New York Journal of Mathematics

New York J. Math. 29 (2023) 1097-1116.

Composition properties of hyperbolic links in handlebodies

Colin Adams and Daniel Santiago

Abstract

We consider knots and links in handlebodies that have hyperbolic complements and operations akin to composition. Cutting the complements of two such open along separating twice-punctured disks such that each of the four resulting handlebodies has positive genus, and gluing a pair of pieces together along the twice-punctured disks in their boundaries, we show the result is also hyperbolic. This should be contrasted with composition of any pair of knots in the 3 -sphere, which is never hyperbolic. Similar results are obtained when both twice-punctured disks are in the same handlebody and we glue a resultant piece to itself along copies of the twicepunctured disks on its boundary. We include applications to staked links.

CONTENTS

1. Introduction 1097
2. Proof of main result 1100
3. Applications 1111

References 1115

1. Introduction

A compact orientable 3-manifold M is tg-hyperbolic if the manifold M^{\prime} obtained from M by shaving off all torus boundaries and capping off all sphere boundaries with balls admits a finite volume hyperbolic metric such that all remaining boundary components are totally geodesic. For a link L in a handlebody H, we say that the pair (H, L) is tg-hyperbolic if the complement of an open regular neighborhood of L in H is tg-hyperbolic. By the Mostow-Prasad Rigidity Theorem, such a hyperbolic metric will only depend on the complement $H \backslash L$ up to homeomorphism, which allows us to associate a hyperbolic volume to (H, L) that is invariant under ambient isotopies of L in H.

Work of W. Thurston implies that the complement of a link in a compact orientable 3-manifold is tg-hyperbolic if and only if it contains no properly embedded essential disks, spheres, annuli or tori. A sphere is essential if it does

[^0]not bound a ball. A disk is essential if it is not boundary parallel. A torus is essential if it is incompressible and not boundary-parallel. Annuli are essential if they are incompressible, boundary-incompressible and not boundary-parallel. In a manifold with no essential disks or spheres, an annulus that is incompressible is boundary-incompressible if and only if it is not boundary-parallel.

Examples of knots and links in handlebodies with complements that are tghyperbolic appear in [5], [7], [8], [9], and [12]. In [3], a large source of such examples is provided. Results from [11] can also be used to generate many more.

Let L_{1} and L_{2} be two links in handlebodies H_{1} of genus g_{1} and H_{2} of genus g_{2} respectively. Just as we have composition of two links in the 3 -sphere, we would like to define composition of these links in handlebodies.

To that end, let $D_{1} \subset H_{1}, D_{2} \subset H_{2}$ be properly embedded disks twice punctured by L_{1}, L_{2} respectively which separate balls B_{1} and B_{2} from H_{1} and H_{2} such that $B_{1} \cap L_{1}$ and $B_{2} \cap L_{2}$ are unknotted arcs. Discarding the balls yields two handlebodies $H_{1}^{\prime} \subset H_{1}$ and $H_{2}^{\prime} \subset H_{2}$. Let $L_{1}^{\prime}=H_{1}^{\prime} \cap L_{1}$ and $L_{2}^{\prime}=H_{2}^{\prime} \cap L_{2}$. Glue H_{1}^{\prime} to H_{2}^{\prime} along D_{1} and D_{2} via ϕ. Since ϕ sends the endpoints of the arc in L_{1}^{\prime} to the endpoints of the arc in L_{2}^{\prime}, this results in a link in a handlebody, denoted $\left(H_{1}^{\prime}, L_{1}^{\prime}, D_{1}\right) \oplus_{\phi}\left(H_{2}^{\prime}, L_{2}^{\prime}, D_{2}\right)$ in H_{3} as in Figure 1.

Figure 1. Forming the link $\left(H_{1}^{\prime}, L_{1}^{\prime}, D_{1}\right) \oplus_{\phi}\left(H_{2}^{\prime}, L_{2}^{\prime}, D_{2}\right)$

In contrast to the usual composition of links, the link/handlebody pair $\left(H_{1}^{\prime}, L_{1}^{\prime}, D_{1}\right) \oplus_{\phi}\left(H_{2}^{\prime}, L_{2}^{\prime}, D_{2}\right)$ depends highly on D_{1}, D_{2}, and ϕ. Furthermore, while composition of links in S^{3} never results in a hyperbolic link, the pair $\left(H_{1}^{\prime}, L_{1}^{\prime}, D_{1}\right) \oplus_{\phi}\left(H_{2}^{\prime}, L_{2}^{\prime}, D_{2}\right)$ can be tg-hyperbolic.

However, even if both $H_{1} \backslash L_{1}$ and $H_{2} \backslash L_{2}$ are tg-hyperbolic, it is not always true that $\left(H_{1}^{\prime}, L_{1}^{\prime}, D_{1}\right) \oplus_{\phi}\left(H_{2}^{\prime}, L_{2}^{\prime}, D_{2}\right)$ is tg-hyperbolic. In fact, the disks D_{1} and D_{2} can always be chosen so that at least one is "knotted" and there is an essential torus in the link complement associated to $\left(H_{1}^{\prime}, L_{1}^{\prime}, D_{1}\right) \oplus_{\phi}\left(H_{2}^{\prime}, L_{2}^{\prime}, D_{2}\right)$ as shown in Figure 2.

FIGURE 2. By choosing one of D_{1}, D_{2} to be "knotted", one can create an essential torus in the complement $H_{3} \backslash L_{3}$ which separates a knot exterior from H_{3} of the form appearing in the last image.

In Section 2, we provide a method to avoid the problem with "knotted disks". In Theorem 2.1, we prove that if the two handlebody/link pairs cut along their disks appear as submanifolds of handlebody/link pairs of higher genus that are tg -hyperbolic, then the composition of the original pair is tg-hyperbolic. The presence of the rest of the higher genus tg-hyperbolic handlebodies prevents the disk from being "knotted". We also show an analogue of this result where
one cuts along two separating twice punctured disks in a single handlebody and glues the resulting manifold to itself along a homeomorphism of the twice punctured disks.

In Section 3, we discuss applications. As mentioned, [3] and [11] provide many examples of tg -hyperbolic links in handlebodies, and our construction here can be applied to them to generate many more. Furthermore, these results can be applied to staked links introduced in [2], which correspond to link projections with isolated poles placed in the complementary regions, over which strands of the link cannot pass. These are equivalent to links in handlebodies.

We can also consider applications to knotoids. In [1], a definition of what it means for a planar knotoid to be hyperbolic is given in terms of a corresponding knot in a handlebody being tg-hyperbolic. So the results here can be applied to extend the known examples of hyperbolic planar knotoids.

In addition to considering knots in handlebodies, there is work that has been done on hyperbolicity of links in thickened surfaces, as in [4] and [11]. Questions about compositions have been addressed in that situation, as in [6]. Converting a method applied there to our situation can avoid the problem of knotted disks and allow composition of tg-hyperbolic links in handlebodies to be tg-hyperbolic without requiring them to be submanifolds as described above. That is, we can take a geodesic g that runs from the surface of the handlebody to the link. Then the boundary of a regular neighborhood of g, including its endpoint on the link, will be a properly embedded twice-punctured disk that cannot be knotted and therefore allows composition to yield tg-hyperbolic links in handlebodies. However, we do not include the details of the proof here.

