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The number of closed essential surfaces in
Montesinos knots with four rational tangles

Brannon Basilio

Abstract. In the complement of a hyperbolic Montesinos knot with 4 ra-
tional tangles, we investigate the number of closed, connected, essential, ori-
entable surfaces of a fixed genus 𝑔, up to isotopy. We show that there are
exactly 12 genus 2 surfaces and 8𝜙(𝑔 − 1) surfaces of genus greater than 2,
where 𝜙(𝑔 − 1) is the Euler totient function of 𝑔 − 1. Observe that this count
is independent of the number of crossings of the knot. This is the first infinite
family of 3-manifolds where such counts are precisely known, but simply not
zero for all large 𝑔.
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1. Motivation
Closed essential surfaces are a widely used tool for studying the geometry

and topology of 3-manifolds. In short, these are surfaces, 𝑆, without bound-
ary that inject into the fundamental group of the 3-manifold 𝑀, i.e. the map
𝜋1𝑆 ↪ 𝜋1𝑀 is injective, and 𝑆 is not boundary parallel. The exact definitions
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and conventions used in this section can be found in Section 2. The existence
of distinct closed essential surfaces is not guaranteed, for example [5] shows
there are no closed essential surfaces in 2-bridge knot complements. However,
Oertel [12] showed that for Montesinos knots with 𝑞𝑖 ≥ 3 for each 𝑖 and more
than four rational tangles, the complement contains closed essential surfaces
of every genus greater than 2. Moreover, by Corollary 2.3 of [7], irreducible and
atoroidalmanifolds contain a finite number of essential surfaces of a fixed topo-
logical type. In this paper we focus on hyperbolic Montesinos knots in 𝑆3, so
that the complement is irreducible and atoroidal by [14], giving finitely many
closed essential surfaces of a fixed genus.
A natural problem then is to investigate how many closed essential surfaces

there are in a 3-manifold and in particular, which ones are connected. We
present the main theorem which gives the exact number of closed, connected,
essential, orientable surfaces in a class of Montesinos knot complements; it is
the first, and so far only, infinite family of 3-manifolds where these exact counts
are known and not zero for large 𝑔.

Theorem 1.1. The number of closed, connected, essential, orientable surfaces of
genus 𝑔, up to isotopy, in the complement of a hyperbolic Montesinos knot 𝐾 =
𝐾(𝑝1∕𝑞1,… , 𝑝𝑘∕𝑞𝑘) in 𝑆3 with each 𝑞𝑖 ≥ 3 and 𝑘 = 4, is

{12, if 𝑔 = 2
8𝜙(𝑔 − 1), if 𝑔 ≥ 3

where 𝜙(𝑔 − 1) is the Euler totient function of 𝑔 − 1.

It should be noted that Oertel’s [12] classification does not determine which
surfaces are connected and this is the key issue which is addressed in this pa-
per. This class of knots include alternating Montesinos knots with arbitrary
many crossings. In comparison to this result, Kahn andMarkovic [8] show that
the number of essential immersed surfaces in a closed hyperbolic 3-manifold
is bounded by 𝑔2𝑔. Dunfield, Garoufalidis, and Rubinstein [2] showed how to
count closed essential surfaces in 3-manifolds, relying on work of Oertel [12]
and Tollefson [16], along with Ehrhart’s method (see e.g. [3]) of counting lat-
tice points in polytopes. For the count in [2], it is obtained once the 3-manifold
is fixed. The first and only known count was shown by Lee [9] who proved the
following conjecture of [2]: the knot 𝐾13𝑛586 has exactly 𝜙(𝑔− 1) closed, con-
nected, orientable, essential surfaces of genus 𝑔 up to isotopy, where 𝜙(𝑔−1) is
the Euler totient function. This was the only such exact count prior to The-
orem 1.1. Hass, Thompson, and Tsvietkova [6] found a polynomial bound,
in terms of the number of crossings of the link, for the number of closed in-
compressible surfaces in an alternating link complement. Note that the bound
found in [6] is exponential in terms of the genus of the surface and dependent of
the number of crossings of the knot. In contrast, the count in Theorem 1.1 is in
terms of the Euler totient function of the genus of the surface and independent
of the number of crossings of the knot. It should also be noted that the bound
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in [6] works for a wide family of links, and captures the change in the number
of surfaces from link to link.
In general, determining connectivity of an incompressible surface carried

by a fixed branched surface is subtle. There are no known conjectures for the
kinds of patterns that these counts should exhibit (see Section 8 of [2]). For
example, Figure 1 shows two possible tubings of eight 4-punctured spheres,
one of which gives a connected surface and the other gives a disconnected sur-
face. Moreover, it is another problem to determine if two different tubings of
4-punctured spheres yield non-isotopic surfaces. Theorem 1.1 shows that the
count is of distinct connected surfaces.

 

 

Figure 1. Example of two tubings of eight 4-punctured
spheres yielding a connected (left) and disconnected (right) sur-
face.

Sections 2 and 3 introduce background and conventions, respectively, for this
paper. Section 4 gives the main ideas and tools used for the proof of Theo-
rem 1.1. Section 5 gives definitions and an example of how to construct closed
essential surfaces from punctured partitioned chord diagrams (see Section 5,
Definition 5.1). Section 6 recalls a description, given in [12], of the comple-
ment of a Montesinos knot viewed as an orbifold fibration. Section 7 gives an
upper bound on the number of genus 2 surfaces and Section 8 gives an upper
bound for genus greater than 2. Section 9 shows that each of these surfaces are
distinct, i.e. non-isotopic, giving Theorem 1.1.

2. Background
We now review Montesinos knots and their complements. A rational tan-

gle of slope 𝑝∕𝑞 ∈ ℚ is constructed by taking lines of slope 𝑝∕𝑞 on the square
“pillowcase” starting at the four corners (see Figure 2). AMontesinos link 𝐾 =
𝐾(𝑝1∕𝑞1,… , 𝑝𝑘∕𝑞𝑘), called “star links” in [12], is a link obtained by taking 𝑘
rational tangles 𝑝1∕𝑞1,… , 𝑝𝑘∕𝑞𝑘 arranged counterclockwise (equivalently ar-
ranged in a line) with two parallel arcs connecting each pair of consecutive
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tangles (see Figure 3). One can construct a 4-punctured sphere 𝑆𝐶 in a Mon-
tesinos link complement by first projecting 𝐾 to the plane sphere as in Figure 3
(left), then taking a simple closed curve 𝑐 which intersects 𝐾 transversely at
four points on the arcs connecting rational tangle regions (see Figure 4), and
then capping 𝑐 with two disks, one above the projection plane sphere and one
below. As will be shown (Proposition 6.4), Figure 4 shows the only two possible
incompressible 𝑆𝐶 ’s, up to isotopy, in Montesinos link complements with four
rational tangles.

 

Figure 2. Ra-
tional tangle
with slope 2

3
.

 

 

Figure 3. Montesinos knot
𝐾( 2

3
, 1
3
, 1
2
, 2
3
) expressed in two

equivalent ways.

 

Figure 4. The only two possible 4-punctured spheres 𝑆𝐶 ’s rep-
resented by simple closed curves on the projection sphere.

A compressing disk for an embedded surface 𝑆 in a manifold𝑀 is an embed-
ded disk𝐷 ⊂ 𝑀 such that𝐷∩𝑆 = 𝜕𝐷 and𝐷 does not bound a disk in 𝑆. A closed
incompressible surface is a compact surface without boundary, which is not a
2-sphere, that does not have a compressing disk. Moreover, a closed essential
surface is a closed incompressible surface that is not parallel to the boundary.
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Note that the boundary of a knot complement is homeomorphic to a torus. A
peripheral tubing operation is the process of attaching an annulus between two
punctures of 𝑆𝐶 ’s (see Figure 5). A Seifert tangle (𝐵, 𝑝1∕𝑞1,… , 𝑝𝑘∕𝑞𝑘) consists
of a ball 𝐵 containing two embedded arcs and possibly some embedded closed
curves. These arcs and curves decompose as rational tangles 𝑝1∕𝑞1,… , 𝑝𝑘∕𝑞𝑘
where attached each successive rational tangle are parallel strands, except for
the first and last rational tangle (see Figure 6).

 

Figure 5. Periph-
eral tubing opera-
tion.

 

Figure 6. Seifert
tangle (𝐵, 2

3
, 1
3
).

Now, we turn to the definitions needed in order to count closed essential
surfaces in Montesinos knot complements. A chord diagram (see e.g. [11],
Chapter 4) is an oriented circle, bounding a disk, containing the following:

i) finitely many base points on the boundary circle,
ii) straight lines in between two base points, called chords, contained in

the interior of the disk with minimal intersection with other chords,
iii) any two chords have distinct base points and all base points belong to a

unique chord.
See Figure 7 for an example of a chord diagram. The length of a chord, with
base points say 𝑏1 and 𝑏2, in a chord diagram is the minimum number of base
points between 𝑏1 and 𝑏2 augmented by 1. See for example the chord labelled
𝐶 in Figure 7.
We state three results of Oertel [12] which are utilized throughout this paper:

Theorem 2.1 (Oertel [12], Theorem 1). If
∑𝑘

𝑖=1 𝑝𝑖∕𝑞𝑖 ≠ 0, in particular if𝐾 is a
knot, then every closed essential surface in 𝑆3−𝐾 is isotopic to a surface obtained
from a finite collection of disjoint incompressible spheres 𝑆𝐶 by a sequence of pe-
ripheral tubing operations. When

∑𝑘
𝑖=1 𝑝𝑖∕𝑞𝑖 = 0, there is, in addition, just one

other isotopy class of closed essential surfaces in 𝑆3−𝐾; surfaces in this class have
Euler characteristic 𝑙(2 − 𝑘 +∑𝑘

𝑖=1 1∕𝑞𝑖 = 0) where 𝑙 =l.c.m.(𝑞1,… , 𝑞𝑘).
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Figure 7. An example of a chord diagram, with chord 𝐶 hav-
ing length 5.

Theorem 2.2 (Oertel [12], Theorem 2). If 𝑞𝑖 ≥ 3 for each 𝑖, then a surface ob-
tained from disjoint incompressible 𝑆𝐶 ’s by a sequence of tubing operations is in-
compressible if and only if each tube passes through at least one rational tangle.

Corollary 2.3 (Oertel [12], Corollary 2.14). A vertical 4-punctured sphere in𝑂𝐾 ,
the fibered orbifold with underlying space 𝑆3 and ℤ2-singular set

𝐾 = 𝐾(𝑝1∕𝑞1,… , 𝑝𝑘∕𝑞𝑘),
is incompressible as an orbifold if and only if it bounds a Seifert tangle on each
side which is not a rational tangle.

3. Convention
In order to utilize Theorem 2.2, throughout this paper, every Montesinos

knot 𝐾 will have 𝑞𝑖 ≥ 3 for each 𝑖. We prove which Montesinos knots are
hyperbolic.

Lemma 3.1. AMontesinos knot 𝐾 = 𝐾(𝑝1∕𝑞1,… , 𝑝𝑘∕𝑞𝑘) is hyperbolic if 𝑞𝑖 ≥ 3
for each 𝑖 and 𝑘 ≥ 4.

Proof. We show that the knot is neither a satellite knot nor a torus knot so
by Thurston’s hyperbolization theorem for Haken manifolds, the knot comple-
ment is hyperbolic. First, since 𝑆3 is irreducible, then so is the knot complement
as every 2-sphere in 𝑆3 bounds a ball to both sides and hence every 2-sphere in
𝑆3 −𝐾 bounds a ball to one side. By Theorem 2.1, every essential surface 𝑆 is a
tubing of 4-punctured spheres. Since every tubing of 4-punctured spheres has
𝜒(𝑆) < 0, then the knot complement is geometrically atoroidal so 𝐾 is not a
satellite knot.
We now show that 𝐾 is not a torus knot. By assumption we have 𝑞𝑖 ≥ 3 for

each 𝑖 and 𝑘 ≥ 4, hence Corollary 3 of [12] implies that the knot complement of
𝐾 contains closed essential surfaces of every genus greater than 2. However, by
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Waldhausen (see e.g. [10]), torus knots contain only one closed incompressible
surface which is boundary parallel. Thus,𝐾 cannot be a torus knot. So, wemay
apply Thurston’s hyperbolization theorem to conclude that𝐾 is hyperbolic. □

In light of the above lemma, all Montesinos knots in this paper are hyper-
bolic. Moreover, for simplicity, we also assume that every Montesinos knot has
𝑘 = 4 rational tangles. Hyperbolicity ensures finiteness of the number of sur-
faces of genus 𝑔 in the complement of 𝐾 in 𝑆3 up to isotopy, by Corollary 2.3 of
[7]. We will also only count closed, connected, essential, orientable surfaces,
up to isotopy, embedded in the complement.

4. Proof outline
We use Theorem 2.1 to prove that it allows us to define a punctured parti-

tioned chord diagram. That is, punctured partitioned chord diagrams record
the tubing information: which punctures of the 𝑆𝐶 ’s are tubed and which ratio-
nal tangles each tube goes through. We then show that each tubing description
of 4-punctured 𝑆𝐶 ’s, as in Theorem 2.1, of a closed essential surface in the com-
plement corresponds to a unique punctured partitioned chord diagram. Not-
ing that each chord diagram can correspond to multiple surfaces, we show that
each punctured partitioned chord diagram corresponds to at most 2 closed es-
sential surfaces. Taking the dual tree of these chord diagrams, which is unique,
we use these to show the types of allowable punctured partitioned chord di-
agrams. Namely, every punctured partitioned chord diagram coming from a
closed essential genus 𝑔 surfacemust have a chord ofmaximumpossible length
4𝑔 − 5 and exactly two chords of length 1. Moreover, punctured partitioned
chord diagrams are uniquely determined by the location of this chord of max-
imum possible length. Thus, the number of surfaces of genus 𝑔 in the com-
plement is at most the number of possible locations of the chord of maximum
length multiplied by 2. In particular, we show that there are at most 8𝜙(𝑔 − 1)
punctured partitioned chord diagrams which correspond to a tubing descrip-
tion of a closed, connected, essential, orientable surface of genus greater than
2. For surfaces of genus 2, there are at most 12 punctured partitioned chord
diagrams which correspond to such surfaces. Lastly, we prove that all of these
diagrams correspond to distinct, non-isotopic surfaces using results of [4], [13]
and [17].

