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Classifying and extending Q0 local
A(1)-modules

Katharine Adamyk

Abstract. In the stable category of bounded below A(1)–modules, every
module is determined by an extension between a module with trivial Q0-
Margolis homology and amodulewith trivialQ1-Margolis homology [Bru14].
We show all bounded below A(1)-modules of �nite type whose Q1-Margolis
homology is trivial are stably equivalent to direct sums of suspensions of a dis-
tinguished family ofA(1)-modules. Each module in this family is comprised
of copies of A(1)∕∕A(0) linked by the action of Sq1 ∈ A(1).

The classi�cation theorem is then used to simplify the computations of
ℎ−10 Ext∙,∙A(1)

(
—,F2

)
and to obtain necessary conditions for liftingA(1)-modules

to A-modules. We discuss a Davis–Mahowald spectral sequence converg-
ing to ℎ−10 Ext∙,∙A(1)(M,F2) where M is any bounded below A(1)-module. The
di�erentials in this spectral sequence detect obstructions to lifting the A(1)-
module,M, to an A-module. We give a formula for the second di�erential.
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1. Introduction
Margolis homology is an invariant ofmodules over a subalgebra of the Steen-

rod algebra, the collection of which includes, for example, rings that arise as the
total cohomology of a space. A classical example of the utility of this invariant is
that amodule over the Steenrod algebra is free if and only if it has trivialMargo-
lis homology with respect to a particular family of elements [Mar83, Theorem
19.6]. An overview of more recent uses is given in [BBT21], including comput-
ing the algebra of operations for truncations of the Brown-Peterson spectrum in
[Ada74] and [Cul19]. In this paper, we focus onMargolis homology formodules
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over the subalgebra A(1), speci�cally on its uses for classifying A(1)-modules
and determining whether they extend to modules over the entire Steenrod al-
gebra.

Let A be the mod-2 Steenrod algebra, and let x ∈ A satisfy x2 = 0. IfM is
a module over a subalgebra of A that contains x, the Margolis homology ofM
with respect to x is the quotient of the kernel of the action of x on M by the
image of the same action. Over the subalgebraA(1), which is generated by Sq1
and Sq2, the relevant types of homology are Q0- and Q1-Margolis homology
where Q0 ∶= Sq1 and Q1 ∶= Sq1Sq2 + Sq2Sq1. For the most part, we will
restrict our attention to A(1)-modules with trivial Q1-homology.

In general, restricting to modules with a particular type of Margolis homol-
ogy can give a subcollection of modules that are more manageable to classify.
For example, Adams and Priddy classi�ed all �nitely generated invertibleA(1)-
modules by showing they are precisely the �nitely generated A(1)-modules
whoseQ0- andQ1-homology are both 1-dimensional [AP76]. In ongoing work,
Fabian Hebestreit and Stephan Stolz have classi�ed bounded A(1)-modules
whoseQ0-homology is trivial andwhoseQ1-homology is two dimensional. This
last example concerns modules that are Q1-local—that is, modules with trivial
Q0-homology. The modules we focus on in this paper are, in a sense, of an op-
posite type; they are Q0-local, meaning they have trivial Q1-homology. Each
A(1)-module satisfying appropriate �niteness conditions is determined by an
extension between a Q0-local module and a Q1-local module in the stable cate-
gory ofA(1)-modules [Bru14]. DescribingQi-localmodules thus provides some
insight into A(1)-modules in general.

Here, we provide a classi�cation ofQ0-localmodules that are bounded below
and of �nite type. This does not require any restrictions on the Q1-homology.
To this end, we de�ne a particular family of Q0-local A(1)-modules. The �rst
module in this family is the 1-seagull,

A(1)∕∕A(0) ∶= A(1)⊗A(0) F2.
An n-seagull, Υn, is a chain of n linked copies of suspensions of Υ1, with 0 <
n ≤ ∞. Section 2.2 contains more detail in De�nition 2.5 and Figure 1. We
refer to a direct sum of suspensions (i.e., shifts) of seagulls as a �ock of seagulls.
Any �ock of seagulls is an example of a Q0-local module and we show in the
classi�cation theorem they are the only examples, up to free summands.

Oneuse for the classi�cation theorem is to simplify calculations in theAdams
spectral sequence. (The classi�cation theorems of [AP76] and Hebestreit–Stolz
are both motivated by such calculations.) Consider the spectrum ko, the con-
nective cover of real topological K-theory. This spectrum has cohomology

H∗(ko) ≅ A∕∕A(1) ∶= A⊗A(1) F2,
[Ada74, Part III, Theorem 16.6]. The Adams spectral sequence converging to
the 2-completed homotopy groups of ko therefore has the E2-page,

Ext∙,∙A (A∕∕A(1),F2) ≅ Ext∙,∙A(1)(F2,F2).
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For any spectrumof the form ko∧X, we can likewise compute theE2-page of the
associated Adams spectral sequence via an equivalent computation over A(1).
WhenM is amodule over the entire Steenrod algebraA, ℎ−10 Ext∙,∙A(1)

(
M,F2

)
can

be computed from theMargolis homology ofM, as a consequence of a theorem
of Davis [Dav75]. However, it is not always possible to de�ne an A-module
structure on an arbitrary A(1)-module in a way that is compatible with the ex-
isting action of A(1). The �rst application we give of the classi�cation theo-
rem is a generalization of Davis’ theorem for arbitrary A(1)-modules, utilizing
a Davis–Mahowald spectral sequence.

The 1-seagull is an example of an A(1)-module that has no compatible A-
module structure as there is no action of Sq4 that is compatiblewith the relation
Sq1Sq4 + Sq4Sq1 = Sq2Sq1Sq2. One can show similarly that none of the �nite
seagulls lift toA-modules. We give a di�erent proof of this in Section 3.2 along
with somemore general results for liftingA(1)-modules that are not necessarily
Q0-local.
1.1. Summary of results. The main result of this paper is the classi�cation
theorem:

Theorem 2.7. IfM is a bounded below,Q0-localA(1)-module of �nite type, then
M is stably equivalent to a �ock of seagulls.

By stably equivalent, we mean isomorphic in the stable category of A(1)-
modules (see Section 2.1). Equivalently, every A(1)-module meeting the con-
ditions of Theorem 3.7 is isomorphic to the direct sum of a �ock of seagulls and
a free module.

The �rst application we give of this theorem is to computing localized Ext
terms. LetM be a bounded belowA(1)-module of �nite type and letM∗ denote
the dual ofM as an F2-vector space, with the rightA(1)-module structure given
by precomposition by the (left) action of A(1) on M. There exists a spectral
sequence, due to Davis and Mahowald [DM82],

E�,s,t1 = Exts,tA(0)(N� ⊗M,F2) ⇒ Exts,tA(1)(M,F2)

where N∙ = F2[x2, x3]. We will consider this spectral sequence when ℎ0 ∈
Ext1,1A(1)(F2,F2) is inverted.

Theorem3.5. TheE1-page of theℎ0-localizedDavis–Mahowald spectral sequence
for anA(1)-module,M, is isomorphic, as a trigraded F2-vector space, to

H∙(M∗;Q0)⊗ F2[ℎ±10 , x23].
We then compute all di�erentials in the ℎ0-localized Davis–Mahowald spec-

tral sequence associated to a seagull module, Υn (Proposition 3.13). For an ar-
bitrary bounded below A(1)-module,M, L0M ∶= Υ∞ ⊗M is Q0-local [Bru14]
and thus stably equivalent to a �ock of seagulls. So, in theory, all di�erentials
can be computed in a spectral sequence converging to

ℎ−10 Ext∙,∙A(1)(L0M,F2) ≅ ℎ−10 Ext∙,∙A(1)(M,F2).
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However, this relies on computing the decomposition of Υ∞ ⊗M into seagull
modules, which can be labor intensive. For the �rst nonzero di�erential, d2,
we are able to give a formula that does not depend on computing this decom-
position.

Theorem 3.9. The di�erential

d2 ∶ F2[ℎ±10 , x23]⊗H∙(M∗;Q0)→ F2[ℎ±10 , x23]⊗H∙(M∗;Q0)

is given by

d2
(
ℎs0x

�
3 [b∗]

)
= ℎs−10 x�+23

[
b∗Sq2Sq1Sq2

]

for all even �.

IfM is anA-module, then the spectral sequence collapses at the E1-page. So,
we are able to use di�erentials in the spectral sequence to detect obstructions to
liftingA(1)-modules toA-modules. The di�erentials in the spectral sequences
associated to the seagull modules lead to the following corollary.

Corollary 3.19. LetM be a bounded belowA(1)-module of �nite type.

(i) If L0M is stably equivalent to a �ock of seagulls that includes a �nite seag-
ull, thenM does not lift to anA-module.

(ii) If M is Q0-local, then M lifts to an A-module if and only if M is stably
equivalent to a �ock of in�nite seagulls (or zero).

Use of this corollary requires determining a decomposition of L0M = Υ∞ ⊗
M into seagull modules. However, if the di�erentials in the spectral sequence
associated toM can be determined directly, they can detect obstructions to lift-
ing without computing this decomposition. (See, for example Corollary 3.16.)

1.2. Organization. Section 2.1 gives a more thorough exposition of relevant
backgroundmaterial, including the category of stableA(1)-modules. Section 2.2
de�nes the seagull modules and Section 2.3 proves some helpful identities for
working with Q0-local modules. The proof of the classi�cation theorem begins
in Section 2.4 with the proof that all �nite, Q0-local A(1)-modules are stably
equivalent to sums of suspensions of seagulls. The techniques in this part of the
proof do not generalize well to the case of bounded belowmodules of �nite type
that are not bounded above. Instead, we show in Section 2.5 that any bounded
below, Q0-local A(1)-module of �nite type splits as a sum of �nite summands,
which have been classi�ed, and a summand with no �nite summands, which
we then show is isomorphic to a sum of suspensions of Υ∞.

Section 3, covers the computational applications of the classi�cation theo-
rem. The main application, discussed in Section 3.1, is to computations in a
localized Davis–Mahowald spectral sequence. In Section 3.2, we describe the
consequences of this spectral sequence for liftingA(1)-modules toA-modules.
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2. The classi�cation theorem
In this section, we prove a theorem classifying all bounded below, Q0-local

modules of �nite type in the stable category of A(1)-modules. We begin with
some background on the stable category in Section 2.1. In Section 2.2, we de-
�ne a family of Q0-local modules, named the seagull modules. After proving
some identities in Section 2.3, we show in Section 2.4 that every �nite Q0-local
module is a direct sum of suspensions of seagull modules. For Q0-local mod-
ules that are merely bounded below and �nite type, we resolve a few remaining
technicalities in Section 2.5.

2.1. The stable category of A(1) modules. Unless otherwise speci�ed, all
modules are left modules. In general, we will consider onlyA(1)-modules that
satisfy certain �niteness conditions, up to a free summand.

Notation 2.1. For any graded module,M, we writeMk for the subgroup ofM
made up of the homogeneous elements ofM of degree k.

We will often restrict our attention toA(1)-modules satisfying one or both of
the following �niteness conditions.

De�nition 2.2. AnA(1)-module is bounded below if there exists some n such
that Mk = 0 for all k ≤ n. An A(1)-module is of �nite type if Mk is a �nite
F2-vector space for all k.

The bene�t of considering appropriately �nite A(1)-modules, up to a free
summand, is that it allows us to work over the stable category of (bounded be-
low)A(1)-modules, which has nice properties with respect to Margolis homol-
ogy.

De�nition 2.3. The stable category ofA(1)-modules, Stab
(
A(1)

)
, be the cate-

gory with all A(1)-modules as objects and morphisms

[M,N] = HomA(1)(M,N)∕ ∼
where f ∼ g if f − g factors through a free A(1)-module.

We say two A(1)-modules are stably equivalent if they are isomorphic in
Stab

(
A(1)

)
. Over A(1) (or, in fact, any A(n)), a module is free if and only if

it is projective [Mar83, Proposition 12.2.8]. So, this is equivalent to the usual
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de�nition of a stable module category, where maps are identi�ed if their dif-
ference factors through a projective module (see for example, Chapter 2.2 of
[Hov99]).

