
New York Journal of Mathematics
New York J. Math. 29 (2023) 1117–1148.

Twistor fibers in hypersurfaces of
the flag threefold

Amedeo Altavilla, Edoardo Ballico
andMaria Chiara Brambilla

Abstract. We study surfaces of bidegree (1, 𝑑) contained in the flag three-
fold in relation to the twistor projection. In particular, we focus on the num-
ber and the arrangement of twistor fibers contained in such surfaces. First,
we prove that there is no irreducible surface of bidegree (1, 𝑑) containing 𝑑+2
twistor fibers in general position. On the other hand, given any collection of
(𝑑 + 1) twistor fibers satisfying a mild natural constraint, we prove the ex-
istence of a surface of bidegree (1, 𝑑) that contains them. We improve our
results for 𝑑 = 2 or 𝑑 = 3, by removing all the generality hypotheses.

Contents

1. Introduction 1117
2. Preliminaries and first results 1120
3. Surfaces of bidegree (1, 𝑑) 1129
4. Surfaces of bidegree (1, 2) and (1, 3) 1135
References 1147

1. Introduction
The study of the twistor geometry of the flag threefold is motivated by the

search for Riemannian 4-manifolds admitting several integrable complex struc-
tures compatible with the prescribedmetric (see e.g. [8, 12, 13]). In this context,
a recent trend is the investigation of specific cases in order to find explicit ex-
amples [1, 2, 5, 7, 9].
The flag threefold𝔽 can be seen as the twistor space of the complex projective

plane ℙ2 endowed with all its standard structures [6, 11],

𝜋 ∶ 𝔽→ ℙ2.
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The threefold𝔽 embeds inℙ2×ℙ2, hence it is possible to define a natural notion
of bidegree (𝑑1, 𝑑2) for curves and surfaces in 𝔽.
In [4] we have started a detailed analysis of the geometry of the algebraic

curves and surfaces contained in the flag threefold 𝔽, in relation to the twistor
projection. In particular, twistor fibers are smooth irreducible curves of bide-
gree (1,1). In [3] we gave a first bound on the maximum number of smooth
irreducible curves of bidegree (1, 1) contained in a smooth surface 𝑆 ⊂ 𝔽. Here,
by focussing our attention on a particular family of surfaces, we obtain stronger
and more significant results. In fact, we analyse the case of bidegree (1, 𝑑) sur-
faces in 𝔽 and study the number and the arrangements of twistor fibers con-
tained in them.
A surface 𝑆 of bidegree (1, 𝑑) can be realised as a 𝑑 ∶ 1 branched cover of ℙ2,

or alternatively as a blow up of ℙ2 in 𝑛 = 1 + 𝑑 + 𝑑2 points. If 𝑑 = 1 then 𝑆 is
a (toric) del Pezzo surface of degree 6, and this case was studied in [4]. In the
present paper we give results for arbitrary 𝑑, as well as focussing on 𝑑 = 2 and
𝑑 = 3. In general, if 𝑆 has bidegree (𝑑1, 𝑑2), the twistor projection𝜋 restricted to
𝑆 is a branched cover of degree 𝑑1+𝑑2 ofℙ2, so if (𝑑1, 𝑑2) = (1, 𝑑), it is natural to
compare our results with those obtained for degree 𝑑+1 surfaces in ℙ3 viewed
as the twistor space of the 4-sphere [11]. In the latter case, surfaces of degree 2
and 3 have been studied in some detail. In particular, surfaces of degree 2 inℙ3
might contain 0, 1 or 2 twistor fibers and if a surface of degree 2 contains more
than 2 twistor fibers, then it contains infinitely many of them [13]. This is com-
pletely analogous to what we found in [4] for surfaces of bidegree (1, 1) in 𝔽. On
the contrary, for 𝑑 = 2 we observe a difference between the two cases. Indeed,
for degree 3 surfaces in ℙ3, the maximum number of twistor fibers contained
in a smooth surface is 5 [5], while we prove here that this number reduces to 4
for smooth surfaces of bidegree (1, 2) in 𝔽.
In order to present our results, we need to introduce some definitions. The

flag threefold can be explicitly defined as

𝔽 ∶= {(𝑝,𝓁) ∈ ℙ2 × ℙ2 |𝑝𝓁 = 0},
where 𝑝 = [𝑝0 ∶ 𝑝1, 𝑝2],𝓁 = [𝓁0 ∶ 𝓁1 ∶ 𝓁2] ∈ ℙ2 and 𝑝𝓁 = 𝑝0𝓁0+𝑝1𝓁1+𝑝2𝓁2.
The notation (𝑝,𝓁), would recall a couple (point,line), and the condition𝑝𝓁 = 0
translates as 𝑝 belongs to 𝓁. In order to simplify the notation, we identify the
second factor ℙ2∨ with ℙ2.
We have three projection maps: 𝜋1, 𝜋2, 𝜋 ∶ 𝔽→ ℙ2, defined as

𝜋1(𝑝,𝓁) = 𝑝, 𝜋2(𝑝,𝓁) = 𝓁,

𝜋(𝑝,𝓁) = 𝑝 × 𝓁 = [𝑝1𝓁2 − 𝑝2𝓁1, 𝑝2𝓁0 − 𝑝0𝓁2, 𝑝0𝓁1 + 𝑝1𝓁0],
where the third one is the twistor map. The fibers of such three maps are
the object of our investigation. In particular, for any 𝑞 ∈ ℙ2, the three fibers
𝜋−11 (𝑞), 𝜋−12 (𝑞) and 𝜋−1(𝑞) are curves of bidegree (0, 1), (1, 0) and (1, 1), respec-
tively. While the fibers of 𝜋1 and 𝜋2 exhaust the family of bidegrees (1, 0) and
(0, 1) curves, twistor fibers are a (non-open Zariski dense) subset of those of
bidegree (1, 1). It was shown in [4, Section 3.1] that any bidegree (1, 1) curve
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has Hilbert polynomial equal to 2𝑡 + 1 with respect to the standard Segre em-
bedding of ℙ2 ×ℙ2; for this reason we will call them conics. There are only two
types of bidegree (1, 1) curves: the reducible ones (union of a bidegree (1, 0) and
of a bidegree (0, 1) curves intersecting at a point), and the smooth ones. All of
them can be described as

𝐿𝑞,𝑚 ∶= {(𝑝,𝓁) ∈ 𝔽 |𝑝𝑚 = 0, 𝑞𝓁 = 0},

where 𝑞,𝑚 ∈ ℙ2 and, the reducible and smooth cases are obtained for 𝑞𝑚 = 0
or 𝑞𝑚 ≠ 0, respectively.
In twistor theory, an important role is played by an antiholomorphic invo-

lution without fixed points, which identifies twistor fibers [6, 11]. In our case,
this map can be defined as 𝑗 ∶ 𝔽2 → 𝔽2, where

𝑗(𝑝,𝓁) = (𝓁, 𝑝).

A smooth conic 𝐿𝑞,𝑚 is a twistor fiber if and only if 𝑗(𝐿𝑞,𝑚) = 𝐿𝑞,𝑚 if and only
if 𝑚 = 𝑞. Moreover, it is natural to classify objects in 𝔽 up to projective au-
tomorphisms coming from the lift via 𝜋 of a unitary automorphism of ℙ2, i.e.
a holomorphic isometry with respect to the Fubini-Study metric. Such trans-
formations of 𝔽 are exactly those which commute with 𝑗 (see [4, Lemma 5.4]
for the flag manifold case). Thus, in particular, the number of twistor fibers
contained in a given surface and their arrangement are unitary invariants.
In order to state ourmain results we need somemore notation. We denote by

𝒞(1) = 𝒞 the set of smooth conics in 𝔽 and by 𝒞(𝑛), 𝑛 ≥ 2, the set of 𝑛 pairwise
disjoint smooth conics. In an analogous way we define 𝒯(1) = 𝒯 ⊂ 𝒞 as the
set of twistor fibers and 𝒯(𝑛) ⊂ 𝒞(𝑛), 𝑛 ≥ 2, as the set of 𝑛 pairwise disjoint
twistor fibers.
We will see in Remark 2.5 that for any couple of different smooth conics,

there is a unique bidegree (1, 0) curve 𝐿 = 𝜋−12 (𝑞2) and a unique bidegree (0, 1)
curve 𝑅 = 𝜋−11 (𝑞1) such that 𝐿 and 𝑅 intersect both smooth conics. In the
case of a couple of twistor fibers we also have 𝑅 = 𝑗(𝐿). We say that three or
more smooth conics are collinear if there is a (1, 0) curve 𝐿 which intersects all
of them. To be collinear, for three or more smooth conics, is a Zariski closed
condition.
To bemore precise, in Definition 2.7, we define the set 𝒞∗(𝑛)which parame-

trizes all 𝐴 ∈ 𝒞(𝑛) such that #(𝐿 ∩ 𝐴) ≤ 2 for all curves 𝐿 of bidegree (1, 0).
Clearly 𝒞∗(1) = 𝒞(1), and 𝒞∗(2) = 𝒞(2), while for 𝑛 ≥ 3 the open set 𝒞∗(𝑛)
is given by the set of disjoint smooth conics such that no three of them are
collinear. Moreover, we set 𝒯∗(𝑛) ∶= 𝒯(𝑛) ∩ 𝒞∗(𝑛). In Theorem 2.19 we
characterize the elements 𝐴 ∈ 𝒞∗(𝑑 + 1) to be those which do not obstruct the
linear system |ℐ𝐴(1, 𝑑)|.
We now summarize themain results of the paper. In Section 3, we study sur-

faces of bidegree (1, 𝑑) containing a certain number of smooth conics or twistor
fibers, and we prove the following two theorems.
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Theorem 1.1. For any 𝑑 ∈ ℕ and𝐴 ∈ 𝒯∗(𝑑+2), there is no irreducible surface
of bidegree (1, 𝑑) containing 𝐴.

Theorem 1.2. Fix integer 𝑑 ≥ 1 and 0 ≤ 𝑛 ≤ 𝑑 + 2. There is an irreducible
𝑆 ∈ |𝒪𝔽(1, 𝑑)| containing exactly 𝑛 twistor fibers.

We also show, in Theorem 3.4, that the first result is sharp. Indeed, for any
𝐴 ∈ 𝒯∗(𝑛), with 0 ≤ 𝑛 ≤ 𝑑 + 1, we are able to prove the existence of an
irreducible surface of bidegree (1, 𝑑) containing 𝐴 and no other twistor fibers.
This last issue requires some effort and the proof is divided in a detailed analysis
of several cases.
Theorem 1.2 is a consequence of Theorem 3.4 and Theorem 3.8. More pre-

cisely, in Theorem 3.4, for 0 ≤ 𝑛 ≤ 𝑑 + 1, we prove that, fixed any union 𝐴
of 0 ≤ 𝑛 ≤ 𝑑 + 1 non-three-by-three collinear twistor fibers, there is an irre-
ducible (1, 𝑑)-surface containing 𝐴 and no other twistor fibers. The extremal
case 𝑛 = 𝑑 + 2 is considered in Theorem 3.8, where we prove that, given 𝑑 + 2
general collinear twistor fibers, there is an irreducible surface of bidegree (1, 𝑑)
containing them.
In Section 4, we focus on surfaces of bidegree (1, 2) and (1, 3). The main

results are summarized by the following statements:

Theorem 1.3. Fix 0 ≤ 𝑛 ≤ 3. There is a smooth 𝑆 ∈ |𝒪𝔽(1, 2)| containing
exactly 𝑛 twistor fibers. Moreover, there exists a bidegree (1, 2) irreducible surface
containing exactly 4 twistor fibers.

Theorem 1.4. There is no irreducible 𝑆 ∈ |𝒪𝔽(1, 2)| containing at least 5 twistor
fibers.

Theorem 1.5. There is no irreducible 𝑆 ∈ |𝒪𝔽(1, 3)| containing at least 6 twistor
fibers.

The first existence result (Theorem 1.3) follows from Theorem 4.6, for 0 ≤
𝑛 ≤ 3, and Theorem 4.10, for the case 𝑛 = 4. In the extremal case 𝑛 = 4, we
will also show that the surfaces are singular along a line.
The two non-existence results (Theorems 1.4 and 1.5) are proved in the last

Section 4.2. An essential tool is Lemma 4.11 which states that if a surface of
bidegree (1, 𝑑) contains 𝑑+3 or more collinear twistor fibers, then this surface
is reducible and one of its components is a surface of bidegree (1, 1) containing
4 of the prescribed twistor fibers.
The proofs of our results are based on cohomological methods and on a care-

ful description of the linear systems of surfaces in the flag threefold.

2. Preliminaries and first results
In this section we collect some known results about algebraic curves and

surfaces in the flag threefold. Then we give first results on the space of bide-
gree (0, 𝑑) and (1, 𝑑)-surfaces containing a certain number of twisted fibers. In
particular, we introduce the concept of collinear smooth conics and give a topo-
logical characterization in terms of the cohomology of certain ideal sheaves.
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For most of the known material on 𝔽 we refer to [4] and to [3, Section 2].
However, in order to be as self-contained as possible, we will recall some basic
ideas and results here.
Consider themulti projective spaceℙ2×ℙ2; an element (𝑝,𝓁) ∈ ℙ2×ℙ2 will

be a pair written in the following form 𝑝 = [𝑝0 ∶ 𝑝1 ∶ 𝑝2], 𝓁 = [𝓁0 ∶ 𝓁1 ∶ 𝓁2]⊤,
so that 𝑝𝓁 = 𝑝0𝓁0 + 𝑝1𝓁1 + 𝑝2𝓁2. Even though it is classically embedded in
ℙ2 × ℙ2∨, we can see 𝔽 ∶= {(𝑝,𝓁) ∈ ℙ2 × ℙ2 |𝑝𝓁 = 0} as a hypersurface of
bidegree (1, 1) ofℙ2×ℙ2. We denote byΠ1 andΠ2 the two standard projections
ofℙ2×ℙ2 and use lower case for their restrictions, i.e. 𝜋𝑖 = Π𝑖|𝔽, 𝑖 = 1, 2. Thus,
the two natural projections define a natural notion of bidegree for algebraic
surfaces in 𝔽. Furthermore, for all (𝑎, 𝑏) ∈ ℤ2 we have the following natural
exact sequence

0→ 𝒪ℙ2×ℙ2(𝑎 − 1, 𝑏 − 1)→ 𝒪ℙ2×ℙ2(𝑎, 𝑏)→ 𝒪𝔽(𝑎, 𝑏)→ 0, (1)

and, for any (𝑎, 𝑏) ∈ ℕ2, we get (see e.g. [4, Lemma 2.3])

ℎ0(𝒪𝔽(𝑎, 𝑏)) =
(𝑎 + 1)(𝑏 + 1)(𝑎 + 𝑏 + 2)

2 and ℎ1(𝒪𝔽(𝑎, 𝑏)) = 0. (2)

It will be useful to recall from [4, Proposition 3.11] the multiplication rules
in the Chow ring:

𝒪𝔽(1, 0) ⋅𝒪𝔽(1, 0) ⋅𝒪𝔽(1, 0) = 0, 𝒪𝔽(1, 0) ⋅𝒪𝔽(0, 1) ⋅𝒪𝔽(1, 0) = 1,
𝒪𝔽(0, 1) ⋅𝒪𝔽(1, 0) ⋅𝒪𝔽(0, 1) = 1, 𝒪𝔽(0, 1) ⋅𝒪𝔽(0, 1) ⋅𝒪𝔽(0, 1) = 0.

(3)

2.1. Curves in 𝔽 and smooth conics. Let us recall the notion of bidegree for
the family of algebraic curves in 𝔽 already given in [4, 3].

Definition 2.1. Let 𝐶 ⊂ 𝔽 be an irreducible and reduced algebraic curve. We
define the bidegree of 𝐶 as the couple of positive integers (𝑑1, 𝑑2), where 𝑑𝑖 = 0
if 𝜋𝑖(𝐶) = {𝑥}, otherwise 𝑑𝑖 = deg(𝜋𝑖(𝐶)) deg(𝜋𝑖|𝐶).
If a curve 𝐷 has irreducible components 𝐶1,… , 𝐶𝑠 then the bidegree of 𝐷 is

the sum of the bidegrees of 𝐶1,… , 𝐶𝑠.

Recall from [3, Remark 2.4] that if a curve 𝐶 is such that 𝐶 ⋅ 𝒪𝔽(1, 0) = 𝑑1
and 𝐶 ⋅𝒪𝔽(0, 1) = 𝑑2, then it has bidegree (𝑑1, 𝑑2).
From themultiplication table (3) we can easily derive the following formula.

Lemma2.2. For any choice of non-negative integers𝑎, 𝑏, 𝑐, 𝑑, the one-dimensional
cycle 𝒪𝔽(𝑎, 𝑏) ⋅𝒪𝔽(𝑐, 𝑑) has bidegree

(𝑎𝑑 + 𝑏(𝑐 + 𝑑), 𝑎(𝑐 + 𝑑) + 𝑏𝑐).

Proof. We have𝒪𝔽(𝑎, 𝑏) ⋅𝒪𝔽(𝑐, 𝑑) = 𝑎𝑐𝒪𝔽(1, 0) ⋅𝒪𝔽(1, 0)+ (𝑎𝑑+ 𝑏𝑐)𝒪𝔽(1, 0) ⋅
𝒪𝔽(0, 1) + 𝑏𝑑𝒪𝔽(0, 1) ⋅ 𝒪𝔽(0, 1). So the thesis is easily obtained by recalling
that 𝒪𝔽(1, 0) ⋅ 𝒪𝔽(1, 0) (resp. 𝒪𝔽(1, 0) ⋅ 𝒪𝔽(0, 1), resp. 𝒪𝔽(0, 1) ⋅ 𝒪𝔽(0, 1)) is a
one-dimensional cycle of bidegree (0, 1) (resp. bidegree (1, 1), resp. bidegree
(1, 0)). □
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Figure 1. Any two smooth conics are connected by a curve of
bidegree (1, 0) and by a curve of (0, 1).

Remark 2.3. Note that the fibers of 𝜋1 are algebraic curves of bidegree (0, 1),
while those of 𝜋2 have bidegree (1, 0) (see, e.g. [4, Section 3]). Moreover, all
bidegree (0, 1) curves can be seen as complete intersections of two different
(1, 0)-surfaces (and analogously for bidegree (1, 0) curves).

Among all the algebraic curves in 𝔽, we focus our attention on the family of
bidegree (1, 1) curves. These are described geometrically in [4, Section 3.1] and
are parameterized by (𝑞,𝑚) ∈ ℙ2 × ℙ2. In fact, as anticipated in the introduc-
tion, each of these curves can be written as

𝐿𝑞,𝑚 ∶= {(𝑝,𝓁) ∈ 𝔽 |𝑝 ∈ 𝑚, 𝓁 ∋ 𝑞} = {(𝑝,𝓁) ∈ 𝔽 | 𝑞𝓁 = 0, 𝑝𝑚 = 0}.

