
New York Journal of Mathematics
New York J. Math. 29 (2023) 771–791.

Foliations induced by metallic structures

Adara M. Blaga and Antonella Nannicini

Abstract. We give necessary and su�cient conditions for the real distri-
butions de�ned by a metallic pseudo-Riemannian structure to be integrable
and geodesically invariant, in terms of associated tensor �elds to the metal-
lic structures and of adapted connections. In the integrable case, we prove
a Chen-type inequality for these distributions and provide conditions for a
metallic map to preserve these distributions. If the structure is metallic Nor-
den, we describe the complex metallic distributions in the same spirit.
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1. Introduction
Let M be a smooth manifold and let J be a (1, 1)-tensor �eld on M. If J2 =

pJ+qI, for somep and q real numbers, then J is called ametallic structure onM
and (M, J) is called a metallic manifold. If g is a pseudo-Riemannian metric on
M such that J is g-symmetric, then (J, g) is called ametallic pseudo-Riemannian
structure onM.

The aim of this paper is to consider the complementary distributions asso-
ciated to a metallic pseudo-Riemannian structure and study their integrability
and geodesically invariance in terms of associated tensor �elds to the metallic
structure and of adapted connections. In this sense, we consider the Schouten-
van Kampen, Vrănceanu and Vidal connections, which seem to be the most
important connections for the study of foliations of a pseudo-Riemannianman-
ifold [1]. Moreover, for these distributions, we prove aChen-type inequality giv-
ing a relation between the squared norm of the mean curvature and the Chen
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�rst invariant. We also prove a leaf correspondence theorembetween the leaves
of two metallic pseudo-Riemannian manifolds when there is given a metallic
map between them with certain properties.

The sign of p2 + 4q is important in the study of foliations induced by metal-
lic structures; if it is positive, then J has two real eigenvalues, if it is negative, J
has two complex eigenvalues. In the real case, J can be related to almost prod-
uct structures and in the complex case, to Norden structures. We remark that
some properties of metallic distributions have also been studied in [11]. In this
paper we consider both of these cases and we describe some similarities and
di�erences between them. In particular, in the complex case, we compute the
)̄-operator in terms of J. Moreover, we construct the metallic complex coho-
mology and homology groups.

2. Preliminaries
2.1. Metallic pseudo-Riemannian structures.

De�nition 2.1. [3] Let (M, g) be a pseudo-Riemannian manifold and let J
be a metallic structure on M. We say that the pair (J, g) is a metallic pseudo-
Riemannian structure onM if J is g-symmetric. In this case, (M, J, g) is called
a metallic pseudo-Riemannian manifold. If p2 + 4q < 0, then (J, g) is called a
metallic Norden structure and (M, J, g) is called a metallic Norden manifold.

Remark 2.2. Let (M, g) be a pseudo-Riemannianmanifold and let J be ametal-
lic structure on M such that J2 = pJ + qI. If we require that J is g-skew-
symmetric, then we obtain that p = 0. Namely, if we assume g(JX, Y) =
−g(X, JY), for any X, Y ∈ C∞(TM), then we get g(JX, JY) = −g(X, J2Y) =
−pg(X, JY)−qg(X,Y) = pg(JX, Y)−qg(X,Y). On the other hand, g(JX, JY) =
−g(J2X,Y) = −pg(JX, Y) − qg(X,Y), therefore p = 0. In particular, for p ≠ 0,
it is not possible to de�ne the concept of metallic Hermitian structure.

De�nition 2.3. [3] (i) A linear connection ∇ onM is called a J-connection if J
is covariantly constant with respect to ∇, i.e. ∇J = 0.

(ii) A metallic pseudo-Riemannian manifold (M, J, g) such that the Levi-
Civita connection∇with respect to g is a J-connection is called a locallymetallic
pseudo-Riemannian manifold.

2.2. Associated tensors to ametallic pseudo-Riemannian structure. For
a metallic pseudo-Riemannian structure (J, g) on the smooth manifoldM with
∇ the Levi-Civita connection of g, we introduce some tensor �elds [7] to char-
acterize the properties of the metallic distributions de�ned by J:

(1) the J-bracket
[X,Y]J ∶= [JX, Y] + [X, JY] − J([X,Y]),

where [⋅, ⋅] is the Lie bracket, [X,Y] = ∇XY − ∇YX
(2) the Nijenhuis tensor associated to J

NJ(X,Y) ∶= J([X,Y]J) − [JX, JY]
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(3) the Jordan bracket associated to J

{X,Y}J ∶= {JX, Y} + {X, JY} − J({X,Y}),

where {⋅, ⋅} is the Jordan bracket, {X,Y} = ∇XY + ∇YX
(4) the Jordan tensor associated to J

MJ(X,Y) ∶= J({X,Y}J) − {JX, JY}

(5) the deformation tensor associated to J

HJ(X,Y) ∶= (J◦∇XJ − ∇JXJ)(Y),

which satis�es 2HJ = NJ +MJ .

Remark 2.4. The J-bracket and the associated Nijenhuis tensor can be de�ned
for any (1, 1)-tensor �eld on a smoothmanifoldM, the Jordan bracket, the asso-
ciated Jordan tensor and the deformation tensor can be de�ned for (1, 1)-tensor
�elds on a pseudo-Riemannian manifold (M, g).

Assume that J satis�es J2 = pJ + qI with p2 + 4q > 0. We denote by �± ∶=
p±

√
p2+4q
2

and consider the projection operators P and P′ [8]:

P ∶= − 1
√
p2 + 4q

J +
�+√

p2 + 4q
I, P′ ∶= 1

√
p2 + 4q

J −
�−√

p2 + 4q
I

satisfying

P2 = P, P′2 = P′, P + P′ = I, P◦P′ = 0, P′◦P = 0.

By a direct computation, we get the following:

Proposition 2.5. For the two projection operators P and P′, we have:
(1) NP = NP′ =

1
p2+4q

NJ ;

(2) MP = MP′ =
1

p2+4q
MJ ;

(3) HP = HP′ =
1

p2+4q
HJ .