Let Stab
(
A(1)

)b
denote the full subcategory of Stab

(
A(1)

)
whose objects are

bounded below A(1)-modules. Every module in Stab
(
A(1)

)b
splits as a direct

sum of a free module and a module with no free summands [Mar83].

De�nition 2.4. Let M = Mred ⊕ Mfree where Mfree is free and Mred has no
free summands. The module Mred is called the reduced part of M, and M is
reduced ifMred ≅ M.

Two bounded below A(1)-modules are stably equivalent if and only if their
reduced parts are isomorphic in A(1)−Mod [Mar83].

Let Q0 = Sq1 and Q1 = Sq2Sq1 + Sq1Sq2. Since Q2i = 0, Qi-Margolis homol-
ogy can be de�ned as

Hk(M;Qi) =
ker(Qi)k
im(Qi)k

for any A(1)-module,M. Any module that is free over A(1) has trivial Q0- and
Q1-homology, so ifM andN are stably equivalentA(1)-modules, they have the
same Qi-homology. The stable category of A(1)-modules is triangulated, and
everyM ∈ Stab

(
A(1)

)b
sits in a unique triangle,

L0M → M → L1M → L0M[1],
where LiM is Qi-local [Bru14]. The module LiM is called the Qi-localization of
M. To understandA(1)-modules more broadly, it would therefore be helpful to
know more about Qi-local modules.

2.2. The seagull modules. In this section, we de�ne the seagull modules,
which are depicted in Figure 1. The �rst seagull module is

Υ1 ∶= A(1)∕∕A(0) = A(1)⊗A(0) F2.
Note that A(1)⊗A(0) F2 has the A(1)-module structure given by acting on the
left factor. (This is in contrast to theA(1)-module structure on a tensor product
over F2 of A(1)-modules which is given by the diagonal action.) An n-seagull,
Υn, is a chain of n linked copies of suspensions of Υ1.

De�nition2.5. Then-seagullΥn is generated as anA(1)-module by {y4j}0≤j≤n−1
with |y4j| = 4j where Sq2Sq1Sq2y4j ≠ 0 for all j and

Sq1y4j = {0 j = 0
Sq2Sq1Sq2y4(j−1) j > 0.

We call a direct sum of suspensions of seagulls of various lengths,
⨁

i∈I
Σ�iΥni ,
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Figure 1. The modules Υn. The bottom class of each module
is in degree zero.

⋯
Υ1 Υ2 Υ3 Υ∞

a �ock of seagulls. We sometimes refer to any suspension of an n-seagull as an
n-seagull, but ΣkΥn will alwaysmean the kth suspension of the n-seagull whose
�rst generator is in degree zero.

Notation 2.6. When working in categories of modules over a subalgebra of A
we always use “suspension” and the characterΣ tomean a shift in the grading of
themodule. In particular, we donot useΣ for the translation functorM ↦ M[1]
in the triangulated category Stabb

(
A(1)

)
.

For all n, the Margolis homology of Υn is given by

H∙(Υn;Q0) = {F2 ⊕ Σ4n+1F2 n <∞
F2 n = ∞

H∙(Υn;Q1) = 0.
So the n-seagulls are Q0-local. Furthermore, taking the tensor product of a
bounded below A(1)-module, M, and the in�nite seagull, Υ∞, results in the
Q0-localization of M [Bru14]. Note that Υ∞ ⊗ M is an A(1)-module via the
diagonal action.

The seagull modules are not only examples of Q0-local modules, they are
essentially the only examples.

Theorem 2.7. IfM is a bounded below,Q0-localA(1)-module of �nite type, then
M is stably equivalent to a �ock of seagulls.

The remainder of Section 2 concerns the proof of this theorem.

2.3. Properties ofQ0-localA(1)-modules. This section provides several prop-
erties of reduced, bounded below,Q0-localA(1)-modules that will be needed in
proving the classi�cation theorem. In the rest of this section,M will always de-
note a reduced, bounded below, Q0-local A(1)-module. After possibly shifting
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M, we assumeMk is nonzero for k = 0 and zero for all k < 0 (such a module
will be referred to as connective).

In this section, we will frequently need the following relations that hold in
A(1):

Sq1Sq1 = 0 (1)

Sq2Sq2 = Sq1Sq2Sq1 (2)

Sq1Sq2Sq2 = Sq2Sq2Sq1 = 0 (3)

Sq1Sq2Sq1Sq2 = Sq2Sq1Sq2Sq1. (4)

The relations (3) and (4) are generated by (1) and (2) (as are all relations in
A(1)). We will also repeatedly use the fact that ker(Q1) ∩ Mk is zero for all
k ≤ 2. To see this, note that H∙(M;Q1) = 0 and that im(Q1) ∩ Mk = 0 in
degrees k ≤ 2.

Lemma 2.8. LetM be a reduced, connective, Q0-localA(1)-module and let x be
any nonzero element ofM0. Then,

i.) Sq2Sq1Sq2x ≠ 0, and
ii.) Sq1Sq2Sq1Sq2x = Sq2Sq1Sq2Sq1x = 0.

Proof. We assumeMk = 0 for all k < 0 andMk ≠ 0. Let x ∈ M0 be nonzero.
Then Q1x ≠ 0, since kerQ1 = 0 in degree zero. If Sq1x ≠ 0, then

Q1(Sq1x) = Sq2Sq1Sq1x + Sq1Sq2Sq1x = Sq1Sq2Sq1x = Sq2Sq2x
must also be nonzero. So, Sq2x ≠ 0 when Sq1x ≠ 0. If Sq1x = 0, then Q1x =
Sq1Sq2x is nonzero, so we can conclude Sq2x ≠ 0 in this case as well.

By virtue of degree, Sq2x ∉ ker Q1. So,
Q1(Sq2x) = Sq2Sq1Sq2x + Sq1Sq2Sq2x = Sq2Sq1Sq2x ≠ 0

where the second equality follows from (3). This proves (i). IfSq1Sq2Sq1Sq2x ≠
0, then x supports a free submodule ofM. Since free A(1)-modules are injec-
tive overA(1) [Mar83, Proposition 12.2.8], this implies x supports a free direct
summand ofM. So, (ii) follows from the fact thatM is reduced. �

Lemma 2.9. LetM be a reduced, connective, Q0-localA(1)-module and let x be
any element ofM0. Then Sq1x = 0.

Proof. Suppose Sq1x ≠ 0. Then Sq1x ∉ ker(Q1), since |Sq1x| = 1. So,
0 ≠ Q1(Sq1x) = Sq2Sq1(Sq1x) + Sq1Sq2(Sq1x) = Sq1Sq2Sq1x (5)

and thus Sq2Sq1x is nonzero. Using Lemma 2.8 and (3), we see

Q1(Sq2Sq1x) = Sq1Sq2Sq2Sq1x + Sq2Sq1Sq2Sq1x = Sq2Sq1Sq2Sq1x = 0.
Since H∙(M;Q1) = 0, Sq2Sq1x must be in im(Q1). Let z ∈ M0 be such that
Q1z = Sq2Sq1x. Since |z| = 0, Lemma 2.8 implies that Sq2z ≠ 0. In the
remainder of this proof, we will show Q1(Sq2z) = 0. This is a contradiction, as
Sq2z is in degree two and therefore not in the image of Q1.
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Assuming Q1z = Sq2Sq1x,
Sq2Sq1z + Sq1Sq2z = Sq2Sq1x.

Applying Sq1 to this equation, it follows that Sq1Sq2Sq1z = Sq1Sq2Sq1x. So,
using (5), Sq1Sq2Sq1z ≠ 0. Then Sq1z ≠ 0 and Sq2z ≠ 0, since Sq2Sq2z =
Sq1Sq2Sq1z. Next, note that

Q1(Sq1x + Sq1z) = Sq1Sq2Sq1x + Sq1Sq2Sq1z = 0.

Since ker(Q1) ∩M1 is zero, Sq1x = Sq1z. Then,
Sq2Sq1x = Q1z = Sq2Sq1z + Sq1Sq2z = Sq2Sq1x + Sq1Sq2z.

Thus, Sq1Sq2z = 0. But then,
Q1(Sq2z) = Sq2Sq1Sq2z + Sq1Sq2Sq2z = 0,

where we again use (3). So, we have reached the desired contradiction. �

The �nal lemma we will need applies speci�cally to the seagull modules.

Lemma 2.10. IfN is a �ock of seagulls,

im
(
Sq2

)
∩ ker

(
Sq1

)
= im

(
Sq2Sq1Sq2

)

inN.

This result follows from Figure 1.

2.4. Classi�cation of �nite modules. Having proven some basic properties
of reduced,Q0-localA(1)-modules, we proceed to the proof of themain theorem
in the case whereM is �nite. The goal of this section is to prove the following
result.

Proposition 2.11. IfM is a reduced, �nite,Q0-localA(1)-module, thenM is iso-
morphic to a �ock of seagulls.

Note that �nite is equivalent to bounded and �nite type, so this di�ers from
Theorem 2.7 in that we also requireM to be bounded above.

Notation 2.12. For any graded module,M, we useMk to denote the smallest
submodule of M containing all homogeneous elements with degree no more
than k.

This is in contrast toMk, which continues to represent the elements ofM in
degree exactly k. We will prove Proposition 2.11 via induction onMk.

Lemma 2.13. IfM is a reduced, �nite,Q0-localA(1)-module, thenM0 is isomor-
phic to a �ock of 1-seagulls.

Proof. Let ℬ be an F2 basis forM0. Then ℬ is a minimal A(1) generating set
forM0. We use the notation SqR = Sqr1Sqr2⋯ for any sequence R = (r1, r2,…).
For each b ∈ ℬ, the map fb ∶ Υ1{yb} → M given by SqRyb ↦ SqRb is an
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A(1)-map because Sq1b = 0 by Lemma 2.9. Appealing to Lemma 2.8, we see
this map is also an injection. We claim the direct sum of the fb’s,

f ∶
⨁

b∈ℬ
Υ1{yb}→ M

is an isomorphism.
Since f surjects onto an A(1) generating set of M0 and is an A(1)-module

map, f surjects onto M0. Restricting to degree zero, f is an isomorphism be-
tween the F2 vector spaces F2{yb|b ∈ ℬ} and F2{b|b ∈ ℬ}. Let y be a homoge-
nous element of

⨁
b∈ℬ Υ1{yb} in any degree. Then y = SqRzwhere z is a linear

combination of the yb’s and R ∈ {(0), (2), (1, 2), (2, 1, 2)}. If y ∈ ker(f), then
0 = f(y) = SqRf(z). No matter what R is, this implies Sq2Sq1Sq2f(z) = 0. By
Lemma 2.8, f(z) = 0. Since f is an isomorphism of F2 vector spaces in degree
zero, z = 0. Thus, y = SqRz = 0 and f is injective. �

The rest of this section will prove that if Mk−1 is isomorphic to a �ock of
seagulls, then Mk is also isomorphic to a �ock of seagulls. We will show in
Lemma 2.14 thatMk∕Mk−1 is a �ock of 1-seagulls. So, identifyingMk amounts
to solving an extension problem between �ocks of seagulls.

Letting
Mk−1 ≅

⨁

i∈I
Σ�iΥni ,

we will use the notation that Σ�iΥni is generated by yi,�i , yi,�i+4,… , yi,�i+4(ni−1),
so yi,j is in the ith seagull and has degree j. Note that for all i, the degree of the
top generator in the ith-seagull, �i + 4(ni − 1), is no more than k − 1.

Lemma2.14. IfM is a reduced, bounded below,Q0-localA(1)-module andMk−1

is isomorphic to a �ock of seagulls, then Mk∕Mk−1 is isomorphic to a sum of 1-
seagulls.

Proof. By assumption,Mk−1 is reduced and Q0-local. SinceM is also reduced,
the quotientM∕Mk−1 is reduced. The short exact sequence

0→ Mk−1 → M → M∕Mk−1 → 0
induces a long exact sequence in Q1-homology, soM∕Mk−1 is Q0-local. Then,
we can apply Lemma 2.13 to Σ−k(M∕Mk−1). Thus (M∕Mk−1)k = Mk∕Mk−1 is
isomorphic to a sum of 1-seagulls, each generated by a class in degree k. �

In order to describe the extension,

0→ Mk−1 → Mk → Mk∕Mk−1 → 0
it will be useful to �x an F2 basis forMk.

