New York Journal of Mathematics

New York J. Math. 29 (2023) 1032–1037.

Large spectral gaps and small sumsets

Tomasz Schoen

ABSTRACT. Let *N* be a prime number and α satisfies $\alpha_0 \geq \alpha \geq N^{-1/4}$. We construct a set $A \subseteq \mathbb{Z}/N\mathbb{Z}$, such that $|A| = (1 + o(1))\alpha N$, $\max_{r\neq 0} |\hat{1}_A(r)| \ll \alpha^{1/2} \log^{3/2}(1/\alpha)|A|$ and $|A + A| \leq N/2$. This result is essentially optimal.

CONTENTS

1.	Introduction	1032
2.	The proof of Theorem 1	1034
References		1037

1. Introduction

The Fourier analysis is a well established method in additive combinatorics. Suppose that $A \subseteq \mathbb{Z}/N\mathbb{Z}$, where N is a prime number, and denote by

$$\widehat{1}_A(r) = \sum_{a \in A} e^{-2\pi i r a/N},$$

 $r \in \mathbb{Z}/N\mathbb{Z}$, the Fourier coefficients of the characteristic function of the set *A*. It is well known that a sufficiently large spectral gap of $\hat{1}_A$ implies that A + A is very large. More precisely, if $\max_{r\neq 0} |\hat{1}_A(r)| \leq \varepsilon \alpha^{1/2} |A|$, where $\alpha = |A|/N$, then A + A fill out $1 - \varepsilon^2$ proportion of the whole group. Let E(A) be the additive energy of the set *A*, i.e. the number of solutions to the equation a + b = c + d with $a, b, c, d \in A$. Then by the Fourier inversion formula and the Parseval identity, it is implied that

$$E(A) = \frac{1}{N} \sum_{r} |\hat{1}_{A}(r)|^{4} \le \alpha |A|^{3} + \varepsilon^{2} \alpha |A|^{2} \sum_{r \ne 0} |\hat{1}_{A}(r)|^{2} = (1 + \varepsilon^{2}) \alpha |A|^{3}.$$

Thus, by the Cauchy-Schwarz inequality, we have

$$|A+A| \ge \frac{|A|^4}{E(A)} \ge \frac{1}{1+\varepsilon^2} N \ge (1-\varepsilon^2) N \,.$$

A more general result was obtained in [CS09]. Namely, a similar conclusion holds for sets having large spectral gap after at most $\log_2 N$ largest Fourier coefficients of 1_A [CS09]. Therefore, there arises a natural question asked in [CS09]:

Received December 3, 2022.

²⁰¹⁰ Mathematics Subject Classification. 11B30, 11L03, 11P99, 41A16.

Key words and phrases. large spectrum, sumsets.

what is the minimal spectral gap that guaranties that a sumset covers almost whole group? We show that the assumption on the spectral gap of order $\alpha^{1/2}|A|$ is essentially optimal. Our purpose is to establish the following result.

Theorem 1.1. There is an absolute constant $\alpha_0 \in (0, 1]$ with the following property. Let $N \ge N_0$ be a prime number and let $\alpha_0 \ge \alpha \ge N^{-1/4}$. Then there exists a set $A \subseteq \mathbb{Z}/N\mathbb{Z}$ of size $|A| = (1 + o(1))\alpha N$ such that $\max_{r \ne 0} |\hat{1}_A(r)| \le 100\alpha^{1/2} \log(1/\alpha)^{3/2} |A|$ and

$$|A+A| \leq N/2$$
.

The proof of our result relies on the construction of a function which is roughly the convolution of a sparse random set R and a dense structural set S. It is well known that a dense set has only few large Fourier coefficients (the large spectrum must be small). Therefore, using properties of the Fourier transform, to guarantee that the convolution of those sets has a large spectral gap it is enough to control the Fourier coefficients of R only on a suitable large spectrum of S. On the other hand, the support of $1_R * 1_S$ is the sumset R + S, so its sumset is not too large with appropriate choice of sizes of R and S. The proof is concluded by a construction of a set with the required properties using the constructed function, which is derived by a probabilistic argument.