5. Tools and definitions used for counting surfaces in
Montesinos knots
We introduce the main tool, i.e. punctured partitioned chord diagrams, used

throughout the proof and prove some necessary properties about punctured
partitioned chord diagrams. Namely, we establish existence first then, after a
fewmore properties are established, show uniqueness of punctured partitioned
chord diagrams for a tubing description of a closed, connected, essential, ori-
entable essential surface. Example 5.0.1 shows how to obtain a tubing of a pair



1156 BRANNON BASILIO

of punctures of incompressible 𝑆𝐶 ’s from a punctured partitioned chord dia-
gram.

Definition 5.1. A punctured partitioned chord diagram is a chord diagram con-
taining

(1) chords between pairs of base points (represented by arcs) which are dis-
joint,

(2) four marked regions partitioning the boundary circle (and in turn the
disk),

(3) each base point is contained in a unique marked region,
(4) each marked region contains the same number of base points,
(5) a puncture disjoint from the chords, in the disk that the circle bounds,
(6) and no chord is isotopic into a single marked region. 

Figure 8. An example of a punctured partitioned chord dia-
gram containing a chord, shown in blue, withmaximal possible
length 11 (see Definition 5.2).

Remark. By taking an isotopy of the puncture, arcs can be isotoped, rela-
tive to its base points, to be chords. We will be counting these diagrams up to
isotopy.

Definition 5.2. The length of a chordwith base points say 𝑏1 and 𝑏2 in a punc-
tured partitioned chord diagram is defined by first isotoping the chord, keep-
ing the chord contained in the punctured disk, onto the boundary circle of the
punctured chord diagram and counting the minimum number of base points
between 𝑏1 and 𝑏2 augmented by 1 (e.g. see blue chord in Figure 8).
Remark. The isotopy in Definition 5.2 cannot pass through the puncture,

hence the length of a chord is well-defined.

Definition 5.3. The distance between base points 𝑏1 and 𝑏2 in a punctured par-
titioned chord diagram is defined to be the minimum number of base points
between 𝑏1 and 𝑏2, exclusive.
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Definition 5.4. Two chords 𝑐′ and 𝑐′′ are said to be parallel if the base points
of 𝑐′ are equidistant apart from the pair of base points of 𝑐′′.

Definition 5.5. A dual tree of a punctured partitioned chord diagram is the
dual planar graph (i.e. a graph embedded in ℝ2) defined as follows:

(1) vertices of the tree correspond to complementary regions in the chord
diagram bounded by chords and arcs of the bounding circle,

(2) edges of the tree occurwhen the closure of complementary regions, cor-
responding to vertices, have nonempty intersection,

(3) the complementary region which contains the puncture will bemarked
as the root of the tree.

Remark. The dual graph is indeed a tree since each chord partitions the di-
agram into exactly two subdiagrams, so removing any dual edge disconnects
the dual graph. Hence, the dual graph is minimally connected and so is a tree.
Note that in the construction of the dual tree, no choices were made. So every
chord diagram has a unique dual tree.

5.0.1. Example of constructing surface from punctured partitioned
chord diagram. First, we discuss an important type of chord in a punctured
partitioned chord diagram: the chord of maximum possible length. Suppose
we have a punctured partitioned chord diagram with 𝑔 − 1 base points in each
region. Then, the maximum length of any chord is 4𝑔 − 5.
Observe that if there is such a chord in the diagram, it is unique since any

other such chord necessarily intersects it. Now, to see that the maximum pos-
sible length of a chord is 4𝑔− 5, we use the Euler characteristic of surfaces and
compute the number of 4-punctured spheres. Observe that each 4-punctured
sphere has Euler characteristic equal to −2. Letting 𝑛 be the number of 4-
punctured spheres of a surface 𝑆 with genus 𝑔, 𝑚 be the number of tubes 𝑡,
and 𝑘 be the number of punctures, we have

𝜒(𝑆) = 2 − 2𝑔 = 𝑛 ⋅ 𝜒(𝑆𝐶) +𝑚 ⋅ 𝜒(𝑡) − 𝑘 ⋅ 𝜒(𝑆1) = −2𝑛.
Hence, the number of 4-punctured spheres of a closed surface 𝑆 with genus 𝑔
is 𝑔 − 1.
We use the example in Figure 8 to show how to obtain a closed essential sur-

face from a punctured partitioned chord diagram. Note that this surface may
not be unique. However, we may obtain a closed essential surface from a punc-
tured partitioned chord diagram and a choice of incompressible 4-punctured
spheres 𝑆𝐶 ’s. We first choose one of the two possible incompressible 𝑆𝐶 ’s in
the knot complement, both of which have four punctures on four distinct arcs.
The number of base points in a single region gives the total number of 𝑆𝐶 ’s. The
four arcs of the partition give the four arcs which contain the punctures of the
𝑆𝐶 ’s, well defined up to cyclic permutation of the regions. Chords between a
pair of base points of the diagram give a tubing of the corresponding punctures
of the 𝑆𝐶 ’s in the following way. Isotope the chord, relative to its base points, to
the boundary of the disk, observing that the chord cannot be isotoped through
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the puncture. Apply the same process to every chord in the diagram. Observe
that chords that pass from one region to another represent passing through the
rational tangle(s) between the arcs corresponding to those regions. If two iso-
toped chords intersect, then the lengths of such intersecting chords (see Def-
inition 5.2) indicate which tube will be innermost with respect to a meridian
curve of 𝐾, where the longer length chord will be innermost. That is, after iso-
toping all chords to the boundary circle, then for pairs of chords which overlap,
take the chord with largest length to correspond to the tube which is innermost
between the pair of tubes corresponding to the chords. For example, the blue
chord in Figure 8 has maximum possible length and hence the corresponding
tube indicated in blue in Figure 9 (right), will be innermost amongst all tubes.
After tubing between all punctures, following the chords of the diagram, we
obtain an embedded closed essential surface in the complement of 𝐾.

 

 

  

Figure 9. The tubing corresponding to the blue chord of the
punctured partitioned chord diagram in Figure 8.

5.0.2. Geometric interpretation of punctured partitioned chord
diagrams. Wediscuss a geometricway to interpret punctured partitioned chord
diagrams. A collared neighborhood of the knot 𝐾 in the knot complement
𝑀 = 𝑆3−𝐾 is a tubular neighborhood of𝐾 which does not include𝐾. Namely,
it is homeomorphic to 𝐾 × (𝐷2 − {0}) where 𝐾 × {0} is sent to 𝐾 in 𝑀. This
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collared neighborhood is homeomorphic to a solid torus minus the core. In
other words, a collared neighborhood of 𝐾 is homeomorphic to 𝑆1 × (𝐷2− {0}).
When we restrict to the arcs of𝐾 that contain the punctures of the 4-punctured
spheres 𝑆𝐶 , then we are only concerned about four particular arcs. Moreover,
by Theorem 2.2, we only need to record when a tube passes through a rational
tangle. Hence, we may omit the parts of the collared neighborhood which pass
through a rational tangle and then attach the regular neighborhoods of these
four arcs together following the associated rational tangles between them. The
four arcs of the knots give rise to the four regions of the diagram, and regions
are adjacent exactly when arcs are adjacent when traversing the knot. When a
chord in the diagram passes from one region to another, this corresponds to a
tube passing through at least one rational tangle. We now have a space home-
omorphic to a 𝑆1 × (𝐷2− {0})with four marked annuli consisting of meridians.
Finally, we collapse 𝐷2 − {0} of the collared neighborhood to (0, 1], since every
point in (0, 1]will have exactly one 𝑆1 fiber over it. Thus, we get an annulus par-
titioned into four pieces. Moreover, the inner boundary component represents
𝐾 and thus becomes the puncture of the punctured partitioned chord diagram.

We review definitions of integer pairings as in [1], which will be used in the
latter part of Section 8. We follow the descriptions and definitions cited in [9].

Definition 5.6. Let [1, 𝑁] ⊆ ℕ be the set of integers {1, 2,… , 𝑁}. A bijection
𝑔 ∶ [𝑎, 𝑏]→ [𝑐, 𝑑] defined on subsets [𝑎, 𝑏], [𝑐, 𝑑] ⊆ [1, 𝑁] is called a pairing.
A pairing is orientation preserving if it is increasing and orientation reversing

if it is decreasing.

Definition 5.7. Let [1, 𝑁] ⊆ ℕ be the set of integers {1, 2,… , 𝑁} and suppose
we have a collection of pairings {𝑔𝑖}, 1 ≤ 𝑖 ≤ 𝑘. The 𝑔𝑖’s generate a pseudogroup
on [1, 𝑁] and any two integers are said to be in the same orbit if some pairing
in the pseudogroup sends one to the other.

6. Description of Montesinos knots in terms of orbifolds
Wewill prove in Proposition 6.1 that incompressible, peripheral incompress-

ible 4-punctured spheres 𝑆𝐶 ’s have the form as in Figure 4 and that those are
the only such 𝑆𝐶 ’s in the complement of 𝐾 in 𝑆3. First, we recall a description,
given in [12], of a fibered orbifold𝑂𝐾 with underlying space 𝑆3 andℤ2 singular
set 𝐾 = 𝐾(𝑝1∕𝑞1,… , 𝑝𝑘∕𝑞𝑘). For a rational tangle of slope 𝑝∕𝑞, we describe a
different construction in terms of orbifold fibrations. Namely, let (𝑇, 𝑝∕𝑞) be a
solid Seifert fiber torus with exceptional fiber of order (𝑞,−𝑝). Intuitively, this
means that the fibers in a neighborhood of the exceptional fiber twist about,
i.e. corkscrew around, the exceptional fiber 𝑝 times and traverse along the ex-
ceptional fiber 𝑞 times. In order to uniquely determine 𝑝, we must fix a funda-
mental domain for 𝜕𝑇. To do this, we fix two simple closed curves 𝑥 and 𝑦 on
𝜕𝑇: take 𝑥 to intersect each fiber transversely exactly once and 𝑦 a fiber of 𝑇.
Thus, lifting the boundary 𝜕𝐷 of a meridian disk 𝐷 of 𝑇 to the universal cover
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of 𝜕𝑇, we get a line of slope 𝑝∕𝑞 relative to the axis given by the lift of 𝑥 and the
axis given by the lift of 𝑦. We may obtain a rational tangle (𝐿, 𝑝∕𝑞) from this
construction by taking the quotient of a 180◦ rotation of 𝑇 about a diameter of
the exceptional fiber of (𝑇, 𝑝∕𝑞), where the rotation is fiber preserving (see Fig-
ure 10, right). Label the arcs of intersection of the axis of rotation and 𝑇 as 𝜅0
and 𝜅1. After a homeomorphism of (𝐿, 𝑝∕𝑞), we may obtain the space shown
on the right in Figure 10 where 𝜅0 and 𝜅1 will be the arcs of the rational tangle.
The space (𝐿, 𝑝∕𝑞) is the 3-ball withmarked arcs 𝜅0, 𝜅1 and a coordinate system
consisting of an 𝑥- and 𝑦-axis. The fibering of (𝑇, 𝑝∕𝑞) descends to a fibration of
(𝐿, 𝑝∕𝑞) in the following way. Generic fibers, disjoint from the axis of rotation,
of (𝑇, 𝑝∕𝑞) become parallel copies of the 𝑦-axis. The generic fibers of (𝑇, 𝑝∕𝑞)
that intersect the axis of rotation descend to exceptional fibers as arcs with one
endpoint on 𝜅0 and the other endpoint on 𝜅1. For example, the generic fiber on
𝜕𝑇 shown in Figure 10, left, descends to a parallel copy of the 𝑦-axis in 𝜕𝐿 and
the two generic fibers on 𝜕𝑇 that intersect the axis of rotation descends to the
two exceptional fibers (arcs) on 𝜕𝐿 having one endpoint on 𝜅0 and the other on
𝜅1 (see Figure 10, upper right).
To construct the 3-orbifold 𝑂𝐾 of 𝐾, deform every rational tangle (𝐿𝑖, 𝑝𝑖∕𝑞𝑖)

in such a way that it is lens-shaped with its axis at the edge, as shown in upper
figure of Figure 11. Then, identify the left face of 𝐿𝑖 with the right face of 𝐿𝑖+1
(subscripts mod 𝑘) such that fibers, punctures, and axes are identified and half
of one 𝑥-axis is identified with half of the next 𝑥-axis (see Figure 11, upper).
The 3-orbifold 𝑂𝐾 is fibered over the 2-orbifold as in Figure 11, lower. 

 

Figure 10. Left: (𝑇, 𝑝∕𝑞) for 𝑝∕𝑞 = 1∕3, Right: (𝐿, 𝑝∕𝑞).

Proposition 6.1. For an incompressible 4-punctured sphere, 𝑆𝐶 , in aMontesinos
knot complement, the associated closed curve in the knot diagram that represents
𝑆𝐶 intersects four distinct arcs between rational tangles. Moreover, if two 𝑆𝐶 ’s, be-
longing to the collection via a surface𝑆 as inTheorem 2.1, bound the same rational
tangles, then they must be parallel, and thus, isotopic.

Proposition 6.1 will follow immediately from the next two lemmas.

Lemma 6.2. Incompressible, peripheral incompressible 4-punctured spheres 𝑆𝐶
are represented by essential arcs in the base 2-orbifold of the orbifold fibration𝑂𝐾 .
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Figure 11. Upper: Construction of the orbifold 𝑂𝐾 for 𝐾 =
𝐾(𝑝1∕𝑞1,… , 𝑝4∕𝑞4), Lower: An example of the base 2-orbifold
of the 3-orbifold 𝑂𝐾 .