Acknowledgements. This research was supported by Williams College and NSF Grant DMS-1947438. A special thanks to the other members of the knot theory research group in the SMALL REU program at Williams College in summer of 2022, including Alexandra Bonat, Maya Chande, Maxwell Jiang, Zachary Romrell, Benjamin Shapiro and Dora Woodruff. Without the many helpful conversations with them, this paper would not have come into being. And thanks also to the referee for helpful coments.

2. Proof of main result

For any submanifold S of a smooth manifold M, we denote by $N(S)$ a closed regular neighborhood of S in M and by $N(S)$ the interior of $N(S)$. For a space X, we denote by $|X|$ the number of connected components of X. Throughout, we use the fact that a handlebody is irreducible, which is to say that it contains no essential spheres. This is true because a handlebody can be embedded in S^{3}, and any sphere in S^{3} cuts S^{3} into two balls. So the sphere in the handlebody will bound a ball to one side.

Let H_{1}, H_{2} be two handlebodies, each of genus at least 2, that contain links L_{1} and L_{2} such that $H_{1} \backslash L_{1}$ and $H_{2} \backslash L_{2}$ are tg-hyperbolic. Let E_{1} and E_{2} be properly
embedded disks in H_{1} and H_{2}, which separate H_{1} and H_{2} into handlebodies $H_{1,1}, H_{1,2}$ and $H_{2,1}, H_{2,2}$ of genera $g_{1,1}, g_{1,2}$ and $g_{2,1}, g_{2,2}$ respectively, where all genera are at least 1 . Suppose further that E_{1} and E_{2} are each twice punctured by L_{1} and L_{2} respectively. Let $L_{i, j}=L_{i} \cap H_{i, j}$.

We denote by $M_{i, j}=H_{i, j} \backslash \stackrel{\circ}{N}\left(L_{i, j}\right)$ and by $F_{i}=E_{i} \backslash \stackrel{\circ}{N}\left(L_{i}\right)$ the corresponding separating surfaces. As we will ultimately only be interested in $M_{1,1}$ and $M_{2,2}$, we will for convenience often drop the extra subscripts and write $M_{1,1}$ and $M_{2,2}$ as M_{1} and M_{2} respectively.

Figure 3. The links L_{1}, L_{2} in H_{1}, H_{2} respectively and the link L in the handlebody H.

Gluing $H_{1,1}$ to $H_{2,2}$ along an orientation preserving homeomorphism $\phi: F_{1} \rightarrow F_{2}$ sending ∂E_{1} to ∂E_{2} and $\partial F_{1} \cap \partial N\left(L_{1,1}\right)$ to $\partial F_{2} \cap \partial N\left(L_{2,2}\right)$ yields a manifold/link pair denoted $\left(H_{1,1}, L_{1,1}, E_{1}\right) \oplus_{\phi}\left(H_{2,2}, L_{2,2}, E_{2}\right)$ which is a handlebody H of genus $g_{1,1}+g_{2,2}$ containing the link L formed by gluing $L_{1,1}$ and $L_{2,2}$ along their endpoints, as in Figure 3. Let H_{L} be the complement of $N(L)$ in H. We denote by F the image of F_{1} and F_{2} in H_{L}, and by E the separating disk in H corresponding to F.

There is one component of L, which we denote by K, that is cut into two arcs K_{1} and K_{2} by F, the arcs of which are in $H_{1,1}$ and $H_{2,2}$ respectively. We denote $\partial N(K)$ by T_{K}. We denote the sub-annuli of T_{K} corresponding to the arcs K_{1} and K_{2} by $A_{K_{1}}$ and $A_{K_{2}}$ respectively. A hyperbolic manifold is always assumed tg-hyperbolic unless otherwise stated.

Theorem 2.1. Let L_{1} and L_{2} be links in H_{1} and H_{2} such that $H_{1} \backslash L_{1}$ and $H_{2} \backslash L_{2}$ are tg-hyperbolic, with $E_{1} \subset H_{1}$ and $E_{2} \subset H_{2}$ twice-punctured disks separating each of H_{1} and H_{2} into handlebodies, all of positive genus. If $\phi: E_{1} \rightarrow E_{2}$ is a homeomorphism sending ∂E_{1} to ∂E_{2} and sending punctures to punctures, then $(H, L)=\left(H_{1,1}, L_{1,1}, E_{1}\right) \oplus_{\phi}\left(H_{2,2}, L_{2,2}, E_{2}\right)$ is tg-hyperbolic.

To prove Theorem 2.1, it is enough to show that since $H_{1} \backslash \stackrel{\circ}{N}\left(L_{1}\right)$ and $H_{2} \backslash$ $\stackrel{\circ}{N}\left(L_{2}\right)$ contain no essential disks, spheres, annuli and tori, the same holds for $H \backslash N(L)$. In the remainder of this section, we rule out these four kinds of essential surfaces with a sequence of lemmas.

Lemma 2.2. The surfaces F, F_{1}, and F_{2} are incompressible and boundary incompressible in H_{L}.

Proof. We show that F is incompressible and boundary incompressible. The same reasoning immediately applies to F_{1} and F_{2}, as we only use that M_{1} and M_{2} are submanifolds of the hyperbolic manifolds $H_{1} \backslash \stackrel{\circ}{N}\left(L_{1}\right)$ and $H_{2} \backslash \stackrel{\circ}{N}\left(L_{2}\right)$ respectively.

Suppose that F is compressible. Then there is some nontrivial circle $C \subset F$ which bounds a disk D^{\prime} in M_{1} or M_{2}. Suppose $D^{\prime} \subset M_{1}$ and let D be the disk in E bounded by C. Suppose that D is punctured once by L. Then the sphere $D \cup D^{\prime}$ is punctured once by K_{1}, a contradiction. Suppose next that D is punctured twice by L. Then K_{1} is contained in the 3-ball bounded by $D \cup D^{\prime}$ in H_{1}, so K_{1} can be pushed into a neighborhood of E by an isotopy fixing the endpoints of K_{1}. Hence M_{1} contains a properly embedded disk that is essential since the boundary of the disk, which is isotopic to ∂E_{1}, splits ∂H_{1} into two surfaces of positive genus. This contradicts the fact that that $H_{1} \backslash \stackrel{\circ}{N}\left(L_{1}\right)$ is hyperbolic. We reach the analogous contradictions if $D^{\prime} \subset M_{2}$, since $H_{2} \backslash \stackrel{\circ}{N}\left(L_{2}\right)$ is hyperbolic.

Suppose next that F is boundary compressible. Then there is a nontrivial arc $\alpha \subset F$ which together with an $\operatorname{arc} \beta \subset \partial H_{L}$ bounds a disk D in M_{1} or M_{2} such that $D \cap F=\alpha$. Suppose $D \subset M_{1}$. There are two cases.

