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Classi�cation of real approximate
interval C∗-algebras

A. J. Dean and L. Santiago Moreno

Abstract. A functorial classi�cation, up to approximate unitary equiva-
lence, is given of unital real *-homomorphisms from a real C∗-algebra aris-
ing as an inductive limit of real forms on �nite direct sums of matrix algebras
over the continuous complex valued functions on the unit interval to another
such algebra. The invariant consists of a diagram Cu(A) → Cu(A ⊗ℝ ℂ) →
Cu(A ⊗ℝ ℍ) of Cuntz semigroups with distinguished elements. As a corol-
lary, a classi�cation, up to *-isomorphism, of such real approximate interval
algebras is obtained. Also, unital real *-homomorphisms from real approx-
imately �nite dimensional C∗-algebras to a certain general class of real C∗-
algebras are classi�ed, up to approximate unitary equivalence, by a diagram
K0(A)→ K0(A⊗ℝℂ)→ K0(A⊗ℝℍ) of orderedK0 groups with distinguished
elements. As a corollary, a new proof of the already known classi�cation of
real approximately �nite dimensional algebras in terms of this invariant is
obtained.
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1. Introduction
Following the classi�cation of AF C∗-algebras with the scaled, ordered K0

group by Elliott, this invariant was generalised in many di�erent ways to study
more complicated objects (cf [17]). Adjoining the K1 group and tracial data
has proved very successful for classifying large classes of simple C∗-algebras.
In the case of non-simple C∗-algebras, the Cuntz semigroup has been used to
classify *-homomorphisms up to approximate unitary equivalence when the
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C∗-algebras in question are inductive limits of su�ciently tractable building
blocks (cf [3], [4], [14]). In particular, the Cuntz semigroup can be used to
classify not necessarily simple approximate interval algebras.

Shortly after the classi�cation of AF C∗-algebras by Elliott, the problem of
classifying real AF algebras was solved by Giordano [6] and Stacey [18]. The
invariant used in [18], and studied extensively in [7], consists of the diagram
K0(A)→ K0(A⊗ℝ ℂ)→ K0(A⊗ℝ ℍ) of ordered K0 groups with distinguished
elements. In light of the success of the Cuntz semigroup as an invariant for
classifying non-simple C∗-algebras, it seems natural to consider the diagram
Cu(A) → Cu(A ⊗ℝ ℂ) → Cu(A ⊗ℝ ℍ) of Cuntz semi-groups with distin-
guished elements as an invariant for real, not necessarily simple, AI algebras.
The results of this paper bear this out.

The organisation of this paper is as follows. In the next section, real struc-
tures on C∗-algebras are introduced and the building blocks of real AI algebras
described. Two invariants are introduced, one involving dimension ranges and
the other Cuntz semi-groups. These are computed for the basic building blocks
of real AI algebras. Since one of the basic building blocks of real AI algebras
does not have stable rank one, care must be taken when working with di�erent
pictures of the Cuntz semi-group. Some general results on real AI algebras and
their invariants are also gathered in this section. In the third section, we give
the existence lemmas, �rst for homomorphisms from �nite dimensional alge-
bras, using the invariant with dimension ranges, and then for the case of real
interval algebras mapping into real AI algebras. The fourth section follows the
same pattern, but with the uniqueness lemmas, and the resulting classi�cation
theorems are given in the �fth section.

2. Preliminaries and de�nitions
We begin this preliminary section by �xing some notation and terminology

for real C∗-algebras.
We de�ne a realC∗-algebra to be a real Banach ∗-algebra that is isometrically

∗-isomorphic to a norm closed, self-adjoint sub-algebra of the bounded linear
operators on a realHilbert space. Given such an algebra,A, it can be shown that
the norm onA extends to the complexi�cationA⊗ℝℂ in a unique way so as to
make A ⊗ℝ ℂ into a complex C∗-algebra. One then has a map � ∶ A ⊗ℝ ℂ →
A⊗ℝℂ given by �(x+iy) = x∗+iy∗ for x, y ∈ A.Thismap � is a complex linear,
∗-preserving, involutive anti-automorphism ofA⊗ℝℂ, called the real structure
on A ⊗ℝ ℂ associated to A. One then has A = {z ∈ A ⊗ℝ ℂ | �(z) = z∗}. One
could also use the map x + iy ↦ x − iy = (�(x + iy))∗ = �((x + iy)∗). If we
denote this map z ↦ z̄, we can describe the real structure by �(z) = (z̄)∗, and
one has A = {z ∈ A⊗ℝ ℂ | z = z̄}.We shall use both pictures as convenient.

Alternatively, given a complex C∗-algebra A, and a complex liner involutive
*-anti-automorphism � of A, one may de�ne the real form on A associated to �
by A� = {z ∈ A | �(z) = z∗}. Then A� is a real C∗-algebra in the sense de�ned
above, and A ≅ A� ⊗ℝ ℂ. (see [12])
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These twopictures, realC∗-algebras vs real structures on complexC∗-algebras,
are essentially equivalent, and which one uses is a matter of taste. We shall use
whichever terminology seems more convenient in the given situation.

NotationWeshall denote the three canonical pairwise anti-commuting gen-
erators ofℍ �, � and , so elements ofℍ are of the form r+a�+b�+ c where
r, a, b, c ∈ ℝ and �2 = �2 = 2 = −1.We shall consider the canonical embed-
ding of ℂ into ℍ to be the one that sends i ∈ ℂ to �. It will often be convenient
for us to view the complexi�cation A⊗ℝ ℂ of a real C∗-algebra A as sitting in-
sideA⊗ℝℍ, so we will write elements ofA⊗ℝℂ as a+b� with a, b ∈ A.Note
that we then have (x̄) = Ad �(x) for any x ∈ A⊗ℝ ℂ.

Notice that having an anti-self-adjoint unitary in a real C∗-algebra A is ex-
actly equivalent to having a unital *-homomorphism from ℂ into A. The fol-
lowing lemma will be useful in constructing such *-homomorphisms.

Lemma 2.1. [Embeddings of ℂ] If A is a unital real C∗-algebra and r is a
projection inA⊗ℝ ℂ such that r+ r̄ = 1, then we can write r = 1

2
(1 + u�) where

u is a unitary inA such that u∗ = −u. Conversely, if u is a unitary inA such that
u∗ = −u, then r = 1

2
(1 + u�) is a projection in A⊗ℝ ℂ such that r + r̄ = 1.

Proof. Suppose r is a projection inA⊗ℝℂ such that r+ r̄ = 1.Write r = s+ t�
with s, t ∈ A. Then 1 = r + r̄ = (s + t�) + (s − t�) = 2s. Using r = r∗ gives
t∗ = −t. Using r = r2 gives 1

4
= tt∗ = −t2 = t∗t, and the result follows.

Conversely, if u is a unitary in A such that u∗ = −u, and we set r = 1
2
(1 + u�)

then it is easy to check that r = r∗ = r2 and r + r̄ = 1. �

De�nition 2.2. We use the following notations for real forms on interval alge-
bras:

A(n,ℝ) = {f ∈ C([0, 1],Mn(ℂ)) |f(1) ∈ Mn(ℝ)}

A(n,ℍ) = {f ∈ C([0, 1],M2n(ℂ)) |f(1) ∈ Mn(ℍ)}

Mn(CF[0, 1]) = Mn({f ∶ [0, 1]→ F |f is continuous})
For F = ℝ,ℂ, or ℍ.
It is shown in [19] that any real form on a �nite direct sum ofmatrix algebras

over the continuous complex valued functions on the unit interval is a �nite
direct sum of the above �ve types. We shall therefore refer to these �ve types
as the basic building blocks for real approximate interval algebras, and to �nite
direct sums of these as real interval algebras. Note that in the case of A =
Mn(Cℂ[0, 1]),we haveA⊗ℝℂ ≅ Mn(Cℂ[0, 1])⊕Mn(Cℂ[0, 1]), and in the other
four cases we have A⊗ℝ ℂ ≅ Mm(Cℂ[0, 1]), wherem = n or 2n.
De�nition 2.3. Let A be a C∗-algebra, either real or complex, and let a, b be
positive elements ofA.We say that a is Cuntz sub-equivalent to b, andwrite a ≾ b
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if there exists a sequence dn ∈ A such that dnbd∗n → a.We write a ∼ b if a ≾ b
and b ≾ a. Then ∼ is an equivalence relation on the set of positive elements of A,
called Cuntz equivalence.

De�nition 2.4. Let A be a separable C∗-algebra, either real or complex. Let
Cu(A) denote the set of Cuntz equivalence classes of positive elements ofA⊗ℝKℝ,
whereKℝ is the real C∗-algebra of compact operators on a separable real Hilbert
space. Fix an isomorphism ofKℝ withM2(Kℝ), and de�ne addition onCu(A) by
[a] + [b] = [(a 0

o b)] (this does not depend on the choice of isomorphism). De�ne

a partial order on Cu(A) by [a] ≤ [b] if, and only if, a ≾ b (this does not depend
on choice of representatives). With these de�nitions, Cu(A) becomes a partially
ordered abelian semi-group with neutral element.

Remark 2.5. There are a couple of di�erent de�nitions of Cuntz semigroup in
the literature. We have chosen the one which is most appropriate for classi�cation
of approximate interval algebras, andmost convenient for generalising to realC∗-
algebras.

Lemma 2.6. Given a real C∗-algebraA with canonical real structure � onA⊗ℝ
ℂ, one may extend � to a real structure (also to be denoted �) on (A ⊗ℝ ℂ)∗∗. If
x ∈ A, then when forming the polar decomposition x = v(x∗x)1∕2 ∈ (A⊗ℝℂ)∗∗,
one may take the partial isometry v ∈ (A⊗ℝ ℂ)∗∗� .

Proof. To see this, embed A into B(L2(ℝ)) and A⊗ℝ ℂ into B(L2(ℂ))with the
transpose as real structure. One then has x = v(x∗x)1∕2 = v̄(x∗x)1∕2, so v = v̄.
Thus we have v� = v∗. �

Lemma 2.7. Let A be a real C∗-algebra, and let a, b be positive elements in A.
Let " >∥ a − b ∥ be given. Then there exists a contraction d ∈ A such that
dbd∗ = (a − ")+.

Proof. This is analogous to lemma 2.2 in [9]. With the observation above on
polar decompositions, the proof in [9] carries over verbatim. �

Remark 2.8. With the lemma above in place of lemma 2.2 in [9], the proofs in [5]
of theorems 1 and 2 of that paper carry over to the real case essentially unchanged.

De�nition 2.9. Given a partially ordered abelian semigroup S in which increas-
ing sequences have suprema, we de�ne a relation x << y on S called compact
containment, as follows. We say that x << y if whenever we have an increasing
sequence y1 ≤ y2 ≤ y3 ≤ … with y ≤ supn(yn), then we have x ≤ ym for somem.

Remark 2.10. Given a unital real C∗-algebra A such that A ⊗ℝ ℂ has stable
rank one, it need not be the case that the invertible elements of A are dense in A.
To see this, one need only consider the example of Cℝ[0, 1]. While Cℂ[0, 1] has
stable rank one, the element f(t) = t − 1∕2 is not norm close to any invertible
element in Cℝ[0, 1].
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Notation For a C∗-algebra A, either real or complex, we shall write D(A)
for the dimension range of A, i.e. the abelian partial semigroup of Murray-v.
Neumann equivalence classes of projections in A.

De�nition 2.11. [The Class C ] Let C denote the class of separable unital real
C∗-algebras A such that A has cancelation of projections, D(A) is unperforated
and has interpolation, and A⊗ℝ ℂ and A⊗ℝ ℍ have the same properties.

