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Large totally symmetric sets

Noah Caplinger

Abstract. A totally symmetric set is a subset of a group such that every
permutation of the subset can be realized by conjugation in the group. The
(non-)existence of large totally symmetric sets obstruct homomorphisms, so
bounds on the sizes of totally symmetric sets are of particular use. In this
paper, we prove that if a group has a totally symmetric set of size k, it must
have order at least (k + 1)!. We also show that with three exceptions, {(1 i) ∣
i = 2,… , n} ⊂ Sn is the only totally symmetric set making this bound sharp,
a fact which gives a new perspective on the automorphism group of Sn.
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1. Introduction
Kordek—Margalit [3] introduced the notion of a totally symmetric set in a

group as a means to study homomorphisms. Brie�y, a subset X ⊂ G of a group
is totally symmetric if any permutation of X can be realized by conjugation in
G—for instance, the set of transpositions

Xn = {(1 i) ∣ i = 2,… , n} ⊂ Sn
is totally symmetric. Understanding the totally symmetric sets of groups G,H
immediately yields constraints on homomorphisms G → H, and in some cases
give complete classi�cations. Kordek—Margalit [3] classi�ed homomorphisms
� ∶ B′n → Bn with essentially this strategy: they �rst classify totally symmetric
sets in Bn, then use this classi�cation to deduce the image of a well-chosen
totally symmetric set in B′n. This general strategy has been used by Chen–
Mukherjea [5] to classify maps from braid groups to mapping class groups, and
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by Scherich–Verberne [6], Caplinger–Kordek [4] and Chudnovsky–Kordek–Li–
Partin [1] to understand �nite quotients of braid groups. Classi�cations of to-
tally symmetric sets and upper bounds on their sizes are of particular interest
in this scheme, as they obstruct homomorphisms. Our two main results are
directly in this vein.

Theorem 1.1. LetG be a group, andX ⊂ G a totally symmetric set of cardinality
k > 3. Then |G| ≥ (k + 1)!. If |G| = (k + 1)!, then G ≅ Sk+1.

This result should be compared to [1, Proposition 2.2] which gives the bound
|G| ≥ k! ⋅ 2k−1 under the additional hypothesis that elements of X pairwise
commute. The totally symmetric set Xn = {(1 i) ∣ i = 2,… , n} shows that the
bound in Theorem 1.1 is sharp. Our next theorem shows that Xn is the only
such example (with three exceptions for small n).

Theorem 1.2. Let Y = {y1,… , yk} be a totally symmetric set in Sn of cardinality
k.

(1) If n ∉ {3, 4, 6} and k = n − 1, then Y is conjugate to Xn.
(2) If n = 6 and k = 5, then Y is conjugate to either X6 or �(X6) where

� ∈ Out(S6) is non-trivial.
(3) If n = 4 and k = 3, then either Y is conjugate to X4 or {(1 2), (1 3), (2 3)},

or Y is equal to {(1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}.
(4) If n = 3, thenY may be any subset of any conjugacy class of S3. In partic-

ular k ≤ 3, and equality is realized by {(1 2), (1 3), (2 3)}.

Both the braid group Bn and the general linear group GLn(ℂ) have similarly
rigid maximal totally symmetric sets (see [3, Lemma 2.6] and [7, Theorem B]
respectively). This is not a completely general phenomenon—ℤ2 ×Sn contains
two non-conjugate maximal totally symmetric sets—but it raises the question
of what general properties lead to such rigidity. This question can also be asked
about other “totally symmetric" objects (see De�nition 2.2). The totally sym-
metricmulticurves of [3] and the totally symmetric arrangements of [7] both ex-
hibit similar rigidity properties and both give rise to their corresponding rigidity
theorems.

As a sample application of Theorem 1.2, we use this result to give a short,
conceptually simple proof of the well-known classi�cation of homomorphisms
Sn → Sm for n ≥ m due to Hölder [8]. The basic idea is that Theorem 1.2
determines all possible images of f(Xn).

Theorem 1.3 (Hölder). Let n ≥ m > 2 and f ∶ Sn → Sm be a homomorphism.
Then

(1) If n > m and (n,m) ≠ (4, 3), then Im(f) is cyclic.
(2) If n = m ∉ {4, 6} and Im(f) is non-cyclic, then f is an inner automor-

phism.
(3) If n = m = 6 and Im(f) is non-cyclic, then f is an automorphism. Fur-

thermore, Out(S6) ≅ ℤ∕2ℤ.
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(4) If (n,m) = (4, 3) and Im(f) is non-cyclic, then f is conjugate to the ex-
ceptional map g ∶ S4 → S3 de�ned by g(1 4) = (1 2), g(2 4) = (1 3) and
g(3 4) = (2 3).

