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Foliations induced by metallic structures

Adara M. Blaga and Antonella Nannicini

ABSTRACT. We give necessary and sufficient conditions for the real distri-
butions defined by a metallic pseudo-Riemannian structure to be integrable
and geodesically invariant, in terms of associated tensor fields to the metal-
lic structures and of adapted connections. In the integrable case, we prove
a Chen-type inequality for these distributions and provide conditions for a
metallic map to preserve these distributions. If the structure is metallic Nor-
den, we describe the complex metallic distributions in the same spirit.
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1. Introduction

Let M be a smooth manifold and let J be a (1, 1)-tensor field on M. If J? =
pJ +ql, for some p and q real numbers, then J is called a metallic structure on M
and (M, J) is called a metallic manifold. If g is a pseudo-Riemannian metric on
M such thatJ is g-symmetric, then (J, g) is called a metallic pseudo-Riemannian
Structure on M.

The aim of this paper is to consider the complementary distributions asso-
ciated to a metallic pseudo-Riemannian structure and study their integrability
and geodesically invariance in terms of associated tensor fields to the metallic
structure and of adapted connections. In this sense, we consider the Schouten-
van Kampen, Vrinceanu and Vidal connections, which seem to be the most
important connections for the study of foliations of a pseudo-Riemannian man-
ifold [1]. Moreover, for these distributions, we prove a Chen-type inequality giv-
ing a relation between the squared norm of the mean curvature and the Chen
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first invariant. We also prove a leaf correspondence theorem between the leaves
of two metallic pseudo-Riemannian manifolds when there is given a metallic
map between them with certain properties.

The sign of p? + 4q is important in the study of foliations induced by metal-
lic structures; if it is positive, then J has two real eigenvalues, if it is negative, J
has two complex eigenvalues. In the real case, J can be related to almost prod-
uct structures and in the complex case, to Norden structures. We remark that
some properties of metallic distributions have also been studied in [11]. In this
paper we consider both of these cases and we describe some similarities and
differences between them. In particular, in the complex case, we compute the
d-operator in terms of J. Moreover, we construct the metallic complex coho-
mology and homology groups.

2. Preliminaries
2.1. Metallic pseudo-Riemannian structures.

Definition 2.1. [3] Let (M, g) be a pseudo-Riemannian manifold and let J
be a metallic structure on M. We say that the pair (J, g) is a metallic pseudo-
Riemannian structure on M if J is g-symmetric. In this case, (M, J, g) is called
a metallic pseudo-Riemannian manifold. If p?> + 4q < 0, then (J, ) is called a
metallic Norden structure and (M, J, g) is called a metallic Norden manifold.

Remark 2.2. Let (M, g) be a pseudo-Riemannian manifold and letJ be a metal-
lic structure on M such that J2 = pJ + gI. If we require that J is g-skew-
symmetric, then we obtain that p = 0. Namely, if we assume g(JX,Y) =
—g(X,JY), for any X, Y € C®(TM), then we get g(UX,JY) = —g(X,J?Y) =
—pg(X,JY)—qg(X,Y) = pg(JX,Y)—qg(X,Y). On the other hand, g(UX,JY) =
—g(J*’X,Y) = —pg(JX,Y) — qg(X,Y), therefore p = 0. In particular, for p # 0,
it is not possible to define the concept of metallic Hermitian structure.

Definition 2.3. [3] (i) A linear connection V on M is called a J-connection if J
is covariantly constant with respect to V,i.e. VJ = 0.

(ii) A metallic pseudo-Riemannian manifold (M,J, g) such that the Levi-
Civita connection V with respect to g is a J-connection is called a locally metallic
pseudo-Riemannian manifold.

2.2. Associated tensors to a metallic pseudo-Riemannian structure. For
a metallic pseudo-Riemannian structure (J, g) on the smooth manifold M with
V the Levi-Civita connection of g, we introduce some tensor fields [7] to char-
acterize the properties of the metallic distributions defined by J:

(1) theJ-bracket
[X,Y]; :=[UX, Y]+ [X,JY]-J(X,Y)),

where [-, -] is the Lie bracket, [X,Y] = VxY — Vi X
(2) the Nijenhuis tensor associated to J

N;(X,Y) :=J(X,Y]y) - [VX,JY]
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(3) the Jordan bracket associated to J

where {-, -} is the Jordan bracket, {X,Y} = VxY + VX
(4) the Jordan tensor associated to J

M;(X,Y) :=J{X,Y}) - UX,JY}
(5) the deformation tensor associated to J
H;(X,Y) 1= {JoVxJ = VxJ)(Y),
which satisfies 2H; = N; + M.
Remark 2.4. The J-bracket and the associated Nijenhuis tensor can be defined
for any (1, 1)-tensor field on a smooth manifold M, the Jordan bracket, the asso-

ciated Jordan tensor and the deformation tensor can be defined for (1, 1)-tensor
fields on a pseudo-Riemannian manifold (M, g).

Assume that J satisfies J2 = pJ + qI with p? + 4q > 0. We denote by o, :=
p\VpP+4g
2

? and consider the projection operators P and P’ [8]:

g _
Pt gy % oo L g9

VPP +aqg  Vpi+ag  \pP+ag  \pi+ag

satisfying
P=p, P2=P, P+P =1, PoP =0, PoP=0.
By a direct computation, we get the following:

Proposition 2.5. For the two projection operators P and P’, we have:
1

(1) Np =Ngp = p2+4qN];
(2) Mp =My = p2+4qMJ;
(3) H_fp = Hj::/ = p2+4qHJ.

