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Lp regularity of Szegö projections on
quotient domains

Abhishek Ghosh and Gargi Ghosh

Abstract. We introduce a family of Hardy spaces {ℋ%}%∈Ĝ1 on the distin-
guished boundary of the quotient domain Dn∕G, where G is a �nite pseu-
dore�ection group acting on Dn and Ĝ1 is the set of equivalence classes of
one-dimensional representations of G. We establish a uniform platform to
study Lp regularity properties of the generalized Szegö projections associated
to Hardy spacesℋ% for every % ∈ Ĝ1.
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1. Introduction
The boundedness of projection operators on analytic function spaces such as

Hardy space and Bergman space has a rich history and has been studied over
several domains. The primary goal of this article is twofold:

∙ Let Dn denote the unit polydisc in ℂn and G be a �nite pseudore�ec-
tion group acting onDn.We �rst de�ne an appropriate notion of Hardy
space on a quotient domain Dn∕G. The notion of Hardy space over a
quotient domain is not canonical in nature. We prescribe a uni�ed ap-
proach to de�ne a family ofHardy spaces onDn∕G indexed by the equiv-
alence classes of one-dimensional representations of G. These spaces
can be realized as subspaces of some weighted L2 spaces on the distin-
guished boundary of the quotient domain where the weights are dic-
tated by the associated representations.
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∙ Secondly, corresponding to each one-dimensional representation % of
G, one can naturally consider the orthogonal projection operator from
the associatedweightedL2 space to theHardy space onDn∕G associated
to %.These projection operators are analogues of the classical Szegö pro-
jections and without loss of generality we call them generalized Szegö
projections. Finally, employing representation theoretic information,
we obtain a range (a%, b%) with 1 < a% < 2 < b% < ∞ such that these
projection operators are Lp regular for p ∈ (a%, b%).Moreover, the inter-
val (a%, b%) is Hölder symmetric, that is, if r ∈ (a%, b%) then r′ ∈ (a%, b%)
where r′ ∶= r

r−1
is the Hölder conjugate of r.

The study of Lp regularity for singular integral operators is of immense interest
in harmonic analysis and operator theory. Since its inception, the Szegö projec-
tion re�ects crucially the geometry of the domain under study and is studied in
various contexts. More precisely, the regularity of the Szegö projection depends
on the smoothness of the boundary of the domain. To start with, we recall the
fundamental result by Kerzman–Stein [13] where the authors exhibit a close
connection between the Cauchy integral and the Szegö projection on bounded
smooth domains in the complex plane ℂ, needless to mention that the two co-
incide when the domain is a disc inℂ. Therefore, when the domain under con-
sideration is a disc, the Szegö projection maps Lp to itself for 1 < p < ∞ and
is of weak-type (1, 1).More generally, the same result is true if the domain is in
C1. For more results in this direction, we refer to [10, 18] and others.

However, while working onℂn, the scenario is much more complicated and
the main di�culty lies in the fact that the kernel for the Szegö projection is not
known explicitly in most of the cases. A recent breakthrough in this direction
was made by Lanzani and Stein [16] where the authors studied the Lp regular-
ity of the Szegö projection on strongly pseudo-convex domains on ℂn with C2
boundary. Currently, there is a renewed interest in studying the Szegö projec-
tion on specialized domains due to the in�uential works [16, 18, 24], see also
[28, 30] for some signi�cant developments. Also, in a fundamental work [30]
Wagner and Wick introduced an appropriate notion of Muckenhoupt weights
suitable to the intrinsic quasi-metric of the boundary of a strongly pseudocon-
vex domain with C2 boundary and proved weighted Lp regularity results for
the Szegö projection (see Theorem 1.1 in [30]). In this direction, interesting
end-point estimates for the Szegö projection are obtained in [28].

Hardy spaces are also considered on the distinguished boundary of domains
and an early in�uential work in this direction is by Bekollé and Bonami [1]
where they considered Hardy spaces on the distinguished boundary of tube do-
mains over spherical cones. In [21], the authors have studied the Szegö pro-
jection on the unbounded model worm domain in this setting and obtained its
sharp Lp regularity; subsequently, the analogous question was addressed on
the Hartogs triangle in [20]. Both the works mentioned above reduce the study
of the Szegö projection to some suitable Fourier multiplier operators and an
application of Mihlin–Hörmander multiplier theorem concludes their proof.
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We also refer to the article [23] where sharp Lp regularity is achieved for some
weighted Szegö projection operators and the proof relies on the characteriza-
tion of power weights belonging to Muckenhoupt Ap classes which is also a
key ingredient in our proof.

When it comes to the quotient domains we have a very limited literature at
hand. In [19], authors have de�ned a suitable notion of Hardy space on the
symmetrized polydisc and very recently in [11], Lp regularity of the associated
Szegö projection is studied. We are also motivated by the results in [2, 4] where
Bergman projections on various quotient domains are studied. These can be
thought of as our point of departure and in this workwe explicitly prove the fol-
lowing regularity results for the Szegö projection on quotient domains Dn∕G,
whenever G is a �nite pseudore�ection group. A pseudore�ection on ℂn is a
linear homomorphism � ∶ ℂn → ℂn such that � has �nite order in GL(n,ℂ)
and the rank of (In −�) is 1. A group generated by pseudore�ections is called a
pseudore�ection group. For example, any �nite cyclic group, the permutation
group Sn on n symbols, and the dihedral groups are all �nite pseudore�ec-
tion groups [17]. Suppose that G acts on Dn as in Equation (2) then Dn∕G is
not necessarily a domain. However, if G is a �nite pseudore�ection group then
Dn∕G is biholomorphically equivalent to �(Dn), where � ∶ ℂn → ℂn is a ba-
sic polynomial map associated to the group G [3, Subsection 3.1]. Therefore,
we restrict our attention to �nite pseudore�ection groups for the rest of the ar-
ticle. Note that if Ω is a domain such that there exists a proper holomorphic
map f ∶ Dn → Ω with G as the group of deck transformations, then Ω is bi-
holomorphic to Dn∕G and � is a representative of f, that is, f = �◦h for some
biholomorphism h ∶ �(Dn)→ Ω [9, Proposition 2.2]. Therefore, we work with
the domain �(Dn) instead ofDn∕G andwithout loss of generality call them quo-
tient domains. Also, the choice of a basic polynomial is not unique for the group
G and our result is independent of the choice of basic polynomial �. We now
state our main result.

