New York Journal of Mathematics

New York J. Math. 29 (2023) 1032-1037.

Large spectral gaps and small sumsets

Tomasz Schoen

Abstract

Let N be a prime number and α satisfies $\alpha_{0} \geq \alpha \geq N^{-1 / 4}$. We construct a set $A \subseteq \mathbb{Z} / N \mathbb{Z}$, such that $|A|=(1+o(1)) \alpha N$, $\max _{r \neq 0}\left|\widehat{1}_{A}(r)\right| \ll$ $\alpha^{1 / 2} \log ^{3 / 2}(1 / \alpha)|A|$ and $|A+A| \leq N / 2$. This result is essentially optimal.

CONTENTS

1. Introduction 1032
2. The proof of Theorem 11034

References 1037

1. Introduction

The Fourier analysis is a well established method in additive combinatorics. Suppose that $A \subseteq \mathbb{Z} / N \mathbb{Z}$, where N is a prime number, and denote by

$$
\widehat{1}_{A}(r)=\sum_{a \in A} e^{-2 \pi i r a / N}
$$

$r \in \mathbb{Z} / N \mathbb{Z}$, the Fourier coefficients of the characteristic function of the set A. It is well known that a sufficiently large spectral gap of $\hat{1}_{A}$ implies that $A+A$ is very large. More precisely, if $\max _{r \neq 0}\left|\widehat{1}_{A}(r)\right| \leq \varepsilon \alpha^{1 / 2}|A|$, where $\alpha=|A| / N$, then $A+A$ fill out $1-\varepsilon^{2}$ proportion of the whole group. Let $E(A)$ be the additive energy of the set A, i.e. the number of solutions to the equation $a+b=c+d$ with $a, b, c, d \in A$. Then by the Fourier inversion formula and the Parseval identity, it is implied that

$$
E(A)=\frac{1}{N} \sum_{r}\left|\widehat{1}_{A}(r)\right|^{4} \leq \alpha|A|^{3}+\varepsilon^{2} \alpha|A|^{2} \sum_{r \neq 0}\left|\widehat{1}_{A}(r)\right|^{2}=\left(1+\varepsilon^{2}\right) \alpha|A|^{3}
$$

Thus, by the Cauchy-Schwarz inequality, we have

$$
|A+A| \geq \frac{|A|^{4}}{E(A)} \geq \frac{1}{1+\varepsilon^{2}} N \geq\left(1-\varepsilon^{2}\right) N
$$

A more general result was obtained in [CS09]. Namely, a similar conclusion holds for sets having large spectral gap after at most $\log _{2} N$ largest Fourier coefficients of 1_{A} [CS09]. Therefore, there arises a natural question asked in [CS09]:

[^0]what is the minimal spectral gap that guaranties that a sumset covers almost whole group? We show that the assumption on the spectral gap of order $\alpha^{1 / 2}|A|$ is essentially optimal. Our purpose is to establish the following result.

Theorem 1.1. There is an absolute constant $\alpha_{0} \in(0,1]$ with the following property. Let $N \geq N_{0}$ be a prime number and let $\alpha_{0} \geq \alpha \geq N^{-1 / 4}$. Then there exists a set $A \subseteq \mathbb{Z} / N \mathbb{Z}$ of size $|A|=(1+o(1)) \alpha N$ such that $\max _{r \neq 0}\left|\widehat{1}_{A}(r)\right| \leq$ $100 \alpha^{1 / 2} \log (1 / \alpha)^{3 / 2}|A|$ and

$$
|A+A| \leq N / 2
$$

The proof of our result relies on the construction of a function which is roughly the convolution of a sparse random set R and a dense structural set S. It is well known that a dense set has only few large Fourier coefficients (the large spectrum must be small). Therefore, using properties of the Fourier transform, to guarantee that the convolution of those sets has a large spectral gap it is enough to control the Fourier coefficients of R only on a suitable large spectrum of S. On the other hand, the support of $1_{R} * 1_{S}$ is the sumset $R+S$, so its sumset is not too large with appropriate choice of sizes of R and S. The proof is concluded by a construction of a set with the required properties using the constructed function, which is derived by a probabilistic argument.
1.1. Notation. Given functions $f, g: \mathbb{Z} / N \mathbb{Z} \rightarrow \mathbb{C}$, the convolution of f and g is defined by

