𝑈) there is aminor𝑃 of𝐾
such that |𝑃| ⊂ 𝑈, 𝑥 ∈ int|𝐾| |𝑃| and 𝑔||𝑃| ∈ Pol(𝑃). Take a star neighborhood
𝑆 of 𝑥 in 𝑃. Then 𝜒 maps 𝑔||𝑆| to 𝑔. □

Proposition 9.10. For a polyhedron 𝐾 the coaugmentation

𝜖 ∶ ℝ|𝐾|[0]→
+Ω∙

PPol𝐾|ℝ

is a quasi-isomorphism.

Proof. We prove that 𝜖 is a quasi-isomorphism on stalks. We have

(ℝ|𝐾|[0])𝑥 → (+Ω∙
PPol𝐾|ℝ

)𝑥 = (Ω∙
PPol𝐾|ℝ

)𝑥 = Ω∙
(PPol𝐾)𝑥|ℝ

≅ lim
⟶

𝑆∈Σ(𝑥)

Ω∙
Pol(𝑆)|ℝ.

The last isomorphism follows from Lemma 9.9. By Corollary 9.7 the morphism
(ℝ|𝐾|[0])𝑥 → lim

⟶ 𝑆∈Σ(𝑥)
Ω∙
Pol(𝑆)|ℝ is a quasi-isomorphism. □

Theorem 9.11. The maps

ΛPPol𝐾 ∶ ℍ
∗(|𝐾|,ℝ|𝐾|[0])→ H∗(Ω∙

PPol𝐾(|𝐾|)|ℝ
)
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and
ΨPPol𝐾(|𝐾|) ∶ H

∗(Ω∙
PPol𝐾(|𝐾|)|ℝ

)→ ℍ∗(|𝐾|,ℝ|𝐾|[0])
are isomorphisms.

Proof. By Theorem 8.4 it is enough to prove that ΛPPol𝐾 is an isomorphism.
Recall that ΛPPol𝐾 is defined as the diagonal map in the following diagram

ℍ∗(|𝐾|,ℝ|𝐾|[0]) ℍ∗(|𝐾|, +Ω∙
PPol𝐾|ℝ

)

H∗(+Ω∙
PPol𝐾|ℝ

(|𝐾|))

H∗(Ω∙
PPol𝐾(|𝐾|)|ℝ

).

ℍ(𝜖)

ΛPPol𝐾

Υ≅

≅ H(sh)

By Proposition 9.10 the map ℍ(𝜖) is an isomorphism, hence, ΛPPol𝐾 is an iso-
morphism. □

10. When are the maps 𝚲 and𝚿 isomorphisms?
10.1. 𝐇𝟎(𝛀∙

𝑨|𝒌) for a function algebra 𝑨. Let 𝑘 be a field.

Definition. We call the elements 𝑎1,… , 𝑎𝑛 of a 𝑘-algebra𝐴 algebraically inde-
pendent over𝑘 if there is nonon-zero polynomial 𝑞 over𝑘 such that 𝑞(𝑎1,… , 𝑎𝑛) =
0. We call an element 𝑎 algebraic over 𝑘 if there is a non-zero polynomial 𝑝 over
𝑘 such that 𝑝(𝑎) = 0.
Lemma 10.1. Let 𝐴 be a 𝑘-algebra. Suppose the elements 𝑎1,… , 𝑎𝑛 of 𝐴 are
algebraically independent over 𝑘. Then there exists a prime ideal 𝔭 ⊂ 𝐴 such that
the images of 𝑎1,… , 𝑎𝑛 in 𝐴∕𝔭 are algebraically independent over 𝑘.
Proof. See [Gom90, Proposition 6]. □

Lemma 10.2. Suppose𝐾∕𝑘 is a field extension for 𝑘 of characteristic 0. Consider
the differential 𝑑 ∶ 𝐾 → Ω1

𝐾|𝑘. Then for 𝑥 ∈ 𝐾 we have 𝑑𝑥 = 0 iff 𝑥 is algebraic
over 𝑘.
Proof. See [Mat89, §26]. □

Lemma 10.3. Consider a 𝑘-algebra 𝐴 for 𝑘 of characteristic 0 and take 𝑎 ∈ 𝐴
such that 𝑑𝑎 = 0 inΩ1

𝐴|𝑘. Then 𝑎 is algebraic.