Case 1: The $\operatorname{arc} \beta$ is in $A_{K_{1}}$. If β is trivial in $A_{K_{1}}$, then we can isotope D so that $\partial D \subset F$, which yields a compression disk for F since α was a nontrivial arc in F, a contradiction. If β is nontrivial in $A_{K_{1}}$, then it is a spanning arc of $A_{K_{1}}$. Thus, K_{1} together with an arc in E bounds a disk in M_{1}. Thus we can push K_{1} onto F in H_{L} through an isotopy fixing the endpoints of K_{1}. Once we have moved K_{1} out of the way, we can construct an essential disk in M with boundary isotopic in ∂H_{L} to ∂E, which contradicts that $H_{1} \backslash \stackrel{(}{N}\left(L_{1}\right)$ is tg-hyperbolic.

Case 2: The arc β is in ∂H. Suppose D is separating in $H_{1,1}$. Since D is disjoint from $A_{K_{1}}, D$ separates M_{1} into two regions, each of which contains an endpoint of K_{1}. Since K_{1} is connected, this is a contradiction.

Suppose D is not separating in $H_{1,1}$. The arc α separates an annulus A from F such that $A^{*}=A \cup D$ is a properly embedded annulus in H_{L} with one boundary component a meridian on T_{K} and another boundary component on ∂H. Since D is not separating in $H_{1,1}, \partial A^{*} \cap \partial H$ is nontrivial in ∂H, thus A^{*} is an essential annulus in M_{1}, which contradicts that $H_{1} \backslash \stackrel{\circ}{N}\left(L_{1}\right)$ is hyperbolic.
Since $H_{2} \backslash \stackrel{\circ}{N}\left(L_{2}\right)$ is hyperbolic, we reach the analogous contradictions if $D \subset$ M_{2}, and thus F is boundary incompressible.

Lemma 2.3. The manifold H_{L} is irreducible.
Proof. Suppose H_{L} contains an essential sphere S. Suppose first that $S \cap F=\emptyset$. Then $S \subset M_{1}$ or $S \subset M_{2}$, which implies that one of $H_{1} \backslash \stackrel{\circ}{N}\left(L_{1}\right)$ or $H_{2} \backslash \stackrel{\circ}{N}\left(L_{2}\right)$ contains an essential sphere, a contradiction.

Suppose next that $S \cap F \neq \emptyset$. We assume that $|S \cap F|$ is minimal among all essential spheres in H_{L}. An innermost circle C of $S \cap F$ in S bounds a disk D in S such that $D \cap F=C$. Since F is incompressible, C bounds a disk D^{\prime} in F. Then we can view $D \cup D^{\prime}$ as a sphere in $H_{1,1}$ or $H_{2,2}$, which from the last case must bound a ball in H_{L}. Thus, we can push D to D^{\prime} and slightly beyond, pushing any other intersections of S with D^{\prime} out of the way as well, to reduce $|S \cap F|$, contradicting minimality.

Lemma 2.4. The manifold H_{L} is boundary irreducible.
Proof. Suppose ∂H_{L} has a compressing disk D^{\prime}. Suppose first that $\partial D^{\prime} \subset \partial N(L)$. Then the sphere given by $\partial N\left(D^{\prime} \cup K^{\prime}\right)$, where K^{\prime} is the corresponding component of L, does not bound a ball to either side, contradicting the fact we have already eliminated essential spheres in H_{L}.

Suppose now that $\partial D^{\prime} \subset \partial H$. If $D^{\prime} \cap F=\emptyset$, then one of $\partial H_{1,1}$ or $\partial H_{2,2}$ has a compression disk in M_{1} or M_{2} respectively, which contradicts that $H_{1} \backslash \stackrel{N}{N}\left(L_{1}\right)$ and $H_{2} \backslash \stackrel{\circ}{N}\left(L_{2}\right)$ are hyperbolic. Thus we can assume that $D^{\prime} \cap F \neq \emptyset$, and we further assume that $\left|D^{\prime} \cap F\right|$ is minimal among all compression disks of ∂H_{L}. Then by incompressibility of F, the elements of $D^{\prime} \cap F$ are all arcs. By minimality of $\left|D^{\prime} \cap F\right|$, an outermost arc of $D^{\prime} \cap F$ in D^{\prime} is then nontrivial in F, as otherwise by doing a surgery we could find a compression disk $D^{\prime \prime}$ of ∂H_{L} with $\left|D^{\prime \prime} \cap F\right|<\left|D^{\prime} \cap F\right|$. This outermost arc cuts a disk from D^{\prime} that gives a boundary compression for F, a contradiction.

Lemma 2.5. The manifold H_{L} does not contain an essential annulus A with $A \cap F=\emptyset$.

Proof. Suppose H_{L} contains such an annulus, and assume without loss of generality that $A \subset M_{1}$. We can view A as a properly embedded annulus \bar{A} in $H_{1} \backslash \stackrel{N}{N}\left(L_{1}\right)$ which we will show is essential $H_{1} \backslash \stackrel{N}{N}\left(L_{1}\right)$, a contradiction to its being tg-hyperbolic.

Suppose \bar{A} is compressible in $H_{1} \backslash \stackrel{N}{N}\left(L_{1}\right)$. Then a nontrivial simple closed curve $\gamma \subset \bar{A}$ bounds a disk D in $H_{1} \backslash \stackrel{N}{N}\left(L_{1}\right)$. We assume that $\left|D \cap F_{1}\right|$ is minimal
among all compression disks of \bar{A} in $H_{1} \backslash \stackrel{N}{N}\left(L_{1}\right)$. Note that the components of $D \cap F_{1}$ are circles. If $D \cap F_{1}=\emptyset$, then $D \subset M_{1}$, which implies that A is compressible in H_{L}, a contradiction. If $D \cap F_{1} \neq \emptyset$, by incompressibility of F_{1}, an innermost circle of $D \cap F_{1}$ in D is trivial in F_{1}, hence by irreducibility of H_{L}, we can reduce $\left|D \cap F_{1}\right|$ by an isotopy, contradicting minimality.

Thus, \bar{A} is boundary compressible in $H_{1} \backslash \stackrel{\circ}{N}\left(L_{1}\right)$. (Note that if \bar{A} is boundary parallel, then it is boundary compressible.) Therefore, both boundary components of \bar{A} must be on the same component of ∂H_{L}. We consider two cases.

Case 1: The annulus A has both boundary components on ∂H. Suppose \bar{A} is boundary compressible in $H_{1} \backslash \stackrel{\circ}{N}\left(L_{1}\right)$. Then a nontrivial arc in \bar{A} together with an arc in ∂H_{1} bounds a disk D in $H_{1} \backslash N\left(L_{1}\right)$. We assume $\left|D \cap F_{1}\right|$ is minimal among all boundary compressing disks of \bar{A}. If $D \cap F_{1}=\emptyset$, then $D \subset M_{1}$, which implies that A is boundary compressible in H_{L}, a contradiction. If $\left|D \cap F_{1}\right| \neq \emptyset$, by incompressibility of F_{1} and minimality, the components of $D \cap F_{1}$ are arcs. An outermost arc in D must be nontrivial in F_{1}, as otherwise, we could find a boundary compression disk D^{\prime} of \bar{A} in $H_{1} \backslash \stackrel{N}{N}\left(L_{1}\right)$ with $\left|D^{\prime} \cap F_{1}\right|<\left|D \cap F_{1}\right|$, a contradiction. But then we have a boundary compression disk for F_{1} in H_{L}, a contradiction to Lemma 2.2.