$$
(f * g)(x)=\sum_{t \in \mathbb{Z} / N \mathbb{Z}} f(t) g(x-t) .
$$

The Fourier coefficients of f are defined by

$$
\widehat{f}(r)=\sum_{x \in \mathbb{Z} / N \mathbb{Z}} f(x) e^{-2 \pi i r x / N},
$$

where $r \in \mathbb{Z} / N \mathbb{Z}$. Parseval's formula states

$$
\sum_{r=0}^{N-1}|\widehat{f}(r)|^{2}=N \sum_{x=0}^{N-1}|f(x)|^{2},
$$

applied in particular for the indicator function of a set A gives

$$
\sum_{r=0}^{N-1}\left|\widehat{1}_{A}(r)\right|^{2}=|A| N .
$$

Another important property that we will use is

$$
(\widehat{f * g})(r)=\widehat{f}(r) \widehat{g}(r) .
$$

For $\beta \in \mathbb{R}$, we denote by $\|\beta\|=\min _{y \in \mathbb{Z}}|\beta-y|$ the distance of β from the nearest integer. Observe that for any $r \in \mathbb{Z} / N \mathbb{Z}$ and any integer $x \equiv r(\bmod N)$, the value of x / N modulo 1 is unique, hence we can define $\|r / N\|=\|x / N\|$.

2. The proof of Theorem 1

Over the course of the proof of Theorem 1.1, we will use repeatedly the classical Bernstein's inequality [B27].
Lemma 2.1 (Bernstein). Let X_{1}, \ldots, X_{N} be independent random variables and suppose that $\left|X_{k}-\mathbb{E}\left(X_{k}\right)\right| \leq M$ for every $1 \leq k \leq N$. Then, for all positive t

$$
\mathbb{P}\left(\left|\sum_{k=1}^{N} X_{k}-\sum_{k=1}^{N} \mathbb{E}\left(X_{k}\right)\right| \geq t\right) \leq 2 \exp \left(-\frac{\frac{1}{2} t^{2}}{\sum_{k=1}^{N} \operatorname{Var}\left(X_{k}\right)+\frac{1}{3} t M}\right) .
$$

Lemma 2.2. Let $\Gamma \subseteq \mathbb{Z} / N \mathbb{Z}$ be any set. Then for every $n \geq \log |\Gamma| \geq n_{0}$ and $l \leq N / n$ there exists a set R such that $3 n / 4 \leq|R| \leq 5 n / 4$,

$$
\begin{equation*}
\max _{r \in \Gamma \backslash\{0\}}\left|\widehat{1}_{R}(r)\right| \leq 8 \sqrt{|R| \log |\Gamma|} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
|R \cap\{a, a+1, \ldots, a+l-1\}| \leq 10 \log (N / l) \tag{2}
\end{equation*}
$$

for every $a \in \mathbb{Z} / N \mathbb{Z}$.
Proof. Let R be a random subset chosen by picking each element of $\mathbb{Z} / N \mathbb{Z}$ independently with probability $p=n / N$. Since n is large enough, by Lemma 2.1 applied for indicator random variables, we have

$$
\begin{equation*}
\mathbb{P}(3 n / 4 \leq|R| \leq 5 n / 4) \geq 9 / 10 \tag{3}
\end{equation*}
$$

Let us observe that for every $r \in \mathbb{Z} / N \mathbb{Z}, r \neq 0$

$$
\mathbb{E}\left(\widehat{1}_{R}(r)\right)=\sum_{k=0}^{N-1} p e^{2 \pi i r k / N}=0,
$$

and that

$$
\begin{equation*}
\mathbb{P}\left(\left|\widehat{1}_{R}(r)\right| \geq \sqrt{2} t\right) \leq \mathbb{P}\left(\left|\mathfrak{R} \widehat{1}_{R}(r)\right| \geq t\right)+\mathbb{P}\left(\left|\mathfrak{\Im} \widehat{1}_{R}(r)\right| \geq t\right) \tag{4}
\end{equation*}
$$

Let $r \neq 0$ be fixed. We define independent random variables $X_{k}, 0 \leq k \leq N-1$, by

$$
X_{k}= \begin{cases}\cos (2 \pi k r / N), & \text { if } k \in R \tag{5}\\ 0, & \text { if } k \notin R\end{cases}
$$