Consider now the deformation tensorsH andH′:

H(X,Y) ∶= P′(∇PXPY) = P′((∇PXP)Y),

H′(X,Y) ∶= P(∇P′XP′Y) = P((∇P′XP′)Y)
the twisting tensors L and L′:

L(X,Y) ∶= 1
2[H(X,Y) −H(Y,X)], L′(X,Y) ∶= 1

2[H
′(X,Y) −H′(Y,X)]

and the extrinsic curvature tensors K and K′:

K(X,Y) ∶= 1
2[H(X,Y) +H(Y,X)], K′(X,Y) ∶= 1

2[H
′(X,Y) +H′(Y,X)],

for any X, Y ∈ C∞(TM).
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By a direct computation we obtain:

H(X,Y) = 1
(p2 + 4q)

√
p2 + 4q

[J(∇JXJY) − �+J(∇XJY) − �+J(∇JXY)+

+�2+J(∇XY) − �−∇JXJY − q∇XJY − q∇JXY + q�+∇XY] =

= 1
(p2 + 4q)

√
p2 + 4q

[J(∇JXJ) − �+J(∇XJ) − �−(∇JXJ) − q(∇XJ)](Y)

H′(X,Y) = − 1
(p2 + 4q)

√
p2 + 4q

[J(∇JXJY) − �−J(∇XJY) − �−J(∇JXY)+

+�2−J(∇XY) − �+∇JXJY − q∇XJY − q∇JXY + q�−∇XY] =

= − 1
(p2 + 4q)

√
p2 + 4q

[J(∇JXJ) − �−J(∇XJ) − �+(∇JXJ) − q(∇XJ)](Y).

In particular, we get:

H(X,Y) +H′(X,Y) = 1
(p2 + 4q)

√
p2 + 4q

(−�+ + �−)[J(∇XJ) − (∇JXJ)](Y) =

= 1
p2 + 4q

HJ(X,Y).

Moreover:
L = 1

2(p2 + 4q)
√
p2 + 4q

(�−NJ − J◦NJ),

L′ = − 1
2(p2 + 4q)

√
p2 + 4q

(�+NJ − J◦NJ),

K = 1
2(p2 + 4q)

√
p2 + 4q

(�−MJ − J◦MJ),

K′ = − 1
2(p2 + 4q)

√
p2 + 4q

(�+MJ − J◦MJ).

3. Metallic distributions
Let (M, J, g) be a metallic pseudo-Riemannian manifold such that

J2 = pJ + qI with p2 + 4q > 0. De�ne the complementary distributions:

D ∶= kerP′, D′ ∶= kerP (1)

which we shall call the metallic distributions de�ned by the metallic structure
J.

Remark 3.1. The distributionsD andD′ are J-invariant and, if q ≠ 0, thenD
andD′ are also g-orthogonal.
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De�nition 3.2. A distributionD ⊂ TM on a smooth manifoldM is called
(i) involutive if X, Y ∈ Γ(D) implies [X,Y] ∈ Γ(D);
(ii) integrable if for any x ∈ M, there exists a submanifold Nx which admits

D|Nx as tangent bundle.

According to the Frobenius theorem, a distribution D on M is involutive if
and only if it is integrable. In this case, it de�nes a foliation whose leaves are
the maximal connected submanifolds Nx of M which admit D|Nx as tangent
bundle.

De�nition3.3. Wesay that themetallic pseudo-Riemannianmanifold (M, J, g)
is doubly foliated if both of the distributionsD andD′ given by (1) are integrable
and singly foliated if only one of them is integrable.

Remark 3.4. The distributionD (resp. D′) given by (1) is integrable if and only
if (∇XJ)Y − (∇YJ)X = 0, for any X, Y ∈ Γ(D) (resp. X, Y ∈ Γ(D′)), with ∇
a torsion-free linear connection onM. Indeed, for X, Y ∈ Γ(D) we have JX =
�−X, JY = �−Y and J(∇XY −∇YX) = −(∇XJ)Y + (∇YJ)X + �−(∇XY −∇YX)
which implies that [X,Y] ∈ Γ(D) if and only if (∇XJ)Y − (∇YJ)X = 0.

In particular, in a locallymetallic pseudo-Riemannianmanifold, the two dis-
tributionsD andD′ given by (1) are both integrable.

Proposition 3.5. If (M, J, g) is a metallic pseudo-Riemannian manifold, then
the distributionD is integrable if and only if:

J◦NJ(X,Y) = �−NJ(X,Y), for any X,Y ∈ C∞(TM),
respectively,D′ is integrable if and only if:

J◦NJ(X,Y) = �+NJ(X,Y), for any X,Y ∈ C∞(TM).
In particular, bothD andD′ are integrable if and only ifNJ = 0.
Proof. The distributionD is integrable if and only if

P′([PX,PY]) = 0,
for any X, Y ∈ C∞(TM). Therefore, from a direct computation and using
Proposition 2.5, we obtain that a necessary and su�cient condition for D to
be integrable is:

0 = P′([PX,PY]) = −P′(NP(X,Y)) = − 1
p2 + 4q

P′(NJ(X,Y)) =

= − 1
(p2 + 4q)

√
p2 + 4q

[J◦NJ(X,Y) − �−NJ(X,Y)].

�

De�nition 3.6. Given a linear connection ∇ on a smooth manifoldM, we say
that a distribution D ⊂ TM is ∇-geodesically invariant if X,Y ∈ Γ(D) implies
∇XY + ∇YX ∈ Γ(D).

In particular, if ∇ is the Levi-Civita of the pseudo-Riemannian manifold
(M, g), thenD is geodesically invariant.
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We remark that the above condition is equivalent to the following: the dis-
tributionD is ∇-geodesically invariant if X ∈ Γ(D) implies ∇XX ∈ Γ(D).

Remark 3.7. For a linear connection ∇ on M, the distribution D (resp. D′)
given by (1) is∇-geodesically invariant if and only ifwehave (∇XJ)Y+(∇YJ)X =
0, for any X, Y ∈ Γ(D) (resp. X, Y ∈ Γ(D′)). Indeed, for X, Y ∈ Γ(D) we have
JX = �−X, JY = �−Y and J(∇XY +∇YX) = −(∇XJ)Y − (∇YJ)X + �−(∇XY +
∇YX) which implies ∇XY +∇YX ∈ Γ(D) if and only if (∇XJ)Y + (∇YJ)X = 0.

In particular, for any J-connection ∇, the distributions D and D′ are ∇-
geodesically invariant.

Proposition 3.8. If (M, J, g) is a metallic pseudo-Riemannian manifold, then
the distributionD is geodesically invariant if and only if:

J◦MJ(X,Y) = �−MJ(X,Y), for any X,Y ∈ C∞(TM),
respectively,D′ is geodesically invariant if and only if:

J◦MJ(X,Y) = �+MJ(X,Y), for any X,Y ∈ C∞(TM).
In particular, bothD andD′ are geodesically invariant if and only ifMJ = 0.

Proof. The distributionD is geodesically invariant if and only if

P′({PX,PY}) = 0,
for any X, Y ∈ C∞(TM). Therefore, from a direct computation and using
Proposition 2.5, with a similar computation like in Proposition 3.5, we obtain
the conclusion. �

Remark 3.9. Jp ∶= P − P′ is an almost product structure onM and

JpX = − 1
√
p2 + 4q

(2J − pI)X,

for any X ∈ C∞(TM).

