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Classifying and extending Q, local
A(1)-modules

Katharine Adamyk

ABSTRACT. In the stable category of bounded below A(1)-modules, every
module is determined by an extension between a module with trivial Q,-
Margolis homology and a module with trivial Q,-Margolis homology [Brul4].
We show all bounded below .A(1)-modules of finite type whose Q,-Margolis
homology is trivial are stably equivalent to direct sums of suspensions of a dis-
tinguished family of A(1)-modules. Each module in this family is comprised
of copies of .A(1)//.A(0) linked by the action of Sq* € A(1).

The classification theorem is then used to simplify the computations of
hyt' EXt;lEl)(_’ [F,) and to obtain necessary conditions for lifting 4(1)-modules
to A-modules. We discuss a Davis-Mahowald spectral sequence converg-
ing to hy lExt;i;D(M ,IF,) where M is any bounded below .A(1)-module. The
differentials in this spectral sequence detect obstructions to lifting the A(1)-
module, M, to an A-module. We give a formula for the second differential.
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1. Introduction

Margolis homology is an invariant of modules over a subalgebra of the Steen-
rod algebra, the collection of which includes, for example, rings that arise as the
total cohomology of a space. A classical example of the utility of this invariant is
that a module over the Steenrod algebra is free if and only if it has trivial Margo-
lis homology with respect to a particular family of elements [Mar83, Theorem
19.6]. An overview of more recent uses is given in [BBT21], including comput-
ing the algebra of operations for truncations of the Brown-Peterson spectrum in
[Ada74] and [Cul19]. In this paper, we focus on Margolis homology for modules
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over the subalgebra .A(1), specifically on its uses for classifying A(1)-modules
and determining whether they extend to modules over the entire Steenrod al-
gebra.

Let A be the mod-2 Steenrod algebra, and let x € A satisfy x> = 0. If M is
a module over a subalgebra of A that contains x, the Margolis homology of M
with respect to x is the quotient of the kernel of the action of x on M by the
image of the same action. Over the subalgebra .A(1), which is generated by Sq*
and Sq?, the relevant types of homology are Q,- and Q,-Margolis homology
where Q, := Sq' and Q; := Sq'Sq*® + Sq?Sq'. For the most part, we will
restrict our attention to A(1)-modules with trivial Q;-homology.

In general, restricting to modules with a particular type of Margolis homol-
ogy can give a subcollection of modules that are more manageable to classify.
For example, Adams and Priddy classified all finitely generated invertible A(1)-
modules by showing they are precisely the finitely generated .A(1)-modules
whose Q,- and Q;-homology are both 1-dimensional [AP76]. In ongoing work,
Fabian Hebestreit and Stephan Stolz have classified bounded A(1)-modules
whose Qy-homology is trivial and whose Q;-homology is two dimensional. This
last example concerns modules that are Q,-local—that is, modules with trivial
Qo-homology. The modules we focus on in this paper are, in a sense, of an op-
posite type; they are Qy-local, meaning they have trivial Q;-homology. Each
A(1)-module satisfying appropriate finiteness conditions is determined by an
extension between a Qy-local module and a Q,-local module in the stable cate-
gory of A(1)-modules [Brul4]. Describing Q;-local modules thus provides some
insight into .A(1)-modules in general.

Here, we provide a classification of Qy-local modules that are bounded below
and of finite type. This does not require any restrictions on the Q;-homology.
To this end, we define a particular family of Q,-local .A(1)-modules. The first
module in this family is the I-seagull,

A1) /] A0) := A1) @ 4(0) Fa-

An n-seagull, Y, is a chain of n linked copies of suspensions of V';, with 0 <
n < oo. Section 2.2 contains more detail in Definition 2.5 and Figure 1. We
refer to a direct sum of suspensions (i.e., shifts) of seagulls as a flock of seagulls.
Any flock of seagulls is an example of a Q,-local module and we show in the
classification theorem they are the only examples, up to free summands.

One use for the classification theorem is to simplify calculations in the Adams
spectral sequence. (The classification theorems of [AP76] and Hebestreit-Stolz
are both motivated by such calculations.) Consider the spectrum ko, the con-
nective cover of real topological K-theory. This spectrum has cohomology

H*(ko) = AJJAQ1) := A @ 4) Fa,

[Ada74, Part III, Theorem 16.6]. The Adams spectral sequence converging to
the 2-completed homotopy groups of ko therefore has the E,-page,

Ext’"(A//AQ1),F,) = EXt;iEl)([FZ’ ).
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For any spectrum of the form koAX, we can likewise compute the E,-page of the
associated Adams spectral sequence via an equivalent computation over A(1).
When M is a module over the entire Steenrod algebra A, h; lExt:éEl)(M ,[F,) can

be computed from the Margolis homology of M, as a consequence of a theorem
of Davis [Dav75]. However, it is not always possible to define an .A-module
structure on an arbitrary A(1)-module in a way that is compatible with the ex-
isting action of A(1). The first application we give of the classification theo-
rem is a generalization of Davis’ theorem for arbitrary A(1)-modules, utilizing
a Davis—-Mahowald spectral sequence.

The 1-seagull is an example of an .A(1)-module that has no compatible .A-
module structure as there is no action of Sq* that is compatible with the relation
Sq'Sq* + Sq*Sq' = Sq*Sq'Sq?. One can show similarly that none of the finite
seagulls lift to A-modules. We give a different proof of this in Section 3.2 along
with some more general results for lifting .4 (1)-modules that are not necessarily
Qy-local.

1.1. Summary of results. The main result of this paper is the classification
theorem:

Theorem 2.7. If M is a bounded below, Qy-local A(1)-module of finite type, then
M is stably equivalent to a flock of seagulls.

By stably equivalent, we mean isomorphic in the stable category of A(1)-
modules (see Section 2.1). Equivalently, every .A(1)-module meeting the con-
ditions of Theorem 3.7 is isomorphic to the direct sum of a flock of seagulls and
a free module.

The first application we give of this theorem is to computing localized Ext
terms. Let M be a bounded below .A(1)-module of finite type and let M,, denote
the dual of M as an [F,-vector space, with the right .A(1)-module structure given
by precomposition by the (left) action of A(1) on M. There exists a spectral
sequence, due to Davis and Mahowald [DM82],

El"’s’t = Exti’lt(o)(Ng ®M,F)=> Ethe}t(1)(M’ Fs)

where N, = [F,[x,,x3]. We will consider this spectral sequence when h, €
Extzél)([Fz, [F,) is inverted.

Theorem 3.5. The E;-page of the hy-localized Davis—-Mahowald spectral sequence
for an A(1)-module, M, is isomorphic, as a trigraded [F,-vector space, to

H.(M,;Q0) ® [Fz[h§1,X§]-

We then compute all differentials in the hy-localized Davis—-Mahowald spec-
tral sequence associated to a seagull module, Y, (Proposition 3.13). For an ar-
bitrary bounded below A(1)-module, M, LoM := Y ® M is Q,-local [Brul4]
and thus stably equivalent to a flock of seagulls. So, in theory, all differentials
can be computed in a spectral sequence converging to

1 ., ~ L—1 .,
hy "Bty (LoM, Fa) = by EXtt (M, F).
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However, this relies on computing the decomposition of Y, ® M into seagull
modules, which can be labor intensive. For the first nonzero differential, d,,
we are able to give a formula that does not depend on computing this decom-
position.

Theorem 3.9. The differential

d, : Fo[hE, x2] @ H.(M,; Q) — Fo[hE', x2] @ H.(M.; Qo)

is given by
dy (R$xJ[b,]) = h§'x3** [b.Sq*Sq*Sq?|
forall even o.

If M is an A-module, then the spectral sequence collapses at the E;-page. So,
we are able to use differentials in the spectral sequence to detect obstructions to
lifting .A(1)-modules to .A-modules. The differentials in the spectral sequences
associated to the seagull modules lead to the following corollary.

Corollary 3.19. Let M be a bounded below A(1)-module of finite type.

(1) If LyM is stably equivalent to a flock of seagulls that includes a finite seag-
ull, then M does not lift to an A-module.

(i) If M is Qqy-local, then M lifts to an A-module if and only if M is stably
equivalent to a flock of infinite seagulls (or zero).

Use of this corollary requires determining a decomposition of LyM =Y, ®
M into seagull modules. However, if the differentials in the spectral sequence
associated to M can be determined directly, they can detect obstructions to lift-
ing without computing this decomposition. (See, for example Corollary 3.16.)

1.2. Organization. Section 2.1 gives a more thorough exposition of relevant
background material, including the category of stable A(1)-modules. Section 2.2
defines the seagull modules and Section 2.3 proves some helpful identities for
working with Qg-local modules. The proof of the classification theorem begins
in Section 2.4 with the proof that all finite, Q,-local .A(1)-modules are stably
equivalent to sums of suspensions of seagulls. The techniques in this part of the
proof do not generalize well to the case of bounded below modules of finite type
that are not bounded above. Instead, we show in Section 2.5 that any bounded
below, Qy-local A(1)-module of finite type splits as a sum of finite summands,
which have been classified, and a summand with no finite summands, which
we then show is isomorphic to a sum of suspensions of Y.

Section 3, covers the computational applications of the classification theo-
rem. The main application, discussed in Section 3.1, is to computations in a
localized Davis—Mahowald spectral sequence. In Section 3.2, we describe the
consequences of this spectral sequence for lifting A(1)-modules to .A-modules.
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2. The classification theorem

In this section, we prove a theorem classifying all bounded below, Q,-local
modules of finite type in the stable category of A(1)-modules. We begin with
some background on the stable category in Section 2.1. In Section 2.2, we de-
fine a family of Qj-local modules, named the seagull modules. After proving
some identities in Section 2.3, we show in Section 2.4 that every finite Q,-local
module is a direct sum of suspensions of seagull modules. For Q,-local mod-
ules that are merely bounded below and finite type, we resolve a few remaining
technicalities in Section 2.5.