De�nition 2.15. Let ℬ be an F2-basis for
(
Mk−1)

k and let K be the kernel of
the Sq1 action onM. Then

(
Mk−1)

k is a subspace of
(
Mk−1+K

)
k andℬ can be

completed to a basis for
(
Mk−1+K

)
k given byℬ∪{b1,… , bl} for some bi ∈ Mk.
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Complete this basis for (Mk−1 + K)k ⊆ Mk to obtain a basis for Mk =
(
Mk)

k
given by ℬ ∪ {b1,… , bl, bl+1,… , bd}.

Let [bi] be the class containing bi ∈ Mk in the quotient Mk∕Mk−1. Note
that {[b1],… , [bl]} is a basis for (K∕(K ∩ Mk−1))k and {[b1],… , [bd]} is a ba-
sis for (Mk∕Mk−1)k. Since Mk∕Mk−1 is a �ock of 1-seagulls, each bi satis�es
Sq2Sq1Sq2bi ≠ 0 and Sq1bi ∈ Mk−1.

Remark 2.16. It follows that

Mk∕Mk−1 ≅
⨁

1≤i≤d
ΣkΥ1{[bi]}.

Lemma 2.17. The submodule ofM generated byMk−1 and {b1,… , bl} is isomor-
phic to

Mk−1 ⊕
⎛
⎜
⎝

⨁

1≤i≤l
ΣkΥ1{wi}

⎞
⎟
⎠
.

Proof. Let Z be the submodule ofM generated byMk−1 and {b1,… , bl}, let

Y = Mk−1 ⊕
⎛
⎜
⎝

⨁

1≤i≤l
ΣkΥ1{wi}

⎞
⎟
⎠
,

and let

Ψ ∶ Mk−1 ⊕
⎛
⎜
⎝

⨁

1≤i≤l
ΣkΥ1{wi}

⎞
⎟
⎠
→ Mk

be the A(1)-map determined by inclusion on the left summand and mapping
wi in the right summand to bi. On the right summand, we use the fact that
Sq1bi = 0 for all 1 ≤ i ≤ l to conclude that there is such an A(1)-map.

So, we have the diagram of A(1)-modules,

0 Mk−1 Y ⨁
1≤i≤l

ΣkΥ1{wi} 0

0 Mk−1 Z ⨁
1≤i≤l

ΣkΥ1{bi} 0.

≅

Ψ ≅

The rows are exact, themap fromMk−1 to itself is the identity, and the righthand
map takes wi to bi. The construction of Ψ guarantees this diagram commutes.
By the 5-lemma, Ψ is thus an isomorphism. �

Now we have to consider the rest of the new generators. We will start by
showing we can pick the new generators in a way that will make solving the
extension problem simpler.
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Lemma 2.18. The generators {bl+1,… , bd} can be chosen so that

Sq1bi ∈ im(Sq2Sq1Sq2)
for all l + 1 ≤ i ≤ d.

Proof. Since
[
Sq1bi

]
= 0 in Mk∕Mk−1, Sq1bi ∈ (Mk−1)k+1. All generators of

Mk−1 are in degree no more than k − 1, so
Sq1bi = Sq1ai + Sq2ci

for some ai, ci ∈ Mk−1. While Sq1ai may be zero, Sq2ci is nonzero since other-
wise ai + bi would be in Kk ⊆ span {ℬ ∪ {b1,… , bl}}.

Note that
Sq1(Sq2ci) = Sq1(Sq1bi + Sq1ai) = 0.

SinceMk−1 is a �ock of seagulls, Lemma 2.10 says

ker(Sq1) ∩ im(Sq2) = im(Sq2Sq1Sq2)
inMk−1.

So, Sq2ci ∈ im(Sq2Sq1Sq2). Let b̂i = bi + ai. Then Sq1b̂i = Sq2ci ∈
im(Sq2Sq1Sq2) and {bl+1,… , bi−1, b̂i, bi+1,… , bd} satis�es:

∙ ℬ ∪ {b1,… , bi−1, b̂i, bi+1,… , bd} is a basis forMk since ai ∈ span{ℬ},
∙ ℬ ∪ {b1,… , bl} is a basis for (Mk−1 +K)k since bi has not been changed
for i ≤ l, and

∙ {[bl+1],… , [bi−1], [b̂i], [bi+1],… , [bd]} is a basis for (Mk∕Mk−1)k since
[bi] = [b̂i]. �

For any l ≤ � ≤ d, letM(�) be the submodule ofM generated byMk−1 and
{b1,… , b�}. In Lemma2.17, we showedM(l) is isomorphic to a �ock of seagulls.
SupposeM(� − 1) is isomorphic to a sum of seagulls,

⨁
i∈I�−1

Σ�iΥni . We’ll label

the generators ofΣ�iΥni as yi,�i , yi,�i+4,… , yi,�i+4(ni−1). Note thatM(�−1) ⊆ Mk,
so �i + 4(ni − 1), the degree of the top generator in the itℎ seagull, is no more
than k.

Wewill be interested not just in the fact thatM(�) is a �ock of seagulls, but in
how the �ock of seagulls has changed fromM(�−1). At each stage, we identify
each seagull in the �ock M(� − 1) as one of the following types, depicted in
Figure 2

∙ A lengthened seagull has a generator in degree k and a generator in
degree k − 4. This type of seagull is the result of a new 1-seagull being
attached to a sumof seagulls inMk−1 in a previous step. The lengthened
seagulls inM(� − 1) will be indexed by L�−1.

∙ An available seagull has a generator in degree k−4, but no generator
in degree k. So, an available seagull has a top class in degree k + 1 that
is not in the image of Sq1 acting onM(� − 1). The available seagulls in
M(� − 1) will be indexed by A�−1.
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∙ An unavailable seagull does not have a generator in degree k − 4.
This includes all the 1-seagulls with generators in degree k that were
included inM(l). The unavailable seagulls inM(�) will be indexed by
U�.

We make this precise in the following de�nition.

De�nition 2.19. Let

L�−1 ∶={i ∈ I�−1|�i + 4(ni − 1) = k, ni > 1}
A�−1 ∶={i ∈ I�−1|�i + 4(ni − 1) = k − 4}
U�−1 ∶=I�−1 ⧵ (L�−1 ∪ A�−1).

Figure 2. The decomposition of M(� − 1) into available,
lengthened, and unavailable seagulls.

deg. k

Available

Lengthened

Unavailable

The general idea of the rest of this section is that each time we move from
M(� − 1) toM(�), we would like to attach a 1-seagull to the top of an available
seagull, creating a new lengthened seagull. However, the actual process is a
little more complicated than this, as wemay have to change the basis forM(�−
1) so that Sq1 on the new generator hits the top of a single available seagull. We
will start by showing that the new generator, b�, can be chosen so that Sq1b� is
a sum of classes in available seagulls.

Lemma 2.20. The generator b� can be chosen so that

Sq1b� = Sq2Sq1Sq2
∑

p∈P
yp,k−4

where P ⊆ A�−1.
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Proof. We chose the bi’s so that Sq1bi ∈ im(Sq2Sq1Sq2)k+1 for all i ≥ l
(Lemma 2.18). This means we can express Sq1b� as a sum,

Sq1b� = Sq2Sq1Sq2
∑

i∈I′
yi,k−4,

where I′ ⊆ I�−1. Unavailable seagulls do not have a nonzero class in the image
of Sq2Sq1Sq2 in degree k + 1, so I′ ⊆ A�−1 ∪ L�−1.

Let I′′ = I′ ∩ A�−1 (that is, I′′ indexes the available seagulls whose top class
is hit by Sq1b�). We claim I′′ is nonempty. If not, then all seagulls indexed by I′
are lengthened, so they each have a generator, yi,k−4. This generator is linked to
the generator in degree k by the relation, Sq2Sq1Sq2yi,k−4 = Sq1yi,k, and thus

Sq1b� =
∑

i∈I′
Sq2Sq1Sq2yi,k−4 =

∑

i∈I′
Sq1yi,k.

In this case, b�+
∑
i∈I′

yi,k is inK, the kernel of the Sq1 action onM. Then
∑
i∈I′

yi,k

and b� +
∑
i∈I′

yi,k are both in (Mk−1 + K)k, the F2 subspace of (Mk)k generated

by (Mk−1)k and b1,… , bl. However, their sum, b�, is not in (Mk−1 + K)k by
construction. So, I′′ must be nonempty.

If we replace b� in the basis for (Mk)k with
b̂� = b� +

∑

i∈I′⧵I′′
yi,k,

then
Sq1b̂� = Sq2Sq1Sq2

∑

i∈I′′
yi,k−4

and the following properties are preserved:
∙ ℬ∪{b1,… , b�−1, b̂�, b�+1,… , bd} is a basis forMk since b�+b̂� is in

(
M(�−

1)
)
k which is spanned by ℬ ∪ {b1,… , b�−1},

∙ ℬ∪{b1,… , bl} is a basis for (Mk−1+K)k since bi is unchanged for i ≤ l,
and

∙ {[bl+1],… , [b�−1], [b̂�], [b�+1],… , [bd]} is a basis for (Mk∕Mk−1)k since
[b�] + [b̂�] is in
M(� − 1)∕Mk−1 which is spanned by ℬ ∪ {[b1],… , [b�−1]}. �

Now that we’ve shownwe can assume Sq1b� only hits the top classes of avail-
able seagulls inM(� − 1), we can exhibit an isomorphism betweenM(�) and a
�ock of seagulls.

Lemma 2.21. If, for some � ≥ l+1,M(�−1) is isomorphic to a �ock of seagulls,
thenM(�) is isomorphic to a �ock of seagulls.

Proof. Recall from Remark 2.16 that

Mk∕Mk−1 ≅
⨁

1≤i≤d
ΣkΥ1{[bi]}.
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So, for all 1 ≤ j ≤ d,
M(j)∕Mk−1 ≅

⨁

1≤i≤j
ΣkΥ1{[bi]},

and therefore,

M(�)∕M(� − 1) ≅
(
M(�)∕Mk−1)∕

(
M(� − 1)∕Mk−1) = ΣkΥ1{[b�]}.

We have from Lemma 2.20 that

Sq1b� = Sq2Sq1Sq2
∑

p∈P
yp,k−4

for some P ⊆ A�−1. Let p� ∈ P be such that �p� is minimal in {�p ∶ p ∈ P}.
(That is, no seagull whose top class is hit by Sq1b� starts below the pth� seagull.)
This selects the longest seagull indexed by P (or perhaps one ofmultiple longest
seagulls).

Let

X =
⎛
⎜
⎜
⎝

⨁

i∈I�−1
i≠p�

Σ�iΥni

⎞
⎟
⎟
⎠

⊕ Σ�p�Υnp�+1
.

I.e., X is obtained fromM(� − 1) by attaching a 1-seagull to the top of the pth�
seagull. Since the left summand of X is a submodule ofM(� − 1), we will keep
the notation that Σ�iΥni in this summand is generated by

yi,�i , yi,�i+4, … , yi,�i+4(ni−1).
The generators of Σ�p�Υnp�+1

will be named

x�p� , x�p�+4, … , xk.

Let Φ ∶ X → M(�) be the A(1)-module map determined by:

Φ(yi,j) = yi,j

Φ(xj) =
⎧

⎨
⎩

∑
p∈P

yp,j j < k

b� j = k.

If the generator yp,j does not exist for some p ∈ P, omit the term from the sum
forΦ(xj). On the left summand ofX, it is clear that there is a well de�nedA(1)-
map determined by this mapping of the generators. For the right summand, we
need to make sure

Φ(Sq1xj) = {Φ(Sq
2Sq1Sq2xj−4) j > �p�

0 j = �p� .
In the case that j = k,

Φ(Sq1xk) = Sq1b� = Sq2Sq1Sq2
∑

p∈P
yp,k−4 = Φ(Sq2Sq1Sq2xk−4).
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If j < k,

Φ(Sq1xj) = Sq1
∑

p∈P
yp,j = Sq2Sq1Sq2

∑

p∈P
yp,j−4

again, omitting any yp,j−4 that does not exist. If j > �p� , then this is equal to
Φ(Sq2Sq1Sq2xj−4). If j = �p� then, since �p� ≤ �p for all p ∈ P, Sq1yp,�p� = 0
for all p ∈ P such that yp,�p� exists. Thus, Φ

(
Sq1x�p�

)
= 0.