Let % ∈ Ĝ1 and 1 < p < ∞. In De�nition 2.7, we provide a notion of Hardy
space on �(Dn) associated to the representation % and denote it by Hp

% (�(Dn)).
We show that each H2

%(�(Dn)) (for simplicity, denoted by ℋ% in the abstract)
can be thought as a closed subspace of some weighted L2%(�(Tn)) (cf. Lemma
2.8). Let S�,% ∶ L2%(�(Tn)) → H2

%(�(Dn)) denote the corresponding orthogo-
nal projection, which we call the generalized Szegö projection associated to the
representation %. Then the following holds:

Theorem1.1. Suppose thatG is a �nite pseudore�ection group acting on the unit
polydisc Dn and � is a basic polynomial associated to G.

(1) For the trivial representation of G,

S�,trivial ∶ L
p
trivial(�(T

n))→ Hp
trivial(�(D

n))

is bounded for p ∈ (1,∞).
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(2) For a one-dimensional representation % ofG which is not equivalent to the
trivial representation of G, there exists an interval (a%, b%), 1 < a% < 2 <
b% < ∞, such that the generalized Szegö projection S�,% is bounded from
Lp% (�(Tn)) toH

p
% (�(Dn)) if p ∈ (a%, b%).

Let us highlight some key features of Theorem 1.1.

∙ Let �′ be another basic polynomial associated to the group G. Then for
every % ∈ Ĝ1, the generalized Szegö projection S�′,% is bounded from
Lp% (�

′(Tn)) to Hp
% (�

′(Dn)) if p ∈ (a%, b%). Therefore, the value of a% and
b% is independent of the choice of basic polynomial of the group G.

∙ Weensure not only the existence ofa% and b% but also provide an explicit
expression of the range (a%, b%) depending solely on the representation
%, see Theorem 3.5 and Equation (20).

∙ Since we only need minimal knowledge about the representation % to
determine the values of a% and b%,we can avoid di�culties arising from
the complexity of the boundary of the quotient domains. For exam-
ple, the symmetrized polydisc (biholomorphic to Dn∕Sn) is a nons-
moothly bounded pseudoconvex domain without any strongly pseudo-
convex boundary point and Theorem 1.1 is applicable for it also, see
Subsection 3.3.

We close this section by demonstrating our result for the one-dimensional rep-
resentations of �nite re�ection groups. Pseudore�ections of order two are called
as re�ections. A�nite group generated by re�ections is called a re�ection group.
The permutation group on n symbols and dihedral group are examples of re-
�ection groups. As an application of Theorem 1.1, we have the following result.

Corollary 1.2. Let G be a �nite re�ection group acting on Dn. Let % ∈ Ĝ1 be
any representation which is not equivalent to the trivial representation. Then
there exists a natural numberM% such that the generalized Szegö projection S�,%
is bounded from Lp% (�(Tn)) to itself if p ∈ ( 2M%+1

M%+1
, 2M%+1

M%
) .

The quantity M% can be completely determined from the representation %
(cf. Corollary 3.7). For instance, when one considers the sign representation
(sgn) for the permutation group and the dihedral group, we obtain the following
results:

(1) For the permutation group: The symmetrization map s ∶ Dn → s(Dn)
is a basic polynomial associated to the permutation groupSn, see Equa-
tion (21). The domain Gn = s(Dn) is known as the symmetrized poly-
disc. In this case,Msgn = n−1 and thus asgn = 2− 1

n
and bsgn = 2+ 1

n−1
for the domain Gn (cf. Proposition 3.9). This is the main result of [11].

(2) For the dihedral group: The polynomialmap�(z1, z2) = (zk1+z
k
2 , z1z2) ∶

D2 → �(D2) is a basic polynomial map associated to the dihedral group
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D2k. Denote D2k = �(D2). Here,Msgn = k and thus asgn = 2 − 1
k+1

and

bsgn = 2 + 1
k
for the domain D2k, (cf. Proposition 3.10).

The article is organized as follows. In the next section, we de�ne Hardy spaces
on the distinguished boundary of quotient domains and prove several essential
properties. The notion of generalized Szegö projections is de�ned in Subsec-
tion 2.3. In Section 3, we prove our main results on Lp regularity estimates.
Throughout the article, C denotes an all purpose constant which may change
from line to line.

2. Hardy space
A holomorphic function f on Dn is in the Hardy space H2(Dn) on the unit

polydisc Dn if and only if

sup0<r<1 ∫
Tn

|f(reiΘ)|2dΘ <∞, (1)

where dΘ is the normalized Lebesgue measure on Tn. Let G be a �nite pseu-
dore�ection group which acts (right action) on Dn by

� ⋅ z = �−1z, for � ∈ G and z ∈ Dn. (2)

The group action extends to the set of all complex-valued functions on Dn by
�(f)(z) = f(�−1 ⋅ z) and a function f is said to be G-invariant if �(f) = f for
all � ∈ G. There is a system of G-invariant algebraically independent homo-
geneous polynomials {�i}ni=1 associated to a pseudore�ection group G, called a
homogeneous system of parameters (hsop) or basic polynomials associated to
G. In fact, the Chevalley-Shephard-Todd theorem provides a characterization
of �nite pseudore�ection groups in terms of hsop. It states that a �nite group
G is generated by pseudore�ections if and only if G-invariant polynomials in n
variables form a polynomial ringℂ[�1,… , �n] [25, p.282]. The polynomial map

� = (�1,… , �n) ∶ Dn → �(Dn)

is a proper holomorphicmap and the domain �(Dn) is biholomorphically equiv-
alent to the quotientDn∕G [29, 3]. So we refer to the domains of the form �(Dn)
by quotient domains.

