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Factorization of Toeplitz operators

Samir Panja

Abstract. In this article, by consideringT = (T1,… , Tn), an n-tuple of com-
muting contractions on a Hilbert space ℋ, we study T-Toeplitz operators
which consists of bounded operators X onℋ such that

T∗i XTi = X

for all i = 1,… , n. We show that any positive T-Toeplitz operator can be
factorized in terms of an isometric pseudo-extension of T. A similar factor-
ization result in terms of a BCL type of co-isometric pseudo-extension is also
obtained for positive pure lower T-Toeplitz operators. However, a certain dif-
ference has been observed between the case n = 2 and n > 2. In a more
general context, by considering n-tuples of commuting contractions S and T,
we also study (S, T)-Toeplitz operators.
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Notation
ℤ+ Set of all positive integer numbers including 0.
ℤn
+ {� = (�1,… , �n) ∶ �i ∈ ℤ+, i = 1,… , n}.

ℂ Set of all complex numbers.
T n-tuple of commuting bounded operators (T1,… , Tn).
T� T�11 ⋯T�nn .
D Open unit disc {z ∈ ℂ ∶ |z| < 1}.

For two Hilbert spaces (separable)ℋ andK, we shall denote the space of all
bounded operators fromℋ intoK byℬ(ℋ,K), and we abbreviateℬ(ℋ,ℋ) to
ℬ(ℋ). For a closed subspace S ofℋ, we denote by PS the orthogonal projection
fromℋ ontoS, and the restriction of an operatorA ∈ ℬ(ℋ) toSwill be denoted
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by A|S. We consider ℤn
+ with the usual partial order, that is, for two multi-

indexes � = (�1,… , �n) ∈ ℤn
+ and � = (�1,… , �n) ∈ ℤn

+, we say � ≤ � if and
only if �i ≤ �i for all i = 1,… , n.

1. Introduction
Toeplitz operators on the Hardy space are one of the most important and

widely studied objects in operator theory as well as in function theory, and it
was �rst introduced by O. Toeplitz in 1911 ([25]). Toeplitz operator with a sym-
bol  ∈ L∞(T) on the Hardy spaceH2(D) is denoted by T and de�ned as

T f = PH2(D) f (f ∈ H2(D)).
Here, L∞(T) denotes the C∗-algebra of ℂ-valued essentially bounded Lebesgue
measurable functions on theunit circleT, L2(T) is theHilbert space of all square-
integrable functions on T, and the Hardy spaceH2(D) over D is de�ned as

H2(D) = {f ∶ D→ ℂ ∶ f(z) =
∑

k∈ℤ+

anzk, ak ∈ ℂ, z ∈ D,
∑

k∈ℤ+

|ak|2 <∞}.

OnH2(D), one of the distinguished isometries is the unilateral shiftMz, de�ned
by Mzf(w) = wf(w) (f ∈ H2(D)). The Brown and Halmos characterization
of Toeplitz operators ([8]) says that an operator X ∈ ℬ(H2(D)) is a Toeplitz
operator if and only ifM∗

zXMz = X, that is, X = T for some  ∈ L∞(T) if and
only ifM∗

zXMz = X. In an abstract setting, replacing the unilateral shiftMz by
a Hilbert space contraction T ∈ ℬ(ℋ), several authors have studied T-Toeplitz
operators which consists of X ∈ ℬ(ℋ) satisfying the identity T∗XT = X. We
refer the reader to [15, 16, 18, 19] and references therein. In the multi-variable
setting, for an n-tuple of commuting contractions T = (T1,… , Tn) ∈ ℬ(ℋ)n,
an operator X ∈ ℬ(ℋ) is a T-Toeplitz operator if

T∗i XTi = X (i = 1,… , n).
Such operators have been considered in [7, 22, 20]. In particular, if we take
T = (Mz1 ,… ,Mzn), the n-tuple of multi-shifts on the Hardy space H2(Dn) over
the polydisc Dn, then T-Toeplitz operators are precisely the Toeplitz operators
on H2(Dn) ([17]). It has been shown in [7] that the existence of non-zero T-
Toeplitz operators is related to isometric pseudo-extensions of T.
De�nition 1.1. Let T = (T1,… , Tn) be an n-tuple of commuting contractions on
ℋ. An n-tuple of commuting contractions V = (V1,… , Vn) onK is said to be a
pseudo-extension of T if
(1) there is a non-zero contraction J ∶ℋ → K, and
(2) JTi = ViJ for all i = 1,… , n.

Apseudo-extension of T is denoted by a triple (J,K, V). A pseudo-extension
(J,K, V) ofT is said to beminimal ifK is the smallest joint reducing space forV
containing Jℋ. A minimal pseudo-extension (J,K, V) of T is called canonical
if

J∗J = SOT − lim
k→∞

P∗kPk,
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where P = T1⋯Tn is the product contraction of T and the limit is in the strong
operator topology (SOT). A pseudo-extension (J,K, V) of T is said to be iso-
metric (co-isometric or unitary) pseudo-extension if V = (V1,… , Vn) is an n-
tuple of commuting isometries (co-isometries or unitaries, respectively). In the
case when V is an n-tuple of non-commuting operators, we say that the triple
(J,K, V) is a non-commuting pseudo-extension of T. In [7], it is proved that
a non-zero T-Toeplitz operator exists if and only if T has a canonical isomet-
ric pseudo-extension (J,K, V). In fact, if (J,K, V) is any isometric pseudo-
extension of T, then it is easy to see that J∗J is a non-zero contractive positive
T-Toeplitz operator. This leads us to ask a natural question whether all positive
contractive T-Toeplitz operators are of the form J∗J for some isometric pseudo-
extension (J,K, V) of T. We answer this question in a�rmative. The answer
was known to be positive for the case n = 1 (see [15]).

Theorem 1.2. Let T = (T1,… , Tn) ∈ ℬ(ℋ)n be an n-tuple of commuting con-
tractions. ThenR is a positiveT-Toeplitz operator if and only if there exist aHilbert
spaceK, a bounded operator J ∶ ℋ → K, and an n-tuple of commuting isome-
tries V = (V1,… , Vn) ∈ ℬ(K)n such that

J∗J = R and JTi = ViJ (i = 1,… , n).

In particular, if R is a positive contractive T-Toeplitz operator, then (J,K, V) is an
isometric pseudo-extension of T.

Along this line, for an n-tuple of commuting contractions T = (T1,… , Tn) ∈
ℬ(ℋ)n, we also study solutions of systems of operator inequalities

T∗i XTi ≥ X (i = 1,… , n), (1)

and

T∗i XTi ≤ X (i = 1,… , n), (2)

where X ∈ ℬ(ℋ) is a self-adjoint operator. We say that a self-adjoint operator
X ∈ ℬ(ℋ) is an upper (lower) T-Toeplitz operator if X satis�es (1) ((2), respec-
tively). For n = 1, solutions of such inequalities have been studied in [14](see
also [9]). Similar to the case of n = 1, the upper and lower T-Toeplitz operators
are related in the following way. For � ∈ ℤn

+, by � → ∞ we mean that each
�i →∞.

Theorem 1.3. Let T = (T1,… , Tn) ∈ ℬ(ℋ)n be an n-tuple of commuting con-
tractions. Then X is an upper (lower) T-Toeplitz operator if and only if X can be
uniquely written asX = U−N (X = U+N), whereU is a self-adjoint T-Toeplitz
operator and N is a positive lower T-Toeplitz operator such that T∗�NT� → 0 in
SOT as � →∞.

Motivated by the above theorem, we de�ne

Pℒ+(T) = {N ∈ ℬ(ℋ) ∶
N ≥ 0, T∗i NTi ≤ N, i = 1… , n, T∗�NT� → 0 in SOT as� →∞}
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andwe call elements ofPℒ+(T) positive pure lowerT-Toeplitz operators. It can
be shown that, in the above de�nition ofPℒ+(T), the convergenceT∗�NT� → 0
in SOT as � → ∞ is equivalent to P∗kT NP

k
T → 0 in SOT as k → ∞, where

PT = T1⋯Tn. From the point of view of the above theorem, Pℒ+(T) plays a
major role in the study of upper or lower T-Toeplitz operators and it is impor-
tant to �nd a characterization of Pℒ+(T). In many contexts in operator theory,
the di�erence between the casen = 2 andn > 2 is prominent. For instance, any
pair of commuting contractions always possesses an isometric dilation ([1]) but
any n-tuples (n > 2) of commuting contractions does not possess an isometric
dilation in general ([21]). Such a distinction also arises in our characteriza-
tion of positive pure lower T-Toeplitz operators and which is why we separate
the case n = 2 from the rest. Before further details, recall that due to Berger,
Coburn and Lebow ([4]), any n-tuple of commuting isometries with product
isometry being pure is unitarily equivalent to n-tuple of commuting isometries
(MΦ1 ,… ,MΦn) on theHardy spaceH2

ℰ(D), where ℰ is a coe�cient Hilbert space
and for all i = 1,… , n,

Φi(z) = Ui(P⟂i + zPi), (z ∈ D)

for some unitary Ui ∈ ℬ(ℋ) and orthogonal projection Pi ∈ ℬ(ℰ) such that

Φi(z)Φj(z) = Φj(z)Φi(z) and Φ1(z)⋯Φn(z) = zIℰ (z ∈ D).
Here, the multiplication operatorMΦ corresponding to Φ is de�ned as

MΦ ∶ H2
ℰ(D)→ H2

ℰ(D), f ↦ Φf (f ∈ H2
ℰ(D)).

