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Large spectral gaps and small sumsets

Tomasz Schoen

ABSTRACT. Let N be a prime number and « satisfies ay > a > N~/* We
construct a set A C Z/NZ, such that [A| = (1 4+ o(1))aN, max,, |TA(r)| <

a'/21og”*(1/a)|A] and |A + A| < N /2. This result is essentially optimal.
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1. Introduction

The Fourier analysis is a well established method in additive combinatorics.

Suppose that A C Z/NZ, where N is a prime number, and denote by
TA(”) — Z e—27rira/N,
acA

r € Z/NZ, the Fourier coefficients of the characteristic function of the set A.
It is well known that a sufficiently large spectral gap of 14 implies that A + A
is very large. More precisely, if max, [T4(r)| < eal/?|A|, where a = |A|/N,
then A+ A fill out 1—¢? proportion of the whole group. Let E(A) be the additive
energy of the set A4, i.e. the number of solutions to the equationa +b =c+d
with a,b,c,d € A. Then by the Fourier inversion formula and the Parseval
identity, it is implied that

1 ~ ~
E(A) = 5 2 [TaI* < alAP +Eal AP ) [T, = A+ )l AP

r r#0
Thus, by the Cauchy-Schwarz inequality, we have
|A]* 1
— 2
E(A) — 1+¢2

A more general result was obtained in [CS09]. Namely, a similar conclusion

holds for sets having large spectral gap after at most log, N largest Fourier coef-
ficients of 14 [CS09]. Therefore, there arises a natural question asked in [CS09]:

|[A+A| > N>(1—-¢>)N.
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what is the minimal spectral gap that guaranties that a sumset covers almost
whole group? We show that the assumption on the spectral gap of order ot'/2|A|
is essentially optimal. Our purpose is to establish the following result.

Theorem 1.1. There is an absolute constant a, € (0, 1] with the following prop-
erty. Let N > N, be a prime number and let oy > a > N~'/4. Then there ex-
istsaset A C Z/NZ of size |A| = (1 + o(1))aN such that max,, TA(r)| <
100c/?log(1/a)*/?|A| and

|A+A| <N/2.

The proof of our result relies on the construction of a function which is
roughly the convolution of a sparse random set R and a dense structural set
S. It is well known that a dense set has only few large Fourier coefficients (the
large spectrum must be small). Therefore, using properties of the Fourier trans-
form, to guarantee that the convolution of those sets has a large spectral gap it
is enough to control the Fourier coefficients of R only on a suitable large spec-
trum of S. On the other hand, the support of 13 * 15 is the sumset R + S, so its
sumset is not too large with appropriate choice of sizes of R and S. The proof
is concluded by a construction of a set with the required properties using the
constructed function, which is derived by a probabilistic argument.

1.1. Notation. Given functions f,g : Z/NZ — C, the convolution of f and
g is defined by

(f*2x)= Y, flgx-1).

teZ/NZ

The Fourier coefficients of f are defined by
f(}’) = Z f(x)e—zmrx/N,

x€Z/NZ

where r € Z/NZ. Parseval’s formula states
N-1 N-1
2 IO =N Ifx)12,
r=0 x=0

applied in particular for the indicator function of a set A gives

N-1
D Ta)? = JAIN.
r=0

Another important property that we will use is

(F * ) = FN8).

For 8 € R, we denote by ||8|| = min,c7 |f—y| the distance of 8 from the nearest
integer. Observe that for any r € Z/NZ and any integer x = r (mod N), the
value of x /N modulo 1 is unique, hence we can define ||r/N|| = ||[x/N|] .
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2. The proof of Theorem 1

Over the course of the proof of Theorem 1.1, we will use repeatedly the clas-
sical Bernstein’s inequality [B27].

Lemma 2.1 (Bernstein). Let X, ..., Xy be independent random variables and
suppose that | X, — E(X})| < M forevery 1 < k < N. Then, for all positive t
1

N N _t2
P(1 ), X — D, EXl > t) < 2exp( - 2 .
k; k; ( > Var(X,) + itM>

Lemma 2.2. LetT' C Z/NZ be any set. Then for every n > log|I'| > ny and
I < N /n there exists a set R such that 3n/4 < |R| < 5n/4,

max, [Tr(")] < 8V/[R[log T €]

rer\{o
and
IRNn{a,a+1,..,a+1—1} <10log(N/I) (2)
foreveryae Z/NZ.
Proof. Let R be a random subset chosen by picking each element of Z/NZ

independently with probability p = n/N. Since n is large enough, by Lemma
2.1 applied for indicator random variables, we have

P(3n/4 < |R| < 5n/4) >9/10. (3)
Let us observe that for everyr € Z/NZ,r #0
N-1
[E(’I\R(r)) — Z pezﬂirk/N =0,
k=0
and that
P(ITr()] = V2t) < P(IRTR()| > 1) + P(1STR()| > 1). (4)

Let r # 0 be fixed. We define independent random variables X;,0 <k < N —1,
by
_{ cos(2mkr/N), ifk €R
Xk‘{ 0, itk & R ®)
Clearly, we have |X; — E(X})| < 1 and Var(X;) < p. Thus, by Lemma 2.1
applied with t = 44/ pN log |T'| = 44/nlog |T'|, we have

lt2
2exp| — 2—)

P(RTK(P > 1) 1
pN + gt

IA

< 2exp( — 2—74log |F|)
L
20|T
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and the same upper bound holds for P(|F1x(r)| > t) Hence by (4), we have