De�nition 2.12. [Inv1 and Inv2] Given a unital real C∗-algebra A, Invariant
# 1, denoted Inv1(A), consists of the diagram

D(A, [1])→ D(A⊗ℝ ℂ, [1])→ D(A⊗ℝ ℍ, [1])

of dimension ranges with distinguished elements, where the connecting maps are
induced by the inclusions. A morphism of invariants � ∶ Inv1(A) → Inv1(B)
consists of a triple (�r, �c, �ℎ) of unital homomorphisms of abelian partial semi-
groups such that the following diagram commutes:

(D(A), [1])
�r
��

// (D(A⊗ℝ ℂ), [1])
�c
��

// (D(A⊗ℝ ℍ), [1])
�ℎ
��

(D(B), [1]) // (D(B ⊗ℝ ℂ), [1]) // ((D(B ⊗ℝ ℍ), [1])).

Given a unital real C∗-algebra A, Invariant # 2, denoted Inv2(A), consists of
the diagram Cu(A, [1]) → Cu(A ⊗ℝ ℂ, [1]) → Cu(A ⊗ℝ ℍ, [1]) of Cuntz semi-
groups with distinguished elements, where the connecting maps are induced by
the inclusions. A morphism of invariants � ∶ Inv2(A) → Inv2(B) consists of a
triple (�r, �c, �ℎ) of unital homomorphisms of ordered abelian partial semigroups
preserving suprema of increasing sequences, zero elements, and compact contain-
ment such that the following diagram commutes:

(Cu(A), [1])
�r
��

// (Cu(A⊗ℝ ℂ), [1])
�c
��

// (Cu(A⊗ℝ ℍ), [1])
�ℎ
��

(Cu(B), [1]) // (Cu(B ⊗ℝ ℂ), [1]) // ((Cu(B ⊗ℝ ℍ), [1])).

Lemma 2.13. [Density of elements with distinct eigenvalues] The set of
self-adjoint elements of Mn(Cℝ[0, 1]) with distinct eigenvalues in every �bre is
dense in the set of all self-adjoint elements.

Proof. This is part of lemma 2.4 (a) in [19]. �

Lemma 2.14. [Density of elements with distinct eigenvalues] The set of
self-adjoint elements of Mn(Cℍ[0, 1]) with distinct eigenvalues in every �bre is
dense in the set of all self-adjoint elements.

Proof. This follows from lemma 2.4 (c) in [19]. �
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Lemma 2.15. [Equivalence of positive elementswithin the real part] Let
A be a unital real approximate interval algebra, and let a and b be two positive
elements of A such that a is approximately unitarily equivalent to b in A ⊗ℝ ℂ.
Then a is approximately unitarily equivalent to b in A, i.e. we may choose the
unitaries to lie in A.

Proof. Let A, a, and b be as in the statement of the lemma. Let u be a unitary
u ∈ A⊗ℝ ℂ such that ∥ b − uau∗ ∥ is small in norm. Write A = lim{An, 'nm}
whereAn are �nite direct sums of real interval algebras and 'nm are unital real
*-homomorphisms. Wemay choose n and an, bn ∈ An and un ∈ An⊗ℝℂ such
that an and bn are positive, un is unitary, and ∥ bn−unanu∗n ∥, ∥ 'n∞(an)−a ∥,
∥ 'n∞(bn) − b ∥, and ∥ 'n∞(un) − u ∥ are all as small in norm as we like. The
problem reduces to showing that we can replace un with a unitary in An. Since
An is a �nite direct sum real interval algebras, we may consider each type of
basic building block separately.

Case 1: (An ≅ Mm(Cℂ[0, 1])) In this case, we have An⊗ℝ ℂ≅Mm(Cℂ[0, 1])2
with real structure (x, y)� = (ytr, xtr). Let p denote the central projection that is
a unit for the �rst summand. Then an = pan + (pan)�, and bn = pbn + (pbn)�.
Replacing un = pun + (1 − p)un with vn = pun + (pun)�, we have ∥ vnanv∗n −
bn ∥≤∥ unanu∗n − bn ∥ and vn ∈ An.

Case 2: (An ≅ A(m,ℝ)) In this case, we have An ⊗ℝ ℂ ≅ Mm(Cℂ[−1, 1])
with real structure f�(t) = f(−t)tr andAn = {f ∈ An⊗ℂ |f(−t) = f(t)}. If un
satis�es un(0) ∈ Mn(ℝ), then we may replace un by vn de�ned by vn(t) = un(t)
for t ≤ 0, and vn(t) = un(−t) for t ≥ 0.We would then have ∥ vnanv∗n − bn ∥≤∥
unanu∗n − bn ∥ and vn ∈ An.

Wemay assume, bymaking an arbitrarily small adjustment if necessary, that
an and bn are in standard form, i.e. they are unitary conjugates of diagonal
elements. Choose a system of matrix units with respect to which bn is diagonal
and bn(0) ∈ Mn(ℝ). Then unanu∗n is approximately diagonal with respect to
these matrix units, so multiplying un by a unitary close to 1 we may assume
that unanu∗n is exactly diagonal at 0. It follows that the columns of un(0) are
eigenvectors for the self-adjointmatrix an(0). Since an(0) is self-adjoint, the real
and imaginary parts of these column vectors are also eigenvectors for an(0), and
for each column, one or the other is non-zero. Thus there exists a unitarymatrix
w(0) such that w(0) commutes with an(0) and un(0)w(0) ∈ Mn(ℝ). Since an
is in standard form, we may connect w(0) to 1 with a path w(|t|) such that
w(t) commutes with an(t), and thus adjust un(t) all along its length to meet our
requirements.

Case 3: (An ≅ A(m,ℍ)) In this case, we have An ⊗ ℂ ≅ M2m(Cℂ[−1, 1])
with real structure f�(t) = f(−t)#. By [19] lemma 2.4 (b), we may �nd ap-
proximants to an and bn that have distinct eigenvalues in every �bre except the
endpoint, where they have multiplicity two, and the eigenprojections are con-
tinuous. Lemma 2.5 (a) in [19] now provides unitaries in An ≅ A(m,ℍ) that
conjugate these approximants to real diagonal elements. We may assume the
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eigenvalues are arranged in increasing order. Now an being approximately uni-
tarily close to bn implies that their spectra are approximately contained in each
other in each �bre, so the above diagonal elements are norm close to each other.

Case 4: (An ≅ Mm(Cℝ[0, 1])) Using the lemma on distinct eigenvalues, we
can approximate an and bn by elements a′n = �1(t)P1(t) +⋯+ �m(t)Pm(t) and
b′n = 1(t)Q1(t) +⋯ + m(t)Qm(t) where �i and i are continuous real func-
tions and {Pi} and {Qi} are families of pairwise orthogonal minimal projections
in Mm(Cℝ[0, 1]) and the �i and i are distinct and arranged in increasing or-
der in each �bre. We may choose partial isometries wi ∈ Mm(Cℝ[0, 1]) such
that w∗

i wi = Pi and wiw∗
i = Qi for each i. Then w = w1 + …wn is a unitary

in Mm(Cℝ[0, 1]). By construction, we have that a′n is approximately equal to
a unitary conjugate of b′n in Mm(Cℂ[0, 1]). It follows that their corresponding
eigenvalues, when listed in increasing order are close to each other. Thus a′n is
approximately equal to wb′nw∗, and wbnw∗ approximates an.

Case 5: (An ≅ Mm(Cℍ[0, 1])) The proof in this case is the same as for An ≅
Mm(Cℝ[0, 1]) with the lemma on density of elements with distinct eigenvalues
for ℍ in place of that for ℝ. �

Lemma 2.16. LetA be eitherKℝ orℍ⊗KR and let B be a hereditary subalgebra
of A. Let x, y ∈ A be such that

x∗x = y∗y and xx∗, yy∗ ∈ B.
Then for every � > 0 there is a unitary u ∈ B∼ such

‖x − uy‖ < �.
Proof. LetB, x, and y be as above, and letFdenoteℝ,ℂ, orℍ. Then there exists
a projection p ∈ B(HF) such that B = pKFp. Let x = v|x|, y = w|y| = w|x| be
the polar decompositions of x and y in B(HF). Let q = vv∗, r = ww∗, and let
f denote the support projection of |x| in B(HF). Let e = vw∗. Then e ∈ B(HF),
e∗e = ww∗ = r, ee∗ = vv∗ = q, and x = ey.We have r, q ≤ p. Now choose a
�nite rank spectral projection t ≤ f of |x| such that t|x| ≃ |x|. Let t′ = wtw∗.
Then wt = t′w and x ≃ xt = eyt = ew|y|t = ewt|y| = (et′)w|y| = (et′)y. Let
s = (et′). Then s is a �nite rank partial isometry in B with s∗s = t. Using that
K0(F) = ℤ, by adding another partial isometry in B to s, we may construct a
partial unitary u1 in B with u1y ≃ sy, and u = u1 + (1− u∗1u1) is then a unitary
that meets our requirements. �

Lemma 2.17. Let A be a real C*-algebra of stable rank 1 and let a, b ∈ (A ⊗
Kℝ)+. Then a ≾ b if and only if there is x ∈ A⊗Kℝ such that

a = x∗x and xx∗ ∈ Her(b).
Proof. One can check that the proofs of proposition 2.2, lemma 2.3, and propo-
sition 2.4 of [16], proposition 1.4.5 of [10], the relevant portions of [11], and
of proposition 1.1 of [1], all work for real C∗-algebras, giving the statement
above. �
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Theorem2.18. [Cuntz semigroups of the basic building blocks]Themaps

Cu(Cℝ[0, 1])⟶ Lsc([0, 1],ℕ ∪ {∞}),
Cu(Cℂ[0, 1])⟶ Lsc([0, 1],ℕ ∪ {∞}),
Cu(Cℍ[0, 1])⟶ Lsc([0, 1], 2ℕ ∪ {∞}),
Cu(A(1,ℝ))⟶ Lsc([0, 1],ℕ ∪ {∞}),
Cu(A(1,ℍ))⟶ {f ∈ Lsc([0, 1],ℕ ∪ {∞}) ∣ f(1) ∈ 2ℕ}

given by the rank function
[a]↦ Rank(a)

are isomorphisms in the category Cu.

Proof. That the �rst three maps in the theorem are isomorphisms in the cate-
gory Cu follow using the same proof of Theorem 1.1 of [13]. The proof that the
last two maps in the theorem are isomorphisms in the category Cu follow the
same steps. Hence we will provide the proof for the last map.

