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Composition properties of hyperbolic links
in handlebodies

Colin Adams and Daniel Santiago

Abstract. We consider knots and links in handlebodies that have hyper-
bolic complements and operations akin to composition. Cutting the com-
plements of two such open along separating twice-punctured disks such that
each of the four resulting handlebodies has positive genus, and gluing a pair
of pieces together along the twice-punctured disks in their boundaries, we
show the result is also hyperbolic. This should be contrasted with compo-
sition of any pair of knots in the 3-sphere, which is never hyperbolic. Sim-
ilar results are obtained when both twice-punctured disks are in the same
handlebody and we glue a resultant piece to itself along copies of the twice-
punctured disks on its boundary. We include applications to staked links.
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1. Introduction
A compact orientable 3-manifold 𝑀 is tg-hyperbolic if the manifold 𝑀′ ob-
tained from 𝑀 by shaving off all torus boundaries and capping off all sphere
boundaries with balls admits a finite volume hyperbolic metric such that all
remaining boundary components are totally geodesic. For a link 𝐿 in a han-
dlebody 𝐻, we say that the pair (𝐻, 𝐿) is tg-hyperbolic if the complement of an
open regular neighborhood of 𝐿 in 𝐻 is tg-hyperbolic. By the Mostow-Prasad
Rigidity Theorem, such a hyperbolic metric will only depend on the comple-
ment 𝐻 ⧵ 𝐿 up to homeomorphism, which allows us to associate a hyperbolic
volume to (𝐻, 𝐿) that is invariant under ambient isotopies of 𝐿 in𝐻.
Work of W. Thurston implies that the complement of a link in a compact

orientable 3-manifold is tg-hyperbolic if and only if it contains no properly em-
bedded essential disks, spheres, annuli or tori. A sphere is essential if it does
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not bound a ball. A disk is essential if it is not boundary parallel. A torus is es-
sential if it is incompressible and not boundary-parallel. Annuli are essential if
they are incompressible, boundary-incompressible and not boundary-parallel.
In amanifold with no essential disks or spheres, an annulus that is incompress-
ible is boundary-incompressible if and only if it is not boundary-parallel.
Examples of knots and links in handlebodies with complements that are tg-

hyperbolic appear in [5], [7], [8], [9], and [12]. In [3], a large source of such ex-
amples is provided. Results from [11] can also be used to generate many more.
Let 𝐿1 and 𝐿2 be two links in handlebodies 𝐻1 of genus 𝑔1 and 𝐻2 of genus

𝑔2 respectively. Just as we have composition of two links in the 3-sphere, we
would like to define composition of these links in handlebodies.
To that end, let 𝐷1 ⊂ 𝐻1, 𝐷2 ⊂ 𝐻2 be properly embedded disks twice punc-

tured by 𝐿1, 𝐿2 respectively which separate balls𝐵1 and𝐵2 from𝐻1 and𝐻2 such
that 𝐵1∩𝐿1 and 𝐵2∩𝐿2 are unknotted arcs. Discarding the balls yields two han-
dlebodies 𝐻′

1 ⊂ 𝐻1 and 𝐻′
2 ⊂ 𝐻2. Let 𝐿′1 = 𝐻′

1 ∩ 𝐿1 and 𝐿
′
2 = 𝐻′

2 ∩ 𝐿2. Glue
𝐻′
1 to 𝐻

′
2 along 𝐷1 and 𝐷2 via 𝜙. Since 𝜙 sends the endpoints of the arc in 𝐿

′
1

to the endpoints of the arc in 𝐿′2, this results in a link in a handlebody, denoted
(𝐻′

1, 𝐿
′
1, 𝐷1)⊕𝜙 (𝐻′

2, 𝐿
′
2, 𝐷2) in𝐻3 as in Figure 1.

Figure 1. Forming the link (𝐻′
1, 𝐿

′
1, 𝐷1)⊕𝜙 (𝐻′

2, 𝐿
′
2, 𝐷2)

.
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In contrast to the usual composition of links, the link/handlebody pair
(𝐻′

1, 𝐿
′
1, 𝐷1) ⊕𝜙 (𝐻′

2, 𝐿
′
2, 𝐷2) depends highly on 𝐷1, 𝐷2, and 𝜙. Furthermore,

while composition of links in 𝑆3 never results in a hyperbolic link, the pair
(𝐻′

1, 𝐿
′
1, 𝐷1)⊕𝜙 (𝐻′

2, 𝐿
′
2, 𝐷2) can be tg-hyperbolic.

However, even if both𝐻1 ⧵ 𝐿1 and𝐻2 ⧵ 𝐿2 are tg-hyperbolic, it is not always
true that (𝐻′

1, 𝐿
′
1, 𝐷1)⊕𝜙 (𝐻′

2, 𝐿
′
2, 𝐷2) is tg-hyperbolic. In fact, the disks 𝐷1 and

𝐷2 can always be chosen so that at least one is “knotted" and there is an essential
torus in the link complement associated to (𝐻′

1, 𝐿
′
1, 𝐷1)⊕𝜙 (𝐻′

2, 𝐿
′
2, 𝐷2) as shown

in Figure 2.

Figure 2. By choosing one of 𝐷1, 𝐷2 to be “knotted", one can
create an essential torus in the complement𝐻3 ⧵ 𝐿3 which sep-
arates a knot exterior from𝐻3 of the form appearing in the last
image.

In Section 2, we provide amethod to avoid the problemwith “knotted disks”.
In Theorem 2.1, we prove that if the two handlebody/link pairs cut along their
disks appear as submanifolds of handlebody/link pairs of higher genus that are
tg-hyperbolic, then the composition of the original pair is tg-hyperbolic. The
presence of the rest of the higher genus tg-hyperbolic handlebodies prevents
the disk from being “knotted". We also show an analogue of this result where
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one cuts along two separating twice punctured disks in a single handlebody
and glues the resulting manifold to itself along a homeomorphism of the twice
punctured disks.
In Section 3, we discuss applications. As mentioned, [3] and [11] provide

many examples of tg-hyperbolic links in handlebodies, and our construction
here can be applied to them to generatemanymore. Furthermore, these results
can be applied to staked links introduced in [2], which correspond to link pro-
jections with isolated poles placed in the complementary regions, over which
strands of the link cannot pass. These are equivalent to links in handlebodies.
We can also consider applications to knotoids. In [1], a definition of what it

means for a planar knotoid to be hyperbolic is given in terms of a corresponding
knot in a handlebody being tg-hyperbolic. So the results here can be applied to
extend the known examples of hyperbolic planar knotoids.
In addition to considering knots in handlebodies, there is work that has been

done on hyperbolicity of links in thickened surfaces, as in [4] and [11]. Ques-
tions about compositions have been addressed in that situation, as in [6]. Con-
verting a method applied there to our situation can avoid the problem of knot-
ted disks and allow composition of tg-hyperbolic links in handlebodies to be
tg-hyperbolic without requiring them to be submanifolds as described above.
That is, we can take a geodesic 𝑔 that runs from the surface of the handlebody
to the link. Then the boundary of a regular neighborhood of 𝑔, including its
endpoint on the link, will be a properly embedded twice-punctured disk that
cannot be knotted and therefore allows composition to yield tg-hyperbolic links
in handlebodies. However, we do not include the details of the proof here.

