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A bound on the index of exponent-𝟒 algebras
in terms of the 𝒖-invariant

Karim Johannes Becher and Fatma Kader Bingöl

Abstract. For a prime number 𝑝, an integer 𝑒 ⩾ 2 and a field 𝐹 contain-
ing a primitive 𝑝𝑒-th root of unity, the index of central simple 𝐹-algebras of
exponent 𝑝𝑒 is bounded in terms of the 𝑝-symbol length of 𝐹. For a nonreal
field 𝐹 of characteristic different from 2, the index of central simple algebras
of exponent 4 is bounded in terms of the 𝑢-invariant of 𝐹. Finally, a new
construction for nonreal fields of 𝑢-invariant 6 is presented.
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1. Introduction
Let 𝐹 be a field and 𝑛 a positive integer. A central simple 𝐹-algebra of degree

𝑛 containing a subfield which is a cyclic extension of degree 𝑛 of 𝐹 is called
cyclic or a cyclic 𝐹-algebra. Given a cyclic field extension 𝐾∕𝐹 of degree 𝑛, a
generator 𝜎 of its Galois group and an element 𝑏 ∈ 𝐹×, the rules

𝑗𝑛 = 𝑏 and 𝑥𝑗 = 𝑗𝜎(𝑥) for all 𝑥 ∈ 𝐾
determine a multiplication on the 𝐾-vector space 𝐾⊕𝑗𝐾⊕…⊕𝑗𝑛−1𝐾 turning
it into a cyclic 𝐹-algebra of degree 𝑛, which is denoted by

[𝐾∕𝐹, 𝜎, 𝑏).
Any cyclic 𝐹-algebra is isomorphic to an algebra of this form; see [3, Theorem
5.9]. Furthermore, any central 𝐹-division algebra of degree 2 or 3 is cyclic; see
[3, Theorem 11.5] for the degree-3 case.
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Central simple 𝐹-algebras of degree 2 are called quaternion algebras. We re-
fer to [10, p. 25] for a discussion of quaternion algebras, including their standard
presentation by symbols depending on two parameters from the base field. If
𝖼𝗁𝖺𝗋 𝐹 ≠ 2, 𝑎 ∈ 𝐹× ∖ 𝐹×2 and 𝑏 ∈ 𝐹×, then the 𝐹-quaternion algebra (𝑎, 𝑏)𝐹 is
equal to [𝐾∕𝐹, 𝜎, 𝑏) for𝐾 = 𝐹(

√
𝑎) and the nontrivial automorphism 𝜎 of𝐾∕𝐹.

We refer to [3] and [6] for the theory of central simple algebras, and to [4,
Section 3] for a survey on the role of cyclic algebras in this context.
Before we approach the problem in the focus of our interest, we fix some

notation. We set ℕ+ = ℕ ∖ {0}. We denote by 𝖡𝗋(𝐹) the Brauer group of 𝐹,
and for 𝑛 ∈ ℕ+, we denote by 𝖡𝗋𝑛(𝐹) the 𝑛-torsion part of 𝖡𝗋(𝐹). Let 𝑝 always
denote a prime number.
The following question was asked by Albert in [1, p.126] and is still open in

general.

Question 1.1. For 𝑛 ∈ ℕ+, is 𝖡𝗋𝑛(𝐹) generated by classes of cyclic algebras of
degree dividing 𝑛?
In view of the Primary Decomposition Theorem for central simple algebras

(see e.g. [6, Corollary 9.11]), any such question can be reduced to the casewhere
𝑛 is a prime power. Each of the following two famous results gives a positive
answer to Question 1.1 under additional hypotheses on 𝐹 in relation to 𝑛.
Theorem 1.2 (Albert). Let 𝑝 be a prime number and assume that 𝖼𝗁𝖺𝗋 𝐹 = 𝑝.
Let 𝑒 ∈ ℕ+. Then 𝖡𝗋𝑝𝑒(𝐹) is generated by classes of cyclic 𝐹-algebras of degree
dividing 𝑝𝑒.
Proof. See [3, Chapter VII, Section 9]. □

Theorem 1.3 (Merkurjev-Suslin). Let 𝑛 ∈ ℕ+ and assume that 𝐹 contains a
primitive 𝑛-th root of unity. Then 𝖡𝗋𝑛(𝐹) is generated by the classes of cyclic 𝐹-
algebras of degree dividing 𝑛.
Proof. See [13]. □

If 𝐹 contains a primitive 𝑛-th root of unity then 𝖼𝗁𝖺𝗋 𝐹 does not divide 𝑛.
Hence, the hypotheses of Theorem 1.2 and Theorem 1.3 aremutually exclusive.
For 𝑛 = 2, Theorem 1.3 was obtained by Merkurjev in [12]. Note that the

hypothesis of Theorem 1.3 for 𝑛 = 2 just means that 𝖼𝗁𝖺𝗋 𝐹 ≠ 2. Together
with Theorem 1.2 this gives an unconditional positive answer to Question 1.1
for 𝑛 = 2.
It was observed in [13, Proposition 16.6] that from the positive answer to

Question 1.1 in the (highly nontrivial) case 𝑛 = 2 one obtains (rather easily)
an unconditional positive answer for 𝑛 = 4. In Corollary 3.10, we obtain a
different argument for this step.
Wheneverwehave a positive answer toQuestion 1.1, it ismotivated to look at

quantitative aspects of the problem. In the first place, this concerns the number
of cyclic algebras needed for a tensor product representing a class in 𝖡𝗋(𝐹) of
given exponent. This leads to the notion and the study of symbol lengths.



A BOUND ON THE INDEX OF EXPONENT-4 ALGEBRAS 1275

For a central simple𝐹-algebra𝐴, the 𝑛-symbol length of 𝐴, denoted by 𝜆𝑛(𝐴),
is the smallest𝑚 ∈ ℕ+ such that 𝐴 is Brauer equivalent to a tensor product of
𝑚 cyclic algebras of degree dividing 𝑛, if such an integer𝑚 exists, otherwise we
set 𝜆𝑛(𝐴) = ∞. The 𝑛-symbol length of 𝐹 is defined as

𝜆𝑛(𝐹) = 𝗌𝗎𝗉{𝜆𝑛(𝐴) ∣ [𝐴] ∈ 𝖡𝗋𝑛(𝐹)} ∈ ℕ+ ∪ {∞}.

Note that the index of any central simple 𝐹-algebra of exponent 𝑛 is at most
𝑛𝜆𝑛(𝐹).
Let 𝑝 be a prime number. It seems plausible to take the 𝑝-symbol length of

𝐹 for a measure for the complexity of the whole 𝑝-primary part of the theory
of central simple algebras over 𝐹. So in particular one might expect that 𝜆𝑝𝑒(𝐹)
can be bounded in terms of 𝜆𝑝(𝐹) for all 𝑒 ∈ ℕ+. When 𝐹 contains a primitive
𝑝𝑒-th root of unity, it follows from [17, Proposition 2.5] that 𝜆𝑝𝑒(𝐹) ⩽ 𝑒𝜆𝑝(𝐹),
but in general, this problem is still open.
In this article, we consider the following question.

Question 1.4. Let 𝑒 ∈ ℕ+. Can one bound the index of a central simple 𝐹-
algebra of exponent 𝑝𝑒 in terms of 𝑒 and 𝜆𝑝(𝐹)?