This is [Gom90, Proposition 7] where the assumption on characteristic being
zero is implicit.

Proof. Assume 𝑎 is transcendental. By Lemma 10.1 there exists a prime 𝔭 ⊂ 𝐴
such that the image �̄� of 𝑎 in𝐴∕𝔭 is transcendental. Hence, �̄� is transcendental
in the field of fractionsFrac(𝐴∕𝔭). By Lemma 10.2 𝑑�̄� ≠ 0 inΩ1

Frac(𝐴∕𝔭)|𝑘, which
is a contradiction.
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□

We call a subalgebra 𝐴 ofMaps(𝑋, 𝑘) a function algebra on a set 𝑋.

Theorem 10.4. Take 𝐴 a function algebra on 𝑋 and 𝑎 ∈ 𝐴. Then 𝑑𝑎 = 0 in
Ω1
𝐴|𝑘 if and only if 𝑎 takes a finite number of values.

This theorem is proved in [Gom90, proof of Theorem 8]. We give a proof,
which is different in the “if” direction. A related result is [Osb69, Proposition 3].

Proof. Assumefirst𝑑𝑎 = 0. By Lemma10.3 there exists a non-zero polynomial
𝑝 such that 𝑝(𝑎) = 0. Hence, 𝑎 takes a finite number of values.
Conversely, assume 𝑎 attains distinct values 𝑟1,… , 𝑟𝑚 ∈ 𝑘 and consider the

polynomial 𝑞(𝑡) = (𝑡 − 𝑟1) … (𝑡 − 𝑟𝑚). Clearly 𝑞(𝑎) = 0 and gcd(𝑞, 𝑞′) = 1.
Hence, there exist polynomials ℎ0, ℎ1 ∈ 𝑘[𝑡] such that ℎ0𝑞 + ℎ1𝑞′ = 1. Substi-
tute 𝑎 into this equality and obtain ℎ1(𝑎)𝑞′(𝑎) = 1; hence, 𝑞′(𝑎) is invertible.
Take the equality 𝑞(𝑎) = 0 and apply 𝑑 to both sides, we get 𝑞′(𝑎)𝑑𝑎 = 0 and
subsequently 𝑑𝑎 = 0. □

Corollary 10.5. Take 𝐴 a function algebra on a space 𝑋. Then H0(Ω∙
𝐴|𝑘) is the

vector space of functions 𝑎 ∈ 𝐴 that take a finite number of values.

A related result is [Osb69, Proposition 5].

Proposition 10.6. For a soft subsheaf of algebras ℱ ↪ 𝐶𝑋 on a compact Haus-
dorff space 𝑋 the map Λℱ ∶ ℍ0(𝑋,ℝ[0])→ H0(Ω∙

ℱ(𝑋)|ℝ) is an isomorphism.

Proof. By Corollary 10.5 the spaceH0(Ω∙
ℱ(𝑋)|ℝ) consists of functions 𝑓 ∈ ℱ(𝑋)

that take a finite number of values. Asℱ is a subsheaf of 𝐶𝑋 and 𝑋 is compact,
the functions inℱ(𝑋) that take a finite number of values are exactly the locally
constant functions from ℱ(𝑋). The morphism of sheaves of algebras ℝ𝑋 → ℱ
induces a homomorphism ℝ𝑋(𝑋) → ℱ(𝑋) = Ω0

ℱ(𝑋)|ℝ. By above, this homo-
morphism can be extended to the morphism of complexes �̃� ∶ ℝ𝑋(𝑋)[0] →
Ω∙
ℱ(𝑋)|ℝ and H(�̃�) is an isomorphism in degree 0.
The coaugmentation 𝜖 ∶ ℝ𝑋[0]→

+Ω∙
ℱ|ℝ induces a morphism of complexes

𝜖(𝑋) ∶ ℝ𝑋(𝑋)[0]→
+Ω∙

ℱ|ℝ(𝑋). The following diagram commutes:

ℝ𝑋(𝑋)[0]

+Ω∙
ℱ|ℝ(𝑋) Ω∙

ℱ(𝑋)|ℝ.