Clearly, we have $\left|X_{k}-\mathbb{E}\left(X_{k}\right)\right| \leq 1$ and $\operatorname{Var}\left(X_{k}\right) \leq p$. Thus, by Lemma 2.1 applied with $t=4 \sqrt{p N \log |\Gamma|}=4 \sqrt{n \log |\Gamma|}$, we have

$$
\begin{aligned}
\mathbb{P}\left(\left|\Re \widehat{1}_{R}(r)\right| \geq t\right) & \leq 2 \exp \left(-\frac{\frac{1}{2} t^{2}}{p N+\frac{1}{3} t}\right) \\
& \leq 2 \exp \left(-\frac{24}{7} \log |\Gamma|\right) \\
& <\frac{1}{20|\Gamma|}
\end{aligned}
$$

and the same upper bound holds for $\mathbb{P}\left(\left|\mathfrak{F}_{R}(r)\right| \geq t\right)$. Hence by (4), we have

$$
\mathbb{P}\left(\left|\widehat{1}_{R}(r)\right| \geq 4 \sqrt{2 p N \log |\Gamma|}\right) \leq \frac{1}{10|\Gamma|},
$$

so

$$
\begin{equation*}
\mathbb{P}\left(\max _{r \in \Gamma \backslash\{0\}}\left|\widehat{1}_{R}(r)\right| \leq 4 \sqrt{2 p N \log |\Gamma|}\right) \geq 9 / 10 . \tag{6}
\end{equation*}
$$

Next, we show that (2) is satisfied with high probability. We split $\mathbb{Z} / N \mathbb{Z}$ into $m=\lceil N / l\rceil$ intervals I_{1}, \ldots, I_{m} such that $\left|I_{j}\right|=l$, for every $1 \leq j \leq\lfloor N / l\rfloor$, and $\left|I_{m}\right| \leq l$. Again by Lemma 2.1 applied for indicator random variables, for any j we have

$$
\begin{aligned}
\mathbb{P}\left(\left|R \cap I_{j}\right| \geq p l+2 \log (N / l)\right) & \leq \mathbb{P}\left(\left|R \cap I_{j}\right| \geq p\left|I_{j}\right|+2 \log (N / l)\right) \\
& \leq 2 \exp \left(-\frac{2 \log ^{2}(N / l)}{p\left|I_{j}\right|+\frac{1}{3} \log (N / l)}\right) \\
& \leq 2 \exp \left(-\frac{2 \log ^{2}(N / l)}{1+\frac{1}{3} \log (N / l)}\right) \\
& \leq 2\left(\frac{l}{N}\right)^{3}
\end{aligned}
$$

and therefore,

$$
\mathbb{P}\left(\text { for some } j \text { we have }\left|R \cap I_{j}\right| \geq p l+2 \log (N / l)\right) \leq 2 m\left(\frac{l}{N}\right)^{3} \leq \frac{1}{10}
$$

Hence, there exists a set R of size $3 n / 4 \leq|R| \leq 5 n / 4$ that satisfies (1) and

$$
\left|R \cap I_{j}\right| \leq p l+2 \log (N / l) \leq 3 \log (N / l)
$$

for every j. Since each interval of length l intersects with at most three intervals among I_{1}, \ldots, I_{m} it follows that for each a

$$
|R \cap\{a, a+1, \ldots, a+l-1\}| \leq 10 \log (N / l) .
$$

which concludes the proof.

Proof of Theorem 1. Let N_{0} and $\alpha_{0} \leq n_{0} /\left(30 \log n_{0}\right)\left(n_{0}\right.$ is a positive constant given by Lemma 2.2) be positive constants chosen in such a way that all asymptotic inequalities used below hold. Let α be such that $\alpha_{0} \geq \alpha \geq N^{-1 / 4}$ and let $\delta \in(0,1]$ be such that $\alpha=(20 \log (1 / \delta))^{-1} \delta$, so $\delta_{0} \geq \delta \gg N^{-1 / 4} \log N$. We apply Lemma 2.2 with $n=\lceil 1 /(3 \delta)\rceil, l=\left\lceil\delta^{2} N\right\rceil$ and

$$
\Gamma=\left\{-\left\lceil\delta^{-5 / 2}\right], \ldots,-1,1, \ldots,\left[\delta^{-5 / 2}\right]\right\} .
$$

