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Dynamical notions along filters

Lorenzo Luperi Baglini, Sourav Kanti Patra
and Md Moid Shaikh

ABSTRACT. We study the localization along a filter of several dynamical no-
tions. This generalizes and extends similar localizations that have been con-
sidered in the literature, e.g. near 0 and near an idempotent. Definitions
and basic properties of F-syndetic, piecewise F-syndetic, collectionwise & -
piecewise syndetic, #-quasi central and F-central sets and their relations
with F-uniformly recurrent points and ultrafilters are studied. We provide
also the nonstandard characterizations of some of the above notions and we
prove the partition regularity of several nonlinear equations along filters un-
der mild general assumptions.
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1. Introduction

H. Furstenberg and B. Weiss first applied dynamical systems (topological dy-
namics) in Ramsey Theory in [13] and [14], starting the extremely fruitful use
of ergodic methods in combinatorics, which has provided many fundamental
results over the years. One of the reasons why these methods have been so suc-
cessful is because, in many cases, dynamical descriptions of Ramsey-theoretical
problems are simpler than the algebraic or combinatorial ones; in other cases,
the dynamical notions that arise from the study of combinatorial problems are
interesting enough to be studied for themselves. Later, starting with the work
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of V. Bergelson and N. Hindman, several ergodic notions found an equivalent
characterization in terms of special kinds of ultrafilters: for example, central
sets were related to minimal idempotents. In recent years, several papers have
faced the problem of localizing known dynamical notions and results: for ex-
ample, dynamical and combinatorial results near zero have been obtained in
[1,4,17,23,27, 28], and similar studies near an idempotent have been done in
[29, 32]. The interplay between algebra and dynamics has been studied near
zero in [28] and it has been extended to idempotents in [29]. Motivated by [17]
and [31], the most generalized notion of largeness along a filter was introduced
in [32].

In this present work, we want to explore a setting, studied also in [10], that
unifies and extends all those that have been developed so far, namely the notion
of dynamics along a filter. We show that many classical definitions and proper-
ties of notions of large sets can be extended to dynamics along a filter: properties
of #-syndetic sets and & -uniformly recurrent points are studied in Section 2, F -
quasi central sets and their dynamics are studied in Section 4, collectionwise & -
piecewise syndetic sets and F -central sets are studied in Section 5 and relations
between F-uniformly recurrent points and minimality are studied in Section 6.
Finally, in Section 7 we provide some applications of our results to the partition
regularity of nonlinear Diophantine equations along filters. Moreover, since
nonstandard methods in combinatorics have become ever more used in recent
years (see [15], where nonstandard characterizations of all classical notions we
will consider here are provided, and [11] for combinatorial applications), we
also provide the nonstandard characterizations of the basic dynamical notions
along a filter in Section 3; this is the only section where a basic knowledge of
nonstandard analysis is required.

2. Basic results

We now present here some basic definitions, results, and theorems related
to topological dynamics and the Stone-Cech compactification S of a discrete
semigroup S that will be used frequently in this paper. Throughout this paper,
S is considered to be an arbitrary discrete semigroup (unless otherwise stated).
A nonempty subset I of S is called a left ideal of S if SI C I, a right ideal if
IS C I, and a two-sided ideal (or simply an ideal) if it is both a left and a right
ideal. A minimal left ideal is a left ideal that does not contain any proper left
ideal. Similarly, one can define the minimal right ideal and the smallest ideal.
Any compact Hausdorff right topological semigroup S has the unique smallest
two-sided ideal

K(S) = J{L : L is a minimal left ideal of S}
=  |J{R : Ris a minimal right ideal of S}.

Given a minimal left ideal L and a minimal right ideal R of S, LN R is a group
and, in particular, K(S) contains an idempotent(an element a € S is said to
be an idempotent if a = aa). An idempotent that belongs to K(S) is called a
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minimal idempotent. We consider E (S) to be the set of all idempotents in S
throughout this paper. Now we state the well known definition of a dynamical
system.

Definition 2.1. A dynamical system is a pair (X, (T,)cs) such that
(1) X is a compact Hausdorff space,
(2) Sisasemigroup,
(3) foreachs € S, T, : X — X and T is continuous, and
(4) foralls,t € S, TsoT, =Ty.

In topological dynamics several notions of largeness for sets are used. Among
these, we recall those of syndeticity and piecewise syndeticity, that were defined
as follow in [18, Definition 3.1]. We shall use #(X) to denote the set of all finite
nonempty subsets of a set X.

Definition 2.2. Let (S, -) be a semigroup.
(1) Aset A C S is syndetic if there exists G € P(S) with S C U
wheret1A={yeS : ty e AL
(2) Aset A C S is piecewise syndetic if there exists G € P(S) such that
(U, t1A) 1 y € S} has the finite intersection property.

We recall the definitions of proximality from [ 5, Definition 1.2(b)], U(x) from
[20, Definition 1.5(b)] and uniform recurrence in a dynamical system from |5,
Definition 1.2(c)].

Definition 2.3. Let (X, (T,),cs) be a dynamical system.
(1) A pointy € X is uniformly recurrent if for every neighbourhood U of y,
{s € S : T,{(y) € U}is syndetic.
(2) Forx € X, U(x) = Ux(x) = {p € BS : Tp(x) is" uniformly recurrent}.
(3) The points x and y of X are proximal if for every neighbourhood U of
the diagonal in X X X, there is some s € S such that (T(x), T{(y)) € U.

-1
teG 1= A,

To give the dynamical characterization of the members of certain idempotent
ultrafilters, we need the following definition [21, Definition 2.1].

Definition 2.4. Let S be a nonempty discrete space, let K C S and let X be a
filter on S. We set

(@) K={pepS:Kep}

(b) X ={pepS:XKCph

() LKX)={ACS:S\A&X}

Clearly, X C BS and X = ﬂKejC K. It is to be noted that X C fS is
closed and contains all the ultrafilters on S that contain K. Conversely, every

nonempty closed subset C of S admits such a representation, as C = ﬂp cc P-

When X is an idempotent filter, i.e., when X C X - X, Kisa semigroup;
the converse is not always true. Here we have used the notion of filter product

LSee Definition 2.12 for the definition of T,.
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which is defined as follows: given two filters ¥ and G of a discrete semigroup
S, F-G:={ACS:{xeS:x'AegGeF}L

In this paper, we often focus on those filters ¥ on S such that ¥ is a closed
(hence compact) subsemigroup of 8S. This condition guarantees the existence
of K(¥) which allows us to use the concept of minimal left ideals and the small-
est ideals meaningfully. A characterization of such filters can be found in [8, 26]
(see also [7] for a similar study using the notion of (F, G)-sets).

Our main goal is to study properties of known dynamical notions when the
dynamics is localized along a filter. Let us recall the following definitions from
[31].

Definition 2.5. Let ¥ and G be two filters on S. A subset A of Sis (F, G) -
syndetic if for every V' € 7, there is a finite set F C V such that F~1A € G,
where F'A={xe S : (3f e F)fx € AL

Definition 2.6. Let T be a closed subsemigroup of S and ¥ be a filter on S
such that ¥ =T.
(1) A subset A of S is F-syndetic if A is (F, F)-syndetic.
(2) A subset A of S is piecewise F-syndetic if for every V' € ¥, there is a
finite F}, C V and Wy, € # such that the family

{(xT'F'A)NV : VeF,xeWy}
has the finite intersection property.