There are two types of these curves: the smooth and irreducible ones (when
𝑞𝑚 ≠ 0) and the union of a (1, 0) and of a (0, 1) intersecting at one point (when
𝑞𝑚 = 0, i.e. (𝑞,𝑚) ∈ 𝔽). In any case, any curve of bidegree (1, 1) can be seen
as the complete intersection of a surface of bidegree (1, 0) with one of bidegree
(0, 1). As already mentioned in the introduction, the 4-dimensional family of
smooth irreducible (1, 1) curves is denoted by 𝒞. The elements of 𝒞 are called
smooth conics.

Remark 2.4. From the definition of smooth conics, it is clear that, for any 𝐶 ∈
𝒞 we have that 𝜋𝑖(𝐶) is a line in ℙ2.

Remark 2.5. Note that for any two different elements 𝐿𝑞,𝑚, 𝐿𝑞′,𝑚′ ∈ 𝒞 there
exists a unique curve 𝐿 of bidegree (1, 0) and a unique curve 𝑅 of bidegree (0, 1)
such that 𝐿 and 𝑅 meets both 𝐿𝑞,𝑚 and 𝐿𝑞′,𝑚′ at one point (see Figure 1). From
the analysis made in [4, Section 3.1] it is easy to see that 𝐿 = 𝜋−12 (𝑞 × 𝑞′) and
𝑅 = 𝜋−11 (𝑚 × 𝑚′), where × stands for the standard (formal) cross product.
Equivalently, 𝐿 = 𝜋−12 (Sing(𝜋2(𝐴)) and 𝑅 = 𝜋−11 (Sing(𝜋1(𝐴)). We say that
three or more disjoint smooth conics are collinear if they intersect the same
(1, 0) curve 𝐿.
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The fibers of the twistor projection 𝜋 ∶ 𝔽 → ℙ2 (see [4, Section 5]) form a
subset𝒯 of the family of conics𝒞. The twistor fibers are also characterized to be
the irreducible elements in 𝒞 that are fixed by the anti-holomorphic involution
𝑗 ∶ 𝔽→ 𝔽 defined as

𝑗(𝑝,𝓁) = (𝓁, 𝑝).
Being the set of fixed points of 𝑗, a curve 𝐿𝑞,𝑚 belongs to𝒯 if and only if𝑚 = 𝑞.
Furthermore, the set 𝒯 is Zariski dense in 𝒞 (see, e.g. [3, Section 4]).

Remark 2.6. If 𝐿 is the bidegree curve (1, 0) connecting two different twistor
fibers (see Remark 2.5), then the curve of bidegree (0, 1) connecting them is
exactly 𝑅 = 𝑗(𝐿). Thus, if three twistor fibers are collinear, then they intersect
the same (1, 0) curve and the same (0, 1) curve.

Recall from the introduction that, for any positive integer 𝑛, 𝒞(𝑛) denotes
the 4𝑛-dimensional set of 𝑛 pairwise disjoint elements of 𝒞 and 𝒯(𝑛) denotes
the set of 𝑛 pairwise disjoint elements of𝒯. As before,𝒯(𝑛) is Zariski dense in
𝒞(𝑛) (see again [3, Section 4]).
We now introduce the following crucial definition.

Definition 2.7. For any 𝑛 ≥ 1 let 𝒞∗(𝑛) be the set of all 𝐴 ∈ 𝒞(𝑛) such that for
any curve 𝐿 of bidegree (1, 0), it holds #(𝐿 ∩ 𝐷) ≤ 2.
Set 𝒯∗(𝑛) ∶= 𝒯(𝑛) ∩ 𝒞∗(𝑛).

Obviously we have 𝒞∗(𝑛) = 𝒞(𝑛) and 𝒯∗(𝑛) = 𝒯(𝑛), for 𝑛 = 1, 2. For 𝑛 ≥ 3
the set 𝒞(𝑛)⧵𝒞∗(𝑛) parameterizes unions of 𝑛 disjoint smooth conics such that
at least three of them are collinear, hence 𝒞∗(𝑛) is open and Zariski dense in
𝒞(𝑛), as well as 𝒯∗(𝑛) in 𝒯(𝑛). Therefore for any 𝑛 ≥ 1, all of the following
inclusions are Zariski dense: 𝒯∗(𝑛) ⊂ 𝒯(𝑛) ⊂ 𝒞(𝑛), 𝒯∗(𝑛) ⊂ 𝒞∗(𝑛) ⊂ 𝒞(𝑛).

2.2. Surfaces of bidegree (𝟏,𝟎) and (𝟎, 𝟏). Now we turn our attention back
to surfaces. We recall from [4, Section 3.2] and [3, Section 2] that (1, 0) and
(0, 1)-surfaces are Hirzebruch surfaces of the first type. In particular, a surface
𝑋 of bidegree (1, 0) can be seen as the lift, via𝜋1, of a line (and analogously for a
surface 𝑌 of bidegree (0, 1)). Using this description, it is easy to see that each of
these surfaces represents the blow up ofℙ2 at one point. Let𝐹1 be aHirzebruch
surface of type 1; we now describe the relation between the generators of the
Picard group of 𝐹1 and the family of curves in 𝔽 described earlier. We recall that
Pic(𝐹1) = ℤℎ ⊕ℤ𝑓, where

ℎ2 = −1, 𝑓2 = 0, ℎ𝑓 = 1.

Notation 2.8. For the following analysis and the rest of the paper,𝑋will denote
a surface of bidegree (1, 0), while 𝑌 a surface of bidegree (0, 1).

If we identify a surface 𝑋 with 𝐹1, we get that 𝒪𝑋(1, 0) ≃ 𝒪𝐹1(𝑓), which
again corresponds to the set of curves in 𝔽 of bidegree (0,1) contained in 𝑋. On
the other hand, we have that 𝒪𝑋(0, 1) ≃ 𝒪𝐹1(ℎ + 𝑓), which corresponds to the
elements of 𝒞.
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Thus, for any 𝑎, 𝑏 ∈ ℤ and for any 𝛼, 𝛽 ∈ ℤ, we obtain the following two
relations

𝒪𝑋(𝑎, 𝑏) ≅ 𝒪𝐹1(𝑏ℎ + (𝑎 + 𝑏)𝑓), and 𝒪𝐹1(𝛼ℎ + 𝛽𝑓) ≅ 𝒪𝑋(𝛽 − 𝛼, 𝛼). (4)

For a surface 𝑌 of bidegree (0, 1) we can derive similar formulæ:

𝒪𝑌(𝑎, 𝑏) ≅ 𝒪𝐹1(𝑎ℎ + (𝑎 + 𝑏)𝑓), and 𝒪𝐹1(𝛼ℎ + 𝛽𝑓) ≅ 𝒪𝑌(𝛼, 𝛽 − 𝛼), (5)

for any 𝑎, 𝑏 ∈ ℤ and for any 𝛼, 𝛽 ∈ ℤ.

Remark 2.9. Let𝑋 be a surface of bidegree (1, 0). Then𝑋 contains no element
of𝒞(2). In fact, every element of𝒞 in𝑋 corresponds to an element of𝒪𝐹1(ℎ+𝑓)
and any two elements of type ℎ + 𝑓 meet. The same holds for surfaces 𝑌 of
bidegree (0, 1). In particular, for every surface of bidegree (1, 0) or (0, 1) there
is exactly one twistor fiber contained in it.

We now recall from [3, Lemma 2.5] that, for any 𝑎, 𝑏 ≥ 0, by using the exact
sequence

0→ 𝒪𝔽(𝑎 − 1, 𝑏)→ 𝒪𝔽(𝑎, 𝑏)→ 𝒪𝑋(𝑎, 𝑏)→ 0,
and its analog for 𝑌, we have that

ℎ0(𝒪𝑋(𝑎, 𝑏)) = 𝑎(𝑏 + 1) +
(𝑏 + 2

2

)
, ℎ0(𝒪𝑌(𝑎, 𝑏)) = 𝑏(𝑎 + 1) +

(𝑎 + 2
2

)
,

while
ℎ1(𝒪𝑋(𝑎, 𝑏)) = ℎ1(𝒪𝑌(𝑎, 𝑏)) = 0.

Furthermore, if 𝑎 > 0, 𝑏 > 0, the line bundles 𝒪𝑋(𝑎, 𝑏) and 𝒪𝑌(𝑎, 𝑏) are very
ample.

2.3. Surfaces of bidegree (𝟎, 𝒅) and (𝟏, 𝒅). We now move on to studying
higher bidegree surfaces. We start with some considerations about bidegree
(0, 𝑑) surfaces.

Remark 2.10. As described in [4, Section 3.3], every irreducible and reduced
surface 𝑆 of bidegree (0, 𝑑) is equal to 𝜋−11 (𝐶) for some irreducible and reduced
curve 𝐶 of degree 𝑑. Therefore, for 𝑑 ≥ 2, no irreducible and reduced 𝑆 ∈
|𝒪𝔽(0, 𝑑)| contains a smooth conic. Otherwise, thanks to Remark 2.4, 𝜋𝑖(𝑆)
would contain a line, but 𝜋1(𝑆) is an irreducible and reduced curve of degree 𝑑.

For 𝑛 ≥ 2 we now compute how many bidegree (0, 𝑑)-surfaces contain a
fixed element of 𝒞(𝑛). First we set up the following notation.

Notation 2.11. Wewill denote by ℐ𝑈,𝑉 the ideal sheaf of a scheme𝑈 contained
in a projective variety 𝑉; whenever 𝑉 = 𝔽 we will omit it. In particular, if
𝐴 ∈ 𝒞(𝑛) we will write ℐ𝐴 ∶= ℐ𝐴,𝔽.

Lemma 2.12. Fix 𝑑 ≥ 0, 𝑛 ≥ 1, and 𝐴 ∈ 𝒞(𝑛). We have

ℎ0(ℐ𝐴(0, 𝑑)) =
(𝑑 − 𝑛 + 2)(𝑑 − 𝑛 + 1)

2
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and

ℎ1(ℐ𝐴(0, 𝑑)) =
⎧

⎨
⎩

𝑛(𝑛−1)
2

if 𝑛 ≤ 𝑑 + 1

𝑛(𝑑 + 1) − (𝑑+2)(𝑑+1)
2

if 𝑛 ≥ 𝑑 + 1.

Proof. Recall that 𝒪𝔽(0, 𝑑) = 𝜋∗1(𝒪ℙ2(𝑑)), and ℐ𝐴(0, 𝑑) = 𝜋∗1(ℐ𝑇,ℙ2(𝑑)) where
𝑇 = 𝜋1(𝐴) is a union of 𝑛 distinct lines in ℙ2. In general, we have that:

ℎ0(𝒪𝔽(0, 𝑑)) =
(𝑑 + 2

2

)
, ℎ0(ℐ𝐴(0, 𝑑)) =

(𝑑 + 2 − 𝑛
2

)
,

ℎ0(𝒪𝐴(0, 𝑑)) = 𝑛(𝑑 + 1),
hence, using the exact sequence

0→ ℐ𝐴(0, 𝑑)→ 𝒪𝔽(0, 𝑑)→ 𝒪𝐴(0, 𝑑)→ 0,

since ℎ1(𝒪𝔽(0, 𝑑)) = 0 and
(𝑑+2−𝑛

2

)
= 0 if 𝑛 ≥ 𝑑 + 1, we get the result. □

Remark 2.13. As a direct consequence of the previous lemma, we can state
that, for any 𝐶 ∈ 𝒞, there is only one surface 𝑌 in |ℐ𝐶(0, 1)| and, analogously,
only one surface 𝑋 in |ℐ𝐶(1, 0)|.

Remark 2.14. If 𝐴 ∈ 𝒞(𝑛), we consider the following exact sequence:
0→ ℐ𝐴(𝑎, 𝑏)→ 𝒪𝔽(𝑎, 𝑏)→ 𝒪𝐴(𝑎, 𝑏)→ 0.

Since the conics in 𝐴 are all disjoint, for each (𝑎, 𝑏) ∈ ℕ2 we have that
ℎ0(𝒪𝐴(𝑎, 𝑏)) = 𝑛(𝑎 + 𝑏 + 1), (6)

(see, e.g. [3, Sequence (7) and proof of Theorem 4.4]). Recall from Formula (2)
that

ℎ0(𝒪𝔽(𝑎, 𝑏)) =
(𝑎 + 1)(𝑏 + 1)(𝑎 + 𝑏 + 2)

2 .

Therefore, as ℎ1(𝒪𝐴(𝑎, 𝑏)) = ℎ1(𝒪𝔽(𝑎, 𝑏)) = 0, for any 𝐴 ∈ 𝒞(𝑛) and 𝑑 ≥ 0, we
have

𝜒(ℐ𝐴(1, 𝑑)) = ℎ0(ℐ𝐴(1, 𝑑)) − ℎ1(ℐ𝐴(1, 𝑑)) = (𝑑 + 1)(𝑑 + 3) − 𝑛(𝑑 + 2). (7)
Hence, if 𝑛 = 𝑑 + 2, we have ℎ0(𝒪𝐴(1, 𝑑)) = (𝑑 + 2)2 and so

ℎ0(𝒪𝔽(1, 𝑑)) = (𝑑 + 1)(𝑑 + 3) = (𝑑 + 2)2 − 1 = ℎ0(𝒪𝐴(1, 𝑑)) − 1 (8)
and, if 𝑛 = 𝑑 + 1:

ℎ0(𝒪𝔽(1, 𝑑)) = ℎ0(𝒪𝐴(1, 𝑑)) + 𝑑 + 1.

In what follows, we are going to implicitly use the following simple observa-
tion.

Remark 2.15. Since the elements of𝒯(1) are the fibers of the twistormap, each
𝑝 ∈ 𝔽 is contained in a unique element, 𝐶, of 𝒯. Since 𝑗(𝐶) = 𝐶, 𝑗(𝑝) ∈ 𝐶.
Analogously, note that 𝑝 is contained in a unique curve of bidegree (1, 0) and a
unique curve of bidegree (0, 1), 𝜋−12 (𝜋2(𝑝)) and 𝜋−11 (𝜋1(𝑝)).

The following remark will be used several times in the next pages.
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Remark 2.16. Fix a positive integer 𝑑 and an irreducible 𝑆 ∈ |𝒪𝔽(1, 𝑑)|. Since
𝜋1|𝑆 is birational onto its image, 𝑆 is rational. By the Bézout Theorem, for any
𝑝 ∈ ℙ2, the bidegree (1, 0) curve 𝜋−12 (𝑝) is either contained in 𝑆 or intersects 𝑆
in a single point (scheme-theoretically).

We conclude this subsection with a technical result that will be used in the
next pages. In [3, Proposition 4.1] we proved that there exists at most one sur-
face of bidegree (𝑎, 𝑏) containing a number equal to or greater than 𝑎2+𝑎𝑏+𝑏2
of smooth conics. We will now generalize this result to a more general context.

Proposition 2.17. Fix (𝑎, 𝑏, 𝑐, 𝑑) ∈ ℕ4 so that (𝑎, 𝑏) ≠ (0, 0), 𝑐 > 0, 𝑑 > 0. Take
𝐴 ∈ 𝒞(𝑛). Assume the existence of an irreducible and reduced 𝑆 ∈ |𝒪𝔽(𝑎, 𝑏)|
containing 𝐴 and assume one of the following conditions:

(1) 𝑎𝑑 + 𝑏(𝑐 + 𝑑) < 𝑛;
(2) 𝑎(𝑐 + 𝑑) + 𝑏𝑐 < 𝑛;
(3) 𝑎𝑑 + 𝑏(𝑐 + 𝑑) = 𝑎(𝑐 + 𝑑) + 𝑏𝑐 = 𝑛.

Then every element of |ℐ𝐴(𝑐, 𝑑)| contains 𝑆 and in particular 𝑐 ≥ 𝑎 and 𝑑 ≥ 𝑏.

Proof. Assume by contradiction the existence of 𝑆′ ∈ |ℐ𝐴(𝑐, 𝑑)| such that 𝑆′ ⊉
𝑆. We have

𝒪𝔽(𝑎, 𝑏) ⋅𝒪𝔽(𝑐, 𝑑) =𝑎𝑐𝒪𝔽(1, 0) ⋅𝒪𝔽(1, 0) + (𝑎𝑑 + 𝑏𝑐)𝒪𝔽(1, 0) ⋅𝒪𝔽(0, 1)
+ 𝑏𝑑𝒪𝔽(0, 1) ⋅𝒪𝔽(0, 1).

Since 𝑆′ ⊉ 𝑆, the intersection 𝑆∩𝑆′ is a curve of bidegree (𝑎𝑑+𝑏(𝑐+𝑑), 𝑎(𝑐+
𝑑) + 𝑏𝑐) (see Lemma 2.2). Since 𝑐 > 0 and 𝑑 > 0, then 𝒪𝔽(𝑐, 𝑑) is ample.
Moreover, since 𝑆 is irreducible, 𝐴 has bidegree (𝑛, 𝑛), and 𝐴 is not connected,
then the intersection contains some more components in addition to 𝐴. So
either 𝑎𝑑 + 𝑏𝑐 + 𝑏𝑑 > 𝑛 and 𝑎𝑐 + 𝑎𝑑 + 𝑏𝑐 ≥ 𝑛 or 𝑎𝑑 + 𝑏𝑐 + 𝑏𝑑 ≥ 𝑛 and
𝑎𝑐 + 𝑎𝑑 + 𝑏𝑐 > 𝑛. □

2.4. Non-collinear smooth conics. We now want to characterize the conics
in 𝒞∗(𝑛) in terms of cohomology. We start by showing that the vanishing of
certain cohomology groups implies that an element 𝐴 ∈ 𝒞(𝑛) lies in 𝒞∗(𝑛).

Lemma 2.18. Fix 𝑑 ≥ 0, 3 ≤ 𝑛 ≤ 𝑑 + 1 and 𝐴 ∈ 𝒞(𝑛). If ℎ1(ℐ𝐴(1, 𝑑)) = 0 then
𝐴 ∈ 𝒞∗(𝑛).

Proof. Suppose, by contradiction, that there exists a curve 𝐿 of bidegree (1, 0)
such that #(𝐿 ∩ 𝐴) ≥ 3 and consider the exact sequence that defines ℐ𝐴:

0→ ℐ𝐴(1, 𝑑)→ 𝒪𝔽(1, 𝑑)→ 𝒪𝐴(1, 𝑑)→ 0. (9)

We will prove that the restriction map𝐻0(𝒪𝔽(1, 𝑑))→ 𝐻0(𝒪𝐴(1, 𝑑)) is not sur-
jective, which implies that ℎ1(ℐ𝐴(1, 𝑑)) > 0. Let us assume that it is surjective.



TWISTOR FIBERS IN HYPERSURFACES OF THE FLAG THREEFOLD 1127

Then consider the following diagram
𝒪𝔽(1, 𝑑)

𝒪𝐿(1, 𝑑)

𝒪𝐴(1, 𝑑)

𝒪𝐿∩𝐴(1, 𝑑)

......................................................................
.....
.......
.....

.......................................................................................... ............

.............................................................................. ............

......................................................................
.....
.......
.....