Proof. By Corollary 2.8 of [12], an incompressible, peripheral incompressible
punctured surface in (𝑆3, 𝐾) is either vertical (union of fibers) or horizontal
(transverse to fibers) in the orbifold fibration of 𝑂𝐾 . By Lemma 2.9 of [12], the
𝑆𝐶 ’s in the collection of Theorem 2.1 are all vertical in the orbifold fibration,
by the fact that

∑𝑘
𝑖=1 𝑝𝑖∕𝑞𝑖 ≠ 0 implies there exists no horizontal incompress-

ible, peripheral incompressible punctured surfaces. In the orbifold fibration
𝑂𝐾 , which has base 2-orbifold as in Figure 11, vertical 4-punctured spheres 𝑆𝐶 ’s
are represented by arcs in the base orbifold. We show, using Corollary 2.3, that
for the arcs to represent incompressible, peripheral incompressible 𝑆𝐶 ’s, then
the arcs must be essential, i.e. not homotopic into a boundary component of
the base 2-orbifold, relative to its base points. Otherwise, for the complement
of an inessential arc in the base 2-orbifold, there are two regions. Either one
region contains exactly one rational tangle, marked as a singular point of order
𝐷𝑞𝑖 , the dihedral group of order 2𝑞𝑖, or it contains no rational tangles (see e.g.
Figure 12). This implies that the corresponding 𝑆𝐶 bounds either one rational
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tangle on one side or no rational tangles. Contradiction to Corollary 2.3, since
incompressible 𝑆𝐶 ’s must bound at least two rational tangles on either side. □

Lemma 6.3. If two 𝑆𝐶 ’s, coming from the collection of 4-punctured spheres of a
surface 𝑆 as in Theorem 2.1, bound the same rational tangles, then they must be
parallel, and thus, isotopic.

Proof. Now, from Theorem 2.1 the collection of 𝑆𝐶 ’s are disjoint, so the 𝑆𝐶 ’s
are represented by disjoint arcs in the base 2-orbifold. This implies that the
collection of essential arcs corresponding to the 𝑆𝐶 , coming from Lemma 6.2,
all have base points on the two distinct, non-adjacent boundary components of
order ℤ2. Moreover, since the 𝑆𝐶 ’s bound the same rational tangles, then the
components of the complement of the arcs contain the same singular, not of
order ℤ2, points of the base orbifold. We may isotope these arcs to each other
in the base orbifold, which gives an isotopy, via the fibers, of the corresponding
𝑆𝐶 ’s in the orbifold fibration. □ 

Figure 12. Example of essential arcs in the base 2-orbifold,
shown in magenta and blue, and inessential arcs, shown in
gray.

Proposition 6.4. Let 𝑘 > 3 be the number of rational tangles of a Montesions
knot 𝐾. Then there are 𝑘(𝑘−3)

2
non-isotopic incompressible 4-punctured spheres

𝑆𝐶 ’s in the complement of 𝐾.
Proof. By Corollary 2.3, the closed curve on the projection sphere which rep-
resents the incompressible 4-punctured sphere 𝑆𝐶 must bound at least two ra-
tional tangles on both sides. We count the number of choices of first and last
rational tangles for which the closed curve on the projection sphere bounds.
There are 𝑘 choices for the first rational tangle. After making this choice, label
it as the 1st rational tangle and order the rest of the rational tangles in a cyclic
fashion as {1, 2,… , 𝑘}. The second choice can be made following this cyclic la-
belling where the closed curve bounds all the rational tangles from the 1st till
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the second choice. However, the second choice has only 𝑘 − 3 options. This is
because we cannot choose the same rational tangle twice, namely choosing the
1st rational tangle, since this curve will not bound two rational tangles. More-
over, the curve cannot bound all the rational tangles, which is equivalent to
the choice of the last rational tangle to be 𝑘 because all the rational tangles are
contained on one side of the closed curve. Lastly, the curve cannot bound all
except one rational tangle, which is equivalent to the choice of the (𝑘 − 1)th ra-
tional tangle, since one side of the curve has only one rational tangle. Thus, we
get 𝑘(𝑘 − 3) choices for closed curves representing incompressible 𝑆𝐶 ’s. Since
we are projecting onto the sphere, these choices bound rational tangles on both
sides and hence up to isotopy, there are at most 𝑘(𝑘−3)∕2 incompressible 𝑆𝐶 ’s.
These 𝑘(𝑘 − 3)∕2 incompressible 𝑆𝐶 ’s are non-isotopic since any isotopy be-

tween the 𝑆𝐶 ’s must be fiber-preserving by [15]. This is impossible, since the
isotopy must pass through the fibers of 𝑂𝐾 . Thus, there are exactly 𝑘(𝑘 − 3)∕2
non-isotopic incompressible 𝑆𝐶 ’s. □

We establish a few lemmas about punctured partitioned chord diagrams.
First, using the above proposition, the following lemma shows the existence
of punctured partitioned chord diagrams for closed, connected, orientable es-
sential surfaces in Montesinos knot complements.

Lemma 6.5. Every embedded closed essential surface of genus 𝑔 in aMontesinos
knot complement has a corresponding puncturedpartitioned chorddiagramwhich
has 𝑔 − 1 base points in each of the four regions.

Proof. By Theorem 2.1, every closed essential surface 𝑆 is isotopic to a surface
obtained from a tubing of incompressible 𝑆𝐶 ’s. In other words, every closed es-
sential surface can be thought of as a disjoint collection of 4-punctured spheres
𝑆𝐶 ’s and tubes between pairs of punctures of the 𝑆𝐶 ’s. To obtain a chord dia-
gram from this decomposition of 𝑆, we take the punctures of the 𝑆𝐶 ’s to be the
base points of the chord diagram and the tubes between punctures to be chords
between base points. We first show that this chord diagram is a punctured par-
titioned chord diagram. By Proposition 6.1, the collection of 𝑆𝐶 ’s are disjoint
and parallel, so we get an ordering via a nesting of the 𝑆𝐶 ’s in the knot projec-
tion (see e.g. Figure 9, right). Moreover, all punctures of the 𝑆𝐶 ’s lie on four
distinct arcs and by taking an orientation of the knot we get the four regions
of the chord diagram based on this orientation. This gives that each region
contains exactly 𝑔 − 1 base points, the number of distinct 𝑆𝐶 ’s. Observe that
regions are well defined up to cyclic ordering. Now, if we label the punctures
of the 𝑆𝐶 as 𝑆𝑖𝐶,𝑗 where 𝑖 represents the 𝑖

th 𝑆𝐶 with 𝑖 = 1 is the innermost 𝑆𝐶
with respect to the projection of the knot and 𝑗 represents the arc that the punc-
ture lies on. Since each tube does not contribute to the Euler characteristic of
a surface, then the Euler characteristic of 𝑆 is determined by the number of
𝑆𝐶 ’s. Hence, all chord diagrams of 𝑆must have the same number of base points
since each 𝑆𝐶 has exactly four punctures. Tubing between pairs of punctures
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correspond to chords between the corresponding base points in the chord dia-
gram. Since there are only two choices for tubing any pair of punctures, then
the chord diagram must contain a puncture to record these two choices. The
following lemma shows that the chords do not intersect and cannot be isotopic
into a single region, which completes the proof.

Lemma 6.6. Every chord in the punctured partitioned chord diagram of Lemma
6.5 does not pairwise intersect with any other chord in the diagram and cannot be
isotopic into a single region.

Proof. Suppose for contradiction that two chords of a chord diagram of 𝑆
intersect. Wemay assume that the intersection is transverse, after an isotopy of
the chords reducing the number of points of intersection. Using the geometric
interpretation of a punctured partitioned chord diagram, observe that a point
of intersection of two chords represents a meridian of the knot. This implies
𝑆 has self intersection which cannot be resolved, a contradiction to the surface
being embedded. Hence, a corresponding chord diagram for 𝑆 does not have
intersecting chords.
Now, suppose there is a chord isotopic into a single region of the punctured

partitioned chord diagram. This represents a tube that is completely contained
on a single arc of the knot 𝐾. In particular, this tube does not pass through a
rational tangle. Contradiction, since this would mean that the surface is com-
pressible by Theorem 2.2. □

7. Surface counts of genus 2 surfaces in Montesinos knot
complements
Throughout this section, we assume that every surface 𝑆 will have genus

𝑔 = 2. We prove there are at most 12 punctured partitioned chord diagrams for
this case.

Proposition 7.1. Every closed, connected, essential, orientable essential surface
𝑆 in a Montesinos knot complement has a corresponding punctured partitioned
chord diagram with exactly 4 base points, 1 in each region, which has a dual tree
with exactly 2 leaves.

Proof. By Lemma 6.5, 𝑆 has a punctured partitioned chord diagram. More-
over, by the computation in the remark after Definition 5.2, there is only one
4-punctured sphere 𝑆𝐶 in the collection in Theorem 2.1 which 𝑆 is isotopic to a
tubing of. Thus, the punctured partitioned chord diagram has exactly one base
point in each of its four regions, by Proposition 6.1. Two tubes are required to
tube the four punctures of the 𝑆𝐶 . There are only 6 possible punctured parti-
tioned chord diagrams with exactly four base points and two chords, up to iso-
topy of the chords and puncture (see Figure 13). Each of the 6 chord diagrams
have dual trees with exactly 2 leaves, completing the proof. □
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Figure 13. The 6 possible punctured partitioned chord dia-
grams with exactly four base points and two chords.

Proposition 7.2 (Genus 2 Case). The number of closed incompressible surfaces
of genus 𝑔 = 2 in the complement of a hyperbolic Montesinos knot

𝐾 = 𝐾(𝑝1∕𝑞1,… , 𝑝𝑘∕𝑞𝑘)

with each 𝑞𝑖 ≥ 3 and 𝑘 = 4, is at most 12.

Proof. By Proposition 7.1, a genus 𝑔 = 2 surface 𝑆must have a punctured par-
titioned chord diagramwith a total of four base points, one in each region. Also
from Proposition 7.1, the dual tree of this chord diagram must have exactly 2
leaves. Note that if the punctured partitioned chord diagram has a chord of
length 3, then there is no choice for the last chord. However, there are punc-
tured partitioned chord diagrams which do not have any chords of length 3.
Now, since each surface has a punctured partitioned chord diagram, we need
only to count the number of ways to construct punctured partitioned chord di-
agrams with four base points and two chords such that the dual tree has exactly
2 leaves. Figure 13 shows the only such possible punctured partitioned chord
diagrams. For each of the 6 possibilities, there are two choices for the incom-
pressible 4-punctured sphere to tube (see Figure 4). Thus, the number of closed
essential surfaces of genus 𝑔 = 2 in a Montesinos knot complement is bounded
by 6 × 2 = 12. □
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8. Surface counts of surfaces with genus greater than 2 in
Montesinos knot complements
We will show that counting surfaces via all possible punctured partitioned

chord diagrams gives the upper bound in Theorem 1.1. In this section, we as-
sume all surfaces are of genus 𝑔 greater than 2.

Proposition 8.1. A tubing description of 4-punctured 𝑆𝐶 ’s, corresponding to a
closed essential surface not containing a genus 2 component in aMontesinos knot
complement, has a corresponding punctured partitioned chord diagram which
has a dual tree containing exactly 3 leaves. In other words, the punctured par-
titioned chord diagram contains exactly 3 chords with the property that the two
base points of each chord is adjacent to each other.
Moreover, any punctured partitioned chord diagram that either
(1) has exactly 2 chords of length 1 and no chord of maximum possible length

4𝑔 − 5,
(2) or has 3 or more chords of length 1

corresponds to a disconnected surface containing a genus 2 component.

We establish the following lemma in order to prove the above proposition.

Lemma 8.2. Suppose that a punctured partitioned chord diagram comes from
a tubing description of a closed essential surface. Then the leaves of the dual tree
correspond to chords of length 1 or maximum possible length 4𝑔 − 5, where 𝑔 is
the genus of the surface.

Proof. Leaves correspond to complementary regionswhich are adjacent to only
one other unique region. In particular, the boundary of such a region, call it 𝑅,
consists of a single chord 𝐶 and a single segment of the boundary circle that
does not contain any base points. If the puncture is not in 𝑅, then 𝐶 has length
1. Otherwise, 𝐶 has maximum possible length 4𝑔 − 5. □

We now prove Proposition 8.1.

Proof of Proposition 8.1. Weexhaust the possibilities for the number of leaves
in a dual tree. The second part of the statement is proved in the cases concern-
ing dual trees with more than 3 leaves. Namely, the surface must be discon-
nected or compressible in every punctured partitioned chord diagram having
a dual tree containing more than 3 leaves. Observe that there cannot exist a
dual tree containing more than 5 leaves. This is because there are only 4 allow-
able locations for chords of length 1, i.e. between adjacent regions, and only
one region containing the puncture which corresponds to the chord of maxi-
mal possible length can exist in any diagram. This implies any other leaf must
correspond to a chord of length 1 completely contained in a single region, a con-
tradiction to Theorem 2.2 since the corresponding surface will be compressible.
4 and 5 leaves: Suppose we have a chord diagram whose unique dual tree

contains 4 or 5 leaves. In the chord diagram, we show that two leaves will
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correspond to tubing 4 punctures belonging to the same 𝑆𝐶 and hence 𝑆 con-
tains a genus 2 component. Since we are only concerned about tubing the
same 𝑆𝐶 , we will label the punctures of the disjoint collection 𝑆𝐶 ’s and show
two tubes are between four punctures of the same 𝑆𝐶 . Fixing a projection of
𝐾 onto 𝑆2, label the 4-punctured spheres and punctures as 𝑆𝑖𝐶,𝑗 where 𝑖 repre-
sents the 𝑖th innermost 𝑆𝐶 with respect to the projection of the knot and 𝑗 rep-
resents the 𝑗th arc that the punctures lie on. Note that 𝑗 is well-defined, up to
cyclic ordering. Fix an orientation of the knot. Following this orientation gives
an ordering, that is, a permutation, of the sequence {𝑆1𝐶,1, 𝑆

1
𝐶,2,… , 𝑆

𝑔−1
𝐶,3 , 𝑆

𝑔−1
𝐶,4 }.