In [10], the analogous notion of uniformly recurrent and proximality along
a filter were introduced. These notions will help us to discuss the dynamical
characterizations of large sets along a filter.

Definition 2.7. Let (X, (Ty);cs) be a dynamical system. Let T be a closed sub-
semigroup of BS and F be a filter on S such that F=T.
(1) A point x € X is F-uniformly recurrent if for each neighbourhood W of
x,{s €S : Ty(x) € W}is F-syndetic.
(2) Points x and y of X are F-proximal if for every neighbourhood U of the
diagonal in X X X and for each V' € ¥ there exists s € V such that
(Ts(x), Ts(y)) € U.

We now recall some useful results from [10], [19], and [31]. The first is [31,
Lemma 2.1].

Lemma 2.8. Let T be a closed subsemigroup of S, let L be a minimal left ideal
of T, let F and G be the filterson S such that ¥ =Tand G =L, and A C S. Then
the following statements are equivalent:

(1) AnNL#6;

(2) Ais G-syndetic;

(3) Ais(F, G) -syndetic.
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As a consequence, we have the following result, that generalizes [31, Theo-
rem 2.2], where only the equivalence between (a) and (b) below was shown.

Theorem 2.9. Let T be a closed subsemigroup of BS, ¥ be a filter on S such that
F =T, and p € T. Then the following statements are equivalent:

(a) p € K(T);

(b) Forall A€ p,{x € S : x YA € p}is F-syndetic;

(c) Forallre T, peT-r-p.

Proof. That (a) implies (b) follows from the proof of [31, Theorem 2.2].

To prove that (b) implies (c), letr € T. Foreach A € p,let B(A) ={x € S :
x'A € pland C(A) ={t € S : t7'B(A) € r}. Observe that for any A,, A, € p,
one has B(A; N A,) = B(A;) N B(A,) and C(A; N A,) = C(A;) N C(A,).

We claim that for every A € p and every V € F, C(A) NV # @. To see this,
let A € pand V € ¥ be given and pick F € P;(V) such that F7'1B(A) € 7
so that F"'1B(A) € r. Hence there is some t € F with t7'1B(A) € r. Then
teCA)NV. Thus{C(A)NV : A € pand V € F} has the finite intersection
property, so pick g € S with {C(A)NV : A € pandV € F}} C q. Then
g € T. We claim that p = grp for which it suffices (since both are ultrafilters)
to show that p C grp.

Let A € pbe given. Then{t € S : t7'B(A) € r} = C(A) € qso B(A) € qr
so A € grp as required.

Finally, to prove that (c) implies (a) it sufficies to pick r € K(T). O

The following theorem is based on [4, Theorem 2.5].

Theorem 2.10. Let A C S, T be a closed subsemigroup of BS and F be a filter on
S such that ¥ = T. Then the following statements are equivalent:
(a) A is piecewise F-syndetic;
(b) There exists e € E(K(T)) such that{x € S : x 1A € e} is F-syndetic;
(c) There existse € E(K(T)) such that for every V € F there exists x € V for
which x~'A € e.

Proof. Let us prove that (a) implies (b). By [31, Theorem 2.3], pick some p €
K(T) with A € p. Let L be a minimal left ideal of T with p € Land lete € L
be an idempotent. Since A € p = pe, we have {x € S : x"'A € ¢} € p. Now
e € L C K(T) and by Theorem 2.9, we have {x € S : x!A4 € e} is F-syndetic.

That (b) implies (c) is trivial, as any F-syndetic set has a non-empty inter-
section with sets in F.

Finally, to prove that (c) implies (a) let e € E(K(T)) be such that for every
V € 7 there exists x € V for which x™!A € e. Now choose p € T such that
E={xe€S :x'Ae€e}ep. ThenA € peand pe € K(T). Soby[31, Theorem
2.3], A is piecewise F-syndetic. O

Let X be a topological space and consider XX with the product topology. Let
(X,(T)ses) be a dynamical system; then, {T, : s € S}in X¥ is a semigroup un-
der the composition of mappings. The semigroup {T : s € S}is the enveloping
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semigroup of (X, (T)ses)- [19, Theorem 19.11] shows a connection between a
dynamical system and S via the enveloping semigroup of (X, (T)cs)-

Theorem 2.11. Let (X, (Ty)ses) be a dynamical system and define 6 : S — XX
by 6(s) = T. Let © be the continuous extension of 6 to 3S. Then 0 is a continuous
homomorphism from S onto the enveloping semigroup of (X, (Ts)ses)-

We now recall the Definition 19.12 from [19], which makes precise the mean-
ing of T, for any ultrafilter p.

Definition 2.12. Let (X, (T)ses) be adynamical system and define6 : S — XX
by 6(s) = T. For each p € 8S, let T, = 6(p).

As an immediate consequence of Theorem 2.11, we have the following re-
mark (see [19, Remark 19.13]).

Remark 2.13. Let (X, (Ty),cs) be a dynamical system and let p,q € 8S. Then
T,0T4 = Tpq and for each x € X, T,(x)=p-limyeg T(x).

The relationships between T p, for p ultrafilter, and dynamical notions local-
ized to & will be fundamental in the following. We recall the last three known
results that we need for our studies. The first is [10, Lemma 3.1].

Lemma 2.14. Let (X,(T)ses) be a dynamical system and let x,y € X. Then x
and y are ¥ -proximal if and only if there is some p € F such that T ,(x) = T ,(y).

The second, that shows the relationships between some algebraic and dy-
namical notions, is [10, Theorem 3.2].

Lemma 2.15. Let (X, (Ty)ses) be a dynamical system and L be a minimal left
ideal of ¥ and x € X. The following statements are equivalent:

(1) The point x is an F-uniformly recurrent point of (X, (Ts)ses)-

(2) There existsu € L such that T, (x) = x.

(3) Thereexisty € X and an idempotent u € L such that T,(y) = x.

(4) There exists an idempotent u € L such that T, (x) = x.

The last is [10, Lemma 3.3].

Lemma 2.16. Let (X,(T)scs) be a dynamical system and let x € X. Then for

eachV € ¥ thereis a F -uniformly recurrent pointy € {T\(x) : s € V}such that
x and y are F-proximal.

3. Nonstandard characterizations

It is well known that the notions of syndetic and piecewise syndetic (and
many other related ones) have simple characterizations in nonstandard terms.
Such characterizations have been fundamental to develop many applications of
these notions; we refer to [15] and the references therein. For this reason, we
believe that it is relevant to generalize these nonstandard characterizations and
proofs to our present setting of dynamics along filters; to this end, we will follow
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the notation and, when possible, the proofs of [15]. In the present setting there
are some additional technical difficulties with respect to the classical case.

Solely in this section, we assume the reader to be familiar with the basics of
nonstandard analysis. The nonstandard take on ultrafilters that we discuss here
has been used in many recent papers to produce several results in combinatorial
number theory (see e.g. [11, 24, 25]). We recall its basic definition and facts.

We work in a setting that allows for iterated nonstandard extensions, which
we assume to be sufficiently saturated. For any A C S, we inductively define
A" = A and® AMD* 1= (AMF); we set A = U, .en A" We use
the same kind of notation when the star map is applied to nonstandard objects:
e.g. whenever o € S©* we let a®* := a*** = ((a*)*) .