(5) If n = m = 4 and Im(f) is non-cyclic, then f is either an inner auto-
morphism or conjugate to the exceptional map above composed with the
inclusion S3 → S4.

We are careful to note that our proof of Theorem 1.2 uses certain facts (see
item2, page 936)which comprise themajor step in a commonproof of Theorem
1.3 (which can be found in [9]). Our proof of Theorem 1.3 should therefore not
be regarded as entirely independent from the standard proof. We include it here
both because it is conceptually satisfying and also to illustrate the more general
approach of applying totally symmetric sets to the study of homomorphisms.

1.1. Acknowledgments. The author would like to thank Dan Margalit and
Dan Minahan for their suggestion to push Theorem 1.1 farther than a simple
bound. He is also grateful to Dan Margalit and an anonymous referee for their
helpful comments.

2. Totally symmetric sets
Informally, a totally symmetric set is a subset Y ⊂ G of a group such that

every permutation of Y can be realized by conjugation in G—that is, the con-
jugation action contains every symmetry of Y.

De�nition 2.1 (Totally symmetric set of a group). Let G be a group. A subset
Y = {y1,… , yk} ⊂ G is said to be totally symmetric if for every � ∈ Sk, there is
some g� ∈ G such that g�yig−1� = y�(i).

The de�nition of total symmetry given by Kordek-Margalit [3] made the ad-
ditional constraint that the elements pairwise commute. In [7], Salter and the
author generalized this de�nition to arbitrary G-sets and in particular required
the use of non-commuting totally symmetric sets. We do not require the full ap-
paratus of the de�nition from [7], but we will make use of this broader notion
of total symmetry.

De�nition 2.2 (General totally symmetric set). Let Z be a G-set. A subset Y =
{y1,… , yk} ⊂ Z is said to be totally symmetric if for every � ∈ Sk, there is a
g� ∈ G such that g� ⋅ yi = y�(i).

This group action perspective will be quite useful in our analysis. The stabi-
lizer of a totally symmetric set (under the induced action on subsets) will play
a central role in the proofs of Theorems 1.1 and 1.2. In fact, De�nition 2.2 can
be reformulated in terms of the stabilizer of the action on subsets of Z: a sub-
set Y ⊂ Z is totally symmetric if and only if the natural map Stab(Y) → SY is
surjective.

The utility of totally symmetric sets stems from the “fundamental lemma" of
[3], which we now state in the language of De�nition 2.2.
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Lemma 2.3 (Collision implies collapse). Let G be a group, Z1, Z2 be G-sets, and
Y = {y1,… , yk} ⊂ Z1 be a totally symmetric set. Let f ∶ Z1 → Z2 be a G-
equivariant map. Then either |f(Y)| = |Y| or |f(Y)| = 1. Furthermore, f(Y) is
totally symmetric.

Proof. For |Y| ≤ 2, the result is clear. Say |Y| > 2 andf(yi) = f(yj) for distinct
yi, yj ∈ Y. For every ym ∈ Y distinct from yi, yj, there is some g(j m) ∈ G
realizing the transposition (j m) on Y. Then

f(yi) = f(g(j m) ⋅ yi) = g(j m) ⋅ f(yi) = g(j m) ⋅ f(yj) = f(g(j m) ⋅ yj) = f(ym).
Any singleton is vacuously totally symmetric. If |f(Y)| = |Y|, then g� ⋅

f(yi) = f(y�(i)), so f(Y) is also totally symmetric. �

WhenZ1, Z2 are groups under the action of conjugation and f is a homomor-
phism, we recover [3, Lemma 2.1], which states that if f ∶ G → H is a homo-
morphism, and X ⊂ G is totally symmetric, then f(X) is also totally symmetric
and has cardinality 1 or |f(X)|. This is the primary way totally symmetric sets
are used to study homomorphisms. As a sample demonstration, we will prove
Theorem 1.3 parts 1 and 2 assuming Theorem 1.2. Conceptually, this proof is
quite simple—in order to �nd all maps f ∶ Sn → Sm, we need only �nd the
possible images of Xn, which are listed in Theorem 1.2. In part 1, there are no
suitable images (so the map is cyclic), and in part 2 there is only one (up to
conjugation, so the map is inner).