Case 2: The annulus A has both boundary components on $\partial N(L)$. Suppose first that the components ∂A are on a single torus component of $\partial N(L)$ in M_{1}, and that \bar{A} is boundary compressible in $H_{1} \backslash \stackrel{N}{N}\left(L_{1}\right)$. A nontrivial arc in \bar{A} together with an arc in $\partial N\left(L_{1}\right)$ bounds a disk D in $H_{1} \backslash \stackrel{N}{\left(L_{1}\right)}$. Note that the components of $D \cap F_{1}$ are circles, thus repeating the minimality argument from Case 1 it follows that \bar{A} is boundary compressible in H_{L}, a contradiction.

Suppose next that the components of ∂A are both in T_{K}. Since $A \cap F=\emptyset$, both components of ∂A are $(1,0)$ curves in T_{K}. Suppose \bar{A} is boundary compressible in $H_{1} \backslash \stackrel{N}{N}\left(L_{1}\right)$, then a nontrivial $\operatorname{arc} \alpha$ in \bar{A} together with an $\operatorname{arc} \beta \subset T_{K}$ bounds a disk D in $H_{1} \backslash \stackrel{N}{N}\left(L_{1}\right)$. Again, choose D such that $\left|D \cap F_{1}\right|$ is minimal.

If $\beta \cap F=\emptyset$, the components of $\left|D \cap F_{1}\right|$ are circles, and thus we reach a contradiction by repeating the minimality argument from Case 1 and obtaining a boundary compression for A in H_{L}. If $\beta \cap F \neq \emptyset$, then β intersects $\partial N\left(L_{1}\right) \cap$ $M_{1,2}$ in at least one arc. Thus, D must intersect F in at least one arc. Choosing an outermost arc on D, we obtain a disk in $D \cap M_{1,2}$ with a boundary consisting of two arcs, one a nontrivial arc in F and one in $\partial N\left(L_{1}\right) \cap M_{1,2}$. This contradicts boundary incompressibility of F_{1}.

Lemma 2.6. The manifold H_{L} contains no essential annuli.

Proof. Suppose H_{L} contains an essential annulus A. We assume that $|A \cap F|$ is minimal among all essential annuli in H_{L}. From Lemma 2.5, we can assume that $A \cap F \neq \emptyset$. There are three cases.

Case 1: The annulus A has boundary components $\partial_{1} A, \partial_{2} A$ in ∂H. By minimality and incompressibility and boundary incompressibility of F, the components of $A \cap F$ are all either nontrivial circles in A and F or all nontrivial arcs in A and F.
(1a) The components of $A \cap F$ are all nontrivial circles in A and F. Then up to isotopy, the boundary components $\partial_{1} A, \partial_{2} A$ do not intersect F. Suppose some component of ∂A, say $\partial_{1} A$, is in M_{1}. Then a circle C in $A \cap F$ together with $\partial_{1} A$ bounds an annulus $A^{*} \subset A$ in M_{1} such that $A^{*} \cap F=C$.

Let D denote the disk in E bounded by C. Suppose D is punctured once by L. Then H_{L} contains a properly embedded once-punctured disk $D \cup A^{*}$ which can be pushed off E to yield an essential annulus in M_{1}, contradicting Lemma 2.5.

Suppose D is punctured twice by L. Then we can slide C along E out to ∂H. Hence we obtain an annulus $A^{* *}$ that is entirely contained in M_{1}.

So, $A^{* *}$ is a properly embedded annulus in M_{1}, which is incompressible since $\partial_{1} A, C$ are nontrivial in A. Hence by Lemma 2.5 , it is boundary compressible in H_{L} and both boundary curves are on ∂H_{1}.

Doing the boundary compression on $A^{* *}$ yields a disk with boundary on ∂H_{1}. If the boundary of the disk is trivial on H_{1}, as happens when the two boundaries of $A^{* *}$ are parallel on ∂H_{1}, then we can form a sphere from the disk and another disk on ∂H_{1}. Irreducibility of H_{L} implies we can then isotope A to lower the number of intersections with F, a contradiction.

If the boundary of the disk is nontrivial on H_{1}, we contradict boundary irreducibility of H_{L}.
(1b) The components of $A \cap F$ are nontrivial arcs in both A and F. Then A is cut by F into disks in M_{1} and M_{2} with boundaries that consist of two opposite sides in F and two opposite sides in ∂H. Let $D_{1} \subset M_{1}$ be one such disk. Let $R \subset F$ be a rectangle such that two opposite sides of R are the components of $D_{1} \cap F$, and the other two sides are disjoint curves in ∂E. Then $D_{1} \cup R$ is either a properly embedded Möbius band Q or a properly embedded annulus $A_{1} \subset M_{1}$ in H_{L}.

We begin with the case it is an annulus, which we claim is essential in H_{L}. By minimality of $|A \cap F|, A_{1}$ is incompressible, as otherwise we could push D_{1} through F.

Suppose A_{1} is boundary compressible in H_{L}. Then a nontrivial arc $\alpha \subset A_{1}$ bounds a disk D in H_{L} with an arc $\beta \subset \partial H$. We suppose $|D \cap F|$ is minimal among all boundary compression disks of A_{1} in H_{L}. By minimality and incompressibility of F, the components of $D \cap F$ are arcs. Up to isotopy we can assume that $\alpha \subset D_{1}$ or $\alpha \subset R$. In the former case D provides a boundary compression of A, a contradiction. Suppose now that $\alpha \subset F$. If D does not intersect F in an arc distinct from α, then D provides a boundary compression of F, a contradiction. If $D \cap F \neq \emptyset$, then an outermost arc in D of $D \cap F$ is nontrivial in F, as
otherwise by doing a surgery we could find a boundary compression disk D^{\prime} of A_{1} along α with $\left|D^{\prime} \cap F\right|<|D \cap F|$. This yields a boundary compression of F, a contradiction. If A_{1} were boundary parallel in H_{L}, it would be boundary compressible, hence A_{1} is an essential annulus in H_{L} contained in M_{1}, which contradicts Lemma 2.5.

Suppose now that $D_{1} \cup R$ is a Möbius band Q. Then the boundary of a regular neighborhood of Q is an annulus A_{2}. It cannot compress in the regular neighborhood of Q since that is a solid torus, and the boundaries of A_{2} are isotopic to twice the core curve of the solid torus. It cannot compress to the outside of the regular neighborhood of Q because either component of the boundary of the annulus links the core curve of the annulus, due to the twisting of the Möbius band. If the core curve bounded a disk, that disk would not intersect the boundary curves of the annulus, which would contradict the linking. And it is boundary incompressible for the same reasons that A_{1} is, also contradicting Lemma 2.5.

