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Some nontrivial secondary adams
di�erentials on the fourth line

XiangjunWang, YaxingWang and Yu Zhang

Abstract. Let p ≥ 5 be an odd prime. Using the correspondence between
secondaryAdams di�erentials and secondary algebraicNovikov di�erentials,
we compute four families of nontrivial secondary di�erentials on the fourth
line of the Adams spectral sequence. We also recover all secondary di�eren-
tials on the �rst three lines of the Adams spectral sequence.
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1. Introduction
The Adams spectral sequence (ASS) is one of the most useful tools to com-

pute the stable homotopy groups of the sphere �∗(S). The ASS has E2-page
Ext∗,∗A∗

(Fp,Fp), where A∗ is the dual mod p Steenrod algebra.
In this paper, we always assume p is an odd prime. Then we have

A∗ = P[�1, �2,⋯]⊗E[�0, �1, �2,⋯],
where P[�1, �2,⋯] is a polynomial algebra with coe�cients in Fp, and
E[�0, �1, �2,⋯] is an exterior algebra with coe�cients in Fp.

TheAdams-Novikov spectral sequence (ANSS) is another useful tool for com-
puting �∗(S). The ANSS has E2-page Ext∗,∗BP∗BP(BP∗, BP∗), where BP denotes
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the Brown-Peterson spectrum. We have

BP∗ ∶= �∗(BP) = ℤ(p)[v1, v2,⋯], BP∗BP = BP∗[t1, t2,⋯]

where ℤ(p) denotes the integers localized at p.
The Adams-Novikov E2-page can be computed via the algebraic Novikov

spectral sequence (algNSS) [10, 14]. The E2-page of the algNSS has the form
Exts,tP∗(Fp, I

k∕Ik+1), where I denotes the ideal (p, v1, v2,⋯) ⊂ BP∗, and P∗ =
BP∗BP∕I = P[t1, t2,⋯] is the Fp-coe�cient polynomial algebra. Here, we have
re-indexed the pages to align with the notations in Gheorghe-Wang-Xu [4] and
Isaksen-Wang-Xu [6].

The E2-page of the Adams spectral sequence can also be computed via an-
other spectral sequence, called the Cartan-Eilenberg spectral sequence (CESS)
[3, 15]. For odd prime p, the E2-page of the CESS coincides with the E2-page of
the algNSS. Then, we have the following diagram of spectral sequences.

Exts,tP∗(Fp, I
k∕Ik+1) CESS +3

algNSS
��

Exts+k,t+kA∗
(Fp,Fp)

ASS
��

Exts,tBP∗BP(BP∗, BP∗)
ANSS +3 �t−s(S)

In practice, the main di�culty of computing with the ASS is that the Adams
di�erentials dAdamsr ’s are di�cult to be determined in general. On the other
hand, the algebraic Novikov di�erentials dalgr ’s aremuch easier to be computed.
This is because the entire construction of the algNSS is purely algebraic. Com-
puting dalgr ’s does not require any topological background knowledge. It turns
out that when r = 2, there is a direct correspondence between dAdams2 ’s and
dalg2 ’s.

Theorem1.1 (Novikov [14], Andrews-Miller [2, 11]). Let z ∈ Exts+k,t+kA∗
(Fp,Fp)

be a nontrivial element detected in the CESS by x ∈ Exts,tP∗(Fp, I
k∕Ik+1). Regard

x as an element in the algNSS, then the secondary algebraic Novikov di�erential
dalg2 (x) represents the secondary Adams di�erential dAdams2 (z).

Let p ≥ 5. A complete list of generators together with their dAdams2 (z) has
beendetermined for the�rst three lines of theAdamsE2-page, i.e. Exts,tA∗

(Fp,Fp)
with s = 1, 2, 3 (see [1, 7, 12, 16, 17, 18]). Meanwhile, only partial results are
known for the fourth line Ext4,∗A∗

(Fp,Fp) (see, for example, [19]).
In this paper, we demonstrate a practical computing strategy to determine

dAdams2 ’s by computing their corresponding dalg2 ’s. We will work on several ex-
plicit examples and provide detailed proof. Our main result is the following.
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Theorem 4.4. There are nontrivial secondary Adams di�erentials given as fol-
lows:

(1) dAdams2 (ℎ4,iℎ3,igi) = a0b4,i−1ℎ3,igi , for i ≥ 1.
(2) dAdams2 (ℎ4,iℎ3,i+1ki+2) = a0b4,i−1ℎ3,i+1ki+2, for i ≥ 1.
(3) dAdams2 (ℎ4,igiℎi+3) = a0b4,i−1giℎi+3, for i ≥ 1.
(4) dAdams2 (ℎ3,iℎ2,i+1ki) = a0b3,i−1ℎ2,i+1ki , for i ≥ 1.

Remark 1.2. Here, we follow the conventions of [17, 19] to name Adams E2-
page elements by their May spectral sequence (MSS) representatives, compare
with Table 2 and Table 3. We would like to comment more explicitly on the
indeterminacy of these classes. For example, the result of (1) should be inter-
preted as follows. If an element x ∈ Ext4,∗A∗

(Fp,Fp) has MSS representative
ℎ4,iℎ3,igi ∶= ℎ4,iℎ3,iℎ2,iℎ1,i, then its secondary Adams di�erential dAdams2 (x)
has MSS representative a0b4,i−1ℎ3,igi ∶= a0b4,i−1ℎ3,iℎ2,iℎ1,i. More details of the
MSS are reviewed in Section 3.

It is straightforward to verify that these four families of elements are inde-
composable, i.e., they can not be written as products of elements from the �rst
three lines. Consequently, one can not deduce the di�erentials simply via Leib-
niz rule.

From our point of view, the practical computational strategy here is possibly
more interesting than the result itself. To further demonstrate this, in Section
5, we use the same strategy to recover all secondary Adams di�erentials on the
�rst three lines.

Previously, the nontrivial Adams di�erentials on the third line were com-
puted in [17] using matrix Massey products [9]. Comparatively, our computa-
tion has the following advantages: (i) Our computations can be easily adapted
to analyze other dAdams2 ’s of interest. On the contrary, the matrix Massey prod-
uct method could fail when the relevant indeterminacy is nontrivial; (ii) Our
computations of the algebraic Novikov di�erentials are routine and purely al-
gebraic. Such computations are comparatively more straightforward than the
previous ones using matrix Massey products.

Organization of the paper. In Section 2, we review the algebraic structures
and constructions related to Hopf algebroids. These structures are fundamen-
tal to later computations. In Section 3, we discuss several spectral sequences
we use in this paper, including the algNSS, the CESS, and the May spectral se-
quence. In Section 4, we compute relevant algebraic Novikov di�erentials and
prove Theorem 4.4. In Section 5, we use the same computational strategy to
recover the secondary Adams di�erentials on the �rst three lines.