Proof of Theorem 1.3 parts 1 and 2 assuming Theorem 1.2. Let n ≥ m >
2 be integers and f ∶ Sn → Sm be a homomorphism. We prove only parts 1 (if
n > m, then Im(f) is cyclic) and 2 (if n = m ∉ {4, 6} and Im(f) is non-cyclic,
then f is an inner automorphism). Parts 3, 4 and 5 are similar.

Consider the totally symmetric set f(Xn), which has cardinality 1 or n − 1
by Lemma 2.3. If n > m with (n,m) ≠ (4, 3), Theorem 1.2 says that Sm has
no totally symmetric sets of size n − 1. Then |f(Xn)| = 1, which implies that
Im(f) is cyclic. We will proceed assuming Im(f) is non-cyclic. Then f(Xn) has
cardinality n − 1 and therefore must be one of the totally symmetric sets listed
in Theorem 1.2.

If n ∉ {3, 4, 6} and n = m, then Theorem 1.2 gives some � ∈ Sn so that
f(Xn) = �̃(Xn), where �̃ is the inner automorphism corresponding to �. Then
(�̃−1◦f)(Xn) = Xn, that is �̃−1◦f permutes Xn. Total symmetry now gives an
element � ∈ Sn realizing this permutation so that �̃−1◦�̃−1◦f is the identity
map on Xn, which generates Sn. Then f = �̃� is an inner automorphism as
desired. �

3. Proof of Theorem 1.1
Let X be a totally symmetric set of cardinality k in a group G. The proof of

Theorem 1.1 is essentially an orbit-stabilizer argument applied to the action of
conjugation on totally symmetric sets.
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Proof of Theorem 1.1. By total symmetry, the natural map � ∶ Stab(X)→ Sk
is surjective, and therefore | Stab(X)| ≥ k!. It remains to show |Orb(X)| ≥
k+1. This is accomplished in two steps: �rst, we argue that some Y ∈ Orb(X)
intersects X non-trivially, then we use this intersection to produce k additional
totally symmetric sets in Orb(X).

Assume every Y ∈ Orb(X) not equal to X is disjoint from X. In particular,
any a ∈ X satis�es aXa−1 = X, so X ⊂ Stab(X). This means X is a totally
symmetric set in Stab(X). Since Stab(X) acts transitively on X by conjugation,
and all elements �x X setwise, X is an entire conjugacy class of Stab(X). If
�(X) = {e}, then the elements of X pairwise commute, and we may apply [1,
Proposition 2.2] which gives the bound |G| ≥ k! ⋅ 2k−1 > (k+1)! for any totally
symmetric set with pairwise commuting elements. Then we may additionally
assume �(X) ≠ {e}. Because � ∶ Stab(X) → Sk is surjective and X is an en-
tire conjugacy class, �(X) is also an entire (non-trivial) conjugacy class of Sk.
Moreover, the elements of �(X) must �x at least one point, since conjugation
by a ∈ X �xes a. For k > 3, such conjugacy classes in Sk have cardinality larger
than k. This contradicts |X| = k.

Let Y ∈ Orb(X) intersect X non-trivially. We can use total symmetry to
produce

( k
|X∩Y|

)
≥ k other elements of Orb(X) as follows. For each |X ∩ Y|-

element subset A ⊂ X, let gA ∈ Stab(X) be such that gA(X ∩ Y)g−1A = A. Then
the gAYg−1A are all distinct, as they have di�erent intersections with X. This
proves |G| ≥ (k + 1)!.

We will now prove the second part of Theorem 1.1, which states that Sk+1 is
the only group G of order (k + 1)! with a totally symmetric set X of cardinality
k > 3. The basic strategy is to produce an action of G on a (k + 1)-element set
which is isomorphic to the action of Sk+1.

From the proof of part 1, the equality |G| = (k+1)! is achieved exactly when
� ∶ Stab(X)→ Sk is an isomorphism and |Orb(X)| = k + 1. In this case, every
Y ∈ Orb(X) with Y ≠ X satis�es |X ∩Y| = 1 or |X ∩Y| = k + 1. We deal with
the case |X ∩ Y| = 1; the other case is nearly identical.