Then we have the following commutative diagram ofA(1)modules:

0 ⨁
i∈I�−1

Σ�iΥni X ΣkΥ1{xk} 0

0 M(� − 1) M(�) ΣkΥ1{b�} 0

≅ Φ ≅

The rows are exact so, by the 5-lemma, Φ is an isomorphism. �

Proposition 2.11 follows by induction. In the following section, we will need
not just the fact thatMk is a �ock of seagulls, but also the following more spe-
ci�c facts about the structure ofMk.

Notation 2.22. SinceMk = M(d),

Mk ≅
⎛
⎜
⎝

⨁

i∈Ld
Σ�iΥni

⎞
⎟
⎠
⊕

⎛
⎜
⎝

⨁

i∈Ad
Σ�iΥni

⎞
⎟
⎠
⊕

⎛
⎜
⎝

⨁

i∈Ud

Σ�iΥni
⎞
⎟
⎠
.

Recall from De�nition 2.19 that the lengthened seagulls (indexed by Ld) have
generators in degrees k − 4 and k, the available seagulls (indexed by Ad) have
a generator in degree k − 4 but no generator in degree k, and the unavailable
seagulls (indexed by Ud) do not have a generator in degree k − 4. We will use
the notation L ∶= Ld, A ∶= Ad, and U ∶= Ud.

Corollary 2.23. There are d − l lengthened seagulls inMk.

Proof. Since
M(l) ≅ Mk−1 ⊕

⨁

1≤i≤l
ΣkΥ1,

the only seagulls inM(l) with the top class in degree k + 5 are of length one.
So, |Ll| = 0.

In the proof of Lemma 2.21, we showed

M(�) ≅
⎛
⎜
⎜
⎝

⨁

i∈I�−1
i≠p�

Σ�iΥni

⎞
⎟
⎟
⎠

⊕ Σ�p�Υnp�+1
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for some special p� ∈ A�−1. So, for all �,
|L�| = |L�−1| + 1
|A�| = |A�−1| − 1
U� = U�−1,

Then |Ld| = d − l. �

2.5. Classi�cationof boundedbelowmodules. In classifyingQ0-localmod-
ules that are bounded below and of �nite type, but possibly in�nite, our strategy
is to decompose the module into a sum of �nite modules and a summand with
no �nite summands. The sum of �nite modules is then already shown to be
a �ock of seagulls, and we only need to consider the term with no �nite sum-
mands. We begin by showing this type of decomposition exists. In the following
lemmas, ℬ is any �nite subalgebra of the Steenrod algebra.

Lemma 2.24. For any bounded belowℬ-module, K, of �nite type, and any inte-
ger n, there is a decompositionK ≅ N[n]⊕K(n), such thatN[n] ⊆ Kn andK(n)
has no direct summands that are submodules of Kn.

Proof. If no nonzero submodule of Kn splits o� of K, letN[n] = 0 and K(n) =
K.

Otherwise, let N(1) be any nonzero submodule (possibly zero) of (Kn)(1) ∶=
Kn that splits o� of K. Given a decomposition of K,

K ≅ N(1) ⊕N(2) ⊕⋯⊕N(k−1) ⊕K′,
where eachN(i) is a submodule ofKn, letN[n] = N(1)⊕N(2)⊕⋯⊕N(k−1) and
K(n) = K′ ifK′∩Kn has no nonzero submodule that splits o� ofK. Otherwise,
let N(k) be any nonzero submodule of K′ ∩ Kn that splits o� of K. Since Kn is
�nite, iteration of this process will conclude with the selection of an N[n] and
K(n). �

Lemma 2.25. Any bounded below ℬ-module,M, of �nite type, splits as a direct
sum,

M(∞)⊕N(∞),
whereN(∞) is a (possibly in�nite) direct sum of �nite modules andM(∞) has no
�nite summands.

Proof. After possibly shifting M, we may assume Mk = 0 for all k ≤ 0. Ap-
plying Lemma 2.24 to K = M with n = 0, we obtain N[0] andM(0) such that
M ≅ N[0]⊕M(0), N[0] ⊆ M0, andM(0) has no direct summands contained
inM0. Given

M ≅ N[0]⊕⋯⊕N[n − 1]⊕M(n − 1)
where N[k] ⊆ Mk for all k and M(n − 1) has no direct summands contained
inMn−1, we apply Lemma 2.24 to K = M(n− 1) and obtain modulesN[n] and
M(n) such that

M(n − 1) ≅ N[n]⊕M(n),
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N[n] ⊆ M(n − 1)n ⊆ Mn, and M(n) has no direct summands contained in
M(n − 1)n (and thus no direct summands contained inMn).

We take N(∞) to be (
⨁
n≥0

N[n]). Each N[n] is �nite, as it is a submodule

of the �nite module Mn, so this satis�es the description of N(∞) as a direct
sum of �nite modules. The intersection of theM(n)’s has no �nite summand,
since any �nite summand would split o� of some Mn and thus would not be

contained inM(n). So, we can takeM(∞) to be (
⋂
n≥0

M(n)). �

So, in order to prove Theorem 2.7, it remains to classify reduced, bounded
below Q0-local A(1)-modules of �nite type that have no �nite summands. We
will use the following lemma to help in identifying �nite summands.

Lemma 2.26. LetM be a bounded belowA(1)-module. IfN is a direct summand
ofMk and all elements of N have degree no more than k + 1, then N splits o� as
a direct summand ofM.

Proof. The inclusion of N intoMk is split by the projection � ∶ Mk → N. Let
p ∶ M → N be the map of F2-vector spaces given by

p(x) = {�(x) x ∈ Mk

0 otherwise.

For any x ∈ Mk and any R, SqRx ∈ Mk, so

p
(
SqRx

)
= �

(
SqRx

)
= SqR�(x) = SqRp(x).

If x ∉ Mk, then |x| ≥ k + 1. So, for any R ≠ (0), |SqRx| ≥ k + 2. So, if
SqRx ∈ Mk then p

(
SqRx

)
= �

(
SqRx

)
is zero, as the top class ofN is in degree

k+1. If SqRx ∉ Mk thenp
(
SqRx

)
is de�ned to be zero. Hence, for any x ∉ Mk,

p
(
SqRx

)
= 0 = SqR(0) = SqRp(x).

So, p is an A(1)-map.
Let i ∶ N → M be the inclusion. The image of i is contained inMk, so for all

x ∈ N,
p◦i(x) = �

(
i(x)

)
= x.

This exhibits a splitting of N o� ofM as a direct summand. �

De�nition 2.27. For any reduced, bounded below, Q0-local A(1)-module of
�nite type,M, and any k ≥ 0, let

Vk = F2{bl+1,… , bd},
where the bi are chosen fromMk as described inDe�nition 2.15 andLemma2.18.
Also, let

Wk = im(Sq2Sq1Sq2)k+1
inM.
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For anynonzero class Sq2Sq1Sq2x ∈Wk, the degree ofx isk−4, sox ∈ Mk−1

and Sq2Sq1Sq2x ∈ Mk−1. We also note that, by construction of the bi’s,

dim(Vk) = dim
((
Mk∕Mk−1)

k

)
− dim

((
K∕Mk−1)

k

)

where K is the kernel of the Sq1 action.

Lemma 2.28. IfM is a reduced, bounded below, Q0-local A(1)-module of �nite
type and there exists some k such that dim(Wk) ≠ dim(Vk), thenM has a direct
summand Σ�Υn for some �nite n and some �.

Proof. As in Notation 2.22, we take the decomposition ofMk,

Mk ≅
⎛
⎜
⎝

⨁

i∈U
Σ�iΥni

⎞
⎟
⎠
⊕

⎛
⎜
⎝

⨁

i∈A
Σ�iΥni

⎞
⎟
⎠
⊕

⎛
⎜
⎝

⨁

i∈L
Σ�iΥni

⎞
⎟
⎠

recalling that A ∪ L indexes all seagulls inMk with a generator in degree k− 4.
In Corollary 2.23, we showed |L| = d − l. Note that d − l is also equal to the
dimension of Vk.

SinceMk−1 is a �ock of seagulls, the map

Sq2Sq1Sq2 ∶ F2{yi,k−4 ∈
(
Mk−1)

k−4}→ im(Sq2Sq1Sq2)k+1 =Wk

is an isomorphism of F2-vector spaces. Thus,

dim (Wk) = dim
(
F2

{
yi,k−4 ∈

(
Mk−1)

k−4

})
= |L| + |A| = (d − l) + |A|

= dim (Vk) + |A|.
So, if dim (Wk) ≠ dim (Vk), then |A| > 0. Fixing some r ∈ A gives a direct
summand of Mk, Σ�rΥnr , whose top class is in degree k + 1. By Lemma 2.26,
this �nite seagull splits o� as a direct summand ofM. �

Lemma 2.29. IfM is a reduced, bounded below, Q0-local A(1)-module of �nite
type with no �nite summands, then there exists a family of isomorphisms,

Φk ∶
⨁

i∈Ij
Σ�iΥmj

i
→ Mj

satisfying the following conditions:
i.) Inclusion: Every seagull inMj−1 corresponds to a seagull inMj and any

new seagull inMj is a 1-seagull starting in degree j. I.e. Ij−1 ⊆ Ij , and
for any i ∈ Ij ⧵ Ij−1, �i = j andmj

i = 1,
ii.) Maximumlength: Aseagull inMj corresponding to a ith-seagull inMj−1

has an additional 1-seagull attached to the top whenever allowed by the
degree of the seagull’s top class. I.e., for all i ∈ Ij−1,

mj
i = {m

j−1
i + 1 �i ≡ j (mod 4)

mj−1
i otherwise,
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and consequentlymj
i =

⎢
⎢
⎣

j − �i
4

⎥
⎥
⎦
.

iii.) Decomposition: The isomorphisms respect the direct sums. I.e., for each
j ≥ 1, the following diagram commutes.

⨁
i∈Ij−1

Σ�iΥmj−1
i

⨁
i∈Ij

Σ�iΥmj
i

Mj−1 Mj

Φj−1

fj

Φj

�j

wherefj and �j are the obvious inclusions. In particular,fjmapsΣ�iΥmj−1
i

into Σ�iΥmj
i
.

Figure 3. An example of a family of seagulls indexed by sets
satisfying inclusion and maximum length.

deg. j

⨁
i∈Ij−1

Σ�iΥmj−1
i

deg. j

⨁
i∈Ij

Σ�iΥmj
i

Proof. We assume that Mk = 0 for all k < 0, after a possible shift. For all k,
Mk is �nite and thus isomorphic to a �ock of seagulls (Proposition 2.11). In the
case where k = 0, we �x any isomorphism

Φ0 ∶
⨁

i∈I0
Σ0Υ1 → M0.

Now suppose that for each j ≤ k − 1, there is a �ock of seagulls,
⨁
i∈Ij

Σ�iΥmj
i
,

mapping into Mj via a �xed isomorphism Φj such that {Φj}j≤k−1 satis�es the
three desired conditions. We will then produce an isomorphism Φk so that the
family {Φj}j≤k satis�es those conditions as well.
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We have the decomposition of Mk into unavailable, available, and length-
ened seagulls,

Mk ≅
⎛
⎜
⎝

⨁

i∈U
Σ�iΥni

⎞
⎟
⎠
⊕

⎛
⎜
⎝

⨁

i∈A
Σ�iΥni

⎞
⎟
⎠
⊕

⎛
⎜
⎝

⨁

i∈L
Σ�iΥni

⎞
⎟
⎠
,

where L ∪ A indexes all seagulls in Mk with a generator in degree k − 4. In
Lemma 2.28, we showed that in the case whereM has no �nite summands,
dim (Wk) = dim (Vk) and so |A| = 0. So, in this case,

Mk ≅
⎛
⎜
⎝

⨁

i∈U
Σ�iΥni

⎞
⎟
⎠
⊕

⎛
⎜
⎝

⨁

i∈L
Σ�iΥni+1

⎞
⎟
⎠
.