This is obviously true when 𝑒 = 1. In the case where 𝐹 contains a primitive
𝑝𝑒-th root of unity, one can distill from the proof of [17, Proposition 2.5] an
argument showing that the index of any central simple 𝐹-algebra of exponent
𝑝𝑒 is bounded by 𝑝

𝑒(𝑒+1)
2

𝜆𝑝(𝐹). We retrieve this bound in Theorem 2.6 by means
of a lifting argument formulated in Proposition 2.4.
In Section 3, we consider the case where 𝑝𝑒 = 4 and make no assumption

on roots of unity. For a nonreal field 𝐹, we obtain in Corollary 3.12 an upper
bound on the index of exponent-4 algebras in terms of the 𝑢-invariant of 𝐹.
Section 4 is devoted to the construction of examples of nonreal fields with

given 𝑢-invariant admitting a central simple algebra of given 2-primary expo-
nent and of comparatively large index; see Proposition 4.3. If 𝐹 is nonreal and
𝑢(𝐹) = 4, then by Corollary 3.12 the index of a central simple 𝐹-algebra of
exponent 4 is at most 8, and we see in Example 4.4 that this is optimal. This ex-
ample provides at the same time quadratic field extensions 𝐾∕𝐹 with 𝑢(𝐹) = 4
and 𝑢(𝐾) = 6; see Example 4.5. Hence, Section 4 provides also an alternative
construction of fields of 𝑢-invariant 6.

2. Multiplication by a power of 𝒑 in the Brauer group
For a finite field extension 𝐾∕𝐹, let 𝖭𝐾∕𝐹 ∶ 𝐾 → 𝐹 denote the norm map.

Theorem 2.1. Let 𝜁 ∈ 𝐹 be a primitive 𝑝-th root of unity. Let 𝐾∕𝐹 be a cyclic
field extension of degree 𝑝𝑒−1. Then 𝐾∕𝐹 embeds into a cyclic field extension of
degree 𝑝𝑒 of 𝐹 if and only if 𝜁 = 𝖭𝐾∕𝐹(𝑥) for some 𝑥 ∈ 𝐾.

Proof. See [2, Theorem 9.11]. □
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Let 𝐴 and 𝐵 be central simple 𝐹-algebras. We write 𝐴 ∼ 𝐵 to indicate that 𝐴
and 𝐵 are Brauer equivalent. For 𝑛 ∈ ℕ+ we denote by 𝐴⊗𝑛 the 𝑛-fold tensor
product 𝐴⊗𝐹 …⊗𝐹 𝐴.
Theorem 2.2 (Albert). Let 𝑛,𝑚 ∈ ℕ with 𝑚 ⩽ 𝑛 and 𝑏 ∈ 𝐹×. Let 𝐿∕𝐹 be a
cyclic field extension of degree 𝑝𝑛 and let 𝜎 be a generator of its Galois group. Let
𝐾 be the fixed field of 𝜎𝑝𝑛−𝑚 in 𝐿. Then

[𝐿∕𝐹, 𝜎, 𝑏)⊗𝑝𝑚 ∼ [𝐾∕𝐹, 𝜎|𝐾 , 𝑏).
Proof. See [3, Theorem 7.14]. □

Corollary 2.3. Let 𝜁 ∈ 𝐹 be a primitive 𝑝-th root of unity. Let 𝑒 ∈ ℕ+. For
𝛼 ∈ 𝖡𝗋(𝐹), the following are equivalent:
(𝑖) 𝛼 is the class of a cyclic 𝐹-algebra of degree 𝑝𝑒−1 containing a cyclic field

extension 𝐾∕𝐹 of degree 𝑝𝑒−1 such that 𝜁 = 𝖭𝐾∕𝐹(𝑥) for some 𝑥 ∈ 𝐾.
(𝑖𝑖) 𝛼 = 𝑝𝛽 for the class 𝛽 ∈ 𝖡𝗋(𝐹) of a cyclic 𝐹-algebra of degree 𝑝𝑒.
Proof. (𝑖 ⇒ 𝑖𝑖) Assume that 𝐾∕𝐹 is a cyclic field extension of degree 𝑝𝑒−1,
𝜎 a generator of its Galois group and 𝑏 ∈ 𝐹× is such that 𝛼 is represented by
[𝐾∕𝐹, 𝜎, 𝑏). Assume further that 𝜁 = 𝖭𝐾∕𝐹(𝑥) for some 𝑥 ∈ 𝐾. By Theorem 2.1,
there exists a field extension 𝐿∕𝐾 of degree 𝑝 such that 𝐿∕𝐹 is cyclic. Then
𝜎 extends to an 𝐹-automorphism 𝜎′ of 𝐿, and it follows that 𝜎′ generates the
Galois group of 𝐿∕𝐹. Let 𝛽 be the class of the cyclic𝐹-algebra [𝐿∕𝐹, 𝜎′, 𝑏). Since
[𝐿 ∶ 𝐾] = 𝑝 and 𝜎′|𝐾 = 𝜎, we conclude by Theorem 2.2 that 𝑝𝛽 = 𝛼.
(𝑖𝑖 ⇒ 𝑖) Assume that 𝛼 = 𝑝𝛽 where 𝛽 ∈ 𝖡𝗋(𝐹) is the class of a cyclic 𝐹-

algebra of degree 𝑝𝑒. Then 𝛽 is given by [𝐿∕𝐹, 𝜎, 𝑏) for some cyclic field exten-
sion 𝐿∕𝐹 of degree 𝑝𝑒, a generator 𝜎 of its Galois group and some 𝑏 ∈ 𝐹×. Let
𝐾 denote the fixed field of 𝜎𝑝𝑒−1 in 𝐿. Then𝐾∕𝐹 is cyclic of degree 𝑝𝑒−1, and we
obtain by Theorem 2.1 that 𝜁 = 𝖭𝐾∕𝐹(𝑥) for some 𝑥 ∈ 𝐾. By Theorem 2.2, we
have [𝐿∕𝐹, 𝜎, 𝑏)⊗𝑝 ∼ [𝐾∕𝐹, 𝜎|𝐾 , 𝑏). Hence, 𝛼 is given by [𝐾∕𝐹, 𝜎|𝐾 , 𝑏). □

Given a central simple 𝐹-algebra 𝐴, we denote by 𝖽𝖾𝗀𝐴, 𝗂𝗇𝖽𝐴 and 𝖾𝗑𝗉𝐴,
the degree, index and exponent of 𝐴, respectively. For 𝛼 ∈ 𝖡𝗋(𝐹), we write
𝗂𝗇𝖽𝛼 and 𝖾𝗑𝗉𝛼 for the index and the exponent of any central simple 𝐹-algebra
representing 𝛼.
Given a field extension 𝐹′∕𝐹 and 𝛼 ∈ 𝖡𝗋(𝐹)we denote by 𝛼𝐹′ the image of 𝛼

under the natural map 𝖡𝗋(𝐹)→ 𝖡𝗋(𝐹′) induced by scalar extension.
Let𝑚 ∈ ℕ+. We call 𝛼 ∈ 𝖡𝗋(𝐹) an𝑚-cycle if 𝖾𝗑𝗉𝛼 = 𝑚 = [𝐾 ∶ 𝐹] for some