Consider now the deformation tensors H and H':
H(X,Y) := P/ (Vg PY) = P/ (V5 P)Y),
H'X,Y) :=P(VpxP'Y) = P(VpxP)Y)
the twisting tensors L and L’:
LX,Y) := %[H(X, Y)— H(Y,X)], L'(X,Y) := %[H’(X, Y) - H'(Y.X)]
and the extrinsic curvature tensors K and K’:
K(X,¥) 1= S[H(X, ) + HY, X, K'(X,Y) 1= 3[H/(X,Y) + H'(Y, X))
forany X,Y € C®(TM).
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By a direct computation we obtain:

1
H(X, Y) = [J(ijjY) —O'+J(ijY) — O'+J(V]Xy)+
(p? +49Vp* +4q
+02J(VxY) —0_VxJY —qVxJY — qV;xY + qo, VxY] =
1
= [J(Vix]) — 0 J(Vx]) —o_(VxJ) — q(VxDI(Y)
(P> +49)Vp* +4g
1
H/(X, Y) = - [J(ijjY) - O'_](ijY) - O'_J(V]Xy)+
(P2 +49Vp* +4q
+O’EJ(V)(Y) — O'+ijjY — qVXJY — qV]XY + qO'_VXy] =
1
=- [J(VyxJ) —o_J(Vx]) — 0.(V;xJ) = q(VxDIY).
(p* +49)Vp* +4q

In particular, we get:

1
HX,Y)+H'(X,Y) = (=04 + 0 )I(VxJ) = (VixDIY) =
(P2 +49p? +4q
1
= H;(X,Y).
Moreover:
L= 1 (U_NJ—JON]),
2(p* +49Vp* +4q
L'=- . (04N;j —JoNy),
2(p? + 49V p? +4q
K = 1 (O'_MJ—JOM]),
2(p* +49Vp* +4q
K =- 1 (O'+M]—JOMJ).
2(p* + 49V p*+4q

3. Metallic distributions

Let (M,J,g) be a metallic pseudo-Riemannian manifold such that
J? = pJ + qI with p? + 4q > 0. Define the complementary distributions:

D :=kerP, D :=ker?P €))

which we shall call the metallic distributions defined by the metallic structure
J.

Remark 3.1. The distributions D and D’ are J-invariant and, if ¢ # 0, then D
and 2’ are also g-orthogonal.
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Definition 3.2. A distribution D C TM on a smooth manifold M is called

(i) involutive if X, Y € T'(D) implies [ X, Y] € T(D);

(ii) integrable if for any x € M, there exists a submanifold N, which admits
D|y, as tangent bundle.

According to the Frobenius theorem, a distribution 2 on M is involutive if
and only if it is integrable. In this case, it defines a foliation whose leaves are
the maximal connected submanifolds N, of M which admit D|y_ as tangent
bundle.

Definition 3.3. We say that the metallic pseudo-Riemannian manifold (M, J, g)
is doubly foliated if both of the distributions D and D’ given by (1) are integrable
and singly foliated if only one of them is integrable.
Remark 3.4. The distribution D (resp. D’) given by (1) is integrable if and only
if (VxJ)Y — (VyJ)X = 0, forany X, Y € T'(D) (resp. X, Y € I'(D")), with V
a torsion-free linear connection on M. Indeed, for X, Y € I'(D) we have JX =
6 X,JY =0_Y and J(VxY — VyX) = =(Vx)Y + (VyDX + 0_(VxY = VyX)
which implies that [X, Y] € T(D) if and only if (VxJ)Y — (VyJ)X = 0.

In particular, in a locally metallic pseudo-Riemannian manifold, the two dis-
tributions 2 and D’ given by (1) are both integrable.

Proposition 3.5. If (M,J,g) is a metallic pseudo-Riemannian manifold, then
the distribution D is integrable if and only if:

JoN;(X,Y) =0_N;(X,Y), forany X,Y € C*(TM),
respectively, D' is integrable if and only if:
JoN;(X,Y)=0,N;(X,Y), forany X,Y € C®(TM).
In particular, both D and D' are integrable if and only if N; = 0.
Proof. The distribution 2 is integrable if and only if
P([PX,PY]) =0,

for any X, Y € C®(TM). Therefore, from a direct computation and using
Proposition 2.5, we obtain that a necessary and sufficient condition for D to
be integrable is:

0=2'([PX,PY]) = —P'(Np(X,Y)) = — PI(N;(X,Y)) =

p*+4q

[JoN,(X,Y) — o_N,(X,Y)].

1
(p? +49)Vp* +4q

O

Definition 3.6. Given a linear connection V on a smooth manifold M, we say
that a distribution D C TM is V-geodesically invariant if X,Y € T'(D) implies
VxY + Vy X € T(D).

In particular, if V is the Levi-Civita of the pseudo-Riemannian manifold
(M, g), then D is geodesically invariant.
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We remark that the above condition is equivalent to the following: the dis-
tribution 2 is V-geodesically invariant if X € T'(D) implies VyxX € I'(D).