1.1. Notation. Given functions $f,g : \mathbb{Z}/N\mathbb{Z} \to \mathbb{C}$, the convolution of f and g is defined by

$$(f * g)(x) = \sum_{t \in \mathbb{Z}/N\mathbb{Z}} f(t)g(x - t).$$

The Fourier coefficients of f are defined by

$$\widehat{f}(r) = \sum_{x \in \mathbb{Z}/N\mathbb{Z}} f(x) e^{-2\pi i r x/N}$$

where $r \in \mathbb{Z}/N\mathbb{Z}$. Parseval's formula states

$$\sum_{r=0}^{N-1} |\widehat{f}(r)|^2 = N \sum_{x=0}^{N-1} |f(x)|^2$$

applied in particular for the indicator function of a set A gives

$$\sum_{r=0}^{N-1} |\widehat{1}_A(r)|^2 = |A|N.$$

Another important property that we will use is

$$\widehat{(f \ast g)}(r) = \widehat{f}(r)\widehat{g}(r).$$

For $\beta \in \mathbb{R}$, we denote by $\|\beta\| = \min_{y \in \mathbb{Z}} |\beta - y|$ the distance of β from the nearest integer. Observe that for any $r \in \mathbb{Z}/N\mathbb{Z}$ and any integer $x \equiv r \pmod{N}$, the value of x/N modulo 1 is unique, hence we can define $\|r/N\| = \|x/N\|$.

2. The proof of Theorem 1

Over the course of the proof of Theorem 1.1, we will use repeatedly the classical Bernstein's inequality [B27].

Lemma 2.1 (Bernstein). Let $X_1, ..., X_N$ be independent random variables and suppose that $|X_k - \mathbb{E}(X_k)| \le M$ for every $1 \le k \le N$. Then, for all positive t

$$\mathbb{P}\Big(|\sum_{k=1}^{N} X_{k} - \sum_{k=1}^{N} \mathbb{E}(X_{k})| \ge t\Big) \le 2\exp\Big(-\frac{\frac{1}{2}t^{2}}{\sum_{k=1}^{N} \operatorname{Var}(X_{k}) + \frac{1}{3}tM}\Big)$$

Lemma 2.2. Let $\Gamma \subseteq \mathbb{Z}/N\mathbb{Z}$ be any set. Then for every $n \ge \log |\Gamma| \ge n_0$ and $l \le N/n$ there exists a set R such that $3n/4 \le |R| \le 5n/4$,

$$\max_{r \in \Gamma \setminus \{0\}} |\widehat{1}_{R}(r)| \le 8\sqrt{|R| \log |\Gamma|}$$
(1)

and

$$|R \cap \{a, a+1, \dots, a+l-1\}| \le 10 \log(N/l)$$
(2)

for every $a \in \mathbb{Z}/N\mathbb{Z}$.

Proof. Let *R* be a random subset chosen by picking each element of $\mathbb{Z}/N\mathbb{Z}$ independently with probability p = n/N. Since *n* is large enough, by Lemma 2.1 applied for indicator random variables, we have

$$\mathbb{P}(3n/4 \le |R| \le 5n/4) \ge 9/10.$$
(3)

Let us observe that for every $r \in \mathbb{Z}/N\mathbb{Z}, r \neq 0$

$$\mathbb{E}\big(\widehat{1}_R(r)\big) = \sum_{k=0}^{N-1} p e^{2\pi i r k/N} = 0,$$

and that

$$\mathbb{P}\big(|\widehat{1}_{R}(r)| \ge \sqrt{2}t\big) \le \mathbb{P}\big(|\Re \widehat{1}_{R}(r)| \ge t\big) + \mathbb{P}\big(|\Im \widehat{1}_{R}(r)| \ge t\big).$$
(4)

Let $r \neq 0$ be fixed. We define independent random variables $X_k, 0 \leq k \leq N-1$, by

$$X_k = \begin{cases} \cos(2\pi kr/N), & \text{if } k \in R\\ 0, & \text{if } k \notin R \end{cases}$$
(5)

Clearly, we have $|X_k - \mathbb{E}(X_k)| \le 1$ and $\operatorname{Var}(X_k) \le p$. Thus, by Lemma 2.1 applied with $t = 4\sqrt{pN \log |\Gamma|} = 4\sqrt{n \log |\Gamma|}$, we have

$$\mathbb{P}(|\Re \widehat{1}_{R}(r)| \ge t) \le 2 \exp\left(-\frac{\frac{1}{2}t^{2}}{pN + \frac{1}{3}t}\right)$$
$$\le 2 \exp\left(-\frac{24}{7}\log|\Gamma|\right)$$
$$< \frac{1}{20|\Gamma|}$$

1034

and the same upper bound holds for $\mathbb{P}(|\Im \widehat{1}_R(r)| \ge t)$. Hence by (4), we have

$$\mathbb{P}\left(|\widehat{1}_{R}(r)| \ge 4\sqrt{2pN\log|\Gamma|}\right) \le \frac{1}{10|\Gamma|},$$
$$\mathbb{P}\left(\max_{r\in\Gamma\setminus\{0\}}|\widehat{1}_{R}(r)| \le 4\sqrt{2pN\log|\Gamma|}\right) \ge 9/10.$$
(6)