Acknowledgements. This research was supported by Williams College and
NSF Grant DMS-1947438. A special thanks to the other members of the knot
theory research group in the SMALLREUprogram atWilliams College in sum-
mer of 2022, includingAlexandraBonat,MayaChande,Maxwell Jiang, Zachary
Romrell, Benjamin Shapiro andDoraWoodruff. Without themanyhelpful con-
versations with them, this paper would not have come into being. And thanks
also to the referee for helpful coments.

2. Proof of main result

For any submanifold 𝑆 of a smooth manifold 𝑀, we denote by 𝑁(𝑆) a closed
regular neighborhood of 𝑆 in𝑀 and by �̊�(𝑆) the interior of 𝑁(𝑆). For a space
𝑋, we denote by |𝑋| the number of connected components of 𝑋. Throughout,
we use the fact that a handlebody is irreducible, which is to say that it contains
no essential spheres. This is true because a handlebody can be embedded in 𝑆3,
and any sphere in 𝑆3 cuts 𝑆3 into two balls. So the sphere in the handlebody
will bound a ball to one side.
Let𝐻1, 𝐻2 be two handlebodies, each of genus at least 2, that contain links 𝐿1

and 𝐿2 such that𝐻1⧵𝐿1 and𝐻2⧵𝐿2 are tg-hyperbolic. Let𝐸1 and𝐸2 be properly
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embedded disks in 𝐻1 and 𝐻2, which separate 𝐻1 and 𝐻2 into handlebodies
𝐻1,1, 𝐻1,2 and 𝐻2,1, 𝐻2,2 of genera 𝑔1,1, 𝑔1,2 and 𝑔2,1, 𝑔2,2 respectively, where all
genera are at least 1. Suppose further that 𝐸1 and 𝐸2 are each twice punctured
by 𝐿1 and 𝐿2 respectively. Let 𝐿𝑖,𝑗 = 𝐿𝑖 ∩𝐻𝑖,𝑗.
We denote by𝑀𝑖,𝑗 = 𝐻𝑖,𝑗 ⧵ �̊�(𝐿𝑖,𝑗) and by 𝐹𝑖 = 𝐸𝑖 ⧵ �̊�(𝐿𝑖) the corresponding

separating surfaces. As we will ultimately only be interested in𝑀1,1 and𝑀2,2,
we will for convenience often drop the extra subscripts and write𝑀1,1 and𝑀2,2
as𝑀1 and𝑀2 respectively.

Figure 3. The links 𝐿1, 𝐿2 in 𝐻1, 𝐻2 respectively and the link
𝐿 in the handlebody𝐻.

Gluing𝐻1,1 to𝐻2,2 along an orientation preserving homeomorphism
𝜙 ∶ 𝐹1 → 𝐹2 sending 𝜕𝐸1 to 𝜕𝐸2 and 𝜕𝐹1 ∩ 𝜕𝑁(𝐿1,1) to 𝜕𝐹2 ∩ 𝜕𝑁(𝐿2,2) yields a
manifold/link pair denoted (𝐻1,1, 𝐿1,1, 𝐸1)⊕𝜙 (𝐻2,2, 𝐿2,2, 𝐸2)which is a handle-
body𝐻 of genus 𝑔1,1 + 𝑔2,2 containing the link 𝐿 formed by gluing 𝐿1,1 and 𝐿2,2
along their endpoints, as in Figure 3. Let 𝐻𝐿 be the complement of �̊�(𝐿) in 𝐻.
We denote by 𝐹 the image of 𝐹1 and 𝐹2 in 𝐻𝐿, and by 𝐸 the separating disk in
𝐻 corresponding to 𝐹.
There is one component of 𝐿, which we denote by𝐾, that is cut into two arcs

𝐾1 and 𝐾2 by 𝐹, the arcs of which are in 𝐻1,1 and 𝐻2,2 respectively. We denote
𝜕𝑁(𝐾) by 𝑇𝐾 . We denote the sub-annuli of 𝑇𝐾 corresponding to the arcs 𝐾1
and 𝐾2 by 𝐴𝐾1 and 𝐴𝐾2 respectively. A hyperbolic manifold is always assumed
tg-hyperbolic unless otherwise stated.
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Theorem 2.1. Let 𝐿1 and 𝐿2 be links in𝐻1 and𝐻2 such that𝐻1 ⧵𝐿1 and𝐻2 ⧵𝐿2
are tg-hyperbolic, with 𝐸1 ⊂ 𝐻1 and 𝐸2 ⊂ 𝐻2 twice-punctured disks separating
each of 𝐻1 and 𝐻2 into handlebodies, all of positive genus. If 𝜙 ∶ 𝐸1 → 𝐸2 is
a homeomorphism sending 𝜕𝐸1 to 𝜕𝐸2 and sending punctures to punctures, then
(𝐻, 𝐿) = (𝐻1,1, 𝐿1,1, 𝐸1)⊕𝜙 (𝐻2,2, 𝐿2,2, 𝐸2) is tg-hyperbolic.

To prove Theorem 2.1, it is enough to show that since 𝐻1 ⧵ �̊�(𝐿1) and 𝐻2 ⧵
�̊�(𝐿2) contain no essential disks, spheres, annuli and tori, the same holds for
𝐻 ⧵ �̊�(𝐿). In the remainder of this section, we rule out these four kinds of
essential surfaces with a sequence of lemmas.

Lemma2.2. The surfaces𝐹, 𝐹1, 𝑎𝑛𝑑𝐹2 are incompressible and boundary incom-
pressible in𝐻𝐿.

Proof. We show that 𝐹 is incompressible and boundary incompressible. The
same reasoning immediately applies to 𝐹1 and 𝐹2, as we only use that𝑀1 and
𝑀2 are submanifolds of the hyperbolic manifolds 𝐻1 ⧵ �̊�(𝐿1) and 𝐻2 ⧵ �̊�(𝐿2)
respectively.
Suppose that 𝐹 is compressible. Then there is some nontrivial circle 𝐶 ⊂ 𝐹

which bounds a disk𝐷′ in𝑀1 or𝑀2. Suppose𝐷′ ⊂ 𝑀1 and let𝐷 be the disk in𝐸
bounded by 𝐶. Suppose that 𝐷 is punctured once by 𝐿. Then the sphere 𝐷 ∪𝐷′

is punctured once by 𝐾1, a contradiction. Suppose next that 𝐷 is punctured
twice by 𝐿. Then 𝐾1 is contained in the 3-ball bounded by 𝐷 ∪ 𝐷′ in 𝐻1, so
𝐾1 can be pushed into a neighborhood of 𝐸 by an isotopy fixing the endpoints
of 𝐾1. Hence𝑀1 contains a properly embedded disk that is essential since the
boundary of the disk, which is isotopic to 𝜕𝐸1, splits 𝜕𝐻1 into two surfaces of
positive genus. This contradicts the fact that that𝐻1 ⧵ �̊�(𝐿1) is hyperbolic. We
reach the analogous contradictions if 𝐷′ ⊂ 𝑀2, since𝐻2 ⧵ �̊�(𝐿2) is hyperbolic.

Suppose next that 𝐹 is boundary compressible. Then there is a nontrivial arc
𝛼 ⊂ 𝐹 which together with an arc 𝛽 ⊂ 𝜕𝐻𝐿 bounds a disk 𝐷 in𝑀1 or𝑀2 such
that 𝐷 ∩ 𝐹 = 𝛼. Suppose 𝐷 ⊂ 𝑀1. There are two cases.