For a € S(®)* we set

¢(a) :=min{n € N | a € SW*}.
Given ¥ a filter on S we set
wWF) :={aeS*|VAeFae A}
and
Uoo(F) 1= {a € S | VA € F a € A},
U (F) will be called the monad of F.
Conversely, given a € S, we let

Uy :={ACS|ae A} ={ACS|ae AC@)H],

Fora, 8 € S, we say that a, § are u-equivalent (notation: a ~ ) if U, = Ug.

It is rather simple (see e.g. [24] for a detailed study of the properties of these
nonstandard characterizations) to prove that, for all « € Sleo), U, € BS and,
conversely (assuming sufficient saturation), that u(#) is nonempty for all &
filters on S; for U nonprincipal, u(U) will be infinite, its cardinality depending
on that of S*. Moreover,

aeu(F)e F C U,

namely u(F) = 5, #(W).
In general, U, - Ug # U,.p; however, in our nonstandard setting, we have
that® Va, § € S()*
Uy - Ug = Ug.pe@ps

For this reason, we say that « € S is idempotent if a ~ o - al?©@* je. if U,
is idempotent, and that a € S* is F-minimal if U, € F N K(BS). We say that «
is an #-minimal idempotent if it is F-minimal and idempotent. Notice that if «
is #-minimal and 3,y € F* then also af*, ya*, ya*** are minimal.

2When n = 1,2 we use the more common and simpler notations A*, A**.

31n what follows and in most applications, one uses this formula with a, 8 € S*; we wrote
here the more general formulation as we will need to use it in two proofs.
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For X C S, we set
ux) = | J uw;

uex

conversely, for A C S(e)* we let
m(A) :={UePS|Jae AU = U,

The nonstandard characterizations of #-syndetic and piecewise F-syndetic sets
are given in the following proposition.

Proposition 3.1. Let A C S and ¥ filter on S. The following equivalences hold:
(1) AisF-syndeticifand only ifthereexistsT C u(F) hyperfinitewithT"1A* €
F*;
(2) A is piecewise F-syndetic if and only if there exists W € F*, T C u(¥F)
hyperfinite and § € w(¥) such that §* € [,y X 'T1A™, ie. such
that WB* C T1A**,

Proof. (1) Assume that A is #-syndetic. For all V € ¥ set
Iy :={Ge @, (V)| G lAe F}.

The family {Iy/}ycs has the finite intersection property, as @ # Iy n..qv, <
Iy, n--nIy foralln € Nand Vy,...,V, € F. LetT € [, ., V*. ThenTis
hyperfinite and I' C V* for all V' € ¥ by construction, hence I' C u(¥). And,
by transfer,as " € I ;} it follows that T"1A* € F*.

Conversely, let ' C u(F) hyperfinite be such that ™1 A* € F*. In particular,
forallV € F T € gy;,(V)*, so (with the same notations used above) I, # 0.
By transfer, I, # @, so A is F-syndetic.

(2) Ais piecewise F-syndetic if and only if for all V' € F there are Vi, W as
in Definition 2.10 such that the family

G :={(x"'F]lANV |V eF,xeWy}

has the FIP. This is equivalent to say that there exists an ultrafilter Ug € S
that extends G which, by definition of Up, is equivalent to say that there exists
B € S*suchthatVV € F Vx € Wy, 3f € Fy, fx € A*. NowforallV € ¥ let

Iy(B) ={(Fy,Wy) | Vx € Wy 3f € Fy fx € A*}.

The family {Iy, }y <+ has the FIP, as I, (B)N---NIy (B) 2 Iy n...qv, (B) # B. Pick
(T,w) e ﬂVe? I,(B)*. Then, by definition, W € F*,T C u(¥F) is hyperfinite
and WB* C T~1A**, as required.

Conversely, let 8, W, T as in the hypothesis be given. Then for all V' € F the
following holds true:

IW € F* AT € (V) B €| [ x4 [n v,
xew
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By transfer then, for all V' € & we have that

IWy €FIFy € pra(V)Be| [] x7IF A |nVe,

xeWy

For all V € ¥ take Wy, F, as above. As 8 € (ﬂerV x‘nglA*) N V*, in

particular it means that Uz extends G := {(x‘lF;IA) NV |V eF,xe Wyl
therefore G has the FIP, which proves that A is piecewise F-syndetic. O

Notice that, in the nonstandard characterization of piecewise F-syndeticity,
by using Lemma 3.3 below we could have additionally asked that W C u(¥).

To generalize the nonstandard characterizations of piecewise syndetic sets in
terms of minimal points and central sets to dynamics along a filter &, we will
need some useful results about generators of filters #, some of which require

F to be a semigroup.

Lemma 3.2. Let F be a filter on S. Then forall W € F*, forall U € FWn
u(U) # 9.

Proof. We just have to observe that W € #* C U*, hencel, :=WnNA*# @
forall A € U. As the family {I4}4¢y has the FIP, by saturation we deduce that

N acu W NA* # (§, and any «a in this intersection is, in particular, in the monad
of U. O

Lemma 3.3. Let F be a filter on S. Then there exists W € F* such that W C
u(F).

Proof. ForallA € Fletly, ={B € F | B C A}. Clearly, I, # @ and {I4}sc#
has the FIP, therefore by enlarging (1, I; # . It remains to notice that any
W in this intersection has the desired property. O

Theorem 3.4. Let F be a filter on S and assume that Fisa semigroup. Let
I' C u(¥F) hyperfinitee W € F*and a € u(F). Let L C F be the left ideal
L =%F-U,. Thenthereexistst € u(F)NW suchthatt ~ aandVy € T'yr € u(L).

Proof. Let A C S,y € I. By definition,

AelU, - Uy o{seS|{teS|ste Ale U} € U,
hence

AEU, - U, oy€e{seS|{teS|st € AL € U}
As{seS|{teS|ste Ale U} ={oceS*|{reS"|st e A*} € U}}, this
shows that

AU, - U, & T, :={teS"|yr€ A€ U;.
In particular, by Lemma 3.3 pick T € U} with T C u (U,). Let G be the filter

on Ssuchthat G =L. If A € L then, as u, - U, € L,we have that A € U, - Uy.
Soforally eTand A € G, IZ € U,. Therefore also IZ NT € U, and, as T
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is hyperfinite, we have that I, = (ﬂyeF{T eS*|yre A*}) NT € U,. Notice

that I, is an internal set for all A € G, and that the family {I,}4¢g has the FIP.
Hence, by saturation, () Acgla # @.

We claim that any 7 in the above nonempty intersection satisfies the conclu-
sions of our Theorem. In fact,a ~7ast € T C u(U,) and, forally € T, by
construction y7 € A* for all A € G, namely yt € u(L). O

In the following, given « € S* and A C S, we let
A, ={seS|s-ae A"}
First, we provide a nonstandard proof of the nonstandard formulation of
Theorem 2.9.
Theorem 3.5. Leta € S*, let & be a filter on S and assume thatF isa semigroup.
The following facts are equivalent:
(1) ais F-minimal;
(2) VA € U, A, is F-syndetic;
(B) VB e u(F) 3y € w(F) such thata ~ y - f* - a**.
Proof. (1) = (2) Fix A € U,. As a is minimal, there is L minimal left ideal in

F such that U, € L. Let 8 € u(L). As L is minimal, there exists y € u(¥) such
thaty - B* ~ a. In particular, for all F € ¥ we have

dyeF 'y -p*e A™.