By Proposition 6.1, the 𝑆𝐶 ’s are nested and all punctures contained on a sin-
gle arc must belong to distinct 𝑆𝐶 ’s. Thus, the ordering must be of the form
{𝑆1𝐶,1, 𝑆

2
𝐶,1,… , 𝑆

𝑔−1
𝐶,1 , 𝑆

𝑔−1
𝐶,2 , 𝑆

𝑔−2
𝐶,2 ,… , 𝑆

2
𝐶,4, 𝑆

1
𝐶,4}, up to cyclic ordering. Note that the

ordering of the sequence gives a labeling of the base points of the chord dia-
gram. By Lemma 8.2, the leaves correspond to either length 1 or maximum
length chords. There can only be one chord of maximal possible length, oth-
erwise two such chords would intersect in the chord diagram. We look at the
leaves which correspond to length 1 chords and show two of these chords cor-
respond to a tubing of one distinct 𝑆𝐶 . By Theorem 2.2, each tube must pass
through at least one rational tangle, so there are exactly 4 possibilities for the
location of the chords of length 1: between base points of adjacent regions. Base
points of adjacent regions, call them 𝑏1 and 𝑏2, must belong to the same 𝑆𝐶 . This
is because there must be at least one rational tangle between the two regions,
which the base points belong to, and this rational tangle must be either inside
or outside of the 𝑆𝐶 of one of base points. However, by Theorem 2.1, then the
base points must belong to the same 𝑆𝐶 otherwise the collection of 𝑆𝐶 ’s will not
be disjoint if the base points belong to different 𝑆𝐶 ’s. So, without loss of gener-
ality, the base points of the chords of length 1 are 𝑆𝑔−1𝐶,1 , 𝑆

𝑔−1
𝐶,2 , 𝑆

𝑔−1
𝐶,3 , 𝑆

𝑔−1
𝐶,4 , by the

ordering of the base points. This is a contradiction, since this will be a tubing
of 𝑆𝑔−1𝐶 which gives a genus 2 component of the surface.
1 and 2 leaves: Immediately, we see any nonempty tree must contain at least

2 leaves. Suppose that the dual tree of a punctured partitioned chord diagram
contains exactly 2 leaves. The complement of the base points of the 2 leaves par-
titions the boundary circle into four segments: two segments containing base
points and two segments without base points. We call the boundary circle of
the chord diagram to have two sides based on the two segments which contains
base points. Now, there are two possibilities: either both sides of the leaves con-
tain the samenumber of base points or one side of the leaves contains a different
number of base points than the other side. For the latter case, observe that in
the chord diagram, we have that there will be base points on one side of the
leaves which cannot have a chord to a base point on the other side of the leaves.
Hence, there must exist a chord between adjacent base points, otherwise if all
remaining base points are not adjacent, then in order to chord the remaining
base points, it must intersect the chords whose base points lie on different sides
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of the leaves, which gives a contradiction to chords being disjoint. Since there
exists a chord between adjacent base points, then this implies that the tree has
at least 3 leaves which is impossible by assumption. For the case where both
sides of the leaves contain the same number of base points, notice that the two
leaves cannot both correspond to chords between base points contained in the
same region. This is due to the fact, by disjointness of the chords, only one
of these can have maximal length. This implies that the other chord, which
has length 1, represents a tubing of base points which does not pass through a
rational tangle region, contradicting Theorem 2.2. Now, if the two leaves corre-
spond to chords between base points of adjacent regions, then this contradicts
the surface not having a genus 2 component. □

We bound the number of punctured partitioned chord diagrams in terms of
the genus of the surface. However, we first establish the following proposition
for the number of surfaces corresponding to a punctured partitioned chord di-
agram:

Proposition 8.3. If 𝑆 and 𝑆′ are closed essential surfaces where 𝑆 is a tubing of
𝑆𝐶 ’s and 𝑆′ is a tubing of 𝑆𝐶′ ’s with 𝐶 ≠ 𝐶′, then 𝑆 and 𝑆′ are not isotopic.
In particular, every punctured partitioned chord diagram containing four re-

gions, each having 𝑔−1 base points, corresponds to exactly 2 non-isotopic essential
surfaces.

We first prove the following lemma.

Lemma 8.4. Let 𝑆 be a closed essential surface in𝑀 = 𝑆3∖�̊�(𝐾) obtained from
tubing 𝑆𝐶 ’s. Let �̃� = 𝑀∖∖𝑆 be the complement of a regular neighborhood of 𝑆
in𝑀. Suppose that𝐴, 𝐵 are embedded essential annuli in �̃� each having exactly
one component on 𝜕𝑀 which is ameridian of𝐾. Then𝐴, 𝐵 are isotopic to disjoint
annuli.

Proof. Wemay assume that𝐴 and𝐵 are in general position. Let 𝜕0𝐴 and 𝜕0𝐵 be
one boundary component of𝐴 and𝐵, respectively, which is ameridian of𝐾. By
further isotoping 𝜕0𝐴 and 𝜕0𝐵, wemay assume that 𝜕0𝐴∩𝜕0𝐵 is empty. If𝐴∩𝐵 is
empty, thenwe are done. Otherwise, note that wemay simplify𝐴∩𝐵 to consists
of essential arcs and essential simple closed curves. Since 𝜕0𝐴 ∩ 𝜕0𝐵 is empty,
then no essential arc of intersection has a base point on 𝜕0𝐴 or 𝜕0𝐵. Observe
that we may resolve the intersections corresponding to simple closed curves by
an innermost annulus argument. Since the simple closed curves of intersection
in 𝐴 and 𝐵 are parallel to 𝜕0𝐴 or 𝜕0𝐵, we may find an innermost annulus �̃� in
𝐴, with respect to 𝜕0𝐴 and 𝜕1𝐴, bounded by two simple closed curves, say 𝛾 and
𝛾′. Observe that 𝛾 and 𝛾′ also bound an annulus �̃� in 𝐵, otherwise there would
be another simple closed curve of intersection of 𝐴 and 𝐵 in between 𝛾 and 𝛾′,
contradicting that 𝛾 and 𝛾′ were innermost in 𝐴. Thus, we resolve 𝛾 and 𝛾′ by
an isotopy of 𝐵 pushing �̃� past �̃�. Continuing in this fashion, we may resolve
all simple closed curves of intersection, since there are only finitely many due
to 𝐴 and 𝐵 being embedded and in general position. Note that if necessary, we
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may resolve the final simple closed curve of intersection by interchanging 𝜕0𝐴
and 𝜕0𝐵 on 𝜕�̃� via an isotopy.
To resolve the arcs of intersection, weuse an innermost disk argument. With-

out loss of generality, take an arc of intersection 𝛼 which is innermost on 𝐴
bounding a disk 𝐷1 in 𝐴. Since 𝐴 and 𝐵 are essential surfaces, then there ex-
ists a disk 𝐷2 in 𝐵 bounded by 𝛼. Note that 𝛼 need not be innermost on 𝐵. The
boundary of the disk𝐷 = 𝐷1∪𝐷2must also bound a disk𝐷′ in 𝜕�̃�. Thus, since
�̃� is irreducible, then we may resolve 𝛼 by an isotopy of 𝐵 that pushes 𝐷2 past
𝐷1. Since both 𝐴 and 𝐵 are embedded and in general position, then there are
only finitely many arcs of intersection of 𝐴 and 𝐵. Thus, continue this process
of taking innermost disks until all such intersections are resolved, completing
the proof. □

Proof of Proposition 8.3. Weknow that every embedded closed essential sur-
face 𝑆 can be decomposed, via tubes, into a collection of incompressible 4-
punctured spheres 𝑆𝐶 ’s. We show this collection of 𝑆𝐶 ’s consists of parallel
copies of one of the two non-isotopic 𝑆𝐶 ’s. Suppose that 𝛼1,… , 𝛼𝑘 are disjoint
essential simple closed curves on 𝑆 which decomposes 𝑆 into incompressible
4-punctured spheres and annuli. Let 𝑆0 = 𝑆 and 𝐴0 an embedded essential an-
nulus in𝑀∖∖𝑆0 with 𝜕0𝐴0 = [𝜇]. Then, take 𝑆1 to be the surface obtained after
an annular compression of 𝑆0 along 𝐴0 and let 𝐴1 be an embedded essential
annulus in𝑀∖∖𝑆1 with 𝜕0𝐴1 = [𝜇]. Take 𝑆2 to be the surface obtained after an
annular compression of 𝑆1 along𝐴1 and let𝐴2 be an embedded essential annu-
lus in𝑀∖∖𝑆2 with 𝜕0𝐴2 = [𝜇]. Continuing in this fashion, we have a sequence
of compressions of 𝑆 which gives the decomposition into 4-punctured spheres
and tubes. Note that 𝐴𝑖 deformation retracts onto 𝛼𝑖.
Now, suppose that we have another such collection 𝛽1,… , 𝛽𝑘 with corre-

sponding annuli 𝐵1,… , 𝐵𝑘. We will show that ⊔𝛼𝑛 = ⊔𝛽𝑛, up to isotopy and
each 𝛼𝑖 is parallel to some 𝛽𝑗. If 𝛼𝑖 is disjoint from 𝛽𝑗 for all 𝑖 and 𝑗 and each
𝛼𝑖 is parallel to some 𝛽𝑗, then we are done since this implies that the decompo-
sitions of 𝑆 via 𝛼𝑖 and 𝛽𝑗 produce isotopic 𝑆𝐶 ’s. So, we take the first 𝛼𝑖 which
intersects some 𝛽𝑗. This implies that the annuli 𝐴𝑖 and 𝐵𝑗 also intersect. By
Lemma 8.4, 𝐴𝑖 and 𝐵𝑗 can be made disjoint. This implies that 𝛼𝑖 and 𝛽𝑗 can
also be made disjoint. Continue this process of resolving the intersections of
𝛼𝑖’s and 𝛽𝑗’s until ⊔𝛼𝑛 ∩ ⊔𝛽𝑛 is empty.
We now prove that each 𝛼𝑖 is parallel to some 𝛽𝑗. Suppose not, and there

exists an 𝛼𝑖 not parallel to any 𝛽𝑗. Then in the decomposition of 𝑆 via the 𝛽𝑗’s
into 4-punctured spheres 𝑆𝐶 ’s and tubes, 𝛼𝑖 will be contained in one of the 𝑆𝐶 ’s
and is not parallel to any of the punctures. So, wemay use 𝛼𝑖 to take an annular
compression of the 𝑆𝐶 along 𝛼𝑖. A contradiction to Theorem 2.1, since 𝑆𝐶 is an-
nularly incompressible. Thus, each 𝛼𝑖 is parallel to some 𝛽𝑗. Note that, without
loss of generality, it may be the case that there are multiple 𝛼𝑖’s parallel to some
𝛽𝑗. This implies that each of the 𝛼𝑖 produces the same annular compression
as 𝛽𝑗. Hence, this implies that the decomposition of 𝑆 into tubes and 𝑆𝐶 ’s is
canonical up to the 𝑆𝐶 ’s.
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There are only two choices, up to isotopy, of incompressible 𝑆𝐶 ’s, by Theo-
rem 2.2. So, if 𝑆 and 𝑆′ are tubings of 𝑆𝐶 ’s and 𝑆𝐶′ ’s, where 𝐶 ≠ 𝐶′, then 𝑆
and 𝑆′ canonically decompose into non-isotopic 4-punctured spheres and thus
are non-isotopic. Moreover, this also implies that every punctured partitioned
chord diagram corresponds to exactly 2 non-isotopic surfaces. □

We now show that punctured partitioned chord diagrams are determined by
its chord of length 4𝑔 − 5, the maximum possible length. Then, we count all
the possible locations of such a chord that give rise to a closed, connected, es-
sential, orientable surface. Observe that by Proposition 8.3, every punctured
partitioned chord diagram corresponds to exactly 2 non-isotopic essential sur-
faces. Combining these two facts gives the largest number of closed, connected,
essential, orientable surfaces of genus 𝑔 in the complement of a Montesinos
knot.

Proposition 8.5. Every punctured partitioned chord diagram corresponding to
a closed essential surface, not containing a genus 2 component, is uniquely deter-
mined by the location of the chord of maximum possible length 4𝑔 − 5.
Moreover, let 𝑐 be the chord of length 4𝑔 − 5 contained in a region, say 𝑅1, and

fix 𝑐′, 𝑐′′ to be the chords of length 1. Let 𝑖 be the number of base points of 𝑅1 which
are chorded to base points not in 𝑅1. Let 𝑖 > 0 if the set of base points are closer to
𝑐′′ and 𝑖 < 0 if the base points are closer to 𝑐′. Then, there are 𝑔−1 chords parallel
to 𝑐, 𝑔−1−𝑖

2
chords parallel to 𝑐′ and 𝑔−1+𝑖

2
chords parallel to 𝑐′′. See Figure 15.

To prove the proposition, we establish a few lemmas.

Lemma 8.6. Every punctured partitioned chord diagram coming from a closed
essential surface, not containing a genus 2 component, in aMontesinos knot com-
plement must have a unique chord of maximum possible length. In other words,
each punctured partitioned chord diagram coming from such a closed essential
surface has exactly one chord of length 4𝑔 − 5.

Proof. Suppose that the punctured partitioned chord diagram 𝐷 of such a sur-
face 𝑆 has no chord of length 4𝑔−5. There is only one way to obtain a chord of
length 4𝑔−5. Namely, by chording adjacent base points so that the chord is con-
tained in all four regions (e.g. see blue chord in Figure 8). By Proposition 8.1,
𝐷 must have exactly three leaves. Thus, all three leaves of 𝐷 must have corre-
sponding chords with length 1 by Lemma 8.2. These leaves are only allowed to
be located at four possible places; namely between base points of adjacent re-
gions. If one of the three leaves is not between base points of adjacent regions,
then such a leaf must correspond to a chord of length 1 completely contained in
a single region. Contradiction to Theorem 2.2, since this chord would not pass
through a rational tangle. Thus, all three leaves must be between base points of
adjacent regions. However this gives another contradiction, since this implies
that 𝑆 has a genus 2 component by Proposition 8.1. □

Lemma 8.7. Every general chord diagram which
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(1) contains four or more base points,
(2) does not contain punctures,
(3) and does not contain intersecting chords

must have at least two chords of length 1.
Moreover, if the two sides, with respect to two leaves, do not contain the same

number of base points, then the chord diagram contains three or more chords of
length 1.