Case 1: The arc 𝛽 is in 𝐴𝐾1 . If 𝛽 is trivial in 𝐴𝐾1 , then we can isotope 𝐷 so that
𝜕𝐷 ⊂ 𝐹, which yields a compression disk for𝐹 since 𝛼was a nontrivial arc in𝐹,
a contradiction. If 𝛽 is nontrivial in 𝐴𝐾1 , then it is a spanning arc of 𝐴𝐾1 . Thus,
𝐾1 together with an arc in 𝐸 bounds a disk in𝑀1. Thus we can push 𝐾1 onto 𝐹
in 𝐻𝐿 through an isotopy fixing the endpoints of 𝐾1. Once we have moved 𝐾1
out of the way, we can construct an essential disk in𝑀 with boundary isotopic
in 𝜕𝐻𝐿 to 𝜕𝐸, which contradicts that𝐻1 ⧵ �̊�(𝐿1) is tg-hyperbolic.

Case 2: The arc 𝛽 is in 𝜕𝐻. Suppose 𝐷 is separating in 𝐻1,1. Since 𝐷 is disjoint
from𝐴𝐾1 ,𝐷 separates𝑀1 into two regions, each of which contains an endpoint
of 𝐾1. Since 𝐾1 is connected, this is a contradiction.
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Suppose𝐷 is not separating in𝐻1,1. The arc 𝛼 separates an annulus𝐴 from𝐹
such that𝐴∗ = 𝐴∪𝐷 is a properly embedded annulus in𝐻𝐿 with one boundary
component a meridian on 𝑇𝐾 and another boundary component on 𝜕𝐻. Since
𝐷 is not separating in𝐻1,1, 𝜕𝐴∗∩𝜕𝐻 is nontrivial in 𝜕𝐻, thus𝐴∗ is an essential
annulus in𝑀1, which contradicts that𝐻1 ⧵ �̊�(𝐿1) is hyperbolic.
Since 𝐻2 ⧵ �̊�(𝐿2) is hyperbolic, we reach the analogous contradictions if 𝐷 ⊂
𝑀2, and thus 𝐹 is boundary incompressible. □

Lemma 2.3. The manifold𝐻𝐿 is irreducible.

Proof. Suppose𝐻𝐿 contains an essential sphere 𝑆. Suppose first that
𝑆 ∩ 𝐹 = ∅. Then 𝑆 ⊂ 𝑀1 or 𝑆 ⊂ 𝑀2, which implies that one of 𝐻1 ⧵ �̊�(𝐿1) or
𝐻2 ⧵ �̊�(𝐿2) contains an essential sphere, a contradiction.
Suppose next that 𝑆 ∩ 𝐹 ≠ ∅. We assume that |𝑆 ∩ 𝐹| is minimal among all

essential spheres in 𝐻𝐿. An innermost circle 𝐶 of 𝑆 ∩ 𝐹 in 𝑆 bounds a disk 𝐷
in 𝑆 such that 𝐷 ∩ 𝐹 = 𝐶. Since 𝐹 is incompressible, 𝐶 bounds a disk 𝐷′ in
𝐹. Then we can view 𝐷 ∪ 𝐷′ as a sphere in 𝐻1,1 or 𝐻2,2, which from the last
case must bound a ball in 𝐻𝐿. Thus, we can push 𝐷 to 𝐷′ and slightly beyond,
pushing any other intersections of 𝑆 with 𝐷′ out of the way as well, to reduce
|𝑆 ∩ 𝐹|, contradicting minimality. □

Lemma 2.4. The manifold𝐻𝐿 is boundary irreducible.

Proof. Suppose 𝜕𝐻𝐿 has a compressing disk𝐷′. Supposefirst that 𝜕𝐷′ ⊂ 𝜕𝑁(𝐿).
Then the sphere given by 𝜕𝑁(𝐷′ ∪ 𝐾′), where 𝐾′ is the corresponding compo-
nent of 𝐿, does not bound a ball to either side, contradicting the fact we have
already eliminated essential spheres in𝐻𝐿.

Suppose now that 𝜕𝐷′ ⊂ 𝜕𝐻. If 𝐷′ ∩ 𝐹 = ∅, then one of 𝜕𝐻1,1 or 𝜕𝐻2,2 has a
compression disk in𝑀1 or𝑀2 respectively, which contradicts that 𝐻1 ⧵ �̊�(𝐿1)
and 𝐻2 ⧵ �̊�(𝐿2) are hyperbolic. Thus we can assume that 𝐷′ ∩ 𝐹 ≠ ∅, and
we further assume that |𝐷′ ∩ 𝐹| is minimal among all compression disks of
𝜕𝐻𝐿. Then by incompressibility of 𝐹, the elements of 𝐷′ ∩ 𝐹 are all arcs. By
minimality of |𝐷′ ∩ 𝐹|, an outermost arc of 𝐷′ ∩ 𝐹 in 𝐷′ is then nontrivial in
𝐹, as otherwise by doing a surgery we could find a compression disk𝐷′′ of 𝜕𝐻𝐿
with |𝐷′′ ∩ 𝐹| < |𝐷′ ∩ 𝐹|. This outermost arc cuts a disk from 𝐷′ that gives a
boundary compression for 𝐹, a contradiction. □

Lemma 2.5. The manifold 𝐻𝐿 does not contain an essential annulus 𝐴 with
𝐴 ∩ 𝐹 = ∅.

Proof. Suppose𝐻𝐿 contains such an annulus, and assumewithout loss of gen-
erality that 𝐴 ⊂ 𝑀1. We can view 𝐴 as a properly embedded annulus 𝐴 in
𝐻1 ⧵ �̊�(𝐿1) which we will show is essential 𝐻1 ⧵ �̊�(𝐿1), a contradiction to its
being tg-hyperbolic.
Suppose 𝐴 is compressible in 𝐻1 ⧵ �̊�(𝐿1). Then a nontrivial simple closed

curve 𝛾 ⊂ 𝐴 bounds a disk𝐷 in𝐻1⧵�̊�(𝐿1). We assume that |𝐷∩𝐹1| is minimal
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among all compression disks of 𝐴 in 𝐻1 ⧵ �̊�(𝐿1). Note that the components
of 𝐷 ∩ 𝐹1 are circles. If 𝐷 ∩ 𝐹1 = ∅, then 𝐷 ⊂ 𝑀1, which implies that 𝐴 is
compressible in 𝐻𝐿, a contradiction. If 𝐷 ∩ 𝐹1 ≠ ∅, by incompressibility of 𝐹1,
an innermost circle of 𝐷 ∩𝐹1 in 𝐷 is trivial in 𝐹1, hence by irreducibility of𝐻𝐿,
we can reduce |𝐷 ∩ 𝐹1| by an isotopy, contradicting minimality.
Thus,𝐴 is boundary compressible in𝐻1 ⧵ �̊�(𝐿1). (Note that if𝐴 is boundary

parallel, then it is boundary compressible.) Therefore, both boundary compo-
nents of 𝐴must be on the same component of 𝜕𝐻𝐿. We consider two cases.