𝜖(𝑋) �̃�

sh
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Consider the diagram:

ℍ0(𝑋,ℝ𝑋[0]) H0(ℝ𝑋(𝑋)[0])

ℍ0(𝑋, +Ω∙
ℱ|ℝ) H0(+Ω∙

ℱ|ℝ(𝑋)) H0(Ω∙
ℱ(𝑋)|ℝ).

ℍ(𝜖)

Λℱ

Υ
≅

H(𝜖(𝑋))
H(�̃�)

≅

Υ
≅

H(sh)
≅

The outer contour commutes by the definition of Λℱ . The right triangle com-
mutes by the above diagram. The left square obviously commutes. Hence, the
whole diagram is commutative. The uppermapΥ is an isomorphism by a prop-
erty of Υ (see Subsection 2.1). Therefore, Λℱ is an isomorphism. □

It turns out that the group H0(Ω∙
𝐶(𝑋)|ℝ) behaves just as we expect.

Corollary 10.7. For a soft subsheaf of algebrasℱ of 𝐶𝑋 on a compact Hausdorff
space 𝑋 the map

Ψℱ(𝑋) ∶ H0(Ω∙
ℱ(𝑋)|ℝ)→ ℍ0(𝑋,ℝ[0])

is an isomorphism.

Proof. It follows directly from Proposition 10.6 and Theorem 8.4. □

10.2. 𝚲 and𝚿 are not isomorphisms in general. Take 𝑘 a field.
Lemma 10.8. Suppose 𝑘 is of characteristic 0. Suppose 𝐹∕𝑘 is a field extension
and 𝐿∕𝐹 is a finite field extension. Then the map

H(Ω𝑖) ∶ H∗(Ω∙
𝐹|𝑘)→ H∗(Ω∙

𝐿|𝑘)
induced by the inclusion 𝑖 ∶ 𝐹 ↪ 𝐿 is injective.
Proof. There is a morphism of complexes Σ ∶ Ω∙

𝐿|𝑘 → Ω∙
𝐹|𝑘 with the following

properties (see [Kun86, §16]):
(1) if we consider Ω∙

𝐿|𝑘 as a Ω
∙
𝐹|𝑘-module, then Σ is Ω

∙
𝐹|𝑘-linear;

(2) the restriction of Σ to the elements of degree 0 coincides with the trace
𝜎 ∶ 𝐿 → 𝐹.

Therefore, the composition

Ω∙
𝐹|𝑘

Ω𝑖,,→ Ω∙
𝐿|𝑘

Σ
,→ Ω∙

𝐹|𝑘

is the multiplication by 𝜎(1) = [𝐿 ∶ 𝐹]. As 𝑘 is of characteristic zero the map
H(Ω𝑖) is an injection. □

Lemma 10.9. Let 𝐾∕𝑘 be a field extension, where 𝐾 is an infinite field, and
𝐾(Γ)∕𝐾, where Γ = {𝛾1,… , 𝛾𝑙}, be a purely transcendental extension. Then the
map

H(Ω𝑖) ∶ H∗(Ω∙
𝐾|𝑘)→ H∗(Ω∙

𝐾(Γ)|𝑘),
induced by the inclusion 𝑖 ∶ 𝐾 ↪ 𝐾(Γ), is injective.
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Proof. The field 𝐾(Γ) is the colimit over finite sets 𝑆 ⊂ 𝐾[Γ] − {0} of the local-
izations of 𝐾[Γ]:

𝐾(Γ) ≅ lim
⟶

𝑆⊂𝐾[Γ]−{0}

𝐾[Γ][𝑆−1].