Remark 3.7. For a linear connection V on M, the distribution D (resp. 2’)
given by (1) is V-geodesically invariant if and only if we have (VxJ)Y +(VyJJ)X =
0, forany X, Y € T'(D) (resp. X, Y € I'(D")). Indeed, for X, Y € I'(D) we have
JX=0_X,JY =0_YandJ(VxY + VyX) = =(Vx)Y = (VyIDX + o_(VxY +
VyX) which implies VxY + VyX € T'(D) if and only if (VxJ)Y + (VyJ)X = 0.

In particular, for any J-connection V, the distributions D and D’ are V-
geodesically invariant.

Proposition 3.8. If (M,J,g) is a metallic pseudo-Riemannian manifold, then
the distribution D is geodesically invariant if and only if:

JoM;(X,Y) =0_M;(X,Y), forany X,Y € C*®(TM),
respectively, D' is geodesically invariant if and only if:
JoM;(X,Y) =0, M;(X,Y), forany X,Y € C®(TM).
In particular, both D and D’ are geodesically invariant if and only if M; = 0.
Proof. The distribution D is geodesically invariant if and only if
PAPX,PY}) =0,

for any X, Y € C*®(TM). Therefore, from a direct computation and using
Proposition 2.5, with a similar computation like in Proposition 3.5, we obtain
the conclusion. ]

Remark 3.9. J,, := P — P’ is an almost product structure on M and

1
JpX = —————(2J - pDX,

Vp i

forany X € C*(TM).

Direct computations provide the following relationship between J and J -
brackets, J and J p Nijenhuis tensors, Jordan bracket and Jordan tensors of the
two structures. Precisely, we have the following:

Proposition 3.10.

T p

[XaY]]z_ 2 [X’Y]JP+E[X3Y]
2+4
Ny = 22N, v
VpP*+4q p
{X’ Y}] = _T{Xﬁ Y}Jp + E{X’ Y}
Z4+4
%ajﬁp4qM%&n
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In particular, the deformation tensors are related as follows:

2
4
Hy(X,Y) =2 : UH,,x,Y).
The product conjugate connection of a linear connection V is [2]:
VY = PV PY) — P(VxP'Y) — P (Vi PY) + P (V5 P'Y)  (2)

and we have:

Proposition 3.11. [2] If VU2 is torsion-free, then J p is integrable, which means
that D and D' are integrable distributions.

Definition 3.12. We say that a linear connection V restricts to a distribution
D c TM on a metallic pseudo-Riemannian manifold (M,J,g) if Y € T'(D)
implies VxY € I'(D), for any X € C*(TM).

We have:
1) V restricts to D means P'(VxPY) = 0 and P(VxPY) = V4 PY,
2) V restricts to D’ means P(VxP'Y) = 0and P’ (VxP'Y) = VxP'Y.

A straightforward computation shows that the product conjugate connection
VUp) defined by (2) restricts to D and 2D’. Moreover, if V restricts to both D and
D', then
VIPY = Vi PY + Vi P'Y = Vi Y 3)
and so V is an J,-connection. Let us remark that the above connection (3) is
exactly the Schouten-van Kampen connection of the pair (D, D’):

VxY = ?(VX?Y) + ?,(Vx.?/Y)

which coincides with the metallic natural connection V [3] if V is the Levi-
Civita connection of g.

Now we can express the Kirichenko tensor fields [9] in terms of the projectors
P, P

Proposition 3.13. [2] The structural and virtual tensor fields of J,, = P — P are:
CITP(X,Y) = 2[P(Vpx P'Y) + P'(Vpx PY)]
BY™7(X,Y) = =2[P(VpxP'Y) + P'(Vx PY)].
Let us recall the well-known fundamental tensor fields of O’Neill-Gray:

{ T(X, Y) = ?(V_'])IX:P,Y) + fP'(Vy;X.’PY)
AX,Y) = P'(Vpx PY) + P(Vpx P'Y).

Then, a comparison of last two equations yields
CIP(X,Y) = 2[T(X, P'Y) + A(X, PY)]
BYP(X,Y) = —2[T(X,PY) + AKX, P'Y)]

a fact which justifies the second name of T and A as invariants of the decom-
position TM = D @ 2’ [6].
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On D with the induced metric g4, we consider the induced connection from
the pseudo-Riemannian manifold (M, g, V) by [10]:

V2 i T(D)X (D) - T(D), VIY 1= P(VxY)
which preserves the metric g5 and is torsion-free w.r.t. the bracket

The bracket [+, -] » has the usual properties of a Lie bracket excepting the Jacobi
identity which is satisfied if and only if D is integrable.

The integrability of D can also be characterized in terms of second funda-
mental form of D:

h: T(D)xT(D) - T(D), h(X,Y) :=VyY - VY,
and we can state:

Proposition 3.14. [10] The distribution D is integrable if and only if one of the
following assertions holds: (i) V2 is torsion-free; (ii) h is symmetric.

Similarly, on (2’, g5) we define the induced connection from (M, g, V) by:
V2 i I(D) X T(D') - T(D"), V2'Y 1= P/ (VxY)

and consider the second fundamental form h’ of D’. Then the distribution D’ is
integrable if and only if one of the following assertions holds: (i) V2" is torsion-
free; (ii) A’ is symmetric.

We remark that the restrictions of the metallic natural connection V, defined
in [3], to D and respectively, to 2’, coincide with the two induced connections,
respectively:

/

Virorm = V2, Vironxro) = VP

Remark 3.15. For p? + 4q = 0, we get only one distribution, ker(J — §I ), and

Jpi=J— §I is an almost subtangent structure.