.
Since the vertical maps are surjective, the induced map

𝐻0(𝒪𝔽(1, 𝑑))→ 𝐻0(𝒪𝐴∩𝐿(1, 𝑑))
is also surjective and thus of rank at least 3 (since 𝐿∩𝐴 has cardinality at least 3
and the irreducible components of𝐴 are pairwise disjoint). On the other hand,
the restriction map 𝐻0(𝒪𝔽(1, 𝑑)) → 𝐻0(𝒪𝐿(1, 𝑑)) has rank 2, and this leads to
a contradiction. □

Before completing the characterization of conics in 𝒞∗(𝑑 + 1), we will intro-
duce a general construction that will be used in several subsequent discussions.
Let 𝐴 ∈ 𝒞(𝑛) and let 𝐶 be any connected component of 𝐴. Set 𝐵 ∶= 𝐴 ⧵ 𝐶.
Then, for any 𝑎, 𝑏 ≥ 0, if 𝑌 ∈ |𝒪𝐶(0, 1)|, we have the following residual exact
sequence

0→ ℐ𝑅𝑒𝑠𝑌(𝐴)(𝑎, 𝑏 − 1)→ ℐ𝐴(𝑎, 𝑏)→ ℐ𝐴∩𝑌,𝑌(𝑎, 𝑏)→ 0,

but since 𝑅𝑒𝑠𝑌(𝐴) = 𝐵 and 𝐴 ∩ 𝑌 = (𝐵 ∩ 𝑌) ∪ 𝐶, we have
0→ ℐ𝐵(𝑎, 𝑏 − 1)→ ℐ𝐴(𝑎, 𝑏)→ ℐ(𝐵∩𝑌)∪𝐶,𝑌(𝑎, 𝑏)→ 0. (10)

Obviously, an analogous sequence can be written for 𝑋 ∈ |𝒪𝐶(1, 0)|.

Theorem 2.19. Fix 𝑑 ≥ 0 and𝐴 ∈ 𝒞(𝑑+1). We have𝐴 ∈ 𝒞∗(𝑑+1) if and only
if ℎ1(ℐ𝐴(1, 𝑑)) = 0.

Proof. Thanks to the previous lemmawe only need to prove that𝐴 ∈ 𝒞∗(𝑑+1)
satisfies ℎ1(ℐ𝐴(1, 𝑑)) = 0. We use induction on 𝑑 ≥ 0. The case 𝑑 = 0 is true
by Lemma 2.12. So we can assume 𝑑 > 0 and use induction on 𝑑. Let 𝐶 be a
connected component of 𝐴, set 𝐵 ∶= 𝐴 ⧵ 𝐶 and call 𝑌 the unique element of
|ℐ𝐶(0, 1)|. Consider the residual exact sequence (10), with 𝑎 = 1 and 𝑏 = 𝑑.
Since 𝐴 ∈ 𝒞(𝑑 + 1), 𝐶 ∩ 𝐵 = ∅ and 𝐵 ∩𝑌 is a set of 𝑑 different points, up to the
identification of 𝐷 with 𝐹1 we have

ℐ(𝐵∩𝑌)∪𝐶,𝑌(1, 𝑑) ≅ ℐ(𝐵∩𝑌)∪𝐶,𝐹1(1, 𝑑)(ℎ + (𝑑 + 1)𝑓) ≅ ℐ𝐵∩𝑌,𝐹1(𝑑𝑓) .

Using (10) and induction, we are left to prove that ℎ1(ℐ𝐵∩𝑌,𝐹1(𝑑𝑓)) = 0 if and
only if 𝐴 ∈ 𝒞∗(𝑑 + 1).
Consider now the following exact sequence

0→ ℐ𝐵∩𝑌,𝐹1(𝑑𝑓)→ 𝒪𝐹1(𝑑𝑓)→ 𝒪𝐵∩𝑌(𝑑𝑓)→ 0. (11)

Since ℎ0(𝒪𝐹1(𝑑𝑓)) = 𝑑 + 1 and ℎ0(𝒪𝐵∩𝑌(𝑑𝑓)) = 𝑑, we have the following
inequality ℎ1(ℐ𝐵∩𝑌,𝐹1(𝑑𝑓)) > 0 if and only if ℎ0(ℐ𝐵∩𝑌,𝐹1(𝑑𝑓)) ≥ 2. The last
inequality means that there are at least two different sets of 𝑑 fibers containing
the set of 𝑑 points 𝐵 ∩ 𝑌. This is equivalent to the fact that there exists a fiber
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𝐿 ∈ |𝑓| such that #(𝐵 ∩ 𝐿) ≥ 2. Since 𝐿 is a curve of bidegree (1, 0) in 𝔽, then
𝐿 ⋅ 𝑌 = 0 in the intersection ring of 𝔽, so 𝐿 ⊂ 𝑌, and we get 𝐿 ∩ 𝐶 ≠ ∅. Thus
#(𝐿 ∩ 𝐴) ≥ 3, which means that 𝐴 ∉ 𝒞∗(𝑑 + 1). □

Corollary 2.20. Fix 𝑑 ≥ 0, 0 ≤ 𝑛 ≤ 𝑑+1 and𝐴 ∈ 𝒞∗(𝑛). Thenℎ1(ℐ𝐴(1, 𝑑)) = 0.
In particular, for 𝑛 = 0, 1, 2 and for any 𝐴 ∈ 𝒞(𝑛), we have

ℎ1(ℐ𝐴(1, 1)) = 0 and ℎ0(ℐ𝐴(1, 1)) = 8 − 3𝑛.

Proof. By using [3, Remark 4.3], we easily get the first part of the statement.
The second part follows from Formula (7). □

We note that since 𝒯(𝑛) is Zariski dense in 𝒞(𝑛), then the characterization
given by Theorem 2.19 also holds for the set 𝒯∗(𝑛).

Lemma 2.21. Fix an integer 𝑑 ≥ 0 and 𝐴 ∈ 𝒞∗(𝑑 + 2). Then ℎ1(ℐ𝐴(1, 𝑑)) ≤ 1.

Proof. The lemma is true for 𝑑 = 0, because ℎ0(ℐ𝐴(1, 0)) = 0 (see Remark 2.9).
We assume 𝑑 > 0 and use induction on 𝑑. Let 𝐶 be a connected component of
𝐴, set 𝐵 ∶= 𝐴 ⧵ 𝐶 and call 𝑌 the unique element of |ℐ𝐶(0, 1)|. Consider the
residual exact sequence (10), with 𝑎 = 1 and 𝑏 = 𝑑. Since 𝐴 ∈ 𝒞(𝑑 + 2),
𝐶 ∩𝐵 = ∅ and 𝐵∩𝑌 is formed by 𝑑+1 different points, up to the identification
of 𝐷 with 𝐹1 we have

ℐ(𝐵∩𝑌)∪𝐶,𝑌(1, 𝑑) ≅ ℐ(𝐵∩𝑌)∪𝐶,𝐹1(1, 𝑑)(ℎ + (𝑑 + 1)𝑓) ≅ ℐ𝐵∩𝑌,𝐹1(𝑑𝑓) .

Using (10) and induction, we are left to prove that ℎ1(ℐ𝐵∩𝑌,𝐹1(𝑑𝑓)) = 0 if
𝐴 ∈ 𝒞∗(𝑑 + 2).
Consider now the following exact sequence

0→ ℐ𝐵∩𝑌,𝐹1(𝑑𝑓)→ 𝒪𝐹1(𝑑𝑓)→ 𝒪𝐵∩𝑌(𝑑𝑓)→ 0 . (12)

Since
ℎ0(𝒪𝐹1(𝑑𝑓)) = 𝑑 + 1, ℎ0(𝒪𝐵∩𝑌(𝑑𝑓)) = 𝑑 + 1,

we have that ℎ1(ℐ𝐵∩𝑌,𝐹1) > 0 if and only if ℎ0(ℐ𝐵∩𝑌,𝐹1(𝑑𝑓)) > 0. This is equiv-
alent to the fact that there exists a fiber 𝐿 ∈ |𝑓| such that #(𝐵 ∩ 𝐿) ≥ 2. Since
𝐿 is a curve of bidegree (1, 0) in 𝔽, then 𝐿 ⋅ 𝑌 = 0 in the intersection ring of 𝔽,
therefore 𝐿 ⊂ 𝑌, and so we get 𝐿 ∩ 𝐶 ≠ ∅. Thus #(𝐿 ∩ 𝐴) ≥ 3, which means
that 𝐴 ∉ 𝒞∗(𝑑 + 2). □

As said in Remark 2.5, for any element𝐴 ∈ 𝒞(2) there exists a unique curve 𝐿
of bidegree (1, 0) and a unique curve𝑅 of bidegree (0, 1) such that both intersect
the elements of 𝐴 at a point. As described in the following result, it turns out
that 𝐴 ∪ 𝐿 ∪ 𝑅 is the base locus of |ℐ𝐴(1, 1)|.

Proposition 2.22. For any 𝐴 ∈ 𝒞(2), we have that
(1) the general element in |ℐ𝐴(1, 1)| is irreducible;
(2) the base locus ℬ of |ℐ𝐴(1, 1)| is 𝐴 ∪ 𝐿 ∪ 𝑅, where 𝐿 and 𝑅 are the curves

described in Remark 2.5.
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Proof. Since 𝐴 ∈ 𝒞(2), we have ℎ1(ℐ𝐴(1, 1)) = 0 and ℎ0(ℐ𝐴(1, 1)) = 2 by
Corollary 2.20 . Let 𝐶1 and 𝐶2 be the connected components of 𝐴. Denote by
𝑋𝑖 the only element of |𝒪𝔽(1, 0)| containing 𝐶𝑖 and by 𝑌𝑖 the only element of
|𝒪𝔽(0, 1)| containing𝐶𝑖. The surfaces𝑋1∪𝑌2 and𝑋2∪𝑌1 are the only reducible
elements of |ℐ𝐴(1, 1)| and hence, the general element in |ℐ𝐴(1, 1)| is irreducible
and (1) is proved.
To prove (2)we analyze the base locusℬ of |ℐ𝐴(1, 1)|. If 𝑆, 𝑆′ ∈ |ℐ𝐴(1, 1)| are

irreducible and 𝑆 ≠ 𝑆′, then the one-dimensional cycle 𝑆∩𝑆′ has bidegree (3, 3)
and it contains𝐴, which has bidegree (2, 2). Let𝑅 ∶= 𝑋1∩𝑋2 and 𝐿 ∶= 𝑌1∩𝑌2,
where 𝑋𝑖 and 𝑌𝑖 are the surfaces defined in the first part of this proof. The
curves 𝐿 and 𝑅 are exactly those given in Remark 2.5. In particular, #(𝐿∩𝐴) =
#(𝑅∩𝐴) = 2 and hence, by Bézout and Remark 2.16, 𝐿∪𝑅 ⊂ ℬ. Furthermore,
recall that the reducible surfaces, 𝑋1 ∪ 𝑌2 and 𝑋2 ∪ 𝑌1 belong to |ℐ𝐴(1, 1)| and
their intersection (𝑋1∪𝑌2)∩(𝑋2∪𝑌1) is𝐴∪𝐿∪𝑅. So the base locus of |ℐ𝐴(1, 1)|
is exactly ℬ = 𝐴 ∪ 𝐿 ∪ 𝑅. □

Remark 2.23. By generalizing the proof of Proposition 2.22, we can say some-
thing about the base locus of ℐ𝐴(1, 𝑑), for 𝐴 ∈ 𝒞(𝑛). Fix the integers 𝑑 > 0 and
𝑛 ≥ 2 and take any 𝐴 ∈ 𝒞(𝑛). Then, the base locus ℬ of ℐ𝐴(1, 𝑑) contains all
curves 𝐿 of bidegree (1, 0) such that #(𝐿 ∩ 𝐴) ≥ 2. If 𝐴 ∈ 𝒞∗(𝑛), then there
are exactly

(𝑛
2

)
such curves 𝐿 (the number of lines connecting two points in a

set of 𝑛 general points). If 𝐴 ∈ 𝒯(𝑛), then #(𝑗(𝐿) ∩ 𝐴) ≥ 2 for all 𝐿 such that
#(𝐿 ∩ 𝐴) ≥ 2, since 𝑗(𝐴) = 𝐴.

3. Surfaces of bidegree (𝟏, 𝒅)
In this section we prove Theorems 1.1 and 1.2. In particular, we give some

results for the case of a surface of bidegree (1, 𝑑). Later, in the following section,
wewill specialize to the cases 𝑑 = 2 and 𝑑 = 3. The case 𝑑 = 1 has been studied
in great detail in [4], and here we add a simple lemma useful for what follows.

Lemma 3.1. For any𝐴 ∈ 𝒯∗(3), there is no irreducible surface of bidegree (1, 1)
containing 𝐴.

Proof. Suppose there exists an irreducible surface𝑀 of bidegree (1, 1) contain-
ing𝐴 ∈ 𝒯∗(3). First of all, thanks to [4, Corollary 8.4], we have that𝑀 = 𝑗(𝑀).
Then, as explained at the beginning of Section 7.1 in [4], either𝑀 is smooth or
reducible. But if𝑀 is a smooth 𝑗-invariant surface of bidegree (1, 1) containing
3 twistor fibers, then it contains infinitely many of them, and these are param-
eterized by a circle (see [4, Theorem 7.2]). However, smooth surfaces of bide-
gree (1, 1) can be seen as the blow up of ℙ2 at three points both via 𝜋1 and 𝜋2.
In particular, up to unitary transformations, it is possible to write𝑀 as the set
{([𝑝0 ∶ 𝑝1 ∶ 𝑝2], [𝓁0 ∶ 𝓁1 ∶ 𝓁2]) ∈ 𝔽 |𝑝1𝓁1+𝜆𝑝2𝓁2}, with 𝜆 ∈ ℝ⧵{0, 1}. In these
coordinates,𝑀 contains 𝜋−1𝜇 ([1 ∶ 0 ∶ 0]), 𝜋−1𝜇 ([0 ∶ 1 ∶ 0]), 𝜋−1𝜇 ([0 ∶ 0 ∶ 1]), for
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𝜇 = 1, 2 and, the family of twistor fibers 𝜋−1([𝑞0 ∶ 𝑞1 ∶ 𝑞2]) defined by:

⎧

⎨
⎩

𝑞0 = 0 and |𝑞1|2𝜆 + |𝑞2|2 = 0 if 𝜆 < 0 ,
𝑞1 = 0 and |𝑞2|2 − |𝑞0|2(𝜆 − 1) = 0 if 𝜆 > 1 ,
𝑞2 = 0 and |𝑞1|2𝜆 + |𝑞0|2(𝜆 − 1) = 0 if 0 < 𝜆 < 1 .

Take for instance 𝜆 < 0, then every twistor fiber in 𝑀 intersects the line 𝐿 =
𝜋−12 ([1 ∶ 0 ∶ 0]) of bidegree (1, 0). An analogous consideration holds if 0 < 𝜆 <
1 or 𝜆 > 1. So we get a contradiction. □

In the previous lemma we showed that an irreducible (1, 1)-surface cannot
contain three twistor fibers in general position. On the other hand if 𝑀 is a
(1, 1)-surface containing a given 𝐴 ∈ 𝒯(3) ⧵ 𝒯∗(3), then by [4, Corollary 8.3]
we have that𝑀 is 𝑗-invariant, so it is either smooth or reducible. Moreover, if
𝑀 contains infinitely many twistor fibers, then all of them intersect a bidegree
(1, 0) curve 𝐿 and its associated (0, 1) curve 𝑅 = 𝑗(𝐿).

Remark 3.2. In [4, Section 8.1] we gave examples of bidegree (1, 1) smooth
surfaces containing exactly 0, 1 or 2 twistor fibers.

Remark 3.3. Since a smooth surface of bidegree (1, 1) is a Del Pezzo surface of
degree 6, it is characterized either by the three curves of bidegree (1, 0) that it
contains, or by the three curves of bidegree (0, 1) that it contains. In fact, recall
that these surfaces represent the blow up of ℙ2 at three points with respect to
either 𝜋1 or 𝜋2. Note that if a smooth surface of bidegree (1, 1) is 𝑗-invariant,
then it is uniquely determined by three twistor fibers contained in it, and not
by the curves 𝐿 and 𝑅 = 𝑗(𝐿) (of bidegree (1, 0) and (0, 1), respectively) which
intersect all the twistor fibers.

Now we are ready to give the proof of our first main theorem.

Proof of Theorem 1.1: Thanks to Remark 2.9 and Lemma 3.1, the result is
true for 𝑑 = 0 and 𝑑 = 1.
Suppose now that 𝑑 ≥ 2 and, by contradiction, that 𝑆 is an irreducible (1, 𝑑)-

surface containing 𝐴 ∈ 𝒯∗(𝑑 + 2). Call 𝐶 a connected component of 𝐴 and
set 𝐵 ∶= 𝐴 ⧵ 𝐶. Let 𝑌 be the unique (by Lemma 3.2) element of |ℐ𝐶(0, 1)|
and consider the following exact sequence (which is a special case of the one in
formula (10)):

0→ ℐ𝐵(1, 𝑑 − 1)→ ℐ𝐴(1, 𝑑)→ ℐ(𝐵∩𝑌)∪𝐶,𝑌(1, 𝑑)→ 0. (13)

From Formulæ (6) and (8), we have ℎ0(𝒪𝐴(1, 𝑑)) = (𝑑+2)2 = ℎ0(𝒪𝔽(1, 𝑑))+
1. Obviously we have that 𝐵∩𝑌 is formed by 𝑑+1 points, and up to the identi-
fication of 𝑌 with 𝐹1 given in Formula (5), since the curve 𝐶 corresponds to an
element of type ℎ + 𝑓 in 𝐹1, we can write

ℐ(𝐵∩𝑌)∪𝐶,𝑌(1, 𝑑) ≅ ℐ(𝐵∩𝑌)∪𝐶,𝐹1(ℎ + (𝑑 + 1)𝑓) ≅ℐ𝐵∩𝑌,𝐹1(𝑑𝑓).

Since 𝐴 ∈ 𝒯∗(𝑑 + 2) and every element of |𝑓|meets 𝐶 (indeed (ℎ + 𝑓)𝑓 = 1),
the restriction to 𝐵 ∩ 𝑌 of the ruling morphism 𝐷 → ℙ1 associated with |𝑓|
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is injective. Thus, ℎ1(𝑌, ℐ𝐴∩𝑌,𝑌(1, 𝑑)) = 0 and the exact sequence (13) gives
ℎ1(ℐ𝐵(1, 𝑑−1)) ≥ ℎ1(ℐ𝐴(1, 𝑑)) ≥ 2, where the latter is greater than or equal to 2
because𝜒(ℐ𝐴(1, 𝑑)) = −1 (see Formula (7)), and we assume that ℎ0(ℐ𝐴(1, 𝑑)) ≥
1. So we also have ℎ0(ℐ𝐵(1, 𝑑 − 1)) > 0.
Recall that𝐵 ∈ 𝒯∗(𝑑+1) and thus, by the inductive assumption,𝐵 is not con-

tained in any irreducible 𝐸 ∈ |𝒪𝔽(1, 𝑑 − 1)|. Therefore, thanks to Remarks 2.9
and 2.10, there must be an irreducible 𝑀 ∈ |𝒪𝔽(1, 1)| containing at least 3
connected components of 𝐵, say 𝐵′ ⊂ 𝑀 with 𝐵′ of bidegree (3, 3). Hence, by
Lemma 3.1, there exists a curve 𝐿 of bidegree (1, 0) such that #(𝐿 ∩ 𝐵′) = 3. So
𝐴 ∉ 𝒯∗(𝑑 + 2), a contradiction. □

Having proved that an irreducible bidegree (1, 𝑑)-surface cannot contain 𝑑+
2 (or more) non-collinear twistor fibers, we now prove that all the other cases
can indeed occur. In particular, in the following result we prove a stronger
version of Theorem 1.2 in the case of 𝑛 ≤ 𝑑 + 1.