The us show that the map

(A(1,ℍ))⟶ {f ∈ Lsc([0, 1],ℕ ∪ {∞}) ∣ f(1) ∈ 2ℕ}
[a]↦ Rank(a),

is an isomorphism in the category Cu. Let a, b ∈ A(1,ℍ)) ⊗ Kℝ be positive
contractions such that

Rank(a) ≤ Rank(b).
Then using thatA(1,ℍ)) is a subalgebra of C([0, 1],M2(ℂ)) and that the second
map in the statement of the theorem is an order-embedding it follows thata ≾ b
inC([0, 1],M2(ℂ))⊗Kℝ. Then using thatC([0, 1],M2(ℂ))⊗Kℝ has stable rank
one and Lemma 2.17 we can �nd an element x ∈ C([0, 1],M2(ℂ))⊗Kℝ such
that

a = x∗x and xx∗ ∈ b(C([0, 1],M2(ℂ))⊗Kℝ)b.
We have that

Rank(a(1)) ≤ Rank(b(1)).
Hence, since the map from Cu(ℍ)⟶ ℕ∪{∞} given by the rank function is an
isomorphism in the categoryCu, it follows thata(1) ≾ b(1) inCu(ℍ). Therefore
by Lemma 2.17 there is y ∈ ℍ⊗Kℝ such that

a(1) = y∗y and yy∗ ∈ b(1)(ℍ⊗Kℝ)b(1) ⊂ b(1)(M2(ℂ)⊗Kℝ)b(1).
Let 0 < � < 1. Then by Lemma 2.16 applied to x(1) and y and

B = b(1)(M2(ℂ)⊗Kℝ)b(1)
there is a unitary u in the unitization of

b(1)(M2(ℂ)⊗Kℝ)b(1)
such that ‖ux(1) − y‖ < �. Using now that the map

K1(b(C([0, 1],M2(ℂ))⊗Kℝ)b)→ K1(b(1)(M2(ℂ)⊗Kℝ)b(1)) = 0
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induced by the quotient map is surjective and that

b(C([0, 1],M2(ℂ))⊗Kℝ)b

has stable rank one, there is a unitary v in the unitization of

b(C([0, 1],M2(ℂ))⊗Kℝ)b

such that v(1) = u. Choose z in

b(C([0, 1],M2(ℂ))⊗Kℝ)

such that z(1) = y and ‖vx − z‖ < �. Then z ∈ A(1,ℍ))⊗Kℝ,

‖a − z∗z‖ = ‖(vx)∗(vx) − z∗z‖ ≤ ‖(vx)∗(vx − z) + (vx − z)∗z‖ < � + 2� = 3�,

and
zz∗ ∈ b(C([0, 1],M2(ℂ))⊗Kℝ)b

It follows that
(a − 3�)+ ≾ z∗z ∼ zz∗ ≾ b

in A(1,ℍ))⊗Kℝ Since � is an arbitrary number between 0 and 1 we get [a] =
sup�[(a − 3�)+] ≤ [b] in Cu(A(1,ℍ))). This shows that the map given by the
rank function is an order-embedding.

Let

f ∈ {f ∈ Lsc([0, 1],ℕ ∪ {∞}) ∣ f(1) ∈ 2ℕ} ⊂ Lsc([0, 1],ℕ ∪ {∞}).

Using that secondmap in the statement of the theorem is surjective we can �nd
a positive contraction a ∈ C([0, 1],M2(ℂ)) such that [a] = f. Also, using that
the map Cu(ℍ) → 2ℕ ∪ {∞} given by the rank function is an isomorphism in
the category Cu we can �nd a positive contraction b ∈ ℍ such that [b] = f(1).
It follows that a(1) ∼ b inM2(ℂ)⊗Kℝ. �

Lemma 2.19. [Facts about Cu(A)] If A is a unital real AI algebra, multipli-
cation by 2 in the Cuntz semi-group Cu(A) is injective, and the maps Cu(A) →
Cu(A⊗ℝℂ) and Cu(A)→ Cu(A⊗ℝℍ) induced by the canonical inclusions are
injective.

Proof. Each of the three statements is easily seen to be true for the basic build-
ing blocks by our computations of the Cuntz semi-groups of those above. �

Notation: Let S = {f ∶ [0, 1] → ℕ ∪ {∞} |f is lower semi-continuous},
S0 = {f ∶ [0, 1] → ℕ ∪ {∞} |f is lower semi-continuous and f(0) = 0}, and
S2={f∶[0, 1]→ ℕ ∪ {∞}|f is lower semi-continuous and f(1) is even or∞}.

Lemma 2.20. [Unitisations] Let A be a real AI algebra. Suppose  , � ∶ S →
Cu(A) are two Cuntz semi-group morphisms whose restrictions to S0 are equal.
Then  = �.
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Proof. From the computations of the Cuntz semigroups of the basic building
blocks above, one sees that the map on Cuntz semi-groups induced by the in-
clusion of A into A ⊗ℝ ℂ is an order embedding in the case where A is a real
interval algebra, i.e. Cu(�)(x) ≤ Cu(�)(y) if and only if x ≤ y. This passes to
inductive limits, so the same holds for real AI algebras. From the note added
in proof to [3], the Cuntz semi-group of a complex AI algebra has the following
cancelation property: a + c << b + c ⇒ a ≤ b. It follows that the Cuntz semi-
group of a real AI algebra has the same cancelation property. In the note in [3],
it is shown that if Cu(A) is a Cuntz semi-group with this property, two Cuntz
morphisms from S to Cu(A) that agree on S0 are equal. �

Lemma 2.21. Let A be a real AI algebra. Then the natural inclusion of D(A)
into Cu(A) is injective and its image consists of exactly those elements between 0
and [1] that are compactly contained in themselves.

Proof. This iswell known for the building blockCu(Cℂ[0, 1]).ForCu(Cℝ[0, 1]),
Cu(Cℍ[0, 1]), and Cu(A(1,ℝ)), it follows from the computation of their invari-
ants above and the inclusion of D(A) having the same image in each case. For
Cu(A(1,ℍ)), it follows from the above computation and the image of D(A) be-
ing the even valued constant functions. The property in the lemma is clearly
preserved under taking direct sums of the algebras, so it remains to check that
it is preserved under taking inductive limits.

In [5], it is shown that inductive limits of sequences always exist in the cat-
egory Cu, and an explicit construction is given, as follows. Given an inductive
system {Gn, 'mn} inCu, Let T denote the set of sequences (sn) such that sn ∈ Gn
and sn+1 ≥ 'n(n+1)(sn) for all n. De�ne addition of sequences element wise:
(sn) + (tn) = (sn + tn). Then the relation de�ned by (sn) ≤ (tn) if for any n and
s ∈ Gn with s << sn, eventually 'nm(s) ≤ tm in Gm is a preorder on T. Form-
ing the quotient of T with respect to the associated order relation relation then
gives a partially ordered semi-group, call it S, that is in the category Cu. This
new semi-groupG is the inductive limit of the system in the category Cu,when
the maps 'n∞ ∶ Gn → G are given by s ↦ (0, 0, 0,… s, 'n(n+1)(s),… ). (Note, the
equivalence relation includes tail equivalence.)

Since the maps 'n∞ ∶ Gn → G are morphisms in the category Cu, they
preserve the relation of an element being compactly contained in itself. If A =
limAn is an inductive limit decomposition ofA as a realAI algebra, thenD(A) =
∪n(in∗D(An)), so it follows that D(A) is contained in the set of elements of
Cu(A) that are compactly contained in themselves. Suppose now that s =
[(sn)] ∈ Cu(A) and that s << s. It is shown in [5] that we may assume s =
sup'n∞(sn) and that '(sn(n+1)) << sn+1 for all n. It follows that s = 'm∞(sm)
for somem and that sm+1 << sm+1, so s is the image of an element of D(A), as
required.

It remains to see that the inclusion is injective. We have this at each �nite
stage. representing our element of G with a sequence of elements with sn ∈
D(An), i.e. with elements compactly contained in themselves, we see that the
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equivalence relation for S for such elements reduces to tail equivalence, which
is the same as that for D(A). �

Remark 2.22. If A and B are real AI algebras and � ∶ Inv2(A) → Inv2(B) is a
morphism, then � restricts to a morphism from Inv1(A) to Inv1(B).

3. Existence lemmas
In this section, we introduce the existence lemmas, beginning with the �nite

dimensional cases.

3.1. Finite dimensional algebras.

Lemma 3.1. [Existence for ℍ] Let A be a real C∗-algebra in the class C. Sup-
pose there exist three homomorphisms�r, �c,and�ℎ of unital abelianpartial semi-
groups such that the following diagram commutes:

(D(ℍ), [1])
�r
��

// (D(M2(ℂ), [1])
�c
��

// (D(M4(ℝ)), [1])
�ℎ
��

(D(A), [1]) // (D(A⊗ℝ ℂ), [1]) // ((D(A⊗ℝ ℍ), [1]))
Then there exists a unital *-homomorphism ' ∶ ℍ → A such that ' gives rise

to �r, �c, and �ℎ.

Proof. Let A, �r, �c, and �ℎ be as above. The map �ℎ gives the existence in
A ⊗ℝ ℍ of four mutually orthogonal, mutually Murray-von Neumann equiva-
lent projections adding up to 1, so there exists a unital *-homomorphism  ∶
M4(ℝ)→ A⊗ℝℍ.Wemay view  as a map fromℍ⊗ℝℍ toA⊗ℝℍ. Tensoring
withℍwe get amap ⊗ℝ id fromM4(ℝ)⊗ℝℍ to (A⊗ℝℍ)⊗ℝℍ ≅ A⊗ℝM4(ℝ).
Since they are the same on the dimension ranges, the two maps fromM4(ℝ) to
A ⊗ℝ M4(ℝ) given by x ↦ 1⊗ℝ x and x ↦  ⊗ℝ id(x ⊗ℝ 1) are equivalent,
by a unitary W say. We then have that AdW◦( ⊗ℝ id) must carry 1 ⊗ℝ ℍ
into A ⊗ℝ 1, since it must take the commutant of the copy of M4(ℝ) into the
commutant of its image. This gives us the existence of the desired map '. That
it has the right image on the invariant is forced, since it is unital. �

Lemma 3.2. [Existence for ℂ] Let A be a real C∗-algebra in the class C. Sup-
pose there exist three homomorphisms�r, �c,and�ℎ of unital abelianpartial semi-
groups such that the following diagram commutes:

(D(ℂ), [1])
�r
��

// (D(ℂ⊕ ℂ), [1])
�c
��

// (D(M2(ℂ)), [1])
�ℎ
��

(D(A), [1]) // (D(A⊗ℝ ℂ), [1]) // ((D(A⊗ℝ ℍ), [1]))
Then there exists a unital *-homomorphism ' ∶ ℂ → A such that ' gives rise

to �r, �c, and �ℎ.
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Proof. Let A, �r, �c, and �ℎ be as above. Let e1 and e2 be the units of the two
minimal direct summands ofℂ⊕ℂ, so e1+e2 = 1.Thenwehave �c([e1]D(ℂ⊕ℂ))+
�c([e2]D(ℂ⊕ℂ)) = [1]D(A⊗ℝℂ). By commutativity of the second square of the dia-
gram, we have �c([e1]D(ℂ⊕ℂ)) ≠ 0 and �c([e2]D(ℂ⊕ℂ)) ≠ 0.We can �nd non-zero
projections p1, p2 ∈ A ⊗ℝ ℂ such that p1 ≠ 0, p2 ≠ 0, p1 + p2 = 1 and
[p1] = [p2] in D(A ⊗ℝ ℍ).We can thus �nd a partial isometry f12 ∈ A ⊗ℝ ℍ
such that f12f∗12 = p1 and f∗12f12 = p2. Since A ⊗ℝ ℂ is a complex algebra, it
contains a central copy of ℂ. Consider the partial unitary u = ip1 = p1i. the
element v = u + f∗12uf12 ∈ A ⊗ℝ ℍ is an anti-selfadjoint unitary such that
f12v = vf12. It follows that the real *-algebra generated by f12 and v is isomor-
phic to M2(ℂ), so we have a unital *-homomorphism  ∶ M2(ℂ) → A ⊗ℝ ℍ.
WritingM2(ℂ) ≅ ℂ⊗ℝ ℍ, we get a unital *-homomorphism  ⊗ℝ idmapping
(ℂ⊗ℝ ℍ)⊗ℝ ℍ ≅ ℂ⊗ℝ M4(ℝ) to (A ⊗ℝ ℍ)⊗ℝ ℍ ≅ A ⊗ℝ M4(ℝ). The two
unital inclusions of M4(ℝ) into A ⊗ℝ M4(ℝ) are equivalent, via a unitary W
say. It follows that AdW◦( ⊗ℝ id)maps ℂ⊗ℝ 1M4(ℝ) into A⊗ℝ 1M4(ℝ), since
it carries the image of the commutant of 1⊗ℝM4(ℝ) into the commutant of its
image. We thus have the existence of a unital *-homomorphism ' ∶ ℂ→ A.