2.1. The stable category of A(1) modules. Unless otherwise specified, all
modules are left modules. In general, we will consider only .A(1)-modules that
satisfy certain finiteness conditions, up to a free summand.

Notation 2.1. For any graded module, M, we write M for the subgroup of M
made up of the homogeneous elements of M of degree k.

We will often restrict our attention to A(1)-modules satisfying one or both of
the following finiteness conditions.

Definition 2.2. An A(1)-module is bounded below if there exists some n such
that M, = 0 for all k < n. An A(1)-module is of finite type if M}, is a finite
[F,-vector space for all k.

The benefit of considering appropriately finite A(1)-modules, up to a free
summand, is that it allows us to work over the stable category of (bounded be-
low) A(1)-modules, which has nice properties with respect to Margolis homol-

ogy.
Definition 2.3. The stable category of .A(1)-modules, Stab(A(l)), be the cate-
gory with all A(1)-modules as objects and morphisms

[Ma N] = Hom./l(l)(M’ N)/ ~
where f ~ gif f — g factors through a free A(1)-module.

We say two A(1)-modules are stably equivalent if they are isomorphic in
Stab(/l(l)). Over A(1) (or, in fact, any A(n)), a module is free if and only if
it is projective [Mar83, Proposition 12.2.8]. So, this is equivalent to the usual
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definition of a stable module category, where maps are identified if their dif-
ference factors through a projective module (see for example, Chapter 2.2 of
[Hov99]).

b
Let Stab(A(1)) denote the full subcategory of Stab(A(1)) whose objects are

b
bounded below .A(1)-modules. Every module in Stab(/l(l)) splits as a direct
sum of a free module and a module with no free summands [Mar83].

Definition 2.4. Let M = M,.q ® My,,, where M., is free and M, .4 has no
free summands. The module M,,; is called the reduced part of M, and M is
reduced if M,,; = M.

Two bounded below A(1)-modules are stably equivalent if and only if their
reduced parts are isomorphic in .A(1)—Mod [Mar83].

Let Qy = Sq* and Q; = S¢*Sq" + Sq'Sq?. Since Q7 = 0, Q;-Margolis homol-
ogy can be defined as

ker(Q;)x

im(Q;)x
for any A(1)-module, M. Any module that is free over .A(1) has trivial Q,- and
Q;-homology, so if M and N are stably equivalent .A(1)-modules, they have the
same Q;-homology. The stable category of A(1)-modules is triangulated, and

H(M;Q;) =

b
every M € Stab(A(1)) sits in a unique triangle,
LM - M —» LM - LyM|[1],
where L;M is Q;-local [Brul4|. The module L;M is called the Q;-localization of

M. To understand .A(1)-modules more broadly, it would therefore be helpful to
know more about Q;-local modules.

2.2. The seagull modules. In this section, we define the seagull modules,
which are depicted in Figure 1. The first seagull module is

Yy 1= AM)//A0) = A1) ® 40) F2-

Note that A(1) & 4(g) [, has the A(1)-module structure given by acting on the

left factor. (This is in contrast to the .A(1)-module structure on a tensor product

over [, of A(1)-modules which is given by the diagonal action.) An n-seagull,

Y, is a chain of n linked copies of suspensions of ;.

Definition 2.5. The n-seagull V', is generated as an .A(1)-module by {y,}o<j<n—1

with |y,;| = 4j where Sq*Sq'Sq?y,; # 0 for all j and

0 j=o0

Sq'ysj = :
Y 89259 Sq?yaory j > 0.

We call a direct sum of suspensions of seagulls of various lengths,

69 z T”i ’

iel
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FIGURE 1. The modules Y,,. The bottom class of each module
is in degree zero.

T AP’ Y3 Voo

a flock of seagulls. We sometimes refer to any suspension of an n-seagull as an
n-seagull, but =Y, will always mean the k'™ suspension of the n-seagull whose
first generator is in degree zero.

Notation 2.6. When working in categories of modules over a subalgebra of A
we always use “suspension” and the character Z to mean a shift in the grading of
the module. In particular, we do not use X for the translation functor M — M|[1]

in the triangulated category Stab”(A(1)).
For all n, the Margolis homology of Y, is given by

[Fz @ Z4n+1|]:2 n<o
IFZ n=o
H.(Yy;Q1) = 0.

H-(’Yn;QO) =

So the n-seagulls are Qp-local. Furthermore, taking the tensor product of a
bounded below A(1)-module, M, and the infinite seagull, Y, results in the
Qo-localization of M [Brul4]. Note that Y, ® M is an A(1)-module via the
diagonal action.

The seagull modules are not only examples of Q,-local modules, they are
essentially the only examples.

Theorem 2.7. If M is a bounded below, Qy-local A(1)-module of finite type, then
M is stably equivalent to a flock of seagulls.

The remainder of Section 2 concerns the proof of this theorem.

2.3. Properties of Q,-local A(1)-modules. This section provides several prop-
erties of reduced, bounded below, Q,-local A(1)-modules that will be needed in
proving the classification theorem. In the rest of this section, M will always de-
note a reduced, bounded below, Q,-local A(1)-module. After possibly shifting
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M, we assume M, is nonzero for k = 0 and zero for all k < 0 (such a module
will be referred to as connective).

In this section, we will frequently need the following relations that hold in
A(1):

Sq'Sq' =0 €]
Sq*Sq* = 5q'Sq*Sq’ )
Sq'Sq?Sq? = Sq*Sq*Sq' =0 (3)
Sq'Sq?Sq'Sq® = Sq*Sq*Sq*Sqt. (4)

The relations (3) and (4) are generated by (1) and (2) (as are all relations in
A(1)). We will also repeatedly use the fact that ker(Q;) N M is zero for all
k < 2. To see this, note that H,(M;Q;) = 0 and that im(Q,) N M; = 0 in
degrees k < 2.

Lemma 2.8. Let M be a reduced, connective, Qy-local A(1)-module and let x be
any nonzero element of M. Then,

i.) Sq’°Sq'Sq*x # 0, and

ii.) Sq'Sq*>Sq'Sq®*x = Sq*Sq'Sq*Sq'x = 0.
Proof. We assume M; = 0 for all kK < 0 and M # 0. Let x € M, be nonzero.
Then Q;x # 0, since ker Q; = 0 in degree zero. If Sq'x # 0, then

Q,(S¢'x) = Sq?Sq'Sq'x + Sq'Sq*Sq'x = Sq*Sq*Sq'x = Sq¢*Sq*x
must also be nonzero. So, Sq?x # 0 when Sqg'x # 0. If Sq'x = 0, then Q;x =
Sq'Sq*x is nonzero, so we can conclude Sg?x # 0 in this case as well.
By virtue of degree, Sq*x & ker Q. So,
Q:1(5¢*x) = Sq?Sq'Sq?*x + Sq'Sq*Sq*x = Sq*Sq'Sq*x # 0

where the second equality follows from (3). This proves (i). If Sq'Sq*Sq'Sq*x #
0, then x supports a free submodule of M. Since free A(1)-modules are injec-
tive over A(1) [Mar83, Proposition 12.2.8], this implies x supports a free direct
summand of M. So, (ii) follows from the fact that M is reduced. O

Lemma 2.9. Let M be a reduced, connective, Qy-local A(1)-module and let x be
any element of M. Then Sq'x = 0.

Proof. Suppose Sq'x # 0. Then Sq'x ¢ ker(Q,), since |Sg'x| = 1. So,
0# Qi(Sq'x) = Sq*Sq'(Sq'x) + Sq'Sq*(Sq'x) = Sq'Sq*Sq'x  (5)
and thus Sq2Sq'x is nonzero. Using Lemma 2.8 and (3), we see
Q:1(5¢*Sq*x) = Sq'Sq*Sq*Sq'x + Sq*Sq'Sq*Sq'x = Sq*>Sq*Sq*Sq'x = 0.

Since H,(M;Q;) = 0, Sg*Sq'x must be in im(Q,). Let z € M, be such that
Q,z = Sqg?Sq'x. Since |z| = 0, Lemma 2.8 implies that Sq?z # 0. In the
remainder of this proof, we will show Q;(Sq?z) = 0. This is a contradiction, as
Sq®z is in degree two and therefore not in the image of Q.
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Assuming Q;z = Sq*Sq'x,
Sq%’Sq'z + Sq'Sq*z = Sq*Sq'x.

Applying Sq' to this equation, it follows that Sq'Sq?Sq'z = Sq'Sq?Sq'x. So,
using (5), Sq'Sq*>Sq'z # 0. Then Sq'z # 0 and Sq’z # 0, since Sq’Sq*z =
Sq'Sq*Sq'z. Next, note that

Q:(Sq'x + Sq'z) = Sq'Sq*Sq'x + Sq'Sq*Sq'z = 0.
Since ker(Q;) N Mj is zero, Sq*x = Sq'z. Then,
Sq*Sq'x = Qz = Sq*Sq'z + Sq'Sq*z = Sq*Sq'x + Sq'Sq’z.
Thus, Sq'Sq?z = 0. But then,
Q:(5¢%z) = S¢*°Sq*Sq?*z + Sq*Sq*Sq*z = 0,

where we again use (3). So, we have reached the desired contradiction. O

The final lemma we will need applies specifically to the seagull modules.
Lemma 2.10. If N is a flock of seagulls,

im (Sq?) nker (Sq') = im (Sq*Sq'Sq?)

inN.

This result follows from Figure 1.

2.4. Classification of finite modules. Having proven some basic properties
of reduced, Q,-local A(1)-modules, we proceed to the proof of the main theorem
in the case where M is finite. The goal of this section is to prove the following
result.

Proposition 2.11. If M is a reduced, finite, Qy-local A(1)-module, then M is iso-
morphic to a flock of seagulls.

Note that finite is equivalent to bounded and finite type, so this differs from
Theorem 2.7 in that we also require M to be bounded above.