Theorem 3.4. Fix integers 𝑑 ≥ 1 and 0 ≤ 𝑛 ≤ 𝑑 + 1. Then, for any 𝐴 ∈ 𝒯∗(𝑛)
there exists an irreducible 𝑆 ∈ |𝒪𝔽(1, 𝑑)| containing 𝐴. Moreover, the general
𝑆 ∈ |ℐ𝐴(1, 𝑑)| contains no other twistor fibers.

Proof. We use induction on the integer 𝑑. If 𝑑 = 1, the statement is true by
Remark 3.2.
Now assume 𝑑 ≥ 2 and take an element 𝐴 ∈ 𝒯∗(𝑛). Since 𝒯∗(𝑛) is Zariski

dense in 𝒞(𝑛),𝐴 has the bigraded Hilbert function of a general element of 𝒞(𝑛).
Thus, thanks to Corollary 2.20, we have that ℎ1(ℐ𝐴(1, 𝑑)) = 0 and, by For-
mula (7)

ℎ0(ℐ𝐴(1, 𝑑)) = (𝑑 + 1)(𝑑 + 3) − 𝑛(𝑑 + 2) =∶ 𝑁𝑛 + 1.

Fix a connected component 𝐶 of 𝐴 and set 𝐵 ∶= 𝐴 ⧵ 𝐶. If 𝑌 denotes the only
(0, 1)-surface containing𝐶, Corollary 2.20 implies that ℎ1(ℐ𝐵(1, 𝑑−1)) = 0 and,
again by Formula 7

ℎ0(ℐ𝐵(1, 𝑑 − 1)) = 𝑑(𝑑 + 2) − (𝑛 − 1)(𝑑 + 1).

By the inductive assumption, we know that |ℐ𝐵(1, 𝑑 − 1)| ≠ ∅ and a general
𝑊 ∈ |ℐ𝐵(1, 𝑑 − 1)| is irreducible. Thus 𝑌 ∪𝑊 ∈ |ℐ𝐴(1, 𝑑)| and 𝑌 ∪𝑊 has 2
irreducible components, one of which has bidegree (1, 𝑑 − 1).
Let 𝐶1,… , 𝐶𝑛 be the connected components of 𝐴, 𝐵𝑖 ∶= 𝐴 ⧵𝐶𝑖 and 𝑌𝑖 be the

unique element in |ℐ𝐶𝑖 (0, 1)|. The set of all the reducible surfaces 𝑊 ∪ 𝑌𝑖 ∈
|ℐ𝐴(1, 𝑑)|, where𝑊 ∈ |ℐ𝐵𝑖 (1, 𝑑−1)|, is the union of 𝑒 projective spaces (one for
each choice of𝐶𝑖), each of themof codimension ℎ0(ℐ𝐴(1, 𝑑))−ℎ0(ℐ𝐵(1, 𝑑−1)) =
𝑑 + 2 − 𝑛 > 0 in |ℐ𝐴(1, 𝑑)|= ℙ𝑁𝑛 (of codimension 1 if 𝑛 = 𝑑 + 1). Therefore,
they do not cover all |ℐ𝐴(1, 𝑑)|.
Now we want to exclude other possible splittings. In particular, we consider

reducible surfaces of the form 𝑊1 ∪ 𝐷1 with 𝑊1 irreducible, 𝐷1 possibly re-
ducible of bidegree (0, 𝑥) for some 𝑥 ≥ 2 and hence𝑊1 of bidegree (1, 𝑑 − 𝑥).
Remark 2.10 shows that only irreducible components of 𝐷1 of bidegree (0, 1)
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may contain some component of 𝐴. We get that the surface is of the form
𝑊1 ∪ 𝐷2 ∪ 𝐷3 with𝑊1 ∪ 𝐷2 of bidegree (1, 𝑑 − 1), but, as shown before, these
kind of surfaces do not cover all |ℐ𝐴(1, 𝑑)|, hence we have the thesis.
Nowweprove that a general 𝑆 ∈ |ℐ𝐴(1, 𝑑)| does not contain any other twistor

fibers. We start by analyzing the case 𝑑 = 2 and discussing the cases 𝑛 = 1, 2, 3
separately.
Assume 𝑛 = 1. Fix 𝐶 ∈ 𝒯(1). Let 𝒞𝐶(1) denote the set of all 𝐵 ∈ 𝒞(1) such

that 𝐵 ∩ 𝐶 = ∅. Note that 𝒯(1) ⧵ {𝐶} = 𝒞𝐶(1) ∩ 𝒯(1). For any 𝐵 ∈ 𝒞𝐶(1), we
have ℎ1(ℐ𝐶∪𝐵(1, 2)) = 0 and hence ℎ0(ℐ𝐶∪𝐵(1, 2)) = ℎ0(ℐ𝐶(1, 2)) − 4. Let𝒳𝐶 be
the set of all smooth and irreducible surfaces of bidegree (1, 2) containing 𝐶. It
is a non-empty Zariski open subset of |ℐ𝐶(1, 2)|. For any 𝐵 ∈ 𝒞𝐶(1) the set of all
𝑆 ∈ 𝒳𝐶 containing 𝐵 has complex codimension 4 and hence real codimension
8 as real manifolds. Since𝒯(1) has real dimension 4, a general 𝑆 ∈ 𝒳𝐶 contains
no other twistor fiber.
Now let 𝑛 = 2. Fix𝐴 ∈ 𝒯(2) and let𝒞𝐴(1) denote the set of all 𝐵 ∈ 𝒞(1) such

that 𝐵 ∩ 𝐴 = ∅ and 𝐵 ∪ 𝐴 ∈ 𝒞∗(3). Note that ℎ1(ℐ𝐴∪𝐵(1, 2)) = 0. So, as in the
previous step, we get that a sufficiently general 𝑆 ∈ |ℐ𝐴(1, 2)| does not contain
an element of𝒯𝐴(1). Assume 𝑆 contains𝐵 ∈ 𝒯(1) such that there exists a curve
of bidegree (1, 0) that intersects every connected component of𝐴∪𝐵. Note that
𝐿 is uniquely determined by 𝐴. Let 𝒞(𝐴, 𝐿) denote the set of all 𝐵 ∈ 𝒞(1) such
that 𝐵 ∩ 𝐴 = ∅ and 𝐿 meets 𝐵 and set 𝒯(𝐴, 𝐿) ∶= 𝒞(𝐴, 𝐿) ∩ 𝒯(1). For any
𝑜 ∈ 𝐿 ⧵ (𝐿 ∩ 𝐶), the set of all 𝐵 ∈ 𝒞(𝐴, 𝐿) containing 𝑜 is a non-empty family
of complex dimension 1, while there exists a unique twistor fiber containing 𝑜.
The set 𝒞(𝐴, 𝐿) is a complex manifold of dimension 2, while ℎ1(ℐ𝐴∪𝐵(1, 2)) = 1
and hence ℎ0(ℐ𝐴∪𝐵(1, 2)) = ℎ0(ℐ𝐴(1, 2)) − 3. Since dim𝒞(𝐴, 𝐿) = 2, a general
𝑆 ∈ |ℐ𝐴(1, 2)| does not contain an element of𝒞(𝐴, 𝐿). Hence, there is no twistor
fiber 𝐵 such that 𝐴 ∪ 𝐵 ∈ 𝒯∗(3).
Assume now that 𝑛 = 3. First, consider a general 𝐴 ∈ 𝒯∗(3). Then we have

ℎ1(ℐ𝐴(1, 2)) = 0 and ℎ0(ℐ𝐴(1, 2)) = 3. For any 𝑥 ∈ {0, 1, 2, 3}, let 𝒞(𝐴, 𝑥) denote
the set of all 𝐶 ∈ 𝒞(1) such that 𝐴 ∩ 𝐶 = ∅ and ℎ0(ℐ𝐴∪𝐶(1, 2)) = 𝑥 and set
𝒯(𝐴, 𝑥) ∶= 𝒞(𝐴, 𝑥) ∩ 𝒯(1). For a general 𝐷 ∈ 𝒞(4) we have ℎ0(ℐ𝐷(1, 1)) = 0
(but ℎ1(ℐ𝐷(1, 1)) = 1). Fix𝐶 ∈ 𝒞(1) so that𝐶∩𝐴 = ∅, call𝑌 the only element of
|ℐ𝐶(0, 1)|. Since𝐶∩𝐴 = ∅, no connected component of𝐴 is contained in𝑌, and
𝑌 ∩𝐴 is formed by 3 points, all of them in 𝑌 ⧵𝐶. We can easily handle the case
𝑥 = 0, since any curve𝐶 ∈ 𝒞(𝐴, 0) is not contained in any element of |ℐ𝐴(1, 2)|.
We have𝒪𝑌(1, 2)(−𝐶) ≅ 𝒪𝐹1(2𝑓) and hence𝐶 ∈ 𝒞(𝐴, 0) if no curve of bidegree
(1, 0) 𝐿 ∈ |𝑓| intersects 2 of the components of𝐴 (since ℎ1(ℐ𝐴(1, 1)) = 1 the last
statement is only an “if” and not an “if and only if”). A necessary condition for
being 𝐶 ∈ 𝒞(𝐴, 2) is that 𝐿 intersects all connected components of 𝐴, but this
is excluded because 𝐴 ∈ 𝒯∗(3). Since 𝐴 ∈ 𝒯∗(3), there are exactly 3 curves
𝐿1, 𝐿2, 𝐿3 of bidegree (1, 0) intersecting 2 of the connected components of 𝐴.
We claim that a general 𝑆 ∈ |ℐ𝐴(1, 2)| does not contain 𝐶 ∈ 𝒞(1) such that
𝐶∩𝐴 = ∅. The family of smooth conics intersecting 𝐿𝑖 has complex dimension
2, while the family of twistor fibers intersecting 𝐿𝑖 has real dimension 2. As the
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general 𝑆 ∈ |ℐ𝐴(1, 2)| has only finitely many conics, it has only a finite number
of elements in 𝒞(𝐴, 1) and, for the general, none of them is a twistor fiber.
We now proceed to analyze the case 𝑑 ≥ 3. Suppose the general surface of

|ℐ𝐴(1, 𝑑)| contains the twistor fiber 𝐶 ⊈ 𝐴. So 𝐴 ∩ 𝐶 = ∅. Set 𝐴′ ∶= 𝐴 ∪ 𝐶.
Take 𝑌 ∈ |𝒪𝑌(0, 1)| containing 𝐶 and consider the residual exact sequence

0→ ℐ𝐴(1, 𝑑 − 1)→ ℐ𝐴′(1, 𝑑)→ ℐ(𝑌∩𝐴)∪𝐶,𝑌(1, 𝑑)→ 0. (14)

We have ℐ𝐶,𝑌(1, 𝑑) ≅ 𝒪𝐹1(𝑑𝑓).
Assume first 𝑛 ≤ 𝑑. If 𝐴′ ∈ 𝒯∗(𝑛 + 1), then ℎ1(ℐ′𝐴(1, 𝑑)) = 0 and hence

ℎ0(ℐ′𝐴(1, 𝑑)) = ℎ0(ℐ𝐴(1, 𝑑)) − 𝑑 − 2. Since dim𝒞(1) = 4, we have for 𝑑 ≥ 3 that
the general 𝑆 ∈ |ℐ𝐴(1, 𝑑)| does not contain 𝐶, so 𝐴 ∪ 𝐶 ∈ 𝒯∗(𝑛 + 1).
Now suppose 𝐴′ ∉ 𝒯∗(𝑛 + 1). Then there are connected components 𝐶′

and 𝐶′′ of 𝐴 such that 𝐶 ∪ 𝐶′ ∪ 𝐶′′ ∉ 𝒯∗(3), i.e. 𝐶 intersects the unique line
𝐿 which meets 𝐶′ and 𝐶′′. Since dim𝐿 = 1, to exclude this case it is sufficient
to prove that ℎ0(ℐ𝐵(1, 𝑑)) ≤ ℎ0(ℐ𝐴(1, 𝑑)) − 2, i.e. ℎ0(𝐹1, ℐ𝐴∩𝑌(𝑑𝑓)) ≤ 𝑑. But
since ℎ0(𝒪𝐹1(𝑑𝑓)) = 𝑑 + 1, then 𝒪𝐹1(𝑑𝑓) is globally generated and 𝐴 ∩ 𝑌 ≠ ∅,
therefore ℎ0(𝐹1, ℐ𝐴∩𝑌(𝑑𝑓)) ≤ 𝑑.
Now let us assume 𝑛 = 𝑑 + 1 and that 𝐴′ ∈ 𝒞∗(𝑑 + 2). By Lemma 2.21 we

have ℎ1(ℐ𝐴′(1, 𝑑)) ≤ 1 and hence ℎ0(ℐ𝐴′(1, 𝑑)) ≤ ℎ0(ℐ𝐴(1, 𝑑)) − 𝑑 − 1. Now
suppose 𝐴′ ∉ 𝒞∗(𝑑 + 2). We need ℎ0(𝐹1, ℐ𝐴∩𝑌(𝑑𝑓)) ≤ 𝑑 − 1. Let 𝜋 ∶ 𝐹1 → ℙ1
denote the ruling of 𝐹1. Since 𝒪ℙ1(𝑑) is very ample, ℎ0(𝐹1, ℐ𝐴∩𝑌(𝑑𝑓)) ≤ 𝑑 − 1
if and only if #𝜋(𝐴 ∩ 𝑌) ≥ 2, which is true because #(𝐴 ∩ 𝑌) = 𝑑 + 1 ≥ 3 and
(since 𝐴 ∈ 𝒞∗(𝑑 + 1) no fiber 𝐹 of 𝜋 contains at least 3 points of 𝐴). The only
remaining case is 𝑑 = 3 and 𝑛 = 4, which can be handled by simply adapting
the previous argument for 𝑑 = 2 and 𝑛 = 3. □

Having proved Theorem 1.2 in the case 𝑛 ≤ 𝑑 + 1 for non collinear twistor
fibers, we now focus on the case of 𝑛 = 𝑑+2. In this case we need some further
preliminary results.

Lemma 3.5. Fix 𝑑 > 0, 𝑛 ≤ 𝑑 + 2 and consider a general 𝐴 ∈ 𝒯(𝑛). Then
ℎ1(ℐ𝐴(1, 𝑑)) = 0.

Proof. Since𝒯(𝑛) is Zariski dense in𝒞(𝑛), it is sufficient to prove the statement
for a general 𝐴 ∈ 𝒞(𝑛). Obviously, it is sufficient to prove the case 𝑛 = 𝑑 + 2.
Take a connected component 𝐶 of 𝐴 and set 𝐵 ∶= 𝐴 ⧵ 𝐶 and 𝑌 ∈ |ℐ𝐶(0, 1)|.
Consider the residual exact sequence of 𝑌, as in Formula (13). Recall the cor-
respondence 𝑌 ≅ 𝐹1 given in Formula (5) and let 𝜌 ∶ 𝑌 → ℙ1 denote its ruling.
Since 𝐴 is general #𝜌(𝐴 ∩ 𝑌) = 𝑑 + 1 and hence ℎ𝑖(𝐹1, ℐ𝐵∩𝑌(𝑑𝑓)) = 0, for
𝑖 ∈ {0, 1}. Hence ℎ1(ℐ𝐴(1, 𝑑)) = 0. □

From Theorem 1.1, we already know that an irreducible (1, 𝑑) surface can
contain a union of 𝑑 + 2 twistor fibers only if it belongs to 𝒯(𝑑 + 2) ⧵ 𝒯∗(𝑑 +
2). Therefore, we introduce the following notation for sets of disjoint smooth
conics that are collinear. Given a curve 𝐿 of bidegree (1, 0) and an integer 𝑛 > 0,
let 𝒞(𝑛, 𝐿) denote the set of all 𝐴 ∈ 𝒞(𝑛) such that every connected component
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of 𝐴meets 𝐿. The set 𝒞(𝑛, 𝐿) is isomorphic (as real algebraic variety) to the set
𝒮(𝐿, 𝑛) of all subsets of 𝐿 with cardinality 𝑛 and is therefore irreducible. An
analogous definition and observation can be made for a curve 𝑅 of bidegree
(0, 1), and of course, for the family 𝒯 instead of 𝒞.

Lemma 3.6. Fix integers 𝑛 ≥ 3 and 𝑑 ≥ 1 and take any 𝐴 ∈ 𝒯(𝑛, 𝐿). Then,

ℎ1(ℐ𝐴(1, 𝑑)) ≥ 𝑛 − 2 +max{0, 𝑛 − (𝑑 + 1)}.

Proof. Let 𝐶1,… , 𝐶𝑛 be the connected components of 𝐴. Let 𝑆𝑖 ⊂ 𝐶𝑖 be an
arbitrary union of 𝑑+2 distinct points on each conic and 𝑆 ∶= 𝑆1∪⋯∪𝑆𝑛. Since
𝐶𝑖 is a smooth rational curve, the restrictionmap𝐻0(𝒪𝐶𝑖 (1, 𝑑))→ 𝐻0(𝒪𝑆𝑖 (1, 𝑑))
is bijective. So the restriction map

𝐻0(𝒪𝐴(1, 𝑑))→ 𝐻0(𝒪𝑆(1, 𝑑))

is bijective and 𝜒(𝒪𝐴(1, 𝑑)) = 𝜒(𝒪𝑆(1, 𝑑)). Thus 𝜒(ℐ𝐴(1, 𝑑)) = 𝜒(ℐ𝑆(1, 𝑑)).
Since 𝐴 ∈ 𝒯(𝑛, 𝐿), we know that there exists 𝐿 of bidegree (1, 0) which in-

tersects every conic in 𝐴 (and the (0, 1) curve 𝑗(𝐿) does the same). So we can
choose 𝑆 such that 𝑛 points are on 𝐿 and 𝑛 points are on 𝑗(𝐿). In other words
we assume (𝐴 ∩ 𝐿) ∪ (𝐴 ∩ 𝑗(𝐿)) ⊆ 𝑆. Using Bézout and the fact that the bide-
gree is (1, 𝑑), we get that (𝑛 − 2) + max{0, 𝑛 − (𝑑 + 1)} of these points can be
omitted without changing the set |ℐ𝑆(1, 𝑑)|, and hence 𝐻0(ℐ𝑆(1, 𝑑)). It follows
that ℎ1(ℐ𝐴(1, 𝑑)) ≥ 𝑛 − 2 +max{0, 𝑛 − (𝑑 + 1)}. □

Remark 3.7. Thanks to the previous lemma, if 𝐴 ∈ 𝒯(3, 𝐿), for some bide-
gree (1, 0) curve 𝐿, then ℎ1(ℐ𝐴(1, 1)) ≥ 2, and hence ℎ0(ℐ𝐴(1, 1)) ≥ 1. How-
ever, since no surface of bidegree (1, 0) or (0, 1) contains an element of 𝒯(2),
then every 𝑆 ∈ |ℐ𝐴(1, 1)| is irreducible. Hence, Proposition 2.17 gives that
|ℐ𝐴(1, 1)| = {𝑆} and so, thanks to Formula (7), ℎ1(ℐ𝐴(1, 1)) = 2.