Let us check for such choice of parameters that the assumptions of Lemma 2.2 are satisfied. Notice that the following inequalities hold provided that $\delta_{0} \geq \delta \gg$ $N^{-1 / 4} \log N$ and $N \geq N_{0}$

$$
l=\left\lceil\delta^{2} N\right\rceil \leq N /[1 /(3 \delta)\rceil=N / n
$$

and

$$
n \geq 1 /(3 \delta) \geq \log \left(2\left\lceil\delta^{-5 / 2}\right\rceil\right)=\log |\Gamma| \geq n_{0} .
$$

Thus, we can apply Lemma 2.2 to obtain a set R of size $3 n / 4 \leq|R| \leq 5 n / 4$ fulfilling (1) and (2). Put $S=\{1, \ldots, l\}$ and define $f: \mathbb{Z} / N \mathbb{Z} \rightarrow \mathbb{R}_{\geq 0}$ by

$$
f(x)=1_{R} * 1_{S}(x) .
$$

Since $1_{R} * 1_{S}(x)=|R \cap(x-S)|$, by (2), it follows that for all x

$$
f(x) \leq 10 \log \left(N /\left\lceil\delta^{2} N\right\rceil\right) \leq 20 \log (1 / \delta)
$$

We use the function $g(x)=(20 \log (1 / \delta))^{-1} f(x)$ to construct the required set. Note that

$$
\left|\widehat{1}_{S}(r)\right|=\left|\sum_{x=0}^{l-1} e^{-2 \pi x r / N}\right|=\frac{\left|1-e^{-2 \pi l r / N}\right|}{\left|1-e^{-2 \pi r / N}\right|} \leq \frac{1}{|\sin \pi r / N|} \leq \frac{1}{2\|r / N\|},
$$

hence if $r \notin \Gamma$

$$
\left|\hat{1}_{S}(r)\right| \leq \delta^{1 / 2}|S|,
$$

so

$$
|\widehat{g}(r)|=(20 \log (1 / \delta))^{-1}\left|\widehat{1}_{R}(r) \widehat{1}_{S}(r)\right| \leq(20 \log (1 / \delta))^{-1} \delta^{1 / 2}|R||S| .
$$

If $r \in \Gamma \backslash\{0\}$ then by (1)

$$
\begin{aligned}
|\widehat{g}(r)| & =(20 \log (1 / \delta))^{-1}|\widehat{f}(r)|=(20 \log (1 / \delta))^{-1}\left|\widehat{1}_{R}(r)\right|\left|\widehat{1}_{S}(r)\right| \\
& \leq 8(20 \log (1 / \delta))^{-1} \sqrt{|R| \log |\Gamma|}|S| \leq 2 \delta^{1 / 2}|R||S|,
\end{aligned}
$$

provided that $\delta \leq \delta_{0}$. Thus, for every $r \neq 0$ we have

$$
\begin{equation*}
|\widehat{g}(r)| \leq 2 \delta^{1 / 2}|R||S| \tag{7}
\end{equation*}
$$

Next, we construct a set with required properties. We will proceed similarly as in the proof of Lemma 3. Let A be a random subset of $\mathbb{Z} / N \mathbb{Z}$ chosen by picking each element $x \in \mathbb{Z} / N \mathbb{Z}$ independently with probability $(20 \log (1 / \delta))^{-1} 1_{R} * 1_{S}(x)$. Then the expected size of A equals

$$
\sum_{x}(20 \log (1 / \delta))^{-1} 1_{R} * 1_{S}(x)=(20 \log (1 / \delta))^{-1}|R||S|
$$

By Lemma 2 for N large enough, we have

$$
\begin{equation*}
\mathbb{P}(||A|-\mathbb{E}(|A|)| \leq 2 \sqrt{N \log N}) \geq 1-\frac{1}{N^{1 / 2}} \tag{8}
\end{equation*}
$$

For fixed $r \neq 0$, we define independent random variables $Y_{x}, 0 \leq x \leq N-1$ by

$$
Y_{x}= \begin{cases}\cos (2 \pi x r / N), & \text { if } x \in A \\ 0, & \text { if } x \notin A\end{cases}
$$