4. Adapted connections to (D, D’)

Definition 4.1. We say that a linear connection V on M is adapted to the
decomposition TM = D @ D' if Y € I'(D) implies VyY € T(D), for any
X e C®(TM)and Y € I'(D) implies VxY € I'(D’), for any X € C®(TM).

Remark 4.2. If (M,J) is a metallic manifold such that J? = pJ + gI with p? +
4q > 0, then a linear connection V is adapted to (D, D) given by (1) if and only
if V is a J-connection. Indeed, for Y € I'(D) we have JY = 0_Y and (VxJ)Y =
o_VxY —J(VxY), for any X € C*®(TM), which implies that VyxY € I'(D) if
and only if VJ = 0. Similarly we deduce the second implication.
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In [1], A. Bejancu and H. R. Farran gave the expression of all adapted con-
nections to (D, D’), namely:

VLY = P(VxPY) + P (VxP'Y) + PS(X, PY)) + P/ (SX, P'Y)),  (4)

forany X,Y € C*®(TM), where V is a linear connection and S is a (1, 2)-tensor
field on M.

4.1. Schouten-van Kampen connection. An adapted connection to (D, D’)
is the Schouten-van Kampen connection V of the linear connection V, obtained
from (4) for S :=0:

VyY 1= P(VxPY) + P'(VxP'Y) = (5)

If (M, J, g) is a metallic pseudo-Riemannian manifold such thatJ? = pJ +qI
with p? +4q > 0 and V is torsion-free, then V is explicitly given by:

VxY = ——[(2] = pI(VxJY) — (p] — (P + 29D(Vx V)], (6)
p*+4q

for any X, Y € C®(TM). We remark that if V is the Levi-Civita connection
associated to g, then V is exactly the metallic natural connection defined in [3].

Moreover, V is a metric J-connection, i.e. Vg = VJ = 0, whose torsion is given
by:

TV(X,Y) = [(2] — pD(VxJY = VyJX) — (pJ +2qD)(VxY — VyX)],

p*+4q
forany X,Y € C®(TM).
4.2. Vrinceanu connection. Another adapted connection to (D, D) is the
Vrdnceanu connection V of the linear connection V, obtained from (4) for
SX,Y) := =P(VpxPY) = P (VpxP'Y) + P(|P' X, PY]) + P'([PX,P'Y)).

If (M, J, g) is a metallic pseudo-Riemannian manifold such that J? = pJ +qI
with p? + 4q > 0, then V is explicitly given by:

VxY = VoY + P((P'X,PY]) + P/([PX,P'Y]) = (7)
= VY + m[u«vxlm — p(VD)Y +I(VyD)X)+
+(Vyy DX — p(Vy DX+

! [TVYUX,JY)+J(TV(UX,Y)) — pTV(UX,Y)—

+
p*+4q

—J(TV(X,JY)) — qTV(X, Y)],
forany X, Y € C*(TM). )
Moreover, V is a J-connection, i.e. VJ = 0, whose torsion is given by:
< 1
TV(X,Y) = mN,(X, Y)+ P(TV(P'X,P'Y)) — P(TV(PX, PY)),
p q
forany X,Y € C*(TM).
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4.3. Vidal connection. Let (M,J, g) be a metallic pseudo-Riemannian man-
ifold such that J2 = pJ + gI with p?> + 4q > 0 and let V be the Levi-Civita
connection of g. .
Another adapted connection to (D, D') is the Vidal connection V associated
to J, obtained from (4) for
S(X, Y) = —?(V?y?,)x — ?/(Vy/yj))X,

therefore:
VY = VY — P(Vpy PNX — P! (Vpry P)X = (8)
- 1
=VxY + m[(V]YJ)X +J((VyDX) — p(Vy))X] =
= VY + —— (2T (VYY) = p(V3)Y + T(VyD)X)+
p*+4q
+(Vyy DX = p(VyDX],

forany X, Y € C*(TM). ~
Moreover, V is a J-connection, i.e. VJ = 0, whose torsion is given by:

T™V(X,Y) =

Ny(X,Y),

forany X,Y € C*(TM).

Remark 4.3. The Vranceanu connection of the Levi-Civita connection coin-
cides with the Vidal connection.

Moreover, we get:
~ 1
\Y% Y,Z)=——— VivDX — (VyIIX,Z2)+
(Vx)(Y, Z) p2+4q[g(( ) (VyJ) )

+8((Viz)X — (VZIX,Y)] =

+8((VixDZ + (VI)IX,Y)],
forany X,Y,Z € C®(TM).

Since VJ = VJ = VJ = 0, from Remark 3.7 we deduce:

Proposition 4.4. The distributions D and D' are V-geodesically invariant, V-
geodesically invariant and V-geodesically invariant.