Finally, the following result completes the proof of Theorem 1.2, in the case
of 𝑑 + 2 twistor fibers.

Theorem 3.8. Fix an integer 𝑑 ≥ 2 and take a general 𝐴 ∈ 𝒯(𝑑 + 2, 𝐿). Then
ℎ0(ℐ𝐴(1, 𝑑)) ≥ 𝑑 and the general 𝑆 ∈ |ℐ𝐴(1, 𝑑)| is irreducible.

Proof. Applying Lemma 3.6 with 𝑛 = 𝑑+2, we get ℎ1(ℐ𝐴(1, 𝑑)) ≥ 𝑑+1. Since
𝜒(ℐ𝐴(1, 𝑑)) = (𝑑+1)(𝑑+3)−(𝑑+2)2 = −1, we get ℎ0(ℐ𝐴(1, 𝑑)) ≥ 𝑑 and hence,
|ℐ𝐴(1, 𝑑)| ≠ ∅.
Now we prove that a general element in |ℐ𝐴(1, 𝑑)| is irreducible. Take 𝑆 ∈

|ℐ𝐴(1, 𝑑)|. Every surface of bidegree (1, 0) or (0, 1) contains at most one con-
nected component of 𝐴. Therefore, 𝑆 cannot be the union of a surface of bide-
gree (1, 0) and 𝑑 of bidegree (0, 1). No irreducible and reduced surface of bide-
gree (0, 𝑥), for 𝑥 ≥ 2, contains a twistor fiber. If 𝑑 = 2, then ℎ0(ℐ𝐴(1, 2)) ≥ 2.
However, thanks to Remark 3.7, for any choice of 𝐶 ∈ 𝐴 there is only one
𝑀 ∈ |ℐ(𝐴⧵𝐶)(1, 1)|. Since we have considered all the possible reducible ele-
ments of |ℐ𝐴(1, 2)|, we get the thesis.
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Now suppose 𝑑 > 2. Since 𝐴 has finitely many components, it suffices to
prove that for any 𝑥 ∈ {3,… , 𝑑−1}, any union 𝐸 of 𝑥 connected components of
𝐴, and any connected component 𝐶 of 𝐴 ⧵ 𝐸 we have

ℎ0(ℐ𝐸(1, 𝑥 − 2)) < ℎ0(ℐ𝐸∪𝐶(1, 𝑥 − 1)), (15)

and then proceed as in the proof of Theorem 3.4.
Let 𝑌 be the only element of |𝒪𝔽(0, 1)| that contains 𝐶. The exact sequence

in Formula (10) gives ℎ0(ℐ𝐸(1, 𝑥 − 2)) ≤ ℎ0(ℐ𝐸∪𝐶(1, 𝑥 − 1)) and equality holds
if and only if 𝑌 is in the base locus ℬ of |ℐ𝐸∪𝐶(1, 𝑥 − 1)|. Call 𝐶1,… , 𝐶𝑥 the
components of 𝐸 and 𝑌𝑖 the only surface of bidegree (0, 1) containing 𝐶𝑖. By
Remark 2.13 the irreducible surfaces 𝑌,𝑌1,… , 𝑌𝑥 are all different from each
other. For a general 𝐴 we get that every integer ℎ0(ℐ𝐸(1, 𝑥 − 2)) is the same
for every union of 𝑥 connected components of 𝐴. So if the inequality is false,
then ℬ contains the surface 𝑌 ∪ 𝑌1 ∪⋯ ∪ 𝑌𝑥 of bidegree (0, 𝑥 + 1), which is a
contradiction. □

4. Surfaces of bidegree (𝟏, 𝟐) and (𝟏, 𝟑)
In this sectionwe specialize our study to the case of surfaces of bidegree (1, 2)

and (1, 3). In particular, we will prove Theorems 1.3, 1.4 and 1.5.
Recall, from Formula (7), that for each 𝐴 ∈ 𝒞(𝑛), we have 𝜒(ℐ𝐴(1, 2)) =

15 − 4𝑛, and hence, if 𝑛 ≤ 3, we get ℎ0(ℐ𝐴(1, 2)) > 0. We also recall that a
general 𝑆 ∈ |𝒪𝔽(1, 2)| contains a finite number of smooth conics and, thanks
to Theorem 2.19, for every 𝐵 ∈ 𝒞(2) we have ℎ1(ℐ𝐵(1, 1)) = 0.

4.1. Surfaces of bidegree (𝟏, 𝟐) containing 𝟎 ≤ 𝒏 ≤ 𝟒 twistor fibers. In
this section, we show the existence of a smooth surface of bidegree (1, 2) con-
taining exactly 0, 1, 2, 3 or 4 twistor fibers. In order to analyze the space |ℐ𝐴(1, 2)|
when𝐴 is in𝒞(𝑛) (or in𝒯(𝑛)), for 0 ≤ 𝑛 ≤ 4, we need some preliminary results.
Note that the extremal case, when 𝑛 = 4, is treated differently.
We start by considering (1, 2)-surfaces containing three disjoint smooth con-

ics.

Proposition 4.1. Take 𝐴 ∈ 𝒞(3) such that ℎ0(ℐ𝐴(1, 1)) > 0. Then
(1) there exists a curve 𝐿 of bidegree (1, 0) and a curve𝑅 of bidegree (0, 1) such

that 𝐴 ∈ 𝒞(3, 𝐿) and 𝐴 ∈ 𝒞(3, 𝑅)
(2) there is an irreducible element in |ℐ𝐴(1, 2)|;
(3) ℎ1(ℐ𝐴(1, 2)) = 1;
(4) the base locus ℬ of |ℐ𝐴(1, 2)| is 𝐴 ∪ 𝐿 ∪ 𝑅, where 𝐿 and 𝑅 are the curves

defined in (1).

Proof. We start arguing as in Remark 3.7. Thanks to Remark 2.9, every surface
of bidegree (1, 0) or (0, 1) does not contain an element of 𝒞(2), so as 𝐴 ∈ 𝒞(3),
every element in |ℐ𝐴(1, 1)| is irreducible. Proposition 2.17 (with 𝑎 = 𝑏 = 𝑐 =
𝑑 = 1) gives that ℎ0(ℐ𝐴(1, 1)) = 1 and hence we set |ℐ𝐴(1, 1)| = {𝑀} and by
Formula (7) we compute ℎ1(ℐ𝐴(1, 1)) = 2.
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We now prove the first statement. Let 𝐶 be a connected component of 𝐴, set
𝐵 ∶= 𝐴 ⧵ 𝐶 and denote by 𝑋 the only element of |ℐ𝐶(1, 0)|. Performing the
same construction that leads to Formula (10), we have

0→ ℐ𝐵(0, 1)→ ℐ𝐴(1, 1)→ ℐ𝐴∩𝑋,𝑋(1, 1)→ 0.

Since ℎ0(ℐ𝐵(0, 1)) = 0 and ℎ0(ℐ𝐴(1, 1)) = 1, the previous residual exact se-
quence gives

ℎ0(ℐ𝐴∩𝑋,𝑋(1, 1)) ≥ 1. (16)
Thanks to Formula (4), we have that 𝒪𝑋(1, 1) ≃ 𝒪𝐹1(ℎ + 2𝑓); moreover, recall
from Remark 2.9 that 𝐶 is identified with an element of |𝒪𝐹1(ℎ + 𝑓)|. Since
𝐴 ∩ 𝑋 is the union of 𝐶 and the two points 𝐵 ∩ 𝑋, there exists a fiber 𝐿 ∈ |𝑓|
of the ruling of 𝐹1 containing 𝐵 ∩ 𝑋. Since 𝑓(ℎ + 𝑓) = 1, we have that 𝐿meets
𝐶. So 𝐿 hits every connected component of 𝐴. If we take instead of 𝑋 the only
element of |ℐ𝐶(0, 1)|, we get the existence of 𝑅.
We now prove (2). We will show that there is an irreducible element in

|ℐ𝐴(1, 2)| by showing that the possible reducible cases do not cover the entire
family. Remark 2.10 shows that𝐴 is not contained in a surface of bidegree (1, 2)
with an irreducible component of bidegree (0, 2). By Remark 2.9, a bidegree
(0, 1) or (0, 1)-surface does not contain any element of 𝒞(𝑛), with 𝑛 ≥ 2. Thus,
there are only finitely many elements of |𝒪𝔽(1, 2)| with at least 3 irreducible
components.
Since ℎ0(𝒪𝔽(0, 1)) = 3, the set of all reducible elements of |𝒪𝔽(1, 2)| with

an irreducible component of bidegree (1, 1) containing 𝐴 is isomorphic to ℙ2.
Thus, in order to prove the existence of an irreducible element in |ℐ𝐴(1, 2)|, it is
sufficient to show that ℎ0(ℐ𝐴(1, 2)) ≥ 4. But, using the exact sequence (9), this
is equivalent to proving that ℎ1(ℐ𝐴(1, 2)) ≥ 1, and the last inequality is true, by
Theorem 2.19 because #(𝐿 ∩ 𝐴) = 3.
To prove (3), i.e. ℎ1(ℐ𝐴(1, 2)) = 1, it is sufficient to prove that we have

ℎ1(ℐ𝐴(1, 2)) ≤ 1. As before, take a connected component 𝐶 of 𝐴 and set 𝐵 =
𝐴⧵𝐶. Let𝑌 be the only element of |ℐ𝐶(0, 1)|. In the identification (5) of𝑌 with
𝐹1 we have

ℐ(𝐵∩𝑌)∪𝐶,𝑌(1, 2) ≅ ℐ(𝐵∩𝑌)∪𝐶,𝐹1(ℎ + 3𝑓) ≅ 𝒪(𝐵∩𝑌),𝐹1(2𝑓).

Since #(𝐵 ∩ 𝑌) = 2 and 𝒪𝐹1(2𝑓) is globally generated, ℎ
1(𝐹1, ℐ𝐵∩𝑌,𝐹1(2𝑓)) ≤ 1.

We have Res𝑌(𝐴) = 𝐵. Thanks to Theorem 2.19, we have ℎ1(ℐ𝐵(1, 1)) = 0, and
the residual exact sequence of 𝑌,

0→ ℐ𝐵(1, 1)→ ℐ𝐴(1, 2)→ ℐ(𝐵∩𝑌)∪𝐶,𝑌(1, 2)→ 0,

gives ℎ1(ℐ𝐴(1, 2)) ≤ 1.
Finally, we discuss the base locus of |ℐ𝐴(1, 2)| in order to prove (4). First

of all, for any surface 𝑆 ∈ |ℐ𝐴(1, 2)|, we clearly have 𝐴 ⊂ 𝑆. Moreover, since
#(𝐿∩𝐴) = 3 and#(𝑅∩𝐴) = 3, then by Bézout, both curves are contained in 𝑆:
in fact, thanks to Remark 2.3 and Formula (3), the general intersection between
a curve of bidegree (1, 0) and 𝑆 consists of one point while the intersection of
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a curve of bidegree (0, 1) and 𝑆 consists of two points (see also Remark 2.16).
Therefore, 𝐿 ∪ 𝑅 ⊂ 𝑆 and 𝐴 ∪ 𝐿 ∪ 𝑅 ⊂ ℬ.
We now prove thatℬ ⊂ 𝐴∪𝐿∪𝑅. Fix 𝑝 ∈ ℬ ⧵ (𝐴∪𝐿∪𝑅). Take a connected

component 𝐶𝑖, 𝑖 = 1, 2, 3, of 𝐴 and set 𝐵𝑖 ∶= 𝐴 ⧵𝐶𝑖. Let 𝑌𝑖 be the only element
of |𝒪𝔽(0, 1)| containing 𝐶𝑖. By Proposition 2.22 𝐵𝑖 ∪ 𝐿 ∪ 𝑅 is the base locus of
|ℐ𝐵𝑖 (1, 1)|. So there exists 𝑆𝑖 ∈ |ℐ𝐵𝑖 (1, 1)| such that 𝑝 ∉ 𝑆𝑖. If 𝑝 ∉ 𝑌𝑖, then
𝑝 ∉ ℬ. Since 𝑆1 ∩ 𝑆2 ∩ 𝑆3 = 𝐿 ∪𝑅, we can take 𝑖 ∈ {1, 2, 3} such that 𝑝 ∉ 𝑌𝑖. So
ℬ = 𝐴 ∪ 𝐿 ∪ 𝑅. □

The following remark shows that if 𝐴 ∈ 𝒞(3) satisfies condition (1) of The-
orem 4.1, then the existence of a (1, 1)-surface containing 𝐴 is guaranteed. In
particular there exists a (1, 1)-surface containing arbitrary triplets of collinear
twistor fibers.

Remark 4.2. Take 𝐴 ∈ 𝒞(3) and assume the existence of curves 𝐿 of bidegree
(1, 0) and 𝑅 of bidegree (0, 1) intersecting every connected component of 𝐴. By
adapting the proof of Lemma 3.6, since#(𝐿∩𝐴) = 3 and#(𝑅∩𝐴) = 3, we have
that ℎ1(ℐ𝐴(1, 1)) ≥ 2. Thus ℎ0(ℐ𝐴(1, 1)) ≥ 1 and 𝐴 satisfies the assumptions of
Proposition 4.1.
We can be even more specific and say that if 𝐴 ∈ 𝒞(3) (with no assumption

about 𝐿 or 𝑅), then ℎ0(ℐ𝐴(1, 1)) ≤ 1 and if |ℐ𝐴(1, 1)| ≠ ∅, then the only element
of |ℐ𝐴(1, 1)| is irreducible. This is true because, thanks to Remark 2.9, every
reducible element of |𝒪𝔽(1, 1)| contains at most 2 disjoint smooth conics.
Note that if 𝐴 ∈ 𝒯(3) and 𝐿 exists, then we can take 𝑅 ∶= 𝑗(𝐿). So if 𝐴 ∈

𝒯(3) to get ℎ0(ℐ𝐴(1, 1)) > 0, it is sufficient to assume that 𝐴 ∉ 𝒯∗(3).

The following lemma is a sort of inverse of the previous remark.

Lemma 4.3. Take 𝐴 ∈ 𝒞∗(3). Then ℎ0(ℐ𝐴(1, 1)) = 0 and ℎ1(ℐ𝐴(1, 1)) = 1.

Proof. If 𝐴 ∈ 𝒞(3), thanks to Formula (7), 𝜒(ℐ𝐴(1, 1)) = −1. So we have
ℎ0(ℐ𝐴(1, 1)) = 0 if and only if ℎ1(ℐ𝐴(1, 1)) = 1. We assume that ℎ0(ℐ𝐴(1, 1)) ≠ 0
and will prove that 𝐴 ∉ 𝒞∗(3). Let 𝐵 ⊂ 𝐴 be the union of 2 connected compo-
nents of𝐴 and set 𝐶 ∶= 𝐴⧵𝐵. Let 𝐿 and 𝑅 be the curves defined in Remark 2.5
for 𝐵 ∈ 𝒞(2). Take any element𝐷 ∈ |ℐ𝐵(1, 1)|. Since#(𝐵∩(𝐿∪𝑅)) = 2, 𝐵 ⊂ 𝐷,
and 𝐷 has bidegree (1, 1), then the Bézout theorem implies 𝐿 ∪ 𝑅 ⊂ 𝐷.
By Theorem 2.19 and Proposition 2.22, we have that

ℎ1(ℐ𝐵(1, 1)) = 0, ℎ0(ℐ𝐵(1, 1)) = 2,
and the general element 𝑀 in |ℐ𝐵(1, 1)| is irreducible. Since ℎ0(ℐ𝐵(1, 1)) = 2
and𝑀 is general, 𝐶 ⊈ 𝑀. Consider the following residual exact sequence:

0→ ℐ𝐶 → ℐ𝐴(1, 1)→ ℐ𝐵∪(𝑀∩𝐶),𝑀(1, 1)→ 0 (17)

Since𝑀 ∈ |ℐ𝐵(1, 1)| and ℎ1(𝒪𝔽) = 0, the exact sequence
0→ 𝒪𝔽 → ℐ𝐵(1, 1)→ ℐ𝐵,𝑀(1, 1)→ 0

gives ℎ0(𝑀, ℐ𝐵,𝑀(1, 1)) = 1. Moreover, ℎ0(ℐ𝐶) = 0, and so the sequence (17)
and the assumption ℎ0(ℐ𝐴(1, 1)) ≥ 1 imply ℎ0(𝑀, ℐ𝐵∪(𝑀∩𝐶),𝑀(1, 1)) ≥ 1. By
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Proposition 2.22, the curve 𝐴 ∪ 𝐿 ∪𝑅 is the base locus of |ℐ𝐵(1, 1)| and thus the
base locus of 𝐻0(𝑀, ℐ𝐵,𝑀(1, 1)) is the curve 𝐵 ∪ 𝐿 ∪ 𝑅. Since 𝐵 ∩ 𝐶 = ∅, the
degree 2 scheme 𝐶 ∩ 𝑀 is contained in 𝐿 ∪ 𝑅. To get 𝐴 ∉ 𝒞∗(3), we must to
prove that 𝐶∩𝐿 ≠ ∅. It is sufficient to observe that deg(𝐶∩𝑇) ≤ 1 for any curve
𝑇 of bidegree (0, 1). This is true because of Remark 2.3 and the fact that 𝐶 is the
intersection of a surface of bidegree (1, 0) and a surface of bidegree (0, 1). □

We now discuss the case of 𝐴 ∈ 𝒞(2) contained in a smooth surface of bide-
gree (1, 1). In this case we will also prove smoothness for the general element
in |ℐ𝐴(1, 2)|.

Proposition 4.4. Take any 𝐴 ∈ 𝒞(2) that is contained in a smooth element of
|𝒪𝔽(1, 1)|. Then we have

(1) ℎ1(ℐ𝐴(1, 2)) = 0 and ℎ0(ℐ𝐴(1, 2)) = 7;
(2) the set 𝐴 ∪ 𝐿 is contained in the base locus ℬ of |ℐ𝐴(1, 2)|, where 𝐿 is the

bidegree (1, 0) curve described in Remark 2.5;
(3) a general 𝑆 ∈ |ℐ𝐴(1, 2)| is smooth.