It remains to see that it can be adjusted to give rise to �r, �c, and �ℎ. In the
�rst case this is trivial, since the map is unital, and in the third case it follows
from the map being unital and the dimension ranges being torsion-free. From
the existence of a unital *-homomorphism fromℂ toA,we get that there exists
a projection p ∈ A⊗ℝ ℂ such that p̄ = 1− p. Since p̄ = �p�∗, we have a 2 × 2
system of matrix units in A ⊗ℝ ℍ such that e11 = p, e22 = p̄, and e12 = p�.
We get an injective *-homomorphism from A⊗ℝ ℍ intoM2(p(A⊗ℝ ℂ)p) that
sends a ∈ p(A⊗ℝℂ)p to (a 0

0 0) , sends � to (
0 1
−1 0) , and sends � to ( i 0

0 −i) .
Now suppose x = �c(e1) in the diagram above. Since x ≤ [p] + [p̄] = [1], by
Riesz interpolation there exist x1, x2 ∈ D(A ⊗ℝ ℂ) such that x = x1 + x2,
x1 ≤ [p], and x2 ≤ [p̄]. Let q1 be a projection in p(A ⊗ℝ ℂ)p and let q2 be a
projection in p̄(A ⊗ℝ ℂ)p̄ such that [q1] = x1 and [q2] = x2 in D(A ⊗ℝ ℂ).
We have [1] = 2[p] = 2x in D(A ⊗ℝ ℍ), so x = p in D(A ⊗ℝ ℍ). We have
x = [q1] + [q2] in D(A ⊗ℝ ℂ) and x = [q1] + [p − q1] in D(A ⊗ℝ ℍ), so
[q2] = [p − q1] in D(A ⊗ℝ ℍ). Thus [q2] = [p − q1] in D(A ⊗ℝ ℍ). Using the
embedding ofA⊗ℝℍ intoM2(p(A⊗ℝℂ)p) above, we have that [q2] = [p − q1]
inM2(p(A ⊗ℝ ℂ)p) as well. Since both projections are in the e22 corner, they
are equivalent in that corner as well, however, this corner is just p̄(A ⊗ℝ ℂ)p̄,
so we have [q2] = [p − q1] in D(A ⊗ℝ ℂ). Now let r = q1 + p − q1. Then we
have r + r̄ = 1 and [r] = [q1] + [p − q1] = [q1] + [q2] = x all in D(A⊗ℝ ℂ), so
the unital *-homomorphism from ℂ to A associated with the projection r (see
Lemma 2.1 in the preliminaries above) has the right image on the invariant. �

Lemma3.3. [Existence forAmpli�cations I]LetA be aunital realC∗-algebra
in the class C, and suppose thatA has the property that if B is any unital real C∗-
algebra in the class C and (�r, �c, �ℎ) is a morphism of invariants from Inv1(A)
to Inv1(B), then there exists a unital *-homomorphism ' ∶ A → B such that
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(�r, �c, �ℎ) = Inv1(').Then for any natural number n,Mn(A) has the same prop-
erty.

Proof. Let A and B be as above, and suppose that (�r, �c, �ℎ) is a morphism
of invariants from Inv1(Mn(A)) to Inv1(B). Consider �r([e11]) ∈ D(B). Since
B is in the class C, there exists a projection p ∈ B such that [p] = �r([e11]).
Then (�r, �c, �ℎ) de�nes a morphism of invariants from Inv1(A) to Inv1(pBp),
where we have identi�ed A with e11Mn(A)e11. Thus there exists a unital *-
homomorphism  ∶ A → pBp giving rise to (�r, �c, �ℎ). Since n[p] = [1] in
D(B),we have that ' =  ⊗ℝ id ∶ A⊗ℝMn(ℝ)→ (pBp)⊗ℝMn(ℝ) ≅ Bmeets
our requirements. �

Lemma 3.4. [Existence for Direct Sums I] Let A1 and A2 be two unital real
C∗ algebras, and suppose they have the property that if B is any unital real C∗-
algebra in the class C and (�r, �c, �ℎ) is a morphism of invariants from Inv1(Ai)
to Inv1(B), then there exists a unital *-homomorphism ' ∶ Ai → B such that
(�r, �c, �ℎ) = Inv1('). Then A1 ⊕A2 has the same property.

Proof. Let A1 and A2 be as in the statement of the lemma, suppose B is in the
class C, and � ∶ Inv1(A1 ⊕ A2) → Inv1(B) is a morphism of invariants. We
have �r([1A1]) + �r([1A2]) = [1B]D(B), so there exists a projection p ∈ B with
�r([1A1]) = [p]D(B) and �r([1A2]) = [1 − p]D(B). Both pBp and (1 − p)B(1 − p)
are in the class C. The morphism induced by the inclusion of pBp into B is
injective in all three components, so we may view the pieces of the invariant
for pBp as subsets of those for B. Let i1 and i2 denote the inclusions of A1 and
A2 respectively intoA1⊕A2.Wegetmorphisms of invariants �◦i1∗ and �◦i2 from
Inv1(A1) to Inv1(pBp) and from Inv1(A2) to Inv1((1−p)B(1−p)) respectively.
From our hypothesis on A1 and A2, there exist unital ∗-homomorphisms '1 ∶
A1 → pBp and '2 ∶ A2 → (1 − p)B(1 − p) that induce these maps on the
invariants. Then ' = '1 ⊕ '2 meets our requirements. �

Theorem3.5. [Existence forFiniteDimensionalAlgebras]LetA be a�nite
dimensional real C∗-algebra and let B be a real C∗-algebra in the class C. Then if
� = (�r, �c, �ℎ) is a morphism of invariants from Inv1(A) to Inv1(B), there exists
a unital *-homomorphism ' ∶ A → B such that � = Inv1(').
Proof. The case in which A ≅ ℝ is trivial, as we just send the unit to the unit.
The case of A ≅ Mn(ℝ) then follows from the lemma for ampli�cations. The
cases of A ≅ ℂ or A ≅ ℍ were covered in the lemmas above, and the case for
matrix algebras over these follows from the lemma for ampli�cations. Finally,
since any �nite dimensional real C∗ algebra is a �nite direct sum of these cases,
the theorem follows from the lemma for direct sums. �

3.2. Interval algebras.

Lemma 3.6. IfA is a real unital AI algebra, e is a positive contraction inA, and x
is an element ofA such that ex = xe = x, then x∗x+ e is approximately unitarily
equivalent to xx∗ + e in A.
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Proof. From the results of [4] and [14], it follows that x∗x+ e is approximately
unitarily equivalent to xx∗ + e in A⊗ℝ ℂ. From our lemma on equivalence of
positive elements within the real part, it follows that we take the unitaries to lie
in A. �

Lemma 3.7. [Existence for C0((0, 1],ℝ)] Let a(t) = t denote the canonical
generator of C0((0, 1],ℝ). Let B be a unital real AI algebra, and let (�r, �c, �ℎ) be
a triple of Cumorphisms such that the following diagram commutes,

Cu(C0((0, 1],ℝ))
�r
��

// Cu(C0((0, 1],ℂ))
�c
��

// Cu(C0((0, 1],ℍ))
�ℎ
��

Cu(B) // Cu(B ⊗ℝ ℂ) // Cu(B ⊗ℝ ℍ)
and [�r(a)] ≤ [1]. Then there exists a real ∗-homomorphism '∶C0((0, 1],ℝ)→ B
such that (�r, �c, �ℎ) = (Cu('), Cu(' ⊗ℝ idℂ), Cu(' ⊗ℝ idℍ)).
Proof. If ' ∶ C0((0, 1],ℝ) → B is a ∗-homomorphism such that Cu(') = �r,
then commutativity of the diagram and the fact the morphisms in the top row
are isomorphisms implies that Cu(' ⊗ℝ idℂ) = �c and Cu(' ⊗ℝ idℍ) = �ℎ
as well, so we only need consider the �rst term in the invariant in this case.
The required existence now follows from the proof of Theorem 2 in [14], which
carries over verbatim to the real case here, and the lemma above. �

Lemma 3.8. [Existence for C0((0, 1],ℂ)]Let b(t) = it denote the canonical
generator of C0((0, 1],ℂ). Let B be a unital real AI algebra, and let (�r, �c, �ℎ) be
a triple of Cumorphisms such that the following diagram commutes,

Cu(C0((0, 1],ℂ))
�r
��

// Cu(C0((0, 1],ℂ)2)
�c
��

// Cu(M2(C0((0, 1],ℂ)))
�ℎ
��

Cu(B) // Cu(B ⊗ℝ ℂ) // Cu(B ⊗ℝ ℍ)
and [�r(|b|)] ≤ [1].Then there exists a real ∗-homomorphism'∶C0((0, 1],ℂ)→ B
such that (�r, �c, �ℎ) = (Cu('), Cu(' ⊗ℝ idℂ), Cu(' ⊗ℝ idℍ)).
Proof. Let B, b, and (�r, �c, �ℎ) be as above. Let �1c (respectively, �2c ) denote
the restriction of �c to the �rst (respectively, second) direct summand. Let x
denote the canonical generator t ↦ t of C0((0, 1],ℂ). From [4] there exists a *-
homomorphism ∶ C0((0, 1],ℂ)⊕C0((0, 1],ℂ)→ B⊗ℂ such thatCu( ) = �c.
Let  1 (respectively,  2) denote the restriction of  to the �rst (respectively,
second) direct summand. Let a+ =  1(x) and a− =  2(x), and let a = a+−a−.

Next, we lift a approximately to a self adjoint element an ∈ Bn ⊗ℝ ℂ such
that ∥ an+ ∥≤∥ a+ ∥ and ∥ an− ∥≤∥ a− ∥ .We get a *-homomorphism  n ∶
C0((0, 1],ℂ)⊕ C0((0, 1],ℂ) → Bn ⊗ℝ ℂ such that  1n(x) =  n(x, 0) = an+ and
 2n(x) =  n(0, x) = an−.

By the commutativity of the second square in the diagram in the theorem, the
two maps �1c and �2c become equal when pushed forward to Cu(B⊗ℝℍ). Push-
ing forward further to the complexi�cation, we see they give rise to equal maps



832 A. J. DEAN AND L. SANTIAGOMORENO

to Cu(B ⊗ℝ M2(ℂ)). From [4] it follows that  1 and  2 are approximately uni-
tarily equivalent via unitaries inM2(B ⊗ℝ ℂ), and from our lemma on equiva-
lence of positive elements within the real part, they are approximately unitarily
equivalent via unitaries in B⊗ℝℍ.Wemay approximately lift these unitaries to
unitaries in Bn⊗ℝℍ, and pushing forward in the inductive system if necessary,
wemay assume there exists a unitary vn ∈ Bn⊗ℝℍ such that ∥ an+−vnan−v∗n ∥
is as small as we like.

Suppose now that B is a real interval algebra. Notice that by commutativity
of the �rst square in the diagram, if wewrite �c = �1c+�2c , as above, themap �2c is
determined by �1c on the �nite valued functions. Since Cuntz semi-group maps
preserve suprema, it follows that �1c determines �2c .Now suppose that we have a
lift  of �c to a *-homomorphism. If wemay choose  1 such thatAd �◦ 1 ⟂  1,
then replacing  2 withAd �◦ 1◦Ad � we get a real *-homomorphism � =  1+
Ad �◦ 1◦Ad � that induces the same map on the Cuntz semi-group. One way
we can do this is if we may choose  1 such that for some projection p ∈ Bn
we have  1(x) ≤ p and p ⟂ p̄. Since the Cuntz semi-group respects direct
summands, it will su�ce to consider each of our basic building blocks in turn.