We de�ne a family of weighted Hardy spaces on the domain �(Dn) indexed
by the one-dimensional representations of the group G. As mentioned earlier
there are several notions of Hardy spaces depending on the boundary, however,
in this article, we de�ne the Hardy space on the Shilov boundary of �(Dn).

De�nition 2.1. [7] The Shilov boundary )Ω of a bounded domainΩ is given by
the closure of the set of its peak points and a point w ∈ Ω is said to be a peak
point of Ω if there exists a function f ∈ A(Ω) such that |f(w)| > |f(z)| for all
z ∈ Ω ⧵ {w}, where A(Ω) denotes the algebra of all functions holomorphic on Ω
and continuous onΩ.
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Since the distinguished boundary of Ω in ℂn is the Shilov boundary of Ω,
these two notions will be frequently used without any confusion. The proper
holomorphic map � ∶ Dn → �(Dn) can be extended to a proper holomorphic
map of the samemultiplicity fromD′ to �(D)′,where the open setsD′ and �(D)′

contain Dn and �(Dn), respectively. Then [14, p. 100, Corollary 3.2] states that
�−1()�(Dn)) = )Dn = Tn. Thus

)�(Dn) = �(Tn). (3)

2.1. One-dimensional representations. Since the one-dimensional repre-
sentations of G play an important role in our discussion, we elaborate on some
relevant results for the same. We denote the one-dimensional representations
of G by Ĝ1.

A hyperplaneH inℂn is called re�ecting if there exists a pseudore�ection in
G acting trivially onH. For a pseudore�ection � ∈ G, de�neH� ∶= ker(id−�).
By de�nition, the subspaceH� has dimension n − 1. Clearly, � �xes the hyper-
plane H� pointwise. Hence each H� is a re�ecting hyperplane. By de�nition,
H� is the zero set of a non-zero homogeneous linear polynomialL� onℂn, deter-
mined up to a non-zero constant multiple, that is, H� = {z ∈ ℂn ∶ L�(z) = 0}.
Moreover, the elements of G acting trivially on a re�ecting hyperplane form a
cyclic subgroup of G.

Let H1,… , Ht denote the distinct re�ecting hyperplanes associated to the
group G and the corresponding cyclic subgroups are G1,… , Gt, respectively.
Suppose Gi = ⟨ai⟩ and the order of each ai is mi for i = 1,… , t. For every one-
dimensional representation % ofG, there exists a unique t-tuple of non-negative
integers (c1,… , ct),where ci’s are the least non-negative integers that satisfy the
following:

%(ai) =
(
det(ai)

)ci , i = 1,… , t. (4)

The t-tuple (c1,… , ct) solely depends on the representation %. The character of
the one-dimensional representation %, �% ∶ G → ℂ∗ coincides with the rep-
resentation %. The set of elements of H2(Dn) relative to the one-dimensional
representation % is given by

RG% (H2(Dn)) = {f ∈ H2(Dn) ∶ �(f) = �%(�)f, for all � ∈ G}. (5)

The elements of the subspace RG% (H2(Dn)) are said to be %-invariant functions.

Lemma 2.2. [9] Suppose that the linear polynomial li is a de�ning function
of Hi for i = 1,… , t and l% =

∏t
i=1 l

ci
i is a homogeneous polynomial where

ci ’s are unique non-negative integers as described in Equation (4). Any element
f ∈ RG% (H2(Dn)) can be written as f = l% f̃◦� for a holomorphic function f̃ on
�(Dn).

The sign representation of a �nite pseudore�ection group G, sgn ∶ G → ℂ∗,
is de�ned by [26, p. 139, Remark (1)]

sgn(�) = (det(�))−1, � ∈ G. (6)



Lp REGULARITY OF SZEGÖ PROJECTIONS ON QUOTIENT DOMAINS 917

Additionally, we note that sgn(ai) = (det(ai))−1 =
(
det(ai)

)mi−1, i = 1,… , t,
which invokes the following result from Lemma 2.2.

Corollary 2.3. [27, p. 616, Lemma] Let H1,… , Ht denote the distinct re�ecting
hyperplanes associated to the group G and letm1,… , mt be the orders of the cor-
responding cyclic subgroups G1,… , Gt, respectively. Then

lsgn(z) = J�(z) = c
t∏

i=1
lmi−1
i (z),

where J� is the determinant of the complex Jacobian matrix of the basic polyno-
mial map � and c is a non-zero constant.

2.2. Hardy spaces associated to the representations. For the symmetrized
polydisc, the notion of Hardy space was de�ned in [19] and our de�nition is
partly motivated by that. Recall that dΘ is the normalized Lebesgue measure
on Tn.

De�nition 2.4. Let % ∈ Ĝ1. The function space consisting of holomorphic func-
tions f on �(Dn) which satisfy

sup
0<r<1

∫
Tn

|f◦�(reiΘ)|2|l%(reiΘ)|2 dΘ <∞

is said to be the Hardy space associated to the representation % and is denoted by
H2
%(�(Dn)).

We list the following facts:
∙ EachH2

%(�(Dn)) is a Hilbert space with the norm

‖f‖2% =
1
d
sup
0<r<1

∫
Tn

|f◦�(reiΘ)|2|l%(reiΘ)|2dΘ, (7)

where d is the order of the group G. Moreover, we will also show that
H2
%(�(Dn)) is a reproducing kernel Hilbert space.