Such an n-tuple (MΦ1 ,⋯ ,MΦn) is commonly known as a BCL tuple (see [4, 10,
3] for more details). For n = 2, if T = (T1, T2) is a pair of commuting contrac-
tions, then we prove that any contractive positive pure lower T-Toeplitz opera-
tors can be factorized in terms of a BCL pair of co-isometric pseudo-extension
of T. This is one of the main results of this paper and it is motivated from its
one variable counterpart (see [14, Theorem 5]). A more detailed statement of
the result is the following.

Theorem 1.4. Let T = (T1, T2) ∈ ℬ(ℋ)2 be a pair of commuting contractions.
ThenN ∈ Pℒ+(T) if and only if there exist a Hilbert space ℰ, a bounded operator
Π ∶ ℋ → H2

ℰ(D), and a pair of commuting isometries M = (MΦ1 ,MΦ2) ∈
ℬ(H2

ℰ(D))
2 such that

N = Π∗Π, and ΠTi = M∗
Φi
Π (i = 1, 2),

where Φ1(z) = (P + zP⟂)U∗ and Φ2(z) = U(P⟂ + zP) are so that Φ1(z)Φ2(z) =
Φ2(z)Φ1(z) = z (z ∈ D) for some unitary U ∈ ℬ(ℰ) and orthogonal projection
P ∈ ℬ(ℰ).

In particular, if N ∈ Pℒ+(T) is a contraction, then (Π, H2
ℰ(D), (M

∗
Φ1
,M∗

Φ2
)) is

a co-isometric pseudo-extension of T.

We prove this theorem in Section 3 as Theorem 3.3. The above theorem is
related to isometric dilations of pairs of commuting contractions. Recall that a
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commuting n-tuple of isometriesV = (V1,… , Vn) onK is an isometric dilation
of an n-tuple of commuting contractions T = (T1,… , Tn) on ℋ if there is an
isometry Π ∶ℋ → K such that

ΠT∗i = V∗
i Π

for all i = 1,… , n. Here we say that an operatorA ∈ ℬ(ℋ) is pure ifA∗k → 0 in
SOT as k →∞. Let T = (T1, T2) be a pair of commuting contractions such that
the product contraction PT = T1T2 is pure. Then it can be easily veri�ed that
I ∈ Pℒ+(T∗). Therefore, by applying the above theorem forN = I, we see that
(T1, T2) dilates to a BCL pair of isometries (MΦ1 ,MΦ2). Such a dilation result is
known (see [12]). In fact, the explicit construction ofΦ1 andΦ2 obtained in the
above theorem uses techniques found in [12].

For an n (n > 2)-tuples of commuting contractions T, we lose commutativ-
ity in the characterization of Pℒ+(T). We prove that any contractive positive
pure lower T-Toeplitz operator can be factorized in terms of a BCL type of non-
commuting co-isometric pseudo-extension of T.

Theorem 1.5. Let T = (T1,… , Tn) ∈ ℬ(ℋ)n be an n-tuple of commuting con-
tractions with n > 2. Then N ∈ Pℒ+(T) if and only if there exist a Hilbert
space ℰ, a bounded operator Π ∶ ℋ → H2

ℰ(D), and an n-tuple of isometries
M = (MΘ1

,… ,MΘn) onH
2
ℰ(D) such that

N = Π∗Π andΠTi = M∗
Θi
Π (i = 1,… , n),

where for each i = 1,… , n, Θi(z) = (Pi + zP⟂i )U
∗
i for some unitary Ui ∈ ℬ(ℰ)

and orthogonal projection Pi ∈ ℬ(ℰ). Moreover,

M∗
zΠ = M∗

Θ1
M∗
Θ2
…M∗

Θn
Π.

In particular, ifN ∈ Pℒ+(T) is a contraction, then (Π, H2
ℰ(D), (M

∗
Θ1
,… ,M∗

Θn
))

is a non-commuting co-isometric pseudo-extension of T.

This theorem is proved in Section 3 as Theorem 3.4. The main di�erence
with Theorem 1.4 is that the n-tuple of BCL type of isometries (MΘ1

,… ,MΘn)
onH2

ℰ(D) are not commuting, in general. As before, if we assume that the prod-
uct contraction PT = T1⋯Tn is pure, then I ∈ Pℒ+(T∗) and the n-tuple of
isometries (MΘ1

,… ,MΘn) on H
2
ℰ(D) gives a Halmos dilation of T, that is, for

each i = 1,… , n,MΘi is an isometric dilation of Ti.
To generalize the abstract notion of Toeplitz operators in a more general set-

ting, R. G. Douglas ([14]) considered the following operator identity

S∗XT = X (X ∈ ℬ(ℋ,K)),

for two contractions S ∈ ℬ(K) and T ∈ ℬ(ℋ). A lot of research is devoted to
studying solutions of such an operator identity, see [9, 14, 23] and references
therein. In the multi-variable setting, considering two n-tuples of commuting
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contractions S = (S1,… , Sn) ∈ ℬ(K)n and T = (T1,… , Tn) ∈ ℬ(ℋ)n, we have
also studied the following system of operator equations

S∗i XTi = X (i = 1,… , n),

whereX ∈ ℬ(ℋ,K). The space of all solutions of the above operator equations
is denoted by T(S, T) and we call elements in T(S, T) as (S, T)-Toeplitz opera-
tors. In Section 4, a general construction of (S, T)-Toeplitz operators in terms
of Banach limits is given (see Theorem 4.1). In this context, it is a natural ques-
tion to ask when the space T(S, T) is non-trivial? Satisfactory answer to this
question is not known. However, we �nd some necessary conditions in terms
of canonical isometric pseudo-extension of S and T for the space T(S, T) to be
non-trivial. In particular, we show that if T(S, T) is non-trivial then S and T
have canonical isometric pseudo-extensions. One could then ask the following
immediate question: If T(S, T) is non-trivial and if (JT,QT, V) and (JS,QS,W)
are canonical isometric pseudo-extensions of T and S, respectively, then how
T(S, T) and T(W,V) are related? The answer to this question is rather neat as
we show that

T(S, T) = J∗ST(W,V)JT.
This is proved in Theorem 4.2.

The paper has four sections and the plan of the paper is as follows. In Section
2, we study T-Toeplitz operators. The study of upper and lower T-Toeplitz op-
erators is contained in Section 3. In the last section we consider (S, T)-Toeplitz
operators.

2. T-Toeplitz operators
Let T = (T1,… , Tn) be an n-tuple of commuting contractions onℋ. Recall

that an operator X ∈ ℬ(ℋ) is a T-Toeplitz operator if
T∗i XTi = X

for all i = 1,… , n. The aim of this section is to study various properties of T-
Toeplitz operators. We begin with the equivalent criteria for the space of all
T-Toeplitz operators T(T) to be non-trivial. This result is proved in Theorem
1.3 of [7] and can also be proved using results in [20]. A similar kind of result
is also proved in an another context in [6]. We include a proof here as we shall
use the construction in the proof of (2) ⟹ (3) in the latter section.

Theorem 2.1 (cf. [7]). Let T = (T1,… , Tn) be an n-tuple of commuting contrac-
tions onℋ. Then the following are equivalent.

(1) T(T) is non-trivial.
(2) The adjoint of P is not pure, where P = T1⋯Tn.
(3) There exists a canonical isometric pseudo-extension of T.

Proof. We prove (1) ⟹ (2) by the contradictory method. Let us assume that
the adjoint of P is pure. If X is a non-zero element in T(T), then

P∗kXPk = X (k ∈ ℤ+). (3)
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Now, for ℎ ∈ℋ,

‖Xℎ‖ = ‖P∗kXPkℎ‖ ≤ ‖P∗k‖‖X‖‖Pkℎ‖ ≤ ‖X‖‖Pkℎ‖ → 0 as k →∞.

Therefore, X = 0, which contradicts that X is a non zero operator.
To prove (2) ⟹ (3), let us assume that Pk ↛ 0 in SOT. Then the positive

operator QT, de�ned by

Q2T = SOT − lim
k→∞

P∗kPk, (4)

is non-zero and satis�es
P∗Q2TP = Q2T.

By the above identity, we have an isometry V ∶ QT → QT, de�ned by

QTℎ ↦ QTPℎ (ℎ ∈ℋ),

where QT = RanQT. Since for each i = 1,… , n, Ti is a contraction, we have

⟨T∗i Q
2
TTiℎ, ℎ⟩ = lim

k→∞
⟨P∗k(T∗i Ti)P

kℎ, ℎ⟩ ≤ lim
k→∞

⟨P∗kPkℎ, ℎ⟩ = ⟨Q2Tℎ, ℎ⟩.

Therefore,
T∗i Q

2
TTi ≤ Q2T (i = 1,… , n).

By virtue of the Douglas’ factorization lemma ([13]), we obtain a contraction
Vi ∶ QT → QT satisfying the following relation for ℎ ∈ℋ,

ViQTℎ = QTTiℎ (i = 1,… , n).

Using the commutativity of the tuple T, we have for i, j = 1,… , n and ℎ ∈ℋ,

ViVjQTℎ = ViQTTjℎ = QTTiTjℎ = VjQTTiℎ = VjViQTℎ.