cyclic field extension 𝐾∕𝐹 for which 𝛼𝐾 = 0. Hence, given a central 𝐹-division
algebra 𝐷, the class of 𝐷 in 𝖡𝗋(𝐹) is an 𝑚-cycle if and only if 𝐷 is cyclic and
𝖾𝗑𝗉𝐷 = 𝖽𝖾𝗀𝐷 = 𝑚.
Proposition 2.4. Let 𝑒, 𝑖 ∈ ℕ+ with 𝑖 ⩽ 𝑒 and such that every cyclic field exten-
sion of degree 𝑝𝑖 of 𝐹 embeds into a cyclic field extension of degree 𝑝𝑒 of 𝐹. Then
every 𝑝𝑖-cycle in 𝖡𝗋(𝐹) is of the form 𝑝𝑒−𝑖𝛽 for a 𝑝𝑒-cycle 𝛽 ∈ 𝖡𝗋(𝐹).
Proof. Let 𝛼 ∈ 𝖡𝗋(𝐹) be a 𝑝𝑖-cycle. Hence, 𝛼 is given by 𝐷 = [𝐾∕𝐹, 𝜎, 𝑏) for
a cyclic field extension 𝐾∕𝐹 of degree 𝑝𝑖, a generator 𝜎 of its Galois group and
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some 𝑏 ∈ 𝐹×. In particular 𝖽𝖾𝗀𝐷 = 𝑝𝑖 = 𝖾𝗑𝗉𝛼 = 𝖾𝗑𝗉𝐷, whereby 𝐷 is a
division algebra. By the hypothesis, 𝐾∕𝐹 embeds into a cyclic field extension
𝐿∕𝐹 of degree 𝑝𝑒. Then 𝜎 extends to an 𝐹-automorphism 𝜎′ of 𝐿. It follows
that 𝜎′ is a generator of the Galois group of 𝐿∕𝐹. We set ∆ = [𝐿∕𝐹, 𝜎′, 𝑏) and
denote by 𝛽 the class of ∆ in 𝖡𝗋(𝐹). We obtain by Theorem 2.2 that ∆⊗𝑝𝑒−𝑖 ∼ 𝐷,
whereby 𝑝𝑒−𝑖𝛽 = 𝛼. Since 𝖾𝗑𝗉𝛼 = 𝑝𝑖, it follows that 𝖾𝗑𝗉 𝛽 = 𝑝𝑒 = 𝖽𝖾𝗀∆. Since
𝛽𝐿 = 0, we conclude that 𝛽 is a 𝑝𝑒-cycle. □

An element 𝛼 ∈ 𝖡𝗋(𝐹) is called a cycle if it is an 𝑚-cycle for some 𝑚 ∈ ℕ+

(given by𝑚 = 𝖾𝗑𝗉𝛼).

Corollary 2.5. Let 𝑒 ∈ ℕ+ be such that 𝐹 contains a primitive 𝑝𝑒-th root of unity.
Then every cycle in 𝖡𝗋𝑝𝑒(𝐹) is a multiple of a 𝑝𝑒-cycle.

Proof. Let 𝜔 ∈ 𝐹 be a primitive 𝑝𝑒-th root of unity and set 𝜁 = 𝜔𝑝𝑒−1 . Then 𝜁
is a primitive 𝑝-th root of unity. For any field extension 𝐾∕𝐹 of degree 𝑝𝑖 with
1 ⩽ 𝑖 ⩽ 𝑒 − 1, we have that 𝜁 = (𝜔𝑝𝑒−𝑖−1)𝑝𝑖 = 𝖭𝐾∕𝐹(𝜔𝑝

𝑒−𝑖−1). Hence, it follows
by induction on 𝑖 from Theorem 2.1 that every cyclic field extension of degree
𝑝𝑖 of 𝐹 embeds into a cyclic field extension of degree 𝑝𝑒. Now the conclusion
follows by Proposition 2.4. □

The following bound can be easily derived from the proof of [17, Proposition
2.5]. To illustrate the general strategy, we include an argument.

Theorem 2.6. Let 𝑒 ∈ ℕ+ be such that 𝐹 contains a primitive 𝑝𝑒-th root of unity.
Then 𝖡𝗋𝑝𝑒(𝐹) is generated by the 𝑝𝑒-cycles. Furthermore, for every 𝛼 ∈ 𝖡𝗋𝑝𝑒(𝐹),
we have 𝗂𝗇𝖽𝛼 = 𝑝𝑛 for some 𝑛 ∈ ℕ+ with

𝑛 ⩽ 𝑒(𝑒+1)
2

𝜆𝑝(𝐹) .

Proof. Consider 𝛼 ∈ 𝖡𝗋𝑝𝑒(𝐹). By induction on 𝑒 wewill show at the same time
that 𝛼 is a sum of 𝑝𝑒-cycles and that 𝗂𝗇𝖽𝛼 is of the claimed form.
We have 𝑝𝑒−1𝛼 ∈ 𝖡𝗋𝑝(𝐹). It follows by Theorem 1.3 for 𝑛 = 𝑝 and by the

definition of 𝜆𝑝(𝐹) that 𝑝𝑒−1𝛼 = ∑𝑚
𝑖=1 𝛾𝑖 for some natural number 𝑚 ⩽ 𝜆𝑝(𝐹)

and classes 𝛾1,… , 𝛾𝑚 ∈ 𝖡𝗋(𝐹) of cyclic 𝐹-division algebras of degree 𝑝. Then
𝛾1,… , 𝛾𝑚 are 𝑝-cycles. By Corollary 2.5, for 1 ⩽ 𝑖 ⩽ 𝑚, we have 𝛾𝑖 = 𝑝𝑒−1𝛽𝑖 for
a 𝑝𝑒-cycle 𝛽𝑖 ∈ 𝖡𝗋(𝐹).
We set 𝛼′ = 𝛼 − ∑𝑚

𝑖=1 𝛽𝑖. Then 𝛼′ ∈ 𝖡𝗋𝑝𝑒−1(𝐹). If 𝑒 = 1, then 𝛼′ = 0
and 𝛼 = ∑𝑚

𝑖=1 𝛽𝑖, and we obtain that 𝗂𝗇𝖽𝛼 = 𝑝𝑛 for some positive integer 𝑛 ⩽
𝑚 ⩽ 𝜆𝑝(𝐹), confirming the claims about 𝛼. Assume now that 𝑒 > 1. By the
induction hypothesis, 𝛼′ is equal to a sum of 𝑝𝑒−1-cycles and 𝗂𝗇𝖽𝛼′ = 𝑝𝑛′ for
a natural number 𝑛′ ⩽ (𝑒−1)𝑒

2
𝜆𝑝(𝐹). By Corollary 2.5, every cycle in 𝖡𝗋𝑝𝑒(𝐹) is

a multiple of a 𝑝𝑒-cycle, hence in particular, a sum of 𝑝𝑒-cycles. We conclude
that 𝛼′ is a sum of𝑝𝑒-cycles, whereby 𝛼 is a sum of𝑝𝑒-cycles. Furthermore 𝗂𝗇𝖽𝛼
divides 𝗂𝗇𝖽𝛼′ ⋅ 𝗂𝗇𝖽 𝛽1⋯ 𝗂𝗇𝖽 𝛽𝑚 = 𝑝𝑛′+𝑒𝑚. Hence, 𝗂𝗇𝖽𝛼 = 𝑝𝑛 for some positive
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integer
𝑛 ⩽ 𝑛′ + 𝑒𝑚 ⩽ (𝑒−1)𝑒

2
𝜆𝑝(𝐹) + 𝑒𝜆𝑝(𝐹) =

𝑒(𝑒+1)
2

𝜆𝑝(𝐹) .
This proves the claims about 𝛼. □

To obtain that 𝖡𝗋𝑝𝑒(𝐹) is generated by cycles, one can also conclude induc-
tively on the basis of a weaker hypothesis on roots of unity than in Theorem 2.6.

Proposition 2.7. Let 𝑒 ∈ ℕ+ be such that 𝑝 𝖡𝗋(𝐹) ∩ 𝖡𝗋𝑝𝑒−1(𝐹) is generated by
elements 𝑝𝛽 with cycles 𝛽 ∈ 𝖡𝗋𝑝𝑒(𝐹). Then 𝖡𝗋𝑝𝑒(𝐹) is generated by cycles.