Recall from Section 2 that

S = {f ∶ [0, 1]→ ℕ ∪ {∞} |f is lower semi-continuous},

S0 = {f ∶ [0, 1]→ ℕ ∪ {∞} |f is lower semi-continuous and f(0) = 0},
and

S2 = {f ∶ [0, 1]→ ℕ∪{∞} |f is lower semi-continuous and f(1) is even or∞}.
Case 1: (Bn ≅ Mm(Cℝ[0, 1]). In this case, we have the following diagram of

invariants:

S0
x↦(x,x) //

�r
��

S0 ⊕ S0
(x,y)↦x+y //

�c
��

S0
�ℎ
��

S x↦x // S x↦x // S
From the commutativity of the �rst square, we get

�r([|b|]) = �1c ([|b|]) + �2c ([|b|]),
and from commutativity of the second square we get �1c ([|b|]) = �2c ([|b|]), so
2�1c ([|b|]) ≤ [1]. The rank one projection

p2 = (1∕2)(e11 − ie12 + ie21 + e22) ∈ M2(ℂ)
has the property that p2 + p̄2 = 1. Letting p be a suitable direct sum of copies
of p2, viewed as a constant matrix valued function, we have a projection in
Mm(Cℂ[0, 1]) that meets our requirements.

Case 2: (Bn ≅ Mm(Cℍ[0, 1]). In this case, we have the following diagram of
invariants:
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S0
x↦(x,x) //

�r
��

S0 ⊕ S0
(x,y)↦x+y //

�c
��

S0
�ℎ
��

S x↦2x // S x↦2x // S
The commutativity of the �rst square gives 2�r(|b|) = �1c ([|b|]) + �2c ([|b|]),

so �1c ([|b|]) + �2c ([|b|]) ≤ [1] in Cu(Mm(Cℂ[0, 1])), and the commutativity of
the second square gives �1c ([|b|]) = �2c ([|b|]), so 2�1c ([|b|]) ≤ [1]. Once again
we have the rank one projection p2 = (1∕2)(e11 − ie12 + ie21 + e22) ∈ M2(ℂ),
which again has the property that p̄ = p#∗ = 1−p.Again letting p be a suitable
direct sum of copies of p2, viewed as a constantmatrix valued function, we have
a projection inMm(Cℂ[0, 1]) that meets our requirements.

Case 3: (Bn ≅ Mm(Cℂ[0, 1]). We have the following diagram of invariants:

S0
x↦(x,x) //

�r
��

S0 ⊕ S0
(x,y)↦x+y //

�c
��

S0
�ℎ
��

S x↦(x,x) // S ⊕ S (x,y)↦x+y // S
Write �1c = �11c + �12c and �2c = �21c + �22c for the decomposition of �c into

partial maps between the direct summands. From the commutativity of the
�rst square, we have �11c + �12c = �r and �12c + �22c = �r, when all these are
viewed as maps from S0 to S. From the commutativity of the second square, we
get �ℎ = �11c + �12c = �21c + �22c . From the commutativity of the large square, we
have 2�r = 2�ℎ, so �r = �ℎ.

Combining these, we have that �c = (�
11
c �12c
�12c �11c

) .

From [4] there exists a complex *-homomorphism 1withCu( ) = �11c +�12c .
Writing  1 =  11 +  12, we may assume that  12 ⟂  11 It follows that de�ning
 2 to beAd �◦ 1◦Ad � themap =  1+ 2 is a real ∗-homomorphismmeeting
our requirements.

Case 4: (Bn ≅ A(m,ℍ)). Given a function f on [0, 1], de�ne a new function
fs on [0, 1] by fs(t) = f(2t) for 0 ≤ t ≤ 1∕2 and fs(t) = f(2 − 2t) for 1∕2 ≤
t ≤ 1. De�ne new functions fb and fℎ by fb(t) = f(1 − t) and fℎ(t) = f(t∕2).
Then we have the following diagram of invariants:

S0
x↦(x,x) //

�r
��

S0 ⊕ S0
(x,y)↦x+y //

�c
��

S0
�ℎ
��

S2
x↦xs // S x↦(f+fb)ℎ // S

From the commutativity fo the �rst square we get �1c (x) + �2c (x) = (�r(x))s,
and from commutativity of the second square we get (�1c +(�1c )b)ℎ(x) = �ℎ(x) =
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(�2c +(�2c )b)ℎ(x),which implies (�1c + �1c )(x) = (�2c + �2c )(x). Together these give
2�1c = 2(�2c )b, and so �1c = (�2c )b.

We have in this case that n = 2m and Bn ⊗ ℂ ≅ Mn(C[0, 1]).We have that
f�(t) = (f(t − 1))# for f ∈ Bn ⊗ ℂ. The constant rank one projection p2 =
(1∕2)(e11 − ie12 + ie21 + e22) de�ned above satis�es p̄ = p#∗ = 1 − p in the
case m = 1. For general m, we may choose a system of matrix units {eij} in
Bn ⊗ ℂ such that e11 = enn, e22 = e(n−1)(n−1),… emm = e(m+1)(m+1), so that the
bar operation �ips the matrix units down the diagonal.

From [4] there exists a *-homomorphism  1 lifting �1c .We may assume that
 1 is diagonal with respect to our chosen system of matrix units, and that the
eigenvalues of the canonical positive generator of Cℂ[0, 1] are listed in decreas-
ing order down the diagonal, with zeros at the bottom. Applying Ad � to  1
both �ips the argument in the interval, and the order down the diagonal, so
the eigenvalues are now in increasing order, with the zeros at the top. Since
Ad �◦ 1◦Ad � is a lift of �2c , our condition �1c (x) + �2c (x) = (�r(x))s ≤ [1] now
ensures that Ad �◦ 1◦Ad � ⟂  1.

Case 5: (Bn ≅ A(m,ℝ))

We have the following diagram of invariants:

S0
x↦(x,x) //

�r
��

S0 ⊕ S0
(x,y)↦x+y //

�c
��

S0
�ℎ
��

S x↦xs // S x↦(f+fb)ℎ // S2
This case is very similar to case 4 above. The only di�erence is that in the case

wheren is odd, therewill be a�xedmatrix unit in the diagonal �ip implemented
by Ad �. The conditions imply that this will be a zero eigen-projection for one
of  1 or Ad �◦ 1◦Ad �, so again there is no overlap. �

Lemma3.9. [Existence forUnitisations]LetA beC0((0, 1],ℂ) orC0((0, 1],ℝ)
and let B be a unital real AI algebra. Then the unitisation Ã has the property
that if � is a morphism from Inv2(Ã) to Inv2(B), then there exists a unital ∗-
homomorphism '̃ ∶ Ã → B such that � = Inv2('̃).

Proof. The inclusion of A into Ã induces injective maps on the three Cuntz
semigroups, so by our hypothesis and the two lemmas above, there exists a ∗-
homomorphism ' ∶ A → B such that Cu(') = �◦Cu(�) in each of the three
cases, where � is the inclusion ofA into Ã.We now get a well de�ned unital real
∗-homomorphism '̃ ∶ Ã → B by '̃(a + �1) = '(a) + �1B. That Inv2('̃) = �
now follows from our lemma on S, S0 (unitisations). �

Lemma 3.10. [Existence forA(1,ℝ)] LetA be a unital real AI algebra, and let
� ∶ Inv2(A(1,ℝ)) → Inv2(A) be a morphism of invariants. Then there exists a
unital real ∗-homomorphism ' ∶ A(1,ℝ)→ A such that Inv2(') = �.
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Proof. This follows from the lemmas above, since A(1,ℝ) is the unitisation of
C0((0, 1],ℂ).□ �

Lemma 3.11. [Existence for Cℝ[0, 1]] Let A be a unital real AI algebra, and
let � ∶ Inv2(Cℝ[0, 1]) → Inv2(A) be a morphism of invariants. Then there exists
a unital real ∗-homomorphism ' ∶ Cℂ[0, 1]→ A such that Inv2(') = �.
Proof. This follows from the lemmas above, since Cℝ[0, 1] is the unitisation of
C0((0, 1],ℝ).□ �

Lemma 3.12. [Existence for Cℂ[0, 1]] Let A be a real AI algebra, and let � ∶
Inv2(Cℂ[0, 1])→ Inv2(A) be amorphismof invariants. Then there exists a unital
real ∗-homomorphism ' ∶ Cℂ[0, 1]→ A such that Inv2(') = �.
Proof. Since amorphism of Inv2 restricts to one of Inv1, and AI algebras are in
the class C, we have that there exists a unital real ∗-homomorphism '0 ∶ ℂ →
A such that Inv1('0) = �◦Inv1(�), where � is the inclusion of ℂ into Cℂ[0, 1] as
constant functions. From this we get the canonical projections p = (1∕2)(1 −
'0(i)�) and p̄ = (1∕2)(1 + '̃0(i)�) in A⊗ℝ ℂ with 1 = p + p̄.

The algebra Cℂ[0, 1] is generated as a real C∗-algebra by the constant func-
tions and the element a(t) = t, so to construct a ∗-homomorphism from it,
after specifying where the constant functions go, one need only choose a posi-
tive contraction commuting with the image of the constants to send a to.

From [4], there exists a unital ∗-homomorphism '1 ∶ Cℂ[0, 1] → p(A ⊗ℝ
ℂ)p such that Inv2('1) = �◦Inv2(j1),where j1 is the inclusion ofCℂ[0, 1] as the
�rst summand inCℂ[0, 1]⊗ℝℂ.De�ne' ∶ Cℂ[0, 1]→ A⊗ℝℂ to be the unique
real ∗-homomorphism that agrees with '0 on the constant functions and sends
a to '1(a)+'1(a). This is well de�ned, since '1 and '1 have orthogonal images,
so a is being sent to a positive contraction, and the given element commutes
withp and p̄, and sowith'0(ℂ).Moreover, since this element is invariant under
conjugation, it lies in A, so we get that ' is a homomorphism into A.

It remains to check that ' induces the right map on Inv2. From [4] again,
there exists a unital ∗-homomorphism '2 ∶ Cℂ[0, 1] → p(A⊗ℝ ℂ)p such that
Inv2('1) = �◦Inv2(j2),where j2 is the inclusion of Cℂ[0, 1] as the second sum-
mand in Cℂ[0, 1]⊗ℂ.As in the proof of the existence lemma forℂ,we have an
embedding of A⊗ℝ ℍ intoM2(p(A⊗ℝ ℂ)p), and both '1 and '2 map into the
e22 corner. By the commutativity of the diagram, these twomaps have the same
invariants as maps intoA⊗ℝℍ, and therefore also intoM2(p(A⊗ℝℂ)p). They
are therefore approximately unitarily equivalent inM2(p(A⊗ℝℂ)p). Since they
live in a cutdown by a projection, they are approximately unitarily equivalent in
the cutdown. They therefore have the same invariant as maps into A⊗ℝ ℂ, so
our map ' has the right complex component on the invariant. That it does the
right thing on the real part now follows from commutativity of the �rst square
in the diagram and the injectivity of the horizontal maps in that square. That
it does the right thing on the quaternion component follows from the commu-
tativity of the second square, and the surjectivity of the top horizontal map in
that square. �



836 A. J. DEAN AND L. SANTIAGOMORENO

Lemma 3.13. [Existence for Cℍ[0, 1]] Let A be a unital real AI algebra, and
let � ∶ Inv2(Cℍ[0, 1]) → Inv2(A) be a morphism of invariants. Then there exists
a unital real ∗-homomorphism ' ∶ Cℍ[0, 1]→ A such that Inv2(') = �.