Notation 2.12. For any graded module, M, we use M k to denote the smallest
submodule of M containing all homogeneous elements with degree no more
than k.

This is in contrast to M, which continues to represent the elements of M in
degree exactly k. We will prove Proposition 2.11 via induction on M*.

Lemma 2.13. IfM is a reduced, finite, Q,-local A(1)-module, then M° is isomor-
phic to a flock of 1-seagulls.

Proof. Let B be an [, basis for M. Then B is a minimal .A(1) generating set
for M°. We use the notation SqR = Sq"1Sq"2 --- for any sequence R = (11,75, ...).
For each b € B, the map f, : Yi{yp} — M given by SqRy, — Sq®b is an
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A(1)-map because Sq'b = 0 by Lemma 2.9. Appealing to Lemma 2.8, we see
this map is also an injection. We claim the direct sum of the f’s,

f@Primt-M

beB

is an isomorphism.

Since f surjects onto an .A(1) generating set of M° and is an .4(1)-module
map, f surjects onto M°. Restricting to degree zero, f is an isomorphism be-
tween the [, vector spaces F,{y,|b € B} and F,{b|b € B}. Let y be a homoge-
nous element of EBb < V1{yp}in any degree. Theny = S qRz where z is a linear
combination of the y;’s and R € {(0),(2),(1,2),(2,1,2)}. If y € ker(f), then
0 = f(y) = SqR f(z). No matter what R is, this implies Sq2Sq'Sq*f(z) = 0. By
Lemma 2.8, f(z) = 0. Since f is an isomorphism of [F, vector spaces in degree
zero, z = 0. Thus, y = SqRz = 0 and f is injective. (]

The rest of this section will prove that if M¥~1 is isomorphic to a flock of
seagulls, then M k is also isomorphic to a flock of seagulls. We will show in
Lemma 2.14 that MK /M*~1 is a flock of 1-seagulls. So, identifying M* amounts
to solving an extension problem between flocks of seagulls.

Letting
MRt = e,
iel
we will use the notation that %7, is generated by y; o, Vi a,+45 -+ » Vi, +4(n,—1)s
s0 y; j is in the ih seagull and has degree j. Note that for all i, the degree of the
top generator in the i-seagull, «; + 4(n; — 1), is no more than k — 1.

Lemma 2.14. IfM is a reduced, bounded below, Q,-local A(1)-module and M*~1
is isomorphic to a flock of seagulls, then M* /M*~1 is isomorphic to a sum of 1-
seagulls.

Proof. By assumption, M*~! is reduced and Q,-local. Since M is also reduced,
the quotient M /M*~! is reduced. The short exact sequence

0—- M1 M- M/MFT S0

induces a long exact sequence in Q;-homology, so M/M¥*~! is Q,-local. Then,
we can apply Lemma 2.13 to Z~%(M /M*~1). Thus (M/M*~1)k = Mk /M*~1 is
isomorphic to a sum of 1-seagulls, each generated by a class in degree k. O

In order to describe the extension,
0 — MK1 — Mk — Mk /MK-1 0
it will be useful to fix an [, basis for M.
Definition 2.15. Let 3 be an [F,-basis for (M*~") and let K be the kernel of

the Sq* action on M. Then (M*~") isasubspace of (M*~"+K), and B canbe
completed to a basis for (M*~! +K)k given by BU{by, ..., b,} for some b; € M*.
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Complete this basis for (M¥~! + K), C M to obtain a basis for M;, = (M k)k
given by BU{by,...,bs, bpy1,... s by}

Let [b;] be the class containing b; € M in the quotient M*/M*~1. Note
that {[b;], ..., [b,]} is a basis for (K/(K n M*~1)), and {[b,], ..., [by]} is a ba-
sis for (M* /M*—1),.. Since M*/M*~1 is a flock of 1-seagulls, each b; satisfies
Sq?Sq'Sq®b; # 0 and Sq'b; € M*1,

Remark 2.16. It follows that
M< /Mt = B R {3

1<i<d

Lemma 2.17. The submodule of M generated by M*~' and {b,, ..., by} is isomor-
phic to

Ml | @ = ifwi |

1<i<t

Proof. Let Z be the submodule of M generated by M*~! and {b,, ..., b,}, let

Y =Moo @ = i{wl,

1<i<¢

and let

v Mg | P SR wd |- M
1<i<t
be the A(1)-map determined by inclusion on the left summand and mapping
w; in the right summand to b;. On the right summand, we use the fact that
Sq'b; = 0forall 1 <i < ¢ to conclude that there is such an 4(1)-map.
So, we have the diagram of A(1)-modules,

0 — M — Y — @ ZNi{wt —0

|

0 — M — 7 — @ Vb — 0.

1<i<t

The rows are exact, the map from M k=1 toitselfis the identity, and the righthand
map takes w; to b;. The construction of ¥ guarantees this diagram commutes.
By the 5-lemma, ¥ is thus an isomorphism. O

Now we have to consider the rest of the new generators. We will start by
showing we can pick the new generators in a way that will make solving the
extension problem simpler.
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Lemma 2.18. The generators {b;y 4, ..., by} can be chosen so that
Sq'b; € im(Sq2Sq'Sq?)
forallt +1<i<d.

Proof. Since [Sq'b;] = 0in M*/M*~1, Sq'b; € (M*71),,,. All generators of
M¥*~1 are in degree no more than k — 1, so

Sq'b; = Sq'a; + Sq’c;
for some q;,c; € M¥~1. While Sq'a; may be zero, Sg3c; is nonzero since other-
wise a; + b; would be in K, C span{B U {by, ..., b,}}.
Note that
Sq'(Sq*c)) = Sq'(Sq'b; + Sq'a;) = 0.
Since M*~1 is a flock of seagulls, Lemma 2.10 says
ker(Sql) Nnim(Sq?) = im(Sq?Sq'Sq?)

in M*-1, R R
So, Sq?c; € im(Sqg?Sq'Sq?). Let b; = b; + a;. Then Sq'b; = Sqgc; €
im(Sq%Sq'Sq?) and {b; 1, ..., bi_1, b;, bit1, ..., by} satisfies:

« BU{by,...,b;_q, B\i, bit1,..., by} is a basis for My, since q; € span{3B},

« BU{b,,...,by}is a basis for (M*~! + K), since b; has not been changed
fori <¢,and

o« {[bgs1ls s [biz1), [bi], [Bis1]s -, [b4]} is a basis for (MK /MK-1), since
[b;] = [b;]- a

For any ¢ < A < d, let M(1) be the submodule of M generated by M*~! and
{b;, ..., b;}. In Lemma 2.17, we showed M(¢) is isomorphic to a flock of seagulls.
Suppose M(A — 1) is isomorphic to a sum of seagulls, @ Z%7Y, . We'll label

i€l
the generators of 2% Y, aSy; o, Vi q,+4» -+ » Vi, +4(n;—1)- Note that M(A—1) C Mk,
so a; + 4(n; — 1), the degree of the top generator in the i*" seagull, is no more
than k.

We will be interested not just in the fact that M(1) is a flock of seagulls, but in
how the flock of seagulls has changed from M(4—1). At each stage, we identify
each seagull in the flock M(1 — 1) as one of the following types, depicted in
Figure 2

+ Alengthened seagull has a generator in degree k and a generator in
degree k — 4. This type of seagull is the result of a new 1-seagull being
attached to a sum of seagulls in M*~! in a previous step. The lengthened
seagulls in M(1 — 1) will be indexed by L;_;.

« An available seagull has a generator in degree k — 4, but no generator
in degree k. So, an available seagull has a top class in degree k + 1 that
is not in the image of Sq' acting on M(2 — 1). The available seagulls in
M(A — 1) will be indexed by A;_;.
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« An unavailable seagull does not have a generator in degree k — 4.
This includes all the 1-seagulls with generators in degree k that were
included in M(¢). The unavailable seagulls in M (1) will be indexed by
U,;.

We make this precise in the following definition.
Definition 2.19. Let
Ly, :=liel_j|a+4n;—1)=k,n; > 1}
Ay =i €l q|lay+4(n;—1) =k — 4}
Upy =L \Lamr VA ).

FIGURE 2. The decomposition of M(4 — 1) into available,
lengthened, and unavailable seagulls.

Lengthened

Unavailable
Available

The general idea of the rest of this section is that each time we move from
M(A — 1) to M(4), we would like to attach a 1-seagull to the top of an available
seagull, creating a new lengthened seagull. However, the actual process is a
little more complicated than this, as we may have to change the basis for M(1 —
1) so that Sq! on the new generator hits the top of a single available seagull. We
will start by showing that the new generator, b;, can be chosen so that Sq'b; is
a sum of classes in available seagulls.

Lemma 2.20. The generator b, can be chosen so that
Sq'by = SG*Sq'SG? D Vpj-a
PEP
whereP C A;_;.
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Proof. We chose the b;’s so that Sq'b; € im(S¢?Sq*Sq?®)i,; foralli > ¢
(Lemma 2.18). This means we can express Sq'b; as a sum,
Sq'b; = S¢*Sq'Sq? Y Yijss
ier
where I’ C I;_;. Unavailable seagulls do not have a nonzero class in the image
of Sq*Sq'Sq? in degree k + 1,501’ C A;_; UL;_;.
LetI” =I' n A;_; (thatis, I"” indexes the available seagulls whose top class
is hitby Sq'b;). We claim I" is nonempty. If not, then all seagulls indexed by I’
are lengthened, so they each have a generator, y; ;4. This generator is linked to
the generator in degree k by the relation, Sq*Sq'Sq?y; x4 = Sq'y;x, and thus
Sq'b; = Y., S¢*Sq'Sq?Yij—s = D, Sq'Vix-
ier ier
In this case, by + Y, y; isin K, the kernel of the Sq' action on M. Then ), y;
ier ier
and b; + Y, y; are both in (M*~! + K),, the [, subspace of (M*);. generated
ier
by (M*~1), and b, ...,b,. However, their sum, by, is not in (M*~! + K), by
construction. So, I must be nonempty.
If we replace b, in the basis for (M*), with
bi=bi+ D Yik
ier\1”
then
Sq'b; = Sq*Sq'Sq® Y Vik-a
ier”
and the following properties are preserved:
» Buiby,....b 1, 7)\,1, byi1, ..., bg}isabasis for My since b,1+5,1 isin (M(A—
1))k which is spanned by B U {b,, ..., b;_;},
« BU{by, ..., bs}is abasis for (M*~! 4+ K), since b; is unchanged fori < ¢,
and
o« {[bosrly s [b3—11, (021, [D1sa], o, [bgl} is a basis for (M* /M*—1), since
[b/l] + [b/l] isin
M(A — 1)/M*1 which is spanned by B U {[b;], ..., [b;_1]}. O

Now that we’ve shown we can assume Sq'b; only hits the top classes of avail-
able seagulls in M(4 — 1), we can exhibit an isomorphism between M(4) and a
flock of seagulls.