Acknowledgments. We would like to thank the anonymous referee for the
detailed suggestions. The third named author would also like to thank Zhilei
Zhang for helpful discussions. All authors contribute equally.
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2. Hopf algebroids
In this section, we review the de�nition as well as two important examples of

Hopf algebroids. We will also recall the associated cobar complex construction.

De�nition 2.1 ([15] De�nition A1.1.1). A Hopf algebroid over a commutative
ring K is a pair (A,Γ) of commutative K-algebras with the following structure
maps

left unit map �L ∶ A → Γ
right unit map �R ∶ A → Γ
coproduct map ∆ ∶ Γ→ Γ⊗A Γ

counit map " ∶ Γ→ A
conjugation map c ∶ Γ→ Γ

such that for any other commutative K-algebra B, the two sets of K-homomor-
phisms,HomK(A, B) andHomK(Γ, B), are the objects andmorphisms of a group-
oid.

2.1. The Hopf algebroid (BP∗, BP∗BP). An important example of Hopf al-
gebroids is (BP∗, BP∗BP) [5, 12, 15]. Recall that we have

BP∗ ∶= �∗(BP) = ℤ(p)[v1, v2,⋯], BP∗BP = BP∗[t1, t2,⋯] (1)
We also have

H∗(BP) = ℤ(p)[m1, m2,⋯] (2)
where |vn| = |tn| = |mn| = 2(pn − 1).
Notations 2.2. Throughout this paper, we denote v0 = p, andm0 = t0 = 1.

The Hurewicz map induces an embedding
i ∶ BP∗ → H∗(BP)

vn ↦ pmn −
n−1∑

i=1
vp

i

n−imi
(3)

We can describe the structure maps of the Hopf algebroid (BP∗, BP∗BP) as fol-
lows.

The left unit and right unit maps �L, �R ∶ BP∗ → BP∗BP are determined by
�L(vn) = vn (4)

�R(mn) =
∑

i+j=n
mitp

i

j (5)

The coproduct map ∆ ∶ BP∗BP → BP∗BP ⊗BP∗ BP∗BP is determined by
∑

i+j=n
mi(∆tj)p

i =
∑

i+j+k=n
mitp

i

j ⊗ tp
i+j

k (6)

The counit map " ∶ BP∗BP → BP∗ is determined by
"(vn) = vn, "(tn) = 0. (7)
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The conjugation map c ∶ BP∗BP → BP∗BP is determined by
∑

i+j+k=n
mitp

i

j c(tk)p
i+j = mn. (8)

In practice, it is more convenient to work with �R(vn) instead of �R(mn).
Let I denote the ideal (p, v1, v2,⋯) ⊂ BP∗. Then I is an invariant ideal as a

BP∗BP-comodule, in other words, we have �L(I) ⋅ BP∗BP = BP∗BP ⋅ �R(I). For
k ≥ 0, we let Ik ⋅ BP∗BP denote �L(Ik) ⋅ BP∗BP = BP∗BP ⋅ �R(Ik).

We have the following formulas.

Proposition 2.3. Let n ≥ 0. The right unit map �R ∶ BP∗ → BP∗BP satis�es

�R(vn) ≡
n∑

i=0
vitp

i

n−i mod Ip ⋅ BP∗BP (9)

Proof. We prove by induction on n. The case for n = 0 is trivial. Now suppose
(9) is true for 0 ≤ i ≤ n − 1. Then, in particular, �R(vi) ∈ I ⋅ BP∗BP for
0 ≤ i ≤ n − 1. Note (3) implies

vn ≡ pmn mod IpH∗(BP) (10)

for n ≥ 0. Then, direct computation shows

�R(vn) = p �R(mn) −
n−1∑

i=1
�R(vn−i)p

i�R(mi) (by (3))

≡ p �R(mn) mod Ip ⋅ BP∗BP

≡ p
n∑

i=0
mitp

i

n−i mod Ip ⋅ BP∗BP (by (5))

≡
n∑

i=0
vitp

i

n−i mod Ip ⋅ BP∗BP (by (10))

(11)

�

Similarly, we could obtain the following formulas for ∆(tn).
Proposition 2.4. For n ≥ 0, we have

∆(tn) =
n∑

k=0
tn−k ⊗ tp

n−k

k −
n−1∑

i=1
vibn−i,i−1 mod I2 ⋅ BP∗BP ⊗BP∗ BP∗BP (12)

where we denote

bi,j =
1
p [(

i∑

k=0
ti−k ⊗ tp

i−k

k )pj+1 −
i∑

k=0
tp

j+1

i−k ⊗ tp
i−k+j+1

k ] (13)

for i ≥ 1, j ≥ 0.
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Proof. We prove by induction on n. The case for n = 0 is trivial. Now suppose
(12) is true for 0 ≤ i ≤ n − 1. Then, direct computation shows

∆(tn) =
∑

i+j=n
mi(∆tj)p

i −
n∑

i=1
mi(∆tn−i)p

i

=
∑

i+j+k=n
mitp

i

j ⊗ tp
i+j

k −
n∑

i=1
mi(∆tn−i)p

i

=
n∑

k=0
tn−k ⊗ tp

n−k

k +
n∑

i=1
mi(

n−i∑

k=0
tp

i

n−i−k ⊗ tp
n−k

k ) −
n∑

i=1
mi(∆tn−i)p

i

=
n∑

k=0
tn−k ⊗ tp

n−k

k −
n∑

i=1
mi[(∆tn−i)p

i −
n−i∑

k=0
tp

i

n−i−k ⊗ tp
n−k

k ]

(14)

Modulo I2 ⋅ BP∗BP ⊗BP∗ BP∗BP, we have

n∑

i=1
mi[(∆tn−i)p

i −
n−i∑

k=0
tp

i

n−i−k ⊗ tp
n−k

k ]

≡
n∑

i=1
mi[(

n−i∑

k=0
tn−i−k ⊗ tp

n−i−k

k )pi −
n−i∑

k=0
tp

i

n−i−k ⊗ tp
n−k

k ]

≡
n−1∑

i=1
pmi ⋅

1
p [(

n−i∑

k=0
tn−i−k ⊗ tp

n−i−k

k )pi −
n−i∑

k=0
tp

i

n−i−k ⊗ tp
n−k

k ]

≡
n−1∑

i=1
vibn−i,i−1

This completes the proof. �

2.2. The dual Steenrod algebra A∗. The Steenrod algebra provides another
important example of Hopf algebroids.

LetA∗ denote the dual mod p Steenrod algebra for an odd prime p, we have
[13]

A∗ = P[�1, �2,⋯]⊗E[�0, �1, �2,⋯] (15)

as an algebra, whereP[�1, �2,⋯] is a polynomial algebrawith coe�cients inFp,
E[�0, �1, �2,⋯] is an exterior algebra with coe�cients in Fp. For the internal
degrees, we have |�n| = 2(pn − 1), |�n| = 2pn − 1. We also denote �0 = 1.

One can show A∗ is a Hopf algebra over Fp. In particular, (Fp,A∗) has a
Hopf algebroid structure. We can describe the structure maps as follows [13].