Case 1: The annulus 𝐴 has both boundary components on 𝜕𝐻. Suppose 𝐴 is
boundary compressible in𝐻1 ⧵ �̊�(𝐿1). Then a nontrivial arc in𝐴 together with
an arc in 𝜕𝐻1 bounds a disk 𝐷 in 𝐻1 ⧵ �̊�(𝐿1) . We assume |𝐷 ∩ 𝐹1| is minimal
among all boundary compressing disks of𝐴. If𝐷∩𝐹1 = ∅, then𝐷 ⊂ 𝑀1, which
implies that𝐴 is boundary compressible in𝐻𝐿, a contradiction. If |𝐷∩𝐹1| ≠ ∅,
by incompressibility of 𝐹1 and minimality, the components of 𝐷 ∩ 𝐹1 are arcs.
An outermost arc in 𝐷 must be nontrivial in 𝐹1, as otherwise, we could find a
boundary compression disk 𝐷′ of 𝐴 in 𝐻1 ⧵ �̊�(𝐿1) with |𝐷′ ∩ 𝐹1| < |𝐷 ∩ 𝐹1|, a
contradiction. But then we have a boundary compression disk for 𝐹1 in 𝐻𝐿, a
contradiction to Lemma 2.2.

Case 2: The annulus𝐴 has both boundary components on 𝜕𝑁(𝐿). Suppose first
that the components 𝜕𝐴 are on a single torus component of 𝜕𝑁(𝐿) in𝑀1, and
that 𝐴 is boundary compressible in 𝐻1 ⧵ �̊�(𝐿1). A nontrivial arc in 𝐴 together
with an arc in 𝜕𝑁(𝐿1) bounds a disk𝐷 in𝐻1⧵�̊�(𝐿1) . Note that the components
of 𝐷 ∩ 𝐹1 are circles, thus repeating the minimality argument from Case 1 it
follows that 𝐴 is boundary compressible in𝐻𝐿, a contradiction.
Suppose next that the components of 𝜕𝐴 are both in𝑇𝐾 . Since𝐴∩𝐹 = ∅, both

components of 𝜕𝐴 are (1, 0) curves in 𝑇𝐾 . Suppose𝐴 is boundary compressible
in𝐻1 ⧵ �̊�(𝐿1), then a nontrivial arc 𝛼 in 𝐴 together with an arc 𝛽 ⊂ 𝑇𝐾 bounds
a disk 𝐷 in𝐻1 ⧵ �̊�(𝐿1). Again, choose 𝐷 such that |𝐷 ∩ 𝐹1| is minimal.
If 𝛽 ∩ 𝐹 = ∅, the components of |𝐷 ∩ 𝐹1| are circles, and thus we reach a

contradiction by repeating theminimality argument fromCase 1 and obtaining
a boundary compression for 𝐴 in 𝐻𝐿. If 𝛽 ∩ 𝐹 ≠ ∅, then 𝛽 intersects 𝜕𝑁(𝐿1) ∩
𝑀1,2 in at least one arc. Thus, 𝐷 must intersect 𝐹 in at least one arc. Choosing
an outermost arc on𝐷, we obtain a disk in𝐷∩𝑀1,2 with a boundary consisting
of two arcs, one a nontrivial arc in 𝐹 and one in 𝜕𝑁(𝐿1)∩𝑀1,2. This contradicts
boundary incompressibility of 𝐹1. □

Lemma 2.6. The manifold𝐻𝐿 contains no essential annuli.

Proof. Suppose 𝐻𝐿 contains an essential annulus 𝐴. We assume that |𝐴 ∩ 𝐹|
is minimal among all essential annuli in𝐻𝐿. From Lemma 2.5, we can assume
that 𝐴 ∩ 𝐹 ≠ ∅. There are three cases.
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Case 1: The annulus𝐴 has boundary components 𝜕1𝐴, 𝜕2𝐴 in 𝜕𝐻. Byminimal-
ity and incompressibility and boundary incompressibility of𝐹, the components
of 𝐴 ∩ 𝐹 are all either nontrivial circles in 𝐴 and 𝐹 or all nontrivial arcs in 𝐴
and 𝐹.

(1a) The components of 𝐴 ∩ 𝐹 are all nontrivial circles in 𝐴 and 𝐹. Then up to
isotopy, the boundary components 𝜕1𝐴, 𝜕2𝐴 do not intersect 𝐹. Suppose some
component of 𝜕𝐴, say 𝜕1𝐴, is in𝑀1. Then a circle 𝐶 in𝐴∩𝐹 together with 𝜕1𝐴
bounds an annulus 𝐴∗ ⊂ 𝐴 in𝑀1 such that 𝐴∗ ∩ 𝐹 = 𝐶.
Let 𝐷 denote the disk in 𝐸 bounded by 𝐶. Suppose 𝐷 is punctured once by

𝐿. Then 𝐻𝐿 contains a properly embedded once-punctured disk 𝐷 ∪ 𝐴∗ which
can be pushed off 𝐸 to yield an essential annulus in𝑀1, contradicting Lemma
2.5.
Suppose 𝐷 is punctured twice by 𝐿. Then we can slide 𝐶 along 𝐸 out to 𝜕𝐻.

Hence we obtain an annulus 𝐴∗∗ that is entirely contained in𝑀1.
So,𝐴∗∗ is a properly embedded annulus in𝑀1, which is incompressible since

𝜕1𝐴,𝐶 are nontrivial in 𝐴. Hence by Lemma 2.5, it is boundary compressible
in𝐻𝐿 and both boundary curves are on 𝜕𝐻1.
Doing the boundary compression on𝐴∗∗ yields a diskwith boundary on 𝜕𝐻1.

If the boundary of the disk is trivial on𝐻1, as happenswhen the two boundaries
of𝐴∗∗ are parallel on 𝜕𝐻1, thenwe can form a sphere from the disk and another
disk on 𝜕𝐻1. Irreducibility of 𝐻𝐿 implies we can then isotope 𝐴 to lower the
number of intersections with 𝐹, a contradiction.
If the boundary of the disk is nontrivial on𝐻1, we contradict boundary irre-

ducibility of𝐻𝐿.

(1b) The components of 𝐴 ∩ 𝐹 are nontrivial arcs in both 𝐴 and 𝐹. Then 𝐴 is
cut by 𝐹 into disks in𝑀1 and𝑀2 with boundaries that consist of two opposite
sides in 𝐹 and two opposite sides in 𝜕𝐻. Let 𝐷1 ⊂ 𝑀1 be one such disk. Let
𝑅 ⊂ 𝐹 be a rectangle such that two opposite sides of 𝑅 are the components of
𝐷1∩𝐹, and the other two sides are disjoint curves in 𝜕𝐸. Then𝐷1∪𝑅 is either a
properly embedded Möbius band 𝑄 or a properly embedded annulus 𝐴1 ⊂ 𝑀1
in𝐻𝐿.
We begin with the case it is an annulus, which we claim is essential in 𝐻𝐿.