Proof. As in the case of Cℂ[0, 1] above, there exists a unital ∗-homomorphism
'0 ∶ ℍ → A such that Inv1('0) = �◦Inv1(�), where � is the inclusion of ℍ into
Cℍ[0, 1] as constant functions.

The algebra Cℍ[0, 1] is generated as a real C∗-algebra by the constant func-
tions and the element a(t) = t.To construct a ∗-homomorphism from it, having
one from ℍ already, one need only choose a positive contraction commuting
with the already chosen copy of ℍ.

In Cℍ[0, 1] ⊗ℝ ℍ ≅ M4(Cℝ[0, 1]), our generator a(t) is diag(t, t, t, t). Ap-
ply the existence lemma for C0((0, 1],ℝ) above to get a real ∗-homomorphism
'1 ∶ C∗(te11) → '0 ⊗ℝ idℍ(e11)(A ⊗ℝ ℍ)'0 ⊗ℝ idℍ(e11) such that Inv2('1) =
�◦Inv2(j),where j is the inclusion C0((0, 1],ℝ)→ C∗(te11). Let a11 = '1(te11),
and let ã = a11 + '0 ⊗ℝ idℍ(e21)a11'0 ⊗ℝ idℍ(e12) + '0 ⊗ℝ idℍ(e31)a11'0 ⊗ℝ
idℍ(e13) + '0⊗ℝ idℍ(e41)a11'0⊗ℝ idℍ(e14). Then ã commutes with the image
of '0 ⊗ idℍ, so ã ∈ A, and it also commutes with the image of '0 in A. We
therefore get a real ∗-homomorphism ' ∶ Cℍ[0, 1] → A such that '(a) = ã
and '|ℍ = '0.

It remains to check that' induces the rightmap on Inv2.By construction, the
map agrees with �ℎ. Since the maps from Cu(A) → Cu(A ⊗ℝ ℍ) are injective,
this implies that Inv2(')r = �r. Commutativity of the diagram now gives that
Inv2(')c = �c on all multiples of two in Cu(M2(Cℂ[0, 1])). Since multiplication
by 2 is injective, this implies that they agree. �

Lemma 3.14. [Existence forA(1,ℍ)] LetA be a unital real AI algebra, and let
� ∶ Inv2(A(1,ℍ)) → Inv2(A) be a morphism of invariants. Then there exists a
unital real ∗-homomorphism ' ∶ A(1,ℍ)→ A such that Inv2(') = �.

Proof. As in the case of Cℍ[0, 1] above, there exists a unital ∗-homomorphism
'0 ∶ ℍ → A such that Inv1('0) = �◦Inv1(�), where � is the inclusion of ℍ into
Cℍ[0, 1] as constant functions.

The algebra A(1,ℍ) is generated as a real C∗-algebra by the constant func-
tions and the element b(t) = it. To construct a ∗-homomorphism from it,
having one from ℍ already, we need to choose a real ∗-homomorphism from
C0((0, 1],ℂ) to A whose image commutes with the already given copy ofℍ.We
do this in a similar fashion to the case of Cℍ[0, 1] above, but using the existence
lemma for C0((0, 1],ℂ) in place of the one for C0((0, 1],ℝ) and b(t) in place of
a(t).

It remains to check that ' induces the right map on Inv2. As the maps agree
on the ℍ component, and the horizontal maps in the top row are injective, this
follows exactly as in the case for Cℍ[0, 1] above. �

Lemma 3.15. [Existence for Ampli�cations II] Let A be a real interval al-
gebra, and suppose that A has the property that if B is any unital real AI algebra
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and (�r, �c, �ℎ) is a morphism of invariants from Inv2(A) to Inv2(B), then there
exists a unital *-homomorphism ' ∶ A → B such that (�r, �c, �ℎ) = Inv2(').
Then for any natural number n, Mn(A) has the same property.

Proof. This is essentially the same as the proof for Inv1.One just has to notice
thatpBp is also a real interval algebra, and that the' constructed in that lemma
also works for Inv2. �

Lemma 3.16. [Existence for Direct Sums II] Let A1 and A2 be two unital
real C∗ algebras, and suppose they have the property that if B is any unital real
interval algebra and � is amorphism of invariants from Inv1(Ai) to Inv1(B), then
there exists a unital *-homomorphism ' ∶ Ai → B such that � = Inv1('). Then
A1 ⊕A2 has the same property.

Proof. The proof is essentially the same as for Inv1.One has only to notice that
pBp and (1 − p)B(1 − p) are real interval algebras, and the inclusion of pBp
into B induces injective morphisms on all three Cuntz semi-groups. �

Theorem 3.17. [Existence for Interval Algebras] Let A be a real interval
algebra and letB be a unital real AI algebra. Then if � is amorphism of invariants
from Inv2(A) to Inv2(B), there exists a unital *-homomorphism ' ∶ A → B such
that � = Inv1(').

Proof. This follows as every real interval algebra is a �nite direct sum of am-
pli�cations of the basic ones covered in the lemmas above. �

4. Uniqueness lemmas
In this section, we introduce our uniqueness lemmas, again beginning with

the �nite dimensional cases.

4.1. Finite imensional algebras.

Lemma 4.1. [Uniqueness forℍ] LetA be a real C∗-algebra in the class C and
suppose ' and  are two unital *-homomorphisms from ℍ to A with Inv1(') =
Inv1( ). Then there exists a unitary u ∈ A such that  = Adu◦'.

Proof. Let' and be twounital *-homomorphisms fromℍ toAwith Inv1(') =
Inv1( ). Then ' ⊗ℝ id,  ⊗ℝ id ∶ ℍ ⊗ℝ ℍ → A ⊗ℝ ℍ are the same on
D. Since ℍ ⊗ℝ ℍ ≅ M4(ℝ), there exists a unitary w ∈ A ⊗ℝ ℍ such that
Adw◦(' ⊗ℝ id) =  ⊗ℝ id. We have that for any ℎ ∈ ℍ, Adw(1 ⊗ℝ ℎ) =
Adw('(1) ⊗ℝ ℎ) = Adw◦' ⊗ℝ id(1 ⊗ℝ ℎ) =  ⊗ℝ id(1 ⊗ℝ ℎ) = (1 ⊗ℝ ℎ).
Thus w is in the commutant of 1 ⊗ℝ ℍ ⊆ A ⊗ℝ ℍ, which is A ⊗ℝ 1.We can
write w = u ⊗ℝ 1 for some unitary u ∈ A, and we have Adu◦' =  . �

Lemma 4.2. SupposeA is a realC∗-algebra and u and v are two anti-self adjoint
unitaries inA that are unitarily conjugate inA⊗ℝℂ. Then u and v are unitarily
conjugate in A.
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Proof. Let A, u and v be as above. Let w be a unitary in A ⊗ℝ ℂ such that
u = wvw∗.Writew = wr+wc�withwr, wc ∈ A.Wededuce relations involving
wr and wc. From uw = wv we get: uwr = wrv, uwc = wcv, w∗

cu = vw∗
c ,

and w∗
r = vw∗

r . From w being unitary we get: wcw∗
r − wrw∗

c = 0, w∗
rwc −

w∗
cwr = 0, wrw∗

r + wcw∗
c = 1, and w∗

rwr + w∗
cwc = 1. From wvw∗ = u we get

wcvw∗
r−wrvw∗

c = 0 andwcvw∗
c+wrvw∗

r = u.Oneasily checks thatu commutes
with (wcw∗

c ) and (wrw∗
r ), and that v commutes with (w∗

rwr) and (w∗
cwc). Now

consider z = (wr +wcv). This is an element ofA.We have uz = u(wr +wcv) =
uwr+uwcv = uwr+wcv2 = uwr−wc, and zv = wrv+wcv2 = uwr−wc = uz.
We also have (wr+wcv)∗(wr+wcv) = (w∗

rwr−v(w∗
cwc)v)+(w∗

rwcv−vw∗
cwr) =

(w∗
rwr + w∗

cwc) + v(w∗
rwc − w∗

cwr) = 1 and (wr + wcv)(wr + wcv)∗ = (wrw∗
r −

wcv2w∗
c ) + (wcvw∗

r −wrvw∗
c ) = (wrw∗

r +wcw∗
c ) + u(wcw∗

r −wrw∗
c ) = 1, so z is

a unitary meeting our requirements. �

Lemma 4.3. [Uniqueness forℂ] LetA be a realC∗-algebra in the classC, and
suppose ' and  are two unital *-homomorphisms from ℂ to A with Inv1(') =
Inv1( ). Then there exists a unitary u ∈ A such that  = Adu◦'.
Proof. Let r1 = (1∕2)(1+'(i)�) and r2 = (1∕2)(1+ (i)�). Then, since ' and 
have the same invariant, r1 and r2 are uinitarily conjugate inA⊗ℝℂ. It follows
that '(i) and  (i) are unitarily conjugate in A ⊗ℝ ℂ. From the lemma above,
they are conjugate in A. Thus ' and  are unitarily conjugate in A. �

Lemma 4.4. [Uniqueness for Ampli�cations I] Let A be a real C∗-algebra,
and suppose that A has the property that if B is any unital real C∗-algebra in the
classC and and' are two unital *-homomorphisms fromA toBwith Inv1(') =
Inv1( ), then there exists a unitary u in B such that ' = Ad u◦ . Then for any
natural number n, Mn(A) has the same property.

Proof. Suppose thatA has the above property, that B is in the class C, and that
 , ' ∶ Mn(A)→ B are two unital *-homomorphisms with the same invariants.
Consider '(e11) and  (e11). These two projections have the same class inK0(B),
so there exists a unitary in w ∈ B such that Adw('(e11)) =  (e11). The unital
*-homomorphisms Adw◦'|A and  |A from A ≅ e11Ae11 to  (e11)B (e11) now
have the same invariants, and  (e11)B (e11) is in the class C, so there exists a
unitary v ∈  (e11)B (e11) such that Ad v◦(Adw◦'|A) =  |A. Now consider
u = ∑n

i=1  (ei1)vw'(e1i) ∈ B. Straightforward calculations show that uu∗ =
u∗u = 1 and that u'(x)u∗ =  (x) for all x ∈ Mn(A), as required. �

Lemma 4.5. [Uniqueness for Direct Sums I] Let A1 and A2 be two unital
real C∗-algebras and suppose that they both have the property that if B is a real
C∗-algebra in the class C and  , ' ∶ Ai → B are unital ∗-homomorphisms with
Inv1( ) = Inv1('), then there exists a unitary u ∈ B with Ad u◦' =  . Then
A1 ⊕A2 has the same property.

Proof. Let A1, A2, and B be as in the statement of the lemma, and let ',  ∶
A1 ⊕ A2 → B be two unital ∗-homomorphisms with Inv1(') = Inv1( ). Let
p = '(1A1) and q =  (1A1). Then [p] = [q] in D(B), so there exists a unitary
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v ∈ B such that q = vpv∗. The two maps Ad v◦('|A1) ∶ A1 → qBq and
 |A1 ∶ A1 → qBq are the same on Inv1, and qBq is in C, so there exists a
unitary w1 ∈ qBq such that Adw1◦Ad v◦('|A1) =  |A1 . Similarly, there exists
a unitary w2 ∈ (1 − q)B(1 − q) such that Adw2◦Ad v◦('|A2) =  |A2 . Setting
u = (w1+w2)v ∈ B gives a unitary in B such thatAd u◦' =  as required. �

Theorem 4.6. [Uniqueness for Finite Dimensional Algebras] Let A be a
�nite dimensional real C∗-algebra and let B be a real C∗-algebra in the class C.
Then if ',  ∶ A → B are two unital ∗-homomorphisms with Inv1(') = Inv1( ),
there exists a unitary u ∈ B with  = Ad u◦'.