The left unit �L ∶ Fp → A∗, right unit �R ∶ Fp → A∗, and counit � ∶ A∗ →
Fp maps are all isomorphisms in dimension 0.
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On generators, the coproduct ∆ ∶ A∗ → A∗ ⊗A∗ is given by:

∆�n =
n∑

i=0
�p

i

n−i ⊗ �i, ∆�n = �n ⊗ 1 +
n∑

i=0
�p

i

n−i ⊗ �i (16)

The conjugation map c ∶ A∗ → A∗ is an algebra map given recursively by

c(�0) = 1,
n∑

i=0
�p

i

n−ic(�i) = 0, n > 0, (17)

�n +
n∑

i=0
�p

i

n−ic(�i) = 0, n ≥ 0. (18)

For our computational purposes, we prefer to use a di�erent set of generators.
We denote tn = c(�n), n ≥ 1, and �̃n = c(�n), n ≥ 0. We also denote t0 = 1.

Proposition 2.5. Let p be an odd prime, we can write

A∗ = P[t1, t2,⋯]⊗E[�̃0, �̃1, �̃2,⋯] (19)

as an algebra, where |tn| = 2(pn − 1), |�̃n| = 2pn − 1. Moreover, the coproduct
∆ ∶ A∗ → A∗ ⊗A∗ is given by:

∆tn =
n∑

i=0
ti ⊗ tp

i

n−i, ∆�̃n =
n∑

i=0
�̃i ⊗ tp

i

n−i + 1⊗ �̃n (20)

Proof. It is straightforward to deduce the coproduct formulas by induction on
n. Here, we outline the strategy to prove (20) for tn. The formula for �̃n can be
veri�ed similarly.

The case for n = 0 is trivial. Now, suppose (20) is true for 0 ≤ m ≤ n − 1.
Note (17) implies

n−1∑

i=0
(∆�n−i)p

i (∆ti) + ∆tn = 0

To deduce the desired result, it su�ces to show

n−1∑

i=0
(∆�n−i)p

i (∆ti) +
n∑

i=0
ti ⊗ tp

i

n−i = 0
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Indeed, we have
n−1∑

i=0
(∆�n−i)p

i (∆ti) +
n∑

i=0
ti ⊗ tp

i

n−i

=
n∑

i=0
[(
n−i∑

j=0
�p

j

n−i−j ⊗ �j)p
i (

i∑

k=0
tk ⊗ tp

k

i−k)]

=
n∑

i=0
[(
n−i∑

j=0
�p

i+j

n−i−j ⊗ �p
i

j )(
i∑

k=0
tk ⊗ tp

k

i−k)]

=
∑

j+r+k+s=n
�p

n−r
r tk ⊗ �p

k+s

j tp
k

s

=
∑

r+k<n
�p

n−r
r tk ⊗ (

∑

j+s=n−k−r
�p

s

j ts)p
k +

∑

r+k=n
�p

n−r
r tk ⊗ 1

=0

(21)

�

Remark 2.6. The advantage of using the new set of generators is that, as we
will see in Section 3, c(�n) corresponds to the generator tn ∈ BP∗BP and c(�n)
corresponds to vn ∈ BP∗. Hence, we abuse the notation and denote c(�n) as tn
when no confusion arises.
2.3. Cobar complexes.
De�nition 2.7. Let (A,Γ) be a Hopf algebroid. A right Γ-comoduleM is a right
A-module M together with a right A-linear map  ∶ M → M ⊗A Γ which is
counitary and coassociative, i.e., the following diagrams commute.

M  // M ⊗A Γ
M⊗"
��
M

M  //

 
��

M ⊗A Γ
M⊗∆
��

M ⊗A Γ  ⊗Γ
// M ⊗A Γ⊗A Γ

Left Γ-comodules are de�ned similarly.
De�nition 2.8. Let (A,Γ) be a Hopf algebroid. LetM be a right Γ-comodule.
The cobar complex Ω∗,∗

Γ (M) is a cochain complex with

Ωs,∗
Γ (M) = M ⊗A Γ

⊗s

whereΓ is the augmentation ideal of " ∶ Γ→ A. The di�erentialsd ∶ Ωs,∗
Γ (M)→

Ωs+1,∗
Γ (M) are given by

d(m⊗ x1 ⊗ x2 ⊗⋯⊗ xs) = −( (m) −m⊗ 1)⊗ x1 ⊗ x2 ⊗⋯⊗ xs

−
s∑

i=1
(−1)�i,jim⊗ x1 ⊗⋯⊗ xi−1 ⊗ (

∑

ji
x′i,ji ⊗ x′′i,ji )⊗ xi+1 ⊗⋯⊗ xs
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where ∑

ji
x′i,ji ⊗ x′′i,ji = ∆(xi) − 1⊗ xi − xi ⊗ 1

�i,ji = i + |x1| +⋯ + |xi−1| + |x′i,ji |

The cohomology of Ωs,∗
Γ (M) is Exts,∗Γ (A,M) (see [15, Section A1.2]).

3. Some relevant spectral sequences
In this section, we review the construction and properties of some relevant

spectral sequences, including the algebraicNovikov spectral sequence (algNSS),
the Cartan-Eilenberg spectral sequence (CESS), and theMay spectral sequence
(MSS). These spectral sequences will be used in later computations.

3.1. The algebraic Novikov spectral sequence. Let I be the ideal of BP∗
generated by (p, v1, v2,⋯). The ideal I induces a �ltration

BP∗ = I0 ⊃ I1 ⊃ I2 ⊃ I3 ⊃⋯ ⊃ Ik ⊃ Ik+1 ⊃⋯ (22)

Consider y = apk0vk11 v
k2
2 ⋯ ∈ BP∗, where a ∈ ℤ(p) is invertible. We let l(y) =

Σiki denote the length of y. Then y ∈ Ik if and only if l(y) ≥ k.
Let E∗0BP∗ denote the associated graded object, where Ek0BP∗ ∶= Ik∕Ik+1.

We have
E∗0BP∗ =

⨁

k≥0
Ik∕Ik+1 = Fp[q0, q1, q2,⋯] (23)

is a Fp-coe�cient polynomial algebra, where the generator qi corresponds to
vi, Ik∕Ik+1 corresponds to those homogeneous polynomials of degree k.

Similarly, we can �lter BP∗BP. Denote
FkBP∗BP ∶= �L(Ik)BP∗BP = BP∗BP�R(Ik)

We de�ne the associated graded object Ek0BP∗BP ∶= FkBP∗BP∕Fk+1BP∗BP.
The �ltration of BP∗ and BP∗BP together induces a �ltration on ΩBP∗BP(BP∗).
Such �ltration induces an associated spectral sequence [15, A1.3.9] converging
to Exts,tBP∗BP(BP∗, BP∗).