Proof. Consider 𝛼 ∈ 𝖡𝗋𝑝𝑒(𝐹). Then𝑝𝛼 ∈ 𝑝 𝖡𝗋(𝐹)∩𝖡𝗋𝑝𝑒−1(𝐹), so the hypothesis
implies that 𝑝𝛼 = ∑𝑛

𝑖=1 𝑝𝛽𝑖 for some 𝑛 ∈ ℕ and cycles 𝛽1,… , 𝛽𝑛 ∈ 𝖡𝗋𝑝𝑒(𝐹).
Hence, 𝛼 − ∑𝑛

𝑖=1 𝛽𝑖 ∈ 𝖡𝗋𝑝(𝐹). By Theorem 1.3, 𝛼 − ∑𝑛
𝑖=1 𝛽𝑖 =

∑𝑚
𝑖=1 𝛾𝑖 for

some 𝑚 ∈ ℕ and 𝑝-cycles 𝛾1,… , 𝛾𝑚 ∈ 𝖡𝗋(𝐹). Hence, 𝛼 is a sum of cycles in
𝖡𝗋𝑝𝑒(𝐹). □

3. Multiplying by 𝟐 in the Brauer group
From now on we assume that 𝖼𝗁𝖺𝗋 𝐹 ≠ 2. We show that the hypotheses of

Proposition 2.7 for 𝑝 = 𝑒 = 2 are satisfied to retrieve the positive answer to
Question 1.1 in the case where 𝑝𝑒 = 4. The argument also yields bounds on
the index of exponent-4 algebras in terms of the 2-symbol length, and hence an
affirmative answer to Question 1.4 for these algebras.
We denote by 𝖲2(𝐹) the set of nonzero sums of two squares in 𝐹. Note that

𝖲2(𝐹) is a subgroup of 𝐹.
The following statement is essentially contained in [11, Corollary 5.14]. We

include the argument for convenience.

Proposition 3.1. Let 𝑄 be an 𝐹-quaternion division algebra. The following are
equivalent:
(𝑖) −1 is a norm in a quadratic field extension of 𝐹 contained in 𝑄.
(𝑖𝑖) −1 is a reduced norm of 𝑄.
(𝑖𝑖𝑖) 𝑄 ∼ 𝐶⊗2 for some cyclic 𝐹-algebra 𝐶 of degree 4.
(𝑖𝑣) 𝑄 ≃ (𝑠, 𝑡)𝐹 for certain 𝑠 ∈ 𝖲2(𝐹) and 𝑡 ∈ 𝐹×.

Proof. Let 𝖭𝗋𝖽𝑄 ∶ 𝑄 → 𝐹 denote the reduced norm map. For any quadratic
field extension𝐾∕𝐹 contained in𝑄 and any 𝑥 ∈ 𝐾 we have𝖭𝗋𝖽𝑄(𝑥) = 𝖭𝐾∕𝐹(𝑥).
Therefore, the implication (𝑖 ⇒ 𝑖𝑖) is obvious, and for (𝑖𝑖 ⇒ 𝑖), it suffices to
observe that, since𝑄 is a division algebra, every maximal commutative subring
of 𝑄 is a quadratic field extension of 𝐹.
The equivalence (𝑖 ⇔ 𝑖𝑖𝑖) corresponds to the equivalence formulated inCorol-

lary 2.3 in the case where 𝑝 = 𝑒 = 2, taking for 𝛼 ∈ 𝖡𝗋(𝐹) the class of 𝑄.
To finish the proof, it suffices to show the equivalence (𝑖 ⇔ 𝑖𝑣). As 𝖼𝗁𝖺𝗋 𝐹 ≠

2, any quadratic field extension of 𝐹 is of the form 𝐹(
√
𝑠) for some 𝑠 ∈ 𝐹× ∖𝐹×2,

and for such 𝑠, we have that−1 is a norm in𝐹(
√
𝑠)∕𝐹 if and only if the quadratic

form 𝑋2 +𝑌2 − 𝑠𝑍2 over 𝐹 is isotropic, if and only if 𝑠 ∈ 𝖲2(𝐹). Finally, given a
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quadratic field extension𝐾∕𝐹 contained in𝑄 and 𝑠 ∈ 𝐹× such that𝐾 ≃ 𝐹(
√
𝑠),

by [3, Theorem 5.9], we can find an element 𝑡 ∈ 𝐹× such that 𝑄 ≃ (𝑠, 𝑡)𝐹 . □

We denote by 𝖶𝐹 the Witt ring of 𝐹 and by 𝖨𝐹 its fundamental ideal. For
𝑛 ∈ ℕ+, we set 𝖨𝑛𝐹 = (𝖨𝐹)𝑛, and we call a regular quadratic form over 𝐹 whose
Witt equivalence class belongs to 𝖨𝑛𝐹 simply a form in 𝖨𝑛𝐹. Given a regular
quadratic form 𝑞 over 𝐹, we denote by 𝖽𝗂𝗆 𝑞 its dimension (rank). By a torsion
form we shall mean a regular quadratic form over 𝐹 whose class in 𝖶𝐹 has
finite additive order. A quadratic form 𝑞 such that 2 × 𝑞 is hyperbolic is called
a 2-torsion form. The following statement describes 2-torsion forms in 𝖨2𝐹.

Lemma 3.2. Let 𝑞 be a form in 𝖨2𝐹. Let𝑚 ∈ ℕ+ be such that 𝖽𝗂𝗆 𝑞 = 2𝑚 + 2.
Then 2 × 𝑞 is hyperbolic if and only if 𝑞 is Witt equivalent to⟂𝑚

𝑖=1 𝑎𝑖⟨⟨𝑠𝑖, 𝑡𝑖⟩⟩ for
some 𝑠1,… , 𝑠𝑚 ∈ 𝖲2(𝐹) and 𝑎1, 𝑡1,… , 𝑎𝑚, 𝑡𝑚 ∈ 𝐹×.

Proof. For 𝑠 ∈ 𝖲2(𝐹) and 𝑡 ∈ 𝐹×, the form 2 × ⟨⟨𝑠, 𝑡⟩⟩ over 𝐹 is hyperbolic. This
proves the right-to-left implication.
We prove the opposite implication by induction on 𝑚. If 𝑚 = 0, then 𝑞 is

a 2-dimensional quadratic form in 𝖨2𝐹 and must therefore be hyperbolic. In
particular, the statement holds in this case. Suppose now that 𝑚 ⩾ 1. In view
of the induction hypothesis, we may assume without loss of generality that 𝑞 is
anisotropic. As the quadratic form 2 × 𝑞 is hyperbolic and hence in particular
isotropic, it follows by [7, Lemma 6.24] that 𝑞 ≃ 𝑞1 ⟂ 𝑞2 for certain regular
quadratic forms 𝑞1 and 𝑞2 over 𝐹 such that 𝖽𝗂𝗆 𝑞1 = 2 and 2 × 𝑞1 is hyperbolic.
We fix an element 𝑎1 ∈ 𝐹× represented by 𝑞1. Then 𝑞1 ≃ ⟨𝑎1,−𝑎1𝑠1⟩ for some
𝑠1 ∈ 𝐹×. As 2×𝑞1 is hyperbolic, so is 2× ⟨1,−𝑠1⟩, whereby 𝑠1 ∈ 𝖲2(𝐹). We write
𝑞2 ≃ ⟨𝑎⟩ ⟂ 𝑞′ with 𝑎 ∈ 𝐹× and a (2𝑚 − 1)-dimensional regular quadratic form
𝑞′ over 𝐹. We set 𝑞′′ = 𝑞′ ⟂ ⟨𝑠1𝑎⟩ and 𝑡1 = −𝑎1𝑎. We obtain that 𝑞 ⟂ −𝑞′′
is Witt equivalent to 𝑎1⟨⟨𝑠1, 𝑡1⟩⟩. Since 𝑠1 ∈ 𝖲2(𝐹), we have that 2 × ⟨⟨𝑠1, 𝑡1⟩⟩ is
hyperbolic. Therefore, 2 × 𝑞′′ is Witt equivalent to 2 × 𝑞, and hence equally
hyperbolic. Furthermore, 𝑞′′ is a form in 𝖨2𝐹. Since 𝖽𝗂𝗆 𝑞′′ = 2𝑚 and 2 × 𝑞′′
is hyperbolic, the induction hypothesis yields that there exist 𝑠2,… , 𝑠𝑚 ∈ 𝖲2(𝐹)
and 𝑎2, 𝑡2,… , 𝑎𝑚, 𝑡𝑚 ∈ 𝐹× such that 𝑞′′ is Witt equivalent to ⟂𝑚