Proof. The case inwhichA ≅ ℝ is trivial, as bothmaps just send the unit to the
unit. The case of A ≅ Mn(ℝ) then follows from the lemma for ampli�cations.
The cases of A ≅ ℂ or A ≅ ℍ were covered in the lemmas above, and the
case for matrix algebras over these follows from the lemma for ampli�cations.
Finally, since any �nite dimensional real C∗ algebra is a �nite direct sum of
these cases, the theorem follows from the lemma for direct sums. �

4.2. Interval algebras.

Lemma 4.7. [Uniqueness for C0((0, 1],ℝ)] Let A be a unital real AI algebra,
and let ',  ∶ C0((0, 1],ℝ) → A be two ∗-homomorphisms such that Cu(') =
Cu( ), Cu(' ⊗ℝ idℂ) = Cu( ⊗ℝ idℂ), and Cu(' ⊗ℝ idℍ) = Cu( ⊗ℝ idℍ).
Then ' and  are approximately unitarily equivalent (via unitaries in A).

Proof. Let A, ', and  be as in the statement of the lemma. Let f(t) = t be
the canonical positive self-adjoint generator of C0((0, 1],ℝ), and let a = '(f)
and b =  (f). By [4] we may choose a unitary u ∈ A ⊗ℝ ℂ so that ∥ b −
uau∗ ∥ is small. WriteA = lim{An, �nm}whereAn are �nite direct sums of real
interval algebras and �nm are unital real *-homomorphisms. We may choose
n and an, bn ∈ An and un ∈ An ⊗ℝ ℂ such that an and bn are positive, un
is unitary, and ∥ bn − unanu∗n ∥, ∥ �n∞(an) − a ∥, ∥ �n∞(bn) − b ∥, and ∥
�n∞(un) − u ∥ are small. The problem reduces to showing that we can replace
un with a unitary inAn. SinceAn is a �nite direct sum real interval algebras, we
may consider each type of basic building block separately.

Case 1: (An ≅ Mm(Cℂ[0, 1])) In this case, we haveAn⊗ℝℂ ≅ Mm(Cℂ[0, 1])2
with real structure (x, y)� = (ytr, xtr). Let p denote the central projection that is
a unit for the �rst summand. Then an = pan + (pan)�, and bn = pbn + (pbn)�.
Replacing un = pun + (1 − p)un with vn = pun + (pun)�, we have ∥ vnanv∗n −
bn ∥≤∥ unanu∗n − bn ∥ and vn ∈ An.

Case 2: (An ≅ A(m,ℝ)) In this case, we haveAn⊗ℝℂ ≅ Mm(Cℂ[−1, 1])with
real structure f�(t) = f(−t)tr and An = {f ∈ An ⊗ℝ ℂ |f(−t) = f(t)}. If un
satis�es un(0) ∈ Mn(ℝ), then we may replace un by vn de�ned by vn(t) = un(t)
for t ≤ 0, and vn(t) = un(−t) for t ≥ 0.We would then have ∥ vnanv∗n − bn ∥≤∥
unanu∗n − bn ∥ and vn ∈ An.
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Wemay assume, bymaking an arbitrarily small adjustment if necessary, that
an and bn are in standard form, i.e. they are unitary conjugates of diagonal
elements. Choose a system of matrix units with respect to which bn is diagonal
and bn(0) ∈ Mn(ℝ). Then unanu∗n is approximately diagonal with respect to
these matrix units, so multiplying un by a unitary close to 1 we may assume
that unanu∗n is exactly diagonal at 0. It follows that the columns of un(0) are
eigenvectors for the self-adjointmatrix an(0). Since an(0) is self-adjoint, the real
and imaginary parts of these column vectors are also eigenvectors for an(0), and
for each column, one or the other is non-zero. Thus there exists a unitarymatrix
w(0) such that w(0) commutes with an(0) and un(0)w(0) ∈ Mn(ℝ). Since an
is in standard form, we may connect w(0) to 1 with a path w(|t|) such that
w(t) commutes with an(t), and thus adjust un(t) all along its length to meet our
requirements.

Case 3: (An ≅ A(m,ℍ)) In this case, we have An ⊗ℝ ℂ ≅ M2m(Cℂ[−1, 1])
with real structure f�(t) = f(−t)#. By [19] lemma 2.4 (b), we may �nd ap-
proximants to an and bn that have distinct eigenvalues in every �bre except the
endpoint, where they have multiplicity two, and the eigenprojections are con-
tinuous. Lemma 2.5 (a) in [19] now provides unitaries in An ≅ A(m,ℍ) that
conjugate these approximants to real diagonal elements. We may assume the
eigenvalues are arranged in increasing order. Now an being approximately uni-
tarily close to bn implies that their spectra are approximately contained in each
other in each �bre, so the above diagonal elements are norm close to each other.

Case 4: (An ≅ Mm(Cℝ[0, 1])) Using the lemma on distinct eigenvalues, we
can approximate an and bn by elements a′n = �1(t)P1(t) +⋯+ �m(t)Pm(t) and
b′n = 1(t)Q1(t) +⋯ + m(t)Qm(t) where �i and i are continuous real func-
tions and {Pi} and {Qi} are families of pairwise orthogonal minimal projections
in Mm(Cℝ[0, 1]) and the �i and i are distinct and arranged in increasing or-
der in each �bre. We may choose partial isometries wi ∈ Mm(Cℝ[0, 1]) such
that w∗

i wi = Pi and wiw∗
i = Qi for each i. Then w = w1 + …wn is a unitary

in Mm(Cℝ[0, 1]). By construction, we have that a′n is approximately equal to
a unitary conjugate of b′n in Mm(Cℂ[0, 1]). It follows that their corresponding
eigenvalues, when listed in increasing order are close to each other. Thus a′n is
approximately equal to wb′nw∗, and wbnw∗ approximates an.

Case 5: (An ≅ Mm(Cℍ[0, 1])) The proof in this case is the same as for An ≅
Mm(Cℝ[0, 1]) with the lemma on density of elements with distinct eigenvalues
for ℍ in place of that for ℝ. �

Lemma 4.8. [Uniqueness for C0((0, 1],ℂ)] Let A be a unital real C∗-algebra
in the class C and suppose ',  ∶ C0((0, 1],ℂ) → A are two *-homomorphisms
such that Cu(') = Cu( ), Cu(' ⊗ idℂ) = Cu( ⊗ℝ idℂ), and Cu(' ⊗ℝ idℍ) =
Cu( ⊗ℝidℍ).Then' and are approximately unitarily equivalent (via unitaries
in A).
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Proof. As in the case of C0((0, 1],ℝ) above, we reduce to the cases of the basic
building blocks. LetA, ', and  be as in the statement of the lemma. Let g(t) =
it be the canonical anti-self-adjoint generator of C0((0, 1],ℂ), and let a = '(g)
and b =  (g). By [4] there exists a unitary u ∈ A� ⊗ ℂ such that ∥ b − uau∗ ∥
is small. Using the same notation as in the lemma above, we may choose n
and an, bn ∈ An and un ∈ An ⊗ℝ ℂ such that an and bn are anti-self-adjoint,
un is unitary, and ∥ bn − unanu∗n ∥, ∥ �n∞(an) − a ∥, ∥ �n∞(bn) − b ∥, and
∥ �n∞(un) − u ∥ are small. As before, the problem reduces to showing that
we can replace un with a unitary in An, and since An is a �nite direct sum real
interval algebras, we may consider each type of basic building block separately.

Case 1: (An ≅ Mm(Cℂ[0, 1])) This case is handled exactly as in the lemma
for C0((0, 1],ℝ) above.

Case 2: (An ≅ Mm(Cℝ[0, 1])) From lemma 2.4(a) in [19], we may approx-
imate an and bn with elements having distinct complex eigenvalues in every
�bre. From lemma 2.5 (d) in [19], it follows that these approximations are con-
jugate, via unitaries in An ≅ Mm(Cℝ[0, 1]), to elements of the form

d = diag(( 0 c1
−c1 0 ) ,… , (

0 cl
−cl 0) , 0… 0)

with c1 > c2⋯ > cl > 0. Now an being approximately unitarily close to bn
implies that their spectra are approximately contained in each other in each
�bre, so the above diagonal forms are norm close to each other.

Case 3: (An ≅ A(m,ℝ)) This is similar to the case above, only now the uni-
taries provided by lemma 2.5 (d) in [19] lie in An ≅ A(m,ℝ).

Case 4: (An ≅ Mm(Cℍ[0, 1])) This is similar to the case above. From lemma
2.4(a) in [19], wemay approximatean and bnwith elements inAn ≅ Mm(Cℍ[0, 1])
having distinct complex eigenvalues in every �bre. From lemma 2.5 (c), it fol-
lows that these approximations are conjugate, via unitaries inAn ≅ Mm(Cℍ[0, 1]),
to pure imaginary diagonal elements, which we may assume are arranged in
complex conjugate pairs, ordered by the size of the element in the upper half
plane. Now an being approximately unitarily close to bn implies that their spec-
tra are approximately contained in each other in each �bre, so the above diag-
onal forms are norm close to each other.

Case 5: (An ≅ A(m,ℍ)) This is similar to case 4 above. By lemma 2.4(a) in
[19], we may approximate an and bn with elements in An ≅ Mm(Cℍ[0, 1]) hav-
ing distinct complex eigenvalues in every �bre. From lemma 2.5 (c), it follows
that these approximations are conjugate, via unitaries in An ≅ A(m,ℍ) to pure
imaginary diagonal elements. In the �bre at 1 we may assume that these are
arranged in complex conjugate pairs, ordered by the size of the element in the
upper half plane. As the eigenvalues are distinct in every �bre, this determines
their order completely. Again, an being approximately unitarily close to bn im-
plies that their spectra are approximately contained in each other in each �bre,
so these diagonal forms are norm close to each other. �
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Lemma 4.9. [Uniqueness for Unitisations] Let A be a non-unital real C∗-
algebra, and suppose A has the property that if B is a real AI algebra and ',  ∶
A → B are two real ∗-homomorphisms such that Cu(') = Cu( ), Cu(' ⊗ℝ
idℂ) = Cu( ⊗ℝ idℂ), and Cu(' ⊗ℝ idℍ) = Cu( ⊗ℝ idℍ), then ' is approx-
imately unitarily equivalent to  . Then the unitisation Ã has the property that if
B is a real AI algebra and '̃,  ̃ ∶ A → B are two unital real ∗-homomorphisms
such that Inv2('̃) = Inv2( ̃), then '̃ is approximately unitarily equivalent to  ̃.

Proof. The unitaries that work for the restrictions of '̃ and  ̃ toAwork for the
unitisations as well. �

Lemma 4.10. [Uniqueness forA(1,ℝ)] LetA be a unital real AI algebra, and
let ',  ∶ A(1,ℝ) → A be two unital ∗-homomorphisms such that Inv2(') =
Inv2( ). Then ' and  are approximately unitarily equivalent (via unitaries in
A).

Proof. This follows from the lemmas above, since A(1,ℝ) is the unitisation of
C0((0, 1],ℂ). �

Lemma 4.11. [Uniqueness for Cℂ[0, 1]] LetA be a unital real AI algebra, and
let ',  ∶ Cℂ[0, 1] → A be two unital ∗-homomorphisms such that Inv2(') =
Inv2( ). Then ' and  are approximately unitarily equivalent (via unitaries in
A).