Theorem3.1 ([10, 14]). There is a spectral sequence, called the algebraicNovikov
spectral sequence (algNSS), converging to Exts,tBP∗BP(BP∗, BP∗) with E2-page

Es,t,k2 = Exts,tP∗(Fp, I
k∕Ik+1)

and dalgr ∶ Es,t,kr → Es+1,t,k+r−1r , where

P∗ ∶= E0BP∗BP ⊗E0BP∗ Fp = BP∗BP∕I = P[t1, t2,⋯] (24)

is the Fp-coe�cient polynomial algebra.

Remark 3.2. Our index of pages here is di�erent from the ones used in [2, 15].
We have re-indexed the spectral sequence to align with the notations in [4, 6].
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3.2. TheCartan-Eilenberg spectral sequence. LetA∗ denote the dual Steen-
rod algebra for an odd prime p. Recall from Proposition 2.5 that we have

A∗ = P[t1, t2,⋯]⊗E[�̃0, �̃1, �̃2,⋯]
Let P∗ denote P[t1, t2,⋯] ⊂ A∗. Let E∗ denote E[�̃0, �̃1, �̃2,⋯]. Then

P∗ → A∗ → E∗
is an extension of Hopf algebras [15, A1.1.15], which induces a spectral se-
quence [15, A1.3.14] converging to Ext∗,∗A∗

(Fp,Fp).

Theorem3.3 ([15] Theorem 4.4.3, 4.4.4). Letp be an odd prime. There is a spec-
tral sequence, called the Cartan-Eilenberg spectral sequence (CESS), converging
to Exts1+s2,tA∗

(Fp,Fp) with E2-page

Es1,t,s22 = Exts1,tP∗ (Fp, Ext
s2
E∗(Fp,Fp))

and dr ∶ Es1,t,s2r → Es1+r,t,s2−r+1r . Moreover, one can prove the following results:
(a) Exts2,∗E∗ (Fp,Fp) = P[a0, a1,⋯] is a polynomial algebra with generator ai ∈

Ext1,2pi−1 represented in the associated cobar complexΩE∗(Fp) by [�̃i].
(b) The P∗-coaction on ExtE∗(Fp,Fp) is given by

 (an) =
n∑

i=0
ai ⊗ tp

i

n−i (25)

(c) The CESS collapses from E2 with no nontrivial extensions.
(d) There is an isomorphism

Exts,tP∗(Fp, I
k∕Ik+1) ≅ Exts,t+kP∗ (Fp, ExtkE∗(Fp,Fp)) (26)

between the E2-page of the algNSS and the E2-page of the CESS.
The (d) part shows the twoExt groups are isomorphic (up to degree shifting).

Moreover, we can show the two associated cobar complexes are isomorphic (up
to a shifting of degrees). More precisely, there is a natural isomorphism

ΩP∗(Ik∕Ik+1) ≅ ΩP∗(ExtkE∗(Fp,Fp)) (27)

sending ti to ti and qi to ai.
Indeed, by Theorem 3.3 (a), ExtkE∗(Fp,Fp) is the homogeneous degree k part

of the polynomial P[a0, a1, a2,⋯]. Hence Ik∕Ik+1 ≅ ExtkE∗(Fp,Fp). If x ∈
Ik∕Ik+1 has inner degree t, then its corresponding element x̃ ∈ ExtkE∗(Fp,Fp)
has inner degree t + k. This degree shifting is a consequence of the fact that
|qi| = 2(pi − 1) = |ai| − 1. Moreover, the comodule structure map  ∶
Ik∕Ik+1 → Ik∕Ik+1 ⊗ P∗ induced from (9) is given by

 (qn) =
n∑

i=0
qi ⊗ tp

i

n−i (28)

which also agrees with (25).
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Notations 3.4. In this paper, we often refer to E2-terms of the algNSS by their
representative in the cobar complex ΩP∗(Ik∕Ik+1). For example, we let q0 ⊗
tp1 denote its homology class in Ext1,∗P∗ (Fp, I∕I

2). The correspondence between
di�erent E2-pages becomes clear under this naming convention. For example,
q0 ⊗ tp1 ∈ Ext1,∗P∗ (Fp, I∕I

2) in the algNSS corresponds to

a0 ⊗ tp1 ∈ Ext1,∗P∗ (Fp, Ext
1
E∗(Fp,Fp))

in the CESS, which represents �̃0 ⊗ tp1 ∈ Ext2,∗A∗
(Fp,Fp) in the ASS.

3.3. TheMay spectral sequence. The E2-terms Exts,tA∗
(Fp,Fp) of the Adams

spectral sequence could be computed via the cobar complex Ω∗,∗
A∗
(Fp). In prac-

tice, we could simplify such computations by �ltering Ω∗,∗
A∗
(Fp).

Theorem 3.5 ([8], [15] Theorem 3.2.5). Let p be an odd prime. A∗ can be given
an increasing �ltration by setting the May degree M(tp

j

i ) = M(�̃i−1) = 2i − 1
for i − 1, j ≥ 0. The �ltration of A∗ naturally induces a �ltration of Ω∗,∗

A∗
(Fp).

The associated spectral sequence converging to Exts,tA∗
(Fp,Fp) is called the May

spectral sequence (MSS). The MSS has E1 page
E∗,∗,∗1 = E[ℎi,j|i ≥ 1, j ≥ 0]⊗ P[bi,j|i ≥ 1, j ≥ 0]⊗ P[ai|i ≥ 0] (29)

and dr ∶ Es,t,Mr → Es+1,t,M−r
r , where

ℎi,j =[tp
j

i ] ∈ E1,2(p
i−1)pj ,2i−1

1

bi,j =[
p−1∑

k=1

(p
k
)
∕p (tp

j

i )k ⊗ (tp
j

i )p−k ] ∈ E2,2(p
i−1)pj+1,p(2i−1)

1

ai =[�̃i] ∈ E1,2p
i−1,2i+1

1

(30)

Remark 3.6. Technically, we could denote the generator by b̃i,j instead of bi,j
to avoid possible confusion with the element

bi,j =
1
p [(

i∑

k=0
ti−k ⊗ tp

i−k

k )pj+1 −
i∑

k=0
tp

j+1

i−k ⊗ tp
i−k+j+1

k ]

de�ned in (13). However, let x be the element inΩ∗,∗
A∗
(Fp) corresponding to bi,j

(Notations 3.4). Note Ω∗,∗
A∗
(Fp) has coe�cient Fp, we have

x = 1
p

∑

k1≠k2

p−1∑

t=1

(pj+1
tpj

)
(ti−k1 ⊗ tp

i−k1

k1 )tpj (ti−k2 ⊗ tp
i−k2

k2 )(p−t)pj

= 1
p

∑

k1≠k2

p−1∑

t=1

(p
t
)
(ttp

j

i−k1t
(p−t)pj
i−k2 ⊗ ttp

i+j−k1

k1 t(p−t)p
i+j−k2

k2 )
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Its May �ltration leading term is

1
p
p−1∑

t=1

(p
t
)
ttp

j

i ⊗ t(p−t)p
j

i = b̃i,j

Therefore, we often abuse the notation and also denote b̃i,j by bi,j.