Therefore, (V1,… , Vn) is an n-tuple of commuting contractions. Also, since
P = T1⋯Tn, a similar computation as above yields

V = V1⋯Vn.

The above identity together with the fact that V is an isometry implies each Vi
is an isometry. Finally, consider the map JT ∶ℋ → QT, de�ned by JTℎ = QTℎ
for ℎ ∈ℋ. It is now clear that JT is a contraction,

J∗TJT = SOT − lim
k→∞

P∗kPk and ViJT = JTTi (i = 1,… , n). (5)

Thus, (JT,QT, (V1,… , Vn)) is a canonical isometric pseudo-extension of T.
For (3) ⟹ (1), let (J,K,W = (W1,… ,Wn)) be an isometric pseudo-

extension of T. Now, for i = 1,… , n,

T∗i J
∗JTi = J∗W∗

i WiJ = J∗J.

Hence, J∗J is a non-zero T-Toeplitz operator. �

From the above theorem, one observes the following.
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Remarks 2.2. (i) If R is a contractive positive T-Toeplitz operator, then for k ∈
ℤ+,

R = P∗kRPk ≤ P∗kPk.

Therefore, R ≤ J∗TJT . And, if R is a T-Toeplitz operator such that R ≥ I, then
J∗TJT ≤ R.

(ii) The existence of a non-zero T-Toeplitz operator is equivalent to the existence
of a positive T-Toeplitz operator of the form J∗TJT , where (JT,QT, (V1,… , Vn)) is
a canonical isometric pseudo-extension of T.

We now proceed to prove Theorem 1.2 which says that any contractive posi-
tive T-Toeplitz operator is of the form J∗J for some isometric pseudo-extension
(J,K, V) of T.

Proof of Theorem 1.2. SinceR is a positiveT-Toeplitz operator. Therefore, for
i = 1,… , n, T∗i R

1∕2R1∕2Ti = R1∕2R1∕2, and thus,

‖R1∕2Tiℎ‖ = ‖R1∕2ℎ‖ (ℎ ∈ℋ).

We setℛ ∶= RanR1∕2 and consider for each i = 1,… , n, the isometryVi ∶ ℛ →
ℛ, de�ned by R1∕2ℎ ↦ R1∕2Tiℎ (ℎ ∈ ℋ). The commutativity of the tuple T
reveals that the tuple V ∶= (V1,… , Vn) ∈ ℬ(ℛ)n is a commuting n-tuple of
isometries. Then the bounded operator J ∶ ℋ → ℛ, de�ned by ℎ ↦ R1∕2ℎ
(ℎ ∈ℋ), satis�es

J∗J = R and JTiℎ = R1∕2Tiℎ = ViR1∕2ℎ = ViJℎ (ℎ ∈ℋ),

for all i = 1,… , n. Conversely, if there is a bounded operator J ∶ℋ → K and an
n-tuple of isometries V = (V1,… , Vn) on K satisfying JTi = ViJ (i = 1,… , n)
and J∗J = R, then for i = 1,… , n,

T∗i RTi = T∗i J
∗JTi = J∗V∗

i ViJ = J∗J = R.

Hence, R = J∗J is a T-Toeplitz operator. Moreover, if R is a contraction, then J
will be a contraction. This completes the proof. �

We illustrate the above theorem by considering a simple example.

Example 2.3. For n = 2 andℋ = ℂl (l ≥ 3). We consider a pair of commuting
contractions T = (T1, T2) on ℂl, de�ned by

T1(ei) = {
ei i = 1,… , k
0 i = k + 1,… , l

and T2(ei) = {
0 i = 1,… , m − 1
ei i = m,… , l

where 1 < m ≤ k < l and {ei}li=1 is the standard orthonormal basis for ℂl, that
is, for i = 1,… , l, ei = (0,… , 0, 1

⏟⏟⏟
ith place

, 0,… , 0). Then it is easy to check that for
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a = (am,… , ak) and ai ≥ 0 (i = m,… , k), the operator Xa, de�ned by

Xa(ei) =
⎧

⎨
⎩

0 i = 1,… , m − 1
aiei i = m,… , k
0 i = k + 1,… , l

is a positive T-Toeplitz operator. Then the map J ∶ ℂl → ℂk−m+1, de�ned by

J
⎡
⎢
⎣

z1
⋮
zl

⎤
⎥
⎦
=

⎡
⎢
⎢
⎣

a1∕2m zm
⋮

a1∕2k zk

⎤
⎥
⎥
⎦

,

and for each i = 1,… , l, the isometry Vi = Iℂk−m+1 on ℂk−m+1 satisfy

J∗J = Xa and JTi = ViJ (i = 1, 2).

In the rest of the section, we study compact T-Toeplitz operators. Before
proceeding further, for a contraction S ∈ ℬ(ℋ), let us consider a subspace of
ℋ, denoted by US and de�ned as follows

US = Span{ℎ ∈ℋ ∶ Sℎ = �ℎ ∶ |�| = 1}.

Proposition 2.4. Let T = (T1,… , Tn) ∈ ℬ(ℋ)n be an n-tuple of commuting
contractions with P = T1⋯Tn. If a compact operator X belongs toT(T), then
(a) X and X∗ commute with each Ti and P, and
(b) EachUTi andUP is reducing subspace for X and X|U⟂Ti

= 0, X|U⟂P = 0.

Proof. Let X ∈ T(T) be a compact operator. Then X ∈ T(P) and also X ∈
T(Ti) for all i = 1,… , n. The proof now follows by applying [14, Theorem 8]
for the compact operator X viewed as P-Toeplitz operator as well as Ti-Toeplitz
operator for all i = 1,… , n. �

The following corollary is an easy consequence of the above proposition.

Corollary 2.5. Let T = (T1,… , Tn) ∈ ℬ(ℋ)n be an n-tuple of commuting con-
tractions with P = T1⋯Tn, and let X ∈ T(T) be a compact operator. If one of
UTi = {0} (i = 1,… , n) orUP = {0}, then X = 0.

We end the section with the couple of immediate consequences of the above
proposition and the corollary. These might be known to the experts in the area.
However, due to lack of references, we include them as corollaries. Recall the
Brown-Halmos type characterization of Toeplitz operators on the Hardy space
over the polydisc H2(Dn) which says that an operator X ∈ ℬ(H2(Dn)) is a
Toeplitz operator if

M∗
ziXMzi = X, (i = 1,… , n)

where (Mz1 ,… ,Mzn) is the d-tuple of multi-shifts onH2(Dn).

Corollary 2.6. A compact Toeplitz operator on the Hardy space over the polydisc
is zero.
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Corollary 2.7. Let T = (T1,… , Tn) ∈ ℬ(ℋ)n be an n-tuple of commuting con-
tractions with P = T1⋯Tn. Let the positive operator QT be as in (4). If QT is a
compact operator, thenQT is a �nite dimensional orthogonal projection andTi|QT
(i = 1… , n) and P|QT are unitary, where QT = RanQT .

Proof. From the de�nition of QT, we have P∗Q2TP = Q2T. Also, it follows from
the inequalities

P∗(k+1)Pk+1 ≤ P∗kT∗i TiP
k ≤ P∗kPk (1 ≤ i ≤ n)

that T∗i Q
2
TTi = Q2T for all i = 1,… , n. Then by part (a) of Proposition 2.4, we

get TiQ2T = Q2TTi (i = 1,… , n) and PQ2T = Q2TP. Therefore, using functional
calculus, we have T∗i TiQT = QT and P∗PQT = QT. This in particular shows
that P∗QTP = QT and for all ℎ ∈ℋ,

lim
k→∞

⟨P∗kPkQTℎ, ℎ⟩ = ⟨P∗kQTPkℎ, ℎ⟩ = ⟨QTℎ, ℎ⟩.

Thus, Q2T = QT, and hence, the compactness of QT completes the proof. �

3. Lower and upper T-Toeplitz operators
For an n-tuple of commuting contractions T = (T1,… , Tn) ∈ ℬ(ℋ)n, we

deal with the following systems of operator inequalities:

T∗i XTi ≥ X and T∗i XTi ≤ X (i = 1,… , n),

where X ∈ ℬ(ℋ) is a self-adjoint operator. Recall that a self-adjoint operator
X ∈ ℬ(ℋ) is an upper T-Toeplitz operator if X satis�es the system of inequal-
ities of �rst kind as above and is a lower T-Toeplitz operator if it satis�es the
system of inequalities of second kind. First, we consider the cone of positive
upper T-Toeplitz operators and we set

U+(T) = {Q ∈ ℬ(ℋ) ∶ Q ≥ 0, T∗i QTi ≥ Q, i = 1,… , n}.
We �nd a necessary and su�cient condition for the existence of a non-trivial
element in U+(T) next.

Proposition 3.1. Let T = (T1,… , Tn) ∈ ℬ(ℋ)n be an n-tuple of commuting
contractions with P = T1⋯Tn. Then U+(T) = {0} if and only if the adjoint of P
is pure.

Proof. Let the adjoint of P is pure, and X ∈ U+(T). Then, for i = 1,… , n,
X ≤ T∗i XTi and this implies that X ≤ P∗kXPk for k ∈ ℤ+. Now, for ℎ ∈ℋ,

‖P∗kXPkℎ‖ ≤ ‖P∗k‖‖X‖‖Pkℎ‖ ≤ ‖X‖‖Pkℎ‖ → 0 as k →∞.