Lemma 2.21. If, forsome A > € +1, M(1—1) is isomorphic to a flock of seagulls,
then M(A) is isomorphic to a flock of seagulls.

Proof. Recall from Remark 2.16 that
Mk /Mt = B R {3

1<i<d
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So,foralll1 < j <d,

M(j)/M*1 = @ T (b,

1<i<j
and therefore,
M@Q)/M@A - 1) = (MQA)/M*1) /(M@ = 1)/M*1) = K7 {[by ]}
We have from Lemma 2.20 that
Sq'by = S¢*Sq'SG? Y, Yp s
pEeP

for some P C A;_;. Let p; € P be such that «), is minimal in {a, : p € P}.
(That is, no seagull whose top class is hit by Sq'b, starts below the p;h seagull.)
This selects the longest seagull indexed by P (or perhaps one of multiple longest
seagulls).

Let

X=| =z, |® =Yy 1
i€l)_4
i#p;

Le., X is obtained from M(4 — 1) by attaching a 1-seagull to the top of the pflh
seagull. Since the left summand of X is a submodule of M(4 — 1), we will keep
the notation that £%7,, in this summand is generated by

Viai»  Yia+4r s Vig+4(n—1)-

The generators of 2% Y”pﬁl will be named

x“m , xo,m+4, ey Xk
Let ® : X — M(A) be the .A(1)-module map determined by:
D(y; ) =yij
Z yp,j J <k
@(x]) — { peP
bﬂ. ] = k

If the generator y, ; does not exist for some p € P, omit the term from the sum
for @(x;). On the left summand of X, it is clear that there is a well defined A(1)-
map determined by this mapping of the generators. For the right summand, we
need to make sure
o(Sqix)) = | SETSTSTx;0) ] > o,
0 J=ap.

In the case that j = k,

D(Sq'xy) = Sq'b; = SG*Sq'Sq* D ypk-a = P(SG2SG S X)_y).
pEP
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Ifj <k,

©(Sq'x;) =S¢ ) vpj = Sa*Sq'SG Y Vp j-s
pEP pEP

again, omitting any y, ;_4 that does not exist. If j > «, , then this is equal to
©(Sq*Sq'Sq*x;_4). If j = ap,, then, since a),, < a, forall p € P, Squp’“m =0
for all p € P such that Ypay, exists. Thus, ® (Sqlxam) =0.

Then we have the following commutative diagram of .A(1) modules:

0—> @ =%V, > X > TV {xg —> 0

R

0 —> M(A—-1) — M) — V{3 — 0
The rows are exact so, by the 5-lemma, ® is an isomorphism. O

Proposition 2.11 follows by induction. In the following section, we will need
not just the fact that M* is a flock of seagulls, but also the following more spe-
cific facts about the structure of M.

Notation 2.22. Since M* = M(d),

Mk = | Pz, (o Pz, o Pz, |-

i€Ly i€EAy ieUy

Recall from Definition 2.19 that the lengthened seagulls (indexed by L;) have
generators in degrees k — 4 and k, the available seagulls (indexed by A;) have
a generator in degree k — 4 but no generator in degree k, and the unavailable
seagulls (indexed by U,) do not have a generator in degree k — 4. We will use
the notation L :=Ly, A := Ag,and U := Uy.

Corollary 2.23. There are d — € lengthened seagulls in M.

Proof. Since
M) =M & @ T,

1<i<t
the only seagulls in M(¢) with the top class in degree k + 5 are of length one.
So, |Lf| =0.
In the proof of Lemma 2.21, we showed

M@ =| P =, S NY,
l‘EI;L_l
i#py
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for some special p; € A;_;. So, for all 4,
ILal = [Laq| +1
Azl = 14211 =1
Uy =Us-,
Then |[Ly| =d - ¢. ([l

2.5. Classification of bounded below modules. In classifying Q,-local mod-
ules that are bounded below and of finite type, but possibly infinite, our strategy
is to decompose the module into a sum of finite modules and a summand with
no finite summands. The sum of finite modules is then already shown to be
a flock of seagulls, and we only need to consider the term with no finite sum-
mands. We begin by showing this type of decomposition exists. In the following
lemmas, B is any finite subalgebra of the Steenrod algebra.

Lemma 2.24. For any bounded below B-module, K, of finite type, and any inte-
ger n, there is a decomposition K = N[n] @ K(n), such that N[n] C K" and K(n)
has no direct summands that are submodules of K".

Proof. If no nonzero submodule of K" splits off of K, let N[n] = 0 and K(n) =
K.

Otherwise, let N be any nonzero submodule (possibly zero) of (K")V) :=
K™ that splits off of K. Given a decomposition of K,

Ke2NOpNDg...e N-D K/,

where each N® is a submodule of K", let N[n] = NO@NPD @ -.- @ N*—D and
K(n) = K’ if K’ n K™ has no nonzero submodule that splits off of K. Otherwise,
let N be any nonzero submodule of K’ n K" that splits off of K. Since K" is
finite, iteration of this process will conclude with the selection of an N[n] and
K(n). O

Lemma 2.25. Any bounded below B-module, M, of finite type, splits as a direct
sum,

M(c0) @ N(o0),
where N(o0) is a (possibly infinite) direct sum of finite modules and M (o) has no
finite summands.

Proof. After possibly shifting M, we may assume M; = 0 for all k < 0. Ap-
plying Lemma 2.24 to K = M with n = 0, we obtain N[0] and M(0) such that
M = N[0] ® M(0), N[0] € M°, and M(0) has no direct summands contained
in M°. Given
M=N[0]® - ®dN[rn-1]dMn-1)
where N[k] € MF for all k and M(n — 1) has no direct summands contained
in M"~!, we apply Lemma 2.24 to K = M(n — 1) and obtain modules N[n] and
M(n) such that
M(n—1) = N[n] & M(n),
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N[n] € M(n —1)" € M", and M(n) has no direct summands contained in
M(n — 1)" (and thus no direct summands contained in M").

We take N(o0) to be | @ N[n]|. Each N[n] is finite, as it is a submodule
n>0

of the finite module M", so this satisfies the description of N(c0) as a direct

sum of finite modules. The intersection of the M(n)’s has no finite summand,

since any finite summand would split off of some M" and thus would not be

contained in M(n). So, we can take M (o) to be ( N M(n)). O

n>0

So, in order to prove Theorem 2.7, it remains to classify reduced, bounded
below Q,-local A(1)-modules of finite type that have no finite summands. We
will use the following lemma to help in identifying finite summands.

Lemma 2.26. Let M be a bounded below A(1)-module. IfN is a direct summand
of M¥ and all elements of N have degree no more than k + 1, then N splits off as
a direct summand of M.

Proof. The inclusion of N into M is split by the projection 7 : M¥ — N. Let
p : M — N be the map of [F,-vector spaces given by

m(x) x e Mk

X) =
p(x) 0 otherwise.

For any x € M¥ and any R, Sq®x € M¥, so
p (Sqfx) = 7 (Sq®x) = SqRn(x) = SqR p(x).
If x ¢ M¥, then |x| > k + 1. So, for any R # (0), |Sq®x| > k + 2. So, if

SqRx € M¥ then p (SqRx) = 7 (SqRx) is zero, as the top class of N is in degree
k+1. If Sq®x ¢ M then p (SqRx) is defined to be zero. Hence, for any x ¢ M*,

p (Sq®x) = 0 = Sq®(0) = Sq®p(x).

So, p is an A(1)-map.
Leti : N — M be the inclusion. The image of i is contained in M¥, so for all
X €N,

poi(x) = n(i(x)) = x.
This exhibits a splitting of N off of M as a direct summand. O
Definition 2.27. For any reduced, bounded below, Q,-local A(1)-module of
finite type, M, and any k > 0, let

Vk = ":Z{bf+1, ceey bd}’

where the b; are chosen from M as described in Definition 2.15 and Lemma 2.18.
Also, let

Wi =im(Sq*Sq'Sq*)n
in M.
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For any nonzero class Sq>Sq'Sq*x € Wy, the degree of x is k—4,s0 x € M1
and Sq*Sq'Sq*x € M*~1. We also note that, by construction of the b;’s,

dim(Vy) = dim ((M*/M*), ) — dim ((K/M*),)
where K is the kernel of the Sq! action.

Lemma 2.28. If M is a reduced, bounded below, Qy-local A(1)-module of finite
type and there exists some k such that dim(Wy,) # dim(Vy), then M has a direct
summand Z*Y,, for some finite n and some a.

Proof. Asin Notation 2.22, we take the decomposition of M k

Mk = | Pz, |@| P T, o @z,

ieU i€eA ieL

recalling that A U L indexes all seagulls in M* with a generator in degree k — 4.
In Corollary 2.23, we showed |L| = d — ¢. Note that d — ¢ is also equal to the
dimension of V.