Note that we can analogously de�ne an increasing �ltration onΩP∗(Ik∕Ik+1)
(hence also on ΩP∗(ExtkE∗(Fp,Fp))) by setting the May degree

M(tp
j

i ) = M(qi−1) = 2i − 1

for i − 1, j ≥ 0. We observe the following structure maps:

 (qn) =
n∑

i=0
qi ⊗ tp

i

n−i, ∆tn =
n∑

i=0
ti ⊗ tp

i

n−i. (31)

For i < n, we haveM(qn) = 2n+1 ≥ 2n = 2i+1+2(n− i) − 1 = M(qi⊗tp
i

n−i).
Similarly, for 0 < i < n,M(tn) = 2n − 1 ≥ 2n − 2 = M(ti ⊗ tp

i

n−i). Let d denote
the di�erential of the cobar complex ΩP∗(Ik∕Ik+1) (see De�nition 2.8). Then d
respects this May �ltration. Hence, we can talk about the May �ltration of the
algNSSE2-terms. Moreover, theMay �ltration of the elements in the algNSSE2-
page agrees with the May �ltration of the corresponding elements in the ASS
E2-page (see Notations 3.4).

4. Secondary Adams di�erentials on the fourth line
In this section, we prove our main result Theorem 4.4. Using Theorem 1.1,

we determine these secondary Adams di�erentials dAdams2 by computing their
corresponding secondary algebraic Novikov di�erentials dalg2 .

Our computational strategy in this paper can be summarized as follows:
(1) Let x be an element in the Adams E2-page. Let l be the MSS represen-

tative of x.
(2) As stated in Notations 3.4, we �nd the the element x′ (resp. l′) in the

algebraic Novikov spectral sequence corresponding to x (resp. l). We
deduce l′ is the May �ltration leading term of x′.

(3) Through a careful analysis of l′, we determine theMay �ltration leading
term y′ of dalg2 (x′).

(4) Let y be the element in theMSS corresponding to y′. Thenwe conclude
dAdams2 (x) is represented by y.

In particular, we will use Table 1 for the four families of Adams E2-terms in
Theorem 4.4.

Now we start the actual computations.
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Adams E2-term x MSS representative l corresponding algNSS term l′

ℎ4,iℎ3,igi ℎ4,iℎ3,iℎ2,iℎ1,i tp
i

4 ⊗ tp
i

3 ⊗ tp
i

2 ⊗ tp
i

1

ℎ4,iℎ3,i+1ki+2 ℎ4,iℎ3,i+1ℎ2,i+2ℎ1,i+3 tp
i

4 ⊗ tp
i+1

3 ⊗ tp
i+2

2 ⊗ tp
i+3

1

ℎ4,igiℎi+3 ℎ4,iℎ2,iℎ1,iℎ1,i+3 tp
i

4 ⊗ tp
i

2 ⊗ tp
i

1 ⊗ tp
i+3

1

ℎ3,iℎ2,i+1ki ℎ3,iℎ2,i+1ℎ2,iℎ1,i+1 tp
i

3 ⊗ tp
i+1

2 ⊗ tp
i

2 ⊗ tp
i+1

1
Table 1. Representations of the four elements

Lemma 4.1. Letd denote the di�erential in the cobar complexΩ∗,∗
BP∗BP(BP∗) (Def-

inition 2.8). Let n, i ≥ 1, we have

d(tp
i

n ) =
n−1∑

k=1
tp

i

n−k ⊗ tp
n−k+i

k + pbn,i−1 mod I2 ⋅ BP∗BP ⊗BP∗ BP∗BP (32)

Proof. After reduction module I2 ⋅ BP∗BP ⊗BP∗ BP∗BP, we have

d(tp
i

n ) = ∆(tp
i

n ) − 1⊗ tp
i

n − tp
i

n ⊗ 1

= (
n∑

k=0
tn−k ⊗ tp

n−k

k −
n−1∑

i=1
vibn−i,i−1)p

i − 1⊗ tp
i

n − tp
i

n ⊗ 1 (by (12))

= (
n∑

k=0
tn−k ⊗ tp

n−k

k )pi − 1⊗ tp
i

n − tp
i

n ⊗ 1

=
n−1∑

k=1
tp

i

n−k ⊗ tp
n−k+i

k + pbn,i−1 (compare with (13))

�

Proposition 4.2. Let x ∈ Ext4,∗P∗ (Fp, BP∗∕I) be an element in the E2-page of the
algNSS such that x has May �ltration leading term tp

i

4 ⊗ tp
i

3 ⊗ tp
i

2 ⊗ tp
i

1 , where

i ≥ 1. Then dalg2 (x) has May �ltration leading term q0b4,i−1 ⊗ tp
i

3 ⊗ tp
i

2 ⊗ tp
i

1 .

Proof. Wewill computedalg2 (x) as follows. First, wewill �nd a representative x̃
ofx inΩ4,∗

BP∗BP(BP∗). Afterward, wewill analyzed(x̃), whered ∶ Ω
4,∗
BP∗BP(BP∗)→

Ω5,∗
BP∗BP(BP∗) denotes the di�erential in the cobar complex Ω∗,∗

BP∗BP(BP∗). This
analysis will provide us with the necessary information about d(x̃), which rep-
resents dalg2 (x) ∈ Ext5,∗P∗ (Fp, I∕I

2).
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Using Lemma 4.1 and the Leibniz rule, we have

d(tp
i

4 ⊗ tp
i

3 ⊗ tp
i

2 ⊗ tp
i

1 ) = d(tp
i

4 )⊗ tp
i

3 ⊗ tp
i

2 ⊗ tp
i

1 − tp
i

4 ⊗ d(tp
i

3 )⊗ tp
i

2 ⊗ tp
i

1

+ tp
i

4 ⊗ tp
i

3 ⊗ d(tp
i

2 )⊗ tp
i

1 − tp
i

4 ⊗ tp
i

3 ⊗ tp
i

2 ⊗ d(tp
i

1 )