Direct computations provide the following relationship between J and Jp-
brackets, J and Jp Nijenhuis tensors, Jordan bracket and Jordan tensors of the
two structures. Precisely, we have the following:

Proposition 3.10.

[X,Y]J = −
√
p2 + 4q
2 [X,Y]Jp +

p
2 [X,Y]

NJ(X,Y) =
p2 + 4q

4 NJp(X,Y)

{X,Y}J = −
√
p2 + 4q
2 {X,Y}Jp +

p
2 {X,Y}

MJ(X,Y) =
p2 + 4q

4 MJp(X,Y).
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In particular, the deformation tensors are related as follows:

HJ(X,Y) =
p2 + 4q

4 HJp(X,Y).

The product conjugate connection of a linear connection ∇ is [2]:

∇(Jp)
X Y = P(∇XPY) − P(∇XP′Y) − P′(∇XPY) + P′(∇XP′Y) (2)

and we have:

Proposition 3.11. [2] If ∇(Jp) is torsion-free, then Jp is integrable, which means
thatD andD′ are integrable distributions.

De�nition 3.12. We say that a linear connection ∇ restricts to a distribution
D ⊂ TM on a metallic pseudo-Riemannian manifold (M, J, g) if Y ∈ Γ(D)
implies ∇XY ∈ Γ(D), for any X ∈ C∞(TM).

We have:
1) ∇ restricts toDmeans P′(∇XPY) = 0 and P(∇XPY) = ∇XPY,
2) ∇ restricts toD′ means P(∇XP′Y) = 0 and P′(∇XP′Y) = ∇XP′Y.

A straightforward computation shows that the product conjugate connection
∇(Jp) de�ned by (2) restricts toD andD′. Moreover, if∇ restricts to bothD and
D′, then

∇(Jp)
X Y = ∇XPY + ∇XP′Y = ∇XY (3)

and so ∇ is an Jp-connection. Let us remark that the above connection (3) is
exactly the Schouten-van Kampen connection of the pair (D,D′):

∇XY = P(∇XPY) + P′(∇XP′Y)
which coincides with the metallic natural connection ∇̃ [3] if ∇ is the Levi-
Civita connection of g.

Nowwe can express theKirichenko tensor �elds [9] in terms of the projectors
P, P′:

Proposition 3.13. [2] The structural and virtual tensor �elds of Jp = P−P′ are:

{ C
P−P′
∇ (X,Y) = 2[P(∇P′XP′Y) + P′(∇PXPY)]

BP−P′∇ (X,Y) = −2[P(∇PXP′Y) + P′(∇P′XPY)].

Let us recall the well-known fundamental tensor �elds of O’Neill-Gray:

{ T(X,Y) = P(∇P′XP′Y) + P′(∇P′XPY)
A(X,Y) = P′(∇PXPY) + P(∇PXP′Y).

Then, a comparison of last two equations yields

{ C
P−P′
∇ (X,Y) = 2[T(X,P′Y) + A(X,PY)]

BP−P′∇ (X,Y) = −2[T(X,PY) + A(X,P′Y)]

a fact which justi�es the second name of T and A as invariants of the decom-
position TM = D⊕D′ [6].
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OnDwith the inducedmetric gD, we consider the induced connection from
the pseudo-Riemannian manifold (M, g,∇) by [10]:

∇D ∶ Γ(D) × Γ(D)→ Γ(D), ∇D
XY ∶= P(∇XY)

which preserves the metric gD and is torsion-free w.r.t. the bracket

[⋅, ⋅]D ∶ Γ(D) × Γ(D)→ Γ(D), [X,Y]D ∶= P([X,Y]).

The bracket [⋅, ⋅]D has the usual properties of a Lie bracket excepting the Jacobi
identity which is satis�ed if and only ifD is integrable.

The integrability of D can also be characterized in terms of second funda-
mental form ofD:

ℎ ∶ Γ(D) × Γ(D)→ Γ(D′), ℎ(X,Y) ∶= ∇XY − ∇D
XY,

and we can state:

Proposition 3.14. [10] The distributionD is integrable if and only if one of the
following assertions holds: (i) ∇D is torsion-free; (ii) ℎ is symmetric.

Similarly, on (D′, gD′) we de�ne the induced connection from (M, g,∇) by:

∇D′ ∶ Γ(D′) × Γ(D′)→ Γ(D′), ∇D′

X Y ∶= P′(∇XY)

and consider the second fundamental form ℎ′ ofD′. Then the distributionD′ is
integrable if and only if one of the following assertions holds: (i)∇D′ is torsion-
free; (ii) ℎ′ is symmetric.

We remark that the restrictions of themetallic natural connection ∇̃, de�ned
in [3], toD and respectively, toD′, coincide with the two induced connections,
respectively:

∇̃|Γ(D)×Γ(D) = ∇D, ∇̃|Γ(D′)×Γ(D′) = ∇D′ .

Remark 3.15. For p2 + 4q = 0, we get only one distribution, ker(J − p
2
I), and

Jt ∶= J − p
2
I is an almost subtangent structure.

4. Adapted connections to (D,D′)
De�nition 4.1. We say that a linear connection ∇ on M is adapted to the
decomposition TM = D ⊕ D′ if Y ∈ Γ(D) implies ∇XY ∈ Γ(D), for any
X ∈ C∞(TM) and Y ∈ Γ(D′) implies ∇XY ∈ Γ(D′), for any X ∈ C∞(TM).

Remark 4.2. If (M, J) is a metallic manifold such that J2 = pJ + qI with p2 +
4q > 0, then a linear connection∇ is adapted to (D,D′) given by (1) if and only
if∇ is a J-connection. Indeed, for Y ∈ Γ(D)we have JY = �−Y and (∇XJ)Y =
�−∇XY − J(∇XY), for any X ∈ C∞(TM), which implies that ∇XY ∈ Γ(D) if
and only if ∇J = 0. Similarly we deduce the second implication.
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In [1], A. Bejancu and H. R. Farran gave the expression of all adapted con-
nections to (D,D′), namely:

∇∗
XY = P(∇XPY) + P′(∇XP′Y) + P(S(X,PY)) + P′(S(X,P′Y)), (4)

for any X, Y ∈ C∞(TM), where∇ is a linear connection and S is a (1, 2)-tensor
�eld onM.