Figure 4. An example ofMk whenM has no �nite summands.

deg. k

⨁
i∈L

Σ�iΥni

Lengthened

⨁
i∈U
�i=k

Σ�iΥni

Unavailable with a
generator in degree k

⨁
i∈U
�i≠k

Σ�iΥni

Unavailable, no generator in degree k

Suppose i ∈ U with �i ≡ k (mod 4). By Lemma 2.26, the top generator of
Σ�iΥni must be in degree at least k−3. Otherwise, this �nite seagull would split
o� as a summand ofM, which we have assumed has no �nite summands. The
degree of the top generator is also no more than k and equivalent to k modulo
4, so the top generator is in degree k. Since this seagull is not lengthened, the
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generator in degree k is the only generator. Thus, �i = k and ni = 1. Thus,

Mk ≅
⎛
⎜
⎜
⎝

⨁

i∈U
�i=k

Σ�iΥ1

⎞
⎟
⎟
⎠

⊕
⎛
⎜
⎜
⎝

⨁

i∈U
�i≢k (4)

Σ�iΥni

⎞
⎟
⎟
⎠

⊕
⎛
⎜
⎝

⨁

i∈L
Σ�iΥni

⎞
⎟
⎠
.

For any i ∈ U with �i ≢ k (mod 4), Σ�iΥni cannot have a generator in degree k.
(All generators of a seagull have equivalent degrees modulo 4.) Since Σ�iΥni ⊆
Mk, this means all generators of this seagull have degree no more than k − 1.
So,

Mk∕Mk−1 ≅
⎛
⎜
⎜
⎝

⨁

i∈U
�i=k

ΣkΥ1

⎞
⎟
⎟
⎠

⊕
⎛
⎜
⎝

⨁

i∈L
ΣkΥ1

⎞
⎟
⎠
.

We wish to construct ⨁

i∈Ik
Σ�iΥmk

i

which will be isomorphic toMk. To do so, we will lengthen some seagulls in
⨁

i∈Ik−1
Σ�iΥmk−1

i

and introduce some new 1-seagulls. Let Ik = Ik−1 ⊔ {i ∈ U|�i = k}, setting
�i = k for all i ∈ U such that �i = k, and leaving �i unchanged for all i ∈ Ik−1.
Then, for all i ∈ Ik, let

mk
i =

⎧

⎨
⎩

mk−1
i i ∈ Ik−1, �i ≢ k (mod 4)

mk−1
i + 1 i ∈ Ik−1, �i ≡ k (mod 4)

1 i ∈ {q ∈ U|�q = k}.

Then the inclusion and maximum length properties are satis�ed by {Ij}j≤k.
Consider the decomposition

⨁

i∈Ik
Σ�iΥmk

i
≅

⎛
⎜
⎜
⎜
⎝

⨁

i∈Ik−1
�i≢k (4)

Σ�iΥmk−1
i

⎞
⎟
⎟
⎟
⎠

⊕

⎛
⎜
⎜
⎜
⎝

⨁

i∈Ik−1
�i≡k (4)

Σ�iΥmk−1
i +1

⎞
⎟
⎟
⎟
⎠

⊕
⎛
⎜
⎝

⨁

i∈Ik⧵Ik−1
ΣkΥ1

⎞
⎟
⎠
.

(6)

We will construct a map,

Φk ∶
⨁

i∈Ik
Σ�iΥmk

i
→ Mk,

by de�ning Φk on each summand of (6).
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The leftmost summand is contained in
⨁
i∈Ik−1

Σ�iΥmk−1
i

, so we de�ne Φk on

this summand to be the composition,
⨁

i∈Ik−1
�i≢k (4)

Σ�iΥmk−1
i

Φk−1
,,,,→ Mk−1 �k

,→ Mk.

By the de�nition of Ik, we have⨁

i∈Ik⧵Ik−1
ΣkΥ1 =

⨁

i∈U
�i=k

ΣkΥ1 ⊆ Mk,

so we de�ne Φk on the rightmost summand of (6) to be the inclusion intoMk.
De�ning the map on the center summand is more complicated. Recall from
Lemma 2.18 that

Sq1bi ∈ Sq2Sq1Sq2
((
Mk−1)

k−4

)
=Wk

for all l + 1 ≤ i ≤ d. So, Uk ∶= F2
{
Sq1bi|l + 1 ≤ i ≤ d

}
⊆ Wk. However,

Sq1 ∶ Vk → Uk

is a vector space isomorphism, since no combination of the bi’s are in the kernel
of Sq1. By Lemma 2.28, dim (Uk) = dim (Vk) = dim (Wk). So, Uk =Wk.

Let Σ�iΥmk
i
= Σ�iΥmk−1

i +1 in the center summand of (6) have generators

zi,�i , zi,�i+4,… , zi,k.
For any zi,j with j < k, zi,j is inMk−1, soΦk−1(zi,j) is de�ned. When j = k−4,

Φk−1
(
Sq2Sq1Sq2zi,k−4

)
∈ Sq2Sq1Sq2

((
Mk−1)

k−4

)
=Wk = Uk.

So, Φk−1
(
Sq2Sq1Sq2zi,k−4

)
= ∑

l+1≤q≤d
Sq1cqi bq, where c

q
i ∈ F2 for all i and q.

De�ne Φk on this summand to be the A(1)-map determined by

Φk(zi,j) =
⎧

⎨
⎩

�k◦Φk−1(zi,j) j < k∑
l+1≤q≤d

cqi bq j = k.

To see such a map is well de�ned, we need to check

Φk
(
Sq2Sq1Sq2zi,k−4

)
= Φk

(
Sq1zi,k−4

)

for all i, but Φk was constructed so that this relation holds. Furthermore, the
diagram

⨁
i∈Ik−1

Σ�iΥmk−1
i

⨁
i∈Ik

Σ�iΥmk
i

Mk−1 Mk

Φk−1

fk

Φk

�k
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commutes by the construction of Φk, so the family
{
Φj

}
j≤k satis�es the decom-

posability property.
To show Φk is a isomorphism, we will apply the �ve lemma to the diagram,

0 ⨁
i∈Ik−1

Σ�iΥmk−1
i

⨁
i∈Ik

Σ�iΥmk
i

⨁
i∈Ik−1
�i≡k (4)

ΣkΥ1{[zi,k]}⊕
⨁
i∈U
�i=k

ΣkΥ1 0

0 Mk−1 Mk ⨁
i∈L

ΣkΥ1 ⊕
⨁
i∈U
�i=k

ΣkΥ1 0

fk

Φk−1

q̂

Φk Λ

�k q

whereΛ takes [zi,k] to
∑

l+1≤q≤d
cqi [bq] and is the identity on the right summand.

We have already seen that the left square commutes by the de�nition of Φk. To
see that the right square commutes, we consider the decomposition given in
(6). On the summand contained in

⨁
i∈Ik−1

Σ�iΥmk−1
i

,

q◦Φk = 0 = Λ◦q̂.

On the summand isomorphic to
⨁
i∈U
�i=k

ΣkΥ1, both compositions are the identity.

On the remaining summand,

q◦Φk(zi,j) =
⎧

⎨
⎩

[
∑

l+1≤q≤d
cqi bq] j = k

0 otherwise

= {Λ([zi,k]) j = k
Λ(0) otherwise

= Λ◦q̂(zi,j).

Finally, we show Λ is an isomorphism, completing the proof. Certainly, the
restriction of Λ to the summand

⨁

i∈U
�i≡k (4)

ΣkΥ1 is an isomorphism. By the def-

inition of Λ, the image of this summand under Λ is contained in
⨁

i∈L
ΣkΥ1.
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To show the restriction of Λ to the summand
⨁

i∈Ik−1
�i≡k (4)

ΣkΥ1{[zi,k]} is an isomor-

phism, we show

Λk ∶

⎛
⎜
⎜
⎜
⎝

⨁

i∈Ik−1
�i≡k (4)

ΣkΥ1{[zi,k]}

⎞
⎟
⎟
⎟
⎠k

→
⎛
⎜
⎝

⨁

i∈L
ΣkΥ1

⎞
⎟
⎠k

is an isomorphism of F2-vector spaces.

By construction, {[bl+1],… , [bd]} is a basis for theF2-vector space,
⎛
⎜
⎝

⨁

i∈L
ΣkΥ1

⎞
⎟
⎠k
.

So, this vector space has dimension d − l. The F2-vector space,

⎛
⎜
⎜
⎜
⎝

⨁

i∈Ik−1
�i≡k (4)

ΣkΥ1{[zi,k]}

⎞
⎟
⎟
⎟
⎠k

is isomorphic (via the map given by the action of Sq1) to

Sq2Sq1Sq2
⎛
⎜
⎝

⎛
⎜
⎝

⨁

i∈Ik
Σ�iΥmk

i

⎞
⎟
⎠k−4

⎞
⎟
⎠
≅ Sq2Sq1Sq2

⎛
⎜
⎝

⎛
⎜
⎝

⨁

i∈Ik−1
Σ�iΥmk−1

i

⎞
⎟
⎠k−4

⎞
⎟
⎠

≅ Sq2Sq1Sq2
((
Mk−1)

k−4

)

=Wk

The dimension ofWk is also d − l.
Finally, we show Λk is injective. Take some element of the kernel of Λk,∑

i∈Ik−1
�i≡k (4)

ai[zi,k] where each ai is in F2. Then,

0 = Λk
⎛
⎜
⎜
⎝

∑

i∈Ik−1
�i≡k (4)

ai[zi,k]
⎞
⎟
⎟
⎠

=
∑

i∈Ik−1
�i≡k (4)

ai
⎛
⎜
⎝

∑

l+1≤q≤d
cqi [bq]

⎞
⎟
⎠
.
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Since Sq1 ∶
(⨁

i∈L Σ
kΥ1

)
k →

(⨁
i∈L Σ

kΥ1
)
k+1 is an isomorphism,

0 =
∑

i∈Ik−1
�i≡k (4)

ai
⎛
⎜
⎝

∑

l+1≤q≤d
Sq1cqi bq

⎞
⎟
⎠

=
∑

i∈Ik−1
�i≡k (4)

aiΦk−1
(
Sq2Sq1Sq2zi,k−4

)

= Φk−1
⎛
⎜
⎜
⎝

Sq2Sq1Sq2
∑

i∈Ik−1
�i≡k (4)

aizi,k−4
⎞
⎟
⎟
⎠

.

The maps Φk−1 and

Sq2Sq1Sq2 ∶

⎛
⎜
⎜
⎜
⎝

⨁

i∈Ik−1
�i≡k (4)

Σ�iΥmk
i

⎞
⎟
⎟
⎟
⎠k−4

→

⎛
⎜
⎜
⎜
⎝

⨁

i∈Ik−1
�i≡k (4)

Σ�iΥmk
i

⎞
⎟
⎟
⎟
⎠k−4

are isomorphisms, so we can conclude

0 =
∑

i∈Ik−1
�i≡k (4)

aizi,k−4. �

We are now ready to prove the following lemma, which completes the proof
of Theorem 2.7.

Lemma 2.30. IfM is a reduced, bounded below, Q0-local A(1)-module of �nite
type with no �nite summands,M is isomorphic to a sum of suspensions of Υ∞.

Proof. By the previous lemma, we can assume we have the following diagram
for all j ≥ 1,

⋯ ⨁
i∈Ij−1

Σ�iΥmj−1
i

⨁
i∈Ij

Σ�iΥmj
i

⋯

⋯ Mj−1 Mj ⋯

Φj−1

fj

Φj

�j

where Φj is an isomorphism for all j. Then,

M ≅ lim,,→
j
Mj ≅ lim,,→

j

⎛
⎜
⎝

⨁

i∈Ij
Σ�iΥmj

i

⎞
⎟
⎠
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along the maps in the diagram. For ease of notation, we de�ne Σ�iΥmj
i
to be

zero for all i ∉ Ij. Since fj maps Σ�iΥmj−1
i

into Σ�iΥmj
i
,

lim,,→
j

⎛
⎜
⎝

⨁

i∈Ij
Σ�iΥmj

i

⎞
⎟
⎠
≅ lim,,→

j

⎛
⎜
⎝

⨁

i∈∪Ij
Σ�iΥmj

i

⎞
⎟
⎠
≅

⨁

i∈∪Ij

⎛
⎜
⎝
lim,,→
j
Σ�jΥmj

i

⎞
⎟
⎠
.