SO

Next, we show that (2) is satisfied with high probability. We split $\mathbb{Z}/N\mathbb{Z}$ into $m = \lceil N/l \rceil$ intervals I_1, \ldots, I_m such that $|I_j| = l$, for every $1 \le j \le \lfloor N/l \rfloor$, and $|I_m| \le l$. Again by Lemma 2.1 applied for indicator random variables, for any *j* we have

$$\mathbb{P}(|R \cap I_j| \ge pl + 2\log(N/l)) \le \mathbb{P}(|R \cap I_j| \ge p|I_j| + 2\log(N/l))$$

$$\le 2\exp\left(-\frac{2\log^2(N/l)}{p|I_j| + \frac{1}{3}\log(N/l)}\right)$$

$$\le 2\exp\left(-\frac{2\log^2(N/l)}{1 + \frac{1}{3}\log(N/l)}\right)$$

$$\le 2\left(\frac{l}{N}\right)^3$$

and therefore,

 $\mathbb{P}\left(\text{for some } j \text{ we have } |R \cap I_j| \ge pl + 2\log(N/l)\right) \le 2m\left(\frac{l}{N}\right)^3 \le \frac{1}{10}.$ Hence, there exists a set R of size $3n/4 \le |R| \le 5n/4$ that satisfies (1) and $|R \cap I_j| \le pl + 2\log(N/l) \le 3\log(N/l)$

for every *j*. Since each interval of length *l* intersects with at most three intervals among I_1, \ldots, I_m it follows that for each *a*

$$|R \cap \{a, a + 1, \dots, a + l - 1\}| \le 10\log(N/l)$$

which concludes the proof.

Proof of Theorem 1. Let N_0 and $\alpha_0 \le n_0/(30 \log n_0)$ (n_0 is a positive constant given by Lemma 2.2) be positive constants chosen in such a way that all asymptotic inequalities used below hold. Let α be such that $\alpha_0 \ge \alpha \ge N^{-1/4}$ and let $\delta \in (0,1]$ be such that $\alpha = (20 \log(1/\delta))^{-1}\delta$, so $\delta_0 \ge \delta \gg N^{-1/4} \log N$. We apply Lemma 2.2 with $n = [1/(3\delta)]$, $l = [\delta^2 N]$ and

$$\Gamma = \{-[\delta^{-5/2}], \dots, -1, 1, \dots, [\delta^{-5/2}]\}.$$

Let us check for such choice of parameters that the assumptions of Lemma 2.2 are satisfied. Notice that the following inequalities hold provided that $\delta_0 \ge \delta \gg N^{-1/4} \log N$ and $N \ge N_0$

$$l = \left[\delta^2 N\right] \le N / \left[1 / (3\delta)\right] = N / n$$

and

$$n \ge 1/(3\delta) \ge \log(2[\delta^{-5/2}]) = \log |\Gamma| \ge n_0$$
.

Thus, we can apply Lemma 2.2 to obtain a set *R* of size $3n/4 \le |R| \le 5n/4$ fulfilling (1) and (2). Put $S = \{1, ..., l\}$ and define $f : \mathbb{Z}/N\mathbb{Z} \to \mathbb{R}_{\ge 0}$ by

$$f(x) = 1_R * 1_S(x).$$

Since $1_R * 1_S(x) = |R \cap (x - S)|$, by (2), it follows that for all x

 $f(x) \le 10 \log(N/[\delta^2 N]) \le 20 \log(1/\delta).$

We use the function $g(x) = (20 \log(1/\delta))^{-1} f(x)$ to construct the required set. Note that

$$|\hat{1}_{S}(r)| = \Big|\sum_{x=0}^{l-1} e^{-2\pi xr/N}\Big| = \frac{|1 - e^{-2\pi lr/N}|}{|1 - e^{-2\pi r/N}|} \le \frac{1}{|\sin \pi r/N|} \le \frac{1}{2||r/N||},$$

hence if $r \notin \Gamma$

$$|\widehat{1}_S(r)| \le \delta^{1/2} |S|,$$

so

$$|\widehat{g}(r)| = (20\log(1/\delta))^{-1} |\widehat{1}_R(r)\widehat{1}_S(r)| \le (20\log(1/\delta))^{-1} \delta^{1/2} |R| |S|.$$

If $r \in \Gamma \setminus \{0\}$ then by (1)

$$\begin{aligned} |\hat{g}(r)| &= (20\log(1/\delta))^{-1}|\hat{f}(r)| = (20\log(1/\delta))^{-1}|\hat{1}_{R}(r)||\hat{1}_{S}(r)| \\ &\leq 8(20\log(1/\delta))^{-1}\sqrt{|R|\log|\Gamma|}|S| \leq 2\delta^{1/2}|R||S|, \end{aligned}$$

provided that $\delta \leq \delta_0$. Thus, for every $r \neq 0$ we have

$$|\hat{g}(r)| \le 2\delta^{1/2} |R| |S|.$$
(7)