Proof. Let 𝐷 be a chord diagram which does not contain punctures or inter-
secting chords. Observe that 𝐷 must contain only odd length chords. Other-
wise, one of the complementary regions of an even length chord contains an
odd number of base points. By definition, every chord has exactly two base
points and every base point belongs to a unique chord. Thus, an odd number
of base points implies that there must be intersecting chords, a contradiction.
So, every chord in 𝐷 is odd length.
Now, we can find a chord of largest length in 𝐷, since there are only finitely

many chords. If the largest length among all chords is 1, then every chordmust
be length 1. Thus, since𝐷 contains four ormore base points, then𝐷 has at least
two chords of length 1.
Suppose that a largest length chord in 𝐷 is not length 1. Call this chord 𝑐0.

The complement of 𝑐0 in 𝐷 consists of two sub-diagrams, say 𝐷1 and 𝐷2. We
will consider both 𝐷1 and 𝐷2 to be sub-diagrams containing the chord 𝑐0 and
the base points of 𝑐0. Observe that when 𝑐0 is viewed as a chord in 𝐷1 and 𝐷2,
it is a chord of length 1. Without loss of generality, we look at the sub-diagram
𝐷1. Note that both 𝐷1 and 𝐷2 satisfy conditions 1 through 3 in the statement
of this lemma. Continue this process of locating the largest length chord in 𝐷1,
call it 𝑐1. Observe that the length of 𝑐1 in 𝐷 is less than or equal to the length of
𝑐0 in 𝐷 since 𝑐0 was the largest length chord in 𝐷 and chords do not intersect.
Moreover, this process of finding the largest length chord in each consecutive
sub-diagram must stop at a length 1 chord. If not, then at some point in this
process a sub-diagrammust consist of chords of the same length andmust have
length 3 or more. However, the only way this can happen is if chords intersect
in the sub-diagram. Contradiction, since these intersecting chords in this sub-
diagram must also be intersecting chords in 𝐷. Thus, we have found a length
1 chord in 𝐷1 which is a chord between adjacent base points of both 𝐷1 and 𝐷.
This process also applies to the 𝐷2 and thus 𝐷 has at least two chords of length
1.
The second part of the statement can be proved using the same proof of the

case of two leaves in Proposition 8.1. Assume the two sides, with respect to two
leaves, do not contain the same number of base points. Then there are base
points on one side of the leaves which cannot have a chord to a base point on
the other side of the leaves. Hence, there must exist a chord between adjacent
base points. Otherwise, if all remaining base points are not adjacent, then in
order to chord the remaining base points, it must intersect the chords whose
base points lie on different sides of the leaves, which gives a contradiction to
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chords being disjoint. Thus, there exists a chord between adjacent base points,
which implies that the dual tree has at least 3 leaves. □

Lemma 8.8. The location of the two length 1 chords of a punctured partitioned
chorddiagramof a closed, connected, essential, orientable surface of genus𝑔 greater
than 2must be located between base points of regions disjoint from the region con-
taining the base points of the chord of maximum possible length.

Proof. Let𝐷 be the punctured partitioned chord diagram of such a surface. By
Proposition 8.1 and Lemma 8.6,𝐷 contains exactly one chord ofmaximumpos-
sible length and two chords of length 1. Label the chord of maximum possible
length as 𝑐0, and the two chords of length 1 as 𝑐1, 𝑐2. Observe that 𝐷 has four
regions each of which contain 𝑔 − 1 base points. Label the region containing
the base points of the chord of maximum possible length 𝑅1. Going counter-
clockwise from 𝑅1, label the other three regions as 𝑅2, 𝑅3 and 𝑅4, respectively
(see Figure 14).
The case for genus 𝑔 = 3 is done, since each region has exactly two base

points. Thus, there are only two possible places for the two length 1 chords:
between 𝑅2 & 𝑅3 and 𝑅3 & 𝑅4. Any other location would imply that 𝐷 has
a chord of length 1 completely contained in a singe region. Contradiction to
Theorem 2.2, since this chord would correspond to a tube that does not pass
through a rational tangle.

 

Figure 14. Labeling of the punctured partitioned chord dia-
gram 𝐷.

Now we prove the case of 𝑔 > 3 by contradiction. Suppose without loss of
generality that 𝑐1 has one base point in 𝑅1 and the other base point in 𝑅2. Then
there are only two locations for 𝑐2: between 𝑅1 & 𝑅4 and 𝑅2 & 𝑅3. Note that if 𝑐2
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is between 𝑅3 & 𝑅4, then by Proposition 8.1, this wouldmean that there is a dis-
connected component of the closed, connected, essential, orientable essential
surface, a contradiction. Without loss of generality, say that 𝑐2 is between 𝑅2 &
𝑅3. The same argument applies if 𝑐2 is between 𝑅1 & 𝑅4. We mimic the proof of
Lemma 8.7, where we reduce 𝐷 to sub-diagrams by looking at the complement
of a chord in 𝐷. Note that 𝐷 contains 𝑔 − 4 base points in 𝑅1, 𝑔 − 3 base points
in 𝑅2, 𝑔 − 2 base points in 𝑅3, and 𝑔 − 1 base points in 𝑅4. By Lemma 8.7, both
of these new diagrams must have at least two chords of length 1. We show that
one of the sub-diagrams contains a chord of length 1 which is also a chord of
length 1 in 𝐷, distinct from 𝑐1, 𝑐2. This gives a fourth leaf in 𝐷, contradicting
Proposition 8.1.
Let 𝑏0 be a base point in 𝑅4 which is immediately adjacent to the region 𝑅3.

We show that every possible chord with 𝑏0 as a base point results to 𝐷 having
a third chord of length 1 contradicting Proposition 8.1. Let 𝑐 be the chord with
𝑏0 as one of its base points. If 𝑐 is length 1, we have a third length 1 chord
in 𝐷, contradicting Proposition 8.1. Suppose that 𝑐 is not length 1. Since no
chords in𝐷 intersect, then 𝑐 partitions𝐷 into two sub-diagrams. There are two
cases to consider: one of the sub-diagrams contain at least one of 𝑐0, 𝑐1, 𝑐2 or
contain none of these chords. Suppose one of the sub-diagrams, call it 𝐷′, does
not contain any of 𝑐0, 𝑐1 or 𝑐2. This implies, by Lemma 8.7, that there exists
two chords of length 1 in 𝐷′, one of which is 𝑐, and hence the other chord is of
length 1 in 𝐷 which is not 𝑐1 or 𝑐2, a contradiction.
Now suppose that one of the sub-diagrams contains at least one of 𝑐0, 𝑐1, 𝑐2.

We look at the sub-diagram 𝐷′ that contains exactly one of 𝑐0, 𝑐1, 𝑐2. Without
loss of generality, suppose 𝐷′ contains 𝑐2. Observe that 𝑏0 has at least 𝑔 − 2
base points in 𝐷 between itself and any base point of 𝑐0, 𝑐1, 𝑐2. This is because
𝑅3 has 𝑔 − 2 base points disjoint from 𝑐2 and 𝑅4 has 𝑔 − 2 base points disjoint
from 𝑏0. There does not exist 𝑔 − 2 consecutive base points in either 𝑅2 and
𝑅1 in between leaves. Thus, there must be a different number of base points
between 𝑏0 & 𝑐2 and 𝑏1 & 𝑐2 in 𝐷′. This means that the two sides of 𝐷′, with
respect to the leaves 𝑐 and 𝑐2, must contain a different number of base points in
𝐷′. Two of these leaves in𝐷′ are 𝑐 and 𝑐2, so by Lemma 8.7𝐷′ has three ormore
chords of length 1. The last chord is between base points adjacent in 𝐷′ which
are also adjacent in 𝐷. This gives a third chord of length 1 in 𝐷, contradicting
Proposition 8.1. □

Proposition 8.9. Let 𝐷 be a punctured partitioned chord diagram with a chord
𝑐 of maximum possible length 4𝑔 − 5 whose base points are completely contained
in a single region and exactly two chords, 𝑐′, 𝑐′′, of length 1 whose base points are
in regions distinct from the region containing the base points of 𝑐. Then there are
exactly three types of chords in 𝐷, whose type is based on if exactly one of 𝑐, 𝑐′, 𝑐′′,
is completely contained in one of the sub-diagrams of the chord.

Proof. This is an immediate consequence of Lemma 8.7. Suppose there is a
chord 𝑐 which partitions 𝐷 into two sub-diagrams 𝐷′, 𝐷′′ such that exactly one
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of 𝐷′ and 𝐷′′ does not contain any of 𝑐, 𝑐′, 𝑐′′. Without loss of generality, sup-
pose 𝐷′ does not contain any of 𝑐, 𝑐′, 𝑐′′. Then, by Lemma 8.7, there exists a
chord of length 1 in𝐷′ which is not 𝑐, 𝑐′ or 𝑐′′. Thus, this chord is also of length
1 in 𝐷. Contradiction, since 𝑐′ and 𝑐′′ were the only chords of length 1 in 𝐷.
Therefore, every chord in 𝐷 must partition 𝐷 into two sub-diagrams such that
one of the sub-diagrams contains exactly one of 𝑐, 𝑐′ or 𝑐′′. □

Lemma 8.10. Suppose𝐷 is a punctured partitioned chord diagram as in Propo-
sition 8.9. Chords which have a base point in the region containing the base points
of 𝑐 must have a sub-diagram which contains 𝑐, but does not contain 𝑐′ or 𝑐′′.
Moreover, the base points of such chords are equidistant to the base points of 𝑐.

In other words, the chords are parallel to 𝑐.
Proof. Let 4(𝑔 − 1) be the number of base points in a punctured partitioned
chord diagram 𝐷, and that each of the four regions has 𝑔 − 1 base points. The
case for 𝑔 = 3 was proved in Lemma 8.8, so we may assume that 𝑔 ≥ 4.
Fix the location of the chord of maximum possible length, call it 𝑐. Without

loss of generality, let 𝑅1 be the region containing the base points of 𝑐. Then by
Lemma8.8, the two chords of length 1, call them 𝑐′, 𝑐′′, must be located between
𝑅2 & 𝑅3 and 𝑅3 & 𝑅4, respectively (see Figure 15). This is because chords of
length 1 cannot be between base points in a single region, contradicting Theo-
rem 2.2. The chord of maximum possible length cannot be between base points
of adjacent regions since this implies that the surface is disconnected, by Propo-
sition 8.1. Moreover, Lemma 8.8 gives that the location of length 1 chords are
determined by the location of the chord of maximum length.
Suppose a chord 𝑐 has a base point in 𝑅1 and neither sub-diagram does not

only contain 𝑐. Thus, one sub-diagram, call it 𝐷′, either contains only 𝑐′ or 𝑐′′.
However, in either case, the distance between one pair of base points is always
at least 𝑔 − 2 and the distance between the other set of base points is at most
𝑔 − 3. Hence, 𝐷′ does not have the same number of base points on both sides
of the leaves. So, by Lemma 8.7, there exists another leaf in 𝐷′ that is not 𝑐 or
either of 𝑐′ or 𝑐′′. This implies that this leaf is also a leaf in𝐷with corresponding
chord having length 1. Contradiction, since 𝐷 has only two chords of length 1.
We now prove the second statement of the lemma. Suppose the base points

of a chord 𝑐, which has one base point in 𝑅1, does not have both its base points
equidistant to the base points of 𝑐. Thus, a sub-diagram of 𝑐 does not have
the same number of base points on both sides of the leaves. By Lemma 8.7,
there exists another leaf in 𝐷′ that does not correspond to 𝑐 or 𝑐. Thus, this leaf
corresponds to a chord of length 1 in𝐷 that is not 𝑐′ or 𝑐′′, again a contradiction.

□

Using the established lemmas, we prove Proposition 8.5.

Proof of Proposition 8.5. By Proposition 8.9, there are only three types of
chords. We show that there is only one way to construct a punctured parti-
tioned chord diagramwith these types of chords which corresponds to a tubing
description of a closed essential surface of genus 𝑔. Recall that 𝑖 represents
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Figure 15. The three leaves of a punctured partitioned chord
diagram, along with the chords 𝑐, 𝑐′, 𝑐′′ and the number of base
points in each region.

the number of base points in 𝑅1 chorded to base points not in 𝑅1. Note that
0 ≤ 𝑖 ≤ 𝑔 − 3. By Lemma 8.10, we need only consider a chord diagram 𝐷 with
the following properties: 𝐷 does not contain a puncture, contains 0 base points
in 𝑅1, 𝑔 − 2 − 𝑖 base points in 𝑅2, 𝑔 − 3 base points in 𝑅3, and 𝑔 − 2 base points
in 𝑅4 (see Figure 16). Observe that the parity of 𝑔 and 𝑖 must be opposite, oth-
erwise 𝑔 − 1 and 𝑖 would have the opposite parity. Since 𝑔 − 1 is the number of
base points in 𝑅1, then 𝑔− 1− 𝑖 must be odd. However, 𝑔− 1− 𝑖 is the number
of base points in 𝑅1 chorded together, a contradiction since chording an odd
number of base points in the same region would give two intersecting chords.
There are only three types of allowable chords for 𝐷, as shown in Figure 16.