Since our family of isomorphisms has the maximum length property,

Σ�iΥmj
i
= Σ�iΥp(i,j)

where

p(i, j) ∶=
⎢
⎢
⎣

j − �i
4

⎥
⎥
⎦

for all j ≥ �i. So,
lim,,→
j
Σ�iΥmj

i
≅ lim,,→

j
Σ�iΥp(i,j) ≅ lim,,→

n
Σ�iΥn

where the maps in the last colimit are the inclusions Σ�iΥn → Σ�iΥn+1. Then
we have

M ≅
⨁

i∈∪Ij

⎛
⎜
⎝
lim,,→
n
Σ�iΥn

⎞
⎟
⎠
=

⨁

i∈∪Ij
Σ�iΥ∞. �

So, under appropriate �niteness conditions, every Q0-local A(1)-module is
stably equivalent to a �ock of seagulls. A quick consequence of this is that
the Q0-homology of a �nite, Q0-local A(1)-module must be of even dimension
with generators forming pairs with di�erence in degree 4n+1 for some positive
integer n. Since the Q0-homology ofΥ∞ is one dimensional, no such condition
applies in the case whereM is in�nite.

IfM is �nite but not Q0-local, we might like to describe the possibilities for

H∙(M;Q0) ≅ H∙(L0M;Q0)
in the same way. This is not possible, as L0M is always in�nite (though some-
times stably equivalent to a �nite module). However, in the following section,
we are able to use the classi�cation theorem in conjunctionwithQ0-localization
to give some results that apply to bounded below A(1)-modules of �nite type
with any Q1-homology.

3. Applications of the classi�cation theorem
In Section 3.1 we discuss a spectral sequence of Davis–Mahowald that com-

putes ExtA(1)(M,F2) for an A(1)-module, M [DM82]. Utilizing this spectral
sequence to compute ℎ−10 ExtA(1)(M,F2) generalizes a previously known for-
mula for computing such localizations when the A(1)-modules involved have
a compatible A-module structure [Dav75]. In Section 3.2 we discuss the con-
sequences of this spectral sequence for determining whether an A(1)-module
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can be lifted to an A-module. In both of these sections, the classi�cation theo-
rem signi�cantly simpli�es some computations, though this often depends on
being able to give an explicit decomposition of a bounded below Q0-localA(1)-
module of �nite type into a direct sum of seagull modules.

3.1. Computing h−10 ExtA(1). When computing Adams spectral sequences, it
is often overly ambitious to try to compute the entire E2-page at once. One ap-
proach to producing partial descriptions is to isolate periodic families within
the E2-page, or within homotopy groups, as in chromatic localization (see for
example [HS98] and [HPS99]). In this section, we focus on one type of period-
icity in Ext∙,∙A(1)(M,F2) forM, a bounded below A(1)-module of �nite type.

Recall that Ext∙,∙A(1)(F2,F2) is the E2-page for the Adams spectral sequence
converging to the 2-completed homotopy groups of ko and ℎ0 is the nonzero
class in Ext1,1A(1)(F2,F2). For any A(1)-module, M, Ext∙,∙A(1)(M,F2) is a module
over Ext∙,∙A(1)(F2,F2), so there is an ℎ0-action on Ext∙,∙A(1)(M,F2).

Our goal here is to describe a technique for computing ℎ−10 Ext∙,∙A(1)(—,F2) for
arbitrary A(1)-modules via the Davis–Mahowald spectral sequence. While we
do not give a full description of all di�erentials in the spectral sequence, there
are still many cases where they can be computed.

In [DM82], Davis and Mahowald de�ne a graded algebra R∙n that is used to
construct the following spectral sequence.

Proposition 3.1 (Davis–Mahowald, [DM82]). For anyA(n)-moduleM, there is
a spectral sequence converging to ExtA(n)(M,F2) with

E�,s,t1 = ExtA(n−1) ((R�n)∗ ⊗M,F2) .

Here, wedescribe the construction of theDavis–Mahowald spectral sequence
in the case where n = 1 and construct N∙ ∶= (R∙1)∗ directly. The use of this
spectral sequence for the computation of ℎ−10 Ext∙,∙A(1)(—,F2) was suggested to
the author by John Rognes, and the following development of the spectral se-
quence relies heavily on work of Rognes and Bruner [BR21].

Let

N = F2[x2, x3]

where the degree of xi is (s, t) = (1, i) and let N� be the homogeneous polyno-
mials inN of bidegree (�, ∗). (Note that this does not align with the notation in
[DM82], as we choose instead to have the indices coincide with the degree of
each generator.)

Give N the structure of an A(1)-module as follows:
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Sq1
(
xi2x

j
3

)
= {x

i−1
2 xj+13 i > 0, j even
0 otherwise,

Sq2
(
xi2x

j
3

)
= {x

i−2
2 xj+23 i > 1, j ≡ 0, 1 (mod 4)
0 otherwise.

Note thatN� is then a submodule ofN. A portion of the moduleN is shown in
Figure 5.

N0 N1 N2 N3 N4 N5

1

x23

x22

x33

x32

x43

x42

x53

x52

x3

x2

x2x3
x22x3

x2x23

Figure 5. The module, N, for � ≤ 5. The grading by � is de-
picted horizontally, and the grading by t is depicted vertically.

There exists a sequence,

0← F2
)0←,, Υ1

)1←,, Υ1 ⊗N1
)2←,, Υ1 ⊗N2

)3←,, Υ1 ⊗N3 ←⋯

whose boundary morphisms will be described later. This sequence is exact
[DM82]. For any A(1)-module,M we therefore have a short exact sequence

0→ im()�+1)⊗M → Υ1 ⊗N� ⊗M → im()�)⊗M → 0

for each � ≥ 0, and a resulting exact couple,

Exts−�−1,tA(1) (im()�+1)⊗M,F2) Exts−�,tA(1) (im()�)⊗M,F2)

Exts−�,tA(1) (Υ1 ⊗N� ⊗M,F2)

�

j
i

(7)
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Applying a change of rings isomorphism, we see

Exts−�,tA(1) (Υ1 ⊗N� ⊗M,F2) = Exts−�,tA(1) (A(1)⊗A(0) F2 ⊗N� ⊗M,F2)

≅ Exts−�,tA(0) (N� ⊗M,F2),

whereA(1)⊗A(0) F2 is anA(1)-module via the left action onA(1). The associ-
ated graded to the exact couple, (7), can therefore be written as

E�,s,t1 = Exts−�,tA(0) (N� ⊗M,F2) ⇒ Exts−�,tA(1) (M,F2).

The di�erentials have the form dr ∶ E�,s,tr → E�+r,s+1,tr . When depicting Exts,t
with theAdams grading, wewill use the fact that the degree of dr is (�, s, t−s) =
(r, 1,−1).

In order to compute ℎ−10 ExtA(1)(M,F2), we consider the Davis–Mahowald
spectral sequence with ℎ0 inverted.
Lemma 3.2. SupposeM is any A(1)-module. The ℎ0-localization of the Davis–
Mahowald spectral sequence forM has the form,

E∙,∙,∙1 = P ⊗H∙(M∗;Q0) ⇒ ℎ−10 Ext∙,∙A(1)(M,F2),

where P is isomorphic, as a trigraded F2-vector space, to F2[ℎ±10 , x23].
Here, M∗ is the dual of M as an F2-vector space with a right A(1)-module

structure given by precomposition. The Q0-homology of M∗ is de�ned with
respect to the right action of Q0. We take the grading onM∗ to be

(M∗)k = Homk (M,F2) = HomF2(M,ΣkF2).
Note 3.3. As a module over E[Q0] = A(0), anyA(1)−moduleM is isomorphic
to a direct sum of suspensions of F2 and suspensions of A(0). Using this de-
composition, it is quick to show thatH∙(M;Q0) ≅ H∙(M∗;Q0). However, using
H∙(M∗;Q0) allows for a clearer statement of the di�erentials.

The content of the proof of Lemma 3.2 is identifying the E1-page, which we
accomplish in Lemmas 3.4 and 3.5.

Lemma 3.4. For anyA(1)-module,M,

ℎ−10 Ext∙,∙A(0)(M,F2) ≅ F2[ℎ±10 ]⊗H∙(M∗;Q0).

Proof. As an A(0)-module

M =
⎛
⎜
⎝

⨁

b∈B
F2{b}

⎞
⎟
⎠
⊕

⎛
⎜
⎝

⨁

c∈C
A(0){c}

⎞
⎟
⎠
,

for some B, C ⊂ M.
We can compute Ext∙,∙A(0)(M,F2) using this decomposition ofM:

Ext∙,∙A(0) (M,F2) ≅
⎛
⎜
⎝

⨁

b∈B
Ext∙,∙A(0)(F2{b},F2)

⎞
⎟
⎠
⊕

⎛
⎜
⎝

⨁

c∈C
Σ|c|F2

⎞
⎟
⎠
.
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We consider the injective resolution F2 → J∙ where Js = Σ−s−1F2 and the maps
ls ∶ Js−1 → Js are the unique nonzero maps. Any class in Exts−�,tA(0) (F2{b},F2) is
represented by a map

g ∶ Σ−tF2{b}→ Js−�
such that ls−�+1◦g = 0. The image of g is thus contained in the top degree of
Js−�. Such a map factors as a composition,

Σ−tF2{b}
ĝ
,→ Σ−s+�F2

ℎs−�0 l0
,,,,,,→ Js−�

The map ℎs−�0 l0 takes the nonzero class in F2 to the top class in Js−�. (Note
that this is, in fact, the map that results from acting on l0 by ℎs−�0 .) If g is
nonzero, then the degree of the nonzero class in Σ−tF2{b}, |b| − t, must be the
same as the degree of the top class in Js−�, −s+ �. So, t− s+ � = |b|. The map
ĝ is the unique nonzero one. In

⨁

b∈B
Hom∙

F2(F2{b},F2) ⊆ Hom∙
F2(M,F2),

the map ĝ is b∗. So,
⨁

b∈B
Ext∙,∙A(0)(F2{b},F2) ≅ F2[ℎ0]⊗

⨁

b∈B
F2[ℎ0]{b∗} ≅ H∙(M∗;Q0),

and thus

Ext∙,∙A(0) (M,F2) ≅ (F2[ℎ0]⊗H∙(M∗;Q0))⊕
⎛
⎜
⎝

⨁

c∈C
Σ|c|F2

⎞
⎟
⎠
.

When ℎ0 is inverted, this gives us

ℎ−10 Ext∙,∙A(0) (M,F2) ≅ F2[ℎ±10 ]⊗H∙(M∗;Q0)

with
ℎ−10 Exts−�,tA(0) (M,F2) ≅ Ht−(s−�)(M){ℎs−�0 }

and we note that inverting ℎ0 is an isomorphism in all degrees s > 0. �

Theorem3.5. TheE1-page of theℎ0-localizedDavis–Mahowald spectral sequence
for anA(1)-module,M, is isomorphic, as a trigraded F2-vector space, to

F2[ℎ±10 , x23]⊗H∙(M∗;Q0).

Note 3.6. We emphasize that this is only an isomorphism of vector spaces. In
the case whereM is anA(1)-module coalgebra, giving Ext∙,∙A(0)(N∙⊗M,F2) the
structure of an algebra, the Davis–Mahowald spectral sequence is a spectral
sequence of algebras and the isomorphism in Theorem 3.5 is an isomorphism
of algebras.
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Proof. The Q0-homology of N∙ is

Hk(N�;Q0) = {F2{x
�
3 } � even, k = 3�

0 � otherwise.