Proof. To prove part (1) it is sufficient to apply Corollary 2.20, which gives
ℎ1(ℐ𝐴(1, 2)) = 0 and Formula (7), which entails ℎ0(ℐ𝐴(1, 2)) = 7.
We now pass to point (2). Take 𝐿 and 𝑅 as in Remark 2.5. Since 𝒪𝔽(0, 1) is

globally generated, ℬ ⊆ 𝐴 ∪ 𝐿 ∪ 𝑅; moreover, thanks to Remark 2.16, we also
have 𝐴 ∪ 𝐿 ⊆ ℬ.
We are left to prove (3). By Bertini’s theorem Sing(𝑆) ⊆ 𝐴∪𝐿∪𝑅 for a general

𝑆 ∈ |ℐ𝐴(1, 2)|. Fix a smooth 𝑀 ∈ |ℐ𝐴(1, 1)|. Take a general 𝑌′ ∈ |𝒪𝔽(0, 1)|.
Since 𝑌′ is general 𝐿 ∩ 𝑌′ = ∅ (and hence it is not singular at any 𝑝 ∈ 𝐿).
Thus, up to small deformation, we can say that 𝑆 (which is general) is smooth
in a neighborhood of 𝐿. We are left to exclude the case Sing(𝑆) ⊆ 𝐴 ∪ 𝑅. Fix
𝑝 ∈ 𝐴 ∪ 𝑅 and let 2𝑝 be the 0-dimensional scheme of 𝔽 defined by the ideal
ℐ2𝑝,𝔽. 𝑆 is singular at 𝑝 if and only if 𝑆 ∈ |ℐ2𝑝∪𝐴(1, 2)|. To complete our proof we
need to prove that

ℎ0(ℐ2𝑝∪𝐴(1, 2)) = ℎ0(ℐ𝐴(1, 2)) − 2,

for all 𝑝 ∈ (𝐴∪𝑅)⧵𝐴∩𝑅 and that, for 𝑝 ∈ 𝐴∩𝑅, ℎ0(ℐ2𝑝∪𝐴(1, 2)) < ℎ0(ℐ𝐴(1, 2)).
These two statements give the thesis because (𝐴 ∪ 𝑅) ⧵ 𝐴 ∩ 𝑅 and 𝐴 ∩ 𝑅 are 1-
dimensional and 0-dimensional, respectively, and we are saying that the set of
bidegree (1, 2)-surfaces containing𝐴 and a singular point has codimension 2 in
the first case and positive codimension in the second one.
Let us start by taking 𝑝 ∈ (𝐴∪𝑅)⧵𝐴∩𝑅. Since 𝑝 is a smooth point of𝐴∪𝑅,

deg(2𝑝 ∩ (𝐴 ∪ 𝑅)) = 2. Consider the exact sequence

0→ ℐ(𝐴∪𝑅)∪2𝑝(1, 2)→ ℐ𝐴∪𝑅(1, 2)→ ℐ𝐴∪𝑅 ⊗𝒪2𝑝(1, 2)→ 0. (18)

Since deg(2𝑝) = 4 and 𝐴 is smooth, we have ℎ0(ℐ𝐴∪𝑅 ⊗ 𝒪2𝑝(1, 2)) = 2 if 𝑝 ∈
𝐴 ∪ 𝑅 and ℎ0(ℐ𝐴 ⊗𝒪2𝑝(1, 2)) = 4 if 𝑝 ∈ 𝑅. Hence it is sufficient to prove that

ℎ1(ℐ(𝐴∪𝑅)∪2𝑝(1, 2)) = 0.
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First of all, assume that 𝑝 ∈ 𝐴 ⧵ 𝑅. Let 𝐶 be the connected component of
𝐴 containing 𝑝. Set the following notation 𝐸 ∶= 𝐴 ⧵ 𝐶. Since 𝑅 is in the base
locus of ℐ𝐴(1, 1) we have that ℎ0(ℐ𝐴(1, 1)) = ℎ0(ℐ𝐴∪𝑅(1, 1)) (see [3, proof of
Theorem 1.1]). Moreover, thanks to part (1) and to [3, Remark 4.3], we have
ℎ0(ℐ𝐴∪𝑅(1, 1)) = ℎ0(ℐ𝐴(1, 1)) = ℎ0(ℐ𝐸(1, 1)) − 3. Thus 𝑝 is not in the base
locus of |ℐ𝐸(1, 1)|. Fix𝑀 ∈ |ℐ𝐸(1, 1)| such that 𝑝 ∉ 𝑆. Let 𝑌 be the surface of
|𝒪𝔽(0, 1)| containing 𝐶 and consider the residual exact sequence with respect
to 𝑌:

0→ ℐ𝐸∪𝑝(1, 1)→ ℐ𝐴∪2𝑝(1, 2)→ ℐ(𝐸∩𝑌)∪𝐶∪(2𝑝∩𝑌),𝑌(1, 2)→ 0. (19)

We now prove that
ℎ1(ℐ𝐸∪𝑝(1, 1)) = 0. (20)

Recall that 𝐴 = 𝐸 ∪ 𝐶 and 𝑝 ∈ 𝐶, hence we have the exact sequence

0→ ℐ𝐴(1, 1)→ ℐ𝐸∪𝑝(1, 1)→ ℐ𝑝,𝐶(2)→ 0.

Thanks to Theorem 2.19 we have that ℎ1(ℐ𝐴(1, 1)) = 0; on the other hand,
since 𝐶 is a smooth rational curve, we have ℎ1(ℐ𝑝,𝐶(2)) = ℎ1(𝒪𝐶(1)) = 0, and
this proves (20).
To conclude, it is now sufficient to prove that

ℎ1(ℐ(𝐸∩𝑌)∪𝐶∪(2𝑝∩𝑌),𝑌(1, 2)) = 0. (21)

Note that ℐ𝐶,𝑌(1, 2) ≅ 𝒪𝐹1(2𝑓) ≅ 𝒪𝑌(0, 1), hence, by [3, Remark 2.11] we
know that ℐ𝐶,𝑌(1, 2) is very ample. Therefore we get ℎ1(ℐ𝐶∪(2𝑝∩𝑌),𝑌(1, 2)) = 0.
Since 𝐸 ∩ 𝑌 consists of one point, we conclude that (21) holds.
Thus the exact sequence (19) gives ℎ1(ℐ𝐴∪2𝑝,𝔽(1, 2)) = 0, completing the

proof in the case 𝑝 ∈ 𝐴 ⧵ 𝑅.
Fix 𝑝 ∈ 𝑅 ⧵ (𝐴 ∩ 𝑅) and ecall that we need to prove that ℎ0(ℐ𝐴∪2𝑝(1, 2)) = 5.

Fix a general 𝑌′ ∈ |ℐ𝑝(0, 1)|. Since 𝑌′ is general, 𝑅 ⊈ 𝑌′ (and also 𝐿 ⊈ 𝑌′).
Since 𝑌′ is smooth, 𝑌′ ∩2𝑝 = (2𝑝, 𝑌′) is a scheme of degree 3 and Res𝑌′(2𝑝) =
{𝑝}. As 𝑝 ∈ 𝑅, we have that ℎ0(ℐ𝐴∪{𝑝}(1, 1)) = ℎ0(ℐ𝐴(1, 1)) = 2. Thus, by the
residual exact sequence of 𝑌′ it is sufficient to prove that

ℎ0(𝑌′, ℐ(𝐴∩𝑌′)∪(2𝑝,𝑌′)(1, 2)) ≤ 3.

Since𝒪𝑌′(1, 2) is very ample, we have ℎ0(𝑌′, ℐ(2𝑝,𝑌′)(1, 2)) = ℎ0(𝑌′,𝒪𝑌′(1, 2))−
3 = 4. So it is enough to prove that𝐴∩𝑌′ is not contained in the base locus,ℬ′,
of |𝒪(2𝑝,𝑌′)(1, 2)|. In the identification between 𝑌′ and 𝐹1 we have 𝒪𝑌′(1, 2) ≅
𝒪𝐹1(ℎ+3𝑓). Let𝑁 be the only element of |𝑓| that contains 𝑝. We have𝑁 ≅ ℙ1

and ℎ1(𝑁, ℐ2𝑝∩𝑁(1, 2)) = 0, but 𝑁 ⊆ ℬ′. Since 𝒪𝐹1(ℎ + 2𝑓) is very ample,
ℐ𝑝(ℎ+ 2𝑓) has only 𝑝 in its base locus. Thusℬ′ = 𝑁 and so, since 𝑅 ⊈ 𝑌′ (and
also 𝐿 ⊈ 𝑌′), ℬ′ cannot contain both points of 𝐴 ∩ 𝑌′.
The last case is 𝑝 ∈ 𝐴 ∩ 𝑅. To prove our claim, i.e. that ℎ0(ℐ2𝑝∪𝐴(1, 2)) <

ℎ0(ℐ𝐴(1, 2)), it suffices to use (18). Hence, a general 𝑆 is smooth. □

The following result is analogous to Proposition 4.1, if we choose the conics
to be twistor fibers.
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Proposition 4.5. Take 𝐴 ∈ 𝒯(3) such that ℎ0(ℐ𝐴(1, 1)) = 0. Then we have the
following:

(1) ℎ1(ℐ𝐴(1, 2)) = 0 and hence ℎ0(ℐ𝐴(1, 2)) = 3;
(2) there is an irreducible 𝑆 ∈ |ℐ𝐴(1, 2)|;
(3) the base locus of |ℐ𝐴(1, 2)| is contained in the union of 𝐴 and 3 different

curves of bidegree (1, 0);
(4) for a sufficiently general𝐴 (contained in a dense euclidean open subset of

𝒯(3)), we can take a smooth 𝑆 ∈ |ℐ𝐴(1, 2)|.

In the previous statement we assume 𝐴 ∈ 𝒯(3) such that ℎ0(ℐ𝐴(1, 1)) = 0.
Note that, thanks to Lemma 3.1, this implies that the conics in𝐴 do not belong
to any infinite family of twistor fibers contained in a smooth 𝑗-invariant surface
of bidegree (1, 1).

Proof. We start with the proof of (1). Fix a connected component 𝐶 of 𝐴 and
call 𝐷 the only element of |ℐ𝐶(0, 1)|. Set 𝐵 ∶= 𝐴 ⧵ 𝐶. To get ℎ1(ℐ𝐴(1, 2)) = 0,
mimicking the proof of Proposition 4.1 it is sufficient to prove ℎ1(𝐹1, ℐ𝐵∩𝐷(2𝑓))
= 0. Suppose ℎ1(𝐹1, ℐ𝐵∩𝐷(2𝑓)) > 0, i.e. assume the existence of 𝑇 ∈ |𝒪𝐹1(𝑓)|
containing the 2 points 𝐵∩𝐷. Since𝐶 ∈ |𝒪𝐹1(ℎ+𝑓)|, 𝐶∩𝑇 ≠ ∅. So 𝑇 hits every
connected component of𝐴. Remark 4.2 gives ℎ0(ℐ𝐴(1, 1)) > 0, a contradiction.
To prove (2), it is sufficient to show that the reducible cases do not cover the

whole |ℐ𝐴(1, 2)|. In fact, reasoning as in the proof of Proposition 4.1, the only
possible splittings are of the form (1, 0)+(0, 1)+(0, 1), which are in a finite num-
ber, or (1, 1)+(0, 1), where the bidegree (1, 1) component contains 2 connected
components of𝐴 and the remaining bidegree (0, 1) part is uniquely determined.
Now, ℎ0(ℐ𝐵(1, 1)) = 2, so, the set of all reducible elements of |ℐ𝐴(1, 2)| with an
irreducible component of bidegree (1, 1) does not cover |ℐ𝐴(1, 2)|.
We nowprove (3) and (4). Since ℎ0(ℐ𝐴(1, 1)) = 0 and𝐴 is 𝑗-invariant, neither

𝜋1(𝐴)nor𝜋2(𝐴)has a triple point (bothhave 3double points). Set𝐿1∪𝐿2∪𝐿3 ∶=
𝜋−12 (Sing(𝜋2(𝐴))) and 𝑅1 ∪ 𝑅2 ∪ 𝑅3 ∶= 𝜋−11 (Sing(𝜋1(𝐴))). Since #(𝐿𝑖 ∩ 𝐴) =
#(𝑅𝑖 ∩ 𝐴) = 2, 𝐿1 ∪ 𝐿2 ∪ 𝐿3 are in the base locus of |ℐ𝐴(1, 2)| and each 𝐿𝑖 and
each 𝑅𝑖 meets exactly 2 connected components of 𝐴.
To prove the existence of a smooth element, it is sufficient to reason as in the

proof of Proposition 4.4 case (3). □

We are now ready to prove the first part of Theorem 1.3.

Theorem 4.6. Fix 𝑛 ∈ {0, 1, 2, 3}. There is a smooth 𝑆 ∈ |𝒪𝔽(1, 2)| which con-
tains exactly 𝑛 twistor fibers.

Proof. A general 𝑆 ∈ |𝒪𝔽(1, 2)| contains only finitely many smooth conics.
Since the set of all twistor fibers has real codimension 4 in the space of all
smooth conics, a general 𝑆 ∈ |𝒪𝔽(1, 2)| contains no twistor fiber.
Now we prove the case 𝑛 = 1. Fix a twistor fiber 𝐶 and take a general

𝑆 ∈ |ℐ𝐶(1, 2)|. Assume that 𝑆 contains another twistor fiber, 𝐸. We have
ℎ1(ℐ𝐶(1, 2)) = ℎ1(ℐ𝐶∪𝐸(1, 2)) = 0 (Theorem 2.19 and Remark 2.14). Thus
|ℐ𝐶∪𝐸(1, 2)| is a 4-codimensional complex projective subspace of |ℐ𝐶(1, 2)| (this
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is explained by the equality ℎ0(ℐ𝐶∪𝐸(1, 2)) = ℎ0(ℐ𝐶(1, 2)) − 4 contained in [3,
proof of Theorem 1.1]). However 𝒯(1) is a real 4-dimensional space. So a gen-
eral 𝑆 ∈ |ℐ𝐶(1, 2)| does not contain any other twistor fiber.
Note that 𝐶 is the base locus of |ℐ𝐶(1, 2)|. By Bertini’s theorem a general

𝑆 ∈ |ℐ𝐶(1, 2)| is smooth outside 𝐶. Fix 𝑝 ∈ 𝐶 and let 2𝑝 be the closed sub-
scheme of 𝔽 with (ℐ𝑝)2 as its ideal sheaf. Recall that 2𝑝 ⊂ 𝑆 if and only if
𝑝 ∈ Sing(𝑆). Since dim𝐶 = 1, to get that 𝑆 is smooth, it is sufficient to prove
that ℎ0(ℐ2𝑝∪𝐶(1, 2)) ≤ ℎ0(ℐ𝐶(1, 2)) − 2 = 9. This follows from the proof of
Proposition 4.4 case (3).
The case 𝑛 = 2 is true by Proposition 4.4 with 𝒯(2) instead of 𝒞(2).
The case 𝑛 = 3 is true by Proposition 4.5. □

In the remainder of this section, we will construct a smooth (1, 2)-surface
containing 4 twistor fibers. The following lemma, in the case 𝑑 = 2, says that if
an irreducible (1, 2)-surface contains 4 disjoint smooth conics, then these con-
ics are not general, because three of them must be collinear.

Lemma4.7. Let𝑑 ≥ 2and𝐴 ∈ 𝒞(𝑑+2). If there is an irreducible𝑆 ∈ |𝒪𝔽(1, 𝑑)|,
then 𝐴 ∉ 𝒞∗(𝑑 + 2).

Proof. We prove the lemma by induction on 𝑑. We start with the case 𝑑 = 2.
Suppose that 𝐴 ∈ 𝒞∗(4), i.e. there is no union 𝐵 of 3 of the connected com-
ponents of 𝐴 such that #(𝐿 ∩ 𝐵) = 3 for some curve 𝐿 of bidegree (1, 0). Fix
a connected component 𝐶 of 𝐴 and set 𝐵 ∶= 𝐴 ⧵ 𝐶. Call 𝑌 the only element
of |ℐ𝐶(0, 1)|. Remark 2.9 gives Res𝑌(𝐴) = 𝐵. By assumption and Lemma 4.3,
ℎ0(ℐ𝐵(1, 1)) = 0. Since ℎ0(ℐ𝐴(1, 2)) ≠ 0, the residual exact sequence

0→ ℐ𝐵(1, 1)→ ℐ𝐴(1, 2)→ ℐ𝐴∩𝑌,𝑌(1, 2)→ 0 ,

gives ℎ0(𝑌, ℐ𝐴∩𝑌,𝑌(1, 2)) > 0 (otherwise |ℐ𝐴(1, 2)| = ∅). The scheme 𝐴 ∩ 𝑌 is
the union of 𝐶 and the 3 points 𝐵∩𝑌. In the identification of𝑌 with 𝐹1 the line
bundle𝒪𝑌(1, 2) goes to the line bundle𝒪𝐹1(ℎ+3𝑓) and𝐶 goes to an element of
|ℎ+𝑓|. Thus ℎ0(𝐹1, ℐ𝐵∩𝑌,𝐹1(2𝑓)) > 0. Thus at least 2 of the 3 points 𝐵∩𝑌 are in
the same fiber �̂� of the ruling |𝑓| of 𝐹1. Since �̂�∩𝐶 ≠ ∅, �̂� is a curve of bidegree
(1, 0) that meets at least 3 connected components of𝐴. Let 𝐵′ be the union of 3
components of 𝐴 that intersect �̂�. The curves 𝐵′ and �̂� give a contradiction.
Now assume that the result is true for 𝑑+1. Note that as a by-product of the

previous part, if 𝐵 ∈ 𝒞∗(𝑑 + 1), then ℎ0(ℐ𝐵(1, 𝑑 − 1)) = 0.
Assume 𝐴 ∈ 𝒞∗(𝑑 + 2) and that there is an irreducible 𝑆 ∈ |𝒪𝔽(1, 𝑑)|. Fix a

connected component 𝐶 of 𝐴 and set 𝐵 ∶= 𝐴 ⧵ 𝐶. Take a surface 𝑌 of bidegree
(0, 1) containing 𝐶. By means of the sequence in Formula (10), we either have
ℎ0(ℐ𝐵(1, 𝑑 − 1)) > 0 or ℎ0(𝑌, ℐ𝐴∩𝑌,𝑌(1, 𝑑)) > 0. Since 𝐴 ∈ 𝒞∗(𝑑 + 2), 𝐵 ∈
𝒞∗(𝑑+1) and hence, thanks to the inductive assumption, we have ℎ0(ℐ𝐵(1, 𝑑−
1)) = 0. The scheme 𝐴 ∩ 𝑌 is the union of 𝐶 and the scheme 𝐵 ∩ 𝑌 with
𝐴 ∩ 𝐵 ∩ 𝑌 = ∅. Up to the identification of 𝑌 and 𝐹1 we have 𝒪𝑌(1, 𝑑)(−𝐶) ≅
𝒪𝐹1(𝑑𝑓). Since 𝑌 has bidegree (0, 1), every connected component of 𝐵 is either
contained in 𝑌 or it intersects transversely 𝑌 at a unique point. By Remark 2.9,
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the set 𝐵 ∩𝑌 is formed by 𝑑 + 1 points. Thus ℐ𝐴∩𝑌,𝑌(1, 𝑑) ≅ ℐ𝐵∩𝑌(𝑑𝑓). We saw
that ℎ0(𝑌, ℐ𝐴∩𝑌,𝑌(1, 𝑑)) > 0, and this is true if and only if there are 𝑢1,…𝑢𝑑+1 ∈
𝐵 ∩ 𝑌 and 𝐹 ∈ |𝑓| such that that 𝑢𝑖 ≠ 𝑢𝑗, for 𝑖 ≠ 𝑗 and {𝑢1,… , 𝑢𝑑+1} ⊂ 𝐹. The
set 𝐹 ∩ 𝐶 is a unique point, 𝑜, and 𝑜 ∉ {𝑢1,… , 𝑢𝑑+1}, because 𝐵 ∩ 𝐶 = ∅. The
curve 𝐹 has bidegree (0, 1) and therefore 𝐴 ∉ 𝒞∗(𝑑 + 2), a contradiction. □

Thanks to the previous result, if an irreducible (1, 2)-surface contains 4 dis-
joint smooth conics, then they are in special position. We now show that if
these 4 conics are twistor fibers, then their position is very special. We start
by introducing the following notation. For 𝑛 ≥ 4, we denote by 𝒞(𝑛)− the set
of the elements 𝐴 ∈ 𝒞(𝑛) for which there exists a bidegree (1, 0) curve 𝐿 such
that𝐴 ∈ 𝒞(𝑛, 𝐿). The set 𝒞(𝑛)− parametrizes the families of 𝑛 collinear disjoint
smooth conics. For 𝑛 ≥ 4 we also write 𝒯(𝑛)− ∶= 𝒯(𝑛) ∩ 𝒞(𝑛)−. The families
𝒞(𝑛)− and 𝒯(𝑛)− are Zariski closed in 𝒞(𝑛) and 𝒯(𝑛), respectively.
The following lemma shows that if an irreducible (1, 2)-surface contains 4

twistor fibers, then they are all collinear.