4.1. Schouten-vanKampen connection. An adapted connection to (D,D′)
is the Schouten-van Kampen connection ∇̃ of the linear connection ∇, obtained
from (4) for S ∶= 0:

∇̃XY ∶= P(∇XPY) + P′(∇XP′Y) = (5)

= ∇XY + P((∇XP)Y) + P′((∇XP′)Y).
If (M, J, g) is a metallic pseudo-Riemannianmanifold such that J2 = pJ+qI

with p2 + 4q > 0 and ∇ is torsion-free, then ∇̃ is explicitly given by:

∇̃XY = 1
p2 + 4q

[(2J − pI)(∇XJY) − (pJ − (p2 + 2q)I)(∇XY)], (6)

for any X, Y ∈ C∞(TM). We remark that if ∇ is the Levi-Civita connection
associated to g, then ∇̃ is exactly the metallic natural connection de�ned in [3].
Moreover, ∇̃ is a metric J-connection, i.e. ∇̃g = ∇̃J = 0, whose torsion is given
by:

T∇̃(X,Y) = 1
p2 + 4q

[(2J − pI)(∇XJY − ∇YJX) − (pJ + 2qI)(∇XY − ∇YX)],

for any X, Y ∈ C∞(TM).

4.2. Vrănceanu connection. Another adapted connection to (D,D′) is the
Vrănceanu connection ∇̄ of the linear connection ∇, obtained from (4) for

S(X,Y) ∶= −P(∇P′XPY) − P′(∇P′XP′Y) + P([P′X,PY]) + P′([PX,P′Y]).
If (M, J, g) is a metallic pseudo-Riemannianmanifold such that J2 = pJ+qI

with p2 + 4q > 0, then ∇̄ is explicitly given by:

∇̄XY = ∇̃PXY + P([P′X,PY]) + P′([PX,P′Y]) = (7)

= ∇XY + 1
p2 + 4q

[2J((∇XJ)Y) − p(∇XJ)Y + J((∇YJ)X)+

+(∇JYJ)X − p(∇YJ)X]+

+ 1
p2 + 4q

[T∇(JX, JY) + J(T∇(JX, Y)) − pT∇(JX, Y)−

−J(T∇(X, JY)) − qT∇(X,Y)],
for any X, Y ∈ C∞(TM).

Moreover, ∇̄ is a J-connection, i.e. ∇̄J = 0, whose torsion is given by:

T∇̄(X,Y) = 1
p2 + 4q

NJ(X,Y) + P′(T∇(P′X,P′Y)) − P(T∇(PX,PY)),

for any X, Y ∈ C∞(TM).
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4.3. Vidal connection. Let (M, J, g) be a metallic pseudo-Riemannian man-
ifold such that J2 = pJ + qI with p2 + 4q > 0 and let ∇ be the Levi-Civita
connection of g.

Another adapted connection to (D,D′) is the Vidal connection ̃̃∇ associated
to J, obtained from (4) for

S(X,Y) ∶= −P(∇PYP′)X − P′(∇P′YP)X,

therefore:
̃̃∇XY = ∇̃XY − P(∇PYP′)X − P′(∇P′YP)X = (8)

= ∇̃XY + 1
p2 + 4q

[(∇JYJ)X + J((∇YJ)X) − p(∇YJ)X] =

= ∇XY + 1
p2 + 4q

[2J((∇XJ)Y) − p(∇XJ)Y + J((∇YJ)X)+

+(∇JYJ)X − p(∇YJ)X],
for any X, Y ∈ C∞(TM).

Moreover, ̃̃∇ is a J-connection, i.e. ̃̃∇J = 0, whose torsion is given by:

T ̃̃∇(X,Y) = 1
p2 + 4q

NJ(X,Y),

for any X, Y ∈ C∞(TM).

Remark 4.3. The Vrănceanu connection of the Levi-Civita connection coin-
cides with the Vidal connection.

Moreover, we get:

( ̃̃∇Xg)(Y, Z) = − 1
p2 + 4q

[g((∇JYJ)X − (∇YJ)JX, Z)+

+g((∇JZJ)X − (∇ZJ)JX, Y)] =

= 1
p2 + 4q

[g(MJ(Y,X), Z) + g(MJ(Z,X), Y) + g((∇JXJ)Y + (∇YJ)JX, Z)+

+g((∇JXJ)Z + (∇ZJ)JX, Y)],
for any X, Y, Z ∈ C∞(TM).

Since ∇̃J = ∇̄J = ̃̃∇J = 0, from Remark 3.7 we deduce:

Proposition 4.4. The distributions D and D′ are ∇̃-geodesically invariant, ∇̄-
geodesically invariant and ̃̃∇-geodesically invariant.

Using the Vidal connection ̃̃∇, we characterize the integrability and the geo-
desic invariance of themetallic distributions de�ned by J in terms of the torsion
and the covariant derivative of g w.r.t. this connection. From all the above con-
siderations, we can state:
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Theorem 4.5. If (M, J, g) is a metallic pseudo-Riemannian manifold such that
J2 = pJ + qI with p2 + 4q > 0, then the following assertions are equivalent:

(i) the distributionsD andD′ are integrable;
(ii)NJ = 0;
(iii) L = 0 and L′ = 0;
(iv) the Vidal connection given by (8) is torsion-free.

Theorem 4.6. If (M, J, g) is a metallic pseudo-Riemannian manifold such that
J2 = pJ + qI with p2 + 4q > 0, then the following assertions are equivalent:

(i) the distributionsD andD′ are geodesically invariant;
(ii)MJ = 0;
(iii) K = 0 and K′ = 0;
(iv) the Vidal connection given by (8) is metric with respect to g.

4.4. Leaves correspondence via metallic maps. We shall provide the con-
dition for a metallic map between two metallic pseudo-Riemannian manifolds
to preserve the metallic distributions. We recall the following:

De�nition 4.7. A smooth map Φ ∶ (M1, J1) → (M2, J2) between two metallic
manifolds is called ametallic map if:

Φ∗◦J1 = J2◦Φ∗.
Remark 4.8. If Φ ∶ (M1, J1) → (M2, J2) is a metallic map and J2i = piJi + qiI
with pi and qi real numbers, i = 1, 2, then:

(i) Φ∗◦J2k+11 = J2k+12 ◦Φ∗, for any k ∈ ℕ;
(ii) ([(p22 + q2) − (p21 + q1)]J1 + (p2q2 − p1q1)I)(TM1) ⊂ kerΦ∗;
(iii) in the particular case when one the structure is product and the other

one is complex, then ImJ1 ⊂ kerΦ∗.
Consider ametallic mapΦ ∶ (M1, J1)→ (M2, J2) between themetallic mani-

folds (Mi, Ji) such that J2i = piJi+qiIwithp2i +4qi > 0, i = 1, 2, and assume that
the distributionsDi andD′

i , i = 1, 2, are integrable. Then they de�ne the folia-
tions ℱi and ℱ′

i , i = 1, 2, whose leaves are trivial metallic pseudo-Riemannian
manifolds.