This identi�es the E1-page,

E�,s,t1 ≅ ℎ−10 Exts−�,tA(0) (N� ⊗M,F2)

≅ Ht−(s−�) ((N� ⊗M)∗;Q0) {ℎ±10 }
≅ H3�

(
N�;Q0

)
⊗Ht−s−2�(M∗;Q0){ℎ±10 }

≅ {Ht−s−2�((M)∗;Q0){ℎ±10 , x�3 } � is even
0 � is odd

≅
(
F2[ℎ±10 , x23]⊗H∙(M∗;Q0)

)
�,s,t

. �

Notice E�,s,t1 is zero when � is odd. The degree of dr is (�, s, t−s) = (r, 1,−1),
so nonzero di�erentials will only occur when both � and r are even. In com-
puting the �rst potentially nontrivial di�erential, d2, we will want to utilize an
explicit description of the exact sequence,

0← F2
)0←,, Υ1

)1←,, Υ1 ⊗N1
)2←,, Υ1 ⊗N2

)3←,, Υ1 ⊗N3 ←⋯

There is a decomposition,

Υ1 ⊗N� = A� ⊕ B�

where

A� =
⎧

⎨
⎩

A(1){1⊗ x�−2j2 x2j3 |0 ≤ j ≤ 2⌊�∕4⌋ − 1}
⊕A(1){1⊗ x2x�−13 } � ≡ 3 (mod 4)

A(1){1⊗ x�−2j2 x2j3 |0 ≤ j ≤ 2⌊�∕4⌋ − 1} otherwise,

B� =

⎧
⎪
⎨
⎪
⎩

Υ1{1⊗ x�3 } � ≡ 0 (mod 4)
A(1){1⊗ x2x�−13 } � ≡ 1 (mod 4)
A(1){1⊗ x22x

�−2
3 }⊕ Υ1{1⊗ x�3 } � ≡ 2 (mod 4)

A(1){1⊗ x32x
�−3
3 } � ≡ 3 (mod 4).

For all 1⊗ xi2x
�−i
3 in A�,

)�(1⊗ xi2x
�−i
3 ) = {1⊗ xi−32 x�−i+23 i ≡ � (mod 4)

0 otherwise.
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For all 1⊗ xi2x
�−i
3 in B�,

)�(1⊗ xi2x
�−i
3 ) =

⎧
⎪
⎨
⎪
⎩

Sq1Sq2Sq1Sq2(1⊗ x32x
�−4
3 ) � ≡ 0 (mod 4)

Sq2(1⊗ x�−13 ) i > 0, � ≡ 1, 2 (mod 4)
Sq2Sq2(1⊗ x2x�−23 ) i = 0, � ≡ 2 (mod 4)
Sq2(1⊗ x22x

�−3
3 ) + 1⊗ x�−13 � ≡ 3 (mod 4)

Note that )� restricts to maps A� → A�−1 and B� → B�−1. When computing
d2, we will only have to consider )� on B�, so we give a diagram of the exact
sequence

B4k
)4k+1←,,,, B4k+1

)4k+2←,,,, B4k+2
)4k+3←,,,, B4k+3

)4k+4←,,,, B4k+4

in Figure 6.

1⊗ x4k3

1⊗ x2x4k3

1⊗ x22x4k3

1⊗ x4k+23 Sq2(1⊗ x22x4k3 )
+1⊗ x4k+23

1⊗ x4k+32

im()4k) B4k ⊇ im()4k+1) B4k+1 ⊇ im()4k+2) B4k+2 ⊇ im()4k+3) B4k+3

Figure 6. The resolution B∙. The maps )� are drawn only for
the generators. Since each )� is an A(1)-map, this determines
the value of )� on any class.

We will also need an injective resolution of F2 over A(1). We choose the
following:

Is =

⎧
⎪
⎨
⎪
⎩

A(1){es,−s−4j−6 | 0 ≤ j ≤ s∕2} s ≡ 0 (mod 4)
A(1){es,−s−4j−6 | 0 ≤ j ≤ (s − 1)∕2}⊕A(1){es,−5−3s} s ≡ 1 (mod 4)
A(1){es,−s−4j−6 | 0 ≤ j ≤ (s − 2)∕2}⊕A(1){es,−4−3s} s ≡ 2 (mod 4)
A(1){es,−s−4j−6 | 0 ≤ j ≤ (s − 1)∕2} s ≡ 3 (mod 4)
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where |es,k| = k. The maps fs ∶ Is−1 → Is are the A(1)-maps determined by,

fs(es−1,k) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

Sq1es,k−1 + Sq2es,k−2 k = −3s − 3, s ≡ 1 (mod 4)
Sq1es,k−1 + Sq2Sq1es,k−3 k = −3s − 1, s ≡ 2 (mod 4)
Sq2es,k−2 k = −3s − 2, s ≡ 2 (mod 4)
Sq2Sq1es,k−3 k = −3s − 4, s ≡ 3 (mod 4)
Sq1es,k−1 + Sq2Sq1Sq2es,k−5 otherwise.

More e�ciently, we could say

fs(es−1,k) = Sq1es,k−1 + Sq2es,k−2 + Sq2Sq1es,k−3 + Sq2Sq1Sq2es,k−5,
omitting any terms where the required generators do not exist in Is.

Figure 7. The beginning of the A(1)-resolution F2 → I∙. An
arrow that hits an arc between circled classes indicates that fs
on the class where the arrow originates is the sum of the circled
classes. As in Figure 6, the values of themaps are only indicated
for generators.

e0,−6

t0

e1,−7
e1,−8

t1

e2,−8

e2,−10

t2

e3,−9

e3,−13

t3

e4,−10

e4,−14

e4,−18

t4

Let rs = Sq2Sq1Sq2es,−s−6 and ts = Sq1Sq2Sq1Sq2es,−s−6. Then
Sq1rs = ts and fs(ts−1) = rs for s ≥ 1. (When s = 0, we have f0(1) = t0.) Note
that ℎs0f0 is the unique map F2 → Is that takes 1 to ts.

Consider the following distinguished classes on the E1-page.

De�nition 3.7. Let '�m ∶ Υ1⊗N�⊗M → Σ|m|F2 be the uniqueA(1)-map that
takes 1⊗ a ⊗ b to (x�3 )∗(a)m∗(b).
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The class ['�m ⋅ ts−�] in Ext
s−�,|m|
A(1) (Υ1 ⊗M,F2) is the image of

ℎs−�0 x�3 [m∗] ∈ F2[ℎ±10 , x23]⊗H∙(M∗;Q0)
under the shearing and change of rings isomorphisms. Let ℬ be any set of
elements in M such that {[m]|m ∈ ℬ} is an F2-basis for H∙(M;Q0). Then
{['�m ⋅ ts]|m ∈ ℬ, � ≥ 0} is an F2-basis for ℎ±10 Ext∙,∙A(0)(N∙ ⊗M,F2).

In computing d2, we will apply the following lemma to '�m and relatedmaps.

Lemma 3.8. LetM,N beA(1)-modules.
For anyA(1)-map, f ∶ N ⊗M → F2,

f
(
Sq2Sq1Sq2n ⊗m

)
= f

(
n ⊗ Sq2Sq1Sq2m

)

for all n ∈ N and allm ∈ M.

Proof. For all n ∈ N andm ∈ M,
Sq2Sq1Sq2 (n ⊗m) = Sq2Sq1Sq2n ⊗m + Sq1

(
Sq2n ⊗ Sq2m

)

+ Sq2
(
Sq2n ⊗ Sq1m + Sq1n ⊗ Sq2m

)
+ n ⊗ Sq2Sq1Sq2m.

Since Sq1 and Sq2 act trivially on F2 and f is an A(1)-map,
f(Sq1x) = f(Sq2x) = 0

for all x ∈ N ⊗M. Thus,
0 = f

(
Sq2Sq1Sq2n ⊗m

)
+ f

(
n ⊗ Sq2Sq1Sq2m

)
. �

We can now compute the second di�erential.

Theorem 3.9. The second di�erential is given by

d2
(
ℎs−�0 x�3 [b∗]

)
= ℎs−�−10 x�+23

[
Sq2Sq1Sq2b∗

]

for any nonzero ℎs−�0 x�3 [b∗] ∈ F2[ℎ±10 , x23]⊗H∙(M∗;Q0).
Note 3.10. In the case where M is a coalgebra, the proof of this formula is
simpli�ed by the use of the Leibniz rule.

Proof. Consider some nonzero ℎs−�0 x�3 [b∗] ∈ H∙(M∗;Q0)⊗ F2[ℎ±10 , x23]. Then
� is even and Sq1b∗ = 0 = Sq1b. If s ≥ �, the class ℎs−�0 x�3 [b∗] is represented
by

'�b ⋅ ts−� ∶ Υ1 ⊗N� ⊗M → Is−�.
We unravel the exact couple:

Exts−�−1,∙A(1) (im()�+2)⊗M,F2) Exts−�,∙A(1) (im()�+1)⊗M,F2)

Exts−�−1,∙A(1) (Υ1 ⊗N�+2 ⊗M,F2) Exts−�,∙A(1) (Υ1 ⊗N� ⊗M,F2)

�

j i

d2
The map i in the exact couple is just precomposition by the inclusion of

im()�+1)⊗M into Υ1 ⊗N� ⊗M. We will refer to the composition of '�b ⋅ ts−�
with this inclusion as '�b ⋅ ts−� as well.
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Then, for any map Φ ∶ im()�+2)⊗M → Is−� such that �[Φ] = ['�b ⋅ ts−�],
d2['�b ⋅ts−�] = j[Φ]where j is precompositionwith )�+2⊗idM . Wewill not give
a full description ofΦ. Instead, we will use the fact that {['�+2m ⋅ ts−�]|m ∈ ℬ} is
a basis for ℎ±10 Exts−�,∙A(1) (Υ1⊗N�+2⊗M,F2). Since '�+2m is the uniqueA(1)-map
with '�+2m (1⊗a⊗n) = (x�+23 )∗(a)m∗(n), it is su�cient to determine the value
of j[Φ] on terms of the form 1⊗ x�+23 ⊗m form ∈ ℬ.

Note that j[Φ](1 ⊗ x�+23 ⊗ m) = Φ()�+2(1 ⊗ x�+23 ) ⊗ m). The expression
)�+2(1⊗ x�+23 ) depends on the equivalence class of � modulo four:

)�+2(1⊗ x�3 ) = {Sq
1 (Sq2Sq1(1⊗ x�+12 )

)
� ≡ 0 (mod 4)

Sq1
(
Sq2Sq1Sq2(1⊗ x�+12 )

)
� ≡ 2 (mod 4)

In either case, )�+2(1 ⊗ x�3 ) = Sq1 (y) where )�+1(y) = Sq2Sq1Sq2(1 ⊗ x�3 ).
This will be enough to compute j[Φ](1⊗ x�+23 ⊗m).

The connecting homomorphism, �, is constructed by applying the Snake
Lemma to the diagram below:

Hom (im()�+1)⊗M, Is−�−1) Hom (Υ1 ⊗N�+1 ⊗M, Is−�−1) Hom (im()�+2)⊗M, Is−�−1)

Hom (im()�+1)⊗M, Is−�) Hom (Υ1 ⊗N�+1 ⊗M, Is−�) Hom (im()�+2)⊗M, Is−�)

where Hom(A, B) = Hom∙
A(1)(A, B).

Fix any Φ ∈ Hom∙
A(1)(im()�+2) ⊗ M, Is−�−1) whose image under the con-

necting homomorphism is '�b ⋅ ts−� ∈ Hom∙
A(1)(im()�+1)⊗M, Is−�). Let Φ̃ ∈

Hom∙
A(1)(im(Υ1 ⊗N�+1 ⊗M, Is−�−1) be a lift of Φ. Then

Φ()�+2(1⊗ x�+23 )⊗m) = Φ̃()�+2(1⊗ x�+23 )⊗m)
= Φ̃(Sq1(y ⊗m)) = Sq1Φ̃(y ⊗m),

where )�+1(y) = Sq2Sq1Sq2(1⊗ x�3 ).
The bottom left horizontal map

Hom∙
A(1) (im()�+1)⊗M, Is)→ Hom∙

A(1) (Υ1 ⊗N�+1 ⊗M, Is)

is given by precomposition with )�+1 ⊗ idM . The center vertical map

Hom∙
A(1) (Υ1 ⊗N�+1 ⊗M, Is−�−1)→ Hom∙

A(1) (Υ1 ⊗N�+1 ⊗M, Is−�)

is given by composition with fs−� ∶ Is−�−1 → Is−�. Hence,

fs−�
(
Φ̃(y ⊗m)

)
= ('�b ⋅ ts−�) ()�+1(y)⊗m)
= ('�b ⋅ ts−�)

(
Sq2Sq1Sq2(1⊗ x�3 )⊗m

)
.