Write X = {x1,… , xk}, let f ∶ G → SOrb(X) ≅ Sk+1 be the action of G on
Orb(X) and let Yi ∈ Orb(X) denote the unique totally symmetric set satisfying
X ∩ Yi = {xi}. Then Orb(X) = {X,Y1,…Yk}. Furthermore, Sk ≅ Stab(X) ⊂ G
acts on {Y1,… , Yk} by permuting indices. Any g ∉ Stab(X) does not �x X, so
f(Stab(X)) and f(g) generate Sk+1. �

4. Proof of Theorem 1.2
Let Y = {y1,… , yk} ⊂ Sn be a totally symmetric set. In this section, we will

prove that if k takes the largest value allowed by Theorem 1.1, then it must be
one of the totally symmetric sets listed in Theorem 1.2. The case n = 3 is dealt
with by noting that any subset of any conjugacy class of S3 is totally symmetric.
The cases n = 4 and n ≥ 5 will be treated separately. The proof requires the
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following two facts about permutation groups, both of which can be found in
[9, page 2,].

(1) Any proper subgroupH ⊂ Sn not equal to An satis�es |Sn ∶ H| ≥ n.
(2) For n ≠ 6, every index n subgroup of Sn is a point stabilizer (that is, a

subgroup Sn−1 ⊂ Sn �xing a point in [n] = {1,… , n}). If n = 6, there
is one additional conjugacy class of point stabilizers found by applying
an outer automorphism to a point stabilizer.

4.1. The generic case: n ≥ 5. We �rst claim that Stab(Y) is a point stabilizer
or else n = 6 and Stab(Y) is the image of a point stabilizer under an outer
automorphism of S6. Since Y is totally symmetric, the natural map Stab(Y) →
Sk ≅ Sn−1 is surjective. Counting orders shows that |Sn ∶ Stab(Y)| ≤ n. Then
Stab(Y) is a proper subgroup of Sn not equal toAn, meaning |Sn ∶ Stab(Y)| ≥ n
and therefore |Sn ∶ Stab(Y)| = n. Item 2 above now proves the claim.

We now show that if Stab(Y) is a point stabilizer, thenY is conjugate toXn =
{(1 i) ∣ i = 2,… , n}. For future notational simplicity, we will actually show Y
is conjugate to {(i n) ∣ i = 1,… , n − 1}. This su�ces even when n = 6 — if
Stab(Y) is not a point stabilizer, then let [�] ∈ Out(S6) and consider the totally
symmetric set �(Y) and its stabilizer Stab(�(Y)) = �(Stab(Y)).

Without loss of generality, assume Stab(Y) �xes the point n ∈ [n]. Set ai =
yi(n), and for � ∈ SY , let g� ∈ Stab(Y) be such that g�yig−1� = y�(i). Then

g�(ai) = g�yi(n) = g�yig−1� (n) = y�(i)(n) = a�(i). (1)

In other words, the set {ai ∣ i ∈ [k]} ⊂ [n] is totally symmetric in the sense
of De�nition 2.2. The association yi → ai is moreover Stab(Y)-equivariant.

We next claim that {ai ∣ i ∈ [k]} = {1,… , n − 1}. This will be done in two
steps: �rst show that no ai = n, second, show that no ai = aj. If any ai is equal
to n, then every ai is equal to n by Equation 1 (recall every g� ∈ Stab(Y) �xes
n). If ai = aj for distinct i, j ∈ [k], then Lemma 2.3 tells us {am ∣ m ∈ [k]}
is the singleton {ai}. Equation 1 now says, Stab(Y) �xes ai ≠ n in addition to
n. Then Stab(Y) has order at most (n − 2)! and therefore cannot surject onto
Sk ≅ Sn−1. Thus, {ai ∣ i ∈ [k]} is an (n−1)-element subset of [n] not containing
n, so it is {1,… , n − 1} as claimed.

By conjugating, we may assume without loss of generality that ai = i. Equa-
tion 1 now says g� = �. At this stage, we know yi(n) = i and want to show that
yi = (i n). This will be accomplished in two steps:

(1) Show that yi(i) = n
(2) Show that if j ∉ {i, n}, then yi(j) = j

Step 1. Suppose yi(i) = j ≠ n. Let k ∉ {n, i, j}, and consider the element
g(j k) = (j k). By total symmetry,

(j k)yi(j k) = g(j k)yig−1(j k) = yi.