Thus, X ≤ 0, and so X = 0. Hence, U+(T) = {0}. Conversely, let U+(T) = {0}.
Suppose that the adjoint of P is not pure. Then by Theorem 2.1, T(T) is non-
trivial. In fact, by part(ii) of Remark 2.2, we have a positive non-zero element
inT(T), namely J∗TJT for some canonical pseudo-extension (JT,K, V) of T. In
particular, J∗TJT ∈ U+(T) which contradicts the fact that U+(T) = {0}. This
completes the proof. �
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Unlike upper T-Toeplitz operators, the cone of positive lower T-Toeplitz op-
erators is always non-trivial as the identity operator is a lower T-Toeplitz oper-
ator. We now prove Theorem 1.3 which establishes the relation between upper
and lower T-Toeplitz operators.

Proof of Theorem 1.3. We only prove the theorem for upper T-Toeplitz oper-
ator as the argument for the case of lower T-Toeplitz operator is similar. Let us
assume that X is an upper T-Toeplitz operator. Then, for any � = (�1,… , �n) ∈
ℤn
+, T

∗�XT� ≥ X. Set U� ∶= T∗�XT�, for � ∈ ℤn
+. For � ∈ ℤn

+ and � ≥ �,

U� −U� = T∗�XT� − T∗�XT� = T∗�(T∗(�−�)XT(�−�) − X)T� ≥ 0

Thus {U�}�∈ℤn
+
is an increasing net of self-adjoint operators. Since ‖U�‖ ≤ ‖X‖

for all � ∈ ℤn
+, {U�}�≥0 converges in the strong operator topology to U, say.

Clearly, X ≤ U� ≤ U for all � ∈ ℤn
+. We set N ∶= U − X. Then N is

a positive operator. Now, for ei = (0,… , 0, 1
⏟⏟⏟
ith place

, 0,… , 0) ∈ ℤn
+, T

∗
i U�Ti =

T∗(�+ei)XT(�+ei). Therefore, for all i = 1,… , n,

T∗i UTi = U, and T∗i NTi = T∗i UTi − T∗i XTi = U − T∗i XTi ≤ U − X = N.

Also, for � ∈ ℤn
+,

T∗�NT� = T∗�UT� − T∗�XT� = U − T∗�XT� → 0 in SOT as � →∞.

Hence, we have a self-adjoint operator U and a positive operator N such that
X = U −N and for i = 1,… , n, T∗i UTi = U and T∗i NTi ≤ N with T∗�NT� → 0
in SOT. Converse implication is easy to check.

For the uniqueness of such a decomposition, we assume that X has an an-
other decomposition, that is, X = U1 −N1, such that for i = 1,… , n, T∗i U1Ti =
U1 and T∗i N1Ti ≤ N1 with T∗�N1T� → 0 in SOT as � → ∞. Since U − U1 =
N −N1, we have

U −U1 = T∗�(N −N1)T� → 0 in SOT as � →∞.

Thus, U = U1, and therefore N = N1 as asserted. �

By the above theorem it is important to study positive lower T-Toeplitz op-
erator N such that T∗�NT� → 0 in SOT. For such an operator N, T∗�NT� → 0
in SOT is equivalent to P∗kT NP

k
T → 0 in SOT as k → ∞, where PT = T1⋯Tn.

Indeed, ifN is a positive lower T-Toeplitz operator then the equivalence can be
obtain from the following inequalities

P∗kT NP
k
T ≤ T∗�NT� ≤ P∗mT NPmT ,

where for � ∈ ℤn
+, m = min{�i ∶ i = 1,… , n} and k = max{�i ∶ i = 1,… , n}.

The above observation leads us to make the following equivalent de�nition of
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the cone of pure positive lower T-Toeplitz operators

Pℒ+(T) = {N ∈ ℬ(ℋ) ∶

N ≥ 0, T∗i NTi ≤ N, i = 1,… , n, P∗kT NP
k
T → 0 in SOT as k →∞}.

The rest of this section is devoted to characterize the set Pℒ+(T), which is our
main result in this section. To this end, we need to �rst introduce some termi-
nologies.

For two Hilbert spaces ℰ1 and ℰ2, an operator-valued analytic function Θ ∶
D → ℬ(ℰ1,ℰ2) is said to be multiplier from H2

ℰ1
(D) to H2

ℰ2
(D) if Θf ∈ H2

ℰ2
(D)

for f ∈ H2
ℰ1
(D). Here, for a Hilbert space ℰ,

H2
ℰ(D) = {f ∶ D→ ℰ ∶ f(z) =

∑

k∈ℤ+

akzk, ak ∈ ℰ, z ∈ D,
∑

k∈ℤ+

‖ak‖2 <∞}

is the ℰ-valued Hardy space over D. The multiplier Θ is said to be inner multi-
plier if the associated multiplication operatorMΘ ∶ H2

ℰ1
(D)→ H2

ℰ2
(D), de�ned

byMΘ(f) = Θf for f ∈ H2
ℰ1
(D), is a isometry. Let

W = [A B
C D] ∶ ℰ1 ⊕ ℰ2 → ℰ1 ⊕ ℰ2

be a unitary. Then the ℬ(ℰ1)-valued analytic function �W on D, de�ned by

�W(z) ∶= A + zB(I − zD)−1C (z ∈ D),

is called the transfer function corresponding to W. However, in this article,
we will only deal with transfer functions corresponding to unitary operators of

the form W = [A B
C 0], and in such cases �W is always a ℬ(ℰ1)-valued inner

function ([24]). In other words, �W is an inner multiplier onH2
ℰ1
(D).

We now prove a crucial lemma which does the heavy lifting of our main
result. Similar type of result is also proved in a slightly di�erent setup in [12, 5]
and has its root in [11]. Since we prove the lemma in a more general setting, it
may appear to be abstract to the reader. Roughly speaking, the lemma �nds a
su�cient condition on a unitary so that the transfer function of its adjoint gives
a co-extension of certain operator.

Lemma 3.2. Let Q,R, S,T ∈ ℬ(ℋ) be such that ℛ = RanR, S = Ran S and
QT = TQ, and let V ∶ ℛ → ℰ be an isometry for some Hilbert space ℰ. Suppose
that � ∶ℋ → H2

ℛ(D), de�ned by ℎ ↦
∑

k≥0 z
kRQkℎ, is a bounded operator and

W ∶ [A B
C 0] ∶ ℰ⊕ (ℰ̃⊕ S)→ ℰ⊕ (ℰ̃⊕ S)

is a unitary for some Hilbert space ℰ̃ such that

W(VRℎ, 0ℰ̃, SQℎ) = (VRTℎ, 0ℰ̃, Sℎ) (ℎ ∈ℋ).
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Then the transfer function corresponding to the unitaryW∗,Φ(z) = A∗+zC∗B∗ (z ∈
D), is anℬ(ℰ)-valued inner function which satis�es

ΠT = M∗
ΦΠ,

whereΠ = (IH2(D) ⊗ V)�.

Proof. Since

[A B
C 0] [

VRℎ
(0ℰ̃, SQℎ)

] = [ VRTℎ(0ℰ̃, Sℎ)
] ,

we have

VRTℎ = AVRℎ + B(0ℰ̃, SQℎ) and (0ℰ̃, Sℎ) = CVRℎ.

Consequently,
VRT = AVR + BCVRQ.

Now, for ℎ ∈ℋ, � ∈ ℰ, and l ∈ ℤ+,

⟨M∗
ΦΠℎ, z

l�⟩ =⟨Πℎ,MΦ(zl�)⟩

=⟨(IH2(D) ⊗ V)
∑

k∈ℤ+

(RQkℎ)zk, (A∗ + zC∗B∗)(zl�)⟩

=⟨VRQlℎ,A∗�⟩ + ⟨VRQl+1ℎ,C∗B∗�⟩

=⟨(AVRQl + BCVQl+1)ℎ, �⟩

=⟨VRTQlℎ, �⟩,

and

⟨ΠTℎ, zl�⟩ =⟨(IH2(D) ⊗ V)
∑

k∈ℤ+

(RQkTℎ)zk, zl�⟩

=⟨VRQlTℎ, �⟩

=⟨VRTQlℎ, �⟩.

Hence, ΠT = M∗
ΦΠ as asserted. �

We are now ready to prove Theorem 1.4. For the convenience of the reader,
we again state the theorem here.

Theorem 3.3. Let T = (T1, T2) ∈ ℬ(ℋ)2 be a pair of commuting contractions.
ThenN ∈ Pℒ+(T) if and only if there exist a Hilbert space ℰ, a bounded operator
Π ∶ ℋ → H2

ℰ(D), and a pair of commuting isometries M = (MΦ1 ,MΦ2) ∈
ℬ(H2

ℰ(D))
2 such that

N = Π∗Π, and ΠTi = M∗
Φi
Π (i = 1, 2),

where Φ1(z) = (P + zP⟂)U∗ and Φ2(z) = U(P⟂ + zP) are so that Φ1(z)Φ2(z) =
Φ2(z)Φ1(z) = z (z ∈ D) for some unitaryU ∈ ℬ(ℰ) and projection P ∈ ℬ(ℰ).