Case 2: The annulus A has boundary components $\partial_{1} A$ and $\partial_{2} A$ on $\partial N(L)$. There are two subcases.
(2a) Both $\partial_{1} A$ and $\partial_{2} A$ lie on the torus components $T_{K_{1, i}}$ and $T_{K_{2, j}}$ where $T_{K_{1, i}}$ is a torus component of $\partial N(L)$ contained completely in M_{1}, and $T_{K_{2, j}}$ is a torus component of $\partial N(L)$ contained completely in M_{2}. By minimality of $|A \cap F|$ and incompressibility of F, the components of $A \cap F$ are circles which are nontrivial in both A and F. A circle C in $A \cap F$ bounds a subannulus A^{*} of A with $\partial_{1} A$ such that $A^{*} \cap F=C$ which is incompressible since C and $\partial_{1} A$ are nontrivial in A.

Suppose $A^{*} \subset M_{1}$. Let D denote the disk in E bounded by C. If D is punctured once, we can take the union of it with A^{*}, and then H_{L} contains an essential annulus in M_{1} with one boundary component on $T_{K_{1, i}}$ and another boundary component on T_{K}. If D is punctured twice, we can glue the annulus $F \backslash D$ to A^{*} to obtain an annulus essential in H_{L} and contained in M_{1} with one boundary component on $T_{K_{1, i}}$ and the other boundary component on ∂H. Both cases contradict Lemma 2.5. We reach the analogous contradictions if $A^{*} \subset M_{2}$.
(2b) The annulus A has at least one boundary component $\partial_{1} A$ on K. Suppose first that $\partial_{1} A$ is a $(1,0)$ curve in T_{K}. Then $\partial_{2} A$ is either a $(1,0)$ curve in T_{K} or lies in some $T_{K_{1, i}}$ or $T_{K_{2, j}}$. By minimality of $|A \cap F|$ and incompressibility of F, the components of $A \cap F$ are circles which are nontrivial in A and F. A circle C in $A \cap F$ bounds a subannulus A^{*} of A with $\partial_{1} A$ such that $A^{*} \cap F=C$. Note A^{*} is incompressible since C and $\partial_{1} A$ are nontrivial in A.

Suppose, without loss of generality, that $A^{*} \subset M_{1}$. Let D denote the disk in E bounded by C. Suppose first that D is punctured once. Then we obtain a new annulus $A^{\prime *}$ by gluing D onto A^{*}, with both boundaries now meridians on
T_{K}. We can view $A^{\prime *}$ as a properly embedded annulus in M_{1} which is boundary compressible in H_{L} by Lemma 2.5.

By irreducibility of H_{L}, the annulus must be boundary parallel. If it is boundary parallel to the M_{1} side of H_{L}, then we can use that to isotope A along T_{K} and reduce its number of intersection curves with F, a contradiction to minimality. It cannot be boundary parallel to the other side as the boundary of the handlebody is to that side.

If D is punctured twice, then H_{L} contains an essential annulus in M_{1} with one boundary component on T_{K} and the other boundary component on ∂H. this contradicts Lemma 2.5 .

Suppose next that $\partial_{1} A$ is a (p, q)-curve in T_{K} with $|q|>0$. If $\partial_{2} A \subset T_{K}$, then all components of $A \cap F$ are nontrivial arcs in A. If there is an innermost arc of $A \cap F$ in F that is trivial in F, then A is boundary compressible, contradicting its essentiality.

So all arcs in $A \cap F$ are nontrivial and parallel on F. Each component of $A \cap M_{1}$ is a disk with boundary consisting of four arcs, two in $\partial N(K)$ and two in F. Let D be one of them. The two arcs on its boundary in F cut a disk D^{\prime} from F that has two arcs on its boundary also in $\partial N(K)$. Then $D \cup D^{\prime}$ is either a properly embedded Möbius band Q or an annulus A^{\prime}. We consider the annulus possibility first.

If A^{\prime} is compressible, then we can use the compression disk together with half of A^{\prime} to obtain a disk with boundary consisting of two arcs, one in F and one in $\partial N(K)$. But this contradicts the boundary-incompressibility of F.

If A^{\prime} is boundary compressible by a disk $D^{\prime \prime}$, we can take the arc in $D^{\prime \prime} \cap A^{\prime}$ to be in $D^{\prime} \subset F$, therefore obtaining a boundary compression of F. So A^{\prime} is a essential annulus that does not intersect F. Therefore the existence of A^{\prime} contradicts Lemma 2.5 .

If $D \cup D^{\prime}$ is a Möbius band Q, then the boundary of Q must be a meridian on T_{K} as it is entirely contained in M_{1} and cannot be trivial as then we would have a projective plane embedded in M_{1} which we could embed in S^{3}, a contradiction.

The boundary of a regular neighborhood of Q is an annulus $A^{\prime \prime}$. It is incompressible to the inside of the regular neighborhod of Q as that is a solid torus, with the core curve of the annulus going around the core curve of the solid torus twice. It is incompressible to the outside as the boundaries are meridian curves on T_{K}. It is boundary incompressible as any boundary compression would yield a boundary compression for F, a contradiction. So again, the existence of an essential annulus $A^{\prime \prime}$ that misses F contradicts Lemma 2.5.

Suppose $\partial_{2} A$ is in some $T_{K_{1, i}}$. Then there must be an intersection arc in $A \cap F$ that cuts a disk from A with one boundary in F and the other boundary in $\partial N\left(K_{2}\right)$. We can use it to push K_{2} onto E by an isotopy in H_{L} fixing the endpoints of K_{2}. This implies that H_{L} contains a compressing disk in M_{2} with boundary isotopic in ∂H to ∂E. We reach the analogous contradiction if $\partial_{2} A$ is in some $T_{K_{2, j}}$.

Case 3: The annulus A has a boundary component $\partial_{1} A$ on $\partial N(L)$ and a boundary component $\partial_{2} A$ on ∂H.

Let J be the component of L with regular neighborhood boundary that A intersects. Then the boundary of a regular neighborhood of $A \cup \partial N(J)$ is an annulus A^{\prime} with both of its boundaries in ∂H. The boundaries of A^{\prime} are two parallel nontrivial curves on the boundary of H that are also parallel to the one boundary of A on ∂H. Thus A^{\prime} must be incompressible.

If A^{\prime} is boundary compressible, then do the boundary compression on the annulus A^{\prime} to obtain a disk $D^{\prime \prime}$ with boundary in ∂H. By boundary-irreducibility of $H_{L}, D^{\prime \prime}$ would have to have trivial boundary in ∂H. The boundary compression has the impact on ∂A^{\prime} of surgering the two curves along an arc running from one to the other. Surgering two nontrivial parallel curves on a surface of genus at least two along an arc that is not in the annulus between the curves yields a nontrivial curve. So the boundary compression cannot be to that side. Thus the boundary compression must be to the side of the annulus in ∂H shared by the two curves. But this side is a solid torus missing its core curve J, preventing a boundary compression to that side. So A^{\prime} is an essential annulus in H_{L} with both boundaries on ∂H, contradicting Case 1 .