Using the Vidal connection V, we characterize the integrability and the geo-
desic invariance of the metallic distributions defined by J in terms of the torsion
and the covariant derivative of g w.r.t. this connection. From all the above con-
siderations, we can state:
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Theorem 4.5. If (M, J, g) is a metallic pseudo-Riemannian manifold such that
J? = pJ + qI with p* + 4q > 0, then the following assertions are equivalent:

(i) the distributions D and D’ are integrable;

(i) Ny = 0;

(i) L=0and L' =0;

(iv) the Vidal connection given by (8) is torsion-free.
Theorem 4.6. If (M,J, g) is a metallic pseudo-Riemannian manifold such that
J? = pJ + qI with p? + 4q > 0, then the following assertions are equivalent:

(i) the distributions D and D’ are geodesically invariant;

(i) M; = 0;

(iii) K = 0and K’ = 0;

(iv) the Vidal connection given by (8) is metric with respect to g.
4.4. Leaves correspondence via metallic maps. We shall provide the con-
dition for a metallic map between two metallic pseudo-Riemannian manifolds
to preserve the metallic distributions. We recall the following:

Definition 4.7. A smooth map ® : (M;,J;) — (M,,J,) between two metallic
manifolds is called a metallic map if:

q)*ojl = Jzoq)*.

Remark 4.8. If ® : (M;,J;) = (M,,J,) is a metallic map and Jl.2 = pJi +qil
with p; and g; real numbers, i = 1, 2, then:

(i) @,0J*! = j2* o, forany k € N;

(i) ([(p3 + ¢2) — (P} + @)V + (202 — P1g)D(TM;) C ker @,;

(iii) in the particular case when one the structure is product and the other
one is complex, then ImJ, C ker ®,..

Consider a metallicmap ® : (M;,J;) — (M,,J,) between the metallic mani-
folds (M, J;) such thatJ 12 = pJ;+q;I with pi2+4ql- > 0,i = 1,2,and assume that
the distributions D; and le ,i =1,2, are integrable. Then they define the folia-
tions F; and F l’ ,i = 1,2, whose leaves are trivial metallic pseudo-Riemannian
manifolds.

Denoting by ®*D, the pull-back distribution, i.e.:

(@*Dy)y 1= 1{Xx €ETRM @ @, (X)) € Dagyh
since @ is a metallic map, we get:
(@*Dy), ={Xy €T M : (J; - o'2.,.1)(‘)(x) € kerCD*x},

i+ 244, i
where g, = #, i=1,2and
(@*D)), ={X, €T, M : (J; —0,_D(X,) Ekerd, },
=\ P +4g;
where g;_ = w, i=1,2.

2
From the above considerations, we obtain a sufficient condition for the pull-
back distribution ®*D, to coincide with one of the distributions D; or D:
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Proposition 4.9. Ifker®, = (J; — o, I(ker(J; — 0,,1)), then ®*D, = D;.
Moreover, if @ is a surjective submersion with connected fibers, then a leaf of F,
corresponds to a leaf of F.

5. A Chen-type inequality for the metallic distributions

A fundamental problem in the theory of submanifolds is the problem posed
by B. Y. Chen [4], namely, to find relations between the main intrinsic and ex-
trinsic invariants of a submanifold. In this sense, the Chen’s inequalities for
submanifolds in real space forms was proved by B. Y. Chen [4], in complex
space forms by Y. Dogru [5], in quaternionic space forms by G. E. Vilcu [12]
etc. In the same spirit, we shall prove a Chen-type inequality in the metallic
case, for an integrable distribution defined by the metallic structure.

Let (M,J, g) be an m-dimensional metallic Riemannian manifold and as-
sume that the distribution D is integrable. In this case, the Riemann curvature
tensors of D (computed with respect to the induced connection V? on D and
the Lie bracket [+, -]) and M satisfy [10]:

RP(X,Y,Z,W)=RM(X,Y,Z,W)— 9)

—8(h(X, Z), h(Y, W) + g(h(X, W), h(Y, Z)),

forany X, Y, Z, W € T(D).

The relation between the mean curvature (the main extrinsic invariant) and
the Chen first invariant (an intrinsic invariant), in a particular case of constant
J-sectional curvature, is given in the following.

From a direct computation we obtain:

Proposition 5.1. Let (M, J, g) be an m-dimensional metallic Riemannian man-
ifold (m > 2) such thatJ* = pJ + qI with p* +4q > 0, whose Riemann curvature
tensor is given by

RM(X,Y,Z,W) = c[g(X,FW)g(Y,FZ) — g(X,FZ)g(Y,FW)], (10)

forany X, Y, Z, W € C®(TM), where F := aJ + bl with a and b real numbers
satisfying ga®> — pab — b?> = 1. Then the J-sectional curvature of M is constant
equal to c.

Denote by H := ~tr(h) the mean curvature and by 85, := t2 — inf K? the
n

Chen first invariant of D, where 72 denotes the scalar curvature of D and K?
its sectional curvature.

Theorem 5.2. Let(M,J, g) be an m-dimensional metallic Riemannian manifold
(m > 2)suchthatJ? = pJ+ql with p>+4q > 0, whose Riemann curvature tensor
is given by (10) and let D given by (1) be an n-dimensional integrable distribution.
Then:

< clac_ +b?*(n*—n+2) n*(n-2)

Op 2 2(n—1)

[1H][>.
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Proof. Consider an orthonormal frame field {e,..,e,} for D,
{f1, s fm_n} an orthonormal frame field for D’ and denote by

nt :=g(h(eie), fio):
From (9) and (10) we get
212 = c(ao_ + b)’n(n — 1) — || h| > + n?||H||2.