In particular, if N ∈ Pℒ+(T) is a contraction, then (Π, H2
ℰ(D), (M

∗
Φ1
,M∗

Φ2
)) is

a co-isometric pseudo-extension of T.
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Proof. Let N ∈ Pℒ+(T). Set PT ∶= T1T2. Since P∗TNPT ≤ N, we set R2 ∶=
N − P∗TNPT and ℛ = RanR. Also, since T∗i NTi ≤ N for i = 1, 2, we set R2i ∶=
N − T∗i NTi and ℛi ∶= RanRi for i = 1, 2. Consider the map � ∶ ℋ → H2

ℛ(D),
de�ned by ℎ ↦

∑
k∈ℤ+

zkRPkTℎ. A simple calculation using P∗kT NP
k
T → 0 in

SOT reveals that
∑

k∈ℤ+

P∗kT R
2PkT =

∑

k∈ℤ+

P∗kT (N − P∗TNPT)P
k
T = N,

where the above sum converges in SOT. This in particular shows that � is a
well-de�ned bounded operator and �∗� = N. We now proceed to �nd several
unitaries which are needed to construct Φ1 and Φ2. First, using the operator
identity

R2 = R21 + T∗1R
2
2T1 = T∗2R

2
1T2 + R22, (6)

we get an isometry

U ∶ {R1T2ℎ ⊕ R2ℎ ∶ ℎ ∈ℋ}→ {R1ℎ ⊕ R2T1ℎ ∶ ℎ ∈ℋ},

de�ned by

U(R1T2ℎ, R2ℎ) = (R1ℎ, R2T1ℎ) (ℎ ∈ℋ). (7)

Then, by adding a Hilbert space D if necessary, we extend the isometry U to a
unitary, again denoted by U, acting on (D⊕ℛ1)⊕ℛ2 such that

U((0D, R1T2ℎ), R2ℎ) = ((0D, R1ℎ), R2T1ℎ) (ℎ ∈ℋ).

We set ℰ ∶= D⊕ℛ1⊕ℛ2 and again using (6), we get an isometry V ∶ ℛ → ℰ,
de�ned by

V(Rℎ) = ((0D, R1ℎ), R2T1ℎ) (ℎ ∈ℋ).
Finally, with the help of the embedding �1 ∶ D ⊕ ℛ1 → ℰ, and �2 ∶ ℛ2 → ℰ,
de�ned by

�1(d, ℎ1) = (d, ℎ1, 0) and �2ℎ2 = (0, 0, ℎ2) (d ∈ D, ℎ1 ∈ ℛ1, ℎ2 ∈ ℛ2),

and the orthogonal projection P ∶ ℰ → ℰ, de�ned by

P(d, ℎ1, ℎ2) = (0, 0, ℎ2), (d ∈ D, ℎ1 ∈ ℛ1, ℎ2 ∈ ℛ2),

we de�ne
W1 ∶ ℰ⊕ (D⊕ℛ1)→ ℰ⊕ (D⊕ℛ1),

de�ned by

W1 = [U 0
0 I] [

P �1
�∗1 0] .

ThenW1 is a unitary and by a straightforward computation, we have

W1 (
VRℎ

(0D, R1PTℎ)
) = ( VRT1ℎ

(0D, R1ℎ)
) (ℎ ∈ℋ).
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Thus,W1 satis�es the hypothesis of Lemma3.2withQ = PT,R = R, S = R1,T =
T1, ℰ̃ = D, and V = V, and therefore,

ΠT1 = M∗
Φ1
Π,

where Π = (IH2(D) ⊗ V)� and Φ1(z) = (P + zP⟂)U∗ (z ∈ D) is the transfer
function ofW∗

1 . Similarly, if we consider

W2 ∶ ℰ⊕ℛ2 → ℰ⊕ℛ2,

de�ned by

W2 = [P
⟂ �2
�∗2 0] [U

∗ 0
0 I] ,

thenW2 is a unitary so that

W2 (
VRℎ
R2PTℎ

) = (VRT2ℎR2ℎ
) (ℎ ∈ℋ).

ThenW2 also satis�es the hypothesis of Lemma 3.2 with Q = PT,R = R, S =
R2,T = T2, ℰ̃ = 0 and V = V. Therefore, we have

ΠT2 = M∗
Φ2
Π,

where Φ2(z) = U(P⟂ + zP) (z ∈ D) is the transfer function corresponding to
W∗

2 . Now, it easy to check that (MΦ1 ,MΦ2) ∈ ℬ(H2
ℰ(D))

2 is a pair of commuting
isometries, N = Π∗Π, and Φ1(z)Φ2(z) = Φ2(z)Φ1(z) = z (z ∈ D). This proves
the ‘only if’ part of the theorem.

On the other hand, sinceMΦ1MΦ2 = Mz, then ΠPT = M∗
zΠ, and therefore,

P∗kT NP
k
T = P∗kT Π

∗ΠPkT = Π∗Mk
zM∗k

z Π→ 0 in SOT as k →∞.

The converse part now follows. Finally, ifN ∈ Pℒ+(T) is a contraction, then �
is a contraction, and thus, Π is a contraction. This completes the proof. �

Next we prove Theorem 1.5, and for the convenience of the reader we state
the theorem again here. The following set of notations will be used in the proof.
For ann-tuple of commuting contractionsT = (T1,… , Tn) onℋ and i = 1,… , n,
we denote by T̃i the (n − 1)-tuple obtained from T by deleting Ti. That is,

T̃i = (T1,… , Ti−1, Ti+1,… , Tn).

Also, we use the notation PT̃i ∶= T1⋯Ti−1Ti+1⋯Tn.

Theorem 3.4. Let T = (T1,… , Tn) ∈ ℬ(ℋ)n be an n-tuple of commuting con-
tractions with n > 2. Then N ∈ Pℒ+(T) if and only if there exist a Hilbert
space ℰ, a bounded operator Π ∶ ℋ → H2

ℰ(D), and an n-tuple of isometries
M = (MΘ1

,… ,MΘn) onH
2
ℰ(D) such that

N = Π∗Π andΠTi = M∗
Θi
Π (i = 1,… , n),
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where for each i = 1,… , n, Θi(z) = (Pi + zP⟂i )U
∗
i for some unitary Ui ∈ ℬ(ℰ)

and orthogonal projection Pi ∈ ℬ(ℰ). Moreover,

M∗
zΠ = M∗

Θ1
M∗
Θ2
…M∗

Θn
Π.

In particular, ifN ∈ Pℒ+(T) is a contraction, then (Π, H2
ℰ(D), (M

∗
Θ1
,… ,M∗

Θn
))

is a non-commuting co-isometric pseudo-extension of T.

Proof. Let N ∈ Pℒ+(T). Set PT ∶= T1⋯Tn. Consider the map � ∶ ℋ →
H2
ℛ(D), de�ned by ℎ ↦

∑
k∈ℤ+

zkRPkTℎ, where R
2 ∶= N − P∗TNPT and ℛ =

RanR. Then by the same argument as given in the proof of Theorem 3.3, � is a
bounded operator and �∗� = N. Since T∗i NTi ≤ N for i = 1,…n, we set

R2i ∶= N − T∗i NTi, ℛi ∶= RanRi, R̃2i ∶= N − P∗T̃iNPT̃i , and ℛ̃i ∶= Ran R̃i.

Using the operator identity

P∗T̃iR
2
i PT̃i + R̃2i = R2i + T∗i R̃

2
i Ti = R2, (8)

for each i = 1,… , n, we obtain an isometry

Ũi ∶ {RiPT̃iℎ ⊕ R̃iℎ ∶ ℎ ∈ℋ}→ {Riℎ ⊕ R̃iTiℎ ∶ ℎ ∈ℋ},

de�ned by

Ũi(RiPT̃iℎ, R̃iℎ) = (Riℎ, R̃iTiℎ) (ℎ ∈ℋ). (9)

Then, for i = 1,… , n, by adding a Hilbert space Di if necessary, we extend the
isometry Ũi to a unitary, again denoted by Ũi, acting onDi⊕ℛi⊕ ℛ̃i satisfying

Ũi(0Di
, RiPT̃iℎ, R̃iℎ) = (0Di

, Riℎ, R̃iTiℎ) (ℎ ∈ℋ).
Again, for each i = 1,… , n, using the identity (8), we get an isometry Vi ∶ ℛ →
Di ⊕ℛi ⊕ ℛ̃i, de�ned by

Vi(Rℎ) = (0Di
, Riℎ, R̃iTiℎ) (ℎ ∈ℋ).