By transfer, it follows that VF e # 3f € F f - 8 € A*.
As the above is true for any § € u(L), it is in particular true for any object of
the form & - a* with § € u(F). Thus,

Vs e u(FIVF e F & -a* e f1A*.
Therefore,
VS eu(F)VFeFIf€Fy -a* € f1A*,
which means that
yEMES| fra* € A} ={s€S| fsa € A*} = (f‘lAa)*.

Asy € u(F), this shows that f~1A, € F, hence that A, is F-syndetic.

(2) > (3) Fix B € w(¥F),A € U,. By hypothesis, A, is F-syndetic, namely
VF € ¥ 3H € @g,(F) H'A, € F. As 8 € u(¥), we have that § €
(H‘lA)* = H ' (A*),so B € f~1A} for some f € H. As, by transfer, A, =
{seS|s-ae A, itfollowsthat B € f71(A%) & fB € AL & fRa* € A*.

Now, for F € F,A € U, let

Ie={f €F| fBa* € A*}.

The family {T'4}res acy, has the FIP as, foralln € N,

A, 1 ArN-NAy,
FF1 A 1-?1 2 FFln---nF,, # 0.
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By enlarging, (\pcy scy. (T4)" # @. 1f y belongs to this intersection, by con-
struction y € u(F)issuch thaty - 8* - a** € u(U,),ie.y - - a™ ~ a.

(3) > (1) Take B € u(F) minimal, take y € u(F) such that a ~ yS*a**. We
conclude as yB*a** is minimal. O

As a consequence, we have the following:

Theorem 3.6. Let A C S, let F be a filter on S and let F bea semigroup. Then
A is piecewise F-syndetic if and only if there exists an F-minimal a € A*.

Proof. (1) = (2) Let 8 € u(F),W € F*,T C u(F) hyperfinite be such that
WpR* C I"!A**. By Lemma 3.2 and Lemma 3.3, we can assume that W C u(F)
and Vo € w(¥F) It € u(F)a ~ 1. Hence, in particular, there exists a € W
that is #-minimal. Let L be the left #-ideal generated by U,. By Theorem 3.4,
in particular there exists 7 € W such that Vy € T yt € u(L). By hypothesis,
there exists y € I' such that y75* € A**. We just have to observe that y75** is
minimal since y7 is minimal, U,, - Uz € K(¥) and y78* € u (u,,f . Uﬁ).

(2) = (1) Let x € A* minimal. By Theorem 3.5 it follows that A, is F-
syndetic. Let I' C u(F) hyperfinite be such that W = I"1A% € F*. We claim
that

a* € m wir-tAas,
wew
which would conclude by Proposition 3.1. By definition, w € W if and only if
there existsy € I',a € Ay suchthatyw =a € A}. AsA; ={neS*|n-a* e
A**}, this shows that for all w € W there exists y € T such that ywa™ € A**,
which proves our claim. (]

We can now prove a nonstandard version of Theorem 2.9.

Nonstandard Proof of Theorem 2.9. (1) = (2) By Theorem 3.6, thereisa €
A* F-minimal. Let L be the minimal left #-ideal such thatx € L. Let § € u(L)
be a minimal idempotent. Then Ag = {s € S | sB € A*} C B. If we prove
that Ag is F-syndetic, B is then F-syndetic as well. As a, € u(L), there is
y € u(¥F)such that o ~ yB*. Then af* ~ yp*B** ~ yp* ~ a. Asa € A*, it
follows that also a8* € A*, and this holds if and only if

aef{seS|spe A}

This shows that Ag € U, and, as a is minimal, we conclude that Ag is F-
syndetic by Theorem 3.5.

(2) = (3) As B is F-syndetic, there exists I' C u(F) hyperfinite with T"1B* €
F*. Given a € u(¥F), let B € u(F) N T~1B* be given by Theorem 3.4, namely
B ~aandy-f € u(L) for all y € T, where L is the left #-ideal generated by
U,. As B € T7'B*, there exists y € I'such that y8 € B*. Asy - 8 € Land ¥ is
a semigroup, yB € u(F); in particular, y3 € V* n B*. By transfer, we have that
BNV #40.
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(3)= (@) ForallV € F let

Iy ={UeBS|UecKF)andIx e V x 1A € Ul

I, is closed, K(F) is compact and {Iy}ves has the FIP, hence [, Iy # 0.
Pick U in this intersection. Let 8 € u(U). Then for all V' € &, by construction,
thesetJy, = {x € V | B € x"1A*} # 0. As the family {J; }; <+ has the FIP, we
findy € (1,c,J;- In particular, y € u(F) and yB* € A*™*. As f3 is minimal
and y € u(¥), sois yB*, and we conclude by Theorem 3.6. O

4. F-quasi-central sets and their dynamics

Quasi-central sets were first introduced in [18]. In [5] they were dynami-
cally characterized. The second author of this paper studied quasi-central near
zero in [28]. In [29] quasi-central sets near an idempotent of a semitopological
semigroup were discussed extensively.

In this present section we study quasi-central sets along a filter which will
generalize all the above settings. To move forward, we need to state the follow-
ing definition and theorem from [21].

Definition 4.1. Let (X, (T);cs) be a dynamical system, x and y be two points
in X, and X be a filter on S. The pair (x,y) is called jointly K-recurrent if and
only if for every neighbourhood U of y we have that{s € S : Ty(x) € U and
T,(y) € U} € L(X).

Theorem 4.2. Let S be a semigroup, XK be a filter on S such that X is a compact

subsemigroup of BS, and let A C S. Then A is a member of an idempotent in K
if there exists a dynamical system (X, (T)scs) With points x and y in X and there
exists a neighbourhood U of y such that the pair (x,y) is jointly K-recurrent and
A={seS :Tyx)e Ut

Proof. See [21, Theorem 3.3]. O

In the above theorem (Theorem 4.2) the hypothesis that Kisa compact sub-

semigroup of 8S guarantees the existence of K(X). Theorem 4.2 shows a beauti-
ful relation between jointly K -recurrent pairs and idempotent ultrafilters. Now
we define quasi-central sets along a filter.

Definition 4.3. Let ¥ be a filter on a semigroup S such that Fisa compact
subsemigroup of S and let C C S. Then C is said to be F-quasi-central if and

only if there is an idempotent p in cIK(F) such that C € p.

It is well known that piecewise syndetic sets in S can be characterized in
terms of the closure of the smallest bilateral ideal of 3S. [31, Theorem 2.3]
generalizes this fact to piecewise F-syndeticity.

Theorem 4.4. Let ¥ be a filter on S such that Fisa compact subsemigroup of
BS and A C S. Then K(F) N clgs,(A) # B if A is piecewise F -syndetic.
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As an immediate consequence, we get the following characterization.

Lemma 4.5. Let & be a filter on a semigroup S such that F is a compact sub-
semigroup of BS and let

K ={A CS : S\ Aisnot piecewise F -syndetic }.

Then X is a filter on S with clK(F) = X, which is a compact subsemigroup of
BSa-

Proof. By the construction of X and Theorem 4.4, we have X = [ K (?). Us-
ing Theorem 3.20(b) of [19], we have X is a filter and X = clK(F). By [19,
Theorem 2.15], cIK(F) isa right ideal of F,s0in particular, Kisa compact sub-
semigroup of F. Therefore clK(F) = K is a compact subsemigroup of 3S. O

Let us now define jointly intermittently #-uniform recurrence which will be
helpful to give a dynamical characterization of quasi-central sets along a filter.