∙ The Hardy space associated to the sign representation of G is said to be
the Hardy space on �(Dn) and we denote it byH2(�(Dn)). In particular,
H2(Gn) coincides with the de�nition of the Hardy space on the sym-
metrized polydisc Gn de�ned in [19].

Proposition 2.5. For each % ∈ Ĝ1, the Hilbert spaceH2
%(�(Dn)) is a reproducing

kernel Hilbert space.

Before proving Proposition 2.5, we state some relevant results. Each % ∈ Ĝ1
induces an orthogonal projection ℙ% ∶ L2(Tn)→ L2(Tn) such that

ℙ%� =
deg %
d

∑

�∈G
�%(�−1) �◦�−1, � ∈ L2(Tn), (8)
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where deg % is the degree of the representation %, d is the order of the group
G and �% is the character of %. However, since we are only dealing with one-
dimensional representations, deg % = 1 throughout this article. Eachℙ% is well-
de�ned because �◦�−1 is in L2(Tn) whenever � ∈ L2(Tn). An application of
Schur’s Lemma implies that ℙ2% = ℙ% [15, p. 24, Theorem 4.1]. We now show
thatℙ% is self-adjoint. Performing change of variables, we get that for all �,  ∈
L2(Tn) and � ∈ G,

⟨� ⋅ �, � ⋅  ⟩ = ⟨�,  ⟩, (9)

where ⟨⋅, ⋅⟩ denotes the inner product in L2(Tn). For �,  ∈ L2(Tn), we have

⟨ℙ∗%�,  ⟩ = ⟨�,ℙ% ⟩ = ⟨�, 1
d

∑

�∈G
�%(�−1)  ◦�−1⟩

= 1
d

∑

�∈G
�%(�)⟨�,  ◦�−1⟩

= 1
d

∑

�∈G
�%(�)⟨�◦�,  ⟩

= ⟨ℙ%�,  ⟩,

where the penultimate equality follows fromEquation (9). It is known thatℙ% ∶
H2(Dn) → H2(Dn) is the orthogonal projection onto the subspace RG% (H2(Dn))
[9, Lemma 2.10]. Therefore,

ℙ%(H2(Dn)) = RG% (H2(Dn)).

We use this identi�cation in the following proof.

Proof of Proposition 2.5. Fix % ∈ Ĝ1 and consider the operator

Γ% ∶ H2
%(�(Dn))→ ℙ%(H2(Dn))

de�ned by

Γ%f =
1

√
d
l%f◦�. (10)

FromEquation (7) it follows that the operator Γ% is an isometry. From the above
argument and Lemma 2.2, we know that any element f̃ in ℙ%(H2(Dn)) can be
written as f̃ = l% f◦� and from Equation (7), it follows that f ∈ H2

%(�(Dn)).
Thus Γ%(

√
df) = f̃ and hence Γ% is unitary.

Let SDn denotes the reproducing kernel ofH2(Dn). The expression

1

l%(z)l%(w)

∑

�∈G
�%(�−1)SDn(�−1 ⋅ z,w)
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isG-invariant in both variables, separately. Using analytic version of Chevalley-
Shephard-Todd theorem [3], we write

S�,%(�(z), �(w)) =
1

l%(z)l%(w)

∑

�∈G
�%(�−1)SDn(�−1 ⋅ z,w). (11)

We now show that S�,%(�(z), �(w)) is the reproducing kernel ofH2
%(�(Dn)).

For a �xed w ∈ Dn, l%(⋅)S�,%(�(⋅), �(w)) ∈ ℙ%(H2(Dn)) since we have the
following,

l%(z)S�,%(�(z), �(w)) = 1

l%(w)

∑

�∈G
�%(�−1)SDn(�−1 ⋅ z,w)

= d

l%(w)
ℙ%SDn(z,w).

Note that Γ% is unitary and Γ%(S�,%(⋅, �(w)))(z) =
1

√
d
l%(z)S�,%(�(z), �(w)) for

�xedw ∈ Dn. Therefore, for everyw ∈ Dn, S�,%(⋅, �(w)) is inH2
%(�(Dn)).

Also, let f ∈ H2
%(�(Dn)). Then

⟨f, S�,%(⋅, �(w))⟩ = ⟨Γ%f,Γ%S�,%(⋅, �(w))⟩

= 1
d
⟨l% f◦�,l%S�,%(�(⋅), �(w))⟩

= 1
d
⟨l% f◦�,

d

l%(w)
ℙ%SDn(⋅,w)⟩

= 1
l%(w)

⟨l% f◦�, SDn(⋅,w)⟩ = f(�(w)).

�

Remark 2.6. For % ∈ Ĝ1, ℙ%(H2(Dn)) is a closed subspace of H2(Dn) and the
reproducing kernel S% of ℙ%(H2(Dn)) is given by

S%(z,w) =
1
d

∑

�∈G
�%(�−1)SDn(�−1 ⋅ z,w).

For a �xedw,

l%(w)Γ%(S�,%(⋅, �(w)))(z) =
1

√
d
l%(z)l%(w)S�,%(�(z), �(w)) =

√
dS%(z,w).

Let us de�ne the notion of Hardy spaces for 1 < p <∞.

De�nition 2.7. Let 1 < p <∞. The Hardy spaceHp
% (�(Dn)) is the holomorphic

function space on �(Dn) de�ned as following:

Hp
% (�(Dn)) =

{f ∶ �(Dn)→ ℂ holomorphic ∶ sup
0<r<1

∫
Tn

|f◦�(reiΘ)|p|l%(reiΘ)|2dΘ <∞}.
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From the de�nition, it follows that the operator

Γ% ∶ H
p
% (�(Dn))→ Hp(Dn, |l%|2−p),

de�ned by Γ%f = f◦� l%, is an isometry.