Now, given the isometriesVi’s, it is always possible to �ndHilbert spacesD and
ℰ1,… ,ℰn such that eachVi extends to a unitary Ṽi ∶ ℛ⊕D→ Di⊕ℰi⊕ℛi⊕ℛ̃i.
Set Si ∶= Di ⊕ ℰi ⊕ ℛi ⊕ ℛ̃i. Finally, we extend each Ũi to a unitary on Si,
again denoted by Ũi, such that

Ũi(0Di
, 0ℰi , RiPT̃iℎ, R̃iℎ) = (0Di

, 0ℰi , Riℎ, R̃iTiℎ) (ℎ ∈ℋ, i = 1,… , n).
We now have all the ingredients necessary to construct the lifting of Ti as we
have done in the proof of Theorem 3.3. For i = 1,… , n, with the help of the
embedding �i ∶ Di ⊕ ℰi ⊕ℛi → Si, de�ned by

�i(d, ℎ, k) = (d, ℎ, k, 0) (d ∈ Di, ℎ ∈ ℰi, k ∈ ℛi),
and the orthogonal projection P̃i ∶ Si → Si, de�ned by

P̃i(d, ℎ, k, r) = (0, 0, 0, r) (d ∈ Di, ℎ ∈ ℰi, k ∈ ℛi, r ∈ ℛ̃i),
we de�ne a unitray

Wi ∶ Si ⊕ (Di ⊕ ℰi ⊕ℛi)→ Si ⊕ (Di ⊕ ℰi ⊕ℛi),
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such that its block matrix representation with respect to the above decomposi-
tion is given by

Wi = [Ũi 0
0 I] [

P̃i �i
�∗i 0] .

Now, by identifyingℛwithℛ⊕{0} ⊆ ℛ⊕D, we have for ℎ ∈ℋ and i = 1,… , n,

Wi (
ṼiRℎ

(0Di⊕ℰi , RiPTℎ)
) = [ŨiP̃i Ũi�i

�∗i 0 ] ( ViRℎ
(0Di⊕ℰi , RiPTℎ)

)

= [ŨiP̃i Ũi�i
�∗i 0 ] ((0Di⊕ℰi , Riℎ, R̃iTiℎ)

(0Di⊕ℰi , RiPTℎ)
)

= (Ũi(0Di⊕ℰi , RiPTℎ, R̃iTiℎ)
(0Di⊕ℰi , Riℎ)

)

= (Ũi(0Di⊕ℰi , RiT̃iTiℎ, R̃iTiℎ)
(0Di⊕ℰi , Riℎ)

)

= ((0Di⊕ℰi , RiTiℎ, R̃iT
2
i ℎ)

(0Di⊕ℰi , Riℎ)
)

= ( ṼiRTiℎ
(0Di⊕ℰi , Riℎ)

) .

Thus eachWi satis�es the hypothesis of Lemma 3.2 with Q = PT,R = R, S =
Ri,T = Ti, ℰ̃ = Di ⊕ ℰi, and V = Ṽi|ℛ, and thus, we have

Π̃Ti = M∗
Φi
Π̃ (i = 1,… , n), (10)

where Φi(z) = (P̃i + zP̃⟂i )Ũ
∗
i for z ∈ D and Π̃ = (IH2(D) ⊗ Ṽi)�. For each

i = 1,… , n, we set Pi ∶= Ṽ∗
i P̃iṼi and Ui ∶= Ṽ∗

i ŨiṼi. Then Pi and Ui are the
orthogonal projection and unitary on ℰ, where ℰ ∶= ℛ ⊕ D. Again, by the
identi�cation ofℛ withℛ⊕ {0} ⊆ ℰ, we can view the map � (=∶ Π) fromℋ to
H2
ℰ(D) satisfying Π

∗Π = N, and letting, for i = 1,… , n, Θi(z) ∶= Ṽ∗
i Φi(z)Ṽi =

(Pi + zP⟂i )U
∗
i , we see that the intertwining identity (10) now becomes

ΠTi = M∗
Θi
Π (i = 1,… , n).

Moreover,

M∗
zΠ = ΠPT = ΠT1T2…Tn = M∗

Θ1
…M∗

Θn
Π.

This proves one direction of the theorem. The other direction follows from the
following: for i = 1,… , n,

T∗i NTi = T∗i Π
∗ΠTi = Π∗MΘiM

∗
Θi
Π ≤ Π∗Π = N,

and for ℎ ∈ℋ,

‖P∗kT NP
k
Tℎ‖ = ‖P∗kT Π

∗ΠPkTℎ‖ = ‖Π∗Mk
zM∗k

z Πℎ‖ → 0 as k →∞.
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In the case, if N ∈ Pℒ+(T) is a contraction, then Π is a contraction. This
completes the proof. �

It should be noted that the tuple of isometries (MΘ1
,… ,MΘn) do not com-

mute, in general and which is the main di�erence with Theorem 3.3. How-
ever, as stated in the introduction, if we assume that P∗kT → 0 in SOT, then
I ∈ Pℒ+(T∗) and in this case the above theorem gives an explicit construction
of Halmos dilation of T. Such a dilation result also obtained earlier in [2] using
so called fundamental operators.

We illustrate Theorem 3.3 by the following example.

Example 3.5. For n = 2, we consider a pair of commuting matrices T = (T1, T2)
such that for 0 < a < 1,

T1 =
⎡
⎢
⎣

a 0 0
0 a 0
0 0 0

⎤
⎥
⎦
and T2 =

⎡
⎢
⎣

0 0 0
0 1 0
0 0 1

⎤
⎥
⎦
.

Then it is easy to verify that for r, s, t ≥ 0, thematrixN =
⎡
⎢
⎣

r 0 0
0 s 0
0 0 t

⎤
⎥
⎦
is inPℒ+(T).

Consider the bounded operatorΠ ∶ ℂ3 → H2
ℂ4(D), de�ned by

(Πℎ)(z) =
(√

r(1 − a2)ℎ1,
√
s(1 − a2)ℎ2,

√
tℎ3, a

√
rℎ1

)

+
∞∑

k≥1
zk(0, ak

√
s(1 − a2)ℎ2, 0, 0)

for z ∈ D and ℎ = (ℎ1, ℎ2, ℎ3) ∈ ℂ3, any unitaryU ∶ ℂ4 → ℂ4 satisfying

U(0,
√
s(1 − a2)ℎ2,

√
tℎ3,

√
rℎ1) = (

√
r(1 − a2)ℎ1,

√
s(1 − a2)ℎ2,

√
tℎ3, a

√
rℎ1),

and the projection P ∶ ℂ4 → ℂ4, de�ned by P(ℎ1, ℎ2, ℎ3, ℎ4) = (0, 0, 0, ℎ4) for
(ℎ1, ℎ2, ℎ3, ℎ4) ∈ ℂ4. Then, it is straight forward to check that

N = Π∗Π, and ΠTi = M∗
Φi
Π (i = 1, 2),

where Φ1(z) = (P + zP⟂)U∗ and Φ2(z) = U(P⟂ + zP).

4. (S, T)-Toeplitz operators
For n-tuples of commuting contractions T = (T1,… , Tn) ∈ ℬ(ℋ)n and S =

(S1,… , Sn) ∈ ℬ(K)n, we study solutions of the following operator equations in
this section:

S∗i XTi = X (i = 1,… , n), (11)

whereX ∈ ℬ(ℋ,K). The solution space of the above operator equations (11) is
denoted byT(S, T) and an element X inT(S, T) is called an (S, T)-Toeplitz op-
erator. We �rst describe the canonical construction of (S, T)-Toeplitz operator
corresponding to each elements in ℬ(ℋ,K) using Banach limits. Let us recall
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few elementary facts about Banach limits. Consider the Banach space l∞(ℤn
+),

de�ned by

l∞(ℤn
+) ∶= {x = {x�}�∈ℤn

+
∶ x� ∈ ℂ, ‖x‖ = sup

�∈ℤn
+

|x�| <∞}.

For x = {x�}�∈ℤn
+
∈ l∞(ℤn

+), we set for each i = 1,… , n, x(i) ∶= {x�+ei }�∈ℤn
+
,

where ei = (0,… , 0, 1
⏟⏟⏟
ith place

, 0,… , 0) ∈ ℤn
+ and de�ne a closed subspace Mi of

l∞(ℤn
+) as

Mi ∶= {x − x(i) ∶ x = {x�}�∈ℤn
+
∈ l∞(ℤn

+)}.
Banach limits in our context will be a subset of the unit ball of the dual space
(l∞(ℤn

+))
∗ denoted byℳ(ℤn

+) and consists of� ∈ (l∞(ℤn
+))

∗ such that�(M) = 0
and �(1) = 1, whereM = ∩n1Mi and 1 ∶= {1, 1,… , }. Note thatM is a non-trivial
subspace of l∞(ℤn

+) as {1, 0,… , } ∈ M, and it is easy to see that 1 ∈ l∞(ℤn
+) ⧵M.

Let T = (T1,… , Tn) ∈ ℬ(ℋ)n and S = (S1,… , Sn) ∈ ℬ(K)n be n-tuples
of commuting contractions. For X ∈ ℬ(ℋ,K) and for each (ℎ, k) ∈ ℋ × K,
the net {⟨S∗�XT�ℎ, k⟩}�∈ℤn

+
∈ l∞(ℤn

+). Now, for each � ∈ ℳ(ℤn
+), we de�ne a

sesquilinear form BX� ∶ℋ ×K → ℂ by

BX� (ℎ, k) = �({⟨S∗�XT�ℎ, k⟩}�∈ℤn
+
) (ℎ ∈ℋ, k ∈ K).

A simple estimate shows that BX� is a bounded sesquilinear form and

‖BX� ‖ ≤ ‖�‖‖X‖ ≤ ‖X‖.