𝑖=2 𝑎𝑖⟨⟨𝑠𝑖, 𝑡𝑖⟩⟩.
Then 𝑞 is Witt equivalent to⟂𝑚

𝑖=1 𝑎𝑖⟨⟨𝑠𝑖, 𝑡𝑖⟩⟩. This concludes the proof. □

By [7, Theorem 14.3], associating to a quadratic form its Clifford algebra in-
duces a homomorphism

𝑒2 ∶ 𝖨2𝐹 → 𝖡𝗋2(𝐹) .
By Merkurjev’s Theorem [7, Theorem 44.1] together with [14, Theorem 4.1],
the kernel of this homomorphism is precisely 𝖨3𝐹.
For a quadratic field extension 𝐾∕𝐹, we denote by 𝖼𝗈𝗋𝐾∕𝐹 the corestriction

homomorphism 𝖡𝗋(𝐾)→ 𝖡𝗋(𝐹) defined in [10, Section 3.B] (where it is denoted
by 𝖭𝐾∕𝐹).

Proposition 3.3. Let 𝛽 ∈ 𝖡𝗋2(𝐹). The following are equivalent:
(𝑖) 𝛽 ∈ 2𝖡𝗋(𝐹).
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(𝑖𝑖) 𝛽 = 𝑒2(𝑞) for some 2-torsion form 𝑞 in 𝖨2𝐹.
(𝑖𝑖𝑖) 𝛽 is given by⨂𝑚

𝑖=1(𝑠𝑖, 𝑡𝑖)𝐹 for some𝑚 ∈ ℕ, 𝑠1,… , 𝑠𝑚 ∈ 𝖲2(𝐹)and 𝑡1,… , 𝑡𝑚 ∈
𝐹×.

Moreover, if these conditions are satisfied and 𝗂𝗇𝖽 𝛽 ⩽ 4, then one can choose 𝑚
in (𝑖𝑖𝑖) such that 𝗂𝗇𝖽 𝛽 = 2𝑚.
Proof. The implication (𝑖𝑖𝑖 ⇒ 𝑖) follows by Proposition 3.1.
For 𝑚 ∈ ℕ, 𝑠1,… , 𝑠𝑚 ∈ 𝖲2(𝐹) and 𝑎1, 𝑡1,… , 𝑎𝑚, 𝑡𝑚 ∈ 𝐹×, one has that

𝑒2(⟂𝑚
𝑖=1 𝑎𝑖⟨⟨𝑠𝑖, 𝑡𝑖⟩⟩) ∼

⨂𝑚
𝑖=1(𝑠𝑖, 𝑡𝑖)𝐹 . Hence, the equivalence (𝑖𝑖 ⇔ 𝑖𝑖𝑖) follows

by Lemma 3.2.
We show now the implication (𝑖 ⇒ 𝑖𝑖𝑖). If −1 ∈ 𝐹×2, then 𝐹× = 𝖲2(𝐹),

so (𝑖𝑖𝑖) holds by Theorem 1.3. Assume now that −1 ∈ 𝐹× ∖ 𝐹×2 and that (𝑖)
holds. We set 𝐾 = 𝐹(

√
−1). As 𝛽 ∈ 𝖡𝗋2(𝐹), it follows by Theorem 1.3 together

with [11, Corollary A4] that 𝛽 ∪ (−1) = 0 in 𝐻3(𝐹, 𝜇2). By [7, Theorem 99.13],
we obtain that 𝛽 = 𝖼𝗈𝗋𝐾∕𝐹𝛽′ for some 𝛽′ ∈ 𝖡𝗋2(𝐾). By Theorem 1.3 and [7,
Proposition 100.2], 𝖡𝗋2(𝐾) is generated by the classes of 𝐾-quaternion algebras
(𝑥, 𝑡)𝐾 with 𝑥 ∈ 𝐾× and 𝑡 ∈ 𝐹×, and the corestriction with respect to 𝐾∕𝐹
of such a class is given by (𝖭𝐾∕𝐹(𝑥), 𝑡)𝐹 . Since 𝖭𝐾∕𝐹(𝐾×) ⊆ 𝖲2(𝐹) and 𝛽 =
𝖼𝗈𝗋𝐾∕𝐹𝛽′, we obtain that 𝛽 is given by

⨂𝑚
𝑖=1(𝑠𝑖, 𝑡𝑖)𝐹 for some𝑚 ∈ ℕ, 𝑠1,… , 𝑠𝑚 ∈

𝖲2(𝐹) and 𝑡1,… , 𝑡𝑚 ∈ 𝐹×.
Hence, the equivalence of (𝑖)–(𝑖𝑖𝑖) is established and it remains to prove the

supplementary statement under the assumption that 𝗂𝗇𝖽 𝛽 ⩽ 4. In this case 𝛽
is the class of an 𝐹-biquaternion algebra. It follows by [10, Section 16.A] that
𝛽 = 𝑒2(𝑞′) for a 6-dimensional form 𝑞′ in 𝖨2𝐹. By (𝑖𝑖), there also exists a 2-
torsion form 𝑞 in 𝖨2𝐹 with 𝛽 = 𝑒2(𝑞). Then 𝑞′ ⟂ −𝑞 is a form in 𝖨2𝐹 with
𝑒2(𝑞′ ⟂ −𝑞) = 0. As mentioned above, this implies that 𝑞′ ⟂ −𝑞 is a form in
𝖨3𝐹. Since 2 × 𝑞 is hyperbolic, the Witt class of 2 × 𝑞′ lies in 𝖨4𝐹. Note that
𝖽𝗂𝗆 2 × 𝑞′ < 16. Thus, 2 × 𝑞′ is hyperbolic, by [7, Theorem 23.7], and hence
Lemma 3.2 yields the result. □

By Proposition 3.3, for 𝑝 = 𝑒 = 2, the hypotheses of Proposition 2.7 on
2𝖡𝗋(𝐹)∩𝖡𝗋2(𝐹) are satisfied unconditionally. Hence, one gets a positive answer
to Question 1.1 for 𝑝𝑒 = 4. We will formulate this result together with a bound
on the index of exponent-4 algebras in terms of the 2-symbol length.
For 𝛼 ∈ 𝖡𝗋4(𝐹), we denote by 𝜇(𝛼) the smallest𝑚 ∈ ℕ for which there exist

𝑠1,… , 𝑠𝑚 ∈ 𝖲2(𝐹) and 𝑡1,… , 𝑡𝑚 ∈ 𝐹× with 2𝛼 = ∑𝑚
𝑖=1[(𝑠𝑖, 𝑡𝑖)𝐹], noticing that

such a representation does exist in view of Proposition 3.3. We set further

𝜇(𝐹) = 𝗌𝗎𝗉 {𝜇(𝛼) ∣ 𝛼 ∈ 𝖡𝗋4(𝐹)} ∈ ℕ ∪ {∞}.
Remark 3.4. If 𝖲2(𝐹) = 𝐹×, then 𝜇(𝐹) = 𝜆2(𝐹).
The invariants 𝜆2(𝐹) and 𝜇(𝐹) are related to the existence of anisotropic tor-

sion (respectively 2-torsion) forms over𝐹 in certain dimensions. Recall that the
𝑢-invariant of 𝐹 is defined as

𝑢(𝐹) = 𝗌𝗎𝗉{𝖽𝗂𝗆 𝑞 ∣ 𝑞 anisotropic torsion form over𝐹} ∈ ℕ ∪ {∞}.
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We refer to [15, Chapter 8] for a general discussion of this invariant.