Lemma 2.7. The manifold H_{L} contains no essential torus.
Proof. Suppose H_{L} contains an essential torus \mathcal{T}. We assume that $|\mathcal{T} \cap F|$ is minimal among all essential tori in H_{L}.

Suppose first that $\mathcal{J} \cap F=\emptyset$. Then $\mathcal{J} \subset M_{1}$ or $\mathcal{T} \subset M_{2}$. For convenience, we assume $\mathcal{T} \subset M_{1}$. Then we can view \mathcal{J} as a torus $\overline{\mathcal{T}}$ in $H_{1} \backslash \stackrel{N}{N}\left(L_{1}\right)$ which we show is essential.

Suppose $\overline{\mathcal{T}}$ is boundary parallel in $H_{1} \backslash \stackrel{N}{N}\left(L_{1}\right)$. Since ∂H_{1} has genus at least 2, $\overline{\mathcal{T}}$ must be parallel to a component of $\partial N\left(L_{1}\right)$. If it is boundary parallel to a component J, then $\overline{\mathcal{T}}$ must separate a solid torus from H_{1} that has J as its core curve. Since F is to the side of $\overline{\mathcal{T}}$ that H is, the solid torus cannot intersect F_{1} either. So both the solid torus and J are in M_{1}, and \bar{T} is boundary parallel in H_{L}, contrary to our assumption.

Suppose $\overline{\mathcal{T}}$ is compressible in $H_{1} \backslash \stackrel{\circ}{N}\left(L_{1}\right)$. Then a nontrivial curve $\gamma \subset \overline{\mathcal{T}}$ bounds a disk D in $\left.H_{1} \backslash \stackrel{N}{(} L_{1}\right)$. We assume that $\left|D \cap F_{1}\right|$ is minimal among all compression disks of $\overline{\mathcal{T}}$ in $\left.H_{1} \backslash \stackrel{N}{(} L_{1}\right)$. Note that the components of $D \cap F$ are circles.

If $D \cap F_{1}=\emptyset$, then $D \subset M_{1}$, which implies that \mathcal{T} is compressible in H_{L}, a contradiction. If $D \cap F_{1} \neq \emptyset$, by incompressibility of F, an innermost circle of $D \cap F_{1}$ in D is trivial in F_{1}, hence by irreducibility of H_{L}, we can reduce $\left|D \cap F_{1}\right|$ by an isotopy, contradicting minimality. It follows that $\overline{\mathcal{T}}$ is essential in $H_{1} \backslash \stackrel{N}{N}\left(L_{1}\right)$, which contradicts that $H_{1} \backslash \stackrel{N}{N}\left(L_{1}\right)$ is hyperbolic. Since $H_{2} \backslash \stackrel{N}{N}\left(L_{2}\right)$ is hyperbolic, we reach the analogous contradictions if $\mathcal{T} \subset M_{2}$.

Suppose next that $\mathcal{T} \cap F \neq \emptyset$. By minimality of $|\mathcal{T} \cap F|$ and incompressibility of F, the components of $\mathcal{T} \cap F$ are circles which are nontrivial in \mathcal{T} and F.

Let A_{C} be an annulus which is a connected component of $M_{1} \cap \mathcal{T}$ with boundary two circles in $F \cap \mathcal{J}$. We claim the boundaries of A_{C} are two disjoint circles C_{1} and C_{2} which bound disjoint disks in E punctured once by L. Suppose otherwise. Then two circles $C_{1}, C_{2} \subset A_{C} \cap F$ bound disks $D_{1}, D_{2} \subset E$ such that $D_{2} \subset D_{1}$. If D_{2} is punctured once and D_{1} is punctured twice by L, then we can glue D_{2} and a slightly moved D_{1} to A_{C} to obtain a sphere in H that is punctured three times by L. Thus D_{1}, D_{2} are both punctured once or twice by L.

Suppose D_{1} and D_{2} are both punctured twice. Then by adding the annuli in $F \backslash D_{i}$ to A_{C}, we obtain an annulus A_{C}^{\prime} with boundary in ∂H. By the same reasoning as in the proof of Case 1 in the proof of Lemma $2.6, A_{C}^{\prime}$ is boundary compressible in M_{1} and we can push A_{C} through F to reduce $|A \cap F|$, contradicting minimality.

Suppose D_{1} and D_{2} are both punctured once. The circles C_{1} and C_{2} bound an annulus $A_{C, F}$ in F which is not punctured by L.

By gluing the punctured disks D_{1} and D_{2} onto A_{C}, and sliding the D_{1} portion just off F, we obtain a new annulus \bar{A}_{C} with boundaries on $A_{K_{1}}$. This annulus $\bar{A}_{C} \subset M_{1}$ is properly embedded in H_{L} with $\partial \bar{A}_{C} \subset T_{K}$. The boundaries of \bar{A}_{C} are meridians on T_{K} that bound an annulus $A_{C, F}^{\prime} \subset A_{K_{1}}$ which is obtained from $A_{C, F}$ by an isotopy in M_{1}. Note \bar{A}_{C} is incompressible in H_{L} as A_{C} is incompressible, and hence by Lemma 2.5 it is boundary compressible in H_{L}. Thus a nontrivial $\operatorname{arc} \alpha$ in \bar{A}_{C} bounds a disk D_{β} in H_{L} with an $\operatorname{arc} \beta \subset T_{K}$.

If β is not a nontrivial arc in $A_{C, F}^{\prime}$, it intersects $A_{K_{2}}$ in a nontrivial arc. In that case D_{β} becomes a compressing disk for the torus $\bar{A}_{C} \cup\left(T_{K} \backslash A_{C, F}^{\prime}\right.$. Doin the compression yields a sphere in H_{L} that separates K from ∂H, a contradiction to irreducibility of H_{L}.

If β is not a nontrivial arc in $A_{C, F}^{\prime}$, the disk D_{β} lies in the region contained in M_{1} that \bar{A}_{C} separates from H_{L}. We can thus push D_{β} by an isotopy to obtain a boundary compression disk for A_{C} in M_{1}, hence A_{C} is boundary compressible in M_{1} and boundary parallel (since the boundary compressing arc in M_{1} is a nontrivial arc in $A_{C, F}$) and we can push it through F to reduce $|A \cap F|$, a contradiction.

We reach the analogous contradictions if $A_{C} \subset M_{2}$. Thus, we can assume the boundaries of A_{C} are two disjoint circles which bound disjoint disks in E punctured once by L.

If there were more than one such annulus in M_{1} and one such in M_{2}, then following along the annuli, one after the other as we travel along a longitude of \mathcal{T}, we would have to have them cycle one inside the next as they pass through F, and the torus could never close up. So there is only one to each side of F and
\mathcal{J} is cut into two incompressible (since the elements of $\mathcal{T} \cap F$ are nontrivial in \mathcal{T}) annuli $\mathcal{A}_{1} \subset M_{1}, \mathcal{A}_{2} \subset M_{2}$.