Let us observe that for every $r \in \mathbb{Z} / N \mathbb{Z}, r \neq 0$

$$
\mathbb{E}\left(\Re \widehat{1}_{A}(r)\right)=\sum_{x=0}^{N-1} \mathbb{E}\left(Y_{x}\right)=\Re \widehat{g}(r),
$$

and that $\left|Y_{x}-\mathbb{E}\left(Y_{x}\right)\right| \leq 1$ and $\operatorname{Var}\left(Y_{x}\right) \leq 1$, so applying Bernstein's inequality once again we obtain that

$$
\mathbb{P}\left(\left|\Re \widehat{1}_{A}(r)-\Re \widehat{g}(r)\right| \geq 2 \sqrt{N \log N}\right) \leq 2 \exp \left(-\frac{2 N \log N}{N+\frac{2}{3} \sqrt{N \log N}}\right) \leq \frac{1}{N^{3 / 2}}
$$

as $N \geq N_{0}$. Similarly, one can show that

$$
\mathbb{P}\left(\left|\mathfrak{\Im} \hat{1}_{A}(r)-\mathfrak{\Im} \widehat{g}(r)\right| \geq 2 \sqrt{N \log N}\right) \leq \frac{1}{N^{3 / 2}}
$$

SO

$$
\begin{equation*}
\mathbb{P}\left(\text { for all } r \neq 0:\left|\widehat{1}_{A}(r)-\widehat{g}(r)\right| \leq 2 \sqrt{2} \sqrt{N \log N}\right) \geq 1-\frac{2}{N^{1 / 2}} \tag{9}
\end{equation*}
$$

Thus, there exists a set A that satisfies the inequalities (8) and (9). Hence,

$$
\begin{aligned}
|A| & =(20 \log (1 / \delta))^{-1} \sum_{x} 1_{R} * 1_{S}(x)+O(\sqrt{N \log N}) \\
& =(20 \log (1 / \delta))^{-1}|R||S|+O(\sqrt{N \log N})=(1+o(1)) \alpha N
\end{aligned}
$$

and by (7) for $r \neq 0$,

$$
\begin{aligned}
\left|\widehat{1}_{A}(r)\right| & \leq|\widehat{g}(r)|+2 \sqrt{N \log N} \\
& \leq 2 \delta^{1 / 2}|R||S|+2 \sqrt{N \log N} \\
& \leq 40 \log (1 / \delta) \delta^{1 / 2}|A|+O(\sqrt{N \log N}) \\
& \leq 100 \alpha^{1 / 2} \log (1 / \alpha)^{3 / 2}|A|
\end{aligned}
$$

It remains to check that $A+A$ is not too large, but it follows easily from the fact that $A \subseteq R+S$. Let us recall that $|R| \leq \frac{3}{2}\lceil 1 /(3 \delta)\rceil$ and $|S|=l=\left\lceil\delta^{2} N\right\rceil$, hence

$$
\begin{aligned}
|A+A| & \leq|(R+S)+(R+S)| \leq|R+R||S+S| \\
& \leq 2|R|^{2}|S| \leq \frac{25}{8}\lceil 1 /(3 \delta)\rceil^{2}\left\lceil\delta^{2} N \mid \leq N / 2\right.
\end{aligned}
$$

References

[B27] BERNS̆TEIN, SERGEĬ N. Die Wahrscheinlichkeitsrechnung. (Russian). MoskauLeningrad: Staatsverlag (Lehrbücher für Hochschulen), 1927. viii, 363 S. JFM 53.0492.01. 1034
[CS09] CROOT, ERNIE; SCHOEN, TOMASZ. On sumsets and spectral gaps. Acta Arith. 136 (2009), no. 1, 47-55. MR2469943, Zbl 1246.11023, arXiv:0708.0381, doi: 10.4064/aa136-1-4. 1032
(Tomasz Schoen) Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Uniwersytetu Poznańskiego 4, 61-614 Poznań, Poland
schoen@amu.edu.pl
This paper is available via http://nyjm.albany .edu/j/2023/29-40.html.

[^0]: Received December 3, 2022.
 2010 Mathematics Subject Classification. 11B30, 11L03, 11P99, 41A16.
 Key words and phrases. large spectrum, sumsets.