Proposition 3.5. If 𝐹 is nonreal, then 𝜆2(𝐹) ⩽ 𝗆𝖺𝗑
{
0, 1

2
𝑢(𝐹) − 1

}
.

Proof. See [9, Théorème 2]. □

In [15, Section 8.2], the following relative of the 𝑢-invariant is studied.

𝑢′(𝐹) = 𝗌𝗎𝗉 {𝖽𝗂𝗆 𝑞 ∣ 𝑞 anisotropic 2-torsion form over 𝐹} ∈ ℕ ∪ {∞}.
Note that clearly 𝑢′(𝐹) ⩽ 𝑢(𝐹).

Proposition 3.6. We have 𝜇(𝐹) ⩽ 𝗆𝖺𝗑
{
0, 1

2
𝑢′(𝐹) − 1

}
.

Proof. We need to show that 𝜇(𝛼) ⩽ 𝑚 holds for any 𝛼 ∈ 𝖡𝗋4(𝐹) and any
𝑚 ∈ ℕ+ with 𝑢′(𝐹) ⩽ 2𝑚 + 2. Let 𝑚 ∈ ℕ+ be such that 𝑢′(𝐹) ⩽ 2𝑚 + 2. Let
𝛼 ∈ 𝖡𝗋4(𝐹). By Proposition 3.3, we have 2𝛼 = 𝑒2(𝑞) for some 2-torsion form
𝑞 in 𝖨2𝐹. Then 𝖽𝗂𝗆 𝑞 ⩽ 𝑢′(𝐹) ⩽ 2𝑚 + 2. Hence, 𝑞 is even-dimensional and
we obtain that 𝑞 is Witt equivalent to a quadratic form of dimension 2𝑚 + 2.
It follows by Lemma 3.2 that 𝑞 is Witt equivalent to ⟂𝑚

𝑖=1 𝑎𝑖⟨⟨𝑠𝑖, 𝑡𝑖⟩⟩ for some
𝑠1,… , 𝑠𝑚 ∈ 𝖲2(𝐹) and 𝑎1, 𝑡1,… , 𝑎𝑚, 𝑡𝑚 ∈ 𝐹×. Then

2𝛼 = 𝑒2(𝑞) = 𝑒2 (
𝑚
⟂
𝑖=1

𝑎𝑖⟨⟨𝑠𝑖, 𝑡𝑖⟩⟩) =
𝑚∑

𝑖=1
[(𝑠𝑖, 𝑡𝑖)] ,

whereby 𝜇(𝛼) ⩽ 𝑚. □

The last statements motivate the following question.

Question 3.7. Is 𝜇(𝐹) ⩽ 𝜆2(𝐹)?
If 𝜆2(𝐹) ⩽ 2, then a positive answer to Question 3.7 is obtained by Proposi-

tion 3.3. In the following example, the inequality in Proposition 3.6 is strict.

Example 3.8. Consider the iterated power series field 𝐹 = ℂ((𝑥))((𝑦))((𝑧)). The
8-dimensional quadratic form 𝜑 = ⟨1, 𝑥, 𝑦, 𝑧, 𝑥𝑦, 𝑥𝑧, 𝑦𝑧, 𝑥𝑦𝑧⟩ over 𝐹 is aniso-
tropic. Since −1 is square in 𝐹 and 𝐹×∕𝐹×2 is generated by the square-classes
of 𝑥, 𝑦 and 𝑧, it is easy to see that every anisotropic quadratic form over 𝐹 is
a subform of 𝜑. This implies on the one hand that 𝑢(𝐹) = 8, on the other
hand that 𝜆2(𝐹) = 1, because there is no anisotropic 6-dimensional form in
𝖨2𝐹. Furthermore −1 ∈ 𝐹×2, so 𝑢′(𝐹) = 𝑢(𝐹) = 8 and 𝜇(𝐹) = 𝜆2(𝐹) = 1.
Proposition 3.9. Let 𝛼 ∈ 𝖡𝗋4(𝐹). There exist a natural number𝑚 ⩽ 𝜇(𝐹) and
4-cycles 𝛼1,… , 𝛼𝑚 ∈ 𝖡𝗋(𝐹) such that 𝛼 ≡∑𝑚

𝑖=1 𝛼𝑖 𝗆𝗈𝖽 𝖡𝗋2(𝐹).

Proof. By Proposition 3.3 and the definition of 𝜇(𝐹), there exist a natural num-
ber 𝑚 ⩽ 𝜇(𝐹) and 𝑠1,… , 𝑠𝑚 ∈ 𝖲2(𝐹) and 𝑡1,… , 𝑡𝑚 ∈ 𝐹× such that 2𝛼 =∑𝑚

𝑖=1[(𝑠𝑖, 𝑡𝑖)𝐹]. By Proposition 3.1, for 1 ⩽ 𝑖 ⩽ 𝑚, we can find a 4-cycle 𝛼𝑖 ∈
𝖡𝗋4(𝐹) such that 2𝛼𝑖 = [(𝑠𝑖, 𝑡𝑖)𝐹]. We obtain that 2𝛼 −

∑𝑚
𝑖=1 2𝛼𝑖 = 0, whereby

𝛼 −∑𝑚
𝑖=1 𝛼𝑖 ∈ 𝖡𝗋2(𝐹). Therefore, 𝛼 ≡

∑𝑚
𝑖=1 𝛼𝑖 𝗆𝗈𝖽 𝖡𝗋2(𝐹). □
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We retrieve [13, Proposition 6.16]:

Corollary 3.10. 𝖡𝗋4(𝐹) is generated by cycles.

Proof. By Theorem 1.3, 𝖡𝗋2(𝐹) is generated by classes of 𝐹-quaternion division
algebras and thus by 2-cycles. The statement now follows by combining this
fact with Proposition 3.9. □

Theorem 3.11. We have 𝜆4(𝐹) ⩽ 𝜆2(𝐹) + 𝜇(𝐹). Furthermore, for 𝛼 ∈ 𝖡𝗋4(𝐹),
there exist 𝛽 ∈ 𝖡𝗋4(𝐹) with 𝜆4(𝛽) ⩽ 𝜇(𝛼) and 𝛾 ∈ 𝖡𝗋2(𝐹) such that 𝛼 = 𝛽 + 𝛾,
and in particular 𝗂𝗇𝖽𝛼 = 2𝑛 for some natural number 𝑛 ⩽ 𝜆2(𝐹) + 2𝜇(𝐹).

Proof. Let 𝛼 ∈ 𝖡𝗋4(𝐹) and set 𝑚 = 𝜇(𝛼). By Proposition 3.9, we obtain that
𝛼 =∑𝑚

𝑖=1 𝛼𝑖 + 𝛾 for some 4-cycles 𝛼1,… , 𝛼𝑚 ∈ 𝖡𝗋4(𝐹) and some 𝛾 ∈ 𝖡𝗋2(𝐹). Set
𝛽 =∑𝑚

𝑖=1 𝛼𝑖. Then 𝛽 ∈ 𝖡𝗋4(𝐹) and

𝜆4(𝛼) ⩽ 𝜆4(𝛾) + 𝜆4(𝛽) ⩽ 𝜆2(𝛾) +𝑚 ⩽ 𝜆2(𝐹) + 𝜇(𝐹) .

Note that 𝗂𝗇𝖽 𝛽 divides∏𝑚
𝑖=1 𝗂𝗇𝖽𝛼𝑖 = 22𝑚. Since 𝗂𝗇𝖽 𝛾 divides 2𝜆2(𝛾) and 𝗂𝗇𝖽𝛼

divides 𝗂𝗇𝖽 𝛽 ⋅ 𝗂𝗇𝖽 𝛾, we obtain that 𝗂𝗇𝖽𝛼 = 2𝑛 for some 𝑛 ∈ ℕ with 𝑛 ⩽ 𝜆2(𝐹) +
2𝜇(𝐹). □

Note that when 𝐹 contains a primitive 4-th root of unity, the bounds in The-
orem 3.11 coincide with those in Theorem 2.6.