2.3. Szegö Projections. Let dΘ%,� be the measure supported on the Shilov
boundary �(Tn) of �(Dn) obtained from the following:

∫
�(Tn)

f dΘ%,� = ∫
Tn
f◦� |l%|2dΘ, (12)

where l% is as de�ned in Lemma 2.2. For 1 ≤ p <∞, and % ∈ Ĝ1, the Lebesgue
spaces on �(Tn) with respect to the measure dΘ%,� are de�ned by

Lp% (�(Tn)) = {f ∶ �(Tn)→ ℂ| ∫
�(Tn)

|f|p dΘ%,� <∞}.

The operator Γ% ∶ L
p
% (�(Tn)) → Lp(Tn, |l%|2−p) de�ned by Γ%f = f◦� l% is an

isometry. In particular, we observe that Γ% maps L2%(�(Tn)) onto the closed sub-
spaceℙ%(L2(Tn)) of L2(Tn).We use two elementary properties such as �◦�−1 =
� for every � ∈ G and ℙ%(l%) = l% to prove that

ℙ%(Γ%f) = 1
d

∑

�∈G
�%(�−1) (Γ%f)◦�−1

= (f◦�) (
1
d

∑

�∈G
�%(�−1)l%◦�−1)

= f◦� l% = Γ%f.

Lemma 2.8. For % ∈ Ĝ1, H2
%(�(Dn)) is isometrically embedded in L2%(�(Tn)).

Proof. Note that Γ% ∶ L2%(�(Tn)) → ℙ%(L2(Tn)), de�ned by Γ%f = f◦� l%, is
an isometry. So is Γ% ∶ H2

%(�(Dn)) → ℙ%(H2(Dn)). Let i% ∶ ℙ%(H2(Dn)) →
ℙ%(L2(Tn)) be the canonical isometric embedding. Observe that the following
diagram commutes:

H2
%(�(Dn)) L2%(�(Tn))

ℙ%(H2(Dn)) ℙ%(L2(Tn))

Γ−1% ◦i%◦Γ%

Γ% Γ%
i%

Thus,H2
%(�(Dn)) is embedded into L2%(�(Tn)) by the isometry Γ−1% ◦i%◦Γ%. �

Therefore, one can realizeH2
%(�(Dn)) as a closed subspace of L2%(�(Tn)).Now

we de�ne generalized Szegö projections.
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De�nition 2.9. Let % ∈ Ĝ1.The Szegö projection associated to the representation
% is de�ned to be the orthogonal projection

S�,% ∶ L2%(�(Tn))→ H2
%(�(Dn)). (13)

When % is the sign representation, we simply denote the Szegö projection S�,sgn as
S� .

In this article, our primary goal will be to obtain Lp boundedness of the gen-
eralized Szegö projections S�,%. The following result connects S�,% with the clas-
sical Szegö projection SDn on the polydisc.

Lemma 2.10. The following diagram commutes:

L2%(�(Tn)) H2
%(�(Dn))

ℙ%(L2(Tn)) ℙ%(H2(Dn)).

S�,%

Γ% Γ%

SDn

Proof. Note that for f ∈ L2%(�(Tn)), we have

(Γ%S�,%f)(z) = 1
√
d
(S�,%f◦�)(z)l%(z) =

1
√
d
l%(z)⟨f, S�,%(⋅, �(z))⟩

= 1
√
d
l%(z)⟨Γ%f,Γ%

(
S�,%(⋅, �(z))

)
⟩ = 1

√
d
⟨Γ%f,

√
dS%(⋅, z)⟩

= (SDnΓ%f)(z), (14)

where the penultimate equality follows from Remark 2.6. �

As a consequence of Lemma 2.10 along with previous discussion, we con-
clude the following which is crucial to prove our main result.

Lemma 2.11. Under the assumption that SDn
is bounded on Lp(Tn, |l�|2−p), the

following diagram commutes:

Lp% (�(Tn)) ∩ L2%(�(Tn)) Lp(Tn, |l%|2−p) ∩ L2(Tn)

Hp
% (�(Dn)) ∩H2

%(�(Dn)) Hp(Dn, |l%|2−p) ∩H2(Dn).

Γ%

S�,% SDn
Γ%

3. Lp regularity of Szegö projections
3.1. Muckenhoupt weights. In this section, we recall the preliminaries re-
lated to the theory of Muckenhoupt weights on the circle, denoted by Ap(T).
A weight ! is a locally integrable function and !(x) > 0 almost everywhere.
In 1972, Muckenhoupt [22] characterized the class of weights for which the
Hardy-Littlewood maximal operator maps weighted Lp spaces to itself. Subse-
quently, Coifman and Fe�erman [5] studied these weights in connection with
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Calderón-Zygmund operators. Since in this article we con�ne ourselves to the
Szegö projection, let us recall the de�nition of Ap(T) weights.

De�nition 3.1. Let 1 < p < ∞. We say ! ∈ Ap(T) if there exists a constant
C > 0 such that

[!]Ap(T) ∶= sup
I⊂T

(
1
|I|

∫
I
!) (

1
|I|

∫
I
!
− 1
p−1)

p−1

≤ C <∞, (15)

where the supremum is over all intervals I inT and |I| denotes its arc-lengthmea-
sure.

The following result characterizes Ap(T) weights in terms of the Szegö pro-
jection and it will be heavily used in our proof of Lp regularity.

Theorem 3.2 ([8]). Let 1 < p < ∞. The Szegö projection SD maps Lp(!,T) to
itself if and only if ! ∈ Ap(T).

We also need the following characterization of power weights. It is well
known, however, to make the exposition complete, we supply a simple proof.