By minimality of |𝐴 ∩ 𝐹|, 𝐴1 is incompressible, as otherwise we could push 𝐷1
through 𝐹.
Suppose 𝐴1 is boundary compressible in 𝐻𝐿. Then a nontrivial arc 𝛼 ⊂ 𝐴1

bounds a disk 𝐷 in 𝐻𝐿 with an arc 𝛽 ⊂ 𝜕𝐻. We suppose |𝐷 ∩ 𝐹| is minimal
among all boundary compression disks of𝐴1 in𝐻𝐿. By minimality and incom-
pressibility of𝐹, the components of𝐷∩𝐹 are arcs. Up to isotopywe can assume
that 𝛼 ⊂ 𝐷1 or 𝛼 ⊂ 𝑅. In the former case 𝐷 provides a boundary compression
of 𝐴, a contradiction. Suppose now that 𝛼 ⊂ 𝐹. If 𝐷 does not intersect 𝐹 in an
arc distinct from 𝛼, then 𝐷 provides a boundary compression of 𝐹, a contradic-
tion. If 𝐷 ∩ 𝐹 ≠ ∅, then an outermost arc in 𝐷 of 𝐷 ∩ 𝐹 is nontrivial in 𝐹, as
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otherwise by doing a surgery we could find a boundary compression disk 𝐷′ of
𝐴1 along 𝛼 with |𝐷′ ∩ 𝐹| < |𝐷 ∩ 𝐹|. This yields a boundary compression of
𝐹, a contradiction. If 𝐴1 were boundary parallel in 𝐻𝐿, it would be boundary
compressible, hence 𝐴1 is an essential annulus in 𝐻𝐿 contained in𝑀1, which
contradicts Lemma 2.5.
Suppose now that𝐷1∪𝑅 is aMöbius band𝑄. Then the boundary of a regular

neighborhood of 𝑄 is an annulus 𝐴2. It cannot compress in the regular neigh-
borhood of 𝑄 since that is a solid torus, and the boundaries of 𝐴2 are isotopic
to twice the core curve of the solid torus. It cannot compress to the outside
of the regular neighborhood of 𝑄 because either component of the boundary
of the annulus links the core curve of the annulus, due to the twisting of the
Möbius band. If the core curve bounded a disk, that disk would not intersect
the boundary curves of the annulus, which would contradict the linking. And
it is boundary incompressible for the same reasons that𝐴1 is, also contradicting
Lemma 2.5.

Case 2: The annulus 𝐴 has boundary components 𝜕1𝐴 and 𝜕2𝐴 on 𝜕𝑁(𝐿).
There are two subcases.

(2a) Both 𝜕1𝐴 and 𝜕2𝐴 lie on the torus components 𝑇𝐾1,𝑖 and 𝑇𝐾2,𝑗 where 𝑇𝐾1,𝑖
is a torus component of 𝜕𝑁(𝐿) contained completely in𝑀1, and 𝑇𝐾2,𝑗 is a torus
component of 𝜕𝑁(𝐿) contained completely in𝑀2. Byminimality of |𝐴∩𝐹| and
incompressibility of 𝐹, the components of𝐴∩𝐹 are circles which are nontrivial
in both 𝐴 and 𝐹. A circle 𝐶 in 𝐴 ∩ 𝐹 bounds a subannulus 𝐴∗ of 𝐴 with 𝜕1𝐴
such that 𝐴∗ ∩ 𝐹 = 𝐶 which is incompressible since 𝐶 and 𝜕1𝐴 are nontrivial
in 𝐴.
Suppose 𝐴∗ ⊂ 𝑀1. Let 𝐷 denote the disk in 𝐸 bounded by 𝐶. If 𝐷 is punc-

tured once, we can take the union of it with𝐴∗, and then𝐻𝐿 contains an essen-
tial annulus in𝑀1 with one boundary component on 𝑇𝐾1,𝑖 and another bound-
ary component on 𝑇𝐾 . If𝐷 is punctured twice, we can glue the annulus 𝐹⧵𝐷 to
𝐴∗ to obtain an annulus essential in 𝐻𝐿 and contained in𝑀1 with one bound-
ary component on 𝑇𝐾1,𝑖 and the other boundary component on 𝜕𝐻. Both cases
contradict Lemma 2.5. We reach the analogous contradictions if 𝐴∗ ⊂ 𝑀2.

(2b) The annulus 𝐴 has at least one boundary component 𝜕1𝐴 on 𝐾. Suppose
first that 𝜕1𝐴 is a (1, 0) curve in 𝑇𝐾 . Then 𝜕2𝐴 is either a (1, 0) curve in 𝑇𝐾 or
lies in some 𝑇𝐾1,𝑖 or 𝑇𝐾2,𝑗 . By minimality of |𝐴 ∩ 𝐹| and incompressibility of 𝐹,
the components of 𝐴 ∩ 𝐹 are circles which are nontrivial in 𝐴 and 𝐹. A circle
𝐶 in 𝐴 ∩ 𝐹 bounds a subannulus 𝐴∗ of 𝐴 with 𝜕1𝐴 such that 𝐴∗ ∩ 𝐹 = 𝐶. Note
𝐴∗ is incompressible since 𝐶 and 𝜕1𝐴 are nontrivial in 𝐴.
Suppose, without loss of generality, that 𝐴∗ ⊂ 𝑀1. Let 𝐷 denote the disk

in 𝐸 bounded by 𝐶. Suppose first that 𝐷 is punctured once. Then we obtain a
new annulus𝐴′∗ by gluing𝐷 onto𝐴∗, with both boundaries nowmeridians on
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𝑇𝐾 . We can view𝐴′∗ as a properly embedded annulus in𝑀1 which is boundary
compressible in𝐻𝐿 by Lemma 2.5.
By irreducibility of𝐻𝐿, the annulusmust be boundary parallel. If it is bound-

ary parallel to the 𝑀1 side of 𝐻𝐿, then we can use that to isotope 𝐴 along 𝑇𝐾
and reduce its number of intersection curves with 𝐹, a contradiction to mini-
mality. It cannot be boundary parallel to the other side as the boundary of the
handlebody is to that side.
If 𝐷 is punctured twice, then 𝐻𝐿 contains an essential annulus in 𝑀1 with

one boundary component on 𝑇𝐾 and the other boundary component on 𝜕𝐻.
this contradicts Lemma 2.5.

Suppose next that 𝜕1𝐴 is a (𝑝, 𝑞)-curve in 𝑇𝐾 with |𝑞| > 0. If 𝜕2𝐴 ⊂ 𝑇𝐾 , then
all components of 𝐴∩𝐹 are nontrivial arcs in𝐴. If there is an innermost arc of
𝐴 ∩ 𝐹 in 𝐹 that is trivial in 𝐹, then 𝐴 is boundary compressible, contradicting
its essentiality.
So all arcs in 𝐴 ∩ 𝐹 are nontrivial and parallel on 𝐹. Each component of

𝐴 ∩𝑀1 is a disk with boundary consisting of four arcs, two in 𝜕𝑁(𝐾) and two
in 𝐹. Let 𝐷 be one of them. The two arcs on its boundary in 𝐹 cut a disk 𝐷′

from 𝐹 that has two arcs on its boundary also in 𝜕𝑁(𝐾). Then𝐷 ∪𝐷′ is either a
properly embeddedMöbius band𝑄 or an annulus𝐴′. We consider the annulus
possibility first.
If 𝐴′ is compressible, then we can use the compression disk together with

half of 𝐴′ to obtain a disk with boundary consisting of two arcs, one in 𝐹 and
one in 𝜕𝑁(𝐾). But this contradicts the boundary-incompressibility of 𝐹.
If 𝐴′ is boundary compressible by a disk 𝐷′′, we can take the arc in 𝐷′′ ∩ 𝐴′

to be in 𝐷′ ⊂ 𝐹, therefore obtaining a boundary compression of 𝐹. So 𝐴′ is
a essential annulus that does not intersect 𝐹. Therefore the existence of 𝐴′

contradicts Lemma 2.5.
If 𝐷 ∪𝐷′ is a Möbius band 𝑄, then the boundary of 𝑄must be a meridian on

𝑇𝐾 as it is entirely contained in𝑀1 and cannot be trivial as thenwewould have a
projective plane embedded in𝑀1 which we could embed in 𝑆3, a contradiction.
The boundary of a regular neighborhood of 𝑄 is an annulus 𝐴′′. It is incom-

pressible to the inside of the regular neighborhod of 𝑄 as that is a solid torus,
with the core curve of the annulus going around the core curve of the solid torus
twice. It is incompressible to the outside as the boundaries are meridian curves
on𝑇𝐾 . It is boundary incompressible as any boundary compressionwould yield
a boundary compression for 𝐹, a contradiction. So again, the existence of an es-
sential annulus 𝐴′′ that misses 𝐹 contradicts Lemma 2.5.