Next, we construct a set with required properties. We will proceed similarly as in the proof of Lemma 3. Let *A* be a random subset of $\mathbb{Z}/N\mathbb{Z}$ chosen by picking each element $x \in \mathbb{Z}/N\mathbb{Z}$ independently with probability $(20 \log(1/\delta))^{-1} 1_R * 1_S(x)$. Then the expected size of *A* equals

$$\sum_{x} (20 \log(1/\delta))^{-1} 1_R * 1_S(x) = (20 \log(1/\delta))^{-1} |R| |S|.$$

By Lemma 2 for N large enough, we have

$$\mathbb{P}\left(\left||A| - \mathbb{E}(|A|)\right| \le 2\sqrt{N\log N}\right) \ge 1 - \frac{1}{N^{1/2}}.$$
(8)

For fixed $r \neq 0$, we define independent random variables $Y_x, 0 \le x \le N - 1$ by

$$Y_x = \begin{cases} \cos(2\pi xr/N), & \text{if } x \in A \\ 0, & \text{if } x \notin A \end{cases}$$

Let us observe that for every $r \in \mathbb{Z}/N\mathbb{Z}, r \neq 0$

$$\mathbb{E}\big(\Re\widehat{1}_A(r)\big) = \sum_{x=0}^{N-1} \mathbb{E}(Y_x) = \Re\widehat{g}(r),$$

1036

and that $|Y_x - \mathbb{E}(Y_x)| \le 1$ and $Var(Y_x) \le 1$, so applying Bernstein's inequality once again we obtain that

$$\mathbb{P}\big(|\Re \widehat{1}_A(r) - \Re \widehat{g}(r)| \ge 2\sqrt{N\log N}\big) \le 2\exp\Big(-\frac{2N\log N}{N + \frac{2}{3}\sqrt{N\log N}}\Big) \le \frac{1}{N^{3/2}},$$

as $N \ge N_0$. Similarly, one can show that

$$\mathbb{P}\left(|\Im \widehat{1}_A(r) - \Im \widehat{g}(r)| \ge 2\sqrt{N \log N}\right) \le \frac{1}{N^{3/2}}$$

so

$$\mathbb{P}\left(\text{for all } r \neq 0 : |\hat{1}_A(r) - \hat{g}(r)| \le 2\sqrt{2}\sqrt{N\log N}\right) \ge 1 - \frac{2}{N^{1/2}}.$$
 (9)

Thus, there exists a set A that satisfies the inequalities (8) and (9). Hence,

$$|A| = (20 \log(1/\delta))^{-1} \sum_{x} 1_{R} * 1_{S}(x) + O(\sqrt{N \log N})$$
$$= (20 \log(1/\delta))^{-1} |R| |S| + O(\sqrt{N \log N}) = (1 + o(1))\alpha N$$

and by (7) for $r \neq 0$,

$$\begin{aligned} |\widehat{1}_{A}(r)| &\leq |\widehat{g}(r)| + 2\sqrt{N}\log N \\ &\leq 2\delta^{1/2}|R||S| + 2\sqrt{N}\log N \\ &\leq 40\log(1/\delta)\delta^{1/2}|A| + O(\sqrt{N}\log N) \\ &\leq 100\alpha^{1/2}\log(1/\alpha)^{3/2}|A|. \end{aligned}$$

It remains to check that A + A is not too large, but it follows easily from the fact that $A \subseteq R + S$. Let us recall that $|R| \le \frac{3}{2} [1/(3\delta)]$ and $|S| = l = [\delta^2 N]$, hence

$$\begin{aligned} |A+A| &\leq |(R+S) + (R+S)| \leq |R+R||S+S| \\ &\leq 2|R|^2|S| \leq \frac{25}{8}[1/(3\delta)]^2[\delta^2 N] \leq N/2. \end{aligned}$$

References

- [B27] BERNŠTEIN, SERGEĬ N. Die Wahrscheinlichkeitsrechnung. (Russian). Moskau-Leningrad: Staatsverlag (Lehrbücher für Hochschulen), 1927. viii, 363 S. JFM 53.0492.01. 1034
- [CS09] CROOT, ERNIE; SCHOEN, TOMASZ. On sumsets and spectral gaps. Acta Arith. 136 (2009), no. 1, 47–55. MR2469943, Zbl 1246.11023, arXiv:0708.0381, doi: 10.4064/aa136-1-4.1032

(Tomasz Schoen) FACULTY OF MATHEMATICS AND COMPUTER SCIENCE, ADAM MICKIEWICZ UNIVERSITY, UNIWERSYTETU POZNAŃSKIEGO 4, 61-614 POZNAŃ, POLAND schoen@amu.edu.pl

This paper is available via http://nyjm.albany.edu/j/2023/29-40.html.