Lemma 3.8 then implies

fs−�
(
Φ̃(y ⊗m)

)
= ('�b ⋅ ts−�)

(
1⊗ x�3 ⊗ Sq2Sq1Sq2m

)
,
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since '�b ⋅ ts−� factors through F2. So,

fs−�
(
Φ̃(y ⊗m)

)
= b∗(Sq2Sq1Sq2m) ⋅ ts−�
=

(
(b∗)Sq2Sq1Sq2

)
(m) ⋅ fs−�(rs−�−1)

and, since fs−� is injective in degree |ts−�|,

Φ̃(y ⊗m) =
(
(b∗)Sq2Sq1Sq2

)
(m) ⋅ rs−�−1.

Then,

Φ()�+2(1⊗ x�+23 )⊗m) = Sq1Φ̃(y ⊗m)
= Sq1

((
(b∗)Sq2Sq1Sq2

)
(m) ⋅ rs−�−1

)

=
(
(b∗)Sq2Sq1Sq2

)
(m) ⋅ ts−�−1

= '�+2((b∗)Sq2Sq1Sq2)∗
(1⊗ x�+23 ⊗m) ⋅ ts−�−1.

Therefore, d2(ℎs−�0 x�3 [b∗]) = ℎs−�−10 x�+23 [(b∗)Sq2Sq1Sq2]. �

Heuristically, the second di�erential pairsQ0-homology classes that are con-
nected by a 1-seagull inM∗. We conjecture that the 2ntℎ di�erential pairs classes
connected by an n-seagull.

Conjecture 3.11. There exists a di�erential

d2n([x∗]ℎs−�0 x�3 ) = [y∗]ℎs+1−�−2n0 x�+2n3

for nonzero classes [x∗], [y∗] inH∙(M∗;Q0) if and only if there are elements

(x1)∗,… , (xn−1)∗ ∈ M∗

such that

(x∗)Sq2Sq1Sq2 = (x1)∗Sq1

(xi)∗Sq2Sq1Sq2 = {(xi+1)∗Sq
1 i < n − 1

y∗ i = n − 1.

The di�culty in using exactly themethods used for d2 to compute higher dif-
ferentials is that we only computed lifts along � formaps that factor through F2.
There is no guarantee that such a lift also factors through F2 if its composition
with j is zero.

Example 3.12. Let l denote the generator of Υ1 and u denote Sq2Sq1Sq2l.
Then inM∗, (u∗)Sq2Sq1Sq2 = l∗, so the spectral sequence associated toΥ1 has
a di�erential,

d2
(
ℎs−�0 x�3 [u∗]

)
= ℎs−�−10 x�+23 [l∗]

For degree reasons, all higher di�erentials are zero, so the spectral sequence
collapses. The E2-page of this spectral sequence is depicted in Figure 8.
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-1

1

2

3

4

5

1 2 3 6 7 10
t-s

s

l∗ u∗

x23l∗ x23u∗

x43l∗

Figure 8. The ℎ0-localized Davis–Mahowald spectral se-
quence for Υ1. The classes marked with a red circle are in de-
gree � = 0, the classes marked with an orange square are in
degree � = 2, and the classes marked with a green triangle are
in degree � = 4.

Even without a formula for the higher di�erentials, all di�erentials can be
computed in the spectral sequence associated to a seagull module of any length.
For the in�nite seagull module, there is no room for any nonzero di�erentials.
For a �nite seagull, there is a single nonzero di�erential.

Proposition 3.13. For any �nite n, the spectral sequence
F2[ℎ±10 , x23]⊗H∙(Υn;Q0) ⇒ ℎ−10 Ext∙,∙A(1)(Υn,F2)

has precisely one nonzero di�erential, d2n.
Proof. It’s quick to show via constructing a minimal free resolution ofΥn that,
as an F2-vector space,

ℎ−10 Ext∙,∙A(1)(Υn,F2) ≅ Ext∙,∙A(1)(Υn,F2) ≅ F2[ℎ±10 , x23]∕x
2(n+1)
3 .

So, the E∞-page is comprised of ℎ0-towers in degrees
t − s = 0, 4, 8,… , 4(n − 1).

The Q0-homology of Υn is F2{l, u} where |l| = 0 and |u| = 4n + 1. So, in each
even �ltration degree, � = m, the E1-page has ℎ0-towers in degrees t − s = 2m
and
t− s = 2m+4n+1. (The E1-page is zero in each odd �ltration degree.) So, the
E1-page is comprised of ℎ0-towers in degrees

t − s = 0, 4, 8,… , 4(n − 1), 4n, 4n + 1, 4(n + 1), 4(n + 1) + 1,…
Any di�erential in this spectral sequence has degree t − s = −1. So, in order
for the towers in degrees t − s > 4(n − 1) to be eliminated, there must be a
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di�erential from each tower in degree 2m+4n+1 to the tower in degree 2m+
4n = 2(2n +m). The tower in degree 2m + 4n + 1 is in �ltration degree � = m
and the tower in degree 2(2n + �) is in �ltration degree � = 2n +m, so this is
a d2n di�erential. �

For any bounded below,Q0-localA(1)-module of �nite type,M, Theorem 2.7
tells us M is isomorphic to a �ock of seagulls. If we can identify that �ock of
seagulls, we can then compute all di�erentials in the spectral sequence associ-
ated toM. In fact, ifM is an arbitrary A(1)-module, the Q0- localization ofM
can be used to compute ℎ±10 Ext∙,∙A(1)(M,F2).

Lemma 3.14. The map L0M → M induces an isomorphism,

ℎ−10 Ext∙,∙A(1)(M,F2) ≅ ℎ−10 Ext∙,∙A(1)(L0M,F2).

Proof. The triangle
L0M → M → L1M

induces the long exact sequence

⋯ ℎ−10 Exts,tA(1) (L1M,F2) ℎ−10 Exts,tA(1) (M,F2) ℎ−10 Exts,tA(1) (L0M,F2)

ℎ−10 Exts+1,tA(1) (L1M,F2) ℎ−10 Exts+1,tA(1) (M,F2) ⋯

Since L1M is Q1-local (equivalently, free as an A(0)-module) and bounded be-
low, Adams’ vanishing theorem [Ada66, Theorem 2.1] implies

ℎ−10 Ext∙,∙A(1) (L1M,F2) = 0. �

Consequently, ℎ−10 Ext∙,∙A(1)(M,F2) can be computed by identifying the decom-
position of L0M = Υ∞⊗M into a direct sum of seagulls. However, computing
this decomposition is often di�cult. So, it would be desirable to prove Conjec-
ture 3.11, or another way of computing di�erentials directly from the structure
ofM.

3.2. Lifting A(1)-modules to A-modules. For any A(n), a subalgebra of A,
there is a forgetful functor fromA−Mod toA(n)−Mod. IfM is aA(n)-module
in the image of this functor, we say M lifts to an A-module or that M has a
compatible A-module structure.

This forgetful functor only exists because there is an action ofA onA(n) that
is compatible with the multiplication in A(n). (That is, if x ∈ A(n), acting by
x ∈ A onA(n) is the same as multiplying by x ∈ A(n).) Lin [Lin73] calls Hopf
subalgebras with this property “nice Hopf subalgebras”. In [Lin73], he shows
the only niceHopf subalgebras ofA are of the formA(n) for some n. So, ifℬ is a
Hopf subalgebra ofA not equal to someA(n), there is no such forgetful functor
and so the question of lifting ℬ-modules to A-modules is not well formed.
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The following theorem of Davis and its consequences for computing ℎ−10 Ext
were pointed out to the author by Michael Hopkins.

Theorem 3.15 (Davis). For anyA-module,N, the ℎ0-towers inExt∙,∙A (N,F2) are
in one-to-one correspondence with a basis forH∙(N;Q0).

Davis’ proof of this theorem e�ectively shows

ℎ−10 Ext∙,∙A (N,F2) ≅ F2[ℎ±10 ]⊗H∙(N;Q0).

For anyA(1)-module,M, there is anA-moduleA⊗A(1)M whereA acts on the
left factor. So,

ℎ−10 Ext∙,∙A(1) (M,F2) ≅ ℎ−10 Ext∙,∙A
(
A⊗A(1)M,F2

)
≅ F2[ℎ±10 ]⊗H∙(A⊗A(1)M;Q0).

IfM can be lifted to an A-module, then there is a shearing isomorphism,

A⊗A(1)M ≅ A∕∕A(1)⊗M

where A∕∕A(1)⊗M has the diagonal action. In this case,

ℎ−10 Ext∙,∙A(1) (M,F2) ≅ F2[ℎ±10 ]⊗H∙ (A∕∕A(1);Q0)⊗H∙ (M;Q0)

≅ F2[ℎ±10 ]⊗ F2[a]⊗H∙(M;Q0)

where the degree of a is t − s = 4. Hence, the spectral sequence,

F2[ℎ±10 , x23]⊗H∙(M;Q0) ⇒ ℎ−10 Ext∙,∙A(1)(M,F2)

collapses at the E1-page. This collapse depends on M having a compatible A-
module structure. So, any nonzero di�erentials, dn for n ≥ 1, in the ℎ0-local
Davis–Mahowald spectral sequence associated to anA(1)-module indicate that
the module cannot be lifted to an A-module. The formula for d2 then implies
the following corollary.

Corollary 3.16. IfM, a bounded belowA(1)-module of �nite type, has elements
x and y such that [x∗], [y∗] ∈ H∙(M∗;Q0) are nonzero and

y∗Sq2Sq1Sq2 = x∗
thenM does not lift to anA-module.

Conjecture 3.11 would imply the following.

Conjecture 3.17. Suppose M, a bounded below A(1)-module of �nite type,
has elements x0, x1,… , xn−1, such that [(xi)∗] ∈ H∙(M∗;Q0) is nonzero for all i,
[(xn−1)∗Sq2Sq1Sq2] ∈ H∙(M∗;Q0) is nonzero, and (xi)∗Sq2Sq1Sq2 = (xi+1)∗Sq1
for all i < n − 1. ThenM does not lift to an A-module.

While this is only a conjecture in the general case, in some particular cases,
we can compute higher di�erentials and thus detect obstructions to lifting.

Corollary 3.18. For any �nite n, Υn is not anA-module.
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This corollary follows very smoothly from Proposition 3.13, though this is
certainly not the only way to prove it. In fact, one can show directly from the
Adem relations that Υn is an A(m)- but not an A(m + 1)-module where m is
the largest number such that 2m−1 divides n.

Corollary 3.19. LetM be a bounded belowA(1)-module of �nite type.
(i) If L0M is stably equivalent to a �ock of seagulls including a �nite seagull,

thenM does not lift to anA-module.
(ii) If M is Q0-local, then M lifts to an A-module if and only if M is stably

equivalent to a �ock of in�nite seagulls (or zero).

Proof. As shown in Lemma 3.14, ℎ−10 Exts,tA(1)(M,F2) ≅ ℎ−10 Exts,tA(1)(L0M,F2).
Furthermore, L0M → M induces an isomorphism in Q0-homology. So, there is
at least one nonzero di�erential in the spectral sequence

F2[ℎ±10 , x23]⊗H∙(M;Q0) ⇒ ℎ−10 Exts,tA(1)(M,F2)

if and only if there is at least one nonzero di�erential in the spectral sequence

F2[ℎ±10 , x23]⊗H∙(L0M;Q0) ⇒ ℎ−10 Exts,tA(1)(L0M,F2).

Then, (i) follows from the fact that if L0M is stably equivalent to a �ock of seag-
ulls including a �nite seagull, the spectral sequence associated to L0M has a
nonzero di�erential.

Part (ii) follows quickly from the classi�cation theorem and Corollary 3.18.
�

When M is �nite, part (ii) follows directly from the classi�cation theorem
and a result of Palmieri [Pal96, A.1] that shows any �nite, Q0-local A-module
has zero Q0-homology.
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