If we glue the punctured disks D_{1} and D_{2} to \mathcal{A}_{1} we obtain an incompressible annulus, which must then be boundary parallel to $\partial N(K)$ by Lemma 2.6. The same holds for \mathcal{A}_{2}, implying the torus \mathcal{T} is boundary parallel, a contradiction to its being essential.

A situation where Theorem 2.1 is easily applicable is when $H_{1}=H_{2}$, and $L_{1}=L_{2}$. See Figure 4.

Figure 4. Applying Theorem 2.1 to two pieces in a single handlebody.
Corollary 2.8. Let (H,L) be a handlebody/link pair that is tg-hyperbolic. Let E_{1} and E_{2} be two disjoint twice-punctured separating disks in H. Then cutting along the two disks, the piece with both disks on the boundary can be discarded and the two pieces with one disk along the boundary, assuming they are positive genus, can be glued together along those disks, and the resulting handlebody/link pair will be tg-hyperbolic.

Note that the intermediate piece that is being removed need not have positive genus. So, we can remove appropriate tangles from a tg-hyperbolic link in a handlebody and still preserve tg-hyperbolicity. Thus, in order to determine tghyperbolicity of a link in a handlebody, all such tangles could be removed and if the resulting simplified link is not tg-hyperbolic because of the presence of an essential sphere, disk, annulus or torus, neither could the original link have been.

The ideas in the proof of Theorem 2.1 extend to a different setting, where we cut a handlebody into three pieces along disks E_{1} and E_{2} and glue one piece to itself along the copies of E_{1} and E_{2}.

Suppose L_{1} is a link in a handlebody H_{1} and $\left(H_{1}, L_{1}\right)$ is tg-hyperbolic. Suppose E_{1} and E_{2} are two nontrivial separating disks in H_{1} each punctured twice by L_{1}, which together separate a handlebody $H_{1,2}$ of genus $g_{1,2}$ from two disjoint
handlebodies $H_{1,1}, H_{1,3}$ of genus $g_{1,1}, g_{1,3}$ respectively, with all these genera positive. Let $M_{1, i}=H_{1, i} \backslash \stackrel{N}{N}\left(L_{1}\right), F_{i}=E_{i} \backslash \stackrel{N}{N}\left(L_{1}\right)$. Let $L_{1,2}=L_{1} \cap H_{1,2}$.

Gluing the subsets F_{1}, F_{2} of $\partial M_{1,2}$ together by an orientation preserving homeomorphism $\phi: F_{1} \rightarrow F_{2}$ sending ∂E_{1} to ∂E_{2} and $\partial F_{1} \cap \partial N\left(L_{1}\right)$ to $\partial F_{2} \cap \partial N\left(L_{2}\right)$ yields a link complement $H_{L}=H \backslash N(L)$ in the handlebody H of genus $g_{1,2}+1$ as in Figure 5. We denote by F the image of F_{1} and F_{2} in H_{L}.

FIgURE 5. Gluing M to itself by a homeomorphism $F_{1} \rightarrow F_{2}$.
Theorem 2.9. Suppose $H_{1} \backslash L_{1}$ is tg-hyperbolic, and $E_{1} \cap L_{1}=E_{1} \cap K, E_{2} \cap$ $L_{1}=E_{2} \cap K^{\prime}$, where K and K^{\prime} are two distinct components of L_{1}, then H_{L} is tg-hyperbolic.

Theorem 2.9 follows from the same arguments as Theorem 2.1. Namely, the surfaces F, F_{1}, and F_{2} are incompressible and boundary incompressible, and we can use this to reach the analogous contradictions from Lemmas 2.2-2.7. The requirement that the punctures of E_{1} and E_{2} correspond to two distinct components K and K^{\prime} of L must be introduced to force an annulus with boundary in ∂H that intersects F in nontrivial arcs to be cut into disks with two opposite sides in F. Without this condition the result does not hold in general, as shown in Figure 6.

3. Applications

3.1. Staked links. Links in handlebodies are directly related to the theory of staked links defined in [2]. (These links are also called tunnel links as in [10] or starred links as in as-of-yet unpublished work of N. Gügümcü and L. Kauffman.) In this section we will only work with staked links in S^{2}. A staked link is a pair $\left(L_{D},\left\{p_{i}\right\}_{1 \leq i \leq n}\right)$ of a link diagram $L_{D} \subset S^{2}$ together with a finite collection $\left\{p_{i}\right\}_{1 \leq i \leq n}$ of isolated poles, which are distinct points $p_{1}, \ldots, p_{n} \in S^{2}$ such that

Figure 6. A counterexample to Theorem 2.9 when the condition on the punctures of E_{1}, E_{2} is removed. Here T is an alternating tangle which can be chosen to satisfy the conditions of Theorem 1.6 of [3] (appearing in the next section) so that $H_{1} \backslash L_{1}$ tg-hyperbolic. After cutting and gluing, H_{L} contains an essential annulus A with boundary in ∂H as shown (perpendicular to the page), which intersects F in a single nontrivial arc and which separates one component of the link.
each p_{i} lies in a connected component of $S^{2} \backslash L_{D}$. Staked links are considered up to Reidemeister moves that do not pass strands over elements of $\left\{p_{i}\right\}_{1 \leq i \leq n}$. A staked link determines a link in a handlebody of genus $n-1$ as follows. Choose open disks $D_{1}, \ldots, D_{n} \subset S^{2} \backslash L_{D}$ containing p_{1}, \ldots, p_{n} respectively, such that $D_{i} \cap D_{j}=\emptyset$ for $i \neq j$. Then $D_{L}:=S^{2} \backslash\left(\cup_{i=1}^{n} D_{i}\right)$ is the closure of a $n-1$ punctured disk and L_{D} determines a link \bar{L}_{D} in the handlebody $D_{L} \times[0,1]$ as shown in Figure 7. A staked link $\left(L_{D},\left\{p_{i}\right\}_{1 \leq i \leq n}\right)$ is tg-hyperbolic if $\left(D_{L} \times[0,1], \bar{L}_{D}\right)$ is hyperbolic as in Section 1.

Given a staked link $\left(L_{D},\left\{p_{i}\right\}_{1 \leq i \leq n}\right)$, any simple closed loop $\gamma:[0,1] \rightarrow S^{2}$ with $\gamma(0)=\gamma(1)=p_{i}$ determines a proper non self-intersecting arc $a_{\gamma} \subset S^{2} \backslash$ $\left(\cup_{i=1}^{n} D_{i}\right)$ with $\partial a_{\gamma} \subset \partial D_{i}$, and hence a proper separating disk $a_{\gamma} \times[0,1]$ in $D_{L} \times$ [0,1], as in Figure 8. If γ intersects L_{D} twice, this disk could come from a gluing operation satisfying the conditions of Theorem 2.1, hence Theorem 2.1 gives a way to check if a complicated staked link is hyperbolic by checking if it is cut by γ into pieces which come from hyperbolic staked links.

Figure 7. A staked link $L_{D} \subset S^{2}$ with n stakes determines a link \bar{L}_{D} in a handlebody of genus $n-1$.