Lemma 4.8. Take an irreducible 𝑆 ∈ |𝒪𝔽(1, 2)| containing 𝐴 ∈ 𝒯(4). Then
𝐴 ∈ 𝒯(4)−.

Proof. Suppose there exists an irreducible 𝑆 ∈ |𝒪𝔽(1, 2)| containing𝐴 ∈ 𝒯(4).
By Lemma 4.7 there exists a union 𝐵 of 3 of the connected components of 𝐴
such that 𝐵 ∈ 𝒯(3) ⧵𝒯∗(3), i.e., there exists a bidegree (1, 0) curve 𝐿, such that
𝐵 ∈ 𝒯(3, 𝐿) and thus, thanks to Remark 3.7 ℎ0(ℐ𝐵(1, 1)) > 0. However, the
same remark tells us that ℎ0(ℐ𝐵(1, 1)) = 1, ℎ1(ℐ𝐵(1, 1)) = 2, and that the only
element𝑀 of |ℐ𝐵(1, 1)| is irreducible.
As usual, set 𝐶 ∶= 𝐴 ⧵ 𝐵. As in Remark 4.2 since 𝐿 of bidegree (1, 0)meets

every connected component of 𝐵, then 𝑅 ∶= 𝑗(𝐿), of bidegree (0, 1), do the
same.
Thanks to Remark 2.16 we get 𝐵∪𝐿∪𝑅 ⊂ 𝑀. Since 𝑆 and𝑀 are irreducible,

thanks to Lemma 2.2, the one-dimensional scheme 𝑆 ∩𝑀 has bidegree (5, 4).
Since 𝐵 ∪ 𝐿 ∪ 𝑅 has bidegree (4, 4), then 𝐶 ⊈ 𝑀. Let 𝑌 be only element of
|ℐ𝐶(0, 1)|. Since 𝐵 ⊂ 𝑀 ∪ 𝑌, then 𝑀 ∪ 𝑌 ∈ |ℐ𝐴(1, 2)|. Moreover, since 𝑆 is
irreducible, then 𝑆 ≠ 𝑀 ∪ 𝑌, and hence ℎ0(ℐ𝐴(1, 2)) ≥ 2, i.e. ℎ1(ℐ𝐴(1, 2)) ≥ 3.
Since ℎ1(ℐ𝐵(1, 1)) = 2, the residual exact sequence

0→ ℐ𝐵(1, 1)→ ℐ𝐴(1, 2)→ ℐ𝐴∩𝑌,𝑌(1, 2)→ 0,

gives ℎ1(𝑌, ℐ𝐴∩𝑌,𝑌(1, 2)) > 0. As in the proof of Lemma 4.7 we obtain the fol-
lowing inequality ℎ1(𝐹1, ℐ𝐵∩𝑌(2𝑓)) > 0, i.e. there exists a curve �̂� ∈ |𝑓| of
bidegree (1, 0) which intersects at least 2 of the connected components of 𝐵.
Call𝐵′ the union of 2 of the connected components of𝐵 intersecting �̂�. Since

�̂� ∩ 𝐶 ≠ ∅ and 𝐵′ ∪ 𝐶 is 𝑗-invariant, every connected component of 𝐵′ ∪ 𝐶
meets 𝑗(�̂�). Remark 4.2, Proposition 4.1 and Bézout imply the existence of an
irreducible surface 𝑀′ of bidegree (1, 1) containing 𝐵′ ∪ 𝐶 ∪ �̂� ∪ 𝑗(�̂�). Since
𝐵′ ⊂ 𝑀′, �̂� and 𝑗(�̂�) contain at least 2 points of 𝑀′, then 𝐵′ ∪ �̂� ∪ 𝑗(�̂�) ⊂ 𝑀.
But by Remark 2.5 there is a unique curve of bidegree (1, 0) intersecting two
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different smooth conics, so �̂� = 𝐿 and both 𝐿 and 𝑗(𝐿) intersect every connected
component of 𝐵. Thus 𝐿 intersects each connected component of 𝐴, i.e. 𝐴 ∈
𝒞(4)−. □

As a byproduct of the proof of the previous result, we get the following lemma,
which says that there are infinitely many irreducible (1, 2)-surfaces containing
4 collinear twistor fibers.

Lemma 4.9. Take𝐴 ∈ 𝒯(4)− and assume that𝐴 is not contained in a surface of
bidegree (1, 1). Thendim |ℐ𝐴(1, 2)| = 1and |ℐ𝐴(1, 2)| contains exactly 4 reducible
elements of |𝒪𝔽(1, 2)|.

Proof. Let 𝐿 be the curve of bidegree (1, 0) that intersects every connected com-
ponent of 𝐴. Since every connected component of 𝐴 is 𝑗-invariant, 𝑗(𝐿) inter-
sects every connected component of 𝐴. In the proof of Lemma 4.8 we showed
that ℎ0(ℐ𝐴(1, 2)) ≥ 2. From the lines of that proof, it can be deduced that only
4 elements in |ℐ𝐴(1, 2)| are reducible and they are all obtained by fixing a con-
nected component 𝐶 of 𝐴 and taking the union of the unique surface 𝑀𝐶 of
bidegree (1, 1) containing𝐴⧵𝐶 and the unique surface𝑌𝐶 of bidegree (0, 1) con-
taining 𝐶. To complete the proof, it is sufficient to show that ℎ0(ℐ𝐴(1, 2)) ≤ 2.
Take a connected component 𝐶 of 𝐴 and consider the residual exact sequence

0→ ℐ𝐶(0, 1)→ ℐ𝐴(1, 2)→ ℐ𝑀𝐶∩𝐴,𝑀𝐶
(1, 2)→ 0. (22)

We have ℎ0(ℐ𝐶(0, 1)) = 1, because the intersection of 2 different elements of
|𝒪𝑌(0, 1)| is a curve of bidegree (1, 0). Thus by (22) to conclude the proof it is
sufficient to prove that the image 𝒱 of 𝐻0(ℐ𝐴(1, 2)) in 𝐻0(𝑀𝐶 , ℐ𝑀𝐶∩𝐴,𝑀𝐶

(1, 2))
has dimension at most 1. Bezóut gives that 𝐴 ∪ 𝐿 ∪ 𝑗(𝐿) is contained in the
base locus of |ℐ𝐵,𝑀𝐶

(1, 2)|. Every𝐷 ∈ |𝒱| has bidegree (5, 4) as a curve of 𝔽 and
thus a general 𝐷 ∈ |𝒱| is the union (counting multiplicities as divisors of the
smooth surface𝑀𝐶) of 𝐴 ∪ 𝐿 ∪ 𝑗(𝐿) and a curve 𝐸 of bidegree (1, 0)) as a curve
of 𝔽. Recall that𝑀𝐶 is the blow up ofℙ2 at 3 non collinear points and that these
3 exceptional divisors are the only curves of𝑀𝐶 with bidegree (1, 0). Since𝑀𝐶
has only finitely many curves of bidegree (1, 0), 𝐷 is the same for all non-zero
elements of 𝒱 and hence dim𝒱 = 1. □

The following result completes the proof of Theorem 1.3.

Theorem4.10. There exist irreducible𝑆 ∈ |𝒪𝔽(1, 2)| containing exactly 4 twistor
fibers and for any such 𝑆 and𝐴 ∈ 𝒯(4)with𝐴 ⊂ 𝑆, there exists a curve 𝐿 of bide-
gree (1, 0) intersecting each connected component of𝐴. Furthermore, ℎ0(ℐ𝐴(1, 2))
= 2 and each 𝑆 ∈ |ℐ𝐴(1, 2)| is singular along 𝐿.

Proof. ByTheorem1.4 no irreducible surface of bidegree (1, 2) contains at least
5 twistor fiber. The curve 𝐿 exists by Lemma 4.8. Now we reverse the con-
struction. We start with 𝐴 ∈ 𝒯(4, 𝐿)−. Let 2𝐿 be the closed subscheme of the
“double line”. To prove that every 𝑆 ∈ |ℐ𝐴(1, 2)| is singular at every point of
𝐿, it is suffices to prove that ℎ0(ℐ𝐴(1, 2)) = ℎ0(ℐ𝐴∪2𝐿(1, 2)). Lemma 4.9 gives
ℎ0(ℐ𝐴(1, 2)) = 2. Hence, it is sufficient to prove that ℎ0(ℐ𝐴∪2𝐿(1, 2)) > 1. For
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any connected component 𝐶 of 𝐴, let𝑀𝐶 be the only surface of bidegree (1, 1)
containing𝐴⧵𝐶 and let𝑌𝐶 be the only surface of bidegree (0, 1). Since𝐶∩𝐿 ≠ ∅,
𝐿 ∩ 𝑌𝐶 ≠ ∅. Since 𝑌𝐶 has bidegree (0, 1) and 𝐿 bidegree (1, 0), we get 𝐿 ⊂ 𝑌𝐶 .
Thus 𝐿 ⊆ 𝑀𝐶 ∩ 𝑌𝐶 and hence |ℐ𝐴∪2𝐿(1, 2)| contains at least the 4 reducible
elements of |ℐ𝐴(1, 2)|. Hence ℎ0(ℐ𝐴∪2𝐿(1, 2)) > 1. □

4.2. Non existence results for surfaces of bidegree (𝟏, 𝟐) and (𝟏, 𝟑). In this
last section, we prove our last two main results, i.e. Theorems 1.4 and 1.5.
For any 𝐴 ∈ 𝒯(𝑛)−, 𝑛 ≥ 4, let us call 𝐿 and 𝑅 ∶= 𝑗(𝐿) the curves of bidegree

(1, 0) e (0, 1) respectively, intersecting all the connected components of 𝐴.
In view of our goal, we need to discuss the reducibility of some surfaces con-

taining a certain number of twistor fibers. First of all, fix an integer 𝑛 ≥ 2, take
𝐵 ∈ 𝒯(4) such that ℎ0(ℐ𝐵(1, 1)) > 0 and call𝑀 the unique (see e.g. Remark 4.2)
surface of bidegree (1, 1) containing 𝐵. Since every element of𝒞(1) is contained
in an element of |𝒪𝔽(0, 1)| for each 𝐸 ∈ 𝒯(𝑛 − 1) there exists a reducible ele-
ment𝑊 ∈ |𝒪𝔽(1, 𝑘)|, union of𝑀 and 𝑛−1 surfaces of bidegree (0, 1) such that
𝐵∪𝐸 ⊂ 𝑊. The following lemma is a kind of inverse of this remark. Moreover,
it will also be a key tool in the last two proofs.

Lemma 4.11. If 𝑑 ≥ 2 and 𝐴 ∈ 𝒯(𝑑 + 3)− are such that ℎ0(ℐ𝐴(1, 𝑑)) > 0,
then every element of |ℐ𝐴(1, 𝑑)| has an irreducible component𝑀 of bidegree (1, 1)
containing at least 4 connected components of𝐴. In particular, for any 𝑛 ≥ 𝑑+3,
there is no irreducible 𝑆 ∈ |𝒪𝔽(1, 𝑑)| containing 𝐴 ∈ 𝒯(𝑛)−.

Proof. In order to prove the last statement, it is sufficient to do the case 𝑛 =
𝑑 + 3, and thus it is sufficient to prove the first assertion.
We use induction on 𝑑 ≥ 2. Let us first assume 𝑑 = 2. Take 𝐴 ∈ 𝒯(5)−

and let 𝐿 and 𝑗(𝐿) be the curves of bidegree (1, 0) and (0, 1) intersecting all the
connected components of 𝐴. Fix a connected component 𝐶 of 𝐴 and set 𝐵 ∶=
𝐴 ⧵ 𝐶. Since 𝐶 ∩ 𝐿 ≠ ∅, the curve 𝐶 ∪ 𝐿 is a connected and nodal curve of
bidegree (2, 1) with arithmetic genus 0. Hence ℎ0(𝒪𝐶∪𝐿(0, 1)) = 2. Thus there
is 𝑌 ∈ |ℐ𝐶∪𝐿(0, 1)| and such a 𝑌 is unique. Since any two smooth conics of 𝑌
meet, no component of 𝐵 is contained in 𝑌. Therefore, 𝐵 ∩ 𝑌 is formed by 4
points of 𝐿⧵(𝐿∩𝐶). Recall that𝒪𝑌(1, 2) ≅ 𝒪𝐹1(ℎ+3𝑓) and that𝐶 ∈ |𝒪𝐹1(ℎ+𝑓)|
and thus ℐ𝐴∩𝑌,𝑌 ≅ ℐ𝐵∩𝐿,𝑌(2𝑓). Since every element of |𝑓| contains a unique
point of 𝐿 we have that ℎ0(𝐷, ℐ𝐴∩𝑌,𝑌(1, 2)) = 0. The residual exact sequence of
𝑌

0→ ℐ𝐵(1, 1)→ ℐ𝐴(1, 2)→ ℐ𝐴∩𝑌,𝑌(1, 2)→ 0,
gives an isomorphism 𝜑 ∶ 𝐻0(ℐ𝐵(1, 1)) → 𝐻0(ℐ𝐴(1, 2)). If ℎ0(ℐ𝐵(1, 1)) = 0,
then ℎ0(ℐ𝐴(1, 2)) = 0. Now suppose ℎ0(ℐ𝐵(1, 1)) ≠ 0. The isomorphism 𝜑 says
that every𝑊 ∈ |ℐ𝐴(1, 2)| has 𝑌 as an irreducible component, say𝑊 = 𝑌 ∪𝑊1
with𝑊1 ∈ |ℐ𝐵(1, 1)|, and hence we have the thesis.
Now assume 𝑑 ≥ 3 and use induction on 𝑑. By reasoning as in the base case,

take 𝐴 ∈ 𝒯(𝑑 + 3)− and use the exact sequence

0→ ℐ𝐵(1, 𝑑 − 1)→ ℐ𝐴(1, 𝑑)→ ℐ𝐴∩𝑌,𝑌(1, 𝑑)→ 0,
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to prove that ℎ0(𝑌, ℐ𝐴∩𝑌,𝑌(1, 𝑑)) = 0 and thus that there is an isomorphism
𝜑 ∶ 𝐻0(ℐ𝐵(1, 𝑑 − 1)) → 𝐻0(ℐ𝐴(1, 𝑑)). Now, again, if ℎ0(ℐ𝐵(1, 𝑑 − 1)) = 0, then
ℎ0(ℐ𝐴(1, 𝑑)) = 0. So we assume ℎ0(ℐ𝐵(1, 𝑑 − 1)) ≠ 0. The isomorphism 𝜑 says
that each 𝑆 ∈ |ℐ𝐴(1, 𝑑)| has𝑌 as an irreducible component, i.e. 𝑆 = 𝐷∪𝑆1 with
𝑆1 ∈ |ℐ𝐵(1, 𝑑 − 1)|. The inductive assumption says that 𝑆1 has an irreducible
component𝑀 of bidegree (1, 1) containing at least 4 components of 𝐵. □

We now have all the ingredients to prove Theorems 1.4 and 1.5. First, we
prove that no irreducible surface of bidegree (1, 2) contains 5 twistor fibers.

Proof of Theorem 1.4. Suppose there exists an irreducible 𝑆 ∈ |𝒪𝔽(1, 2)| con-
taining𝐴 ∈ 𝒯(5). Lemma4.8 shows that for any union𝐴′ ⊂ 𝐴 of 4 components
of𝐴, there exists a union𝐴′′ ⊂ 𝐴′ of 3 connected components intersecting some
𝐿 of bidegree (1, 0). Let 𝐿 be a curve of bidegree (1, 0) intersecting the maximal
number, 𝑧, of components of 𝐴. Obviously 𝑧 ≥ 3. By Lemma 4.11 to get a
contradiction, it is sufficient to prove that 𝑧 ≥ 5.
Assume 𝑧 ∈ {3, 4}. Take any order 𝐶1,… , 𝐶5 of the connected components

of 𝐴 and set 𝐵𝑖 ∶= 𝜋1(𝐶𝑖), 1 ≤ 𝑖 ≤ 5. Each 𝐵𝑖 is a line of ℙ2. Since any two
conics contained in an element of |𝒪𝔽(1, 0)|meet, 𝐵1,… , 𝐵5 are 5 different lines
of ℙ2. For any 𝑖 < 𝑗 < ℎ there exists a curve 𝑇 of bidegree (1, 0) intersecting
𝐶𝑖, 𝐶𝑗 and 𝐶ℎ if and only if 𝐵ℎ contains the point 𝐵𝑖 ∩ 𝐵𝑗 and in this case 𝐿 =
𝜋−11 (𝐶𝑖 ∩ 𝐶𝑗).Without loss of generality, we can assume that 𝐿meets 𝐶1,… , 𝐶𝑧.