Definition 4.6. Let (X, (T,)cs) be a dynamical system and let x,y € X. The
pair (x, y) is jointly intermittently F -uniformly recurrent (abbreviated asJIFUR)
if for every neighbourhood U of y, the set{s € S : T((x) € U and T,(y) € U}
is piecewise F-syndetic.

Now we are in the position to characterize quasi-central sets dynamically
along a filter in terms of JIF UR pairs.

Theorem 4.7. Let F be a filter on a semigroup S such that F is a compact sub-
semigroup of S and let A C S. The set A is F-quasi-central if and only if there
exists a dynamical system (X, (T)ses), points x and y in X, and a neighbourhood
U of y such that the pair (x,y) isJIFURand A ={s € S : T,(x) € U}.

Proof. We shall prove this theorem using Theorem 4.2. Let
K ={B CS :S\Bisnota piecewise F-syndetic set}.

Clearly, £(X) = {A C S : Alis piecewise F-syndetic }. By Lemma 4.5, we have
that X is a filter and K = cIK (%) which is a compact subsemigroup of 3S. Now
we can apply Theorem 4.2 to prove our required statement. (|

5. Combinatorial characterization of large sets along a filter

In [18] Hindman, Maleki, and Strauss gave combinatorial characterizations
of central sets and quasi-central sets. To characterize these large sets, syn-
detic sets, piecewise syndetic sets, and collectionwise piecewise syndetic sets
played significant roles. Motivated by this, in this section we want to study
the combinatorial characterizations of large sets along a filter using the no-
tions of F-syndetic sets, piecewise F-syndetic, and collectionwise piecewise
F-syndetic. So, at first, we need to define the notion of collectionwise piece-
wise F-syndeticity for further discussions.
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Definition 5.1. Let T be a closed subsemigroup of 5S, # be a filter on S such
that ¥ = T. A family A C P(S) is collectionwise piecewise F-syndetic if for
every V € ¥ there exist functions Gy : P(A) — Py(V)and §y : Pr(A) —
P(V) N F such that for every U € F, every F € P(S), every I € P;(F), and
every C € P(A), there is some t € U such that for every V' € H and every
B € P5(C), (F NSy (B))t C (Gy(B) " (nB).

Note that if # = {S}, then collectionwise piecewise F-syndetic sets reduce to
collectionwise piecewise syndetic collections.

In the following theorem we provide an algebraic characterization of collec-
tionwise piecewise F-syndetic sets.

Theorem 5.2. Let T be a closed subsemigroup of S, F be a filter on S such that

F =T and A C P(S). Then there exists p € K(T) such that A C p if and only if
A is collectionwise piecewise F -syndetic.

Proof. To prove the necessity, we set M(B) = {x € S : x~1(nB) € p}, for each
B € P¢(A). Then by Theorem 2.9, M(B) is a F-syndetic in S. Thus for each
V € F, pick Gy(B) € P;(V) such that (Gy(B))'M(B) € 7.

Let 8y(B) = (Gy(B))"'M(B) NV, then 6,,(B) € P(V) n F. Hence for each
V € 7, we can define Gy @ Py(A) — Pr(V)and oy : Pp(A) — P(V)NF.
To see that these functions are as required, let U € &, F € ?f(S), e ﬂ’f(fr" ),
and € € P(A) be given. For each (y,V, B) such that V€ 3, B € P;(C), and
y € §(B)NF, pick x(y,V, B) € G, (B) such that x(y,V, B)y € M(B), that is
(x(y,V,B)y)"'(nB) € p.

Let

D ={(x(y,V,B)y) " (nNB) : Ve H,B e PC)and y € §;(B)NF}.

If D = (J, the conclusion is trivial, so we may assume D # @ and hence D €
P¢(p). Pickt € (ND)NU. LetV € J€ and B € P(C) be given. IFFNSy(B) = ¥,
the conclusion holds, so assume F N 6, (B) # P and lety € F N §,(B). Thus
yt € (x(v,V, B)~H(NB) C (Gy(B))" (nB).

To prove the sufficiency, pick functions Gy, and &y, for each V' € ¥ as guar-
anteed by the assumption that A is collectionwise piecewise F-syndetic. Given
U€JTF,F e PuS), I € Pp(F),and € € Pp(A); pick t(C, I, F,U) € U such
that for every V € 7 and B € 2;(C), we have

(6y(B) N F)(t(C, 7, F,U)) C (Gy(B)"H(nB).

Now for each B € P¢(A), each H € Pp(F),and every y € S, let D(B,H,y) =
{t(C,H,F,U) : C € Ps(A)with BCC,F € Pr(S)withy € F, and U € F}.
Then
D={D(B,7,y) : BE€ Ps(A), I € Pp(F),y ES}UF
has the finite intersection property.
Indeed, given sets

By, Boy s By € P(A),  Hy, Ky, Hy € PH(F), Uy, Uy, ,Uy € F,
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and points y;, y5, ..., ¥, € S,let B = U?:l B, H = U?:l Hi, F =1,V s Ynhs
and U = (\_, U;. Then (B,%,F,U) € (,_,(D(B;,%;,y;) N Uy). So pick
u € T'such that{D(B,7(,y) : B € Pp(A), I € Ps(F),y € S} Cu.

Now we assert that for each B € P¢(A), each I € P;(F), and each V € I,
Tu C (Gy(B))~1(nB). To this end, pick g € T and let A = (G (B))"}(nB).
Now for all V € F, we claim that §,(B) C {y € S : y 'A € u} so that
since 6, (B) € q, we have A € qu. To prove our claim it suffices to show
that D(B,7(,y) € y'Aforally € 6y(B). So, let € € P;(A) with B C C,
letF ?f(S) with y € F, and let V € X be given. Then for each V' €
y € FNdy(B),soyt(C,H,F,U) € A asrequired. Let L := Tu, then

re (1 (] ) G@) D).

We may assume L is a minimal left ideal of T. Pick r € L. For each B €
Pi(A), H € Pp(F), and each V € I, pick x(B,H,V) € Gy(B) such that
(x(B,3,V))H(NB) € r. For each B € P;(A) and H € P(F), let (B, H) =
{x(C,I,V) : C€ Pr(A),B CC, and V € J}. We establish that

{€(B,7) : BePi(A),IH € Pr(FNUTF

has the finite intersection property.
Indeed, given

B, Bay s By € Pr(A);  H1, Hgyooo, Hoy € PH(F); Uy, Uy, Uy € F,

letV =, U, % = (U, 7)u{V}and € = |-, B;. Then x(C, %, V) €
ﬂ:il e(B;, H)N ﬂ:il U;. So, pick w € T such that{e(B,H) : B € Ps(A),H €
P(F)} Cw. Let p = wr. Then p € L C K(T). To see that A C p,let A € A.
We show that {ALH) C {x € S : x'A € r}forall i € P(F). Let
B € Py(A)with A € Bandlet V € H. Then (x(B,%,V))"(nNB) € r. So,
(x(B,7,V)) LA € r because NB C A. Hence s({A}, H) C{x €S : x A er}
for each H € P;(F). Therefore, {x € S : x'!Aer}ewandso A € wr = p,
where p € L C K(T), as required. O

We recall the notion of tree below. We let w = {0, 1, 2, ...} be the first transfi-
nite ordinal number; we recall that in Von Neumann representation each ordi-
nal can be identified with the set of its predecessors.