Moreover
m-—n m—n
K®(e;,e;) = —c(ao_ + b)* — > Wk Rk + > (hk)?
k=1 k=1

and
clac_ +b)*(n* —n+ 2)+

P~ K2(e,00) = 2

+ 20 D, (hEnk - (hk>2)+2<h hyhy, — Z«h )2+ (h5 )M <
k=

i ]]

3<i<j<n
sc(aa-+b)2(n2—”+2) n=2 Vs, hi? = > n((h K2+ (nE)?) =
S kzl ,21 &2
clao_ +bR(n2—n+2) n(n— S
- ; el ZZ DRSS

clac_ +b)*(n*—n+2) n*n- 2)
< [H|?.
2 2(n—1)
O
Remark 5.3. If p = 0and g = 1, i.e. J is an almost product structure, then the
inequality from Theorem 5.2 becomes
cla=b2(n?>-n+2) n*(n-2)
dp <
2 2(n—1)
In particular,ifa = 1and b = 0, i.e. F = J, we get
c(n*>-n+2) N n*(n —2)
2 2(n—-1)

|1H]I>.

dp <

||H|[>.

6. Metallic Norden structures

6.1. Complex metallic distributions. Let(M,J,g)be ametallic Norden man-
ifold such that J> = pJ + qI with p?> + 4g < O and let T°M := TM ®g C be
the complexified tangent bundle. Then we can define the complexified metallic
pseudo-Riemannian structure:

JEX +iY) :=JX +iJY,

gE (X +iY 1, X, +1Y,) 1= g(X1,X,) — g(Y1,Yy) +i[g(Xy, V) + (Y1, X))],
forany X, X,,X,,Y,Y,,Y, € C°(TM).
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PV p2+4
2

Denote by ag = 1 and consider the projection operators ¢ and

P
C C
Prim—— L oy 2+ qoopoo L ge 9 e
VpP+4q  VpP+4g VPP +4q  VpP+d4q
satisfying

P = pC PO = pC pC 4 pC S [ PCopC =0, PCoPC =0
and define the complementary distributions:
DC :=kerP%, DT :=kerPC (11)
which we shall call the complex metallic distributions defined by J.

Remark 6.1. If (M, J, g) is a metallic Norden manifold such that J?> = pJ + gqI
with p? + 4q < 0, then D and DT’ are JC-invariant.

Lemma 6.2.
pC = pC
Proof. It follows from O'E = cTE. O

In particular, if J is not trivial, that it admits two complex eigenvalues, or
the two distributions are both different from 0, then the complexified tangent
bundle splits as a direct sum of two conjugate subbundles:

TCM = DC @ DC.
Extending the Lie bracket to:
[X1 +1Y1, X5 +1Y5]° 1= [X1,X,] = [V, Yol + i([X0, Yol + [V, X5,
for any X, X,, Y, Y, € C®(TM), we say that:

Definition 6.3. A distribution D¢ c T®M is called integrable if X, Y € I['(D®)
implies [X, Y] € (D).

Lemma 6.4. The distribution D is integrable if and only if
PY([PCx, PCY]C) = o,
forany X, Y € C®(T®M).

Proposition 6.5. The distribution D€ (resp. D) given by (11) is integrable if
and only if Ny = 0.

Extending the Levi-Civita connection V of g to:
V§1+iY1(X2 + le) = VXIXZ - VY1Y2 + i(VX1Y2 + VY1X2),

for any X, X,, Y, Y, € C®(TM), we pose the following:
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Definition 6.6. Given a complex linear connection V¢ on a smooth manifold
M, a distribution D ¢ T®M is called V®-geodesically invariant if X, Y €
I(DC) implies V{Y + VEX € I(DC).

In particular, if V© is the Levi-Civita connection of the pseudo-Riemannian
manifold (M, g©), then DC is called geodesically invariant.

Lemma 6.7. The distribution DC is geodesically invariant if and only if
PC({PCX, PEYIC) = 0,

foranyX, Y € C®(T°M), where {X,Y}* := VY + VLY.
Proposition 6.8. The distribution D€ (resp. D) given by (11) is geodesically
invariant if and only if M; = 0.
Remark 6.9. For a complex linear connection V© on M, the distribution D¢
(resp. D) given by (11) is VC-geodesically invariant if and only if (V;EJ OY +
(VG}:,JC)X = 0, forany X, Y € I(DC) (resp. X,Y € I(DT)). Indeed, for
X,Y € T(D) we have J°X = 0SX,J°Y = oCY and JE(VLY + VEX) =
—(VIOY = (VSIOX + 0S(VLY + V5 X) which implies that VLY + VEX €
[(D%) if and only if (VEIO)Y + (VIIO)X = 0.

In particular, for any JC-connection V€, the distributions D and D are
V®-geodesically invariant.

Remark 6.10. J, := i(?° — P%) is a Norden structure on M and

1
JX =———— (2] — pDX,
4

for any X € C*(TM).
By a direct computation we get:

Proposition 6.11. The Nijenhuis tensors of J. and J are related as follows:
4
N X, Y = —N X: Y ’
1KY = Ny (X Y)

forany X, Y € C*(TM).
Moreover, if
T°M = TOM @ TOVM
is the decomposition of the complexified tangent bundle into (1,0) and (0, 1)
parts, with respect to the almost complex structure J., we have:
Pt =T1AOM, D¢ =TODM,
Definition 6.12. We say that a complex linear connection V® on M is adapted
to the decomposition T"M = D @ D if Y € I(DC) implies VY € I(D),
for any X € C®(T°M) and Y € T(DT) implies VyY € (DY), for any X €
C®(TtM).