Lemma 3.3. Let �, �, 
 > 0, 1 < p < ∞ and � ∈ ℝ. Then the weight !(z) ∶=

|z − ei�|
�−
p
� ∈ Ap(T) if and only if p ∈ (�+�

�+

, �+�



) , with [!]Ap(T) independent

of �.

Proof. We �rst prove that if p ∈ (�+�
�+


, �+�



) then ! satis�es the condition (15)

and [!]Ap(T) depends on�, �, 
, andp. Also, note that using change of variables,
we may simply assume that � = 0. Let I(#, r) = {ei& ∶ |ei# − ei&| < r} be any
interval on T. Depending on the position of the interval I, we need to handle
the following cases:

Case 1: |ei# − 1| ≥ 5r. Observe that in this case we have

|ei& − 1| ≥ |ei# − 1| − |ei# − ei&| ≥ 4
5 |e

i# − 1|,

for all ei& ∈ I(#, r). Similarly, |ei& − 1| ≤ 6
5
|ei# − 1|. Therefore, in this case, we

obtain

(
1

|I(#, r)|
∫
I(#,r)

!) (
1

|I(#, r)|
∫
I(#,r)

!
− 1
p−1)

p−1

≃ C|ei# − 1|
(�−
p)

� (|ei# − 1|
− (�−
p)
�(p−1))

p−1

≃ C,

where C is a �xed dimensional constant.
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Case 2: |ei# − 1| ≤ 5r.Without loss of generalitywemay assume r is small since

the weight ! (and !
− 1
p−1 ) is only singular near 1. In this case I(#, r) ⊂ I(0, 7r).

Therefore,

(
1

|I(#, r)|
∫
I(#,r)

!) (
1

|I(#, r)|
∫
I(#,r)

!
− 1
p−1)

p−1

≤ (
1
r ∫I(0,7r)

|ei& − 1|
(�−
p)

� d&) (
1
r ∫I(0,7r)

|ei& − 1|
− (�−
p)
�(p−1) d&)

p−1

≤ C (
1
r ∫

cr

0
&
(�−
p)

� d&) (
1
r ∫

cr

0
&
− (�−
p)
�(p−1) d&)

p−1

≤ C�,
,p,�
r
(�−
p)

�
+1

r
⎛
⎜
⎝

r
1− (�−
p)

�(p−1)

r
⎞
⎟
⎠

p−1

≤ C�,
,p,�,

provided (�−
p)
�

+ 1 > 0 and 1 − (�−
p)
�(p−1)

> 0. Rewriting the above inequalities,

we obtain the speci�ed range �+�
�+


< p < �+�


. The necessary part is easy to see

since for p ∉ (�+�
�+


, �+�



) either ! or !
− 1
p−1 is not even locally integrable. �

The following is a simple consequence of Hölder’s inequality and can be
found in [8].

Lemma 3.4. Let !1, !2,… , !k ∈ Ap(T). For any collection of scalars {�i} with
k∑

i=1
�i = 1, we have ! =

∏k
i=1 !

�i
i ∈ Ap(T).

3.2. Lp regularity. The following is our main result regarding the Lp regular-
ity of generalized Szegö projections on quotient domains. Recall the linear form
l% =

∏t
j=1 l

cj
j , where t and the cj’s are described in Lemma 2.2. Observe that

if % is the trivial representation tr ∶ G → ℂ∗, de�ned by tr(�) = 1 and � ∈ G,
then ltr = 1, and in this case the generalized Szegö projection S�,tr is trivially
bounded from Lptr(�(T

n)) → Hp
tr(�(D

n)) for 1 < p < ∞ since SDn maps Lp(Tn)
to itself for 1 < p < ∞ (see Equation (18)). Therefore, from here onwards we
only consider representations which are not equivalent to the trivial represen-

tation. Without loss of generality, we may assume that l% =
t∏

j=1
cj≠0

l
cj
j . Let us set

lj(z) =
∑n

k=1 ajkzk for all 1 ≤ j ≤ t. In the sequel, Zi, 1 ≤ i ≤ n, denotes the
following set

Zi = {j ∶ 1 ≤ j ≤ t and aji ≠ 0}. (16)
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Theorem 3.5. LetG be a �nite pseudore�ection group that acts onDn and � be a
basic polynomial associated toG.For % ∈ Ĝ1, there exists an interval (a%, b%), 1 <
a% < 2 < b% <∞, such that the generalized Szegö projection S�,% is bounded from
Lp% (�(Tn)) toH

p
% (�(Dn)) if p ∈ (a%, b%), where

(a%, b%) ∶=
n⋂

i=1

⋂

j∈Zi

⎛
⎜
⎝

2cj + �ij
cj + �ij

,
2cj + �ij

cj

⎞
⎟
⎠
, (17)

and for each 1 ≤ i ≤ n, {�ij}j∈Zi are positive numbers such that
∑

j∈Zi
�ij = 1.