This is because any other types of chords would result in a fourth leaf in the
dual tree, by Lemma 8.7. A contradiction to Proposition 8.1. A chording of the
chord diagram 𝐷 can be expressed as a system of linear equations in terms of
the number of types of allowable chords 𝛼, 𝛽, 𝛾 and the number of base points.
Namely, the system of equations is

𝛼 + 𝛽 = 𝑔 − 2 − 𝑖
𝛼 + 𝛾 = 𝑔 − 3
𝛽 + 𝛾 = 𝑔 − 2
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Figure 16. The only allowable chords, drawn in purple, in 𝐷,
along with the chords 𝑐, 𝑐′, 𝑐′′ and the number of base points in
each region.

which can be expressed in matrix notation as

⎡
⎢
⎣

1 1 0
1 0 1
0 1 1

⎤
⎥
⎦

⎡
⎢
⎣

𝛼
𝛽
𝛾

⎤
⎥
⎦
=
⎡
⎢
⎣

𝑔 − 2 − 𝑖
𝑔 − 3
𝑔 − 2

⎤
⎥
⎦

Since the matrix has non-zero determinant, then if there is a solution, in par-
ticular we require it must be non-negative integer solutions, it must be unique.
The solution can be expressed in terms of 𝑔 and 𝑖 as

𝛼 = 𝑔 − 𝑔 + 𝑖 − 3
2 − 3 = 𝑔 − 3 − 𝑖

2
𝛽 = 𝑔 + 𝑖 − 3

2 − 𝑖 + 1 = 𝑔 − 1 − 𝑖
2

𝛾 = 𝑔 + 𝑖 − 3
2

Each of 𝛼, 𝛽, and 𝛾 are integers, since 𝑔 and 𝑖 have opposite parity. By assump-
tion, 𝑔 ≥ 4 and hence 𝑔 + 𝑖 − 3 is an even number between 0 and 2(𝑔 − 3),
inclusive. Observing that each of 𝛼, 𝛽, and 𝛾 are non-negative and integral, we
have a unique positive integer solution. Therefore, this unique solution corre-
sponds to the unique punctured partitioned chord diagram and the proposition
is proved.
The second statement of the proposition follows from Lemma 8.10 and the

number of 𝛼, 𝛽 and 𝛾 chords. Lemma 8.10 implies that there are 𝑖 and 𝑔−1−𝑖
2

chords parallel to 𝑐. Moreover, the 𝛽 chords and 𝑐 itself are also parallel to 𝑐,
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so the total number of chords parallel to 𝑐 is 𝑖 + 𝑔−1−𝑖
2

+ 𝑔−3−𝑖
2

+ 1 = 𝑔 − 1
chords parallel to 𝑐. The 𝛼 chords and 𝑐′ itself are all parallel to 𝑐′, so there are
𝑔−3−𝑖
2

+ 1 = 𝑔−1−𝑖
2

parallel to 𝑐′. Lastly, the 𝛾 chords and 𝑐′′ itself are parallel to
𝑐′′, so there are 𝑔+𝑖−3

2
+ 1 = 𝑔−1+𝑖

2
chords parallel to 𝑐′′. □

Wewill find the punctured partitioned chord diagrams that give a description
of a closed, connected, essential, orientable surface by utilizing Claim 2 of [9]
which uses tools of [1].

Proposition 8.11. Let 𝜙(𝑔−1) be the Euler totient function of 𝑔−1 and let 𝑔 > 2.
There are at most 8𝜙(𝑔 − 1) punctured partitioned chord diagrams which corre-
spond to tubing descriptions of closed, connected, essential, orientable surfaces of
genus 𝑔.

Proof. We count the number of punctured partitioned chord diagrams that
give a tubing description of a closed, connected, essential, orientable surface.
Fix 𝑐 to be the chord of maximum possible length in the diagram. Without loss
of generality, let 𝑐 be in 𝑅1. A disconnected surface happens exactly when a
proper subset of the collection of 4-punctured spheres 𝑆𝐶 ’s from Theorem 2.1
are tubed together. From the Euler characteristic argument in Example 5.0.1,
there are 𝑔−1 𝑆𝐶 ’s of a closed surface of genus 𝑔. Label the 4-punctured spheres
and punctures as 𝑆𝑖𝐶,𝑗 where 𝑖 represents the 𝑖

th innermost 𝑆𝐶 with respect to
the projection of the knot and 𝑗 represents the 𝑗th arc that the punctures lie on.
Thus, for a disconnected surface, we would get a collection of chords which
have a set of base points of the form {𝑆𝑖1𝐶,1, 𝑆

𝑖1
𝐶,2, 𝑆

𝑖1
𝐶,3, 𝑆

𝑖1
𝐶,4,… , 𝑆

𝑖𝑘
𝐶,3, 𝑆

𝑖𝑘
𝐶,4}, where

0 < 𝑘 < 𝑔 − 1.
Since we want to eliminate the case that a proper subset of 𝑆𝐶 ’s are tubed

together, then we may take the viewpoint of [1] via integer pairings as follows.
Fix a projection of the knot along with the 𝑆𝐶 ’s and then associate to each 𝑆𝑖𝐶
the integer 𝑖, where 𝑖 = 1 represents the innermost and 𝑖 = 𝑔 − 1 represents
the outermost 𝑆𝐶 (see Figure 17). We may think of chords as pairings where
base points will be viewed as integers and a chord is a map from one integer to
another. Moreover, since we only want to find which 𝑆𝐶 ’s are tubed together,
then we get additional pairings based on identifying the punctures belonging
to the same 𝑆𝐶 .
Observe that the problem now reduces to finding orbits of pairings, since

every orbit corresponds to exactly one component of the surface obtained from
the tubing description of the punctured partitioned chord diagram. Thus, we
find the number of orbits coming from the chords and the identification of the
base points coming from the same 𝑆𝐶 . Note that the chordswhich are parallel to
𝑐′ and the chords parallel to 𝑐′′ do not contribute to the number of orbits, since
these chords have base points belonging to the same 𝑆𝐶 . By Proposition 8.5,
there are 𝑔− 1 such chords. Since in any punctured partitioned chord diagram
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there are 2(𝑔 − 1) chords, then we look at the orbits of the remaining 𝑔 − 1
chords.

 

Figure 17. The
chords and pair-
ings along with
the number of
orbits.

 

Figure 18. The
orientation revers-
ing pairings 𝑓, 𝑔,
and ℎ obtained
from a punctured
partitioned chord
diagram.

By Proposition 8.5, the remaining 𝑔−1 chords are parallel to 𝑐. Wemay view
these chords together as one pairing, call it ℎ, which is orientation reversing,
with 𝑔 − 1 orbits. By Proposition 8.5, there are 𝑔−1−𝑖

2
𝑆𝐶 ’s of 𝑅4 having chords

parallel to 𝑐. These base points will be identified with 𝑔−1−𝑖
2

base points in 𝑅1
since these base points belong the same 𝑆𝐶 . Since 𝑅1 and 𝑅4 are adjacent, this
gives an orientation reversing pairing, call it 𝑔, with 𝑔−1−𝑖

2
orbits. Lemma 8.10

implies that the remaining 𝑖+ 𝑔−1−𝑖
2

chords have base points in 𝑅1 and 𝑅2 which
belong to 𝑖 + 𝑔−1−𝑖

2
𝑆𝐶 ’s. Again, since 𝑅1 and 𝑅2 are adjacent, gives the last

orientation reversing pairing, call it 𝑓, with 𝑖 + 𝑔−1−𝑖
2

orbits (see Figure 18).

Let 𝑢 = 𝑔−1−𝑖
2

and 𝑣 = 𝑖 + 𝑔−1−𝑖
2

which gives 𝑢 + 𝑣 = 𝑔 − 1. Applying Claim
2 of [9] to 𝑢, 𝑣, 𝑢 + 𝑣, 𝑓, 𝑔 and ℎ, we get that there are is only one orbit if and
only if 𝑔𝑐𝑑(𝑢, 𝑣) = 1. This gives that there are at most 𝜙(𝑔 − 1) locations for 𝑐
in 𝑅1 which gives a tubing description yielding a closed, connected, essential,
orientable surface. Moreover, by symmetry of the punctured partitioned chord
diagram, there are four other regions each with 𝜙(𝑔−1) choices for 𝑐 that gives
a tubing description yielding a closed, connected, essential, orientable surface.
Since there are two choices for the 𝑆𝐶 , we get that the total number of closed,
connected, essential, orientable surfaces is at most 8𝜙(𝑔 − 1). □
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9. Distinctness of surfaces from punctured partitioned chord
diagrams
Lastly, we prove Theorem 1.1 by showing that each punctured partitioned

chord diagram giving a tubing description of a closed, connected, essential, ori-
entable surface gives distinct, non-isotopic surfaces. We give necessary defi-
nitions used to prove distinctness. Distinctness will be proved in two cases:
for punctured partitioned chord diagrams corresponding to surfaces of genus
greater than 2 and then for genus 2 surfaces. The genus greater than 2 case will
contain two subcases: when the chords of maximum possible length of two
punctured partitioned chord diagrams are contained in the same region and
when they are in separate regions. The former case will utilize incompressible
branched surfaces and the latter case will utilize results of Waldhausen [17] on
isotopies between incompressible surfaces.

For an in-depth treatment of incompressible branched surfaces, see [4] and
[13]. A branched surface ℬ in a 3-manifold𝑀 is a subspace locally modeled as
in Figure 19. If ℬ is embedded in𝑀, then 𝑁 = 𝑁(ℬ) denotes a fibered regular
neighborhood of ℬ in𝑀 as in Figure 20. The portions of 𝜕𝑁 − 𝜕𝑀 called 𝜕ℎ𝑁
(horizontal boundary) and 𝜕𝑣𝑁 (vertical boundary) are also shown in Figure 20.
A monogon in𝑀 − �̊� is a disk 𝐷 with 𝐷 ∩ 𝑁 = 𝜕𝐷 which intersects 𝜕𝑣𝑁 in a
single fiber. A disk of contact is a disk 𝐷 embedded in 𝑁 transverse to fibers
with 𝜕𝐷 ⊆ int(𝜕𝑣𝑁).
An incompressible branched surfaceℬ is an embedded branched surfacewhich

satisfies the following three conditions:
(1) ℬ has no disks of contact or half-disks of contact,
(2) 𝜕ℎ𝑁 is incompressible and 𝜕-incompressible in𝑀− �̊�, where a 𝜕-com-

pressing disk for 𝜕ℎ𝑁 is assumed to have boundary in 𝜕𝑀 ∪ 𝜕ℎ𝑁,
(3) and there are no monogons in𝑀 − �̊�.
We state three results which will be used throughout the proof of distinct-

ness.

Theorem9.1 (Oertel [13], Theorem1). Supposeℬ is an incompressible branched
surface and supposeℬ(𝐰) is a 2-sided surface carried byℬ with positive weights
(𝑤𝑖 > 0 for all 𝑖). If ℬ(𝐯) is any surface carried by ℬ (𝑣𝑖 ≥ 0 for all 𝑖), then ℬ(𝐯)
is isotopic to ℬ(𝐰) if and only if ℬ(𝐯) can be isotoped to ℬ(𝐰) using a sequence
of simple isotopies (and isotopies in𝑁(ℬ) respecting fibers of𝑁(ℬ)).
Proposition 9.2 (Oertel [4], Proposition 3). Let𝑀 be an irreducible 3-manifold
and 𝑆 a 2-sided incompressible surface embedded in𝑀. Then the branched sur-
faceℬ𝑆 , constructed by using 𝑆, is incompressible.
For the general construction of such a branched surface, see [4]. For the spe-

cific case of Montesinos knots with 4 rational tangles, see Section 9.0.1 below.

Proposition 9.3 (Waldhausen [17], Proposition 5.4). Let 𝑀 be an irreducible
3−manifold. In𝑀, let 𝐹 and 𝐺 be incompressible surfaces, such that 𝜕𝐹 ⊆ 𝜕𝐹 ∩
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Figure 19. Lo-
cal model of a
branched surface
ℬ.

 

Figure 20. A
local neighbor-
hood 𝑁(ℬ) of the
branched surface
ℬ with the hori-
zontal boundary
components drawn
in blue and the
vertical boundary
components drawn
in red.

𝜕𝐺, and 𝐹 ∩𝐺 consists of mutually disjoint simple closed curves, with transversal
intersection at any curve which is not in 𝜕𝐹. Suppose there is a surface 𝐻 and a
map 𝑓 ∶ 𝐻 × 𝐼 → 𝑀 such that 𝑓|𝐻 × 0 is a covering map onto 𝐹, and

𝑓(𝜕(𝐻 × 𝐼) −𝐻 × 0) ⊂ 𝐺.

Then there is a surface �̃� and an embedding �̃� × 𝐼 → 𝑀, such that

�̃� × 0 = �̃� ⊂ 𝐹, (𝜕(�̃� × 𝐼) − �̃� × 0) = �̃� ⊂ 𝐺

(i.e., a small piece of𝐹 is parallel to a small piece of𝐺), and thatmoreover �̃�∩𝐺 =
𝜕�̃�, and either �̃� ∩ 𝐹 = 𝜕�̃�, or �̃� and �̃� are disks.

We use Theorem 9.1 for the case where two punctured partitioned chord di-
agrams have their maximum possible length chords in the same region. When
punctured partitioned chord diagrams have their maximum possible length
chords in different regions, we utilize Proposition 9.3.
By Theorem 2.2, every incompressible surface is carried by the branched sur-

face ℬ where ℬ is shown in Figure 21 for 𝐾( 1
3
, 1
3
, 2
3
, 1
2
). However, to use Theo-

rem 9.1, we need to take a branched subsurface ℬ𝑆, constructed from a closed
connected incompressible surface 𝑆, which carries all surfaces having their cor-
responding maximum possible length chord in the same region. Thus, we de-
fine the following components of the branched surface ℬ.
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Figure 21. The branched surface ℬ for 𝐾( 1
3
, 1
3
, 2
3
, 1
2
).

Definition 9.4. A switch component of the branched surface ℬ is the union
of two horizontal boundary components coming from the tubes, which are
branched along a singular locuswhich is a puncture of the 𝑆𝐶 horizontal bound-
ary component. See Figure 22.

Definition 9.5. A two-way switch component of the branched surface ℬ is the
union of three horizontal boundary components, all coming from the tubes,
which are branched along a singular locus containing three components: a
puncture of the 𝑆𝐶 horizontal boundary component and two components com-
ing from the intersection of the tubes. See Figure 23.