Proof. Let A, ' and  be as above. Since a morphism of Inv2 restricts to a
morphism of Inv1, if we let � ∶ ℂ → Cℂ[0, 1] be the inclusion of the constant
functions, we have Inv1('◦�) = Inv1( ◦�). Since real AI algebras are in the class
C, the uniqueness for ℂ lemma applies, and there exists a unitary u ∈ A such
that  ◦� = Ad u◦'◦�. Thus we may assume that  and ' agree on the constant
functions.

The algebra Cℂ[0, 1] is generated as a real algebra by the constant functions
and the function f(t) = t. Let a = '(f) and b =  (f). Then a and b are
positive elements of A that commute with u = '(i) =  (i). Since a, b ∈ A,
they commute with �, � ∈ A ⊗ℝ ℍ. Since they commute with u and �, they
commute with the projections p = (1∕2)(1 − u�) and p̄ = (1∕2)(1 + u�) in
A⊗ℝ ℂ.

As in the proof of the existence lemma for ℂ,we get a 2 × 2 system of matrix
units in A⊗ℝ ℍ with p = e11, p̄ = e22, and � = e12 − e21 giving an embedding

of A ⊗ℝ ℍ intoM2(p(A ⊗ℝ ℂ)p) for which � has the form (�11 0
0 −�11

) for a
central anti-self adjoint unitary �11 ∈ p(A⊗ℝℂ)p. Since they commutewith p,
the elements a and b are diagonal in this picture, and since they commute with
� they have the form a = diag(a11, a11), b = diag(b11, b11). in other words,
a = a11 + a11 for an a11 ∈ p(A ⊗ℝ ℂ)p, and similarly for b. Since the Cuntz
semi-groups for AI algebras are torsion free, it follows from theorem 1.1 in [4],
that a11 is approximately unitarily equivalent to b11 in p(A ⊗ℝ ℂ)p. Given a
unitary v11 ∈ p(A ⊗ℝ ℂ)p such that Ad v11(a11) approximates b11, we can let
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v = v11 + v11 to get a unitary in A ⊗ℝ ℂ such that Ad v(a) approximates b.
Since v commutes with �, v ∈ A. Since v commutes with p and p̄, v commutes
with u. Thus Ad v◦' approximates  . �

Lemma 4.12. [Uniqueness for Cℍ[0, 1]] LetA be a unital real AI algebra, and
let ',  ∶ Cℍ[0, 1] → A be two unital ∗-homomorphisms such that Inv2(') =
Inv2( ). Then ' and  are approximately unitarily equivalent (via unitaries in
A).
Proof. Let A, ' and  be as above. As in the case for ℂ, using the uniqueness
lemma forℍ,we may assume that ' and  agree on the constant functions. As
withℂ above, the algebra Cℍ[0, 1] is generated as a real algebra by the constant
functions and the function f(t) = t. Let a = '(f) and b =  (f).We have em-
beddings ofℍ⊗ℝℍ ≅ M4(ℝ) intoA⊗ℝℍ given by'⊗ℝ idℍ and ⊗ℝ idℍ. Since
a and b commute with both copies ofℍ, if we use this embedded copy ofM4(ℝ)
for a system of matrix units inA⊗ℝℍ,we have that a = diag(a11, a11, a11, a11)
for some element a11 ∈ e11(A ⊗ℝ ℍ)e11, and similarly for b. Now we use the
uniqueness for Cℝ((0, 1]) above to get a unitaryw11 ∈ e11(A⊗ℝℍ)e11 such that
Adw11(a) approximates b11. Then we can use w = diag(w11, w11, w11, w11).
This commutes with all of M4(ℝ), so it commutes with the second copy of ℍ,
and is therefore in A, and it commutes with the �rst copy of ℍ, so conjugating
by it does not alter ' on the constant functions, soAdw◦' approximates  . �

Lemma 4.13. [Uniqueness forA(1,ℍ)] LetA be a unital real AI algebra, and
let ',  ∶ A(1,ℍ) → A be two unital ∗-homomorphisms such that Inv2(') =
Inv2( ). Then ' and  are approximately unitarily equivalent (via unitaries in
A).
Proof. The proof in this case is very similar to that for Cℍ[0, 1] above. Let A,
' and  be as in the statement of the lemma. As in the case above, using the
uniqueness lemma for ℍ, we may assume that ' and  agree on the constant
functions. The algebra A(1,ℍ) is generated as a real algebra by the constant
functions and the function g(t) = it. Let z = '(g) and w =  (g). Now we
proceed exactly as in the case of Cℍ[0, 1], except that we use the uniqueness
lemma for Cℂ((0, 1]) in place of the one for Cℝ((0, 1]). �

Lemma 4.14. [Uniqueness for Ampli�cations II] SupposeA is a unital real
C∗-algebra and that A has the property that for any unital real AI algebra B,
if ',  ∶ A → B are two unital *-homomorphisms with Inv2(') = Inv2( ),
then ' is approximately unitarily equivalent to  in B. ThenMn(A) has the same
property.

Proof. The proof is essentially the same as for Inv1. One has to notice that the
cut-downs are real AI algebras, and instead of one unitary v,wehave a sequence
vn that approximately conjugates one to the other. The sequence of unitaries
un =

∑n
i=1  (ei1)vw'(e1i) ∈ B meets our requirements. �

Lemma4.15. [Uniqueness forDirect Sums II]SupposeA1 andA2 are unital
real C∗-algebras such that A1 and A2 have the property that, for any unital real



844 A. J. DEAN AND L. SANTIAGOMORENO

AI algebra B, if ',  ∶ Ai → B are two unital *-homomorphisms with Inv2(') =
Inv2( ), then' is approximately unitarily equivalent to via unitaries inB.Then
A1 ⊕A2 has the same property.

Proof. This is similar to the proof for the �nite dimensional case. Let A1, A2,
and B be as in the statement of the lemma, and let ',  ∶ A1 ⊕ A2 → B be
two unital ∗-homomorphisms with Inv2(') = Inv2( ). Let p = '(1A1) and
q =  (1A1). Then, since a morphism of Inv2 restricts to one of Inv1, [p] = [q]
in D(B), so there exists a unitary v ∈ B such that q = vpv∗. The two maps
Ad v◦('|A1) ∶ A1 → qBq and  |A1 ∶ A1 → qBq are the same on Inv2, and
qBq is an AI algebra, so there exists a sequence of unitary w1

n ∈ qBq such
that Adw1

n◦Ad v◦('|A1) →  |A1 as n → ∞. Similarly, there exists a sequence
of unitaries w2

n ∈ (1 − q)B(1 − q) such that Adw2
n◦Ad v◦('|A2) →  |A2 as

n → ∞. Setting un = (w1
n + w2

n)v ∈ B gives a sequence of unitaries in B such
that Ad un◦' →  as required. �

Theorem 4.16. [Uniqueness for Real Interval Algebras] Let A be a real
interval algebra and let B be a real AI algebra. If ',  ∶ A → B are two unital
∗-homomorphisms with Inv2(') = Inv2( ), Then ' and  are approximately
unitarily equivalent (via unitaries in the real C∗-algebra B).
Proof. This follows as every real interval algebra is a �nite direct sum of am-
pli�cations of the basic ones covered in the lemmas above. �

5. Classi�cation theorems
In this �nal section, we prove our main theorems, and include a new proof

of the already known classi�cation of real AF algebras from [6] and [18].

Theorem 5.1. [AFAlgebras] LetA be a real AF algebra, and let B be a realC∗-
algebra in the class C. Then if (�r, �c, �ℎ) ∶ Inv1(A)→ Inv1(B) is a morphism of
invariants, there exists a unital ∗-homomorphism ' ∶ A → B such that K0(') =
�r, K0(' ⊗ℝ idℂ) = �c, and K0(' ⊗ℝ idℍ) = �ℎ. Moreover, if ',  ∶ A → B
are two unital ∗-homomorphisms with Inv1(') = Inv1( ), then ' and  are
approximately unitarily equivalent.

Proof. Let A, B and � = (�r, �c, �ℎ) be as in the statement of the theorem.
Write A = ∪∞n=1An where each An is a �nite dimensional real C∗-algebra and
1 ∈ An ⊆ An+1 for each n.We get a commuting diagram of invariants:

Inv1(A1)
i∗ //

�1
��

Inv1(A2)
i∗ //

�2
��

Inv1(A3)
i∗ //

�3
��

… i∗ // Inv1(A)
�
��

Inv1(B)
id // Inv1(B)

id // Inv1(B)
id // … // Inv1(B).

Now using the existence theorem for �nite dimensional algebras, we may
lift each of the maps �n to a unital ∗-homomorphism 'n from An to B.Moving
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from left to right through the diagram, we may use the uniqueness theorem for
�nite dimensional algebras to adjust each 'n by an inner automorphism of B to
achieve a commuting diagram that still induces the same diagramon the invari-
ants. The resulting limit homomorphism from A to B.meets the requirements
of the existence part of the theorem.

Now supposeA and B are as in the statement of the theorem and ',  ∶ A →
B are two unital ∗-homomorphisms with Inv1(') = Inv1( ). Again, write A =
∪∞n=1An where each An is a �nite dimensional real C∗-algebra and 1 ∈ An ⊆
An+1 for each n.Using the uniqueness theorem for �nite dimensional algebras,
for each n, we get a unitary un ∈ B such that  |An = Ad u◦('|An). We then
have  (x) = lim(Ad un◦')(x) for every x ∈ A, so the two ∗-homomorphisms
are approximately unitarily equivalent. �

Corollary 5.2. [AF Algebras] If A and B are two unital real AF algebras and
(�r, �c, �ℎ) ∶ Inv1(A) → Inv1(B) is an isomorphism of invariants, there exists a
∗-isomorphism ' ∶ A → B such that Inv1(') = (�r, �c, �ℎ).
Proof. LetA, B, and (�r, �c, �ℎ) be as above. From the AF homomorphism the-
orem above, there exist unital *-homomorphisms ' ∶ A → B and  ∶ B → A
such that Inv1(') = (�r, �c, �ℎ) and Inv1( ) = (�r, �c, �ℎ)−1. From the homo-
morphism theorem above, we have that '◦ and  ◦' are approximately uni-
tarily equivalent to the identity maps on B and A respectively. We may form a
diagram:

A id //

'
��

A id //

'
��

A id //

'
��

… id // A

B id //

 
??~~~~~~~~
B id //

 
??~~~~~~~~
B id //

 
??~~~~~~~~
… id // B.

Moving left to right through the diagram, we may adjust each vertical map
by an inner automorphism to achieve an approximately commuting diagram
that induces the same diagram on the invariants. The resulting limit maps ' ∶
A → B and  ∶ B → A are then a pair of inverse isomorphisms that meet our
requirements. �

Theorem 5.3. [AI Algebras] Let A and B be unital real AI algebras. Then if
(�r, �c, �ℎ) ∶ Inv2(A)→ Inv2(B) is amorphismof invariants, there exists a unital
∗-homomorphism ' ∶ A → B such that Cu(') = �r, Cu(' ⊗ℝ idℂ) = �c, and
Cu('⊗ℝ idℍ) = �ℎ.Moreover, if ',  ∶ A → B are two unital ∗-homomorphisms
with Inv2(') = Inv2( ), then ' and  are approximately unitarily equivalent.

Proof. This is proved in the same fashion as the AF case above, but with the
existence and uniqueness theorems for interval algebras in place of those for
�nite dimensional ones. �

Corollary 5.4. [AI Algebras] If A and B are two unital real AI algebras and
(�r, �c, �ℎ) ∶ Inv2(A) → Inv2(B) is an isomorphism of invariants, there exists a
∗-isomorphism ' ∶ A → B such that Inv2(') = (�r, �c, �ℎ).
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Proof. The proof of this is similar to the proof of the analogous corollary for
AF algebras given above, but using the AI homomorphism theorem. �
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