Since M¥~1 is a flock of seagulls, the map

Sq°Sq'Sq” : Fafyip—a € (M*), _} = im(Sq°Sq'Sq™)isr = Wi,
is an isomorphism of [F,-vector spaces. Thus,
dim (W) = dim (F, {yis € (M), _J) = LI+ 141 = (@ = £) + 14]
= dim (V) + |A].
So, if dim (W}) # dim (V}), then |A| > 0. Fixing some r € A gives a direct

summand of M, %Y, , whose top class is in degree k + 1. By Lemma 2.26,
this finite seagull splits off as a direct summand of M. ]

Lemma 2.29. If M is a reduced, bounded below, Q,-local A(1)-module of finite
type with no finite summands, then there exists a family of isomorphisms,
ok @AY - M
iel; ’
satisfying the following conditions:

i.) Inclusion: Every seagull in M J=1 corresponds to a seagull in M/ and any
new seagull in M/ is a 1-seagull starting in degree j. Le. I;_, C I}, and
foranyielj\lj_l,ﬁi=jandm{=1, .

ii.) Maximum length: A seagullin M corresponding to a i"-seagull in M/~
has an additional 1-seagull attached to the top whenever allowed by the
degree of the seagull’s top class. Le., foralli € I;_,,

j-1
J m;
m{ B

1 B=j d 4
ml = +1 fi=j (mod4)

1 .
otherwise,
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i—k
= |
iii.) Decomposition: The isomorphisms respect the direct sums. Le., for each
j = 1, the following diagram commutes.

and consequently m{ =

sy o, L By
@ > l’Y‘m171 H @Z L’Y\m-j

iGIj_l lEI]

Jo I

J

M7t — S M
where fJ and  are the obvious inclusions. In particular, f/ maps Y ;.
mi
into Y ;.
Wli

FIGURE 3. An example of a family of seagulls indexed by sets
satisfying inclusion and maximum length.

@ Zﬁiijﬂ @ Zﬁiij

. i .
i€lj_, i€l;

Proof. We assume that M, = 0 for all k < 0, after a possible shift. For all k,
M is finite and thus isomorphic to a flock of seagulls (Proposition 2.11). In the
case where k = 0, we fix any isomorphism

o : (oY, - MO
i€l
Now suppose that for each j < k — 1, there is a flock of seagulls, Zﬁiij,
i€l; i
mapping into M7 via a fixed isomorphism ®/ such that {®/};,_, satisfies the
three desired conditions. We will then produce an isomorphism @ so that the
family {®/}; . satisfies those conditions as well.
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We have the decomposition of M k into unavailable, available, and length-
ened seagulls,

Mk = | Pz, |@| P, (o @z, |.

ieu i€eA ieL

where L U A indexes all seagulls in M* with a generator in degree k — 4. In
Lemma 2.28, we showed that in the case where M has no finite summands,
dim (W) = dim (V) and so |A| = 0. So, in this case,

Mk = Pz, (@ PV |-

ieUu ieL

FIGURE 4. An example of M¥ when M has no finite summands.

D =T,
ieu
C(l'=k
Unavailable with a
generator in degree k

@ ZaiTni ‘
i€eL

D =Ty,
Lengthened icU i

a;#k

Unavailable, no generator in degree k

Suppose i € U with o; = k (mod 4). By Lemma 2.26, the top generator of
%Y, mustbe in degree at least k — 3. Otherwise, this finite seagull would split
off as a summand of M, which we have assumed has no finite summands. The
degree of the top generator is also no more than k and equivalent to k modulo
4, so the top generator is in degree k. Since this seagull is not lengthened, the
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generator in degree k is the only generator. Thus, o; = k and n; = 1. Thus,

M= | Pzav @ P 4T, (@ @z, |-

ieu ieu i€L
ai=k a;#k (4)

Foranyi € U witha; # k (mod 4), 2%, cannot have a generator in degree k.

(All generators of a seagull have equivalent degrees modulo 4.) Since %Y, C

MK, this means all generators of this seagull have degree no more than k — 1.
So,

ME /M = sk (@ | R .

ieU ieL
OCi:k

@ ZﬁiYmgc

i€},

‘We wish to construct

which will be isomorphic to M¥. To do so, we will lengthen some seagulls in
@ ¥A "Ym{c—l
iel,_, ’

and introduce some new 1-seagulls. Let I, = I;_; U{i € Ula; = k}, setting
B; = kforalli € U such that a; = k, and leaving 3; unchanged for alli € I}_;.
Then, for alli € I, let

m<! i€l_q, Bi £k (mod 4)
mlf‘ = mﬁ“l +1 i€y, fi=k (mod 4)
1 i€f{qgeUla, =k}

Then the inclusion and maximum length properties are satisfied by {I;};<.
Consider the decomposition

@Zﬁiymlgc% @ Zﬁiymgc—l &) @ Z'giYmgcfl_H @ @ Ele .

i€l}, i€l i€l iEIk\Ik_l

Btk (4) Bi=k (4)
(6)

We will construct a map,

o DAY, — MK,

by defining ®* on each summand of (6).
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The leftmost summand is contained in @ =AY, 1, so we define @ on
i€l !
this summand to be the composition,

(I)k—l lk
P Y — M- M-
iel,_, '

Bi#k (4)
By the definition of I}, we have

P v =Pz c Mk,

i€l \I_1 ieUu
al‘:k

so we define ®* on the rightmost summand of (6) to be the inclusion into M*.
Defining the map on the center summand is more complicated. Recall from
Lemma 2.18 that

Sq'b; € Sq*Sq'Sq? ((Mk_l)k_4) =Wy
forall¢ +1<i<d.So, Uy :=F,{Sq'b;|¢ +1 <i < d} C W,. However,
Sqt Vi = Uy
is a vector space isomorphism, since no combination of the b;’s are in the kernel

of Sq'. By Lemma 2.28, dim (Uy) = dim (V) = dim (W}). So, Uy = W.
Let ZAY, « = ZAY, 1., in the center summand of (6) have generators

1

Zi B2 Zifras o Zike

For any z; ; with j < k, z;  isin M*~!, so ®*71(z, ;) is defined. When j = k —4,
®*1(5¢%Sq'Sq?z;—4) € Sq*Sq'S¢> ((M"—l)k_4) =W, =U,.

So, %71 (Sq2Sq'Sq*zix—4) = Y, Sq'clby, where ¢! € [, foralli and q.
¢+1<qg<d

Define ®F on this summand to be the A(1)-map determined by
(z;)) = lko;k_liziz;j) 2 Z
, ¢+1<q<d it J=E
To see such a map is well defined, we need to check
0 (S9°Sq'Sq*zik—4) = ©* (S9'Zi—s)
for all i, but ® was constructed so that this relation holds. Furthermore, the

diagram

k
@ zﬁivmk_l fH @Zﬁi’vm(‘

i€l i€l

Lo [

Mk—l * } Mk
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commutes by the construction of ®*, so the family {®/ }j ., satisfies the decom-
posability property. -
To show ®F is a isomorphism, we will apply the five lemma to the diagram,

0 —> @ PV, RRARN:> Y — @Izt B, — 0

i€l i€I}, i€l ieu
pi=k (4) ai=k
k— k
b L Ja
k
— q

0 > MK — M* > P edy, —— o0

ieL ieUu

a;=k

where A takes [z, ]to ] cf[bq] and is the identity on the right summand.
t+1<q<d

We have already seen that the left square commutes by the definition of ®*. To
see that the right square commutes, we consider the decomposition given in
(6). On the summand contained in @ ZAY, -1,

i€l
qo®* = 0 = Aog.

On the summand isomorphic to @ Z¥Y;, both compositions are the identity.

ieU
Oli=k
On the remaining summand,
k 2 c?bq j=k
qo®*(z; ;) = 1| e+1<q<d

0 otherwise

_ Az =tk
A(0) otherwise

= AoqA(ZiJ).

Finally, we show A is an isomorphism, completing the proof. Certainly, the
restriction of A to the summand @ ¥¥Y, is an isomorphism. By the def-
ieU
o=k (4)
inition of A, the image of this summand under A is contained in @ Zle.
ieL
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To show the restriction of A to the summand @ Zle{[sz]} is an isomor-
iEIk_l
Bi=k (4)
phism, we show

At | @B Zridlz| - [Pk,

i€l ieL

Bi=k (4)
k

is an isomorphism of [F,-vector spaces.

By construction, {{bs1], ..., [b4 ]} is a basis for the [F,-vector space, @ kY,
ieL

k

So, this vector space has dimension d — ¢. The F,-vector space,

P =ridlzil

i€l

Bi=k (4)
k
is isomorphic (via the map given by the action of Sq*) to
Sq*Sq'Sq? || P 2FY e > Sq*Sq'Sq? || @D AV e
iel, l ‘a i€l ' 4

~ Sq*Sq'Sq? ((Mk_l)k_4)
=W

The dimension of W isalsod — €.
Finally, we show A is injective. Take some element of the kernel of A,
Y. @;[z;x] where each g; is in F,. Then,

i€l
Bi=k (4)
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Since Sq' : (D, =T1), = (B, =M1), ,, is an isomorphism,

0= > a| D, Sqiclp,

i€l ¢+1<q<d
Bi=k (4)

= > a®1(5¢°Sq'Sq’z;_4)
i€l
Bi=k (4)

= 011 S¢?Sq'Sq® D) aizip_s|.
i€l

Bi=k (4)

The maps ®~! and

Sq’Sq'sq® - | P R &P Y

i€l i€l
Bi=k (4) Bi=k (4)
k—4 k—4
are isomorphisms, so we can conclude
0= Z AiZj k4. O

i€l

Bi=k (4)

We are now ready to prove the following lemma, which completes the proof
of Theorem 2.7.

Lemma 2.30. If M is a reduced, bounded below, Qqy-local A(1)-module of finite
type with no finite summands, M is isomorphic to a sum of suspensions of Y .

Proof. By the previous lemma, we can assume we have the following diagram
forall j > 1,

j
— P Zﬁi'Y'mj_l L) @zﬁivm__, — .