Definition 5.3. J is a tree in A if J is a set of functions and for each f € 7T,
domain(f) € w and range(f) C A and if domain(f) = n > 0, then f|,_; € J.
T is a tree if for some A, T is a tree in A.

Definition 5.4. We fix the following notations.
(a) Let f be a function with domain(f) = n € w and let x be given. Then

f—x=fuinx}
(b) Givenatree I and f € T,By =Bp(J) ={x : [ ~x € T}
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(c) Let S be semigroup and let A C S. Then J is a x-tree in A if 7" is a tree
in Aandforall f € 7 andall x € By, By, C x™'By.

(d) Let S be semigroup andlet A C S. Then J is a FS-treein A if 7 is a tree
in Aandforall f €T,

By = Hg(t) g€ TJ,f Cg andf #F C domain(g) \ domain(f);.

t€F
First, let us recall two results about FS-trees. The first is [18, Lemma 3.6].

Lemma 5.5. Let S be semigroup and let p be an idempotentin 3S. If A € p, then
thereis a FS-tree J in A such that for each f € T, By € p.

The second is [17, Lemma 4.6].
Lemma 5.6. Any FS-treeis a *-tree.

We can now prove the equivalences of several tree properties when localizing
along a filter using the notion of F-central set. This notion has been studied
deeply in [16].

Definition 5.7. Let S be a discrete semigroup and let F be a filter on S where

F is a subsemigroup of 8S. Then a set C C S is said to be F-central if there
exists an idempotent p € K(F) such that C € p.

Theorem 5.8. Let T be a closed subsemigroup of S, F be a filter on S such that
F=TandletACS.

Statements (a), (b), (¢), and (d) are equivalent and implied by statement (e). If S
is countable, all five statements are equivalent.

(a) Ais F-central.
(b) Thereis a FS-tree " in A such that {B; : f € T} is collectionwise piece-
wise F-syndetic.
(¢) Thereisax-tree T in Asuchthat{By : f € T}is collectionwise piecewise
F-syndetic.
(d) There is a downward directed family (Cr)rcr of subsets of A such that
(i) forall F € I and all x € Cy, there is some G € I with C; C x~'Cp
G
(ii) {Cg : F € I} is collectionwise piecewise F -syndetic.
e ere is a decreasing sequence > . of subsets of A such that
(e) Thereisad ing seq (Cdpy b A such th
(i) foralln € Nand all x € C,, there is some m € Nwith C,, C x~'C,
and
(i) {C, : n € N}is collectionwise piecewise F -syndetic.

Proof. (a)implies (b). By Lemma 5.5, pick a FS-tree J in A such that for each
f € T,By € p. By Theorem 5.2, {B; : f € T} is collectionwise piecewise
F-syndetic.

That (b) implies (c) follows from Lemma 5.6.

(c) implies (d). Let I be given as guaranteed by (c). Let I = P(J") and for
FelletCr =) feF By. Since {By : f € T}is collectionwise piecewise F-
syndetic, sois{Cr : F € I}. Given F € Tand x € Cp,letG = {f — x :
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f € F}. For each f € F we have By_, C x~'B ¢ by the definition of *-tree so

CG = nfEF Bf,_\x Q ﬂfEF x_le = x_1CF.

(d) implies (a). Let M = ) Fel C_F We claim that M is a subsemigroup of
BS. To this end, let p,q € M and let F € I. To see that Cr € pq, we show that
CrC{x €S : x'Cpe€q} Let x € Cp and pick G € I such that C; C x™'Cp.
Then Cg € gso x1Cp € q.

By Theorem 5.2 we have M N K(T) # @. Since K is the union of all minimal
left ideal of T (see [3, Theorem 1.3.11]), pick a minimal left ideal L of K(T) with
MnNL #@. Then M NL isacompact semigroup so by [12, Corollary 2.10], there
issome p=p - pin M N L. Since each Cr C A, we have p € K(T) N A.

That (e) implies (d) is trivial.

Now assume that S is countable. We show that (c) implies (e), so let I be
as guaranteed by (c). Since J” is countable, enumerate 7 as (f ), ;. For each
neNletC, = ﬂZ:l Bf,. Then {C,, : n € N}is collectionwise piecewise
F-syndetic. Let n € N be given and let x € C,,. Then foreachk € N, By, C
x7'Bs,. Pick m € Nsuch that {fy — x : k € {1,2,..,n}} C {fx : k €
{1,2,...,m}}. ThenC,, C x~'C,. O

Theorem 5.9. Let T be a closed subsemigroup of S, F be a filter on S such that
F=TandletACS.

Statements (a), (b), (c), and (d) are equivalent and implied by statement (e). If S
is countable, all five statements are equivalent.

(a) Ais F-quasi-central.
(b) There is a FS-tree T in A such that for each F € P(J), ﬂfeF By is
piecewise F-syndetic.
(c) Thereis a *-tree I in A such that for each F € P(T), ﬂfeF By is piece-
wise F-syndetic.
(d) There is a downward directed family (Cr)rc; of subsets of A such that
(i) foreach F € I and each x € Cp, thereexists G € I withC; C x~'Cp
and
(ii) foreach F € I, Cy. is piecewise F-syndetic.
(e) There is a decreasing sequence (Cy,)_; of subsets of A such that
(i) for each n € N and each x € C,, there exists m € Nwith C,, C
x~1C, and
(ii) Foreachn € N, C,, is piecewise F-syndetic.

Proof. The proof is the same as Theorem 5.8. O

6. Minimal systems along filters

In Section 2 of [20] Hindman, Strauss, and Zamboni presented some well
known results about U(x) (see Definition 2.3(2)) that are true in an arbitrary
dynamical system as well as the few simple results in (35S, (1s)ses) sSuch as:

(i) U(x) = BS if x is uniformly recurrent;
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(ii) for every x € X, U(x) is a left ideal of S containing K(3S);
(iii) ﬂx ox U(x) is a left as well as a right ideal of 8S;
(iv) K(BS) is not prime, under some weak cancellation assumptions.

These results were studied near an idempotent of a semitopological semi-
group in [29]. In this present section, we shall establish these results along a
filter, i.e., in a more general setting.

Definition 6.1. Let (X, (T);cs) be a dynamical system and x € X. Let ¥ be a
filter on S such that F is a closed subsemigroup of 85, then

(1) Us(x) =Ug,(x) ={p € BS : Tp(x) is F-uniformly recurrent}.

(2) A subspace Z of X is called F-invariant if T \,(Z) C Z for every p € F.

Lemma 6.2. Let (X,(Ty)ses) be a dynamical system and let & be a filter on S
such that F is a closed subsemigroup of 3S. Then the following are equivalent:-
(1) x is F-uniformly recurrent.
(2) Thereexistsq € K (F) such that T (X)) = x.
(3) Thereexistsy € X and q € K(F) such that T,(y) = x.

Proof. Since the smallest ideal K (%) is the union of all minimal left ideals of
F, the equivalences all follow from Lemma 2.15. ([

Corollary 6.3. Let (X,(T,)es) be a dynamical system and x € X. Let ¥ be a
filter on S such that F is a closed subsemigroup of 8S, then

(1) if x is F-uniformly recurrent then FC U4s(x),

(2) foreach x € X, K(F)C U4s(x),

(3) foreach x € X, Uz(x) N F is a left ideal of F,

@) (Nyex Us() N F is a two-sided ideal of F.