≡ R + pb4,i−1 ⊗ tp
i

3 ⊗ tp
i

2 ⊗ tp
i

1 + L mod I2 ⋅ BP∗BP⊗5

≡ R mod I ⋅ BP∗BP⊗5
(33)

where we denote

R = (tp
i

3 ⊗ tp
i+3

1 + tp
i

2 ⊗ tp
i+2

2 + tp
i

1 ⊗ tp
i+1

3 )⊗ tp
i

3 ⊗ tp
i

2 ⊗ tp
i

1

− tp
i

4 ⊗ (tp
i

2 ⊗ tp
i+2

1 + tp
i

1 ⊗ tp
i+1

2 )⊗ tp
i

2 ⊗ tp
i

1 + tp
i

4 ⊗ tp
i

3 ⊗ tp
i

1 ⊗ tp
i+1

1 ⊗ tp
i

1 ,
(34)

and

L = −tp
i

4 ⊗ pb3,i−1 ⊗ tp
i

2 ⊗ tp
i

1 + tp
i

4 ⊗ tp
i

3 ⊗ pb2,i−1 ⊗ tp
i

1 − tp
i

4 ⊗ tp
i

3 ⊗ tp
i

2 ⊗ pb1,i−1
(35)

which is a sum of monomials in I ⋅ BP∗BP⊗5 with May degrees lower than
M(pb4,i−1 ⊗ tp

i

3 ⊗ tp
i

2 ⊗ tp
i

1 ) = 7p + 10.
Since x ∈ Ext4,∗P∗ (Fp, BP∗∕I) has May �ltration leading term tp

i

4 ⊗tp
i

3 ⊗tp
i

2 ⊗
tp

i

1 , we can choose a representative x̃ of x in Ω4,∗
BP∗BP(BP∗) = BP∗BP⊗4 in the

form of
x̃ = tp

i

4 ⊗ tp
i

3 ⊗ tp
i

2 ⊗ tp
i

1 −
∑

r
yr, (36)

such that:
(a) each yr is amonomial in BP∗BP⊗4 and is not an element of I ⋅BP∗BP⊗4,
(b) M(yr) < M(tp

i

4 ⊗ tp
i

3 ⊗ tp
i

2 ⊗ tp
i

1 ) = 7 + 5 + 3 + 1 = 16,
(c)

∑
r d(yr) ≡ Rmod I ⋅BP∗BP⊗5, ensuring that d(x̃) ≡ 0mod I ⋅BP∗BP⊗5.

For each r, we express d(yr) as a sum of monomials in BP∗BP⊗5:
d(yr) =

∑

u
zr,u. (37)

Next, we de�ne the sets Ar ∶= {zr,u|zr,u ∉ I ⋅ BP∗BP⊗5} and Br ∶= {zr,u|zr,u ∈
I ⋅ BP∗BP⊗5, zr,u ∉ I2 ⋅ BP∗BP⊗5}, which correspond to the (possibly empty)
sets of summands. Using these sets, we then obtain:

0 ≡ d(x̃) ≡ R −
∑

r

∑

zr,u∈Ar
zr,u mod I ⋅ BP∗BP⊗5 (38)

d(x̃) ≡ pb4,i−1 ⊗ tp
i

3 ⊗ tp
i

2 ⊗ tp
i

1 + L −
∑

r

∑

zr,u∈Br
zr,u mod I2 ⋅ BP∗BP⊗5 (39)
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Therefore, pb4,i−1 ⊗ tp
i

3 ⊗ tp
i

2 ⊗ tp
i

1 + L −∑
r
∑

zr,u∈Br zr,u represents d
alg
2 (x) ∈

Ext5,∗P∗ (Fp, I∕I
2).

The condition M(yr) < 16 strongly restricts the form of yr. To show that
M(zr,u) < M(pb4,i−1 ⊗ tp

i

3 ⊗ tp
i

2 ⊗ tp
i

1 ) = 7p + 10 holds for all zr,u ∈ Br,
we can conduct a tedious but straightforward check through all possible forms
of yr. Alternatively, we can summarize the idea as follows, considering three
di�erent cases:

(a) If yr = tp
k

4 ⊗Awith k ≥ 1, whereA is made up of t1, t2, and t3 terms and
M(A) ≤ 8, then we haveM(zr,u) ≤ M(pb4,k−1⊗A) = 7p+1+M(A) ≤
7p + 9 < 7p + 10.

(b) If yr = t4⊗A, whereA is made up of t1, t2, and t3 terms, andM(A) ≤ 8,
we note that d(t4) = t3⊗tp

3

1 + t2⊗tp
2

2 + t1⊗tp3 −v1b3,0−v2b2,1−v3b1,2.
Also, M(bi,j) = p(2i − 1) ≤ 5p for i ≤ 3. We can then observe that
M(zr,u) < 7p + 10.

(c) If yr is made up of t1, t2, and t3 terms, we can also use similar ideas and
check thatM(zr,u) < 7p + 10.

Thus, we conclude dalg2 (x) hasMay �ltration leading term q0b4,i−1⊗tp
i

3 ⊗tp
i

2 ⊗
tp

i

1 . �

We can compute the following di�erentials similarly to Proposition 4.2.

Proposition 4.3. We have the following secondary algebraic Novikov di�eren-
tials.

(1) dalg2 (tp
i

4 ⊗tp
i+1

3 ⊗tp
i+2

2 ⊗tp
i+3

1 ) = q0b4,i−1⊗tp
i+1

3 ⊗tp
i+2

2 ⊗tp
i+3

1 , for i ≥ 1.
(2) dalg2 (tp

i

4 ⊗ tp
i

2 ⊗ tp
i

1 ⊗ tp
i+3

1 ) = q0b4,i−1 ⊗ tp
i

2 ⊗ tp
i

1 ⊗ tp
i+3

1 , for i ≥ 1.
(3) dalg2 (tp

i

3 ⊗ tp
i+1

2 ⊗ tp
i

2 ⊗ tp
i+1

1 ) = q0b3,i−1 ⊗ tp
i+1

2 ⊗ tp
i

2 ⊗ tp
i+1

1 , for i ≥ 1.
Here, the equations hold after modding out lower May �ltration terms.

Proof. These results can be computed directly analogous to Proposition 4.2.
�

Theorem 4.4. There are nontrivial secondary Adams di�erentials given as fol-
lows:

(1) dAdams2 (ℎ4,iℎ3,igi) = a0b4,i−1ℎ3,igi , for i ≥ 1.
(2) dAdams2 (ℎ4,iℎ3,i+1ki+2) = a0b4,i−1ℎ3,i+1ki+2, for i ≥ 1.
(3) dAdams2 (ℎ4,igiℎi+3) = a0b4,i−1giℎi+3, for i ≥ 1.
(4) dAdams2 (ℎ3,iℎ2,i+1ki) = a0b3,i−1ℎ2,i+1ki , for i ≥ 1.

Proof. These results can be directly deduced from Propositions 4.2 and 4.3.
Moreover, these di�erentials are all nontrivial. We can take a0b4,i−1ℎ3,igi as an
example to show a0b4,i−1ℎ3,igi ≠ 0 ∈ Ext6,∗A∗

. The other three cases are similar.
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Note a0b4,i−1ℎ3,igi has May spectral sequence representative

a0b4,i−1ℎ3,iℎ2,iℎ1,i ∈ E6,t,M1
Here, the inner degree is

t = 1 + qpi((1 + p + p2 + p3) + (1 + p + p2) + (1 + p) + 1)
where we denote q = 2(p − 1). Let x be an element in E5,t,∗1 . Inspection of
degrees shows xmust be a0ℎ4,iℎ3,iℎ2,iℎ1,i. ThenM(x) < M(a0b4,i−1ℎ3,iℎ2,iℎ1,i).
Hence, a0b4,i−1ℎ3,iℎ2,iℎ1,i can not be the image of any May di�erential dr ∶
E5,t,M+r
r → E6,t,Mr , r ≥ 1. This completes the proof. �

It is worth pointing out that Zhong-Hong-Zhao [19] also computed two other
nontrivial di�erentials on the fourth line.