. i .
i€l;_ i€l;

\Lqﬂ'—l \L@f
e ——— % ML S MU

where @/ is an isomorphism for all j. Then,

~
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along the maps in the diagram. For ease of notation, we define ZﬁiYm; to be

zero for all i & I;. Since f J maps Zﬁiij—l into ZﬁiYm;,

lim| P2, | = lim| P =AY, | = P |im 257, .

j i€l J \i€eul; ievl;\ j
Since our family of isomorphisms has the maximum length property,

PP = TR g )

pGi,j) = {—j _45"‘

where

forall j > ;. So,

lim 2R, = im0y = im 24,
J J n

where the maps in the last colimit are the inclusions %Y, — 2fiY,, . Then

we have

M= P [lim=P, | = P vy, O
ieVlj\ n i€evl;

So, under appropriate finiteness conditions, every Qg-local A(1)-module is
stably equivalent to a flock of seagulls. A quick consequence of this is that
the Qy-homology of a finite, Q,-local .A(1)-module must be of even dimension
with generators forming pairs with difference in degree 4n + 1 for some positive
integer n. Since the Q,-homology of Y, is one dimensional, no such condition
applies in the case where M is infinite.

If M is finite but not Q,-local, we might like to describe the possibilities for

H.(M; Qo) = H.(LyM; Q)

in the same way. This is not possible, as L,M is always infinite (though some-
times stably equivalent to a finite module). However, in the following section,
we are able to use the classification theorem in conjunction with Q,-localization
to give some results that apply to bounded below A(1)-modules of finite type
with any Q;-homology.

3. Applications of the classification theorem

In Section 3.1 we discuss a spectral sequence of Davis—Mahowald that com-
putes Ext,;)(M,F,) for an A(1)-module, M [DMS82]. Utilizing this spectral
sequence to compute h TExt 41)(M, [F,) generalizes a previously known for-
mula for computing such localizations when the A(1)-modules involved have
a compatible A-module structure [Dav75]. In Section 3.2 we discuss the con-
sequences of this spectral sequence for determining whether an .A(1)-module
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can be lifted to an A-module. In both of these sections, the classification theo-
rem significantly simplifies some computations, though this often depends on
being able to give an explicit decomposition of a bounded below Q,-local A(1)-
module of finite type into a direct sum of seagull modules.

3.1. Computing halExt 4@)- When computing Adams spectral sequences, it
is often overly ambitious to try to compute the entire E,-page at once. One ap-
proach to producing partial descriptions is to isolate periodic families within
the E,-page, or within homotopy groups, as in chromatic localization (see for
example [HS98] and [HPS99]). In this section, we focus on one type of period-
icity in EXt;lEl)(M ,F,) for M, a bounded below .A(1)-module of finite type.

Recall that EXt;’zEn([FZ’ [F,) is the E,-page for the Adams spectral sequence
converging to the 2-completed homotopy groups of ko and h, is the nonzero
class in EXtchil)([Fz’ [F,). For any A(1)-module, M, EXt;’lEl)(M ,[F,) is a module
over EXt;iEU([FZ’ [F,), so there is an hj-action on EXt;,lEl)(M ).

Our goal here is to describe a technique for computing h; lExt;zzl)(—, [F,) for
arbitrary A(1)-modules via the Davis-Mahowald spectral sequence. While we
do not give a full description of all differentials in the spectral sequence, there
are still many cases where they can be computed.

In [DM82], Davis and Mahowald define a graded algebra R;, that is used to

construct the following spectral sequence.

Proposition 3.1 (Davis-Mahowald, [DM82]). For any A(n)-module M, there is
a spectral sequence converging to Ext 4., (M, [F,) with

B = Extyg,_1) (R9)* @ M, ).

Here, we describe the construction of the Davis-Mahowald spectral sequence
in the case where n = 1 and construct N, := (R]), directly. The use of this
spectral sequence for the computation of i lExt;iEl)(—, [F,) was suggested to
the author by John Rognes, and the following development of the spectral se-
quence relies heavily on work of Rognes and Bruner [BR21].

Let

N = F,[x;, x5]

where the degree of x; is (s, t) = (1,i) and let N, be the homogeneous polyno-
mials in N of bidegree (o, *). (Note that this does not align with the notation in
[DM82], as we choose instead to have the indices coincide with the degree of
each generator.)

Give N the structure of an .A(1)-module as follows:
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i—-1,J+1 . .
(i ) _ VX5 X3 i>0, jeven
Sq (x’2x3> = {0

otherwise,
2\ x2d™ i>1, =01 (mod 4)
Sq (x2x3> = ]
0 otherwise.

Note that N is then a submodule of N. A portion of the module N is shown in
Figure 5.

5
X3
. !
; ?
33
3
5
X, X2 %2
2 243 2 4
3 X5%3 x2
G X3X3 x3
X3 . 2
] )
1 X2
.
N, N, N, N, N, N

FIGURE 5. The module, N, for o < 5. The grading by o is de-
picted horizontally, and the grading by ¢ is depicted vertically.

There exists a sequence,

Oy 01 0, 03
O(—l}:z (_Yl (_Yl ®N1 (_Y1®N2 (_Y1®N3 «—

whose boundary morphisms will be described later. This sequence is exact
[DM82]. For any .A(1)-module, M we therefore have a short exact sequence

0—im@B,1 ) ®M > Y, ®N, ®M — im(G,) ®M — 0
for each o > 0, and a resulting exact couple,

Esalt

€ M @p0) ® M, F,) —5 Ext), 7 (im(8,) ® M, F)

<\\‘>\\ \Lj (7)

SCT[

Xt (N ® Ny ® M, Fy)
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Applying a change of rings isomorphism, we see

Ext}, (11 ® Ny ® M, F,) = Ext}, [J'(A(D) ® 40) F» ® Ny ® M, F5)

= Ext}, o' (N, ® M, F),

where A(1) ® 4(0) F» is an A(1)-module via the left action on A(1). The associ-
ated graded to the exact couple (7), can therefore be written as

O’,St S —0,t sS—o,t
E? XU (N ® M, Fy) = Exty, H(M, Fy).

The differentials have the form d, : EZ* — EZ™**"'_ When depicting Ext*'

with the Adams grading, we will use the fact that the degree of d, is (0, 5, t—5) =
(r,1,-1).

In order to compute h; TExt 41)(M, F5), we consider the Davis-Mahowald
spectral sequence with h, inverted.

Lemma 3.2. Suppose M is any A(1)-module. The hy-localization of the Davis—
Mahowald spectral Sequence for M has the form,

Ey"" =P QH.(M,;Qp) = hy'Ext’

ﬂ(l)(M []:2)

where P is isomorphic, as a trigraded [F,-vector space, to [Fz[ha:l, xg].

Here, M, is the dual of M as an [,-vector space with a right A(1)-module
structure given by precomposition. The Q,-homology of M, is defined with
respect to the right action of Q,. We take the grading on M, to be

(M,) = Hom"* (M, F,) = Homg (M, =FF,).

Note 3.3. As a module over E[Q,] = .A(0), any A(1)—module M is isomorphic
to a direct sum of suspensions of [, and suspensions of .A(0). Using this de-
composition, it is quick to show that H,(M; Q) = H.(M,; Q,). However, using
H.(M,;Q,) allows for a clearer statement of the differentials.

The content of the proof of Lemma 3.2 is identifying the E;-page, which we
accomplish in Lemmas 3.4 and 3.5.

Lemma 3.4. For any A(1)-module, M,

hy lEXtA(O)(Ma |F2) = |F2[h'g)_'_l] ®H-(M>s;QO)

Proof. Asan .A(0)-module

P .} |0 | P A0,

beB ceC

for some B,C C M.

We can compute Ext

A(o)(M , F,) using this decomposition of M:

A(O) M, F,) = @EX‘E;;EO)([FZ{b}, F)|® @ZM[FZ .

beB ceC
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We consider the injective resolution [F, — J, where J; = Z75~!F, and the maps
¢ . J,_; — J, are the unique nonzero maps. Any class in Extfq_(g)’[([Fz{b}, F,) is
represented by a map

g ZTF,{b} > T,
such that ¢;_,,,0g = 0. The image of g is thus contained in the top degree of
Js_o- Such a map factors as a composition,

hsfcrfo

S y{b} > T, ——5 T,

The map hj~°¢, takes the nonzero class in [F, to the top class in J;_,. (Note
that this is, in fact, the map that results from acting on ¢, by hj™°.) If g is
nonzero, then the degree of the nonzero class in Z7'[F,{b}, |b| — t, must be the
same as the degree of the top classinJy_,, —s + 0. So, t —s+ o = |b|. The map
g is the unique nonzero one. In

D Hom;, (F,{b}, F,) € Homg, (M, F,),
beB

the map g'is b,.. So,
P Ext;, (F2{b} Fy) = Falho] ® €D Falholib.} = H.(M.; Qo),

beB beB

and thus
EXt;;EO) (M, ) = (F,[ho] ® H.(M,;Qp)) & @ ZlCl[Fz )
ceC

When h, is inverted, this gives us

hy "Exty (M, F,) = Fy[h5'] © H.(M.; Qo)

with
hy "Ext, o (M, Fy) = Hy_s_o)(M){h )
and we note that inverting h, is an isomorphism in all degrees s > 0. (]

Theorem 3.5. The E;-page of the hy-localized Davis—-Mahowald spectral sequence
for an A(1)-module, M, is isomorphic, as a trigraded [F,-vector space, to

FalhE', x2] @ H.(M.,; Q).

Note 3.6. We emphasize that this is only an isomorphism of vector spaces. In
the case where M is an A(1)-module coalgebra, giving EXt;iEo)(N . ® M, [F,) the
structure of an algebra, the Davis—-Mahowald spectral sequence is a spectral
sequence of algebras and the isomorphism in Theorem 3.5 is an isomorphism

of algebras.
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Proof. The Q,-homology of N, is

F,{xS} oeven,k =30
H(Ny; Qo) =1 23 .
0 o otherwise.