Hence, by the Riesz representation theorem, there exists Y�(X) ∈ ℬ(ℋ,K)
such that for ℎ ∈ ℋ, k ∈ K, BX� (ℎ, k) = ⟨Y�(X)ℎ, k⟩. Also note that, for ℎ ∈
ℋ, k ∈ K, and i = 1,… , n,

⟨S∗i Y�(X)Tiℎ, k⟩ = BX� (Tiℎ, Sik)

= �({⟨S∗�XT�Tiℎ, Sik⟩}�∈ℤn
+
)

= �({⟨S∗(�+ei)XT(�+ei)ℎ, k⟩}�∈ℤn
+
)

= �({⟨S∗�XT�ℎ, k⟩}�∈ℤn
+
), as �(M) = 0,

= ⟨Y�(X)ℎ, k⟩.

Hence, Y�(X) ∈ T(S, T). By the above analysis, corresponding to each � ∈
ℳ(ℤn

+), the map

Y� ∶ ℬ(ℋ,K)→ T(S, T), X ↦ Y�(X),

de�nes a bounded linear operator. Also since any bounded linear functional of
norm one is completely contractive and the map X ∈ ℬ(ℋ,K) ↦ S∗�XT� ∈
ℬ(ℋ,K) is completely contractive for any � ∈ ℤn

+, it follows that Y� is in fact
a completely contractive map. By the construction it also follows that for X ∈
T(S, T), Y�(X) = X.
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Thus we have proved the following theorem. For the base case n = 1, the
result is obtained in [9].

Theorem 4.1. Let T = (T1,… , Tn) ∈ ℬ(ℋ)n and S = (S1,… , Sn) ∈ ℬ(K)n be
n-tuples of commuting contractions. Then for X ∈ ℬ(ℋ,K) and � ∈ ℳ(ℤn

+),
Y�(X) ∈ T(S, T). For each � ∈ℳ(ℤn

+), the map

Y� ∶ ℬ(ℋ,K)→ T(S, T), X ↦ Y�(X),

is a surjective completely contractivemap. Moreover, ifX ∈ T(S, T), thenY�(X) =
X for all � ∈ℳ(ℤn

+).

By the above theorem, one concludes that T(S, T) is non-trivial if and only
if the range of the map Y� is not {0} for any � ∈ℳ(ℤn

+). However, it is di�cult
to check whether Y� is {0} or not, in general. Below, we provide two necessary
conditions in terms of isometric andunitary pseudo-extensions forT(S, T) to be
non-trivial. Here, we use the terminology that two pseudo-extensions (J,K, U)
and (J̃, K̃, Ũ) of T are unitarily equivalent if there exists a unitaryW ∶ K → K̃
such that

WUi = ŨiW, i = 1,… , n, and WJ = J̃.

Proposition 4.2. Let S = (S1,… , Sn) ∈ ℬ(K)n and T = (T1,… , Tn) ∈ ℬ(ℋ)n
be n-tuples of commuting contractions. IfT(S, T) ≠ {0}, then
(a)Adjoint of the product contractionsPT andPS are not pure, wherePT = T1⋯Tn
and PS = S1⋯ Sn.
(b) S and T have canonical isometry pseudo-extensions.
(c) S and T have unique (up to unitary equivalence) canonical unitary pseudo-
extensions.

Proof. We prove part (a) by the contradictory method. Let us assume that the
adjoint of the product contraction PT is pure. LetX be a non-zero operator such
that X ∈ T(S, T). Since for i = 1,… , n, S∗i XTi = X, we also have

P∗kS XP
k
T = X (k ∈ ℤ+). (12)

Then for ℎ ∈ℋ,

‖Xℎ‖ = ‖P∗kS XP
k
Tℎ‖ ≤ ‖P∗kS ‖‖X‖‖PkTℎ‖ ≤ ‖X‖‖PkTℎ‖ → 0 as k →∞.

Therefore, X = 0, which contradicts that X is a non zero operator. Taking
adjoint of the equation (12), we can similarly prove that the adjoint of PS is not
a pure contraction.

Since the adjoint of product contractions PT and PS are not pure, part (b)
then follows from Theorem 2.1.

For part (c), we only need to show that T has a canonical unitary pseudo-
extension as the arguments for S is identical. Since the adjoint of PT is not pure,
let (JT,QT, V) be a canonical isometric pseudo-extension of T as constructed in
the proof of Theorem 2.1, where V = (V1,… , Vn) on QT is a n-tuple of com-
muting isometries. Suppose that U = (U1,… , Un) onKT is a minimal unitary
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extension of V. Since QT ⊆ KT, we view JT ∶ ℋ → KT and note that for
i = 1,… , n and ℎ ∈ℋ,

UiJTℎ = ViJTℎ = JTTiℎ,

and
J∗TJT = SOT − lim

k→∞
P∗kT P

k
T.

Therefore, (JT,KT, U) is a canonical unitary pseudo-extension ofT. For unique-
ness, let us assume that (J,K, Û = (Û1,… , Ûn)) and (J̃, K̃, Ũ = (Ũ1,… Ũn)) be
canonical unitary pseudo-extension of T. Since canonical pseudo-extensions
are minimal, using minimality we de�ne an operatorW ∶ K → K̃, by

f(Û, Û∗)Jℎ ↦ f(Ũ, Ũ∗)J̃ℎ

for ℎ ∈ ℋ and polynomial f in z and z (z = (z1,… , zn) ∈ ℂn). If f =
∑
a�,�z�z

�
, then for ℎ ∈ℋ,

‖f(Û, Û∗)Jℎ‖2 =
∑

a�,�⟨J∗Û∗�Û�Jℎ, ℎ⟩

=
∑

a�,�⟨T∗�J∗JT�ℎ, ℎ⟩

=SOT − lim
k→∞

∑
a�,�⟨T∗�P∗kT P

k
TT

�ℎ, ℎ⟩.

Since the last term only depends on T, W is a unitary. It is evident from the
de�nitionW thatWÛi = ŨiW (i = 1,… , n) andWJ = J̃. This completes the
proof. �

It turns out that none of the assertions in Proposition 4.2 is su�cient for the
non-triviality of T(S, T). The following example demonstrates it.

Example 4.3. For n = 1 andℋ = K = H2(D), we consider S as a unilateral
shift (Mz) onH2(D)andT as an identity operator onH2(D). It is clear that adjoint
of Mz and I are not pure. However, in this case T(S, T) = {0} as any operator
which intertwines a unitary and a pure contraction has to be zero.

We have seen in Proposition 4.2 that the existence of a non-zero element in
T(S, T) impliesS andT have canonical isometric pseudo-extensions (JS,QS,W)
and (JT,QT, V), respectively. In such a situation, it is natural to ask howT(S, T)
and T(W,V) are related? The following result answer it immaculately.

Theorem 4.4. Let T = (T1,… , Tn) ∈ ℬ(ℋ)n and S = (S1,… , Sn) ∈ ℬ(K)n
be n-tuples of commuting contractions, and let (JT,QT, V) and (JS,QS,W) be
canonical isometric pseudo-extensions of T and S, respectively. Then

T(S, T) = J∗ST(W,V)JT.

Moreover, for eachA ∈ T(S, T), there exists aB ∈ T(W,V) such thatA = J∗SBJT
and ‖A‖ = ‖B‖.
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Proof. Let us assume that A ∈ T(W,V). By the hypothesis, for i = 1,… , n,
W∗

i AVi = A,ViJT = JTTi andWiJS = JSSi. Then for i = 1,… , n,

S∗i J
∗
SAJTTi = J∗SW

∗
i AViJT = J∗SAJT.

Thus, J∗SAJT ∈ T(S, T), and therefore J∗ST(W,V)JT ⊆ T(S, T). For the other
containment, let A ∈ T(S, T) be such that ‖A‖ ≤ 1. If PS = S1⋯ Sn and
PT = T1⋯Tn, then

P∗kS AP
k
T = A (k ∈ ℤ+).

Consequently, for k ∈ ℤ+,

AA∗ = P∗kS AP
k
TP

∗k
T A

∗PkS ≤ P∗kS AA
∗PkS ≤ P∗kS P

k
S .

Since (JS,QS,W) is a canonical isometric pseudo-extension of S, passing to
the SOT limit in the above inequality we get AA∗ ≤ J∗SJS. Therefore, by the
Douglas’ factorization theorem, we get a contraction C ∶ ℋ → QS such that
A = J∗SC. Since the isometric pseudo-extension (JS,QS,W) of S is minimal,
then Ran JS = QS and J∗S is one-to-one map on QS. So the identity

J∗SC = A = S∗i ATi = S∗i J
∗
SCTi = J∗SW

∗
i CTi

implies thatW∗
i CTi = C for i = 1,… , n. Furthermore, for k ∈ ℤ+, P∗kWCP

k
T = C,

where PW = W1⋯Wn. Again by a similar argument as before, we have for
k ∈ ℤ+,

C∗C = P∗kT C
∗PkWP

∗k
WCP

k
T ≤ P∗kT C

∗CPkT ≤ P∗kT P
k
T.