Therefore, it is enough to prove that the map

H(Ω𝑖𝑆 ) ∶ H
∗(Ω∙

𝐾|𝑘)→ H∗(Ω∙
𝐾[Γ][𝑆−1]|𝑘)

induced by the inclusion 𝑖𝑆 ∶ 𝐾 ↪ 𝐾[Γ][𝑆−1] is injective for each 𝑆.
There exists a point (�̄�1,… , �̄�𝑙) ∈ 𝐾𝑙 which is not a zero of any element of 𝑆.

Consider the homomorphism 𝐾[Γ]→ 𝐾, 𝛾𝑗 ↦ �̄�𝑗. By the universal property of
localization it can be extended to a homomorphism 𝜏 ∶ 𝐾[Γ][𝑆−1] → 𝐾 such
that 𝜏|𝐾 is the identity. Therefore, the composition

H∗(Ω∙
𝐾|𝑘)

H(Ω𝑖𝑆 ),,,,,,→ H∗(Ω∙
𝐾[Γ][𝑆−1]|𝑘)

H(Ω𝜏),,,,,→ H∗(Ω∙
𝐾|𝑘)

is the identity map, which suffices. □

Lemma 10.10. Suppose the characteristic of 𝑘 is zero. The equation
𝑛∑

𝑖=1
𝑥𝑖(𝜕∕𝜕𝑥𝑖)𝐹𝑖 = 𝑐 (10)

where 𝑐 ∈ 𝑘 and 𝑐 ≠ 0, has no solutions in rational functions 𝐹𝑖 ∈ 𝑘(𝑥1,… , 𝑥𝑛).

Proof. We proceed by induction on 𝑛. For 𝑛 = 0 the claim is obvious. Take
𝑙 ∈ ℕ ∪ {0} such that, for each 𝑖, 𝑥1 is not a factor in the denominators of 𝑥𝑙1𝐹𝑖.
Multiply the equation (10) by 𝑥𝑙1 and apply (𝜕∕𝜕𝑥1)

𝑙 to both sides of the equa-
tion. We get

𝑛∑

𝑖=1
(𝜕∕𝜕𝑥1)

𝑙 (𝑥𝑙1𝑥𝑖(𝜕∕𝜕𝑥𝑖)𝐹𝑖) = 𝑙!𝑐.

Notice that the operators 𝑥(𝜕∕𝜕𝑥) and (𝜕∕𝜕𝑥)𝑙 𝑥𝑙 commute. That can be easily
checked by induction. Hence, the operators 𝑥𝑖(𝜕∕𝜕𝑥𝑖) and

(
𝜕∕𝜕𝑥𝑗

)𝑙 𝑥𝑙𝑗 com-
mute for any 𝑖 and 𝑗. We get

𝑛∑

𝑖=1
𝑥𝑖(𝜕∕𝜕𝑥𝑖) (𝜕∕𝜕𝑥1)

𝑙 (𝑥𝑙1𝐹𝑖) = 𝑙!𝑐.

Put 𝐺𝑖 ∶= (𝜕∕𝜕𝑥1)
𝑙 (𝑥𝑙1𝐹𝑖). We obtain

𝑛∑

𝑖=1
𝑥𝑖(𝜕∕𝜕𝑥𝑖)𝐺𝑖 = 𝑙!𝑐.
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But none of𝐺𝑖 has𝑥1 as a factor in the denominator sowe can substitute𝑥1 ∶= 0
in the above equation and obtain

𝑛∑

𝑖=2
𝑥𝑖(𝜕∕𝜕𝑥𝑖)(𝐺𝑖|𝑥1=0) = 𝑙!𝑐.

By the induction hypothesis this equation has no solutions in rational func-
tions. □

Lemma 10.11. Suppose the characteristic of 𝑘 is zero. The closed form

𝜔 = 𝑑𝑥1
𝑥1

∧⋯ ∧ 𝑑𝑥𝑛
𝑥𝑛

∈ Ω𝑛
𝑘(𝑥1,…,𝑥𝑛)|𝑘

is not exact.