This identifies the E;-page,

EPM hglExtjl‘(gj (N, ® M,F,)
= H; (5-0) ((Ny; @ M),;; Qo) {h(;_rl}
= H3O’(NO'; QO) ® Ht—S—ZO’(M*; QO){thl}

NHiZg 20 (M), Qo)hy ", x5} ois even

0 oisodd
= (Falhd! <31 ® HL(M.: Qo)) . O

a,8,

Notice Ef’s’t is zero when o is odd. The degree of d, is (o, s,t —s) = (r, 1, 1),
so nonzero differentials will only occur when both ¢ and r are even. In com-
puting the first potentially nontrivial differential, d,, we will want to utilize an
explicit description of the exact sequence,

60 51 az a3
There is a decomposition,

YI®N,=A, DB,

where

AL ®xT IxY10 < j <2l0/4] - 1}

A, =1 DAL Q x,xI7'} o=3 (mod 4)
A1 Q® xg_zjx?lo <j<2lo/4] —1} otherwise,
T{l ® x3} =0 (mod 4)

B - A1 ® x,x771} oc=1 (mod 4)

AR X2XTTR @ Y{1®xI} o=2 (mod 4)

kA(l){l ® xgxg_g‘ oc=3 (mod 4).

Foralll ® x;xg_i in Ag,

i—-3,0—-i+2 ; —
5.(1® xixo1) = 1Q® x5 °x; i=o (mod4)
‘ 273 0 otherwise.
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Foralll ® x’2 g "in By,

Sq'Sq*Sq'S*(1 @ x3xJ™*) o =0 (mod 4)
SPA®@xI™) i>0,0=1,2 (mod4)
Sq*Sq*(1 @ x,x72) i=0,0=2 (mod 4)
SPA@x3xI)+1@xI™1 o=3 (mod 4)

0,1® x;xg_i) =

Note that d,, restricts to maps A, — A,_; and B, — B,_;. When computing
d,, we will only have to consider d, on B, so we give a diagram of the exact
sequence

Ak Oak+2 Oake+3 Oske+4
By ak+1 Byiy2 < Bakys < Burys
in Figure 6.
%@J 5(] (1®\ X ) 1®x4k+3
+1@x fk+2
1® x2x4k
1Q x,x3k
: 4k
1® x3

im(0,)¢ By 21m(0yy1) ¢ Bagar 2 1m(0uyyn) ¢$————Baysr 2 1m0y 13) < Bagss

FIGURE 6. The resolution B,. The maps d, are drawn only for
the generators. Since each d; is an .A(1)-map, this determines
the value of d, on any class.

We will also need an injective resolution of F, over .A(1). We choose the
following:

A(l){es,—s—4j—6 |0<j<s/2} s=0 (mod 4)
A)es—s—4j-6 10<j < (s—1)/2} ® A(1)es_s_33 s=1 (mod 4)
AN es—5—4j-6 10 j < (s—2)/2} D A(1){e5 434 s=2 (mod 4)
A(l){es,—s—4j—6 [0<j<(s—1)/2} s=3 (mod 4)
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where |eg | = k. The maps f; : I,_; — I are the A(1)-maps determined by,

(Sqles’k_l +Sq%es s k=-3s—3,s=1 (mod4)
Sqlesk_1 +Sq*Sqtes i3 k=-3s—1,s=2 (mod 4)

fsCes—1) = 1Sq2es ks k=-3s—2,s=2 (mod4)
Sq*Sqegy_s k=-3s—4,s=3 (mod4)
Sqtesr—1 +Sq*Sq'Sqes)_s otherwise.

More efficiently, we could say
fsles—1k) = Sqles1 + Sq%es s + SG°Sq e k3 + SqSq' Sq e ks,

omitting any terms where the required generators do not exist in .

FIGURE 7. The beginning of the A(1)-resolution F, — I.. An
arrow that hits an arc between circled classes indicates that f
on the class where the arrow originates is the sum of the circled
classes. Asin Figure 6, the values of the maps are only indicated
for generators.

€4,-18

Let ry = Sq*Sq'Sqe; _s_¢ and t; = Sq'Sq*Sq'Sq®e; _;_¢. Then
Sq'ry = tyand f(t,_;) = ry for s > 1. (When s = 0, we have f(1) = t,.) Note
that hy f, is the unique map [F, — I, that takes 1 to .

Consider the following distinguished classes on the E;-page.

Definition 3.7. Let ¢, : Y, ® N, ® M — XZ!™IF, be the unique .A(1)-map that
takes 1 ® a ® b to (x).(a)m,(b).
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The class [¢F, - t;_.] in Extil_(%lml (Y1 ® M, F,) is the image of

hox3[m,] € Fo[h3', x3] @ H.(M,; Qo)
under the shearing and change of rings isomorphisms. Let B be any set of
elements in M such that {{m]|m € B} is an [F,-basis for H,(M;Q,). Then

{leS, - ts]lm € B,o > 0} is an [F,-basis for hHExtA(O)(N. ® M, ).

In computing d,, we will apply the following lemma to ¢9, and related maps.

Lemma 3.8. Let M, N be A(1)-modules.
Forany A(1)-map, f : NQM — [,

f(5¢*$q'Sg’n @ m) = f (n ® Sq*Sq'Sq*m)
foralln € Nandallm € M.
Proof. Foralln € Nand m € M,
Sq*Sq'Sq? (n ® m) = Sq*Sq'Sq*n ® m + Sq* (Sq*n ® Sq*m)

+5¢?(S¢’n ® Sqg'm + Sq'n ® S¢?>m) + n ® Sq*Sq'Sg*m.
Since Sq' and Sq? act trivially on F, and f is an .4(1)-map,
f(Sq'x) = f(Sg’x) =0
forall x € N ® M. Thus,
0=f(S¢*Sq'Sg>n @ m) + f (n ® Sq*Sq'Sq*m). O
We can now compute the second differential.

Theorem 3.9. The second differential is given by

dy (h$7°xZ[b,]) = h5°'xJ** [Sq*Sq'Sq?b, |
for any nonzero hy~°xJ[b,] € [Fz[h(fl,xg] ® H.(M,; Qo).

Note 3.10. In the case where M is a coalgebra, the proof of this formula is
simplified by the use of the Leibniz rule.

Proof. Consider some nonzero hy xJ[b,] € H.(M,; Q) ® [Fz[h ] Then
o is even and Sq'b, = 0 = Sq'b. Ifs > o, the class hy “x][b,] is represented

by
§Og lyg t Tl ®Na M _’Is—a-

We unravel the exact couple:
Ext ;(‘17) b (lm(ad+2) ®M, IFZ) H EXtil(T) (lm(ad+1) ® M, IFZ)

! :
B, 5 (11 @ Noyo ® M, Fy) <~ = Bxt, 5" (11 @ N, @ M, Fy)

The map i in the exact couple is _]ust precomposition by the inclusion of
im(8,11) ® M into ¥} ® N, ® M. We will refer to the composition of ¢ - t;_,
with this inclusion as ¢} - £,_, as well.
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Then, for any map @ : im(654,) ® M — I,_, such that 5[®] = [¢] - ;]
dslp - ts—o] = jl®] where j is precomposition with 0, ®idy;. We will not give
a full description of ®. Instead, we will use the fact that {[¢%"2 - t,_.]||m € B}is

a basis for ha—qutil_(%'(Yl ®N,,, ® M, F,). Since 9% is the unique A(1)-map

with 97 2(1 @ a @ n) = (xI*?),(a)m.(n), it is sufficient to determine the value
of j[®] on terms of the form 1 ® x§+2 ® m form € B.

Note that j[®](1 ® x{** @ m) = ®(3,,,(1 ® xI**) ® m). The expression
O0o(1® xi“) depends on the equivalence class of ¢ modulo four:
Sq* (S¢*Sq'(1 ® xI*)) =0 (mod 4)

Bor2(1® x9) =
o+2(1 ® X3) Sq' (S¢°Sq'Sq*1 @ xJ*1)) o=2 (mod 4)

In either case, 3,4,(1 ® xJ) = Sq' () where 3,,,(y) = S¢°Sq'Sq*(1 ® xJ).
This will be enough to compute j[®](1 ® x> ® m).

The connecting homomorphism, &, is constructed by applying the Snake
Lemma to the diagram below:

Hom (im(aa+l) ® M’Is—o’—l) } Hom (Yl ® NO'+1 M, Is—cr—l) } Hom (im(ao+2) ® M’Is—cr—l)

" I "

Hom (im(ac+1) M, Is—cr) _> Hom (Yl ® Na+1 ® M’Is—cr) _> Hom (im(ac+2) M, Is—cr)

where Hom(A, B) = Hom:q(l)(A,B).

Fix any ® € Hom;l(l)(im(aaﬂ) ® M, I;_,_;) whose image under the con-
necting homomorphism is ¢} - t;_; € Hom;l(l)(im(agﬂ) QM,I,_,). Let® €
Hoqu(l)(im(Tl ® Ny ® M, I,_,_;) be alift of . Then

(9542(1 ® x]) @ M) = B(6,42(1 @ X5*2) ® m)
= &(Sq'(y ® m)) = Sq'B(y ® m),

where 95,1(y) = S¢°Sq'S¢*(1 ® x3).
The bottom left horizontal map

Hom;l(l) (im(8,41) ® M, I,) — Hom;l(l) (Y1 ® Ny @ M, L)
is given by precomposition with d,,; ® id;. The center vertical map
Hom )y (Y1 ® Noyy ® M, I_5_1) — Homyy (V1 @ Noyy ® M, I o)
is given by composition with f,_, : I,_,_; — I,_,. Hence,
fso (B @ M) = (9] - t;_5) (3541(1) @ M)
= (] - ts-0) (S4*Sq'SPP(1 @ xJ) @ m) .
Lemma 3.8 then implies

fsmo (PO @ m)) = (97 - t,_5) (1 ® xJ ® Sq>Sq'Sq*m),
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since @} - ty_, factors through [,. So,

fs—a (E)(y ® m)) = b*(qusqIqum) “ls_g
= ((b.)Sq*Sq'Sq*)(m) - fs_o(rs_o1)

and, since f_, is injective in degree |t;_]|,
By ® m) = ((b,)Sq*Sq'SG*)(m) - rs_5_1.
Then,
(0542(1 @ X5*?) ® m) = Sq' B(y @ m)
= 8q" (((0.)SqSq'Sq?)(m) - r5_5_1)
= ((6,)S9°Sq'Sq*)(m) - ;51

— og+2 o+2 .
= Poosqrsqisgy, L& X5 @M Ly g

Therefore, dy(h§°x[b.]) = hi~ 7 xI+[(b,)Sq*Sq' Sq?]. O

Heuristically, the second differential pairs Q,-homology classes that are con-
nected by a 1-seagull in M,.. We conjecture that the 2n‘" differential pairs classes
connected by an n-seagull.