786 ADARA M. BLAGA AND ANTONELLA NANNICINI

Remark 6.13. If (M, J, g) is a metallic Norden manifold such that J? = pJ +qI
with p2 +4q < 0, then a complex linear connection V€ is adapted to (D, D)
given by (11) if and only if V* is a J®-connection. Indeed, for Y € I'(D%) we
have J¢Y = ¢CY and (V;%JC)Y = UEV;'?Y — JC(V}%Y), for any X € C®(T®M),
which implies that V{Y € I(D%) if and only if VEJ© = 0. Similarly we deduce
the second implication.

Proposition 6.14. All adapted connections to (D€, D) are of the form:
(VOLY = PY(VEPLY) + PV (VEPCYY)+ (12)
+PC(S(X, PEY)) + PC(S(X, PCY)),

forany X, Y € C®(TM), where V® is a complex linear connection and S is a
complex (1, 2)-tensor field on M.

Proof. We follow the same steps like in the real case [1]. O

Consider the following adapted connection to (D€, D)

1) The complex Schouten-van Kampen connection V© of the complex linear
connection V¢, obtained from (12) for S : = 0:
VEY 1= PE(VEPCY) + 2V (VEPCY).

If (M, J, g) is a metallic Norden manifold such that J> = pJ + qI with p* +
4q < 0 and VU is torsion-free, then VC is explicitly given by:

~ 1
ViY = v [ = pI®)(VIY) = (pI© = (D* + 2IO)(VEY)] = (13)

— yvC
=Viy +

g [27€(VRTE) = p(VTOY,

for any X, Y € C®(T*M).

We remark that if V© is the Levi-Civita connection associated to g%, then V©

is a metric J¢-connection, i.e. V&g = V&J® = 0, whose torsion is given by:

1
p*+4q
—(pJ© +2gI°) (VY = VEX)],

for any X, Y € C®(T*M). i
2) The complex Vrdnceanu connection V© of the complex linear connection
VC, obtained from (12) for

._ _pCruC Cyy _ pC'(uC c’
SX,Y) 1= —PE(VE, POY) - PC (VS POY)+

+PC([PUX, PCY]C) + PU([PCX, PEY]C).
If (M,J, g) is a metallic Norden manifold such that J> = pJ + gI with p? +
4q < 0, then V¢ is explicitly given by:

VRY = VS Y + 2C([P9X, PCY0) + 2C (25X, 2CY]C),  (14)

TV (X,Y) = [(27€ — pI®)(VLIY — VEICX)-
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for any X,Y € C*(T*M). )
Moreover, V® is a J¢-connection, i.e. VEJ© = 0, whose torsion is given by:

™V X,Y) = > Jlr qNJC(X V) + 2 (Ve (¢ x, PCy)) -

—PC(TV(PCX, PCY)),
forany X, Y € C®(TM).

3) The complex Vidal connection VC associated to the metallic Norden struc-
ture (J, g), obtained from (12) for

!/ /
SX,Y) 1= =PE(Vpey PE)X — PC(V e, POX,
therefore:
~ ~ / !/
VLY = VY — PE(Vypey PEOX — PO (V pory POX = (15)

- 1
=Viy + pZT[(V 1eyJOX + TC(VyIO)X) — p(VJO)X],

for any X, Y € C®(T*M), where V* is the Levi-Civita connection of g©.
Moreover, V€ is a JC-connection, i.e. VEJ€ = 0, whose torsion is given by:

1
Y, )—p T2 qNJC(X Y),

for any X, Y € C®(T*M).
Moreover, we get:

(FxgY,2) = e BV IO = (VX 2+

+85((VyeJOX = (VIOIX,Y)] =
1
 PP+4g
+gC (Vi JOY + (VIOICX, Z) + g“((V
forany X, Y, Z € C®(T®M).

[§“M;e(Y,X),Z) + g5 (M;c(Z,X), Y)+

JCXJC)Z + (VENICX, V),

Since VCJC = VCJC = VCJC = 0, from Remark 6.9 we deduce:

Proposition 6.15. The distributions D€ and D' are VE-geodesically invariant,
VE.-geodesically invariant and VC-geodesically invariant.

From all the above considerations, we can state:

Theorem 6.16. If (M, J, g) is a metallic Norden manifold such thatJ?> = pJ +ql
with p? + 4q < 0, then the following assertions are equivalent:

(i) the distributions D€ and D€ are integrable;

(ii) (M, J..) is a complex manifold;

(iii) the complex Vidal connection given by (15) is torsion-free.
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Theorem 6.17. If (M, J, g) is a metallic Norden manifold such that J*> = pJ +ql
with p? + 4q < 0, then the following assertions are equivalent:

(i) the distributions Dt and DY are geodesically invariant;

(ii) the complex Vidal connection given by (15) is metric with respect to g°.

6.2. The d-operator of a metallic complex structure.

Definition 6.18. A metallic manifold (M, J) such thatJ? = pJ + gI with p? +
4q < 0 and J integrable is called metallic complex manifold.

Let (M,J) be a metallic complex manifold and letJ, = —;(21 — pl) be

the associated complex structure. Consider its dual map J; : T*M — T*M, de-
fined by (J; a2)(X) := a(J.X), for any a € C*®(T*M) and for any X € C®(TM).
We shall define the real differential operator d¢ acting on forms:
d¢ :=JZodoJ},

where d is the real differential operator.
If (M,J, g) is an integrable metallic Norden manifold, we can consider the
real codifferential operator §¢ acting on forms:
8¢ := %odox,
where x is the Hodge-star operator with respect to the metric g.
We obtain
dod® =0, dod®+dfed =0,
9¢0d¢ =0, 50+ 605 =0,
where § is the codifferential operator, and with respect to the scalar product
(-, -y induced by g, the operators d° and 8¢ are adjoint, i.e.