Suppose 𝜕2𝐴 is in some 𝑇𝐾1,𝑖 . Then theremust be an intersection arc in𝐴∩𝐹
that cuts a disk from 𝐴 with one boundary in 𝐹 and the other boundary in
𝜕𝑁(𝐾2). We canuse it to push𝐾2 onto𝐸 by an isotopy in𝐻𝐿 fixing the endpoints
of 𝐾2. This implies that 𝐻𝐿 contains a compressing disk in𝑀2 with boundary
isotopic in 𝜕𝐻 to 𝜕𝐸. We reach the analogous contradiction if 𝜕2𝐴 is in some
𝑇𝐾2,𝑗 .



1108 COLIN ADAMS AND DANIEL SANTIAGO

Case 3: The annulus𝐴 has a boundary component 𝜕1𝐴 on 𝜕𝑁(𝐿) and a bound-
ary component 𝜕2𝐴 on 𝜕𝐻.

Let 𝐽 be the component of 𝐿 with regular neighborhood boundary that 𝐴
intersects. Then the boundary of a regular neighborhood of 𝐴 ∪ 𝜕𝑁(𝐽) is an
annulus 𝐴′ with both of its boundaries in 𝜕𝐻. The boundaries of 𝐴′ are two
parallel nontrivial curves on the boundary of𝐻 that are also parallel to the one
boundary of 𝐴 on 𝜕𝐻. Thus 𝐴′ must be incompressible.
If𝐴′ is boundary compressible, then do the boundary compression on the an-

nulus 𝐴′ to obtain a disk 𝐷′′ with boundary in 𝜕𝐻. By boundary-irreducibility
of 𝐻𝐿, 𝐷′′ would have to have trivial boundary in 𝜕𝐻. The boundary compres-
sion has the impact on 𝜕𝐴′ of surgering the two curves along an arc running
from one to the other. Surgering two nontrivial parallel curves on a surface of
genus at least two along an arc that is not in the annulus between the curves
yields a nontrivial curve. So the boundary compression cannot be to that side.
Thus the boundary compressionmust be to the side of the annulus in 𝜕𝐻 shared
by the two curves. But this side is a solid torus missing its core curve 𝐽, prevent-
ing a boundary compression to that side. So 𝐴′ is an essential annulus in 𝐻𝐿
with both boundaries on 𝜕𝐻, contradicting Case 1. □

Lemma 2.7. The manifold𝐻𝐿 contains no essential torus.

Proof. Suppose 𝐻𝐿 contains an essential torus 𝒯. We assume that |𝒯 ∩ 𝐹| is
minimal among all essential tori in𝐻𝐿.
Suppose first that 𝒯 ∩ 𝐹 = ∅. Then 𝒯 ⊂ 𝑀1 or 𝒯 ⊂ 𝑀2. For convenience,

we assume 𝒯 ⊂ 𝑀1. Then we can view 𝒯 as a torus 𝒯 in𝐻1 ⧵ �̊�(𝐿1) which we
show is essential.
Suppose 𝒯 is boundary parallel in 𝐻1 ⧵ �̊�(𝐿1). Since 𝜕𝐻1 has genus at least

2, 𝒯 must be parallel to a component of 𝜕𝑁(𝐿1). If it is boundary parallel to a
component 𝐽, then 𝒯 must separate a solid torus from 𝐻1 that has 𝐽 as its core
curve. Since 𝐹 is to the side of 𝒯 that 𝐻 is, the solid torus cannot intersect 𝐹1
either. So both the solid torus and 𝐽 are in 𝑀1, and 𝑇 is boundary parallel in
𝐻𝐿, contrary to our assumption.
Suppose 𝒯 is compressible in 𝐻1 ⧵ �̊�(𝐿1). Then a nontrivial curve 𝛾 ⊂ 𝒯

bounds a disk 𝐷 in𝐻1 ⧵ �̊�(𝐿1). We assume that |𝐷 ∩ 𝐹1| is minimal among all
compression disks of 𝒯 in 𝐻1 ⧵ �̊�(𝐿1). Note that the components of 𝐷 ∩ 𝐹 are
circles.
If 𝐷 ∩ 𝐹1 = ∅, then 𝐷 ⊂ 𝑀1, which implies that 𝒯 is compressible in 𝐻𝐿,

a contradiction. If 𝐷 ∩ 𝐹1 ≠ ∅, by incompressibility of 𝐹, an innermost circle
of 𝐷 ∩ 𝐹1 in 𝐷 is trivial in 𝐹1, hence by irreducibility of 𝐻𝐿, we can reduce
|𝐷 ∩ 𝐹1| by an isotopy, contradicting minimality. It follows that 𝒯 is essential
in𝐻1⧵�̊�(𝐿1), which contradicts that𝐻1⧵�̊�(𝐿1) is hyperbolic. Since𝐻2⧵�̊�(𝐿2)
is hyperbolic, we reach the analogous contradictions if 𝒯 ⊂ 𝑀2.
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Suppose next that𝒯∩𝐹 ≠ ∅. By minimality of |𝒯∩𝐹| and incompressibility
of 𝐹, the components of 𝒯 ∩ 𝐹 are circles which are nontrivial in 𝒯 and 𝐹.
Let𝐴𝐶 be an annuluswhich is a connected component of𝑀1∩𝒯with bound-

ary two circles in 𝐹 ∩𝒯. We claim the boundaries of𝐴𝐶 are two disjoint circles
𝐶1 and 𝐶2 which bound disjoint disks in 𝐸 punctured once by 𝐿. Suppose oth-
erwise. Then two circles 𝐶1, 𝐶2 ⊂ 𝐴𝐶 ∩ 𝐹 bound disks 𝐷1, 𝐷2 ⊂ 𝐸 such that
𝐷2 ⊂ 𝐷1. If 𝐷2 is punctured once and 𝐷1 is punctured twice by 𝐿, then we can
glue𝐷2 and a slightly moved𝐷1 to𝐴𝐶 to obtain a sphere in𝐻 that is punctured
three times by 𝐿. Thus 𝐷1, 𝐷2 are both punctured once or twice by 𝐿.
Suppose 𝐷1 and 𝐷2 are both punctured twice. Then by adding the annuli

in 𝐹 ⧵ 𝐷𝑖 to 𝐴𝐶 , we obtain an annulus 𝐴′
𝐶 with boundary in 𝜕𝐻. By the same

reasoning as in the proof of Case 1 in the proof of Lemma 2.6, 𝐴′
𝐶 is boundary

compressible in𝑀1 and we can push 𝐴𝐶 through 𝐹 to reduce |𝐴 ∩ 𝐹|, contra-
dicting minimality.
Suppose 𝐷1 and 𝐷2 are both punctured once. The circles 𝐶1 and 𝐶2 bound

an annulus 𝐴𝐶,𝐹 in 𝐹 which is not punctured by 𝐿.
By gluing the punctured disks𝐷1 and𝐷2 onto𝐴𝐶 , and sliding the𝐷1 portion

just off 𝐹, we obtain a new annulus 𝐴𝐶 with boundaries on 𝐴𝐾1 . This annu-
lus 𝐴𝐶 ⊂ 𝑀1 is properly embedded in 𝐻𝐿 with 𝜕𝐴𝐶 ⊂ 𝑇𝐾 . The boundaries of
𝐴𝐶 are meridians on 𝑇𝐾 that bound an annulus 𝐴′