Therefore,C∗C ≤ J∗TJT as (JT,QT, V) is a canonical pseudo-extension ofT. Ap-
plying the Douglas’ factorization theorem, we obtain a contraction B ∶ QT →
QS such that C = BJT. Consequently, for each i = 1,… , n,

BJT = C =W∗
i CTi =W∗

i BJTTi =W∗
i BViJT,

and this implies that W∗
i BVi = B for i = 1,… , n. Thus, A = J∗SC = J∗SBJT

for some B ∈ T(W,V) and ‖B‖ ≤ 1. Hence, T(S, T) = J∗ST(W,V)JT. Fur-
thermore, the above construction shows that if A is a contraction, then we can
choose B to be a contraction as well. This proves that for A ∈ T(S, T), we can
�nd B ∈ T(W,V) such that A = J∗SBJT and ‖A‖ = ‖B‖. This completes the
proof. �

It is well known that a tuple of commuting isometries on a Hilbert space al-
ways extends to a tuple of commuting unitaries. As a consequence any canon-
ical isometric pseudo-extension also can be extended to a canonical unitary
pseudo-extension. Then next result describes the e�ects on Toeplitz operators if
one passes to unitary extensions. This result can be obtained by considering the
abelian semigroup generated by the tuple of isometries and the semigroup of
their unitary extensions and then invoking the result of P. Muhly ([20]). How-
ever, we provide a direct proof as the set of arguments are quite standard.
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Theorem 4.5. Let

V = (V1,… , Vn) ∈ ℬ(ℋ)n and W = (W1,… ,Wn) ∈ ℬ(K)n

be n-tuples of commuting isometries with minimal unitary extensions

Ṽ = (Ṽ1,… , Ṽn) ∈ ℬ(ℋ̃)n and W̃ = (W̃1,… , W̃n) ∈ ℬ(K̃)n,

respectively. Then
T(W,V) = PKT(W̃, Ṽ)|ℋ .

Moreover, for each A ∈ T(W,V), there is a B ∈ T(W̃, Ṽ) such that A = PKB|ℋ
with ‖A‖ = ‖B‖.

Proof. LetA ∈ T(W̃, Ṽ). Then for i = 1,… , n, the following chain of identities

W∗
i PKAPℋVi = PKW̃∗

i PKAṼi|ℋ = PKW̃∗
i AṼi|ℋ = PKA|ℋ .

shows that T(W,V) ⊇ PKT(W̃, Ṽ)|ℋ . For the other containment, let C ∈
T(W,V). Then for � = (�1,… , �n) ∈ ℤn

+,

W∗�CV� = C.

Now, we use a somewhat standard technique to ‘enlarge’ C and get hold of an
operator B ∈ T(W̃, Ṽ). For � = (�1,… , �n) ∈ ℤn

+, we set

B� ∶= W̃∗�PKCPℋṼ�, P1,� ∶= Ṽ∗�PℋṼ�, and P2,� ∶= W̃∗�PKW̃�.

It is easy to perceive thatP1,� andP2,� are projections onto Ṽ∗�(ℋ) and W̃∗�(K),
respectively and {P1,�}�∈ℤn

+
and {P2,�}�∈ℤn

+
are increasing net of projections.

Moreover, P1,� ↑ Iℋ̃ and P2,� ↑ IK̃ in SOT, which follows from the minimality
of the extensions, that is,

ℋ̃ =
⋁

�∈ℤn
+

Ṽ∗�(ℋ) and K̃ =
⋁

�∈ℤn
+

W̃∗�(K).

Also, it is easy to observe that the net{B�}�∈ℤn
+
is uniformly bounded and it is

bounded by ‖C‖. Now, for � ≥ � ≥ 0, observe that

P2,�B�P1,� = W̃∗�PKW̃�W̃∗�PKCPℋṼ�Ṽ∗�PℋṼ�

= W̃∗�PKW̃∗(�−�)PKCPℋṼ(�−�)PℋṼ�

= W̃∗�PKW∗(�−�)CV(�−�)PℋṼ�

= W̃∗�PKCPℋṼ�

= B� .

Therefore, P2,�B�P1,� is independent of � for � ≥ �. Consequently, for x =
P1,�(x1) ∈ P1,�ℋ̃ and y = P2,�(y1) ∈ P2,�K̃,

lim
�→∞

⟨B�x, y⟩ = lim
�→∞

⟨P1,�B�P2,�x1, y1⟩ = ⟨B�x1, y1⟩.

Since thenet {B�}�∈ℤn
+
is uniformly bounded, then it follows that lim�→∞⟨B�x, y⟩

exists for all x ∈
⋁

�∈ℤn
+
P1,�ℋ̃ = ℋ̃ and y ∈

⋁
�∈ℤn

+
P2,�K̃ = K̃. In other

words, B� converges in the weak operator topology to B ∈ ℬ(ℋ̃, K̃), say. Now,
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we do a routine computation to show that PKB|ℋ = C and for i = 1,… , n,
W̃∗

i BṼi = B. To this end, for x ∈ℋ and y ∈ K,

⟨PKB|ℋx, y⟩ = lim
�→∞

⟨PKW̃∗�PKCPℋṼ�x, y⟩ = lim
�→∞

⟨W∗�CV�x, y⟩ = ⟨Cx, y⟩.

For � = (�1,… , �n) ∈ ℤn
+ and ei = (0,… , 0, 1

⏟⏟⏟
ith place

, 0,… , 0) ∈ ℤn
+, note that

W̃∗
i B�Ṽi = B�+ei (i = 1,… , n),

and therefore, for each i = 1,… , n, W̃∗
i BṼi = B. This completes the proof of

T(W,V) = PKT(W̃, Ṽ)|ℋ . Moreover, since B is the weak operator limit of
{B�}�∈ℤn

+
and the net is uniformly bounded by ‖C‖, it follows that ‖B‖ = ‖C‖.

This proves the moreover part of the theorem. �

Weconclude the articlewith a necessary and su�cient condition forT(U,V)
to be non-trivial, where U and V are n-tuples of commuting unitaries.

Corollary 4.6. Let U = (U1,… , Un) ∈ ℬ(ℋ)n and V = (V1,… , Vn) ∈ ℬ(K)n
be two n-tuples of commuting unitaries. Then T(U,V) ≠ {0} if and only if there
exist two joint reducing subspacesℳ andN ofU and V, respectively, such that

(U1|ℳ ,… , Un|ℳ) ≅ (V1|N ,… , Vn|N).

Proof. Let us assume that T(V,U) ≠ {0}. Then there is a non zero operator B
such that

BUi = ViB (i = 1,… , n).

So, if we considerℳ = (KerB)⟂ andN = RanB, then by [14, Lemma 4.1], we
have

(U1|ℳ ,… , Un|ℳ) ≅ (V1|N ,… , Vn|N).
The other implication is easy. This completes the proof. �
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[16] Kérchy, László. Elementary and re�exive hyperplanes of generalized Toeplitz op-
erators. J. Operator Theory 51 (2004), no. 2, 387–409. MR2074188 (2005d:47048), Zbl
1071.47031. 849

[17] Maji, Amit; Sarkar, Jaydeb; Sarkar, Srijan. Toeplitz and asymptotic Toeplitz op-
erators on H2(Dn). Bull. Sci. Math. 146 (2018), 33–49. MR3812709, Zbl 1456.47008,
arXiv:1611.08558, doi: 10.1016/j.bulsci.2018.03.005. 849
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1970. xiii+389 pp. MR0275190 (43#947), Zbl 0201.45003, doi: 10.1007/978-1-4419-6094-
8. 859

[25] Toeplitz, Otto. Zur Theorie der quadratischen und bilinearen Formen von un-
endlichvielen Veränderlichen. Math. Ann. 70 (1911), no. 3, 351–376. MR1511625, Zbl
42.0366.01, doi: 10.1007/BF01564502. 849

(Samir Panja)Department ofMathematics, Indian Institute of Technology Bombay,
Powai, Mumbai, 400076, India
panjasamir2020@gmail.com
spanja@math.iitb.ac.in

This paper is available via http://nyjm.albany.edu/j/2023/29-33.html.

http://www.ams.org/mathscinet-getitem?mr=1829517
http://www.emis.de/cgi-bin/MATH-item?0993.47024
http://dx.doi.org/10.1007/BF01202957
http://www.ams.org/mathscinet-getitem?mr=0310692
http://www.emis.de/cgi-bin/MATH-item?0238.47017
http://dx.doi.org/10.1016/0022-247X(72)90089-3
http://www.ams.org/mathscinet-getitem?mr=0268710
http://www.emis.de/cgi-bin/MATH-item?0202.41802
http://dx.doi.org/10.2140/pjm.1970.34.481
http://www.ams.org/mathscinet-getitem?mr=2396015
http://www.emis.de/cgi-bin/MATH-item?1140.47017
http://dx.doi.org/10.1016/j.jfa.2007.11.001
http://www.ams.org/mathscinet-getitem?mr=0957795
http://www.emis.de/cgi-bin/MATH-item?0661.47028
http://www.ams.org/mathscinet-getitem?mr=0275190
http://www.emis.de/cgi-bin/MATH-item?0201.45003
http://dx.doi.org/10.1007/978-1-4419-6094-8
http://dx.doi.org/10.1007/978-1-4419-6094-8
http://www.ams.org/mathscinet-getitem?mr=1511625
http://www.emis.de/cgi-bin/MATH-item?42.0366.01
http://www.emis.de/cgi-bin/MATH-item?42.0366.01
http://dx.doi.org/10.1007/BF01564502
mailto:panjasamir2020@gmail.com
mailto:spanja@math.iitb.ac.in
http://nyjm.albany.edu/j/2023/29-33.html

	Notation
	1. Introduction
	2. T-Toeplitz operators
	3. Lower and upper T-Toeplitz operators
	4. (S, T)-Toeplitz operators 
	References