(da,B) = (a,8B),
forany a, § € C®(T*M).
Remark that J*o% = %oJ* (and J}ox = %oJ}) implies 8¢ = J}o§oJ} and
doJ} = —J%od, Jiod® = —doJ},
d%lJ; = =J}od, Jiod = —8oJ;.
From the above relations, we can state:
Proposition 6.19. Let o be a real form on M.
(i) If o is d°-closed (resp. 6¢-coclosed), then J;a is closed (resp. coclosed).
(ii) If a is closed (resp. coclosed), then J; « is d°-closed (resp. &¢-coclosed).
(iii) If a is J i -invariant, i.e. Jia = a, then a is d°-closed (resp. 6¢-coclosed) if
and only if it is closed (resp. coclosed).

Therefore, the d°-closed (resp. §°-coclosed) forms are the J;:-invariant closed
(resp. coclosed) forms. Then

ker(d®) = ker(d) N {J} — invariant forms}, Im(d°) = J:(Im(d)),
ker(6¢) = ker(6) n{J; — invariant forms}, Im(5¢) = J;(Im(9)).
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Then we can consider the metallic cohomology groups
H"(M) := ker(d;)/Im(d;_,),
where
dS : C®(AT(M)) — C¥(A™ (M)
and the metallic homology groups

H,(M) : = ker(8)/Im(5¢

Y
where
S; 1 CO(A (M) — CX(AH(M)).
Now we can introduce the metallic Hodge-Laplace operator
A° 1 C®(A'(M)) = C=®(A"(M)), A° :=dd° + 6°d",
which is symmetric and self-adjoint w.r.t. (-, -). Remark that
A¢ = —J¥oAoJ},
where A = dod + dod is the Hodge-Laplace operator, and A satisfies
ACoJ; =JFoA, JioA® = AoJ}.

Definition 6.20. A real form « is called J-harmonic if it belongs to the kernel
of the metallic Hodge-Laplace operator, i.e. A°a = 0.

From the above relations, we get:

Proposition 6.21. Let o be a real form on M.

(i) If a is J-harmonic, then J; o is harmonic.

(ii) If a is harmonic, then J} « is J-harmonic.

(iii) If o is J; -invariant, i.e. Jia = a, then « is J-harmonic if and only if it is
harmonic.

(iv) a is J-harmonic if and only if it is d°-closed and 8¢-coclosed.

Therefore, the J-harmonic forms are the J;-invariant harmonic forms. Then

ker(A¢) = ker(A) N{J; — invariant forms}, Im(A€) = J;(Im(A)).

Let
TM = T0OM @ TODM = D @ DC

be the decomposition of the complexified tangent bundle into (1, 0) and (0, 1)
parts, with respect to the complex structure J,. or, equivalently, with respect to
the distributions defined by J.

The J-operator and d-operator acting on (r, s)-forms on M are defined as fol-

lows:

D PR
.—2(d id®),

Qi
Qi

: CR(ATI(M)) — CX(ATSHI(M)),

5 COATHIMY) > CRATIM)), § 1= %(5 — e,
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Remark that the integrability of J (which is equivalent to the integrability of
J.) implies o
dod = 0, dod = 0,

therefore we can consider the metallic complex cohomology groups

H(r’s)(M) = ker(a(r,s))/Im(a(r,s—l))a
where

O 1 CX(ATIM)) = CE(ATD(M)

and the metallic complex homology groups

H(r,s)(M) = ker(g(r,s))/Im(é(r,s+1))a

where )
Iy 1 C¥(ATIM)) = CX(ATD ().

Now, if

T*°M = D** @ D+*
is the decomposition of the complexified cotangent bundle defined by J*, then
we get the following:

Proposition 6.22. Let (M,J) be a metallic complex manifold such that J 2 =
pJ + gl with p? + 4q < 0. Then the d-operator:

< 1
0=——"[(p*+4q)d + i(4J*odoJ* — 2pdoJ* — 2pJ*od + p*d
2(szr4q)[(p +4q)d + i(4]odo pdo pJ*ed + p*d)]

is acting on C®(AT(D*)) @ CX(AS(D*)).
Proof. We have:

1 1
d¢ = | ————=(2J* — pI) | odo | -———(2J* — pI) | =
—_p2_4q( p)]o Ol _p2_4q( pD
1

= ————(4J*odoJ* — 2pdoJ* — 2pJ*od + p*d).
p*+4q

Then the statement follows. O
Similarly, we prove that:

Proposition 6.23. Let (M,J, g) be a metallic Norden manifold such that J 2 =
pJ + qI with p? + 4q < 0. Then the d-operator:
1

2(p% +4q)

is acting on C®(AT(D*)) @ C®(AS(D*)).

d= [(p? + 49)8 + i(4T*oSoJ* — 2pSoJ* — 2pJ*od + p?d)]

Remark 6.24. The operators d° and 0 can be defined on metallic complex man-
ifolds and 6¢, A€ and 9 only on metallic Norden manifolds.
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