(a) Assume 𝑧 = 3 and hence 𝐵1 ∩ 𝐵2 ∈ 𝐵3. Applying Lemma 4.8 to 𝐶1 ∪
𝐶2 ∪ 𝐶4 ∪ 𝐶5 we have one of the following mutually exclusive relations:

𝐵1 ∩ 𝐵2 ∩ 𝐵4 ≠ ∅, 𝐵1 ∩ 𝐵2 ∩ 𝐵5 ≠ ∅,
𝐵1 ∩ 𝐵4 ∩ 𝐵5 ≠ ∅, 𝐵2 ∩ 𝐵4 ∩ 𝐵5 ≠ ∅.

Since 𝐵1 ∩ 𝐵2 ∈ 𝐵3 and 𝑧 = 3, we can exclude the first two cases, i.e. we have

𝐵1 ∩ 𝐵2 ∩ 𝐵4 = 𝐵1 ∩ 𝐵2 ∩ 𝐵5 = ∅.

Thus, either𝐵1∩𝐵4∩𝐵5 ≠ ∅ or𝐵2∩𝐵4∩𝐵5 ≠ ∅. Exchanging if necessary𝐶1 and
𝐶2wemay assume𝐵1∩𝐵4∩𝐵5 ≠ ∅, i.e. 𝐵4∩𝐵5 ∈ 𝐵1, and hence𝐵2∩𝐵4∩𝐵5 = ∅.
Since 𝐵2 ∩ 𝐵4 ∩ 𝐵5 = ∅, applying Lemma 4.8 to 𝐶2 ∪ 𝐶3 ∪ 𝐶4 ∪ 𝐶5 we have one
of the following mutually exclusive relations

𝐵2 ∩ 𝐵3 ∩ 𝐵4 ≠ ∅, 𝐵2 ∩ 𝐵3 ∩ 𝐵5 ≠ ∅,
𝐵3 ∩ 𝐵4 ∩ 𝐵5 ≠ ∅.

Since 𝐵4 ∩ 𝐵5 ∈ 𝐵1 and 𝑧 = 3, 𝐵3 ∩ 𝐵4 ∩ 𝐵5 = ∅. Since 𝐵2 ∩ 𝐵3 ∈ 𝐵1 and 𝑧 = 3,
𝐵2 ∩ 𝐵3 ∩ 𝐵5 = 𝐵2 ∩ 𝐵3 ∩ 𝐵4 = ∅, a contradiction.

(b) Assume 𝑧 = 4. Since 𝐶1 ∩ 𝐿 ≠ ∅, the curve 𝐶1 ∪ 𝐿 is a connected and
nodal curve of arithmetic genus 0 and bidegree (2, 1). Thus ℎ0(𝒪𝐶1∪𝐿(0, 1)) = 2.
Thus there is 𝑌 ∈ |ℐ𝐶1∪𝐿(0, 1)|. Since 𝑆 is irreducible, 𝑌 is not an irreducible
component of 𝑆. So the residual exact sequence of 𝑌

0→ ℐ𝐵(1, 1)→ ℐ𝐴(1, 2)→ ℐ𝐴∩𝑌,𝑌(1, 2)→ 0,
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gives ℎ0(𝑌, ℐ𝐴∩𝑌,𝑌(1, 2)) ≠ 0. Up to the isomorphism of 𝑌 and 𝐹1 we have
𝐿 = ℎ, 𝐶1 ∈ |𝒪𝐹1(ℎ+ 𝑓)| and 𝒪𝑌(1, 2) ≅ 𝒪𝐹1(ℎ+ 3𝑓). Since (𝐴 ⧵𝐶1) ∩𝐶1 = ∅,
ℐ𝐴∩𝑌,𝑌(1, 3) ≅ ℐ(𝐴⧵𝐶1)∩𝐷,𝐷(2𝑓). Since 𝐿meets 𝐶1,… , 𝐶4, (𝐴 ⧵𝐶1) ∩𝐷 contains a
set 𝐹 ⊂ 𝐿 such that#𝐹 = 3. Since every element of |𝑓| contains a unique point
of 𝐿, ℎ0(𝑌, ℐ𝐴⧵𝐶)∩𝑌,𝑌(2𝑓)) = 0, a contradiction. □

We now conclude with the proof of Theorem 1.5, which concerns surfaces of
bidegree (1, 3).

Proof of Theorem 1.5: Assume the existence of 𝐴 ∈ 𝒯(6) and of an irre-
ducible 𝑆 ∈ |𝒪𝔽(1, 3)| containing 𝐴. By Lemma 4.11 to get a contradiction
it is sufficient to prove the existence of a curve 𝐿 of bidegree (1, 0) such that
all the components of 𝐴 intersect 𝐿. By Lemma 4.7 for any union 𝐴′ ⊂ 𝐴 of 5
components of 𝐴 there is a union 𝐴′′ ⊂ 𝐴′ of 3 connected components inter-
secting some 𝐿 of bidegree (1, 0). Let 𝐿 be a curve of bidegree (1, 0) intersecting
the maximal number, 𝑧, of components of 𝐴. We have that 𝑧 ≥ 3. Therefore,
by Lemma 4.11 it is sufficient to prove that 𝑧 ≥ 6. Assume then that 𝑧 ≤ 5. We
will now exclude all the cases 𝑧 = 3, 4, 5.
For any connected component 𝐶 of 𝐴, Lemma 4.7 tells us that there exists a

curve 𝐿 of bidegree (1, 0) which intersects at least 3 connected components of
𝐴 ⧵ 𝐶. In particular there is an irreducible𝑀 ∈ |𝒪𝔽(1, 1)| containing at least 3
components of 𝐴 (see Remark 4.2). Note that 𝑗(𝑀) = 𝑀. We can take𝑀 with
the additional condition that it contains the maximal number 𝑒 of components
of 𝐴. Let 𝐸 be the union of the components of 𝐴 contained in𝑀. So 3 ≤ 𝑒 ≤
𝑧 ≤ 5.
Since each twistor fiber is 𝑗-invariant, 𝑗(𝐿) hits every connected component

of 𝐸. Bézout gives 𝐿 ∪ 𝑗(𝐿) ⊂ 𝑀 and 𝐿 ⊂ 𝑆. If 𝑒 ≥ 4, Bézout gives 𝑗(𝐿) ⊂ 𝑆.
However, the one-dimensional cycle𝑀 ∩ 𝑆 has bidegree (7, 5) and thus 𝑒 ≤ 4.
SetΣ ∶= 𝑆∩𝑀 (as a scheme-theoretic intersection). Since the one-dimensional
scheme Σ is the complete intersection of 𝔽with 2 very ample divisors, ℎ0(𝒪Σ) =
1. Set 𝐹 ∶= 𝐴 ⧵ 𝐸.

(a) Assume 𝑒 = 4. So 𝐸 ∪ 𝐿 ∪ 𝑗(𝐿) ⊂ Σ. Since 𝐸 ∪ 𝐿 ∪ 𝑗(𝐿) has bidegree
(5, 5) and ℎ0(𝒪Σ) = 1, Σ is the union of 𝐸 ∪ 𝐿 ∪ 𝑗(𝐿) and a multiple structure
on 𝐿. Note that Σ ∈ |𝒪𝔽(1, 3)| and that Σ contains 𝐸 ∪ 𝑗(𝐿) with multiplicity
1 and 𝐿 with multiplicity 3 (as divisors of the smooth surface𝑀). Since Σ has
multidegree (7, 5), Σ = 3𝐿 ∪ 𝑗(𝐿) ∪ 𝐸. Note that Σ contains the degree 4 zero-
dimensional scheme 𝐹 ∩ 𝑀. Since 𝐹 ∩ 𝐸 = ∅, 𝐹 ∩ (𝑗(𝐿) ∪ 𝐿) ≠ ∅. Thus
at least one irreducible component, 𝑇, of 𝐹 meets 𝐿 ∪ 𝑗(𝐿). Since 𝑗(𝑇) = 𝑇,
𝑇 ∩ 𝐿 ≠ ∅. Thus 𝑧 = 5. Let 𝐶 be a component of 𝐸. Since 𝐶 ∩ 𝐿 ≠ ∅, 𝐶 ∪ 𝐿 is
a connected and nodal curve of bidegree (2, 1) with arithmetic genus 0. Thus
ℎ0(𝒪𝐶∪𝐿(0, 1)) = 2. So there is 𝑌 ∈ |ℐ𝐶∪𝐿(0, 1)| ≠ 0. Since 𝑆 is irreducible,
𝑌 is not an irreducible component of 𝑆. Thus the residual exact sequence of
𝑌 gives ℎ0(𝑌, ℐ𝐴∩𝑌,𝑌(1, 3)) ≠ 0. Up to the isomorphism of 𝑌 and 𝐹1 we have
𝐿 = ℎ, 𝐶 ∈ |𝒪𝐹1(ℎ + 𝑓)| and 𝒪𝑌(1, 3) ≅ 𝒪𝐹1(ℎ + 4𝑓). Since (𝐴 ⧵ 𝐶) ∩ 𝐶 = ∅,
ℐ𝐴∩𝑌,𝑌(1, 3) ≅ ℐ(𝐴⧵𝐶)∩𝑌,𝑌(3𝑓). Since 𝑧 = 5, (𝐴 ⧵ 𝐶) ∩ 𝑌 contains a set 𝐻 ⊂ 𝐿
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such that #𝐻 = 4. Since every element of |𝑓| contains a unique point of 𝐿,
ℎ0(𝑌, ℐ𝐴⧵𝐶)∩𝑌,𝑌(3𝑓)) = 0, a contradiction.

(b) Assume 𝑒 = 3. Fix a connected component 𝐶 of 𝐸 and set 𝐵 ∶= 𝐴 ⧵𝐶.
Set {𝑌} ∶= |ℐ𝐶(0, 1)|. As in step (a), we have that 𝐿 ⊂ 𝑌. The following exact
sequence

0→ ℐ𝐵(1, 2)→ ℐ𝐴(1, 3)→ ℐ𝐶∪(𝐵∩𝑌),𝑌(1, 3)→ 0 (23)

is the residual exact sequence of 𝑌. Since 𝑌 is not an irreducible component of
𝑆, we have ℎ0(𝑌, ℐ𝐶∪(𝐵∩𝑌),𝑌(1, 3)) > 0. As in step (a), we have ℐ𝐶∪(𝐵∩𝑌),𝑌(1, 3) ≅
ℐ𝐵∩𝑌,𝐹1(3𝑓). We nowhave two possibilities: ℎ0(ℐ𝐵(1, 2)) = 0 orℎ0(ℐ𝐵(1, 2)) > 0.

(b1) Let us assume for the moment that ℎ0(ℐ𝐵(1, 2)) = 0. Then we have
ℎ0(𝑌, ℐ𝐶∪(𝐵∩𝑌),𝑌(1, 3)) ≥ 2 and ℎ1(𝑌, ℐ𝐶∪(𝐵∩𝑌),𝑌) ≥ 3. Up to the identification
of 𝑌 and 𝐹1 we have ℐ𝐶,𝑌(1, 3) ≅ 𝒪𝐹1(3𝑓). So the 5 points 𝐵 ∩ 𝑌 give at most
one condition to the linear system |𝒪𝐹1(3𝑓)|. Thus there is 𝐽 ∈ |𝒪𝐹1(𝑓)| such
that 𝐵 ∩ 𝑌 ⊂ 𝐽. Note that 𝐽 is a curve of bidegree (1, 0). The maximality of the
integer 𝑒 gives a contradiction.

(b2) Assume that ℎ0(ℐ𝐵(1, 2)) > 0. By Theorem 1.4 every surface contain-
ing B is reducible, say𝑀1 ∪𝑌 with𝑀1 irreducible of bidegree (1, 1) containing
at least 4 components of B. Thus 𝑒 ≥ 4, a contradiction. □

References
[1] Altavilla, Amedeo; Ballico, Edoardo. Twistor lines on algebraic surfaces.

Ann. Global Anal. Geom. 55 (2019), no. 3, 555–573. MR3936233, Zbl 07050118,
doi: 10.1007/s10455-018-9640-2. 1117

[2] Altavilla, Amedeo; Sarfatti, Giulia. Slice-polynomial functions and twistor geom-
etry of ruled surfaces in ℂℙ3.Math. Z. 291 (2019), no. 3-4, 1059–1092. MR3936099, Zbl
1415.53035, doi: 10.1007/s00209-018-2225-8. 1117

[3] Altavilla, Amedeo; Ballico, Edoardo; Brambilla, Maria C. Surfaces in the
flag threefold containing smooth conics and twistor fibers.Mediterr. J. Math. 19 (2022).
MR4508025, Zbl 1510.32043, doi: 10.1007/s00009-022-02202-3. 1118, 1121, 1123, 1124,
1125, 1126, 1128, 1139, 1141

[4] Altavilla, Amedeo; Ballico, Edoardo; Brambilla, Maria C.; Salamon, Simon.
Twistor geometry of the Flag manifold. Math. Z. 303 (2023), no. 24. MR4522734, Zbl
1507.14069, doi: 10.1007/s00209-022-03161-x. 1118, 1119, 1121, 1122, 1123, 1124, 1129,
1130

[5] Armstrong, John; Povero, Massimiliano; Salamon, Simon. Twistor lines on
cubic surfaces. Rend. Semin. Mat. Univ. Politec. Torino 71 (2013), no. 3-4, 317–338.
MR3506390, Zbl 1332.53063. 1117, 1118

[6] Atiyah, Michael F.; Hitchin, Nigel J.; Singer, Isadore M. Self-duality in four-
dimensional Riemannian geometry. Proc. Roy. Soc. London Ser. A 362 (1978), no. 1711,
425–461. MR0506229, Zbl 0389.53011. 1117, 1119

[7] Chirka, Evgenii M. Orthogonal complex structures in ℝ4. (Russian) Uspekhi Mat.
Nauk 73 (2018), no. 1, 99–172. Translation in Russian Math. Surveys 73 (2018), no. 1,
91–159. MR3749619, Zbl 1400.32013, doi: 10.4213/rm9788. 1117

[8] Fujiki, Akira; Pontecorvo, Massimiliano. Twistors and bi-Hermitian surfaces of
non-Kähler type. SIGMA Symmetry Integrability Geom. Methods Appl. 10 (2014), Paper
042, 13 pp. MR3210593, Zbl 1288.53038, doi: 10.3842/SIGMA.2014.042. 1117

http://www.ams.org/mathscinet-getitem?mr=3936233
http://www.emis.de/cgi-bin/MATH-item?07050118
http://dx.doi.org/10.1007/s10455-018-9640-2
http://www.ams.org/mathscinet-getitem?mr=3936099
http://www.emis.de/cgi-bin/MATH-item?1415.53035
http://www.emis.de/cgi-bin/MATH-item?1415.53035
http://dx.doi.org/10.1007/s00209-018-2225-8
http://www.ams.org/mathscinet-getitem?mr=4508025
http://www.emis.de/cgi-bin/MATH-item?1510.32043
http://dx.doi.org/10.1007/s00009-022-02202-3
http://www.ams.org/mathscinet-getitem?mr=4522734
http://www.emis.de/cgi-bin/MATH-item?1507.14069
http://www.emis.de/cgi-bin/MATH-item?1507.14069
http://dx.doi.org/10.1007/s00209-022-03161-x
http://www.ams.org/mathscinet-getitem?mr=3506390
http://www.emis.de/cgi-bin/MATH-item?1332.53063
http://www.ams.org/mathscinet-getitem?mr=0506229
http://www.emis.de/cgi-bin/MATH-item?0389.53011
http://www.ams.org/mathscinet-getitem?mr=3749619
http://www.emis.de/cgi-bin/MATH-item?1400.32013
http://dx.doi.org/10.4213/rm9788
http://www.ams.org/mathscinet-getitem?mr=3210593
http://www.emis.de/cgi-bin/MATH-item?1288.53038
http://dx.doi.org/10.3842/SIGMA.2014.042


1148 AMEDEO ALTAVILLA, EDOARDO BALLICO ANDMARIA CHIARA BRAMBILLA

[9] Gentili, Graziano; Salamon, Simon; Stoppato, Caterina. Twistor transforms of
quaternionic functions and orthogonal complex structures. J. Eur. Math. Soc. (JEMS) 16
(2014), no.11, 2323?2353. MR3283400, Zbl 1310.53045, doi: 10.4171/JEMS/488. 1117

[10] Hartshorne, Robin Algebraic Geometry. Springer-Verlag, Berlin–Heidelberg–New
York, 1977. xvi+496 pp. MR0463157, Zbl 0367.14001.

[11] Hitchin Nigel. Kählerian twistor spaces. Proc. London Math. Soc. (3) 43 (1981), no.1,
133–150. MR0623721, Zbl 0474.14024, doi: 10.1112/plms/s3-43.1.133. 1117, 1118, 1119

[12] Pontecorvo, Massimiliano. Complex structures on Riemannian four-
manifolds. Math. Ann. 309 (1997), no.1, 159–177. MR1467652, Zbl 0893.53026,
doi: 10.1007/s002080050108. 1117

[13] Salamon, Simon; Viaclovsky, Jeff. Orthogonal complex structures on do-
mains in ℝ4. Math. Ann. 343 (2009), no.4, 853–899. MR2471604, Zbl 1167.32017,
doi: 10.1007/s00208-008-0293-5. 1117, 1118

(Amedeo Altavilla)Dipartimento di Matematica, Università degli Studi di Bari ‘Aldo
Moro’, via Edoardo Orabona, 4, 70125, Bari, Italia
amedeo.altavilla@uniba.it

(Edoardo Ballico)Dipartimento Di Matematica, Università di Trento, Via Sommarive
14, 38123, Povo, Trento, Italia
edoardo.ballico@unitn.it

(Maria Chiara Brambilla) Università Politecnica delle Marche, via Brecce Bianche,
I-60131 Ancona, Italia
m.c.brambilla@univpm.it

This paper is available via http://nyjm.albany.edu/j/2023/29-45.html.

http://www.ams.org/mathscinet-getitem?mr=3283400
http://www.emis.de/cgi-bin/MATH-item?1310.53045
http://dx.doi.org/10.4171/JEMS/488
http://www.ams.org/mathscinet-getitem?mr=0463157
http://www.emis.de/cgi-bin/MATH-item?0367.14001
http://www.ams.org/mathscinet-getitem?mr=0623721
http://www.emis.de/cgi-bin/MATH-item?0474.14024
http://dx.doi.org/10.1112/plms/s3-43.1.133
http://www.ams.org/mathscinet-getitem?mr=1467652
http://www.emis.de/cgi-bin/MATH-item?0893.53026
http://dx.doi.org/10.1007/s002080050108
http://www.ams.org/mathscinet-getitem?mr=2471604
http://www.emis.de/cgi-bin/MATH-item?1167.32017
http://dx.doi.org/10.1007/s00208-008-0293-5
mailto:amedeo.altavilla@uniba.it
mailto:edoardo.ballico@unitn.it
mailto:m.c.brambilla@univpm.it
http://nyjm.albany.edu/j/2023/29-45.html

	1. Introduction
	2. Preliminaries and first results
	3. Surfaces of bidegree (1,d)
	4. Surfaces of bidegree (1,2) and (1,3)
	References