Denoting by Φ∗D2 the pull-back distribution, i.e.:
(Φ∗D2)x ∶= {Xx ∈ TxM ∶ Φ∗x(Xx) ∈ D2Φ(x)},

since Φ is a metallic map, we get:
(Φ∗D2)x = {Xx ∈ TxM ∶ (J1 − �2+I)(Xx) ∈ kerΦ∗x},

where �i+ =
pi+
√
p2i +4qi
2

, i = 1, 2 and

(Φ∗D′
2)x = {Xx ∈ TxM ∶ (J1 − �2−I)(Xx) ∈ kerΦ∗x},

where �i− =
pi−
√
p2i +4qi
2

, i = 1, 2.
From the above considerations, we obtain a su�cient condition for the pull-

back distribution Φ∗D2 to coincide with one of the distributionsD1 orD′
1:
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Proposition 4.9. If kerΦ∗ = (J1 − �2+I)(ker(J1 − �1+I)), then Φ∗D2 = D1.
Moreover, if Φ is a surjective submersion with connected �bers, then a leaf of ℱ2
corresponds to a leaf ofℱ1.

5. A Chen-type inequality for the metallic distributions
A fundamental problem in the theory of submanifolds is the problem posed

by B. Y. Chen [4], namely, to �nd relations between the main intrinsic and ex-
trinsic invariants of a submanifold. In this sense, the Chen’s inequalities for
submanifolds in real space forms was proved by B. Y. Chen [4], in complex
space forms by Y. Doğru [5], in quaternionic space forms by G. E. Vîlcu [12]
etc. In the same spirit, we shall prove a Chen-type inequality in the metallic
case, for an integrable distribution de�ned by the metallic structure.

Let (M, J, g) be an m-dimensional metallic Riemannian manifold and as-
sume that the distributionD is integrable. In this case, the Riemann curvature
tensors of D (computed with respect to the induced connection ∇D on D and
the Lie bracket [⋅, ⋅]D) andM satisfy [10]:

RD(X,Y, Z,W) = RM(X,Y, Z,W)− (9)

−g(ℎ(X, Z), ℎ(Y,W)) + g(ℎ(X,W), ℎ(Y, Z)),
for any X, Y, Z,W ∈ Γ(D).

The relation between the mean curvature (the main extrinsic invariant) and
the Chen �rst invariant (an intrinsic invariant), in a particular case of constant
J-sectional curvature, is given in the following.

From a direct computation we obtain:

Proposition 5.1. Let (M, J, g) be anm-dimensional metallic Riemannian man-
ifold (m > 2) such that J2 = pJ+qI with p2+4q > 0, whose Riemann curvature
tensor is given by

RM(X,Y, Z,W) = c[g(X, FW)g(Y, FZ) − g(X, FZ)g(Y, FW)], (10)

for any X, Y, Z,W ∈ C∞(TM), where F ∶= aJ + bI with a and b real numbers
satisfying qa2 − pab − b2 = 1. Then the J-sectional curvature ofM is constant
equal to c.

Denote by H ∶= 1
n
tr(ℎ) the mean curvature and by �D ∶= �D − inf KD the

Chen �rst invariant of D, where �D denotes the scalar curvature of D and KD

its sectional curvature.

Theorem5.2. Let (M, J, g) be anm-dimensionalmetallic Riemannianmanifold
(m > 2) such that J2 = pJ+qI withp2+4q > 0, whose Riemann curvature tensor
is given by (10) and letD given by (1) be an n-dimensional integrable distribution.
Then:

�D ≤
c(a�− + b)2(n2 − n + 2)

2 + n2(n − 2)
2(n − 1)

||H||2.



FOLIATIONS INDUCED BY METALLIC STRUCTURES 783

Proof. Consider an orthonormal frame �eld {e1,… , en} for D,
{f1,… , fm−n} an orthonormal frame �eld forD′ and denote by

ℎkij ∶= g(ℎ(ei, ej), fk).

From (9) and (10) we get

2�D = c(a�− + b)2n(n − 1) − ||ℎ||2 + n2||H||2.
Moreover

KD(e1, e2) = −c(a�− + b)2 −
m−n∑

k=1
ℎk11ℎ

k
22 +

m−n∑

k=1
(ℎk12)

2

and

�D − KD(e1, e2) =
c(a�− + b)2(n2 − n + 2)

2 +

+
m−n∑

k=1
[

∑

3≤i<j≤n
(ℎkiiℎ

k
jj − (ℎkij)

2) +
n∑

j=3
(ℎk11 + ℎk22)ℎ

k
jj −

n∑

j=3
((ℎk1j)

2 + (ℎk2j)
2)] ≤

≤
c(a�− + b)2(n2 − n + 2)

2 + n − 2
2(n − 1)

m−n∑

k=1
(
n∑

j=1
ℎkjj)

2−
m−n∑

k=1

n∑

j=3
((ℎk1j)

2+(ℎk2j)
2) =

=
c(a�− + b)2(n2 − n + 2)

2 + n2(n − 2)
2(n − 1)

||H||2 −
m−n∑

k=1

n∑

j=3
((ℎk1j)

2 + (ℎk2j)
2) ≤

≤
c(a�− + b)2(n2 − n + 2)

2 + n2(n − 2)
2(n − 1)

||H||2.

�

Remark 5.3. If p = 0 and q = 1, i.e. J is an almost product structure, then the
inequality from Theorem 5.2 becomes

�D ≤ c(a − b)2(n2 − n + 2)
2 + n2(n − 2)

2(n − 1)
||H||2.

In particular, if a = 1 and b = 0, i.e. F = J, we get

�D ≤ c(n2 − n + 2)
2 + n2(n − 2)

2(n − 1)
||H||2.

6. Metallic Norden structures
6.1. Complexmetallic distributions. Let (M, J, g) be ametallicNordenman-
ifold such that J2 = pJ + qI with p2 + 4q < 0 and let TℂM ∶= TM ⊗ℝ ℂ be
the complexi�ed tangent bundle. Then we can de�ne the complexi�ed metallic
pseudo-Riemannian structure:

Jℂ(X + iY) ∶= JX + iJY,
gℂ(X1 + iY1, X2 + iY2) ∶= g(X1, X2) − g(Y1, Y2) + i[g(X1, Y2) + g(Y1, X2)],

for any X, X1, X2, Y, Y1, Y2 ∈ C∞(TM).
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Denote by �ℂ± ∶= p±
√
p2+4q
2

and consider the projection operators Pℂ and
Pℂ′ :

Pℂ ∶= − 1
√
p2 + 4q

Jℂ +
�ℂ+√

p2 + 4q
Iℂ, Pℂ′ ∶= 1

√
p2 + 4q

Jℂ −
�ℂ−√

p2 + 4q
Iℂ

satisfying

Pℂ2 = Pℂ, Pℂ′2 = Pℂ′ , Pℂ + Pℂ′ = Iℂ, Pℂ◦Pℂ′ = 0, Pℂ′◦ Pℂ = 0

and de�ne the complementary distributions:

Dℂ ∶= kerPℂ′ ,Dℂ′ ∶= kerPℂ (11)

which we shall call the complex metallic distributions de�ned by J.