Proof. Lp regularity follows from the following chain of arguments. Note that

‖S�,%f‖Lp% (�(Tn)) ≲ ‖f‖Lp% (�(Tn))

⟺ ∫
�(Tn)

|S�,%f|pdΘ%,� ≤ C ∫
�(Tn)

|f|pdΘ%,�

⟺ ∫
Tn

|S�,%f◦�|p |l%|2dΘ ≤ C ∫
Tn

|f◦�|p |l%|2dΘ

⟺ ∫
Tn

|SDn(l%f◦�)|p |l%|2−pdΘ ≤ C ∫
Tn

|l% f◦�|p |l%|2−pdΘ. (18)

Therefore, the exponents p for which S�,% maps Lp% ()�(Dn)) to itself will be dic-
tated by the weighted boundedness of SDn . Since we are only concerned with
the distinguished boundary, we have SDn =

⨂n
i=1 SD.This allows us to consider

the weight |l%|2−p coordinatewise and it is enough to assure the boundedness
in each coordinate uniformly. More precisely,

∫
Tn

|SDn(l%f◦�)|p |l%|2−pdΘ

= ∫
Tn

|
n⨂

i=1
SD(l%f◦�)|p |l%|2−pdΘ

= ∫
Tn−1

|
n−1⨂

i=1
SD(l%f◦�)|p

n∏

i=2
dzi

∫
T
|SD(l%f◦�)|p

∏

j∈Z1

|lj|cj(2−p)dz1
∏

j∉Z1

|lj|cj(2−p)

≤ ∫
Tn−1

|
n−1⨂

i=1
SD(l%f◦�)|p

n∏

i=2
dzi

∫
T
|SD(l%f◦�)|p

∏

j∈Z1

|aj1|cj(2−p)|z1 + �j(z2,⋯ , zn)|
cj (2−p)

�1j
�1j ∏

j∉Z1

|lj|cj(2−p)dz1

,
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where {�1j }j∈Z1 are such that
∑

j∈Z1
�1j = 1 and since each lj =

∑n
k=1 ajkzk, j ∈

Z1, wewrite it aslj = aj1(z1+�j(z2,⋯ , zn))with�j(z2,⋯ , zn) ∶=
∑n

k=2
ajk
aj1
zk.

At this point, invoking Theorem 3.2, Lemma 3.3 and Lemma 3.4, if

p ∈
⋂

j∈Z1

⎛
⎜
⎝

2cj + �1j
cj + �1j

,
2cj + �1j

cj

⎞
⎟
⎠
,

we have

∫
Tn

|SDn(l%f◦�)|p |l%|2−pdΘ

≤ C ∫
Tn−1

|
n−1⨂

i=1
SD(l%f◦�)|p ∫

T
|l%f◦�)|p

∏

j∈Z1

|aj1|cj(2−p) (19)

|z1 + �j(z2,⋯ , zn)|
cj (2−p)

�1j
�1j
dz1

∏

j∉Z1

|lj|cj(2−p)
n∏

i=2
dzi.

Now recursively applying the above procedure for each coordinate, we ensure
the following

∫
Tn

|SDn(l%f◦�)|p |l%|2−pdΘ ≤�ij ,p,ci C ∫Tn
|l% f◦�|p |l%|2−pdΘ

holds true for

p ∈
n⋂

i=1

⋂

j∈Zi

⎛
⎜
⎝

2cj + �ij
cj + �ij

,
2cj + �ij

cj

⎞
⎟
⎠
,

where for each 1 ≤ i ≤ n, {�ij}j∈Zi are positive numbers such that
∑

j∈Zi
�ij = 1.

Note that we can use (19) recursively since at the i-th iteration the constants
only depend on �ij, cj, p, where 1 ≤ i ≤ t. Moreover, as each of the intervals
((2cj + �ij)∕(cj + �

i
j), (2cj + �

i
j)∕cj), 1 ≤ i ≤ n, j ∈ Zi is Hölder symmetric, it is

easy to see that (a%, b%) is also Hölder symmetric. �

Remark 3.6. We specialize Theorem 3.5 for some particular representations.

∙ Sign representation: Recall that for the sign representation we have the
following

lsgn(z) = c
t∏

i=1
lmi−1
i (z),

where mi is the order of the cyclic subgroup Gi for 1 ≤ i ≤ t (see Corol-
lary 2.3). Therefore, cj = mj − 1, hence invoking Theorem 3.5, we obtain
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that the Szegö projection S� maps Lpsgn(�(Tn)) to itself if

p ∈
n⋂

i=1

⋂

j∈Zi

⎛
⎜
⎝

2(mj − 1) + �ij
mj − 1 + �ij

,
2(mj − 1) + �ij

mj − 1
⎞
⎟
⎠
.

∙ Another very interesting case appears when ci ’s are equal, that is, ci =
� ≠ 0 for all 1 ≤ i ≤ t. In that case, using homogeneity of l%, we can
conclude that |Zi| = |Zj| for all 1 ≤ i, j ≤ n. Let |Zi| = M. Then an
easy computation reveals that we can obtain the maximum range for Lp

regularity provided we choose |�ij| =
1

|Zi|
= 1

M
for all 1 ≤ i ≤ n and

j ∈ Zi , which in turn implies the Lp regularity for the range

(2�M + 1
�M + 1 ,

2�M + 1
�M ) . (20)

A more intrinsic description of the interval (a%, b%) can be given for one-
dimensional representations of a re�ection group. Recall that a re�ection is a
pseudore�ection of order 2 and a �nite group generated by re�ections is called
a re�ection group. The permutation group on n symbols and the dihedral group
are examples of re�ection groups. For a re�ection group G, mj = 2, for every
1 ≤ j ≤ t. Thus J� =

∏t
i=1 li. Recall that for a one-dimensional representation

% of G, the generating polynomial l% =
∏t

i=1 l
ci
i divides the complex Jacobian

J� , hence the corresponding cj’s are either 1 or 0. Let
Zi,% = {j ∶ cj ≠ 0} ∩ Zi, i = 1,… , n,

where Zi is as described in Equation (16). Using homogeneity of l%, we con-
clude that there exists a natural number M% such that |Zi,%| = M% for every
i = 1,… , n. We specialize to the following corollary for the one-dimensional
representations of re�ection groups.

Corollary 3.7. Let G be a �nite re�ection group that acts on Dn and � be a ba-
sic polynomial associated to G. Let % ∈ Ĝ1 be a one-dimensional representation
which is not equivalent to the trivial representation. Then there exists a natu-
ral number M% such that the generalized Szegö projection S�,% is bounded from

Lp% (�(Tn)) to itself if p ∈ ( 2M%+1

M%+1
, 2M%+1

M%
) .