Corollary 3.12. Assume that 𝐹 is nonreal. Let 𝛼 ∈ 𝖡𝗋4(𝐹). Then 𝗂𝗇𝖽𝛼 = 2𝑛 for
some natural number 𝑛 ⩽ 𝗆𝖺𝗑

{
0, 3

( 1
2
𝑢(𝐹) − 1

)}
.

Proof. Since 𝑢′(𝐹) ⩽ 𝑢(𝐹), this follows by Theorem 3.11 together with Propo-
sition 3.5 and Proposition 3.6. □

Proposition 3.13. Let 𝑙 = 𝜆2(𝐹) and 𝑚 = 𝜇(𝐹) and assume that 𝑙 + 𝑚 < ∞.
Let𝐷 be a central 𝐹-division algebra of degree 2𝑙+2𝑚 for which𝐷⊗4 is split. There
exist 𝐹-quaternion algebras𝑄1,… , 𝑄𝑙 and cyclic 𝐹-algebras 𝐶1,… , 𝐶𝑚 of degree 4
such that

𝐷 ≃
⎛
⎜
⎝

𝑙⨂

𝑖=1
𝑄𝑖
⎞
⎟
⎠
⊗ (

𝑚⨂

𝑖=1
𝐶𝑖) .

Proof. By Theorem 3.11, the class of𝐷 in 𝖡𝗋(𝐹) is represented by such a tensor
product, and since the degrees coincide, the statement follows. □

Corollary 3.14. Assume that 𝐹 is nonreal and let 𝑚 ∈ ℕ be such that
𝑢(𝐹) = 2𝑚 + 2. Let 𝐷 be a central 𝐹-division algebra such that 𝐷⊗4 is split and
𝖽𝖾𝗀𝐷 = 23𝑚. Then 𝐷 is decomposable into a tensor product of 𝑚 𝐹-quaternion
algebras and𝑚 cyclic 𝐹-algebras of degree 4.

Proof. Since𝑢(𝐹) = 2𝑚+2, wehave 𝜆2(𝐹) ⩽ 𝑚, by Proposition 3.5, and further
𝜇(𝐹) ⩽ 𝑚, by Proposition 3.6. The statement follows by Proposition 3.13. □
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Theorem 3.15. Assume that 𝐹 is nonreal with 𝑢(𝐹) = 4. Let 𝐷 be a central
𝐹-division algebra of degree 8 such that 𝐷⊗4 is split. Then 𝐷 decomposes into
a tensor product of a cyclic 𝐹-algebra of degree 4 and an 𝐹-quaternion algebra.
Furthermore, 𝗂𝗇𝖽𝐷⊗2 = 2, and 𝑢(𝐾) = 6 holds for every quadratic field extension
𝐾∕𝐹 such that (𝐷⊗2)𝐾 is split.

Proof. The first part follows by Corollary 3.14 applied with𝑚 = 1.
Since 𝑢(𝐹) = 4, we have 𝜆2(𝐹) ⩽ 1, by Proposition 3.5. Hence, 𝗂𝗇𝖽𝐶 ⩽ 2

for every central simple 𝐹-algebra 𝐶 such that 𝐶⊗2 is split. Since 𝗂𝗇𝖽𝐷 > 2 and
𝐷⊗4 is split, we conclude that 𝗂𝗇𝖽𝐷⊗2 = 2.
Consider now a quadratic field extension𝐾∕𝐹 such that (𝐷⊗2)𝐾 is split. Note

that (𝐷⊗2)𝐾 ≃ (𝐷𝐾)⊗2 and 𝗂𝗇𝖽𝐷𝐾 ⩾ 1
2
𝗂𝗇𝖽𝐷 = 4. Hence, 𝐷𝐾 represents an

element of 𝖡𝗋2(𝐾)which is not given by any 𝐾-quaternion algebra. This shows
that 𝜆2(𝐾) ⩾ 2. It follows by Proposition 3.5 that 𝑢(𝐾) ⩾ 6. On the other
hand, since 𝑢(𝐹) = 4 and [𝐾 ∶ 𝐹] = 2, it follows by [8, Theorem 4.3] that
𝑢(𝐾) ⩽ 3

2
𝑢(𝐹) ⩽ 6. Therefore, 𝑢(𝐾) = 6. □

4. Examples of fields with 𝒖-invariant 𝟔
In this section, we provide a construction leading to an examplewhich shows

that the bound in Corollary 3.12 is optimal for fields of 𝑢-invariant 4. In partic-
ular this construction provides examples of nonreal fields of 𝑢-invariant 6.
Let 𝑞 be a regular quadratic form over 𝐹 of dimension 𝑛 ⩾ 2. If 𝑛 = 2,

then assume that 𝑞 is not hyperbolic. Then as a polynomial in 𝐹[𝑋1,… , 𝑋𝑛],
the quadratic form 𝑞(𝑋1,… , 𝑋𝑛) is irreducible. Thus, the ideal generated by
𝑞(𝑋1,… , 𝑋𝑛) in the polynomial ring 𝐹[𝑋1,… , 𝑋𝑛] is a prime ideal, and hence
the quotient ring 𝐹[𝑋1,… , 𝑋𝑛]∕(𝑞(𝑋1,… , 𝑋𝑛)) is a domain. Its fraction field is
denoted by 𝐹(𝑞) and called the function field of 𝑞 over 𝐹.

Lemma 4.1. Let 𝑚, 𝑛 ∈ ℕ+. Let 𝛼 ∈ 𝖡𝗋(𝐹) be such that 𝗂𝗇𝖽𝛼 = 2𝑛. Let 𝑞 be a
regular (2𝑚 + 1)-dimensional quadratic form over 𝐹 such that 𝗂𝗇𝖽𝛼𝐹(𝑞) < 𝗂𝗇𝖽𝛼.
Then 𝑛 ⩾ 𝑚. Moreover, if 𝑛 > 𝑚, then 𝗂𝗇𝖽 2𝛼 ⩽ 2𝑛−𝑚−1.

Proof. Let 𝐷 be the central 𝐹-division algebra representing 𝛼 in 𝖡𝗋(𝐹). Then
𝖽𝖾𝗀𝐷 = 𝗂𝗇𝖽𝛼 = 2𝑛. Let 𝐶0(𝑞) denote the even Clifford algebra of 𝑞. By [7,
Proposition 11.6], the 𝐹-algebra 𝐶0(𝑞) is central simple. As 𝖽𝗂𝗆𝐹 𝐶0(𝑞) = 22𝑚,
we have 𝖽𝖾𝗀𝐶0(𝑞) = 2𝑚. By [7, Example 11.3 and Proposition 11.4 (𝑏)], 𝐶0(𝑞)
carries an 𝐹-linear involution. Therefore, (𝐶0(𝑞))⊗2 is split.
Since 𝗂𝗇𝖽𝐷𝐹(𝑞) = 𝗂𝗇𝖽𝛼𝐹(𝑞) < 𝗂𝗇𝖽𝛼 = 𝖽𝖾𝗀𝐷, it follows by [7, Proposition

30.5], that there exists an 𝐹-algebra homomorphism 𝐶0(𝑞) → 𝐷. As 𝐶0(𝑞) and
𝐷 are central simple 𝐹-algebras, it follows that 𝐷 ≃ 𝐶0(𝑞) ⊗𝐹 𝐵 for a central
𝐹-division algebra 𝐵. Hence, 2𝑛 = 𝖽𝖾𝗀𝐷 = 2𝑚 ⋅ 𝖽𝖾𝗀𝐵, so in particular 𝑛 ⩾ 𝑚.
Assume now that 𝑛 > 𝑚. Then 𝗂𝗇𝖽𝐵 = 𝖽𝖾𝗀𝐵 = 2𝑛−𝑚 ⩾ 2. Since (𝐶0(𝑞))⊗2

is split, the class 2𝛼 ∈ 𝖡𝗋2(𝐹) is given by 𝐵⊗2. Hence, 𝗂𝗇𝖽 2𝛼 = 𝗂𝗇𝖽𝐵⊗2. By [3,
Lemma 5.7], we have 𝗂𝗇𝖽𝐵⊗2 ⩽ 1