Remark 6.1. If (M, J, g) is a metallic Norden manifold such that J2 = pJ + qI
with p2 + 4q < 0, thenDℂ andDℂ′ are Jℂ-invariant.

Lemma 6.2.
Dℂ′ = Dℂ

Proof. It follows from �ℂ+ = �ℂ−. �

In particular, if J is not trivial, that it admits two complex eigenvalues, or
the two distributions are both di�erent from 0, then the complexi�ed tangent
bundle splits as a direct sum of two conjugate subbundles:

TℂM = Dℂ ⊕Dℂ.

Extending the Lie bracket to:

[X1 + iY1, X2 + iY2]ℂ ∶= [X1, X2] − [Y1, Y2] + i([X1, Y2] + [Y1, X2]),

for any X1, X2, Y1, Y2 ∈ C∞(TM), we say that:

De�nition 6.3. A distributionDℂ ⊂ TℂM is called integrable if X, Y ∈ Γ(Dℂ)
implies [X,Y]ℂ ∈ Γ(Dℂ).

Lemma 6.4. The distributionDℂ is integrable if and only if

Pℂ′([PℂX,PℂY]ℂ) = 0,

for any X, Y ∈ C∞(TℂM).

Proposition 6.5. The distribution Dℂ (resp. Dℂ′) given by (11) is integrable if
and only ifNJ = 0.

Extending the Levi-Civita connection ∇ of g to:

∇ℂ
X1+iY1

(X2 + iY2) ∶= ∇X1X2 − ∇Y1Y2 + i(∇X1Y2 + ∇Y1X2),

for any X1, X2, Y1, Y2 ∈ C∞(TM), we pose the following:



FOLIATIONS INDUCED BY METALLIC STRUCTURES 785

De�nition 6.6. Given a complex linear connection ∇ℂ on a smooth manifold
M, a distribution Dℂ ⊂ TℂM is called ∇ℂ-geodesically invariant if X, Y ∈
Γ(Dℂ) implies ∇ℂ

XY + ∇ℂ
YX ∈ Γ(Dℂ).

In particular, if ∇ℂ is the Levi-Civita connection of the pseudo-Riemannian
manifold (M, gℂ), thenDℂ is called geodesically invariant.

Lemma 6.7. The distributionDℂ is geodesically invariant if and only if

Pℂ′({PℂX,PℂY}ℂ) = 0,
for any X, Y ∈ C∞(TℂM), where {X,Y}ℂ ∶= ∇ℂ

XY + ∇ℂ
XY.

Proposition 6.8. The distribution Dℂ (resp. Dℂ′) given by (11) is geodesically
invariant if and only ifMJ = 0.

Remark 6.9. For a complex linear connection ∇ℂ on M, the distribution Dℂ

(resp. Dℂ′) given by (11) is ∇ℂ-geodesically invariant if and only if (∇ℂ
XJ

ℂ)Y +
(∇ℂ

YJ
ℂ)X = 0, for any X, Y ∈ Γ(Dℂ) (resp. X, Y ∈ Γ(Dℂ′)). Indeed, for

X, Y ∈ Γ(Dℂ) we have JℂX = �ℂ−X, JℂY = �ℂ−Y and Jℂ(∇ℂ
XY + ∇ℂ

YX) =
−(∇ℂ

XJ
ℂ)Y − (∇ℂ

YJ
ℂ)X + �ℂ−(∇ℂ

XY + ∇ℂ
YX) which implies that ∇ℂ

XY + ∇ℂ
YX ∈

Γ(Dℂ) if and only if (∇ℂ
XJ

ℂ)Y + (∇ℂ
YJ

ℂ)X = 0.
In particular, for any Jℂ-connection ∇ℂ, the distributions Dℂ and Dℂ′ are

∇ℂ-geodesically invariant.

Remark 6.10. Jc ∶= i(Pℂ − Pℂ′) is a Norden structure onM and

JcX = − 1
√
−p2 − 4q

(2J − pI)X,

for any X ∈ C∞(TM).

By a direct computation we get:

Proposition 6.11. The Nijenhuis tensors of Jc and J are related as follows:

NJc(X,Y) =
4

−p2 − 4q
NJ(X,Y),

for any X,Y ∈ C∞(TM).

Moreover, if
TℂM = T(1,0)M ⊕T(0,1)M

is the decomposition of the complexi�ed tangent bundle into (1, 0) and (0, 1)
parts, with respect to the almost complex structure Jc, we have:

Dℂ′ = T(1,0)M, Dℂ = T(0,1)M.

De�nition 6.12. We say that a complex linear connection∇ℂ onM is adapted
to the decomposition TℂM = Dℂ ⊕Dℂ′ if Y ∈ Γ(Dℂ) implies ∇ℂ

XY ∈ Γ(Dℂ),
for any X ∈ C∞(TℂM) and Y ∈ Γ(Dℂ′) implies ∇XY ∈ Γ(Dℂ′), for any X ∈
C∞(TℂM).
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Remark 6.13. If (M, J, g) is a metallic Nordenmanifold such that J2 = pJ+qI
with p2+4q < 0, then a complex linear connection∇ℂ is adapted to (Dℂ,Dℂ′)
given by (11) if and only if ∇ℂ is a Jℂ-connection. Indeed, for Y ∈ Γ(Dℂ) we
have JℂY = �ℂ−Y and (∇ℂ

XJ
ℂ)Y = �ℂ−∇ℂ

XY − Jℂ(∇ℂ
XY), for any X ∈ C∞(TℂM),

which implies that∇ℂ
XY ∈ Γ(Dℂ) if and only if∇ℂJℂ = 0. Similarly we deduce

the second implication.

Proposition 6.14. All adapted connections to (Dℂ,Dℂ′) are of the form:

(∇ℂ)∗XY = Pℂ(∇ℂ
XP

ℂY) + Pℂ′(∇ℂ
XP

ℂ′Y)+ (12)

+Pℂ(S(X,PℂY)) + Pℂ′(S(X,Pℂ′Y)),
for any X, Y ∈ C∞(TℂM), where ∇ℂ is a complex linear connection and S is a
complex (1, 2)-tensor �eld onM.