𝐶,𝐹 ⊂ 𝐴𝐾1 which is obtained
from𝐴𝐶,𝐹 by an isotopy in𝑀1. Note𝐴𝐶 is incompressible in𝐻𝐿 as𝐴𝐶 is incom-
pressible, and hence by Lemma 2.5 it is boundary compressible in 𝐻𝐿. Thus a
nontrivial arc 𝛼 in 𝐴𝐶 bounds a disk 𝐷𝛽 in𝐻𝐿 with an arc 𝛽 ⊂ 𝑇𝐾 .
If 𝛽 is not a nontrivial arc in𝐴′

𝐶,𝐹 , it intersects𝐴𝐾2 in a nontrivial arc. In that
case 𝐷𝛽 becomes a compressing disk for the torus 𝐴𝐶 ∪ (𝑇𝐾 ⧵ 𝐴′

𝐶,𝐹 . Doin the
compression yields a sphere in𝐻𝐿 that separates 𝐾 from 𝜕𝐻, a contradiction to
irreducibility of𝐻𝐿.
If 𝛽 is not a nontrivial arc in 𝐴′

𝐶,𝐹 , the disk 𝐷𝛽 lies in the region contained in
𝑀1 that 𝐴𝐶 separates from 𝐻𝐿. We can thus push 𝐷𝛽 by an isotopy to obtain a
boundary compression disk for 𝐴𝐶 in𝑀1, hence 𝐴𝐶 is boundary compressible
in 𝑀1 and boundary parallel (since the boundary compressing arc in 𝑀1 is a
nontrivial arc in 𝐴𝐶,𝐹) and we can push it through 𝐹 to reduce |𝐴 ∩ 𝐹|, a con-
tradiction.

We reach the analogous contradictions if 𝐴𝐶 ⊂ 𝑀2. Thus, we can assume
the boundaries of 𝐴𝐶 are two disjoint circles which bound disjoint disks in 𝐸
punctured once by 𝐿.
If there were more than one such annulus in 𝑀1 and one such in 𝑀2, then

following along the annuli, one after the other as we travel along a longitude of
𝒯, we would have to have them cycle one inside the next as they pass through
𝐹, and the torus could never close up. So there is only one to each side of 𝐹 and
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𝒯 is cut into two incompressible (since the elements of 𝒯 ∩ 𝐹 are nontrivial in
𝒯) annuli 𝒜1 ⊂ 𝑀1,𝒜2 ⊂ 𝑀2.
If we glue the punctured disks 𝐷1 and 𝐷2 to𝒜1 we obtain an incompressible

annulus, which must then be boundary parallel to 𝜕𝑁(𝐾) by Lemma 2.6. The
same holds for 𝒜2, implying the torus 𝒯 is boundary parallel, a contradiction
to its being essential. □

A situation where Theorem 2.1 is easily applicable is when 𝐻1 = 𝐻2, and
𝐿1 = 𝐿2. See Figure 4.

Figure 4. Applying Theorem 2.1 to two pieces in a single handlebody.

Corollary 2.8. Let (𝐻, 𝐿) be a handlebody/link pair that is tg-hyperbolic. Let 𝐸1
and 𝐸2 be two disjoint twice-punctured separating disks in𝐻. Then cutting along
the two disks, the piece with both disks on the boundary can be discarded and the
two pieces with one disk along the boundary, assuming they are positive genus,
can be glued together along those disks, and the resulting handlebody/link pair
will be tg-hyperbolic.

Note that the intermediate piece that is being removed need not have positive
genus. So, we can remove appropriate tangles from a tg-hyperbolic link in a
handlebody and still preserve tg-hyperbolicity. Thus, in order to determine tg-
hyperbolicity of a link in a handlebody, all such tangles could be removed and
if the resulting simplified link is not tg-hyperbolic because of the presence of
an essential sphere, disk, annulus or torus, neither could the original link have
been.
The ideas in the proof of Theorem 2.1 extend to a different setting, where we

cut a handlebody into three pieces along disks 𝐸1 and 𝐸2 and glue one piece to
itself along the copies of 𝐸1 and 𝐸2.
Suppose 𝐿1 is a link in a handlebody 𝐻1 and (𝐻1, 𝐿1) is tg-hyperbolic. Sup-

pose 𝐸1 and 𝐸2 are two nontrivial separating disks in𝐻1 each punctured twice
by 𝐿1, which together separate a handlebody𝐻1,2 of genus 𝑔1,2 from two disjoint
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handlebodies𝐻1,1, 𝐻1,3 of genus 𝑔1,1, 𝑔1,3 respectively, with all these genera pos-
itive. Let𝑀1,𝑖 = 𝐻1,𝑖 ⧵ �̊�(𝐿1), 𝐹𝑖 = 𝐸𝑖 ⧵ �̊�(𝐿1). Let 𝐿1,2 = 𝐿1 ∩𝐻1,2.
Gluing the subsets𝐹1, 𝐹2 of 𝜕𝑀1,2 together by an orientation preservinghome-

omorphism 𝜙 ∶ 𝐹1 → 𝐹2 sending 𝜕𝐸1 to 𝜕𝐸2 and 𝜕𝐹1 ∩ 𝜕𝑁(𝐿1) to 𝜕𝐹2 ∩ 𝜕𝑁(𝐿2)
yields a link complement𝐻𝐿 = 𝐻∖�̊�(𝐿) in the handlebody𝐻 of genus 𝑔1,2 + 1
as in Figure 5. We denote by 𝐹 the image of 𝐹1 and 𝐹2 in𝐻𝐿.

Figure 5. Gluing𝑀 to itself by a homeomorphism 𝐹1 → 𝐹2.

Theorem 2.9. Suppose 𝐻1 ⧵ 𝐿1 is tg-hyperbolic, and 𝐸1 ∩ 𝐿1 = 𝐸1 ∩ 𝐾, 𝐸2 ∩
𝐿1 = 𝐸2 ∩ 𝐾′, where 𝐾 and 𝐾′ are two distinct components of 𝐿1, then 𝐻𝐿 is
tg-hyperbolic.

Theorem 2.9 follows from the same arguments as Theorem 2.1. Namely, the
surfaces𝐹, 𝐹1, and𝐹2 are incompressible and boundary incompressible, andwe
can use this to reach the analogous contradictions from Lemmas 2.2-2.7. The
requirement that the punctures of 𝐸1 and 𝐸2 correspond to two distinct com-
ponents 𝐾 and 𝐾′ of 𝐿 must be introduced to force an annulus with boundary
in 𝜕𝐻 that intersects 𝐹 in nontrivial arcs to be cut into disks with two opposite
sides in 𝐹. Without this condition the result does not hold in general, as shown
in Figure 6.