Definition 9.6. A one-way switch component of the branched surface ℬ is the
union of two horizontal boundary components branched along a singular locus
consisting of two components: a puncture of the 𝑆𝐶 horizontal boundary com-
ponent and a component coming from the intersection of the two tubes. See
Figure 24.
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Figure
22. Switch
compo-
nent of
ℬ.

 

Figure
23. Two-
way
switch
compo-
nent of
ℬ.

 

Figure
24. One-
way
switch
compo-
nent of
ℬ.

9.0.1. Constructionof incompressible branched surface frompunctured
partitioned chord diagram. We show how to construct an incompressible
branched surface ℬ𝑆 from a punctured partitioned chord diagram. We follow
the process given by Floyd and Oertel [4] yielding an incompressible branched
surface froman incompressible surface. Let𝐷 be a punctured partitioned chord
diagram corresponding to a closed, connected, essential, orientable surface 𝑆 of
genus greater than 2. By Propositions 8.5 and 8.9, 𝐷 is uniquely determined by
the maximum possible length chord and there are only three types of chords in
𝐷. Without loss of generality, let 𝑅1 be the region containing the base points of
the chord of maximum possible length and label the rest of the regions coun-
terclockwise from 𝑅1 as 𝑅2, 𝑅3, and 𝑅4. We first choose the incompressible 4-
punctured sphere 𝑆𝐶 that we use to build ℬ𝑆. After this choice of 𝑆𝐶 , the four
regions of 𝐷 correspond to four arcs of the knot, which we label as 𝑎1, 𝑎2, 𝑎3,
and 𝑎4, containing the punctures of the 𝑆𝐶 . The chord of maximum possible
length represents the innermost tube and has the property that the tube has
both ends on the arc 𝑎1, corresponding to the region 𝑅1, of the knot and passes
through every rational tangle exactly once. Thus, this gives a switch component
of the branched surface contained on 𝑎1 since the tube is innermost and hence
only has two horizontal boundary components both coming from the tube. By
Proposition 8.9, all chords in which have a base point in either 𝑅2 or 𝑅4 must
pass through 𝑅3. This gives that all tubes having one end on either the arc 𝑎2
or 𝑎4 are carried by a one-way switch component. Lastly, the region 𝑅3 consists
of chords parallel to the chords of length 1 and portions of chords parallel to
the chord of maximum possible length. Hence, we have three contributions
of horizontal boundary components coming from the tubes where one tube is
innermost amongst the three. This gives that the corresponding arc 𝑎3 has a
two-way switch component. Thus, the branched surface we obtain from any
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such punctured partitioned chord diagram 𝐷 is shown in Figure 25. By Propo-
sition 9.2, ℬ𝑆 is incompressible since it does not have any disks of contact.

 

 

Figure 25. The corresponding branched surface ℬ𝑆 of the
punctured partitioned chord diagram.

Observe that the construction of ℬ𝑆 is independent of the specific rational
tangles, since the regions of the punctured partitioned chord diagrams only de-
pend onwhich arcs are adjacent by traversing the knot. Moreover,ℬ𝑆 carries all
surfaces which have the chord of maximum possible length in the same region
and have the same choice for the 4-punctured sphere 𝑆𝐶 .
Proposition 9.7. Let 𝑆 be a closed, connected, essential, orientable surface of
genus greater than 2. Then, none of the complementary regions of the correspond-
ing incompressible branched surface ℬ𝑆 are product regions. In particular, any
surface carried byℬ𝑆 is not isotopic to any other surface also carried byℬ𝑆 .
Proof. By the construction of ℬ𝑆, it carries all surfaces which are tubing de-
scriptions of surfaces utilizing the same choice of 4-punctured sphere 𝑆𝐶 and
having the chord of maximum possible length in the same region. We show
that the four complementary regions of ℬ𝑆 are not product regions. It follows
from Theorem 9.1 that there are no isotopies between the surfaces thatℬ𝑆 fully
carries.
The region which is a cusp neighborhood of the knot𝐾 is bounded by of one

horizontal boundary component and one vertical boundary component, where
each component in an annulus, whose union is a torus. However, since there
is only one horizontal boundary component, then this is not a product region.
The region bounded by a two-way switch component is homeomorphic to

a solid torus whose boundary consists of three vertical annuli and three hori-
zontal annuli. In particular, it contains more than two horizontal components.
Thus, this region is not a product region.
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The region inside of the 𝑆𝐶 , with respect to the projection onto the sphere,
and outside the horizontal tube has only one horizontal boundary component
and one vertical boundary component. So, it is not a product region.
The final region is the region outside of the 𝑆𝐶 , the horizontal tubes, and

two vertical annuli. The boundary of this region is homeomorphic to a genus 2
surfacewith two vertical annuli which deformation retract onto non-separating
curves of the surface. Thus, the boundary consists of exactly one horizontal
component and two vertical components. Hence, it is not a product region,
which completes the proof. □

Proposition 9.7 shows that two surfaces obtained by tubing the same choice
of 𝑆𝐶 which have punctured partitioned chord diagrams with the maximum
possible length chord in the same region, are distinct. We now prove the case
that punctured partitioned chord diagrams having the maximum length chord
in the different regions are distinct. Proposition 9.3 will be used extensively
in analyzing the regions bounded by two surfaces in the complement of the
knot. We analyze such regions and show each are not pocket nor product re-
gions, as in the statement of Proposition 9.3. In light of the proposition, we will
define such regions contained in the punctured partitioned chord diagram con-
taining two sub-diagrams each corresponding to closed, connected, essential,
orientable surface of genus greater than 2. The following heavily utilizes the
geometric description of punctured partitioned chord diagrams.
Let 𝐷1 and 𝐷2 be two punctured partitioned chord diagrams, each giving

rise to genus 𝑔 surfaces, for 𝑔 greater than 2, 𝑆1 and 𝑆2, respectively. We may
represent both on a single punctured partitioned chord diagram 𝐷 (see Fig-
ure 26). Since 𝐷 represents a cusp neighborhood of the knot, we will analyze
each complementary region of the chords of 𝐷 and show that none are prod-
uct or pocket regions. By Proposition 9.3, we may then conclude that 𝑆1 and
𝑆2 are non-isotopic surfaces. We first define possible regions of 𝐷 and show in
Lemma 9.11 that 𝐷 can be made to have only these regions.

Definition 9.8. Let 𝐷 be a punctured partitioned chord diagram, containing
sub-diagrams 𝐷1 and 𝐷2, as above. A complementary region of 𝐷 is defined to
be one of the following types:

Type I: A region bounded by two intersecting segments of chords, one
from 𝐷1 and one from 𝐷2 which contains the puncture of 𝐷.

Type II: A region bounded by 2𝑛 intersecting segments of chords, for
𝑛 ∈ ℕ≥2, with 𝑛 segments from chords of 𝐷1 and 𝑛 segments
from chords of 𝐷2, in an alternating fashion.

Type III: A region bounded by 4 segments: a segment of the boundary
circle, two segments from chords of 𝐷𝑖 and one segment from a
chord of 𝐷𝑗 where 𝑖, 𝑗 ∈ {1, 2} and 𝑖 ≠ 𝑗.

Type IV : A region bounded by 2𝑛 + 1 segments for 𝑛 ∈ ℕ≥1 with 𝑛 seg-
ments from chords of 𝐷1, 𝑛 segments from chords of 𝐷2, and
one segment of the boundary circle, in an alternating fashion.
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Figure 26. An example of 𝐷 with sub-diagrams 𝐷1 and 𝐷2
drawn in red and blue, respectively.

Moreover, the segment of the boundary circle is adjacent to a
segment of a chord of 𝐷1 and a segment of a chord of 𝐷2.

Type V : A region bounded by 6 segments: two segments of the bound-
ary circle, two segments from chords and a chord of length 1
in 𝐷 all coming from 𝐷𝑖, and one segment from a chord of 𝐷𝑗
where 𝑖, 𝑗 ∈ {1, 2} and 𝑖 ≠ 𝑗.

See Figure 27.
   

 

 

Figure 27. Left to right: Examples of type I, type II, type III,
type IV and type V regions.

Observe that the segments in each type of region may belong to the same
chord in the respective sub-diagram. We now prove a few properties of 𝐷.
Lemma 9.9. Let 𝐷1 and 𝐷2 be two punctured partitioned chord diagrams, each
giving rise to surfaces 𝑆1 and 𝑆2, respectively. Moreover, assume that both 𝑆1 and
𝑆2 have genus greater than 2. Consider the superimposed union of𝐷1 and𝐷2 and
call it 𝐷. Then, after an isotopy of the chords, 𝐷 has the following properties:
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(1) Chords of 𝐷1 only intersect chords of 𝐷2.
(2) The base points of𝐷 on the boundary circle can be arranged in a cyclicway

so that 2(𝑔 − 1) consecutive base points, with respect to some orientation
the boundary circle, are from 𝐷𝑖 , then 2(𝑔 − 1) consecutive base points
from 𝐷𝑗 , with 𝑖, 𝑗 alternating between 1 and 2.

(3) The intersection of any two chords is 4-valent and transverse.
(4) Chords intersect in an alternating fashion.

Proof. Property 1 follows immediately from the definition of punctured parti-
tioned chord diagrams. Wemay take an isotopy of the base points of𝐷𝑖, preserv-
ing the respective order and adjacency of the base points, to obtain the cyclic
arrangement stated in property 2. Moreover, this isotopy can be made so that
chords of 𝐷𝑖 do not intersect with any other chords of 𝐷𝑖, preserving property
1 throughout the isotopy. Every intersection is 4-valent since chords intersect
in their interiors and any tangential intersection in the interior can be resolved
by an isotopy of the chord which does not result in any additional intersections
with any other chords. Thus, giving property 3. Finally, property 4 follows from
property 1 since intersections of any two chords implies that the chords do not
come from the same sub-diagram. □

The existence of a region of type IV for 𝑛 ≥ 2 is crucial to proving distinct-
ness. We prove the existence of such a region with the following lemmas and
prove all regions are of types 𝐼, 𝐼𝐼, 𝐼𝐼𝐼, 𝐼𝑉, or 𝑉.

Lemma 9.10. Let 𝐷 be as in Lemma 9.9. Let 𝑐1 and 𝑐2 be the two maximum
possible length chords of𝐷, coming from𝐷1 and𝐷2, respectively. Then, there exists
two chords 𝑐′1 and 𝑐

′′
1 parallel to 𝑐1 which have one pair of base points adjacent to

each other and the other pair of base points contain 2(𝑔 − 1) base points of 𝐷2.
Moreover, there are also two chords 𝑐′2 and 𝑐

′′
2 parallel to 𝑐2 which are adjacent

to each other at one end and contain 2(𝑔−1) base points of 𝐷1 in between 𝑐′2 and
𝑐′′2 .

Proof. By Proposition 8.5, there exists at least two chords 𝑐′1 and 𝑐
′′
1 parallel to

𝑐1which are adjacent to each other. Note thatwe allow 𝑐′1 or 𝑐
′′
1 to be 𝑐1. Namely,

the chords 𝑐′1 and 𝑐
′′
1 must exist since 𝑐1 and a 𝛽 type chord, as in Proposition 8.5,

exists. So, one of 𝑐′1 or 𝑐
′′
1 may be 𝑐1 itself. Moreover, 𝑐1 has both its base points

in the same region and there are 𝑔 − 1 chords parallel to 𝑐1 by Proposition 8.5.
Observe that there are 𝑔−1 base points of𝐷1 in each region, and 𝑐1 has adjacent
base points. Then, using property 2 of Lemma 9.9, 𝑐′1 and 𝑐

′′
1 contain 2(𝑔 − 1)

base points of 𝐷2 in between a pair of base points. This proves the existence of
𝑐′1 and 𝑐

′′
1 with such properties. Similarly, we may apply the same argument to

obtain two chords 𝑐′2 and 𝑐
′′
2 parallel to 𝑐2 which are adjacent to each other and

contain 2(𝑔 − 1) base points of 𝐷1 in between 𝑐′2 and 𝑐
′′
2 . □

Lemma 9.11. Let 𝐷 be as in Lemma 9.9. Then, every complementary region of
𝐷 is one of types I, II, III, IV, or V.
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Proof. Observe that𝐷 contains exactly two chords ofmaximumpossible length
𝑐1 and 𝑐2 coming from the chords of maximum possible length in 𝐷1 and 𝐷2,
respectively. The puncture of 𝐷 is contained in exactly one region (see e.g. Fig-
ure 26). Note that 𝑐1 and a segment of the boundary circle in 𝐷1 bounds the
region containing the puncture. Similarly for 𝑐2 in 𝐷2. Thus, this implies that
the puncture of 𝐷 lies in exactly one region bounded by segments of 𝑐1 and 𝑐2.
In particular, this is a type I region.
Regions of 𝐷 are bounded by segments of chords of 𝐷1, 𝐷2, and segments

of the boundary circle. By Lemma 9.9, all regions are bounded by alternating
segments and boundary segments. We eliminate the region bounded by exactly
one segment of a chord of 𝐷1 and one segment of a chord of 𝐷2 which does
not contain the puncture. In this case, we may isotope the chords to have no
intersections using the disk bounded by the segments.
We eliminate regions bounded by more than 2 segments of the boundary

circle. By Proposition 8.9,𝐷1 and𝐷2 have only one region which hasmore than
2 segments from the boundary circle. The region in 𝐷𝑖 is bounded by exactly
three chords, each with the property that it is parallel to exactly one of 𝑐𝑖, 𝑐′𝑖 ,
and 𝑐′′𝑖 . Thus, the region contains base points opposite of each other on the
boundary circle. However, by Lemma 9.10 there exists a chord of 𝐷𝑗 which
separates these base points. This chord partitions the region into two regions,
each of which has at most 2 segments from the boundary circle. Thus, the only
possible types of regions are of one of types I, II, III, IV, or V. □

Lemma 9.12. Let𝐷 be as in Lemma 9.9. Then, there exists a region of type IV for
𝑛 ≥ 2.