Proof. (1) Suppose that x is #-uniformly recurrent. Then by Lemma 6.2, T,(x)
= x for some u € K(¥). Thus for every v € 7, T,(x) = T,(Ty(x)) = Ty, (x).
Now since vu € K(¥), by Lemma 2.15 T,(x) is F-uniformly recurrent and
thus, v € U#(x). Therefore  C U4(x).

(2) This is immediate from Lemma 2.15.

(B)Letx € X, p € Uz(x) N F and r € F. By Lemma 2.15 pick ¢ € K(F)
such that To(T,(x)) = Tp(x). Then T,p(x) = T, (Ty(T,(x))) = T,qp(x). Now
rgp € K (F). So by Lemma 2.15, T, ,(x) is ¥ -uniformly recurrent and hence
rp € Us(x) N F. Therefore Us(x) N F is a left ideal of F.

(4) By (2) (N, ex Us(x)) N F is nonempty. So by (3), ([, Us(x) [ F is a
left ideal of #. So it is enough to show that ([, ., Us(x)) Fisa right ideal
of . To this end, let p € (Nyex UGN N Fand g € F. Suppose y € X then
p € Us(Ty(»)). Thus T p,(y) is F-uniformly recurrent and so pq € Us(y). O

The proofs of the following Lemma and the next Theorem follow closely the
arguments of Hindman, Strauss, and Zamboni in [20].
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Lemma 6.4. Let (X,(T)scs) be a dynamical system and let F be a filter on S

such that ¥ is a closed subsemigroup of S. Let L be a minimal left ideal of 7,
then

(1) asubspaceY of X is minimal among all closed and F -invariant subspaces
of X if and only if there is some x € X such thatY ={T,(x) : p € L},

(2) letY beasubspace of X which is minimal among all closed and F -invariant
subspaces of X. Then every element of Y is F-uniformly recurrent,

(3) if x € X is F-uniformly recurrentand Y = {Tp(x) : p € F}, then Y is
minimal among all closed and F-invariant subspaces of X,

(4) if x € X is F-uniformly recurrent then T (x) is F-uniformly recurrent

forevery p € F.

Proof. (1) Suppose that Y is minimal among all closed and F-invariant sub-
spaces of X. Pick x € Y andlet Z = {T,(x) : p € L}. We show that Z is
a closed and F-invariant subspace of Y and this is equal to Y. If p € L and
q € F, then Ty (T(x)) = Typ(x) and gp € L. So Z is F-invariant and obvi-
ously Z C Y. To prove that Z is closed, it is enough to show that any net in Z
has a cluster point in Z.

To this end, let (p, ),ep be anetin L and pick a cluster point p in L of {p,)sep-
Then T ,(x) is a cluster point of (T, _(x))qep-

Conversely, let x € X and Y = {T,(x) : p € L}. ThenY is F-invariant
and is closed as above. We now show that Y is minimal among all closed #-
invariant subspaces of X. Suppose that Z is a subspace of Y which is closed and
F-invariant. We shall show that Y C Z. Solety € Y and pick z € Z. Then
y =Tp(x)and z = T,(x) for some p and q in L. Since Lq = L, there existsr € L
such that rq = p. It follows that T,.(z) = T,(T4(x)) = T,4(x) = T,(x) = y and
thus y € Z as required.

(2) Let Y be a subspace of X, which is minimal among all closed and #-
invariant subspaces of X and x € Y. Pick y € X such thatY = {T,(y) : p € L}.
Pick p € L such that x = T,(y). By Lemma 2.15, x is ¥ -uniformly recurrent.

(3) Let x € X be F-uniformly recurrent and Y = {Tp(x) : p € FI. By
Lemma 2.15, pick g € L such that Ty(x) = x. By (1), it suffices to show that
Y = {Tp(x) : p € L}. To prove this, let y € Y and pick p € F such that
Yy =Tp(x). Theny = Tp(T4(x)) = Tpe(x) and pq € L as required.

(4) Let x € X be F-uniformly recurrentand Y ={T,(x) : p € FI. By(3)Y
is minimal among all closed and F-invariant subspaces of X so (2) applies. [J

Theorem 6.5. Let F be a filter on S such that F is a closed subsemigroup of S
and let x € F. Statements (a) and (b) are equivalent and imply (c). If? has a
left cancelable element, all three are equivalent.

(a) x € K(¥F).

(b) x € X is F-uniformly recurrent in the dynamical system (B3S, (Ag)ses)-

(c) Fx is a minimal left ideal of F.
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Proof. (a) implies (b). Let x € K(¥) and let u be the identity of the group in
K(¥) to which x belongs. Then x = 4,(x) so by Lemma 6.2, x is #-uniformly
recurrent in the dynamical system (S, (1g);es)-

(b) implies (a). Let x be F-uniformly recurrent in the dynamical system

(BS, (As)ses)._By Lemma 6.2, there exists ¢ € K(F) such that Aq(x) = x. Then
X =gx € K(F).
(a) implies (c). Assume that x € K (¥) and pick the minimal left ideal L of F

such that x € L. Then Fxis aleft ideal of ¥ contained in L. So L = Fx. Now
assume that 7 has a left cancelable element z and Fx is a minimal left ideal
of F. Pick an idempotent u € Fx. Then zx € Fx. So by [19, Lemma 1.30],

zx = zxu and therefore x = xu € Fx C K(F). O

Corollary 6.6. Let ¥ be a filter on S such that F is a closed subsemigroup of
BS and let x € K(F). Then ¥ C U4#(x) with respect to the dynamical system
(lBS, <A’S>S€S)'

Proof. By Theorem 6.5, x is #-uniformly recurrent, so by Lemma 6.4, F C
U?(X). O

Corollary 6.7. Let F be a filter on S such that ¥ is a closed subsemigroup of BS

andlet p,q € F. Statements (a) and (b) are equivalent and imply (¢). If F hasa
left cancellable element, all three are equivalent.

(a) gp € K(F).
(b) g € Uy(p) with respect to the dynamical system (8S, (A)ses)-
(c) Fqp is a minimal left ideal of F.

Proof. We have that g € U4(p) if and only if 1,(p) is F-uniformly recurrent
and 1,(p) = gp, so Theorem 6.5 applies. O

Corollary 6.8. Let F be a filter on S such that F is a closed subsemigroup of f3S.
Then the following statements are equivalent.

(a) There exists p € F \ K (F) such that K(F) C U4 (p) with respect to the
dy@mical system (S, (Ag)ses)-
(b) K(#)is not prime.

Proof. The proof is an immediate consequence of Corollary 6.7. O

7. Partition regularity along filters

As an example of application of the notions developed above, we discuss here
some results about the partition regularity of equations along filters. One of the
major problems in Ramsey theory regards the so-called partition regularity of
equations (see [11] for a general introduction to the topic). In what follows, we
letT € {N,Z,Q,R} and S C T. We will use the following notation: for # a
filter on S, we let .

Fr:={UePT|F C U}
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Notice that, if we let F(T) :={A € P(T) | 3B € F B C A}, then F; = F(T).

Definition 7.1. Let S C T, let K = Rif T = R, K = Q otherwise. Let
Py (X1, ey Xp)seoe 5Py (X715 -0 5 X)) € K[xq, ..., X,,]. Let

Py (%155 %)
T(X1y s Xp) =

P, (%X1,...,%,).