Figure 8. A simple closed loop γ based at a pole of a staked knot determines a separating disk in the corresponding handlebody.
3.2. Alternating links. To show a link in a handlebody (H, L) is tg-hyperbolic, it is sufficient to show that H can be given a product structure $H \cong F \times[0,1]$, where F is the closure of a disk punctured some nonzero number of times, such that the projection of L to the surface $F \times\{1 / 2\}$ is alternating and satisfies conditions as follows.

Theorem 3.1 (Theorem 1.6 in [3]). Let F be a projection surface with nonempty boundary which is not a disk, and let $L \subset F \times I$ be a link with a connected, reduced, alternating projection diagram $\pi(L) \subset F \times\{1 / 2\}$ with at least one crossing. Let $M=(F \times I) \backslash N(L)$. Then M is tg-hyperbolic if and only if the following four conditions are satisfied:
(i) $\pi(L)$ is weakly prime on $F \times\{1 / 2\}$;
(ii) the interior of every complementary region of $(F \times\{1 / 2\}) \backslash \pi(L)$ is either an open disk or an open annulus;
(iii) if regions R_{1} and R_{2} of $(F \times\{1 / 2\}) \backslash \pi(L)$ share an edge, then at least one is a disk;
(iv) there is no simple closed curve α in F that intersects $\pi(L)$ exactly in a nonempty collection of crossings, such that for each such crossing, a bisects the crossing and the two opposite complementary regions meeting at that crossing that do not intersect a near that crossing are annuli.

By weakly prime we mean that there is no simple closed curve on the projection surface that crosses the link twice and that bounds a disk that contains crossings. Note that each of these conditions is easily checked for the projection.

In the notations of Section 2, this gives a simple way to show that $\left(H_{1}, L_{1}\right)$ and $\left(H_{2}, L_{2}\right)$ are tg-hyperbolic. Note that Theorem 2.1 gives the expected behavior when both L_{1}, L_{2} are alternating and K_{1}, K_{2} glue together so that K is alternating. In particular, Theorem 2.1 can apply in the general situation of gluing an alternating piece to a non-alternating piece.

As an example, for any weakly prime alternating tangle T as in Figure 9 other than 0 or 1 crossing or a horizontal sequence of bigons, (which do not satisfy the conditions of the theorem), we can form the piece M_{T}. Then if we take any other hyperbolic knot in a handlebody of positive genus, and split it into two pieces of positive genus by a twice-punctured disk, we can glue either resulting piece to the piece M_{T} and still generate a tg-hyperbolic handlebody/link pair.
3.3. Planar knotoids. Knotoids are a variation on knots given by projections of line segments defined up to Reidemeister moves and disallowing strands to pass over or under the endpoints of the segment. When the projection surface is a plane, we say the knotoid is a planar knotoid. In [1], two definitions of hyperbolicity of planar knotoids were given. The first, which is called the planar reflected doubling map, associates to the knotoid a link in a genus three handlebody. If the complement of the link is tg-hyperbolic, the knotoid is said to be hyperbolic under the reflected doubling map. The second, which is called

Figure 9. If T is an alternating tangle satisfying simple restrictions, the genus 2 handlebody/link pair depicted is tghyperbolic, so we can glue M_{T} to any other piece from a hyperbolic handlebody/link pair to obtain another tg-hyperbolic handlebody/link pair.
the planar gluing map, associates to the knotoid a link in a genus two handlebody. Again, if the complement of the link is tg-hyperbolic, the knotoid is said to be hyperbolic under the gluing map. Proposition 2.5 in [1] proves that hyperbolicity of a planar knotoid under the reflected doubling map implies hyperbolicity under the gluing map but not vice versa. Further, the volume under the reflected doubling map is always at least as large as the volume under the gluing map. Theorem 2.1 together with the results from [3] can provide many examples of planar knotoids that are hyperbolic under either of the two constructions.

References

[1] AdAms, C.; Bonat, A.; Chande, M.; Chen, J.; JiAng, M.; Romrell, Z.;SANTIAGO, D.; SHAPIRO, B.; WOODRUFF, D. Hyperbolic knotoids, ArXiv 2209.04556 2022. 1100, 1114, 1115
[2] Adams, C.; Bonat, A.; Chande, M.; Chen, J.; Jiang, M.; Romrell, Z.; Santiago, D.; SHAPIRO, B.;WOODRUFF, D. Generalized knotoids, ArXiv 2209.01922 2022. 1100, 1111
[3] ADAMS, C.; CHEN, J. Hyperbolicity of alternating links in thickened surfaces with boundary, ArXiv 2309.04999 2023. 1098, 1100, 1112, 1114, 1115
[4] AdAms, C.; Albors-Riera, C. ; Haddock, B.; Li, Z.; Nishida, D.; Reinoso, B. ANd WANG, L. Hyperbolicity of links in thickened surfaces, Topology and its Applications 256 no. 1 (2019) 262-278. MR3916014 Zbl 1412.570021100
[5] AdAMS, C.; REID, A., Quasi-fuchsian surfaces in hyperbolic knot complements, J. Austr. Math. Soc., 55 (1993) 116-131. MR1231698 Zbl 0795.570081098
[6] ADAMS, C; SimONS, A. TG-Hyperbolicity of composition of virtual knots, to appear in Communications in Analysis and Geometry, ArXiv 2110.09859 revised version 2021. 1100
[7] BAKER, K.; HoffmAN, N. Exceptional surgeries in 3-manifolds, Proc. Amer. Math. Soc. Ser. B. 9 (2022) 351-357. MR4471613 Zbl 1501.57016 1098
[8] Frigerio, R. An infinite family of hyperbolic graph complements in S^{3}, J. Knot Theory Ramifications 14 no. 4 (2005) 479-496. MR2150744 Zbl 1081.570141098
[9] Frigerio, R.; Martelli, B.; Petronio, C. Small hyperbolic 3-manifolds with geodesic boundary, Experiment. Math. 13 no. 2 (2004) 171-184. MR2068891 Zbl 1068.570121098
[10] Goldman, J.; Kauffman, L. Knots, tangles and electrical networks, Advances in Mathematics 14 (1993) 2349-2397. MR1228742 Zbl 0806.570021111
[11] Howie, J.A.; Purcell, J. Geometry of alternating links on surfaces, Trans. Amer. Math. Soc. 373 (2020) 2349-2397. MR4069222 Zbl 1441.57007 1098, 1100
[12] QiU, R.; WANG, S. Simple, small knots in handlebodies, Topology and its Applications 144 (2004) 211-227. MR2097137 Zbl 1055.570091098
(Colin Adams) Department of Mathematics, Williams College, Williamstown, MA 01267, USA
cadams@williams.edu
(Daniel Santiago) DEpartment of Mathematics, M.I.T., CAMBridge, MA 02139, USA
dsantiag@mit.edu
This paper is available via http://nyjm.albany.edu/j/2023/29-s $44 . h t m l$.

[^0]: Received May 30, 2023.
 2020 Mathematics Subject Classification. 57K10, 57K32.
 Key words and phrases. hyperbolic link, handlebody, composition.