P(|1r(r)| > 4/2pNlog |

D<o 10|r|

P( n}%{%} |Tr(")| < 4/2pNlog|T|) > 9/10. (6)

Next, we show that (2) is satisfied with high probability. We split Z/NZ into
m = [N/l] intervals I, ..., I,,, such that |I;| = [, for every 1 < j < |N/I], and
|I,,] <l. Again by Lemma 2.1 applied for indicator random variables, for any j
we have

P(IRNI;| > pl +2log(N/D)) < P(IRnI;| = p|I;| + 2log(N/1))

SO

2
< 2exp(— 210g1(N/l) )
plIjl + 5 log(N/D)
2
< 2ex (_ 21(1)g (N/l) )
1+§log(N/l)
[\3
< 2(y)

and therefore,

: l 1
P(for some j we have [RNI;| > pl + 2log(N /1)) < 2m(ﬁ) < 0"
Hence, there exists a set R of size 3n/4 < |R| < 5n/4 that satisfies (1) and
IRNI;| < pl+2log(N/l) < 3log(N/1)
for every j. Since each interval of length [ intersects with at most three intervals
among I, ..., I,;, it follows that for each a
IRN{a,a+1,..,a+1—1} < 10log(N/l).

which concludes the proof. (]

Proof of Theorem 1. Let N, and o < n,/(30logn,) (n, is a positive constant
given by Lemma 2.2) be positive constants chosen in such a way that all asymp-
totic inequalities used below hold. Let « be such that ay > a > N~1/4 and let
§ € (0,1] be such that &« = (20log(1/8))7'8,s0 8, > & > N~/*logN. We
apply Lemma 2.2 with n = [1/(38)], [ = [§2N] and

[ ={-[67],..,-1,1,..,[6%/?]}.

Let us check for such choice of parameters that the assumptions of Lemma 2.2
are satisfied. Notice that the following inequalities hold provided that §, > & >
N~'/*logN and N > N,

1=[6’N1<N/[1/(38)]=N/n
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and
n>1/(38) > log(2[65/%]) = log|T| > ny.

Thus, we can apply Lemma 2.2 to obtain a set R of size 3n/4 < |R| < 5n/4
fulfilling (1) and (2). Put S ={1, ..., [} and define f : Z/NZ — R, by

J(x) = 1g * 15(x).
Since 1; * 15(x) = [R N (x — S)|, by (2), it follows that for all x
f(x) <101og(N/[8%N1) < 201og(1/96).

We use the function g(x) = (201og(1/8))~!f(x) to construct the required set.
Note that

-1
[Tl = | D] em/N| =

x=0

henceifr ¢ T’

|1 _ e—27rlr/N| 1 1
< b
11— e-20/N| = [sinzr/N| = 2||r/N]

[Ts(r)| < 84251,

SO

|18(r| = (201og(1/8)7 [Tr(r)T5(r)| < (2010g(1/8))7'6'/2|R]|S].
Ifr €T\ {0} then by (1)

81 = (2010g(1/8) 7! f(r)| = (201og(1/8) "} [Tx(r)|[Ts(r)|

< 8(20log(1/8)"'VIR|log T|IS| < 28'/2|R||S],
provided that § < §,. Thus, for every r # 0 we have
8| < 28'2|R]|S]. (7)

Next, we construct a set with required properties. We will proceed similarly as

in the proof of Lemma 3. Let A be a random subset of Z/N Z chosen by picking
each element x € Z/NZ independently with probability (201og(1/8)) 11 * 1g(x).
Then the expected size of A equals

D (2010g(1/8)) 1 * 15(x) = (201og(1/8)) " R]|S| .

X

By Lemma 2 for N large enough, we have
1

[I3’(||A| - [E(|A|)( <24/NlogN) >1- N (8)

For fixed r # 0, we define independent random variables Y,,0 < x < N —1 by

v = cos2rxr/N), ifxe A
*7 1o, ifxg A
Let us observe that for everyr € Z/NZ,r # 0
N-1

E(RTA(r) = Y E(Y,) = REW),

x=0
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and that |Y, — E(Y,)| <1 and Var(Y,) < 1, so applying Bernstein’s inequality
once again we obtain that

P(IRTA(r) — RE()| > 24/NlogN) < 2exp ( —

2N log N ) < 1

N+2NlogN’ ~ N2 ’

as N > N,. Similarly, one can show that
~ 1
P(I1STa(r) — S8(r)| = 2/N1ogN) < N
SO

P(forallr # 0 : |T,(r) — 8(r)| < 2\/5\/N10gN) >1-— ﬁ (9)

Thus, there exists a set A that satisfies the inequalities (8) and (9). Hence,

|A| (201og(1/6))™' Y. 1g * 15(x) + O(/NlogN)

(201og(1/8))7YR||S| + O(\/Nlog N) = (1 + o(1))aN
and by (7) for r # 0,

1, < |80)|+2/NlogN
< 28Y2|R||S| + 24/NlogN

401og(1/8)8'/2|A| + O(/N logN)

100cc!/2 log(1/a)*/?| A .

It remains to check that A + A is not too large, but it follows easily from the fact
that A C R + S. Let us recall that |R| < 2[1/(35)] and |S| = [ = [62N], hence

[A+A] < |[(R+S)+R+S)|<|R+R|S+S]
2IRI2IS| < %5[1/(35)12[521\11 <N/2.

A A

IA
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