Proof. Suppose there exists 𝜂 ∈ Ω𝑛−1
𝑘(𝑥1,…,𝑥𝑛)|𝑘

such that 𝑑𝜂 = 𝜔. Write 𝜂 as

𝜂 =
𝑛∑

𝑖=1
𝐹𝑖𝑑𝑥1 ∧⋯ ∧ 𝑑𝑥𝑖 ∧⋯ ∧ 𝑑𝑥𝑛

where 𝐹𝑖 ∈ 𝑘(𝑥1,… , 𝑥𝑛). Then

𝑑𝜂 = [
𝑛∑

𝑖=1
(−1)𝑖+1(𝜕∕𝜕𝑥𝑖)𝐹𝑖]𝑑𝑥1 ∧⋯ ∧ 𝑑𝑥𝑛.

The equality 𝑑𝜂 = 𝜔 then takes the form

[
𝑛∑

𝑖=1
(−1)𝑖+1(𝜕∕𝜕𝑥𝑖)𝐹𝑖]𝑑𝑥1 ∧⋯ ∧ 𝑑𝑥𝑛 =

1
𝑥1…𝑥𝑛

𝑑𝑥1 ∧⋯ ∧ 𝑑𝑥𝑛.

The vector 𝑑𝑥1 ∧ ⋯ ∧ 𝑑𝑥𝑛 of the vector space Ω𝑛
𝑘(𝑥1,…,𝑥𝑛)|𝑘

over the field
𝑘(𝑥1,… , 𝑥𝑛) is not zero [Mat89, p. 201]. Hence,

𝑛∑

𝑖=1
(−1)𝑖+1(𝜕∕𝜕𝑥𝑖)𝐹𝑖 =

1
𝑥1…𝑥𝑛

.

Put 𝐺𝑖 ∶= (−1)𝑖+1𝑥1… �̂�𝑖 …𝑥𝑛𝐹𝑖. Then the above equation takes the form
𝑛∑

𝑖=1
𝑥𝑖(𝜕∕𝜕𝑥𝑖)𝐺𝑖 = 1.

By Lemma 10.10 this equation has no solutions in rational functions. □

Theorem 10.12. Suppose 𝑘 is of characteristic 0. Take𝐴 a 𝑘-algebra and a set of
invertible elements 𝑎1,… , 𝑎𝑛 in𝐴 that are algebraically independent over 𝑘. Then
the closed form

𝜔 = 𝑑𝑎1
𝑎1

∧⋯ ∧ 𝑑𝑎𝑛
𝑎𝑛

∈ Ω𝑛
𝐴|𝑘

is not exact.
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Proof. By Lemma 2.7 it is enough to consider 𝐴 being finitely generated. By
Lemma 10.1 there is a prime ideal 𝔭 ⊂ 𝐴 such that the elements 𝑎1,… , 𝑎𝑛 are
still algebraically independent in𝐴∕𝔭. Consider thefield of fractionsFrac(𝐴∕𝔭)
which is finitely generated over 𝑘 as a field. The elements 𝑎1,… , 𝑎𝑛 are alge-
braically independent in Frac(𝐴∕𝔭).
Take a finite transcendental basis

Γ̂ = {𝑎1,… , 𝑎𝑛, 𝛾1,… , 𝛾𝑙}

of Frac(𝐴∕𝔭) over 𝑘. The field Frac(𝐴∕𝔭) is a finite extension of 𝑘(Γ̂). By
Lemma 10.8 and Lemma 10.9 the composition

𝑘(𝑎1,… , 𝑎𝑛)→ 𝑘(Γ̂)→ Frac(𝐴∕𝔭)

induces an injection on the de Rham cohomology.
The image of 𝜔 in Ω𝑛

Frac(𝐴∕𝔭)|𝑘 coincides with the image of the closed form

𝜔0 =
𝑑𝑎1
𝑎1

∧⋯ ∧ 𝑑𝑎𝑛
𝑎𝑛

∈ Ω𝑛
𝑘(𝑎1,…,𝑎𝑛)|𝑘

,

which is not exact by Lemma 10.11. □

Theorem 10.13. Let 𝑋 be a topological space and 𝑓 ∈ 𝐶(𝑋) take an infinite
number of distinct values. Take a subalgebra 𝐴 ⊂ 𝐶(𝑋) such that 𝑒𝜆𝑓 ∈ 𝐴 for all
𝜆 ∈ ℝ. Then for each 𝑛 ≥ 1 H𝑛(Ω∙