3. Applications
3.1. Staked links. Links in handlebodies are directly related to the theory of
staked links defined in [2]. (These links are also called tunnel links as in [10]
or starred links as in as-of-yet unpublished work of N. Gügümcü and L. Kauff-
man.) In this section we will only work with staked links in 𝑆2. A staked link is
a pair (𝐿𝐷, {𝑝𝑖}1≤𝑖≤𝑛) of a link diagram 𝐿𝐷 ⊂ 𝑆2 together with a finite collection
{𝑝𝑖}1≤𝑖≤𝑛 of isolated poles, which are distinct points 𝑝1,… , 𝑝𝑛 ∈ 𝑆2 such that
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H1\ L1

HL

Figure 6. A counterexample to Theorem 2.9 when the condi-
tion on the punctures of 𝐸1, 𝐸2 is removed. Here 𝑇 is an alter-
nating tangle which can be chosen to satisfy the conditions of
Theorem1.6 of [3] (appearing in the next section) so that𝐻1⧵𝐿1
tg-hyperbolic. After cutting and gluing, 𝐻𝐿 contains an essen-
tial annulus 𝐴 with boundary in 𝜕𝐻 as shown (perpendicular
to the page), which intersects 𝐹 in a single nontrivial arc and
which separates one component of the link.

each 𝑝𝑖 lies in a connected component of 𝑆2 ⧵ 𝐿𝐷 . Staked links are considered
up to Reidemeister moves that do not pass strands over elements of {𝑝𝑖}1≤𝑖≤𝑛. A
staked link determines a link in a handlebody of genus 𝑛−1 as follows. Choose
open disks 𝐷1,… , 𝐷𝑛 ⊂ 𝑆2 ⧵ 𝐿𝐷 containing 𝑝1,… , 𝑝𝑛 respectively, such that
𝐷𝑖 ∩ 𝐷𝑗 = ∅ for 𝑖 ≠ 𝑗. Then 𝐷𝐿 ∶= 𝑆2 ⧵ (∪𝑛𝑖=1𝐷𝑖) is the closure of a 𝑛 − 1 punc-
tured disk and 𝐿𝐷 determines a link 𝐿𝐷 in the handlebody 𝐷𝐿 × [0, 1] as shown
in Figure 7. A staked link (𝐿𝐷, {𝑝𝑖}1≤𝑖≤𝑛) is tg-hyperbolic if (𝐷𝐿 × [0, 1], 𝐿𝐷) is
hyperbolic as in Section 1.
Given a staked link (𝐿𝐷, {𝑝𝑖}1≤𝑖≤𝑛), any simple closed loop 𝛾 ∶ [0, 1] → 𝑆2

with 𝛾(0) = 𝛾(1) = 𝑝𝑖 determines a proper non self-intersecting arc 𝑎𝛾 ⊂ 𝑆2 ⧵
(∪𝑛𝑖=1𝐷𝑖)with 𝜕𝑎𝛾 ⊂ 𝜕𝐷𝑖, and hence a proper separating disk 𝑎𝛾 × [0, 1] in 𝐷𝐿 ×
[0, 1], as in Figure 8. If 𝛾 intersects 𝐿𝐷 twice, this disk could come from a gluing
operation satisfying the conditions of Theorem 2.1, hence Theorem 2.1 gives a
way to check if a complicated staked link is hyperbolic by checking if it is cut
by 𝛾 into pieces which come from hyperbolic staked links.
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Figure 7. A staked link 𝐿𝐷 ⊂ 𝑆2 with 𝑛 stakes determines a
link 𝐿𝐷 in a handlebody of genus 𝑛 − 1.

Figure 8. A simple closed loop 𝛾 based at a pole of a staked
knot determines a separating disk in the corresponding handle-
body.
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3.2. Alternating links. To showa link in ahandlebody (𝐻, 𝐿) is tg-hyperbolic,
it is sufficient to show that 𝐻 can be given a product structure 𝐻 ≅ 𝐹 × [0, 1],
where 𝐹 is the closure of a disk punctured some nonzero number of times, such
that the projection of 𝐿 to the surface 𝐹 × {1∕2} is alternating and satisfies con-
ditions as follows.

Theorem 3.1 (Theorem 1.6 in [3]). Let 𝐹 be a projection surface with nonempty
boundarywhich is not a disk, and let𝐿 ⊂ 𝐹×𝐼 be a linkwith a connected, reduced,
alternating projection diagram 𝜋(𝐿) ⊂ 𝐹 × {1∕2} with at least one crossing. Let
𝑀 = (𝐹 × 𝐼) ⧵ 𝑁(𝐿). Then 𝑀 is tg-hyperbolic if and only if the following four
conditions are satisfied:

(i) 𝜋(𝐿) is weakly prime on 𝐹 × {1∕2};
(ii) the interior of every complementary region of (𝐹 × {1∕2}) ⧵ 𝜋(𝐿) is either

an open disk or an open annulus;
(iii) if regions 𝑅1 and 𝑅2 of (𝐹 × {1∕2}) ⧵ 𝜋(𝐿) share an edge, then at least one

is a disk;
(iv) there is no simple closed curve 𝛼 in 𝐹 that intersects 𝜋(𝐿) exactly in a

nonempty collection of crossings, such that for each such crossing, 𝛼 bi-
sects the crossing and the two opposite complementary regions meeting at
that crossing that do not intersect 𝛼 near that crossing are annuli.

By weakly prime we mean that there is no simple closed curve on the pro-
jection surface that crosses the link twice and that bounds a disk that contains
crossings. Note that each of these conditions is easily checked for the projec-
tion.
In the notations of Section 2, this gives a simpleway to show that (𝐻1, 𝐿1) and

(𝐻2, 𝐿2) are tg-hyperbolic. Note that Theorem 2.1 gives the expected behavior
when both 𝐿1, 𝐿2 are alternating and 𝐾1, 𝐾2 glue together so that 𝐾 is alternat-
ing. In particular, Theorem 2.1 can apply in the general situation of gluing an
alternating piece to a non-alternating piece.
As an example, for anyweakly prime alternating tangle𝑇 as in Figure 9 other

than 0 or 1 crossing or a horizontal sequence of bigons, (which do not satisfy
the conditions of the theorem), we can form the piece𝑀𝑇. Then if we take any
other hyperbolic knot in a handlebody of positive genus, and split it into two
pieces of positive genus by a twice-punctured disk, we can glue either resulting
piece to the piece𝑀𝑇 and still generate a tg-hyperbolic handlebody/link pair.

3.3. Planar knotoids. Knotoids are a variation on knots given by projections
of line segments defined up to Reidemeister moves and disallowing strands to
pass over or under the endpoints of the segment. When the projection surface
is a plane, we say the knotoid is a planar knotoid. In [1], two definitions of hy-
perbolicity of planar knotoids were given. The first, which is called the planar
reflected doubling map, associates to the knotoid a link in a genus three han-
dlebody. If the complement of the link is tg-hyperbolic, the knotoid is said to
be hyperbolic under the reflected doubling map. The second, which is called



COMPOSITION PROPERTIES OF HYPERBOLIC LINKS IN HANDLEBODIES 1115

Figure 9. If 𝑇 is an alternating tangle satisfying simple re-
strictions, the genus 2 handlebody/link pair depicted is tg-
hyperbolic, so we can glue 𝑀𝑇 to any other piece from a hy-
perbolic handlebody/link pair to obtain another tg-hyperbolic
handlebody/link pair.

the planar gluing map, associates to the knotoid a link in a genus two han-
dlebody. Again, if the complement of the link is tg-hyperbolic, the knotoid is
said to be hyperbolic under the gluing map. Proposition 2.5 in [1] proves that
hyperbolicity of a planar knotoid under the reflected doubling map implies hy-
perbolicity under the gluingmap but not vice versa. Further, the volume under
the reflected doubling map is always at least as large as the volume under the
gluing map. Theorem 2.1 together with the results from [3] can provide many
examples of planar knotoids that are hyperbolic under either of the two con-
structions.
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