Theorem 4.5 (Zhong-Hong-Zhao [19]). On the fourth line Ext4,∗A∗
(Fp,Fp) of the

Adams spectral sequence, there exist two nontrivial secondaryAdams di�erentials
given as follows:

(1) dAdams2 (ℎ3,igiℎ2,i−1) = a0b3,i−1giℎ2,i−1 for i ≥ 2.
(2) dAdams2 (ℎ3,iki+1ℎ2,i+2) = a0b3,i−1ki+1ℎ2,i+2 for i ≥ 1.
Their result can be recovered by computing the following corresponding al-

gebraic Novikov di�erentials.

Proposition 4.6. We have the following secondary algebraic Novikov di�eren-
tials. Here, the equations hold after modding out lower May �ltration terms.

(1) dalg2 (tp
i

3 ⊗ tp
i

2 ⊗ tp
i

1 ⊗ tp
i−1

2 ) = q0b3,i−1 ⊗ tp
i

2 ⊗ tp
i

1 ⊗ tp
i−1

2 , for i ≥ 2.
(2) dalg2 (tp

i

3 ⊗tp
i+1

2 ⊗tp
i+2

1 ⊗tp
i+2

2 ) = q0b3,i−1⊗tp
i+1

2 ⊗tp
i+2

1 ⊗tp
i+2

2 , for i ≥ 1.
Proof. These results can be computed directly analogous to Proposition 4.2.

�

Our computations here are comparativelymore straightforward than the orig-
inal computations in [19] using matrix Massey products.

5. Secondary Adams di�erentials on the �rst three lines
In this section, we use the strategy explained in Section 4 to recover sec-

ondary Adams di�erentials on the �rst three lines.
The generators for the �rst two lines of the Adams spectral sequence were

determined by Liulevicius in [7]. We summarize them in the following table.

Generator Representation in MSS Inner Degree Range of indices
a0 a0 1
ℎi ℎ1,i qpi i ≥ 0
a1ℎ0 a1ℎ1,0 2q + 1
a20 a20 2
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a0ℎi a0ℎ1,i qpi + 1 i ≥ 1
gi ℎ2,iℎ1,i q(2pi + pi+1) i ≥ 0
ki ℎ2,iℎ1,i+1 q(pi + 2pi+1) i ≥ 0
bi b1,i qpi+1 i ≥ 0
ℎiℎj ℎ1,iℎ1,j q(pi + pj) j − 2 ≥ i ≥ 0

Table 2. A Fp-basis of Ext1,∗A∗
and Ext2,∗A∗

For odd primes, Aikawa [1] determined a basis for Ext3,∗A∗
using Λ-algebra.

For p ≥ 5, Wang [17] determined the May spectral sequence representatives of
the generators. The result is summarized in the following table.

Generator MSS Representation Inner Degree Range of indices
ℎiℎjℎk ℎ1,iℎ1,jℎ1,k q(pi + pj + pk) k − 4 ≥ j − 2 ≥ i ≥ 0
a0ℎiℎj a0ℎ1,iℎ1,j q(pi + pj) + 1 j − 2 ≥ i ≥ 1
a20ℎi a20ℎ1,i qpi + 2 i ≥ 1
a30 a30 3
biℎj b1,iℎ1,j q(pi+1 + pj) i, j ≥ 0, j ≠ i + 2
a0bi a0b1,i qpi+1 + 1 i ≥ 1
giℎj ℎ2,iℎ1,iℎ1,j q(2pi + pi+1 + pj) j ≠ i + 2, i, i − 1,

and i, j ≥ 0
gia0 ℎ2,iℎ1,ia0 q(2pi + pi+1) + 1 i ≥ 1
kiℎj ℎ2,iℎ1,i+1ℎ1,j q(pi + 2pi+1 + pj) j ≠ i + 2, i ± 1, i,

and i, j ≥ 0
kia0 ℎ2,iℎ1,i+1a0 q(pi + 2pi+1) + 1 i ≥ 1
a1ℎ0ℎj a1ℎ1,0ℎ1,j q(2 + pj) + 1 j ≥ 2
ℎ3,igi ℎ3,iℎ2,iℎ1,i q(3pi + 2pi+1 + pi+2) i ≥ 0
a2k0 a2ℎ2,0ℎ1,1 q(2 + 3p) + 1
ℎ2,igi+1 ℎ2,iℎ2,i+1ℎ1,i+1 q(pi + 3pi+1 + pi+2) i ≥ 0
a1g0 a1ℎ2,0ℎ1,0 q(3 + p) + 1

ℎ3,iℎi+2ℎi ℎ3,iℎ1,i+2ℎ1,i q(2pi + pi+1 + 2pi+2) i ≥ 0
ℎ3,iki+1 ℎ3,iℎ2,i+1ℎ1,i+2 q(pi + 2pi+1 + 3pi+2) i ≥ 0
a21ℎ0 a21ℎ1,0 3q + 2
b2,iℎi+1 b2,iℎ1,i+1 q(2pi+1 + pi+2) i ≥ 0
b2,iℎi+2 b2,iℎ1,i+2 q(pi+1 + 2pi+2) i ≥ 0

Table 3. A Fp-basis of Ext3,∗A∗
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We can compute dAdams2 for the basis elements in Table 2 via computing dalg2
of their corresponding elements. For simplicity, we only list the nontrivial dalg2
di�erentials here.

Proposition 5.1. Let p be an odd prime. Amongst the elements in the algebraic
Novikov spectral sequence that corresponds to the �rst and second line basis listed
in Table 2, all nontrivial dalg2 ’s are summarized as follows. Here, the equations
hold after modding out lower May �ltration terms.

(1) dalg2 (tp
i

1 ) = q0b1,i−1, for i > 0.
(2) dalg2 (ptp

i

1 ) = q20b1,i−1, i ≥ 1.
(3) dalg2 (tp

i

2 ⊗ tp
i

1 ) = q0b2,i−1 ⊗ tp
i

1 , i ≥ 1.
(4) dalg2 (t2 ⊗ t1) = −q1b1,0 ⊗ t1.
(5) dalg2 (tp

i

2 ⊗ tp
i+1

1 ) = q0b2,i−1 ⊗ tp
i+1

1 , i ≥ 1.
(6) dalg2 (tp

i

1 ⊗ tp
j

1 ) = q0b1,i−1 ⊗ tp
j

1 − tp
i

1 ⊗ q0b1,j−1, j − 2 ≥ i ≥ 1.
Proof. Analogous to Proposition 4.2, all of the results are computed directly
from the construction of the cobar complex. �

Then, we can recover the dAdams2 results on the �rst two lines directly from
Proposition 5.1.