But the left hand side of this equation sends i → k, while the right hand side
sends i → j. Hence, yi(i) = n.
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Step 2. Assume that yi does not �x some j ∉ {i, n}, that is yi(j) = k for j, k ∉
{i, n}. We will use the same trick: Because n ≥ 5, there is an m ∉ {i, n, j, k}.
Just as before,

(m j)yi(m j) = g(m j)yig−1(m j) = yi.
But the left hand side takes m → k, while the right hand side takes j → k.
Then yi = (i n) as required. Note that this step fails for the totally symmetric
set {(1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} ⊂ S4.

4.2. The exceptional case: n = 4. We will check 3 element subsets of conju-
gacy classes directly. Elements of a totally symmetric set are conjugate, so there
are four cycle types to consider:

(1) (∗ ∗)(∗ ∗)
(2) (∗ ∗)
(3) (∗ ∗ ∗)
(4) (∗ ∗ ∗ ∗)

Case 1: (∗ ∗)(∗∗). We claim the conjugacy class of cycle type (∗ ∗)(∗∗) given by
Y = {y1 = (12)(34), y2 = (13)(24), y3 = (14)(23)} is totally symmetric. Indeed,
g(1 2) = (23), g(1 3) = (13) and g(2 3) = (2 3) realize all three transpositions of Y.

We are then left to consider totally symmetric sets Y = {c1, c2, c3} of cycles.
By total symmetry, the intersection pattern of subsets of Y must be the same:
|c1 ∩ c2| = |c2 ∩ c3| = |c1 ∩ c3| (here we think of cycles as subsets of [4] =
{1, 2, 3, 4}). This is a consequence of the more general fact1 that g�ci = c�(i) and
therefore g�(ci ∩ cj) = g�ci ∩ g�cj = c�(i) ∩ c�(j), where again we think of the
cycles as subsets of [4].

Case 2: (∗ ∗). There are no three element sets of transpositions in S4 which do
not intersect. Then c1 and c2 share a single element. By the previous discussion,
c3 must intersect both c1 and c2. Then either c3 contains the point c1 ∩ c2 or it
contains the points c1⧵(c1∩c2) and c2⧵(c1∩c2). In the �rst case,Y is conjugate
to X4. In the second, Y is conjugate to {(1 2), (1 3), (2 3)}.

Case 3: (∗ ∗ ∗). If c1 = c2 as subsets of [4], then c3 is a 3-cycle on the same
three elements. But there are only two distinct 3-cycles in S3. Then c1 ≠ c3
as subsets of [4], and |c1 ∩ c2| = 2. Then c3 intersects c1 ∩ c2 in exactly one
point—if it contained c1 ∩ c2, then the third point (which lies in either c1 or c2)
would break the symmetry of intersection patterns. Let p be the unique point
in c1∩c2∩c3, and let g(1 2) realize the permutation (12) on the totally symmetric
set Y = {c1, c2, c3}. The centralizer of a 3-cycle in S4 is the group generated by
that 3-cycle. Then g(1 2) is a power of c3, but also �xes p. Then g(1 2) = e, which
does not realize (1 2).

1In the language of [7], the set of intersections ci ∩ cj forms a totally symmetric set under the
action of S4 on two elements subsets of [4]. This is a more general notion of total symmetry than
used in this paper.
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Case 4: (∗ ∗ ∗ ∗). Any group element c and its inverse cannot appear in a three
element totally symmetric set—one cannot move c by conjugation while �xing
c−1. There are only three inverse pairs of four-cycles in S4, so c1 = (1 2 3 4)±1,
c2 = (1 2 4 3)±1, and c3 = (1 3 2 4)±1. Without loss of generality, assume
c1 = (1234). We will show c2 = (1243) is impossible—the case c2 = (1243)−1
is nearly identical.

As before, the element g(2 3) realizing the permutation (2 3)must be a power
of c1. Denote this power p ∈ {0, 1, 2, 3}. If p = 3, then (c31)

3 = c1 also realizes
the permutation (2 3), so we need only check p = 1 and p = 2. If p = 1, we
compute

c3 = c1c2c−11 = (2 3 1 4) and c2 = c1c3c−11 = (3 4 2 1) ≠ c2.
Then p = 2, and

c3 = c21c2c
−2
1 = (3 4 2 1) = c−12 .

But Y cannot contain both c2 and c−12 .
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