𝐴|ℝ) ≠ 0, moreover, the map

Ψ𝐴 ∶ H𝑛(Ω∙
𝐴|𝑅)→ ℍ𝑛(𝑋,ℝ𝑋[0])

is not injective.

Proof. Choose a set of linearly independent over ℚ numbers 𝜆1,… , 𝜆𝑛 ∈ ℝ
and consider the functions 𝑎𝑖 ∶= 𝑒𝜆𝑖𝑓(𝑥) ∈ 𝐴. These functions are algebraically
independent and invertible, hence, the closed form

𝜔 = 𝑑𝑎1
𝑎1

∧⋯ ∧ 𝑑𝑎𝑛
𝑎𝑛

∈ Ω𝑛
𝐴|ℝ

is not exact by Theorem 10.12.
For the second part, we prove that Ψ𝐴([𝜔]) = 0. Denote by 𝑖 ∶ 𝐴 ↪ 𝐶(𝑋)

the inclusion. Consider the algebra 𝐸 ⊂ 𝐶(ℝ) generated as an algebra by the
functions 𝑒𝜆𝑡 ∈ 𝐶(ℝ). We have the commutative diagram

𝐶(𝑋) 𝐴

𝐶(ℝ) 𝐸,

𝑓∗ 𝜑
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where the homomorphism 𝜑 is induced by the homomorphism 𝑓∗. Then the
following diagram is commutative by Proposition 6.6:

H𝑛(Ω∙
𝐴|ℝ) ℍ𝑛(𝑋,ℝ𝑋[0])

H𝑛(Ω∙
𝐸|ℝ) ℍ𝑛(ℝ,ℝℝ[0])=0.

Ψ𝐴

H(Ω𝜑)
Ψ𝐸

𝑓∗

The equality ℍ𝑛(ℝ,ℝℝ[0]) = 0 is well known.
Consider the functions �̃�𝑖 ∶= 𝑒𝜆𝑖𝑡 ∈ 𝐸 and the closed form

�̃� = 𝑑�̃�1
�̃�1

∧⋯ ∧ 𝑑�̃�𝑛
�̃�𝑛

∈ Ω𝑛
𝐸|ℝ.

We have 𝜔 = Ω𝜑(�̃�). By the commutativity of the above diagram, Ψ𝐴([𝜔]) = 0.
Since [𝜔] ≠ 0, the map Ψ𝐴 is not injective. □

Corollary 10.14. Suppose 𝑋 is a compact Hausdorff space and ℱ is a soft sub-
sheaf of 𝐶𝑋 such that ℱ(𝑋) satisfies the conditions imposed on the algebra 𝐴 in
Theorem 10.13. Then Λℱ ∶ ℍ𝑛(𝑋,ℝ𝑋[0])→ H𝑛(Ω∙

ℱ|ℝ) is not surjective.

Proof. By Theorem 8.4 the composition Ψℱ(𝑋)◦Λℱ = id. By Theorem 10.13
Ψℱ(𝑋) is not injective and, hence, Λℱ is not surjective. □

As the first example one can consider a smooth manifold 𝑀 of positive di-
mension and 𝐴 = 𝐶∞(𝑀). Then H𝑛(Ω∙

𝐶∞(𝑀)|ℝ) ≠ 0 for 𝑛 ≥ 1. Also, one
can consider an infinite compact Hausdorff space 𝑋 and 𝐴 = 𝐶(𝑋). Then
H𝑛(Ω∙

𝐶(𝑋)|ℝ) ≠ 0 for 𝑛 ≥ 1.
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