Theorem 5.2 (Liulevicius[7], Shimada-Yamanoshita [16], Miller-Ravenel-Wil-
son [12], Zhao-Wang [18]). Amongst the �rst and second line basis in Table 2,
all nontrivial Adams d2 di�erentials can be summarized as follows.

(1) dAdams2 (ℎi) = a0bi−1, i ≥ 1.
(2) dAdams2 (a0ℎi) = a20bi−1, i ≥ 1.
(3) dAdams2 (gi) = a0b2,i−1ℎi , i ≥ 1.
(4) dAdams2 (g0) = −a1b0ℎ0.
(5) dAdams2 (ki) = a0b2,i−1ℎi+1, i ≥ 1.
(6) dAdams2 (ℎiℎj) = a0bi−1ℎj − ℎia0bj−1, j − 2 ≥ i ≥ 1.

Similarly, we can compute dAdams2 for the third line basis via computing dalg2
of their corresponding elements. For simplicity, we only list the nontrivial dif-
ferentials here.

Proposition 5.3. Let p ≥ 5 be an odd prime. Amongst the elements in the al-
gebraic Novikov spectral sequence that corresponds to the third line basis listed in
Table 3, all nontrivial dalg2 ’s are summarized as follows. Here, the equations hold
after modding out lower May �ltration terms.

(1) dalg2 (tp
i

1 ⊗tp
j

1 ⊗tp
k

1 ) = q0b1,i−1⊗tp
j

1 ⊗tp
k

1 − tp
i

1 ⊗q0b1,j−1⊗tp
k

1 + tp
i

1 ⊗
tp

j

1 ⊗ q0b1,k−1, for k − 4 ≥ j − 2 ≥ i ≥ 1.
(2) dalg2 (q0tp

i

1 ⊗ tp
j

1 ) = q20b1,i−1 ⊗ tp
j

1 − q20t
pi
1 ⊗ b1,j−1, for j − 2 ≥ i ≥ 1.
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(3) dalg2 (q20t
pi
1 ) = q30b1,i−1, for i ≥ 1.

(4) dalg2 (b1,i ⊗ tp
j

1 ) = q0b1,ib1,j−1, for i ≥ 0, j ≥ 1, j ≠ i + 2.
(5) dalg2 (tp

i

2 ⊗ tp
i

1 ⊗ tp
j

1 ) = q0b2,i−1⊗ tp
i

1 ⊗ tp
j

1 , for i, j ≥ 1, j ≠ i + 2, i, i − 1.
(6) dalg2 (t2⊗t1⊗tp

j

1 ) = −q1b1,0⊗t1⊗tp
j

1 +t2⊗t1⊗q0b1,j−1, for j > 0, j ≠ 2.
(7) dalg2 (q0tp

i

2 ⊗ tp
i

1 ) = q20b2,i−1 ⊗ tp
i

1 , for i ≥ 1.
(8) dalg2 (tp

i

2 ⊗tp
i+1

1 ⊗tp
j

1 ) = q0b2,i−1⊗tp
i+1

1 ⊗tp
j

1 , for i, j ≥ 1, j ≠ i+2, i±1, i.
(9) dalg2 (q0tp

i

2 ⊗ tp
i+1

1 ) = q20b2,i−1 ⊗ tp
i+1

1 , for i ≥ 1.
(10) dalg2 (tp

i

3 ⊗ tp
i

2 ⊗ tp
i

1 ) = q0b3,i−1 ⊗ tp
i

2 ⊗ tp
i

1 , for i ≥ 1.
(11) dalg2 (t3 ⊗ t2 ⊗ t1) = −q1b2,0 ⊗ t2 ⊗ t1.
(12) dalg2 (tp

i

2 ⊗ tp
i+1

2 ⊗ tp
i+1

1 ) = q0b2,i−1 ⊗ tp
i+1

2 ⊗ tp
i+1

1 − tp
i

2 ⊗ q0b2,i ⊗ tp
i+1

1 ,
for i ≥ 1.

(13) dalg2 (q1t2 ⊗ t1) = −q21b1,0 ⊗ t1.
(14) dalg2 (tp

i

3 ⊗ tp
i+2

1 ⊗ tp
i

1 ) = q0b3,i−1 ⊗ tp
i+2

1 ⊗ tp
i

1 , for i ≥ 1.
(15) dalg2 (t3 ⊗ tp

2

1 ⊗ t1) = −q1b2,0 ⊗ tp
2

1 ⊗ t1.
(16) dalg2 (tp

i

3 ⊗ tp
i+1

2 ⊗ tp
i+2

1 ) = q0b3,i−1 ⊗ tp
i+1

2 ⊗ tp
i+2

1 , for i ≥ 1.

Then, we can recover the following result directly from Proposition 5.3.

Theorem 5.4 (Wang [17]). Let p ≥ 5 be an odd prime. Amongst the third line
basis in Table 3, all nontrivial Adams d2 di�erentials can be summarized as fol-
lows.

(1) dAdams2 (ℎiℎjℎk) = a0bi−1ℎjℎk−a0ℎibj−1ℎk+a0ℎiℎjbk−1, k−4 ≥ j−2 ≥
i ≥ 1.

(2) dAdams2 (a0ℎiℎj) = a20bi−1ℎj − a20ℎibj−1, j − 2 ≥ i ≥ 1.
(3) dAdams2 (a20ℎi) = a30bi−1, i ≥ 1.
(4) dAdams2 (biℎj) = a0bibj−1, i ≥ 0, j ≥ 1, j ≠ i + 2.
(5) dAdams2 (giℎj) = a0b2,i−1ℎiℎj , i, j ≥ 1, j ≠ i + 2, i, i − 1.
(6) dAdams2 (g0ℎj) = −a1b0ℎ0ℎj + a0g0bj−1, j > 0, j ≠ 2.
(7) dAdams2 (gia0) = a20b2,i−1ℎi , i ≥ 1.
(8) dAdams2 (kiℎj) = a0b2,i−1ℎi+1ℎj , i, j ≥ 1, j ≠ i + 2, i ± 1, i.
(9) dAdams2 (kia0) = a20b2,i−1ℎi+1, i ≥ 1.
(10) dAdams2 (ℎ3,igi) = a0b3,i−1gi , i ≥ 1.
(11) dAdams2 (ℎ3,0g0) = −a1b2,0g0.
(12) dAdams2 (ℎ2,igi+1) = a0b2,i−1gi+1 − a0ℎ2,iki , i ≥ 1.
(13) dAdams2 (a1g0) = −a21b0ℎ0.
(14) dAdams2 (ℎ3,iℎi+2ℎi) = a0b3,i−1ℎi+2ℎi , i ≥ 1.
(15) dAdams2 (ℎ3,0ℎ2ℎ0) = −a1b2,0ℎ2ℎ0.
(16) dAdams2 (ℎ3,iki+1) = a0b3,i−1ki+1, i ≥ 1.
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