2
𝗂𝗇𝖽𝐵. Therefore, 𝗂𝗇𝖽 2𝛼 ⩽ 2𝑛−𝑚−1. □
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Theorem 4.2. Let 𝒞 be a class of field extensions of 𝐹 with the following proper-
ties:
(𝑖) 𝒞 is closed under direct limits,
(𝑖𝑖) if 𝐿∕𝐹 ∈ 𝒞 and 𝐾∕𝐹 is a subextension of 𝐿∕𝐹 then 𝐾∕𝐹 ∈ 𝒞,
(𝑖𝑖𝑖) 𝐹∕𝐹 ∈ 𝒞.
Then there exists a field extension 𝐾∕𝐹 ∈ 𝒞 such that 𝐾(𝜑)∕𝐹 ∉ 𝒞 for any
anisotropic quadratic form 𝜑 over 𝐾 of dimension at least 2.

Proof. See [5, Theorem 6.1]. □

The following statement and its hypotheses are motivated by an application
which we obtain in Example 4.4.

Proposition 4.3. Let𝑚, 𝑒 ∈ ℕ+ with𝑚 ⩾ 2. Let 𝛼 ∈ 𝖡𝗋(𝐹) be such that 𝖾𝗑𝗉𝛼 =
2𝑒, 𝗂𝗇𝖽𝛼 = 2𝑚𝑒−1 and 𝗂𝗇𝖽 2𝑖𝛼 = 2𝑚𝑒−1−𝑖 for 0 ⩽ 𝑖 ⩽ 𝑒 − 1. There exists a field
extension 𝐾∕𝐹 such that 𝑢(𝐾) ⩽ 2𝑚, 𝖾𝗑𝗉𝛼𝐾 = 2𝑒 and 𝗂𝗇𝖽𝛼𝐾 = 2𝑚𝑒−1.

Proof. Let 𝒞 be the class of field extensions𝐾∕𝐹 such that 𝗂𝗇𝖽 2𝑖𝛼𝐾 ⩾ 2𝑚𝑒−𝑚𝑖−1
for 0 ⩽ 𝑖 ⩽ 𝑒 − 1. Then 𝒞 satisfies the conditions of Theorem 4.2. Hence, there
exists a field extension 𝐾∕𝐹 ∈ 𝒞 such that 𝐾(𝜑)∕𝐹 ∉ 𝒞 for any anisotropic
quadratic form 𝜑 over 𝐾 of dimension at least 2. As 𝗂𝗇𝖽 2𝑒−1𝛼𝐾 ⩾ 2𝑚−1, 𝑚 ⩾ 2
and 𝖾𝗑𝗉𝛼 = 2𝑒, we get that 𝖾𝗑𝗉𝛼𝐾 = 2𝑒. Since 𝗂𝗇𝖽𝛼𝐾 ⩾ 2𝑚𝑒−1 and 𝗂𝗇𝖽𝛼 =
2𝑚𝑒−1, we have that 𝗂𝗇𝖽𝛼𝐾 = 2𝑚𝑒−1.
Let 𝜑 be an arbitrary (2𝑚+1)-dimensional quadratic form over𝐾. We claim

that𝜑 is isotropic. Let𝛼𝑖 = 2𝑖𝛼𝐾 for 0 ⩽ 𝑖 ⩽ 𝑒−1. Wewill check for 0 ⩽ 𝑖 ⩽ 𝑒−1
that the inequality 𝗂𝗇𝖽𝛼𝑖 ⩾ 2𝑚𝑒−𝑚𝑖−1 is preserved under scalar extension from
𝐾 to 𝐾(𝜑). Consider first the case where 𝑖 = 𝑒 − 1. If 𝗂𝗇𝖽𝛼𝑒−1 = 2𝑚−1, then
𝗂𝗇𝖽(𝛼𝑒−1)𝐾(𝜑) = 2𝑚−1, by Lemma 4.1. Otherwise, 𝗂𝗇𝖽𝛼𝑒−1 ⩾ 2𝑚, and therefore
𝗂𝗇𝖽(𝛼𝑒−1)𝐾(𝜑) ⩾ 2𝑚−1. Consider now the case where 0 ⩽ 𝑖 ⩽ 𝑒 − 2. Note that
𝑚𝑒−𝑚𝑖−1 ⩾ 𝑚+1, because𝑚 ⩾ 2. If 𝗂𝗇𝖽𝛼𝑖 = 2𝑚𝑒−𝑚𝑖−1, then since 𝗂𝗇𝖽 2𝛼𝑖 =
𝗂𝗇𝖽𝛼𝑖+1 ⩾ 2𝑚𝑒−𝑚𝑖−1−𝑚, we conclude by Lemma 4.1 that 𝗂𝗇𝖽(𝛼𝑖)𝐾(𝜑) = 𝗂𝗇𝖽𝛼𝑖.
Otherwise, 𝗂𝗇𝖽𝛼𝑖 ⩾ 2𝑚𝑒−𝑚𝑖, and hence 𝗂𝗇𝖽(𝛼𝑖)𝐾(𝜑) ⩾ 2𝑚𝑒−𝑚𝑖−1. Therefore, we
have 𝗂𝗇𝖽(𝛼𝑖)𝐾(𝜑) ⩾ 2𝑚𝑒−𝑚𝑖−1 for 0 ⩽ 𝑖 ⩽ 𝑒 − 1. This shows that 𝐾(𝜑)∕𝐹 ∈ 𝒞. In
view of the choice of 𝐾, this implies that 𝜑 is isotropic. This argument shows
that 𝑢(𝐾) ⩽ 2𝑚. □

We can now show that the bound inCorollary 3.12 is optimalwhen 𝑢(𝐹) ⩽ 4.

Example 4.4. Let 𝑚, 𝑒 ∈ ℕ+ with 𝑚 ⩾ 2. By [16, Construction 2.8], there
exist a nonreal field 𝐹 of characteristic different from 2 and a central 𝐹-division
algebra 𝐷 such that 𝖾𝗑𝗉𝐷 = 2𝑒, 𝖽𝖾𝗀𝐷 = 2𝑚𝑒−1 and 𝗂𝗇𝖽𝐷⊗2𝑖 = 2𝑚𝑒−1−𝑖 for
1 ⩽ 𝑖 ⩽ 𝑒 − 1. Then Proposition 4.3 (applied to the the Brauer equivalence
class of𝐷) yields a field extension 𝐹′∕𝐹 such that 𝑢(𝐹′) ⩽ 2𝑚, 𝖾𝗑𝗉𝐷𝐹′ = 2𝑒 and
𝗂𝗇𝖽𝐷𝐹′ = 2𝑚𝑒−1. In the case where𝑚 = 2, it follows that 𝑢(𝐹′) = 4.

Example 4.5. By Example 4.4, there exist a nonreal field 𝐹 with 𝖼𝗁𝖺𝗋 𝐹 ≠ 2
together with an 𝐹-division algebra 𝐷 of degree 8 such that 𝑢(𝐹) = 4 and 𝐷⊗4
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is split. By Theorem 3.15, it follows that 𝗂𝗇𝖽𝐷⊗2 = 2 and that 𝑢(𝐾) = 6 for
every quadratic field extension 𝐾∕𝐹 such that (𝐷⊗2)𝐾 is split.
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