Proof. We follow the same steps like in the real case [1]. �

Consider the following adapted connection to (Dℂ,Dℂ′):
1) The complex Schouten-van Kampen connection ∇̃ℂ of the complex linear

connection ∇ℂ, obtained from (12) for S ∶= 0:
∇̃ℂ
XY ∶= Pℂ(∇ℂ

XP
ℂY) + Pℂ′(∇ℂ

XP
ℂ′Y).

If (M, J, g) is a metallic Norden manifold such that J2 = pJ + qI with p2 +
4q < 0 and ∇ℂ is torsion-free, then ∇̃ℂ is explicitly given by:

∇̃ℂ
XY = 1

p2 + 4q
[(2Jℂ − pIℂ)(∇ℂ

XJY) − (pJℂ − (p2 + 2q)Iℂ)(∇ℂ
XY)] = (13)

= ∇ℂ
XY + 1

p2 + 4q
[2Jℂ(∇ℂ

XJ
ℂ) − p(∇ℂ

XJ
ℂ)]Y,

for any X, Y ∈ C∞(TℂM).
We remark that if∇ℂ is the Levi-Civita connection associated to gℂ, then ∇̃ℂ

is a metric Jℂ-connection, i.e. ∇̃ℂgℂ = ∇̃ℂJℂ = 0, whose torsion is given by:

T∇̃ℂ(X,Y) = 1
p2 + 4q

[(2Jℂ − pIℂ)(∇ℂ
XJY − ∇ℂ

YJ
ℂX)−

−(pJℂ + 2qIℂ)(∇ℂ
XY − ∇ℂ

YX)],
for any X, Y ∈ C∞(TℂM).

2) The complex Vrănceanu connection ∇̄ℂ of the complex linear connection
∇ℂ, obtained from (12) for

S(X,Y) ∶= −Pℂ(∇ℂ
Pℂ′X

PℂY) − Pℂ′(∇ℂ
Pℂ′X

Pℂ′Y)+

+Pℂ([Pℂ′X,PℂY]ℂ) + Pℂ′([PℂX,Pℂ′Y]ℂ).
If (M, J, g) is a metallic Norden manifold such that J2 = pJ + qI with p2 +

4q < 0, then ∇̄ℂ is explicitly given by:

∇̄ℂ
XY = ∇̃ℂ

PℂXY + Pℂ([Pℂ′X,PℂY]ℂ) + Pℂ′([PℂX,Pℂ′Y]ℂ), (14)
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for any X,Y ∈ C∞(TℂM).
Moreover, ∇̄ℂ is a Jℂ-connection, i.e. ∇̄ℂJℂ = 0, whose torsion is given by:

T∇̄ℂ(X,Y) = 1
p2 + 4q

NJℂ(X,Y) + Pℂ′(T∇ℂ(Pℂ′X,Pℂ′Y))−

−Pℂ(T∇ℂ(PℂX,PℂY)),
for any X, Y ∈ C∞(TℂM).

3) The complex Vidal connection ̃̃∇ℂ associated to the metallic Norden struc-
ture (J, g), obtained from (12) for

S(X,Y) ∶= −Pℂ(∇PℂYPℂ′)X − Pℂ′(∇Pℂ′YP
ℂ)X,

therefore:
̃̃∇ℂ
XY = ∇̃ℂ

XY − Pℂ(∇PℂYPℂ′)X − Pℂ′(∇Pℂ′YP
ℂ)X = (15)

= ∇̃ℂ
XY + 1

p2 + 4q
[(∇JℂYJℂ)X + Jℂ((∇YJℂ)X) − p(∇YJℂ)X],

for any X,Y ∈ C∞(TℂM), where ∇ℂ is the Levi-Civita connection of gℂ.
Moreover, ̃̃∇ℂ is a Jℂ-connection, i.e. ̃̃∇ℂJℂ = 0, whose torsion is given by:

T ̃̃∇ℂ(X,Y) = 1
p2 + 4q

NJℂ(X,Y),

for any X,Y ∈ C∞(TℂM).
Moreover, we get:

( ̃̃∇
ℂ
Xgℂ)(Y, Z) = − 1

p2 + 4q
[gℂ((∇ℂ

JℂYJ
ℂ)X − (∇ℂ

YJ
ℂ)JℂX, Z)+

+gℂ((∇JℂZJℂ)X − (∇ℂ
ZJ

ℂ)JℂX,Y)] =

= 1
p2 + 4q

[gℂ(MJℂ(Y,X), Z) + gℂ(MJℂ(Z,X), Y)+

+gℂ((∇ℂ
JℂXJ

ℂ)Y + (∇ℂ
YJ

ℂ)JℂX, Z) + gℂ((∇ℂ
JℂXJ

ℂ)Z + (∇ℂ
ZJ)J

ℂX,Y)],
for any X, Y, Z ∈ C∞(TℂM).

Since ∇̃ℂJℂ = ∇̄ℂJℂ = ̃̃∇ℂJℂ = 0, from Remark 6.9 we deduce:

Proposition 6.15. The distributionsDℂ andDℂ′ are ∇̃ℂ-geodesically invariant,
∇̄ℂ-geodesically invariant and ̃̃∇ℂ-geodesically invariant.

From all the above considerations, we can state:

Theorem 6.16. If (M, J, g) is a metallic Nordenmanifold such that J2 = pJ+qI
with p2 + 4q < 0, then the following assertions are equivalent:

(i) the distributionsDℂ andDℂ′ are integrable;
(ii) (M, Jc) is a complex manifold;
(iii) the complex Vidal connection given by (15) is torsion-free.
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Theorem 6.17. If (M, J, g) is a metallic Nordenmanifold such that J2 = pJ+qI
with p2 + 4q < 0, then the following assertions are equivalent:

(i) the distributionsDℂ andDℂ′ are geodesically invariant;
(ii) the complex Vidal connection given by (15) is metric with respect to gℂ.

6.2. The )̄-operator of a metallic complex structure.

De�nition 6.18. Ametallic manifold (M, J) such that J2 = pJ + qI with p2 +
4q < 0 and J integrable is calledmetallic complex manifold.

Let (M, J) be a metallic complex manifold and let Jc = − 1
√
−p2−4q

(2J−pI) be
the associated complex structure. Consider its dual map J∗c ∶ T∗M → T∗M, de-
�ned by (J∗c �)(X) ∶= �(JcX), for any � ∈ C∞(T∗M) and for any X ∈ C∞(TM).

We shall de�ne the real di�erential operator dc acting on forms:

dc ∶= J∗c ◦d◦J∗c ,
where d is the real di�erential operator.