Conjecture 3.11. There exists a differential

Ao, = [y =232

for nonzero classes [x,], [y.] in H.(M,; Q,) if and only if there are elements

(X1)*, cer s (xn—l)* (S M*
such that

(x,)Sq*Sq'Sq* = (x1).Sq*
(Xi41).S¢0 i<n—1

(x1).5¢*Sq'Sq* = P
Vs i=n-1.

The difficulty in using exactly the methods used for d, to compute higher dif-
ferentials is that we only computed lifts along 6 for maps that factor through [,.
There is no guarantee that such a lift also factors through [, if its composition
with j is zero.

Example 3.12. Let ¢ denote the generator of Y, and u denote Sq?Sq'Sq*¢.
Then in M,, (u,)Sq*Sq'Sq? = ¢, so the spectral sequence associated to Y; has
a differential,

dy (R x3[w.]) = B o~ 25 1e]

For degree reasons, all higher differentials are zero, so the spectral sequence
collapses. The E,-page of this spectral sequence is depicted in Figure 8.
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FIGURE 8. The hj-localized Davis-Mahowald spectral se-
quence for Y;. The classes marked with a red circle are in de-
gree o = 0, the classes marked with an orange square are in
degree o = 2, and the classes marked with a green triangle are
in degree o = 4.

Even without a formula for the higher differentials, all differentials can be
computed in the spectral sequence associated to a seagull module of any length.
For the infinite seagull module, there is no room for any nonzero differentials.
For a finite seagull, there is a single nonzero differential.

Proposition 3.13. For any finite n, the spectral sequence

U:Z[hoil, xg] ® Ho (Yna QO) = h(;lEXt_:ézl)(Yns IFZ)

has precisely one nonzero differential, d,,,.

Proof. It’s quick to show via constructing a minimal free resolution of Y, that,
as an [F,-vector space,

_ - N + 2(n+1
h'Bxt (Y, Fo) 2 Bxty (Y, Fy) & B[ hE, %3] /X200,

So, the E,-page is comprised of hj-towers in degrees
t—5s=0,4,8,..,4n—-1).

The Qy-homology of V', is F,{¢, u} where || = 0 and |u| = 4n + 1. So, in each
even filtration degree, o = m, the E;-page has hj-towers in degrees t — s = 2m
and

t —s =2m+4n+ 1. (The E;-page is zero in each odd filtration degree.) So, the
E;-page is comprised of hy-towers in degrees

t—5s=0,4,8,..,4(n—1),4n,4n+1,4n+1), dn+1)+1,..

Any differential in this spectral sequence has degree t — s = —1. So, in order
for the towers in degrees t — s > 4(n — 1) to be eliminated, there must be a
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differential from each tower in degree 2m + 4n + 1 to the tower in degree 2m +
4n = 2(2n + m). The tower in degree 2m + 4n + 1 is in filtration degree c = m
and the tower in degree 2(2n + o) is in filtration degree o = 2n + m, so this is
a d,,, differential. O

For any bounded below, Q,-local A(1)-module of finite type, M, Theorem 2.7
tells us M is isomorphic to a flock of seagulls. If we can identify that flock of
seagulls, we can then compute all differentials in the spectral sequence associ-
ated to M. In fact, if M is an arbitrary .A(1)-module, the Q- localization of M

can be used to compute h;)—HExt;’lEl)(M ).
Lemma 3.14. The map LyM — M induces an isomorphism,

-1 ., ~ -1 o0
h, Extﬂ(l)(M, F,) = hy Extﬂ(l)(LOM, F>).

Proof. The triangle
LoM g M g LlM

induces the long exact sequence

e S hglExti’lt(l) (LM, F,) > halExti’lt(l) (M, F,) > halExti’lt(l) (LoM, F>) j

[> hy ' Bxt (LM, Fy) 3 hy'Ext s (M, Fy) ——— -

Since L; M is Q;-local (equivalently, free as an .A(0)-module) and bounded be-
low, Adams’ vanishing theorem [Ada66, Theorem 2.1] implies

-1 o _
hUBXUy (LM, F) = 0. O

Consequently, h; 1Ext221)(M , F,) can be computed by identifying the decom-
position of LyM = Y, ® M into a direct sum of seagulls. However, computing
this decomposition is often difficult. So, it would be desirable to prove Conjec-
ture 3.11, or another way of computing differentials directly from the structure

of M.

3.2. Lifting A(1)-modules to A-modules. For any A(n), a subalgebra of A,
there is a forgetful functor from .A—Mod to A(n)—Mod. If M is a .A(n)-module
in the image of this functor, we say M lifts to an A-module or that M has a
compatible .A-module structure.

This forgetful functor only exists because there is an action of A on .A(n) that
is compatible with the multiplication in .A(n). (That is, if x € A(n), acting by
x € A on A(n) is the same as multiplying by x € A(n).) Lin [Lin73] calls Hopf
subalgebras with this property “nice Hopf subalgebras”. In [Lin73], he shows
the only nice Hopf subalgebras of A are of the form A(n) for some n. So, if Bisa
Hopf subalgebra of A not equal to some .A(n), there is no such forgetful functor
and so the question of lifting B-modules to A-modules is not well formed.
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The following theorem of Davis and its consequences for computing h 1Ext
were pointed out to the author by Michael Hopkins.

Theorem 3.15 (Davis). Forany A-module, N, the hy-towers in Ext;;' (N,F,)are
in one-to-one correspondence with a basis for H,(N; Q).

Davis’ proof of this theorem effectively shows
hg'Bxt; (N, F,) = F,[hE'] @ H.(N; Q).

For any A(1)-module, M, there is an .A-module A ® Ay M where A acts on the
left factor. So,

halEXt;iED (M, Fy) = hi ' Ext’) (A ® 1) M, F,) = [Fz[h(;_rl] ® H.(A ® 401y M; Qo).
If M can be lifted to an A-module, then there is a shearing isomorphism,
AQqyM = A/JA1) @M
where A//A(1) ® M has the diagonal action. In this case,
hy 'Extye ) (M, Fp) = Fo[h5] @ H. (A//A(1); Qo) ® H. (M;Qp)

= [Fz[hgl] Q@ Fyla] ® H.(M; Qo)

where the degree of a is t — s = 4. Hence, the spectral sequence,
Falhy', %3] ® H.(M; Qo) = hy'Ext’yr (M, F,)

collapses at the E;-page. This collapse depends on M having a compatible .A-
module structure. So, any nonzero differentials, d,, for n > 1, in the hj-local
Davis-Mahowald spectral sequence associated to an .A(1)-module indicate that
the module cannot be lifted to an .A-module. The formula for d, then implies
the following corollary.

Corollary 3.16. If M, a bounded below .A(1)-module of finite type, has elements
x and y such that [x,.], [y.] € H.(M,; Q,) are nonzero and

¥.59°Sq'Sq* = x,
then M does not lift to an A-module.
Conjecture 3.11 would imply the following.

Conjecture 3.17. Suppose M, a bounded below .A(1)-module of finite type,
has elements x, X, ..., X,_1, such that [(x;),.] € H.(M,; Q) is nonzero for all i,
[(x1-1):5¢*Sq'Sq*] € H.(M.,; Qo) isnonzero, and (x;).Sq*Sq'Sq* = (x;41).5q*
foralli < n — 1. Then M does not lift to an .A-module.

While this is only a conjecture in the general case, in some particular cases,
we can compute higher differentials and thus detect obstructions to lifting.

Corollary 3.18. For any finite n, Y, is not an A-module.
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This corollary follows very smoothly from Proposition 3.13, though this is
certainly not the only way to prove it. In fact, one can show directly from the
Adem relations that Y, is an .A(m)- but not an A(m + 1)-module where m is
the largest number such that 2"~ divides n.

Corollary 3.19. Let M be a bounded below A(1)-module of finite type.

(1) If LyM is stably equivalent to a flock of seagulls including a finite seagull,
then M does not lift to an A-module.
(i) If M is Qqy-local, then M lifts to an A-module if and only if M is stably
equivalent to a flock of infinite seagulls (or zero).
Proof. As shown in Lemma 3.14, h; TExt™ (M, F,) =~ hy TExtY  (LoM, Fy).

AQ) A1)
Furthermore, LM — M induces an isomorphism in Qy-homology. So, there is

at least one nonzero differential in the spectral sequence

Folhy', %31 @ H.(M: Qo) = hy'Exty, (M, F,)

if and only if there is at least one nonzero differential in the spectral sequence

F[hT", 31 ® H.(LyM; Qo) = hglEXtZt(l)(LoM, F2).

Then, (i) follows from the fact that if LM is stably equivalent to a flock of seag-

ulls including a finite seagull, the spectral sequence associated to LyM has a
nonzero differential.

Part (ii) follows quickly from the classification theorem and Corollary 3.18.

0

When M is finite, part (ii) follows directly from the classification theorem
and a result of Palmieri [Pal96, A.1] that shows any finite, Q,-local .A-module
has zero Q,-homology.
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