Proof. By Lemma 9.10, we have the existence of chords 𝑐′1, 𝑐
′′
1 , and 𝑐

′
2 𝑐

′′
2 . In

particular, this implies that one of 𝑐′1 or 𝑐
′′
1 partitions the base points of 𝐷2 into

two sets each containing 2(𝑔−1) base points. Similarly, one of 𝑐′2 or 𝑐
′′
2 partitions

the base points of 𝐷1 into two sets, based on the complement of such a chord,
each containing 2(𝑔 − 1) base points. Without loss of generality, assume that
𝑐′′1 and 𝑐

′′
2 have this property (see e.g. Figrue 28).

Thus, 𝑐′′1 and 𝑐
′′
2 intersect transversely exactly once. Moreover, since 𝑐

′′
1 par-

titions the base points of 𝐷2, then 𝑐′2 has its base points on one side of 𝑐
′′
1 . In

particular, 𝑐′2 has exactly one base point adjacent to 𝑐
′′
1 and 𝑐

′
2 does not intersect

𝑐′′1 . Now, 𝑐
′
2 must intersect 𝑐

′
1 since 𝑐

′
2 is between 𝑐

′
1 and 𝑐

′′
1 which are both par-

allel to 𝑐1. Thus, we have a region bounded by the following: a segment of the
boundary circle between the adjacent base points of 𝑐′2 and 𝑐

′′
1 , a segment of 𝑐

′′
1 ,

a segment of 𝑐′′2 , a segment of 𝑐
′
1, and a segment of 𝑐

′
2. Therefore, we have the

existence of a region of type IV. □

We now prove that for any two punctured partitioned chord diagrams corre-
sponding to surfaces of genus greater than 2 and having their maximum possi-
ble length chords in distinct regions give rise to distinct, non-isotopic surfaces.
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Figure 28. An example of a type IV in𝐷with𝐷1 and𝐷2 drawn
in red and blue, respectively.

This completes the proof of the case that for punctured partitioned chord di-
agrams corresponding to surfaces of genus greater than 2, these surfaces are
non-isotopic.

Lemma 9.13. Pocket regions of two surfaces 𝑆1 and 𝑆2 are bounded by exactly
two components: one component from 𝑆1 and the other from 𝑆2, each of which
are connected.

Proof. By Proposition 9.3, pocket regions are regions homeomorphic to a prod-
uct𝐻 × 𝐼, for some surface𝐻. Observe that pocket regions are bounded by one
component of 𝑆1 and one component of 𝑆2 intersecting in a single simple closed
curve. So, we have that𝐻 × {0} is the component of 𝑆1 and 𝜕(𝐻 × 𝐼) − (𝐻 × {0})
is the component of 𝑆2. Thus, pocket regions of 𝑆1 and 𝑆2 are bounded by ex-
actly one component coming from 𝑆1 and another component from 𝑆2, each of
which are connected. □

Lemma 9.14. Let 𝐷1 and 𝐷2 be two punctured partitioned chord diagrams with
maximum possible length chords 𝑐1 and 𝑐2, respectively. Let 𝐷 be the superim-
posed union of𝐷1 and𝐷2. Suppose that 𝑐1 and 𝑐2 have their base points in distinct
regions of 𝐷. Then, type I and II regions are not pocket regions.

Proof. We show that the complementary regions of 𝐷, along with the comple-
mentary regions of the 𝑆𝐶 ’s in the tubing description, are neither parallel nor
pocket regions. By Lemma 9.9, the arrangement of the base points corresponds
to all of the 4-punctured spheres being nested. Without loss of generality, we
may assume that the 𝑆𝐶 ’s of 𝑆1 are innermost, in the projection onto the pro-
jection sphere, and the 𝑆𝐶 ’s of 𝑆2 are outermost (see Figure 29). Thus, with this
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arrangement, all pocket regions are contained in a collared neighborhood of𝐾,
represented by 𝐷. We show that any of the type I and II regions of 𝐷 do not
correspond to pocket regions. 

Figure 29. An example of arranging the 𝑆𝐶 ’s of 𝑆1 and 𝑆2
drawn in red and blue, respectively.

There is exactly one type I region. This region corresponds to a cusp neigh-
borhood of the knot. This is not a product region, since the components of
𝑆1 and 𝑆2 are annuli and do not contribute to the portion of the region corre-
sponding to the knot. The regions of type II are also not pocket regions. This
is because these regions in 𝐷 correspond to solid tori in the knot complement
whose boundary torus has four connected components: two from 𝑆1 and two
from 𝑆2. Thus, by Lemma 9.13, this is not a pocket region. □

We now prove the remaining cases of regions of types III, IV and V.

Proposition 9.15. Let 𝐷1 and 𝐷2 be two punctured partitioned chord diagrams
corresponding to closed, connected, essential, orientable surfaces of genus greater
than 2. Let 𝑐1 and 𝑐2 denote the maximum possible length chords of 𝐷1 and 𝐷2,
respectively. Let𝐷 be the superimposed union of𝐷1 and𝐷2. If 𝑐1 and 𝑐2 have their
base points in distinct regions of 𝐷, then the corresponding surfaces 𝑆1 and 𝑆2 of
𝐷1 and 𝐷2, respectively, are non-isotopic.
Proof. Wemay assume that 𝑆1 and 𝑆2 have isotopic 4-punctured spheres 𝑆𝐶 ’s,
otherwise 𝑆1 and 𝑆2 are necessarily non-isotopic by Proposition 6.4. By Lemma
9.14, regions of types I and II are not pocket regions. Moreover, the 𝑆𝐶 ’s of 𝑆1
are innermost, in the projection onto the projection sphere, and the 𝑆𝐶 ’s of 𝑆2
are outermost. Note that regions of types III and IV contain segments of the
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boundary circle. Thus, these pocket regions also consist of regions between the
𝑆𝐶 ’s. However, since the 𝑆𝐶 ’s are nested, then these regions consists of regions
between the 𝑆𝐶 ’s and regions of types III, IV, and V of 𝐷.
Observe that the regions of types III andV have exactly onehorizontal bound-

ary component which is an annulus (see blue component in Figure 27). Any
horizontal boundary component of a region has non-positive Euler character-
istic since it is a union of tubes and 𝑆𝐶 ’s. Any region which has a component of
the boundary circle contains an 𝑆𝐶 and hence has negative Euler characteristic.
Thus, III and IV regions are not pocket regions since the boundary components
of the region have different Euler characteristics.
Lastly, the regions of type IV correspond to the region between an 𝑆𝐶 of 𝑆1

and an 𝑆𝐶 of 𝑆2. There is only one such region since all the 𝑆𝐶 ’s are nested with
the 𝑆𝐶 ’s of 𝑆1 innermost and the 𝑆𝐶 ’s of 𝑆2 outermost. By Lemma 9.12, there
exists a type IV region with 𝑛 ≥ 2. This implies that the region between an
𝑆𝐶 of 𝑆1 and an 𝑆𝐶 of 𝑆2 has disconnected components. Thus, by Lemma 9.13,
this is not a product region. Applying Proposition 9.3 implies that 𝑆1 and 𝑆2 are
non-isotopic, which completes the proof. □

Combining Propositions 9.7 and 9.15, we obtain the results of Theorem 1.1
for the case of closed, connected, essential surfaces of genus greater than 2. We
finally prove the case of genus 2 surfaces. We first prove the following lemma.

Lemma 9.16. Let 𝑆 be an orientable surface which is not the 2-sphere and 𝑃 =
𝑆 × 𝐼. Suppose that 𝐴 is an incompressible annulus in 𝑃 with one component of
𝜕𝐴 on 𝑃 × {0} and the other on 𝑃 × {1}, each disjoint from 𝜕𝑆 × {0} ∪ 𝜕𝑆 × {1},
respectively. Then, 𝑃 ⧵ 𝐴 is a pocket region.

Proof. By Lemma 3.4 of [17], 𝐴 is isotopic to a vertical annulus, constant on
𝑆×{0}∪𝜕𝑆×𝐼. Thus, since𝐴 is a union of fibers, then 𝑃⧵𝐴 is a union of pocket
regions. □

Lemma9.17. Let𝐷1 and𝐷2 be punctured partitioned chorddiagramswhich cor-
respond to closed, connected, orientable genus 2 surfaces 𝑆1 and 𝑆2, respectively.
Let 𝐷 be the superimposed union of 𝐷1 and 𝐷2. If 𝐷1 and 𝐷2 both contain chords
of maximum possible length, 𝑆1 and 𝑆2 are non-isotopic.

Proof. We may assume that 𝑆1 and 𝑆2 have isotopic 𝑆𝐶 ’s, otherwise 𝑆1 and
𝑆2 are necessarily non-isotopic by Proposition 6.4. Suppose we have the case
where 𝐷 contains two chords of maximum possible length, as shown in Fig-
ure 30. Then these two chords bound a type I region, which is not a pocket
region by Lemma 9.14. We consider the complementary region 𝑅 between the
𝑆𝐶 ’s of 𝑆1 and 𝑆2.
Take three arcs with the following properties: one base point of the arc lies

on a chord of 𝐷1 and the other base point of the arc lies on a chord of 𝐷2 where
the chords are disjoint and the arc is completely contained in a single region
of 𝐷 and parallel to a segment of the boundary circle (see Figure 32). These
three arcs represent incompressible annuli in 𝑅 since each 𝑆1 fiber over every
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Figure 30. One
possibility of 𝐷1
and 𝐷2, drawn in
red and blue, re-
spectively.

 

Figure 31. Last
possibility of 𝐷1
and 𝐷2, drawn in
red and blue, re-
spectively.

point of the arcs are meridians of 𝐾. Taking the complement of these three
annuli decomposes 𝑅 such that one component is bounded into two disjoint
annuli of 𝑆1 and two disjoint annuli of 𝑆2. Thus, Lemma 9.13 implies that this
component is not a pocket region. By Lemma 9.16, since this component is not
a pocket region, then 𝑅 is also not a pocket region. The last region to consider
is outside of the 𝑆𝐶 . However, this is a type III region and hence not a pocket,
by Proposition 9.15. 

Figure 32. The three annuli in 𝐷, represented by arcs drawn
in yellow.
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Lastly, suppose we have the case where 𝐷 contains two chords of maximum
possible length, as shown in Figure 31. Observe that each of the regions in this
case are of types I, II, III, IV, or IV. By Proposition 9.15, these regions are not
pocket regions and so 𝑆1 and 𝑆2 are not isotopic, completing the proof. □

Proposition 9.18. Every punctured partitioned chord diagrams, up to isotopy of
the chords, corresponding to a closed, connected, essential, orientable surface of
genus 2 are non-isotopic.

Proof. We may assume that 𝑆1 and 𝑆2 have isotopic 𝑆𝐶 ’s. We deal with the
remaining cases of𝐷 containing atmost one chord ofmaximumpossible length
since Lemma 9.17 proved the case for 𝐷1 and 𝐷2 each containing a maximum
possible length chord. We need only consider three cases, shown in Figure 33,
that these are the remaining possibilities of𝐷 for each of the six possibilities for
𝐷1 and 𝐷2.

   

Figure 33. The three possibilities of 𝐷 for 𝐷1 and 𝐷2 corre-
sponding to genus 2 surfaces.

Thefirst case, shown inFigure 33 (left), may be isotoped to the chord diagram
shown in Figure 34 below. This corresponds to an isotopy of 𝑆2 to have the
innermost 𝑆𝐶 and resolving any intersections. Wenowproceedwith these three
cases.
In all of these cases, no chords intersect. Thus, there is only one region to

consider: the region 𝑅 between the 𝑆𝐶 ’s of 𝑆1 and 𝑆2. Following Lemma 9.17,
take four arcs with the following properties: one base point of the arc lies on a
chord of 𝐷1 and the other base point of the arc lies on a chord of 𝐷2 where the
arc is completely contained in a single region of 𝐷 and parallel to a segment of
the boundary circle (see Figure 35). Observe that two of these cases, the chords
of 𝐷1 and 𝐷2 are disjoint. The complement of these four annuli decomposes 𝑅
such that one component which is bounded into two disjoint annuli of 𝑆1 and
two disjoint annuli of 𝑆2. As in the previous case, this implies that 𝑅 is not a
pocket region. Therefore, by Proposition 9.3, since none of these regions are
pocket regions, then 𝑆1 and 𝑆2 are non-isotopic.
In the final case, observe that a resulting region is of type I. By Proposi-

tion 9.15, this is not a pocket region. Thus, since no regions are pocket regions,
𝑆1 and 𝑆2 are non-isotopic, completing the proof. □
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Figure 34. Resulting 𝐷 after isotopy.
   

Figure 35. The three cases of 𝐷 along with the annuli drawn
in yellow.

We now prove Theorem 1.1.

Proof of Theorem 1.1. Weonly consider surfaceswhich are closed, connected,
essential and orientable. Propositions 7.2, 8.11, and 8.3 shows that there are at
most 12 genus 2 surfaces and 8𝜙(𝑔 − 1) genus greater than 2 surfaces, respec-
tively. By Propositions 9.18 and 9.15, these surfaces are non-isotopic, proving
the result. □

Remark. The results in Theorem 1.1 were made possible from experimental
data obtained for the (4, 3, 3, 3) pretzel knot via the computer program in [2].
The surface counts in the complement of this knot were given by the generating
function

𝐵𝑀 = −2𝑥4 + 8𝑥3 − 10𝑥2 + 12𝑥
𝑥4 − 4𝑥3 + 6𝑥2 − 4𝑥 + 1 .

The sequence, 𝑎𝑔, of the number of closed, connected, essential, orientable es-
sential surfaces of genus 𝑔 starting at 𝑔 = 2, coming from 𝐵𝑀 were as follows:

𝑎𝑔 = [12, 8, 16, 16, 32, 16, 48, 32, 48, 32, 80, 32, 96, 48, 64, 64, 128, 48, 144, 64, ...],
which helped motivate Theorem 1.1.
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