If (M, J, g) is an integrable metallic Norden manifold, we can consider the
real codi�erential operator �c acting on forms:

�c ∶= ⋆◦dc◦⋆,
where ⋆ is the Hodge-star operator with respect to the metric g.

We obtain
dc◦dc = 0, d◦dc + dc◦d = 0,
�c◦�c = 0, �◦�c + �c◦� = 0,

where � is the codi�erential operator, and with respect to the scalar product
⟨⋅, ⋅⟩ induced by g, the operators dc and �c are adjoint, i.e.

⟨dc�, �⟩ = ⟨�, �c�⟩,
for any �, � ∈ C∞(T∗M).

Remark that J∗◦⋆ = ⋆◦J∗ (and J∗c ◦⋆ = ⋆◦J∗c ) implies �c = J∗c ◦�◦J∗c and
dc◦J∗c = −J∗c ◦d, J∗c ◦dc = −d◦J∗c ,
�c◦J∗c = −J∗c ◦�, J∗c ◦�c = −�◦J∗c .

From the above relations, we can state:

Proposition 6.19. Let � be a real form onM.
(i) If � is dc-closed (resp. �c-coclosed), then J∗c � is closed (resp. coclosed).
(ii) If � is closed (resp. coclosed), then J∗c � is dc-closed (resp. �c-coclosed).
(iii) If � is J∗c -invariant, i.e. J∗c � = �, then � is dc-closed (resp. �c-coclosed) if

and only if it is closed (resp. coclosed).

Therefore, the dc-closed (resp. �c-coclosed) forms are the J∗c -invariant closed
(resp. coclosed) forms. Then

ker(dc) = ker(d) ∩ {J∗c − invariant forms}, Im(dc) = J∗c (Im(d)),
ker(�c) = ker(�) ∩ {J∗c − invariant forms}, Im(�c) = J∗c (Im(�)).
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Then we can consider the metallic cohomology groups

Hr(M) ∶= ker(dcr)∕Im(dcr−1),
where

dcr ∶ C∞(Λr(M))→ C∞(Λr+1(M))
and the metallic homology groups

Hr(M) ∶= ker(�cr)∕Im(�cr+1),

where
�cr ∶ C∞(Λr(M))→ C∞(Λr−1(M)).

Now we can introduce the metallic Hodge-Laplace operator

∆c ∶ C∞(Λr(M))→ C∞(Λr(M)), ∆c ∶= dc◦�c + �c◦dc,
which is symmetric and self-adjoint w.r.t. ⟨⋅, ⋅⟩. Remark that

∆c = −J∗c ◦∆◦J∗c ,
where ∆ = d◦� + �◦d is the Hodge-Laplace operator, and ∆c satis�es

∆c◦J∗c = J∗c ◦∆, J∗c ◦∆c = ∆◦J∗c .

De�nition 6.20. A real form � is called J-harmonic if it belongs to the kernel
of the metallic Hodge-Laplace operator, i.e. ∆c� = 0.

From the above relations, we get:

Proposition 6.21. Let � be a real form onM.
(i) If � is J-harmonic, then J∗c � is harmonic.
(ii) If � is harmonic, then J∗c � is J-harmonic.
(iii) If � is J∗c -invariant, i.e. J∗c � = �, then � is J-harmonic if and only if it is

harmonic.
(iv) � is J-harmonic if and only if it is dc-closed and �c-coclosed.

Therefore, the J-harmonic forms are the J∗c -invariant harmonic forms. Then

ker(∆c) = ker(∆) ∩ {J∗c − invariant forms}, Im(∆c) = J∗c (Im(∆)).

Let
TℂM = T(1,0)M ⊕T(0,1)M = Dℂ′ ⊕Dℂ

be the decomposition of the complexi�ed tangent bundle into (1, 0) and (0, 1)
parts, with respect to the complex structure Jc or, equivalently, with respect to
the distributions de�ned by J.

The )̄-operator and ̄̄)-operator acting on (r, s)-forms onM are de�ned as fol-
lows:

)̄ ∶ C∞(Λ(r,s)(M))→ C∞(Λ(r,s+1)(M)), )̄ ∶= 1
2(d − idc),

̄̄) ∶ C∞(Λ(r,s+1)(M))→ C∞(Λ(r,s)(M)), ̄̄) ∶= 1
2(� − i�c).
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Remark that the integrability of J (which is equivalent to the integrability of
Jc) implies

)̄◦)̄ = 0, ̄̄)◦ ̄̄) = 0,
therefore we can consider the metallic complex cohomology groups

H(r,s)(M) ∶= ker()̄(r,s))∕Im()̄(r,s−1)),
where

)̄(r,s) ∶ C∞(Λ(r,s)(M))→ C∞(Λ(r,s+1)(M))
and the metallic complex homology groups

H(r,s)(M) ∶= ker( ̄̄)(r,s))∕Im( ̄̄)(r,s+1)),
where

̄̄)(r,s) ∶ C∞(Λ(r,s)(M))→ C∞(Λ(r,s−1)(M)).

Now, if

T∗ℂM = D∗ℂ ⊕D∗ℂ

is the decomposition of the complexi�ed cotangent bundle de�ned by J∗, then
we get the following:

Proposition 6.22. Let (M, J) be a metallic complex manifold such that J2 =
pJ + qI with p2 + 4q < 0. Then the )̄-operator:

)̄ = 1
2(p2 + 4q)

[(p2 + 4q)d + i(4J∗◦d◦J∗ − 2pd◦J∗ − 2pJ∗◦d + p2d)]

is acting on C∞(Λr(D∗))⊗C∞(Λs(D∗ℂ)).

Proof. We have:

dc = [− 1
√
−p2 − 4q

(2J∗ − pI)] ◦d◦ [− 1
√
−p2 − 4q

(2J∗ − pI)] =

= − 1
p2 + 4q

(4J∗◦d◦J∗ − 2pd◦J∗ − 2pJ∗◦d + p2d).

Then the statement follows. �

Similarly, we prove that:

Proposition 6.23. Let (M, J, g) be a metallic Norden manifold such that J2 =
pJ + qI with p2 + 4q < 0. Then the ̄̄)-operator:

̄̄) = 1
2(p2 + 4q)

[(p2 + 4q)� + i(4J∗◦�◦J∗ − 2p�◦J∗ − 2pJ∗◦� + p2�)]

is acting on C∞(Λr(D∗))⊗C∞(Λs(D∗ℂ)).

Remark 6.24. The operators dc and )̄ can be de�ned onmetallic complexman-
ifolds and �c, ∆c and ̄̄) only on metallic Norden manifolds.
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