In particular, the Szegö projection S� is bounded from Lpsgn(�(Tn)) to itself if
p ∈

( 2M+1
M+1

, 2M+1
M

)
, whereM = |Zj| for all j = 1,… , n and Zj is as described in

Equation (16).

Remark 3.8. The reader should note that di�erent choices of positive numbers
{�ij}j∈Zi with

∑
j∈Zi

�ij = 1, 1 ≤ i ≤ n, lead to di�erent intervals (a%, b%) of the
form (17) for which Lp regularity holds in Theorem 3.5. Therefore, it is an inter-
esting problem to optimize the choice of �ij so that one obtains the sharp range of
Lp regularity for the Szegö projection. Very recently, the sharp range for Lp regu-
larity for the Bergman projection on the symmetrized polydisc is obtained in [12],
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however, here we are more concerned with providing a framework which works
for general quotient domains and we will take up issues regarding sharpness in
future work.

Now we are at a position to describe our applications of Theorem 3.5.

3.3. Symmetrized polydisc. As an application of the last Corollary, we ob-
tain regularity properties of the Szegö projection on the symmetrized polydisc.
The permutation group on n symbols is denoted bySn. The groupSn acts on
ℂn by permuting its coordinates, that is,

� ⋅ (z1,… , zn) = (z�−1(1),… , z�−1(n)),
for � ∈ Sn and (z1,… , zn) ∈ ℂn. Clearly, the open unit polydiscDn is invariant
under the action of the groupSn.

Let sk denote the elementary symmetric polynomials of degree k in n vari-
ables, for k = 1,… , n. The symmetrization map

s ∶= (s1,… , sn) ∶ ℂn → ℂn (21)

is a basic polynomial map associated to the pseudore�ection group Sn. The
domain Gn ∶= s(Dn) is known as the symmetrized polydisc. It is well-known
that the symmetric groupSn has only two one-dimensional representations in
Ŝn, the sign representation and the trivial representation of Sn. For the triv-
ial representation, we have already seen that the Szegö projection Ss,tr maps
Lptr(s(T

n)) toHp
tr(Gn) for all 1 < p <∞.

∙ Sign representation: In [6, p. 370, Lemma 10] the generating polyno-
mial for the sign representation is computed and is given by the follow-
ing:

lsgn(z) =
∏

i<j
(zi − zj).

The following is our result in this setting. Recall that Ss is the shorthand
for Ss,sgn.

Proposition 3.9. Let p ∈ (2 − 1
n
, 2 + 1

n−1
) then the Szegö projection Ss

maps Lpsgn(s(Tn)) toH
p
sgn(Gn).

Proof. The proof trivially follows from Corollary 3.7 since in this case
M = (n − 1). �

Finally, as a consequence of Theorem 3.5, we show Lp regularity of generalized
Szegö projections on the quotient group D2∕D2k.

3.4. ThedomainD2k. Consider the polynomialmap�(z1, z2) = (zk1+z
k
2 , z1z2)

on D2. It is a proper holomorphic map of multiplicity 2k and let us denote the
domain �(D2) by D2k. The domain D2k is biholomorphically equivalent to the
quotient domain D2∕D2k where D2k is the dihedral group of order 2k, that is,

D2k = ⟨�, � ∶ �k = �2 = id, ���−1 = �−1⟩.
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See subsection 3.1.1 in [3] andpage 19 in [9] formore details. Clearly, J�(z1, z2) =
k(zk1 − zk2 ). The number of one-dimensional representations of the dihedral
group D2k in D̂2k is 2 if k is odd and 4 if k is even. Clearly, for every k ∈ ℕ
the trivial representation of D2k and the sign representation of D2k are in D̂2k.
Since for the trivial representation ltr = 1, we automatically obtain that the
Szegö projection S�,tr maps Lptr(�(T

n)) toHp
tr(D2k) for all 1 < p <∞.

∙ Sign representation: For the sign representation we have the follow-
ing:

lsgn(z) = k(zk1 − zk2 ). (22)

Now we state the Lp regularity in this setting.

Proposition 3.10. Let p ∈ ( 2k+1
k+1

, 2k+1
k
) then the Szegö projection S�

maps Lpsgn(�(Tn)) toH
p
sgn(D2k).

Proof. In view of (22), we obtain that lsgn can be factored into kmany
degree one polynomials in z1, that is

∏k
i=1 li, thus ci = 1 and the car-

dinality of the set Z1 and Z2 is k. Now a direct application of Corol-
lary 3.7 implies that for p ∈ ( 2k+1

k+1
, 2k+1

k
), the Szegö projection S� maps

Lpsgn(�(Tn)) toH
p
sgn(D2k). �

We now elaborate the Lp regularity for the Szegö projection associ-
ated to the additional two representations in the case when k is even.
Let k = 2j for some j ∈ ℕ.
(1) Let us consider the representation %1 de�ned as

%1(�) = −1 and %1(�) = 1 for � ∈ ⟨�2, �⟩.

It is known that (see [9]) l%1(z) = zj1+ z
j
2 and therefore as a conse-

quence of Theorem 3.5 and Remark 3.6, the Szegö projection S�,%1
maps Lp%1(�(T

n)) toHp
%1(D2k) for p ∈ ( 2j+1

j+1
, 2j+1

j
).

(2) The representation %2 is de�ned as following:

%2(�) = −1 and %2(�) = 1 for � ∈ ⟨�2, ��⟩.

In this case l%2(z) = zj1−z
j
2, therefore, arguing similarly we obtain

that the Szegö projection S�,%2 maps Lp%2(�(T
n)) toHp

%2(D2k) for p ∈
( 2j+1
j+1

, 2j+1
j
).
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