We say that the system of equations o (xy, ...,x,) = (0,...,0) is* partition
regular on S if it has a monochromatic solution in every finite coloring of S'\ {0},
r

namely if for every natural number r, for every partition S \ {0} = (] A;, there
i=1
isan index i < r and numbers ay, ..., a, € A; such that for all j € {1, ..., m} we
have P; (ay, ..., a,) = 0.
The notion of partition regularity near a filter can be introduced as follows:

Definition 7.2. Let S C T and let F be a filter on S. Let P; (xy, ..., X)), -,
P, (X1, x,) € T [Xq, ..., X,]. Let

Py (%155 %)
T(X1y s Xp) =
P, (%1,...,%,).

We say that the system of equations o (x4, ..., x,) = 0 is F-partition regular
on S ifforall V € ¥, for all finite partitions S = A; U--- U A thereexists j < k
and qy, ...,a, € A; NV such that o (a;,...,a,) = 0.

In [27], the second and third authors of this paper started the study of the
partition regularity of equations in the case where T = R, S is an HL-semigroup
and F = {(0,e) NS | ¢ € R*} (see [27]). These results where then extended
by the first author in [23]; the methods used in [23] actually use two generic
properties of ¥ and can, as such, be generalized, which is what we aim to do in
this Section.

It is well known that partition regularity problems can be rephrased in terms
of ultrafilters. As for F-partition regularity, the following characterization
(whose proof we omit) holds:

Proposition 7.3. Let S C T and let F be a filter on S. Let Py (Xq, ..., Xy), -,
P, (X1, s x,) € T [Xq,...,Xy,] Let
Py (%155 %)
T(X1y s Xy) =
P, (%X1,...,%,).
The system of equations o (xy, ..., X,) = 0 is F-partition regular if and only there
exists an ultrafilter U € F such thatVA € U day,...,a, € Ao (ay,..,a,) =0.

4From now on, we will simply write o (xy, ..., X,) = 0 to simplify the notation.
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Definition 7.4. Under the conditions of Proposition 7.3, we say that U wit-
nesses the F-partition regularity of the system o (x, ..., x,) = 0, and we call it
a ;-ultrafilter.

We now recall two results (see e.g. [11] for the proofs’) that we will be used
in the following.

Theorem 7.5. Let Py (X1, ...,X,) 5 s Py (X1, ..., X)) € T [Xq, ..., X, ] be homoge-
neous. Let
Py (%155 %)
T(X1y s Xp) =
P, (%X1,..,%,).
Assume that the system of equations o (X1, ...,X,) = 0 is partition regular on S.
Then the set
I, ={U € BS | U is a ,-ultrafilter}
is a closed bilateral ideal in (S, ©®). In particular, every ultrafilter in K(3S, ©®)

witnesses the partition regularity of all homogeneous partition regular systems on
S.

Two immediate consequences of Theorem 7.5 are the following:

Corollary 7.6. Let F bea filteron S C T. If every set in F is piecewise syndetic in
(S, ), then all homogeneous partition regular systems on S are also F-partition
regular.

Proof. By our hypothesis, there exists U € K(BS, ©) that extends ¥, and we
conclude by Theorem 7.5. (]

For example, let # = {A C N | 3n € N{m € N | n|m} C A}. Then every
set in F is piecewise syndetic in (N, -), so every partition regular system is also
F-partition regular.

Corollary 7.7. Let F be a filter on S such that Fisa left or a right ideal in
BS. Then an homogeneous system is partition regular on S if and only if it is
F-partition regular.

Proof. Any ¥ -partition regular system is trivially partition regular. Conversely,
assume that ¥ is a left ideal (the proof is similar when # is a right ideal). Let o
be an homogeneous partition regular system. If U is a witness of the partition

regularity of c and V € ¥ then U - V € ¥ is a witness of the F-partition
regularity of o by Theorem 7.5. O

For example, from Corollary 7.7 it follows that all homogeneous partition
regular systems on R are also F-partition regular for & = {(0,¢) | € > 0}, as
well as for F = {(r, +o0) | r > 0}, as F is a left ideal in SR, in both these cases.

°In [11], the proofs are done for T = N, but the same exact proof would work for any T €
{N,7Z,Q,R}.
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The second result, which is just a reformulation of [11, Lemma 2.1], allows
us to mix different partition regular systems to produce new ones.

Lemma 7.8. Let S C T. Let Py (X1, s Xp)seeesPpy (X155 %) € T [Xq, ., Xy,
Q115 V1) ooy Qs V155 Y1) € T[¥1,...,y1]- Let U € S be a witness of the
partition regularity of the systems of equations oy (x1, ..., X,) = 0,05 V1, ---»V}) =
0, where

rP1 (X155 X)) s

01 (X155 X) =
(P (X155 Xp)
and ]
Q1 V1, - 1),
T2 (V155 Y1) = 4 '

Qr (V155 1) -
Then U witnesses also the partition regularity of o5 (Xq, ..., X, V15 --5Y1) = 0,

where ]

Py (%155 %)

P, (X153 %,),s
03 (xl’---’xn:yl’---’yl) = Ql (yl""’yl)’

Qt (yl""’yl)’
X1 — )1

Lemma 7.8 is useful to work with ultrafilters with multiple structures. For
example, as first shown in [25], if U is a multiplicatively idempotent ultrafilter
in K(BT,®) then U witnesses the partition regularity of all equations of the
following form

n
Z cixiQFi 155 Ym) =0,

i=1

n
where n > 2 is a natural number, R (Xxy,...,X,) = X, ¢iX; € T[X,...,Xx,] is
i=1
partition regular on T, m is a positive natural number and, for every i < n,
F; C{l,..,m}and Qf, := HjeFi y; (Gf F; = @, we let Qg = 1).
In analogy with what was done in [23] for the partition regularity near 0, we
can prove the following general result about ¥ -partition regularity.

Theorem 7.9. Let S C T and ¥ be a filter on S. Assume that ¥ 1 K(8T, ®)
contains a multiplicative idempotent. Let C+ be the set of polynomial systems that
are F -partition regular. Then C4 includes:

(1) all partition regular homogeneous systems on T;
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(2) all equations of the form

n
P(xl’ s Xps Y15 o0 ’ym) = Z aixiQFi (yla ’ym)
i=1

n

where Y. a;x; € T [xy, ..., X,] is partition regular on T and Fy, ..., F,
i=1

{,...,m}.

Moreover, if

N

.
Py (%1, X)),
01 (X155 X)) = :

(P (X1, .5 Xp)

and
Q1 (V155 ¥1)
02 (V15w V1) = 9 :
(Qt V15 -5 V1)
belong to C4, then also
.

Py (X155 %)

P, (x1,.., %),
03 (X155 X Y15 YD) = 1Q1 (V1505 Y1)

Qt (yl’"'ﬂyl)’
X1 =M

belongs to C.

Proof. Let U be a multiplicative idempotent in Fr N K(BT, ®). We just have
to observe that, by Corollary 7.7, U is a witness of all #-partition regular homo-
geneous systems, which are precisely all partition regular homogeneous sys-
tems, whilst the partition regularity of equations of the form (2) has been dis-
cussed before the Theorem. The closure with respect to composition follows by
Lemma 7.8. As & C U, we conclude by Proposition 7.3. O

Notice that the request that # rNK (ST, ®) contains an idempotent ultrafilter
is always true in the examples considered in this Section and, more in general,
whenever ¥ is a closed subsemigroup of ST with ¥ N K(BT,®) # 0.

Acknowledgment. The authors are thankful to the anonymous referee for
many suggestions that improved substantially the readability of the paper.
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